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Taufiq Khairi bin Ahmad Khairuddin
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November 28, 2016

This thesis focuses on some mathematical aspects and a few recent applications of
the polarization tensor (PT). Here, the main concern of the study is to characterize
objects presented in electrical or electromagnetic fields by only using the PT. This is
possible since the PT contains significant information about the object such as shape,
orientation and material properties. Two main applications are considered in the study
and they are electrosensing fish and metal detection. In each application, we present a
mathematical formulation of the PT and briefly discuss its properties.

The PT in the electrosensing fish is actually based on the first order generalized
polarization tensor (GPT) while the GPT itself generalizes the classical PT called as
the Pólya-Szegő PT. In order to investigate the role of the PT in electrosensing fish,
we propose two numerical methods to compute the first order PT. The first method is
directly based on the quadrature method of numerical integration while the second
method is an adaptation of some terminologies of the boundary element method (BEM).
A code to use the first method is developed in Matlab while a script in Python is
written as an interface for using the new developed code for BEM called as BEM++.
When comparing the two methods, our numerical results show that the first order PT is
more accurate with faster convergence when computed by BEM++. During this study,
we also give a strategy to determine an ellipsoid from a given first order PT. This is
because we would like to propose an experiment to test whether electrosensing fish can
discriminate a pair of different objects but with the same first order PT such that the
pair could be an ellipsoid and some other object. In addition, the first order PT (or
the Pólya-Szegő PT) with complex conductivity (or complex permittivity) which is
similar to the PT for Maxwell’s equations is also investigated.

On the other hand, following recent mathematical foundation of the PT from the
eddy current model, we use the new proposed explicit formula to compute the rank
2 PT for a few metallic targets relevance in metal detection. We show that the PT
for the targets computed from the explicit formula agree to some degree of accuracy
with the PT obtained from metal detectors during experimental works and simulations
conducted by the engineers. This suggests to alternatively use the explicit formula
which depends only on the geometry and material properties of the target as well as
offering lower computational efforts than performing measurements with metal detectors
to obtain the PT. By using the explicit formula of the rank 2 PT, we also numerically
investigate some properties of the rank 2 PT where, the information obtained could be
useful to improve metal detection and also in other potential applications of the eddy
current. In this case, if the target is magnetic but non-conducting, the rank 2 PT of
the target can also be computed by using the explicit formula of the first order PT.
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Weakly electric fish Gnathonemus petersii

(a) (b)

Metal detectors : (a) Walk-through metal detector (b) Landmine detector
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Chapter 1

Introduction

The terminology polarization tensor (PT) has some useful applications in electric

and electromagnetic inverse problems. Some researchers study the PT to improve

image reconstruction in electrical imaging for industrial or biomedical applications.

Furthermore, the PT also provides additional information about the electrical images

with lower computational cost than full image reconstruction. On the other hand, since

metal detection is normally expensive, difficult and time consuming, the PT is adapted

in metal detectors by the engineers during security screening and landmine clearance.

In this study, we present and describe some mathematical aspects and applications of

the first order PT. By using the PT from electrical imaging, we investigate the PT in

electrosensing fish. Moreover, based on recent mathematical foundation of the PT for

the eddy current, we numerically explore the PT for metal detection and compare it

with the PT from engineering perspective for this problem.

1.1 Research Background

The PT is actually an old branch of mathematics and appears for examples, in the

classical problems of potential theory. Many years ago, Pólya [1] invented a PT called

the virtual mass in his investigation about motion of a solid through a fluid. The

virtual mass was then extended and the new PT (we call it as the Pólya-Szegő PT)

was introduced in the studies of hydrodynamics and theory of electricity by [2] and

[3]. Furthermore, another different PT known as the polarizibility tensor was used

by Kleinman and Senior [4] to formulate the induced electric and magnetic dipole
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moments in low frequency electromagnetic scattering. They also gave several examples

about the polarizibility tensor for each electric and magnetic dipole moment of the

homogeneous Maxwell’s equations in [5].

After some periods, between year 2001 and 2010, a few nice books about the PT

with a specific applications were written. The PT called as the polarizibility tensor

and appeared in Milton [6] was used in the theoretical studies of composite. Another

polarizibility tensor was also investigated by Raab and De Lange [7] during their

studies on multipole moments in electromagnetism. In addition, Ammari and Kang [8]

provided some extensive mathematical analysis for the PT and applied it to improve

electrical imaging and also to determine effective properties for some mediums. This

suggests that researches in this area are very wide, promising and also interesting.

In this research, our main reference to study and apply the PT is the book by Pro-

fessors Habib Ammari and Hyeonbae Kang entitled Polarization and Moment Tensors

: with Applications to Inverse Problems and Effective Medium Theory. According to

Ammari and Kang [8], their PT actually generalizes the concept of Pólya-Szegő PT in

[3]. In this case, the Pólya-Szegő PT is the first order of the generalized polarization

tensor (GPT) of [8]. If an object has zero conductivity or it is insulated, the Pólya-Szegő

PT for the object here reduces to the virtual mass in [3]. In order to achieve our

purpose here, we first review some properties of the first order GPT (or simply called

as the first order PT) for three dimensional domains. After that, the first order PT is

adapted to investigate the PT for electrosensing fish. Finally, we extend the first order

PT to study the PT in some applications of Maxwell’s and eddy current equations.

1.1.1 Electrical impedance imaging and electrosensing fish

During recent development in imaging techniques, biomedical engineers measure volt-

ages on the surface of a body to create an image inside of the body for medical purposes

from a system called as Electrical Impedance Tomography (EIT) (see [9, 10]). The

same analogy to the EIT known as Electrical Resistivity Tomography (ERT) is applied

by geophysicists for examples to locate minerals and archeological relics. Furthermore,

weakly electric fish also use a very similar approach to EIT to navigate and locate prey

where, in this context, we say that the fish perform electrosensing.
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From the mathematical model of the EIT, Ammari and Kang [8] have used the

method of asymptotic expansions and layer potential techniques to derive an asymptotic

formula representing the perturbation in the electrical field due to the presence of

a conducting object. The leading order term of the asymptotic formula is actually

described by the GPT which depends only on the geometry and conductivity of the

presented object. In their study [8], the GPT is applied to improve image reconstruction

of the object inclusion in the electrical fields. However, using the GPT itself could be

sufficient to alternatively describe the inclusion especially when image reconstruction

is not needed, such as in metal detection. In our study, we focus on using the PT to

provide information about electrical and electromagnetic objects inclusion with lower

computational effort than fully reconstructing the image of the object.

For the the purpose of characterizing objects with the PT without knowing their

images, we first investigate the PT in electrosensing fish. Weakly electric fish are

equipped with an electric discharge organ and hundreds of voltage sensing cells on their

body to perform electrosensing for navigation as well as to characterize objects and

locate prey [11, 12, 13, 14]. Species such as Peters’ elephantnose fish Gnathonemus

petersii generates a broad spectrum pulse like signal while the black ghost knifefish

Apteronotus albifrons uses a signal like a sine wave [14, 15, 16]. They are able by

electrosensing to recognize and discriminate between conducting and insulating objects

with different type of shapes [12]. Besides, another previous studies have shown that

fish also perform similar face recognition like human to distinguish objects in a variety

of orientations and lightning conditions [13]. Amazingly, when a weakly eletric fish

typically moves in the water approaching an object, its electric source looks to act

in a similar way to switching between driven electrodes in an EIT system where the

voltages are measured through the sensing cells on the surface of its body (see Nelson

[14]). The main difference here is only a single electric source is used by the fish while

multiple switched sources are used typically in medical and geophysical EIT.

Due to the similarity between electrosensing fish and EIT system, it could be useful

to relate the terminology of EIT in electrosensing to further describe electrosensing

by the fish. Ammari et. al [17] have recently modelled electrosensing fish in a two

dimensional problems where the same model as the EIT has been used. After that,

the GPT is also applied in their reconstruction algorithm when simulating images
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classification and objects identification by electrosensing fish in [18]. Furthermore, in

reality, it will be a suprise if the fish are able to perform complete image reconstruction

as it has only a small brain. It is possible that the fish only fit the objects with

their PT to characterize and discriminate the objects since the PT contains significant

information about the shape and material of the object. Therefore, in this thesis, we

compute the first order PT for some objects in the real experiments conducted by

von der Emde and Fetz [12] and use the results to investigate whether the fish can

measure the first order PT when making decision about the objects. In this case, our

approach is totally different with [18] since we consider electrosensing fish in the three

dimensional space and specifically investigate the role of only the first order PT for

characterizing objects without using the image of the objects.

1.1.2 Metal detection

A metal detector usually has a transmitting and a receiving coil. A magnetic field is

produced when electrical currents flow inside the transmitting coil. Consequently, the

magnetic field will interact with a nearby conducting metallic object and induce eddy

currents in the object. The eddy current itselft will produce magnetic field and this

magnetic field will perturb the background magnetic field where, the perturbation in

the magnetic field is then detected by the receiving coil. Previous researches such as

[19, 20, 21, 22] have focused on improving the performance of metal detectors based

on this standard knowledge.

Nowadays, there is a rapid growth in using metal detector for many reasons.

These include nondestructive testing to ensure quality products in manufacturing [19],

increasing consumer safety in the food industry [22, 23], security screening [24, 25] at

the airport, embassy and prison or landmine clearance [20, 21, 26]. Some people just

use metal detectors for their hobbies such as treasure hunting to discriminate between

cluttered objects with coins and jewelry. Due to variety purposes for metal detectors,

several criteria are required and must be established when building it. For examples,

security screening and landmine clearance often are slow processes so, metal detectors

with a low-false alarm will be the most welcomed here. Moreover, agencies with limited

budget requiring the use of metal detector will appreciate if it has a low maintenance.

Besides, a hobbyist metal detector usually prefers a cheap metal detector.
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During this study, we will further explore the PT (or the magnetic polarizibility

tensor) used by [24, 25, 26] to describe several known metallic objects and hope

to improve metal detection especially for security screening and landmine clearance.

Previously, Marsh et al. [24, 25] in their engineering works have reconstructed the

magnetic polarizability tensor of several detected objects by performing experiments

and making measurements of the fields generated by the walk-through metal detector

in order to describe the location, dimension, orientation and material property of the

metallic targets for security screening. Similarly, Dekdouk et al. [26] have estimated

the magnetic polarizability tensor for metal components of landmines by simulating

the fields generated by metal detectors to improve the possibilities of detecting them in

a contaminated field environment. However, for a specific known metallic object, they

[24, 25, 26] do not have an explicit formula to compute its magnetic polarizability tensor.

As our knowledge about what to detect improves upon previous experiences, a formula

if it exists, will enable us to compute the magnetic polarizibilty tensor and match it

with the one obtained from the experiments and simulations. This then will increase

the possibility of correctly identifying the object from the magnetic polarizibility tensor.

Furthermore, using the explicit formula to obtain magnetic the polarizibility tensor

also offers lower computational efforts than performing fields measurement for locating

and identifying the target.

In the eddy current approximation to Maxwell’s equations, Ammari et al. [27] have

derived an asymptotic formula that represents the perturbation of the magnetic fields

due to the presence of an isolated conducting object. Two PT are introduced from

the formula, namely the conductivity polarization tensor (CPT) and the magnetic

polarization tensor (MPT). They have also designed a statistical algorithm to locate a

spherical target based on induction data derived from the eddy currents by using the

CPT in [27] and have extended it for an arbitrary target in [28]. On the other hand,

based on the foundation given in [27], Ledger and Lionheart [29] further investigate

the MPT and CPT to describe conducting and magnetic objects. The reduction in the

number of independent coefficients for the CPT and MPT for objects with rotational

and mirror symmetries are also highlighted. They also apply tensor operations to

introduce a new PT by combining MPT and CPT. After that, a hp-FEM method to

numerically compute the new introduced PT are proposed and several properties of the
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PT are also investigated. In addition, it is recently shown in [29, 30] that the magnetic

polarizibilty tensor in [24, 25, 26] is the same as the rank 2 PT of [29] that combines

both CPT and MPT. Thus, the magnetic polarizibility tensor (or just the polarizibility

tensor) for an object presented in a metal detector can now be computed for the first

time based on the shape and material properties of the object by using the explicit

formula of the rank 2 PT given in [29].

In this thesis, we will compute the rank 2 PT of [29] for a few objects in [24, 25, 26]

with the given explicit formula and compare them with the polarizibility tensors

obtained during experiments and simulations conducted by [24, 25, 26]. After that,

some properties of the rank 2 PT of [29] will be numerically investigated, where, the

information obtained could be useful in the future applications. Besides, by using

the theoretical results in [29], for magnetic non-conducting objects, we give numerical

examples to show that the polarizibility tensor can also be obtained from the explicit

formula of the first order PT of [8]. Alternatively, a few studies conducted for examples

by [31, 32] have suggested to use the ground penetrating radar (GPR) for landmine

clearance. Therefore, we will investigate the possibility of improving the GPR by using

the PT as well.

1.2 Mathematical Background of the GPT

The concept of PT which arise from a transmission problem discussed by many

literatures (for examples in [8], [9] and [10]) is firstly presented here. Following [8],

consider a Lipschitz bounded domain B in R3 such that the origin O is in B and let the

conductivity of B be equal to k where 0 < k 6= 1 < +∞ (we can choose the conductivity

of the background to be equal to 1 so that k is the ratio between conductivity of the

object to the conductivity of the background). Suppose that H is a harmonic function

in R3 and u be the solution to the following problem.div(1 + (k − 1)χ(B)grad(u)) = 0 in R3

u(x)−H(x) = O(1/|x|2) as |x| → ∞
(1.1)

where χ denotes the characteristic function of B. The mathematical formulation (1.1)

actually appears in many industrial applications such as medical imaging, landmine
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detector and material sciences [3, 8, 9, 10]. The PT is then defined (for example by

[8]) through the following far-field expansion of u as

(u−H)(x) =
+∞∑
|i|,|j|=1

(−1)|i|

i!j!
∂ixΓ(x)Mij(k,B)∂jH(0) as |x| → +∞ (1.2)

for i = (i1, i2, i3), j = (j1, j2, j3) multi indices, Γ is a fundamental solution of the

Laplacian and Mij(k,B) is the generalized polarization tensor (GPT).

Generally, the GPT is referred as the dipole in electromagnetic applications by

physicists because it shows the distribution of the conductivity in R3 with the presence

of B. Furthermore, the definition of GPT in (1.2) is extended by Ammari and Kang

[8] through an integral equation over the boundary of B by

Mij =

∫
∂B

yjφi(y)dσ(y) (1.3)

where φi(y) is given by

φi(y) = (λI −K∗B)−1(vx · ∇xi)(y) (1.4)

for x, y ∈ ∂B with vx is the outer unit normal vector to the boundary ∂B at x and

λ is defined by λ = (k + 1)/2(k − 1). K∗B is a singular integral operator defined with

Cauchy principal value P.V. by

K∗Bφ(x) =
1

4π
P.V.

∫
∂B

〈x− y, vx〉
|x− y|3

φ(y)dσ(y) (1.5)

for φ(x) ∈ L2(∂B) such that L2(∂B) is the space of square integrable functions on ∂B.

Note that the GPT presented in this section is derived based on the asymptotic

expansion of the solution u of (1.1). It can be applied to EIT and also in electro-sensing

fish. Moreover, it is the fundamental to every other PT discussed in this study. The

PT introduced from the time harmonic Maxwell’s equations by Ammari, Vogelius and

Volkov in [33] might be useful for the radar, GPR and microwave tomography while the

PT for metal detection considered by Ledger and Lionheart [29] are based on the eddy

current approximation to Maxwell’s equations. However, we will see later on in this

thesis that for some special cases, GPT somehow can be related to the other two PT.

1.3 Objectives of the Study

This thesis presents some mathematical aspects and a few applications of the PT.

Generally, the studies in this thesis are conducted based on the following objectives :
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a. to mathematically review the PT in the related applications.

b. to compute the first order GPT for three dimensional (3D) domains.

c. to describe objects presented in eletric or electromagnetic fields by the PT.

d. to discuss some potential applications of the PT.

e. to investigate a few properties of the PT.

Based on these objectives, a code is written each in Matlab and Python (specifically

with BEM++) to compute the first order PT. Besides, some real applications of the

PT specifically to identify and characterize objects are discussed. A few properties of

the PT which are useful to further describe the objects are also investigated.

1.4 Contributions and Originality of the Research

The original contributions of the research are as follow. First of all, in order to review

some properties of the first order PT, we develop a numerical method for computing it

for 3D domains with Matlab. Alternatively, a method to compute the first order PT by

using the terminologies of Boundary Element Method (BEM) with the code in BEM++

is also presented. After that, we numerically fit an ellipsoid from a given first order PT

where, some results about existence and uniqueness for the ellipsoid are highlighted

and a strategy to numerically determine the ellipsoid is also given. Next, the first order

PT with complex conductivity is investigated since this terminology could be useful in

the applications of Maxwell’s equations. We also further investigate the possible role

of the first order PT with real and complex conductivity to the weakly electric fish in

identifying and characterizing objects. Based on recent formulation of the PT for metal

detection from the eddy current model, we also show numerical agreements between the

PT computed by the new proposed formula with the PT obtained from metal detectors

during experimental works and simulations conducted by the engineers. Finally, we

numerically explore some invariants (rotation and translation) and material properties

of the PT for the eddy current problems to hopefully improve metal detection and

increase our understanding in using the PT in the future.
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1.5 Thesis Outline

Following the previous objectives and contributions, this thesis is organized into 9

chapters. As usual, this chapter introduces the study for the thesis while the last

chapter summarizes the study and recommends a few future works. The other eight

chapters in the thesis are the contents of the study where, the contents can actually

be divided into two parts according to the applications considered. Chapter 2 until

Chapter 6 cover the PT for EIT (and also eletrosensing fish) whereas Chapter 7 and

Chapter 8 cover for metal detection. Readers who are only interest with metal detection

can start with Chapter 2 before jumping straight away to Chapter 7 and Chapter 8.

Chapter 2 basically reviews computational aspects and some properties of the first

order PT for 3D domains. Following Chapter 2, Chapter 3 presents alternative method

to numerically compute the 3D first order PT with BEM++. A strategy to fit ellipsoids

with another objects based on the first order PT of the objects is given in Chapter

4. Next, a few numerical examples for the first order PT with complex conductivity

and complex permittivity are given in Chapter 5 where, frequency response for the

first order PT with complex permittivity are also investigated. We then demonstrate

the first application of the PT considered in the study through our investigation on

electrosensing fish in Chapter 6. The second application of the PT which is for metal

detection is presented in Chapter 7. Finally, Chapter 8 explores a few properties of the

PT, specifically for the eddy current problems.



Chapter 2

Some Properties of the 3D First

Order GPT

An approach to determine the PT from solving integral equations (1.3), (1.4) and (1.5)

has been recently introduced by Ammari and Kang [8]. Although the integrals can

only be solved by numerical methods, finding the PT from these integrals also have

other advantages such that the formulas depend only on the shape of the object B

and the conductivity k whereas, solving (1.1) and using (1.2) to find the PT require

more parameters of the problem. Previously, Capdeboscq et al. [34] has successfully

developed an algorithm to numerically compute the GPT but only for two dimensional

(2D) domains. Similarly, although Ammari and Kang [8] describe and apply GPT for

many applications, most of the studies have focused on 2D problems. Therefore, this

chapter presents a technique for computing specifically the first order GPT for 3D

domains by numerical integration method according to (1.3), (1.4) and (1.5) to review

a few of its properties before using it in the later applications of this study.

2.1 Preliminaries

We will recall some terminologies concerning the first order PT from [8] as they will be

used to describe our results in this chapter.
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2.1.1 The first order PT

At this stage, we will only focus on the first order PT and some of its properties. The

first order PT can be evaluated by using (1.3) for i, j = (1, 0, 0), (0, 1, 0) and (0, 0, 1)

so that |i| = i1 + i2 + i3 = 1 = |j|. By combining all possible values of i and j, the first

order PT denoted by M is a real 3× 3 matrix in the form

M =


M(1,0,0)(1,0,0) M(1,0,0)(0,1,0) M(1,0,0)(0,0,1)

M(0,1,0)(1,0,0) M(0,1,0)(0,1,0) M(0,1,0)(0,0,1)

M(0,0,1)(1,0,0) M(0,0,1)(0,1,0) M(0,0,1)(0,0,1)

 . (2.1)

2.1.2 The explicit formula for the first order PT for ellipsoids

Suppose that B is an ellipsoid in the Cartesian coordinate system represented by

x2

a2
+ y2

b2
+ z2

c2
= 1 where a, b and c each is the length of semi principal axes of B such

that 0 < c ≤ b ≤ a. The first order PT of B at conductivity k is derived by [6] and is

given in [8] in the form

M(k,B) = (k − 1)|B|


1

(1−P )+kP
0 0

0 1
(1−Q)+kQ

0

0 0 1
(1−R)+kR

 (2.2)

where |B| is the volume of B while P , Q and R are constants defined by

P =
bc

a2

∫ +∞

1

1

t2
√
t2 − 1 + ( b

a
)2
√
t2 − 1 + ( c

a
)2

dt,

Q =
bc

a2

∫ +∞

1

1

(t2 − 1 + ( b
a
)2)

3
2

√
t2 − 1 + ( c

a
)2
dt, (2.3)

R =
bc

a2

∫ +∞

1

1√
t2 − 1 + ( b

a
)2(t2 − 1 + ( c

a
)2)

3
2

dt.

By setting a = b = c in (2.2), the first order PT for a sphere is also given in [8] as

M(k,B) = (k − 1)|B|


3

2+k
0 0

0 3
2+k

0

0 0 3
2+k

 . (2.4)
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2.1.3 Symmetry, positivity and transformation of the first or-

der PT

This section gives several properties of the first order PT. These properties have already

been proven by Ammari and Kang [8]. They are restated here in the following theorems.

Theorem 1. The first order PT is a symmetrical matrix.

Theorem 2. Let R be a unitary matrix transformation of a domain B and RT is the

transpose of R such that B′ = RB. If M(k,B) and M(k,B′) are the first order PT

associated to domains B and B′ respectively for a conductivity 0 < k 6= 1 < +∞ then

M(k,B′) = RM(k,B)RT .

Theorem 3. The first order PT is positive definite when k > 1 while it is negative

definite when 0 < k < 1.

2.2 Numerical Method and Matrices

In order to review the previous properties of the 3D first order PT, we first discuss

the procedures to numerically compute the first order PT for a 3D domain according

to (1.3), (1.4) and (1.5) in this section. As we need to perform integrations over the

boundary of an object B, the discretization of the boundary of the object into triangular

elements will be discussed first. Besides, some properties of elementary linear algebra

which will be used to describe the first order PT are also stated in this section.

2.2.1 Triangularization of an object

The boundary of a 3D object is actually a surface. For the purpose of computation, the

surface is discritized into a finite number of triangles by using Netgen Mesh Generator

[35] (see Figure 2.1 for example). After the geometry of an object in a .geo file is

created (some examples are given in the manual [36]) and loaded to Netgen, a mesh of

triangular elements for the surface of the object can be automatically generated and

the information about the triangular elements will then be used to calculate the first

order PT for the object. In order to get a better approximation for the boundary, the

mesh can be refined in Netgen however with some limitations, for example, user cannot
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Figure 2.1: Triangularization of a sphere with 620 surface elements

exactly set the number of the elements for the mesh. Table 2.1 shows an improvement

of the surface area of a triangularized sphere with radius 1 to the exact surface area,

4π = 12.5714 as the number of the elements for the mesh increase. This suggests

that uniformly increasing the number of elements for the mesh will give more accurate

results.

Table 2.1: The approximated surface area for a triangularized sphere

Total Surface Elements Approximated Surface Area
122 11.9546
242 12.2488
620 12.4405

2.2.2 Numerical approximation of the 3D first order PT

After the mesh with N elements (which are triangles) for the boundary of the chosen

object B is created, by adapting collocation method in [37] to approximate Fredholm

integral equation of the first kind and using quadrature method for surface integrals
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with piecewise constant basis function (see [38]), (1.5) is firstly expressed as

K∗Bφ(xs) =
1

4π

(
wt
〈xs − xt, vxs〉
|xs − xt|3

)
(2.5)

for s = 1, ..., N and t = 1, ..., N. Here, each xs and xt is the barycentre for the s-th and

t-th element respectively, vxs is the outer unit normal vector to the s-th element and wt

is the area of t-th element. Moreover, 〈xs − xt, vxs〉 denotes the dot product between

vectors xs− xt and vxs while |xs− xt| is the distance between xs and xt. Consequently,

(2.5) is a N × N matrix in the form

K∗Bφ(xs) =
1

4π


w1K(x1, x1) . . . wNK(x1, xN)

...
. . .

...

w1K(xN , x1) · · · wNK(xN , xN)

 (2.6)

where K(xs, xt) = 〈xs−xt,vxs 〉
|xs−xt|3 for s = 1, ..., N, t = 1, ..., N. However, due to the singularity,

K(xs, xt) for every s = t cannot be calculated. Therefore, an analytic procedure is

used to approximate K(xs, xt) for s = t by solving the original integral equation (1.5)

over a plane triangle. This approach is briefly explained in the next lemma and will

actually result all diagonals element of (2.6) to be equal to 0.

Lemma 1. If T is a plane triangle and vx is the outward unit normal vector to T at

x, then for any y ∈ T

P.V.

∫
T

〈x− y, vx〉
|x− y|3

dAT (y) = 0. (2.7)

Proof. In order to evaluate the Cauchy principal integral (2.7), consider a ball with

radius ε and centered at x ∈ T denoted by Bε(x). Then for any y ∈ T ,

P.V.
∫
T
〈x−y,vx〉
|x−y|3 dAT (y) = lim

ε→0+

∫
T∩Bε(x)′

〈x−y,vx〉
|x−y|3 dAT (y)

where Bε(x)′ is the complement of Bε(x). However, |x − y| 6= 0 but 〈x − y, vx〉 =

(x− y) · vx = 0 for any x, y ∈ T ∩Bε(x)′. Therefore,

lim
ε→0+

∫
T∩Bε(x)′

〈x−y,vx〉
|x−y|3 dAT (y) = lim

ε→0+
0 = 0.

Next, for a choosen k, (1.4) is solved for φi(y) by using K∗B in (2.6) and since

K∗Bφ(xs) is N × N matrix, I then must be the identity matrix of size N. Note that

(vx · ∇xi)(y) is the derivative of every point x ∈ ∂B to the power of index i in the
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direction vx, the outer unit normal vector to ∂B at x. This expression can be easily

computed for the first order PT such that when i = (1, 0, 0), (0, 1, 0) and (0, 0, 1) by

using properties of indices. This will only yield (vx · ∇xi)(y) to be the first, second

and third component of vx. Therefore, due to the triangularization of the surface,

for i = (1, 0, 0), (0, 1, 0) and (0, 0, 1), the solution to the system of equations (1.4) can

be expressed in the form of N×3 matrix φi(y) = (λI −K∗B)−1(vxt) or equivalently as

follows

φi(y) =
[
(λI −K∗B)−1(v1st

xt )
... (λI −K∗B)−1(v2nd

xt )
... (λI −K∗B)−1(v3rd

xt )
]

(2.8)

where the columns are (λI −K∗B)−1 multiply by the first, second and third component

of vxt for every t = 1, ...N.

Finally, by applying the same quadrature rule to (1.3), the first order PT of a 3D

object B at conductivity k denoted by M(k,B) can be approximated by

M(k,B) =
N∑
t=1

wty
j
tφi(y). (2.9)

when i, j = (1, 0, 0), (0, 1, 0) and (0, 0, 1). However, (2.9) can be further simplified by

considering all combinations between i and j. Notice that y
(1,0,0)
t , y

(0,1,0)
t and y

(0,0,1)
t

each is actually the x-coordinate, y-coordinate and z-coordinate of the barycentre of

the t-th element. So, by expanding (2.9) and using (2.8), (2.9) can be obtained through

matrix multiplication

M(k,B) = [φi(y)]T D(w)B(y) (2.10)

where the 3×N matrix [φi(y)]T is the transpose of (2.8), D(w) is the diagonal N×N

matrix with the t− th diagonal is the surface area wt of the t− th element and B(y) is

a N×3 matrix containing x-coordinate, y-coordinate and z-coordinate of the barycentre

of the t-th element in each of its column. This will imply (2.10) is exactly in the same

form as (2.1).

2.2.3 Positive-definite and rotation matrix

Two properties of matrices from linear algbera given in [39, 40], which will be used

later on in this chapter are recalled and stated in the next definitions.
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Definition 1. Rotation Matrix in 3D

The following rotation matrices rotate vectors in 3D by an angle θ about the x,y and

z-axis.

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 .

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .
Definition 2. Positive and Negative-definite Matrix

A square real matrix A is positive definite if for all non-zero vector v ∈ R3, vTAv > 0.

In contrast, A is negative definite if vTAv < 0.

2.3 Results and Discussions

In order to investigate whether the approximated first order PT is influenced by the

conductivity k, by following [34], the first order PT for a sphere is firstly approximated in

Matlab based on the previous proposed method at various conductivities k and compared

with the analytical formula (2.4). Then, the first order PT for a few ellipsoids are

approximated and compared to the analytical solutions where the analaytical solutions

are obtained by transforming the first order PT for elliposid in (2.2). The positivity and

negativity of the first order PT in Theorem 3 are also tested for a few approximated

first order PT.

2.3.1 The approximated first order PT for a sphere

The first order PT for the sphere x2 + y2 + z2 = 1 is approximated in Matlab with

different total elements, N for the mesh at conductivities k = 0.000001, 0.00005, 0.01,
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0.08, 0.2, 1.00004, 1.5, 8, 15, 100, 500 and 10000. For these computations, the sphere

is triangularized three different times in Netgen by moderate, fine and very fine

meshing option to consist 122, 242 and 620 total elements. Figure 2.2 compares

between values of the diagonals of the first order PT for the sphere approximated

in Matlab (on a mesh with total elements N = 122, 242 and 620) and values of the

diagonals obtained from (2.4) as the conductivity increased, while Figure 2.3 compares

between the non-diagonals.

Based on Figure 2.2, we can see that performing the calculation by using larger

N will give better approximation to the diagonals of the first order PT for the sphere

at every conductivity k. Furthermore, all graphs in Figure 2.2 (a), Figure 2.2 (b)

and Figure 2.2 (c) are similar and thus consistent with the analytical solution of the

first order PT for the sphere in (2.4) that has the same diagonals. Moreover, by

following (2.4), the figures also indicate that the approximated first order PT for the

sphere approaches respectively to −2π = −6.2857 and to 4π = 12.5714 as k → 0

and as k →∞. On the other hand, using more N does not generally produce better

approximation to the non-diagonals of the first order PT for the sphere at every

conductivity k as given by Figure 2.3. However, the non-diagonals are small and closer

to 0 as required by the analytical solution (2.4). In addition, the non-diagonals become

more symmetrical when larger N is used as required by Theorem 1. Generally, all

elements of the approximated first order PT for the sphere are much closer to the

analytical solution whenever the conductivity is less than and around 1. In this case,

this result is similar to the approximated first order PT for 2D cases by [34].

Figure 2.4 next shows the error, e between the analytic first order PT, M given

by (2.4) and the approximated first order PT, M̄ (on the mesh with N=122, 242 and

620) against conductivity k where e =
∥∥M − M̄∥∥

2
/ ‖M‖2. Here, ‖A‖2 denotes the

entry-wise norm
√∑3

i=1

∑3
j=1 |Aij|2 for the 3× 3 matrix A. Based on the figure, when

N is increased, e is unbounded as k → 0 but the values for e as k → 0 are still small.

On the other hand, at k near 1 and as k →∞, e for the approximated first order PT

decreases when N is increased. But, e decreases faster at k near 1 than e as k → ∞

when N increased. According to Ammari and Kang [8], the operator λI −K∗B is one to

one and also invertible on L2(∂B) when −∞ < λ ≤ −(1/2) and (1/2) < λ < +∞ so,

the solution to (1.4) exists and is unique for λ > (1/2) (or k > 1) and λ ≤ −(1/2) (or
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(a)

(b)

(c)

Figure 2.2: The diagonals of the approximated first order PT for a sphere triangularized
by 122, 242 and 620 elements and the diagonals of the analytic first order PT (M11,
M22 and M33) against conductivity, k (a) first diagonal (b) second diagonal (c) third
diagonal
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(a)

(b)

(c)

Figure 2.3: The non-diagonals of the approximated first order PT for a sphere tri-
angularized by 122, 242 and 620 elements and the non-diagonals of the analytic first
order PT (M12, M13, M21, M23, M31 and M32) against conductivity, k (a) element
in the first row-second column, M12 and element in the second row-first column, M21
(b) element in the first row-third column, M13 and element in the third row-first
column, M31 (c) element in the second row-third column, M23 and element in the
third row-second column, M32
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Figure 2.4: The error, e when the first order PT for the sphere of radius 1 is approxi-
mated on the mesh with 122, 242 and 620 triangles against conductivity, k

0 ≤ k < 1) where in our case, 0 < k 6= 1 < +∞. However, it is less efficient to solve

(1.4) as λ→ (1/2) due to the singularity of the operator λI −K∗B as λ→ (1/2). This

is because the operator λI −K∗B is not invertible at λ = (1/2) (as k → +∞).

Moreover, based on Lemma 1, the singular integrals in (2.6) are approximated by

0 on the mesh of a finite number of flat triangles with this method. However, the

singular integral (1.5) is non-zero for an object that has curved boundary segments

so, the results from this method will be less accurate for the mesh of objects that

have curved boundary segments. Therefore, in the next chapter, we will present an

alternative method to improve the approximation of the 3D first order PT, especially

at high conductivity k.

2.3.2 Transformation of the first order PT for ellipsoids

Since the proposed method produces better approximation at conductivity k around

1, we create mesh of N elements by using very fine meshing option in Netgen for

ellipsoids (x
2
)2 + (y

3
)2 + z2 = 1, x2 + (y

2
)2 + ( z

3
)2 = 1 and (x

3
)2 + y2 + ( z

2
)2 = 1 and

approximate their first order PT at conductivity 1.5 to further investigate the method.

Since these ellipsoids do not satisfy condition 0 < c ≤ b ≤ a, formula (2.2) cannot be

used to determine their analytical first order PT. Therefore, we firstly use (2.2) to

determine analytically the first order PT for ellipsoid (x
3
)2 + (y

2
)2 + z2 = 1 at k = 1.5

and denote it as M(E, 1.5). As (x
3
)2 + (y

2
)2 + z2 = 1 can be rotated to produce all
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Table 2.2: The analytic first order PT for rotated (x
3
)2 + (y

2
)2 + z2 = 1

Ellipsoid, B′ Relation M(1.5, B′)

(x
2
)2 + (y

3
)2 + z2 = 1 Rz(90◦)M(1.5, B)RT

z (90◦)

11.0856 0 0
0 11.6555 0
0 0 9.7544



x2 + (y
2
)2 + ( z

3
)2 = 1 Ry(90◦)M(1.5, B)RT

y (90◦)

9.7544 0 0
0 11.0856 0
0 0 11.6555



(x
3
)2 + y2 + ( z

2
)2 = 1 Rx(90◦)M(1.5, B)RT

x (90◦)

11.6555 0 0
0 9.7544 0
0 0 11.0856



(x
2
)2 + (y

3
)2 + z2 = 1, x2 + (y

2
)2 + ( z

3
)2 = 1 and (x

3
)2 + y2 + ( z

2
)2 = 1, the first order PT

for (x
3
)2 + (y

2
)2 + z2 = 1, M(E, 1.5) can be used to determine the analytical first order

PT at conductivity 1.5 for the other three ellipsoids by using Theorem 2 and Definition

1 (see Table 2.2). Here, the rotation matrix from Definition 1 used in Theorem 2 to

obtain the analytic first order PT for each ellipsoid is also shown in Table 2.2.

For each ellipsoid B′ in Table 2.2, we then show the agreement between all elements

of the approximated and analytic first order PT for B′ in Figure 2.5 (a), Figure 2.5

(b) and Figure 2.5 (c) where in each graph, the elements for both approximated and

analytic first order PT are denoted by mij for i, j = 1, 2, 3. Note that directly using

formula (2.2) and neglecting the condition 0 < c ≤ b ≤ a to determine the analytic

first order PT for ellipsoids B′ will lead to the same results as in Table 2.2. Therefore,

we will simply use formula (2.2) for any ellipsoids in this thesis later on.

2.3.3 Positivity and negativity of the first order PT

It can be seen from (2.2) and (2.4) that the first order PT for sphere and ellipsoid

satisfy the positivity and negativity of the first order PT as stated in Theorem 3. In

order to further explore positivity and negativity of the first order PT for other objects,

we approximate the first order PT at the same value of conductivities as in Section
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(a)

(b)

(c)

Figure 2.5: The approximated first order PT and the analytical first order PT both
at conductivity 1.5 for (a) (x

2
)2 + (y

3
)2 + z2 = 1 (triangularized by N=8342 elements)

(b) x2 + (y
2
)2 + ( z

3
)2 = 1 (triangularized by N=8882 elements) (c) (x

3
)2 + y2 + ( z

2
)2 = 1

(triangularized by N=7870 elements)
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2.3.1 for a few common objects in the engineering applications which are cube with

dimension 2× 2× 2, cylinder with both diameter and height equal to 2 and hemisphere

with radius 1.5. Each object is firstly triangularized by very fine meshing option.

Figure 2.6, Figure 2.7 and Figure 2.8 show the values of all elements of the approxi-

mated first order PT as conductivity increased for the cube, cylinder and hemisphere.

By examining Figure 2.6, Figure 2.7 and Figure 2.8, it can be seen that the non-

diagonals for each approximated first order PT are small. We now assume that the

non-diagonals for every approximated first order PT to be zero so that each approxi-

mated first order PT is a diagonal matrix. For 0 < k < 1, every diagonal element of

the approximated first order PT for each object is negative as shown in the figures

whereas the diagonal elements of every approximated first order PT when k > 1 are

positive. In this case, we can now use Theorem 3 and Definition 2 to show that the

approximated first order PT for each object is positive definite for k > 1 and negative

definite for 0 < k < 1.

2.4 Conclusions

In this chapter, we have reviewed some mathematical properties of the 3D first order

PT. In order to achieve this purpose, we first approximate the first order PT for

some objects based on the explicit formula given in [8] by using numerical method of

integration with Matlab. Moreover, we also describe some properties of the first order

PT by adapting properties of matrices.
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(a)

(b)

Figure 2.6: The approximated first order PT for a cube with N=106 at different
conductivities, k (a) diagonals (b) non-diagonals
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(a)

(b)

Figure 2.7: The approximated first order PT for a cylinder with N=942 at different
conductivities, k (a) diagonals (b) non-diagonals
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(a)

(b)

Figure 2.8: The approximated first order PT for a hemisphere with N=458 at different
conductivities, k (a) diagonals (b) non-diagonals



Chapter 3

Computing the 3D First Order PT

with BEM++

In the previous chapter, we have developed a numerical method to compute the 3D first

order PT. The results from the method show that the first order PT can be accurately

computed at conductivity, k around 1 and is less efficient for other values of k especially

when k → +∞. However, in order to apply it in the related applications for this study,

it is neccessary to accurately compute the first order PT at high conductivity. Since the

first order PT is defined through boundary integral operators, we then refer to Rjasanow

and Steinbach [38] and apply some terminologies of the Boundary Element Method

(BEM) to improve our computation. We also use the recent object oriented code for

BEM called as BEM++ [41] to easily execute our new method. Consequently, we have

successfully improved the approximated first order PT at any level of conductivity. In

this chapter, we will discuss this alternative method to compute the first order PT for

3D domains with BEM++.

3.1 Boundary Element Method

BEM is generally used to solve PDEs that can be formulated as boundary integral

equations. It emphasizes a few aspects such as expressing a solution of a PDE as

boundary integral equations and also methods of approximating the boundary integral

equations (see [42] and more recent in [38]). For the purpose of this study, we first

restate the following useful lemma from [38].

45
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Lemma 2. Let H1/2(Γ) be the Sobolev space and let H−1/2(Γ) be the dual space of

H1/2(Γ) where Γ is the boundary of a Lipschitz domain Ω. There exist a boundary

integral operator γṼ : H−1/2(Γ)→ H−1/2(Γ) such that for w ∈ H−1/2(Γ), there holds

the representation

γ(Ṽ w)(x) =
1

2
w(x) + (K ′w)(x)

in the sense of H−1/2(Γ). Here, (K ′w)(x) is the adjoint double layer potential defined

by

(K ′w)(x) =
1

4π
P.V.

∫
Γ

〈y − x, vx〉
|x− y|3

w(y)dsy

for x ∈ Γ.

Note that the Sobolev space in Lemma 2 is defined in [43].

It is given in [38] that the boundary operator γṼ w is bounded for all w ∈ H−1/2(Γ).

This implies that the adjoint double layer potential (K ′w)(x) where K ′ : H−1/2(Γ)→

H−1/2(Γ) is also bounded for all w ∈ H−1/2(Γ). On the other hand, it is shown in [8]

that the boundary integral operator K∗Bφ(x) is bounded for all φ ∈ L2(∂B). For the

purpose of this study, we adapt Lemma 2 to extend (1.5) so that K∗Bφ(x) = −(K ′w)(x)

for all φ ∈ H−1/2(Γ). Similary, K∗B : H−1/2(Γ)→ H−1/2(Γ) is also bounded.

Meanwhile, instead of using (1.3)− (1.5), Ammari and Kang [8] have also proposed

to determine the PT (the GPT) by solving transmission boundary value problem of the

Laplace’s equation. This suggests to implement BEM to compute the PT. However,

according to Ammari and Kang [8], solving the transmission problem to find the PT is

actually equivalent with using formula (1.3)− (1.5).

3.2 Approximating the First Order PT in BEM++

BEM++ is an object oriented code in C++ for BEM and is developed by Śmigaj et

al. [41]. The current version of the code contains many terminologies of BEM, for

example as described in [38]. Instead of C++, the script for using BEM++ can also

be written in Python as an interface to the code. After a mesh for the boundary of

an object is loaded to it, the code can then construct, discritize and approximate a

few boundary integral operators, at the moment, only for problems in Laplace and

Helmholtz equations. Moreover, it can also solve the system of equations. Besides, it
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offers shorter command to construct and discritize the boundary integral operators

than the code for our previous method in Matlab. A few examples for constructing and

discretizing boundary integral operators with BEM++ can be found in [41].

In this study, rather than solving the transmission problem step by step, some

terminologies of BEM are adapted to numerically compute the first order PT from

(1.3)− (1.5) with BEM++. First of all, we use the result for BEM in Lemma 2 given

by [38] to discritize and approximate (1.5) with BEM++. We then proceed by solving

(1.5) and finally approximate (1.3) with BEM++. The steps to prepare a code in

BEM++ for this purpose will now be explained in this section. For this purpose, we

refer to [41] for detail descriptions about our commands in the script to run BEM++.

We choose to write a script in Python for using the codes of BEM++ and compute

the first order PT for an object at specificied conductivity k. After installing BEM++

(it is downloaded from www.bempp.org), all necessary modules for BEM++ in the

script are set similarly to the script for solving interior Dirichlet problem of the Laplace

equation in [41]. We then proceed by loading the mesh of a choosen object with N

surface elements from a file generated by Netgen in the .msh format where, the file

consists a list of nodes and triangles for the boundary of the object (at the moment,

only mesh with linear elements is supported by BEM++).

In order to solve for φi(y) from (1.4) with BEM++, we first consider (1.4) as

(λI −K∗B)φi(y) = (vx · ∇xi)(y). (3.1)

It is recommended by [38] to approximate a function which is discontinuous on the

mesh of the boundary such as (vx · ∇xi)(y) by a piecewise constant basis function.

This suggests to approximate (λI −K∗B)−1 by a piecewise constant basis function as

well. Moreover, it is given in [38] that the natural discretisation space for H−1/2 is also

a piecewise constant basis function. Therefore, we choose to approximate K∗B by a

piecewise constant basis function since K∗B : H−1/2(Γ)→ H−1/2(Γ).

Now, the boundary integral operator K∗B in (1.5) is defined as the negative of adjoint

double layer potential in BEM++. Both K∗B and the identity operator I are then

created as boundary operators in the script as well as approximated and discretized

by space of piecewise constant basis functions. After that, the boundary integral

operator (λI −K∗B) can then be created at specificied conductivity k. Here, (λI −K∗B)



CHAPTER 3. COMPUTING THE 3D FIRST ORDER PT WITH BEM++ 48

is implicitly approximated and discretized by space of piecewise constant basis functions

like K∗B and I. The steps produce (λI −K∗B) as N × N matrix.

Recall that φi(y) of (1.4) for the first order PT reduces to

φi(y) = (λI −K∗B)−1(νx). (3.2)

In order to obtain φi(y) in BEM++, each component of νx is now defined as grid

functions and approximated at each element of the boundary by piecewise constant

basis function in the script. Using these approximations, (3.2) is rewritten as

(λI −K∗B)φi(y) = νx (3.3)

and for each component of νx, (3.3) is solved for φi(y) by using the function solver in

BEM++.

Finally, in order to evaluate and approximate (1.3), we consider yj as yj(y) and

expand it in a basis of piecewise linear continuous functions {gk(y)}N1 so that

yj(y) =
∑
k

yjkgk(y). (3.4)

Substituting (3.4) in (1.3) gives

Mij =
∑
k

yjk

∫
∂B

gk(y)φi(y)dσ(y). (3.5)

In BEM++’s terminology, the values
∫
∂B
gk(y)φi(y)dσ(y) are the ‘projection’ of φi(y)

on the basis {gk(y)}N1 and are called in the script by the function projections for

each column φi(y). On the other hand, the values yjk are the ‘coefficients’ of yj on the

basis {gk(y)}N1 and are called for each yj in the script by the function coefficients.

The first order PT, M can then be obtained by multiplying the coefficients and the

projections according to (2.1) using the standard function np.dot in the script.

3.3 Results and Discussions

We provide several numerical examples about the approximated first order PT by

BEM++ in this section. First of all, the approximated first order PT for a few ellipsoids

at k = 1.5 are computed and compared where, k = 1.5 (k near 1) is choosen to ensure

more accurate results for the approximation as shown in the previous chapter. After
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that, we compare and discuss the approximated first order PT for the sphere by

considering the following cases :

i. at k = 1.5 on the mesh with different number of elements

ii. at different conductivity k on the mesh consisting 9920 elements

3.3.1 The approximated first order PT for ellipsoids

We start by computing the first order PT for four types of ellipsoid at conductivity

1.5 by using analytical formula (2.2), our previous method in Matlab and our recent

method in BEM++. Each ellipsoid is firstly triangularized with the fine meshing

option in Netgen before numerically computed by Matlab and BEM++ where for

each ellipsoid, the same mesh is used in both Matlab and BEM++. In order to easily

compare the first order PT approximated by Matlab and BEM++ with the analaytical

solutions, all elements of the first order PT approximated by the two methods and

also from the analytical solution (2.2) are plotted in the same graph for each ellipsoid.

These are shown in Figure 3.1, Figure 3.2, Figure 3.3 and Figure 3.4 respectively. In

these figures, elements of the first order PT are denoted as mij for i, j = 1, 2, 3.

Based on Figure 3.1, it can be seen that all elements of the approximated first order

PT for x2

9
+ y2

4
+z2 = 1 computed either by Matlab or BEM++ are close to the elements

of the analytical solutions except for m22 where, m22 is closer to the analytical solution

when computed by BEM++. For x2

4
+ y4

4
+ z = 1, the diagonals of the first order PT

approximated in Matlab and BEM++ differ only slightly with the diagonals of the first

order PT for the analytical solution as shown in Figure 3.2. Besides, the diagonals of

the approximated first order PT for x2 + y2 + z2

4
= 1 computed by BEM++ in Figure

3.3 have only a small difference with the same elements of the analytical and Matlab’s

solution. In contrast, Figure 3.4 indicates that the diagonals of the first order PT for

x2 + y2 + y2 = 1 approximated either in Matlab or BEM++ have a big difference with

the same elements of the analytical solution but these approximations look closer to

the analytical solutions when computed by BEM++. We also want to highlight that

in each figure, all non-diagonal elements of the approximated first order PT for every

ellipsoid computed either by Matlab or BEM++ are zero as required by the analytical

solutions.
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Figure 3.5: The error, e when the first order PT for the sphere of radius 1 is approxi-
mated at k = 1.5 by both Matlab and BEM++ on the mesh consisting 242, 620, 2480,
4480 and 9920 triangles against the number of triangles

3.3.2 Increasing the number of triangles N

One possible way to theoretically improve the approximation of the first order PT

for a triangularized object is to increase the number of triangles used during the

triangularization. In this section, we compute the first order PT for the sphere

x2 + y2 + y2 = 1 at conductivity k = 1.5 by our previous method in Matlab and also

by BEM++ with different number of triangles used for the mesh and compare the

results with the analytical solution (2.4). For this purpose, five triangularized spheres

x2 +y2 +y2 = 1 consisting 242, 620, 2480, 4480 and 9920 triangles are considered where

the mesh with 2480, 4480 and 9920 triangles are specifically generated by refine mesh

option in Netgen.

In order to make comparisons, by using the entry-wise norm for the 3× 3 matrix

A defined by ‖A‖2=
√∑3

i=1

∑3
j=1 |Aij|2, we compute the error e =

∥∥M − M̄∥∥
2
/ ‖M‖2

between the analytic first order PT, M and the approximated first order PT, M̄ (by

both Matlab and BEM++) for each mesh. Here, the analytic M is computed based on

(2.4). After that, the error e is then plotted against the number of triangles for each

mesh in Figure 3.5. Based on the curves in Figure 3.5, we can see that e decreases as

the number of triangles used for the mesh increases when approximating the first order

PT for the sphere at k = 1.5 by both Matlab and BEM++. However, e are smaller

when the first order PT for the sphere are approximated by BEM++ for each mesh.
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3.3.3 Changing conductivity k

In the previous chapter, we have found that the conductivity of the object also influences

its approximated first order PT. Thus, we will compute the first order PT for the

sphere x2 + y2 + y2 = 1 by Matlab and BEM++ with a mesh of 9920 triangles at

different values of conductivity and compare the results with the analytical solution to

further investigate the approximated first order PT. In this case, 9920 triangles are

used to ensure better approximation both in Matlab and BEM++. Here, we again

evaluate the first order PT for the sphere at conductivities 0.000001, 0.00005, 0.01,

0.08, 0.2, 1.00004, 1.5, 8, 15, 100, 500 and 10000 as in the previous chapter. Figure 3.6

and Figure 3.7 shows the results of our computations.

All diagonal elements of the approximated first order PT (by both Matlab and

BEM++) and also the analytical values for all diagonals against conductivities are

given in Figure 3.6. Here, all diagonals from the analytical solution in each graph of

Figure 3.6 are the same but only change according to the conductivity based on formula

(2.4). According to these graphs, we can see that every diagonal of the approximated

first order PT computed either by Matlab or BEM++ is close to the analytical solutions

except at some high conductivities when computed by Matlab.

On the other hand, the non-diagonal elements of the first order PT for the sphere

approximated in both Matlab and BEM++ are only equal to zero as required by

the analytical solution at conductivities near to 1 and these are shown in Figure 3.7.

However, all non-diagonal elements which are non-zero are symmetrical at four decimal

places when approximated by both methods. When computed by Matlab, the non-

diagonal elements have a small difference with the analytical solution at conductivities

less than one and have a greater difference when conductivities are greater than 1.

In contrast, although the non-diagonal elements approximated in BEM++ have a

slight difference with the analytical solutions at conductivities greater than 1, they are

equal to zero for conductivities less than 1 except for elements (1)(3) (element in the

first row and third column) and (3)(1) (element in the third row and first column).

Obviously, the non-diagonal elements computed by BEM++ are closer to zero than

the one computed by Matlab at all conductivities.
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(a)

(b)

(c)

Figure 3.6: Diagonal elements of the analytical solutions and the approximated first
order PT by Matlab and BEM++ for the sphere x2 + y2 + y2 = 1 (mesh with 9920
triangles) against conductivities
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(a)

(b)

(c)

Figure 3.7: Non-diagonal elements of the analytical solutions and the approximated
first order PT by Matlab and BEM++ for the sphere x2 + y2 + y2 = 1 (mesh with 9920
triangles) against conductivities
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Figure 3.8: The error, e when the first order PT for the sphere of radius 1 is approxi-
mated by both Matlab and BEM++ on the mesh with 9920 triangles

Figure 3.8 next shows the error e =
∥∥M − M̄∥∥

2
/ ‖M‖2 between the analytic first

order PT, M as given by (2.4) and the approximated first order PT, M̄ (by both Matlab

and BEM++) at every chosen conductivity. Similarly, ‖A‖2 denotes the entry-wise

norm
√∑3

i=1

∑3
j=1 |Aij|2 for the 3×3 matrix A. Based on Figure 3.8, the approximated

first order PT, M̄ in both Matlab and BEM++ has larger error when conductivity is

greater than 1 but the error is small when the conductivity is less than or near to 1.

Obviously, the errors are smaller at every chosen conductivity when M̄ is approximated

by BEM++. Thus, we conclude that BEM++ provides better approximation of the

first order PT for this sphere than Matlab at every chosen conductivity (see [44] and

[45] for another examples of comparing two numerical methods to compute boundary

integral operators for high contrast materials).

In general, with the same number of elements for the mesh, BEM++ produces

closer approximation to the analytical solution for the first order PT of the sphere and

ellipsoids than Matlab at every chosen conductivity. Obviously, using piecewise linear

continuous basis function to approximate yj in (1.3) with BEM++ produces better

approximation than using barycentre and area of the triangle to approximate yj with

Matlab. Moreover, although both codes discritize (1.5) with piecewise constant basis

function, BEM++ gives better approximation to (1.4) than Matlab. This is because

BEM++ uses a Galerkin approach to evaluate the singular integrals (1.5) by analytical

functions whereas Matlab uses the less accurate Lemma 1. Here, Tausch and Wang [46]
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give further explanation for evaluating a singular integral operator where the methods

used by [46] are actually similar with our methods in Matlab and BEM++.

Based on previous discussion, it is still possible to increase the number of triangles

used during triangularization to improve the results either with Matlab or BEM++.

However, larger number of triangles causes slower computation in both codes and

the machine needs more memory to compute the first order PT in Matlab. Faster

computation can be achieved in BEM++ as it is equipped with iterative solver provided

by various components of Trilinos (including a GMRES and a CG solver) whereas

Matlab uses matrix operation which consumes more memory. For completeness, we

include in Table 3.1 the number of triangles, N tested to approximate the first order

PT for the sphere x2 + y2 + y2 = 1 in BEM++ accurate to three decimal places with

the analytical solutions for the cases of low and high conductivity as well as when the

conductivity is 1.5. Here, running Matlab with the same N to approximate the first

order PT at the given conductivity will cause our machine to run out of memory.

Table 3.1: N for each k

Conductivity, k N

1× 10−6 124928
1.5 61952

10000 247808

3.4 Conclusions

In this chapter, an alternative method to approximate the first order PT based on

some terminologies of BEM has being discussed. A new software for BEM called as

BEM++ is used as a platform for computing the first order PT based on the method.

Here, we also give some results to show that the approach with BEM++ provides a

better approximation to the first order PT than the approach with Matlab.



Chapter 4

Fitting Ellipsoids from the First

Order PT

Given the first order polarization tensor (PT) for a known or unknown object, it is

possible to obtain the three semi principal axes of an ellipsoid so that the ellipsoid will

have the same first order PT at a specified conductivity. This is because the explicit

formula of the first order PT for an ellipsoid exists [8] as stated in (2.2). Futhermore,

in the next chapter, we would like to recommend an experiment to test whether an

electrosensing fish can distinguish a pair of objects that have the same first order

PT, where the pair can be an ellipsoid and any other object. Therefore, the main

purpose of this chapter is to present a strategy to determine such ellipsoid. Basically,

the ellipsoid is obtained after all semi principal axes in the analytical formula (2.2)

are determined. In order to achieve this, some mathematical properties about the

existence and uniqueness of the ellipsoid are firstly given. After that, we will derive

three nonlinear equations from (2.2) at a fixed conductivity by equating (2.2) to a

given first order PT in the form (2.1) and then simultaneously solve them.

4.1 Mathematical Properties

For the purpose of this study, we denote every integrand in (2.3) of (2.2) as functions

f1(t, a, b, c), f2(t, a, b, c) and f3(t, a, b, c) as follows

f1(t, a, b, c) =
1

t2
√
t2 − 1 + ( b

a
)2
√
t2 − 1 + ( c

a
)2

,

60
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f2(t, a, b, c) =
1

(t2 − 1 + ( b
a
)2)

3
2

√
t2 − 1 + ( c

a
)2
, (4.1)

f3(t, a, b, c) =
1√

t2 − 1 + ( b
a
)2(t2 − 1 + ( c

a
)2)

3
2

,

so that

P =
bc

a2

∫ +∞

1

f1(t, a, b, c)dt,

Q =
bc

a2

∫ +∞

1

f2(t, a, b, c)dt, (4.2)

R =
bc

a2

∫ +∞

1

f3(t, a, b, c)dt.

We now prove the following lemma.

Lemma 3. For any t > 0,

1. if 0 < a ≤ b ≤ c then f1(t, a, b, c) ≤ 1/t4.

2. if 0 < c ≤ b ≤ a then there exist positive constant K so that f1(t, a, b, c) ≤ K/t4.

Proof. Starting from a ≤ b, it is easy to show that for any t > 0

t ≤
√
t2 − 1 + (b/a)2

while a ≤ c implies

t ≤
√
t2 − 1 + (c/a)2

for any t > 0. Multiplying both inequalities gives

t2 ≤
√
t2 − 1 + (b/a)2

√
t2 − 1 + (c/a)2

and hence t4 ≤ (f1(t, a, b, c))−1. This completes the proof of the first part of the lemma.

Similarly, b ≤ a and c ≤ a imply that for any t > 0

√
t2 − 1 + (b/a)2 ≤ t and

√
t2 − 1 + (c/a)2 ≤ t respectively.

This leads to

√
t2 − 1 + (b/a)2

√
t2 − 1 + (c/a)2 ≤ t2 and 1/t4 ≤ f1(t, a, b, c).

As 0 < 1/t4 ≤ f1(t, a, b, c), multiply the right hand-sided of 1/t4 ≤ f1(t, a, b, c) with

some positive constant K to complete the proof of the lemma.
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The above lemma explains that f1(t, a, b, c) is bounded for both 0 < a ≤ b ≤ c and

0 < c ≤ b ≤ a. Similarly, we can also show that f2(t, a, b, c) and f3(t, a, b, c) are also

bounded by 1/t4 for 0 < a ≤ b ≤ c and by K/t4 for 0 < c ≤ b ≤ a. This lemma is

important to derive three nonlinear equations from (2.2) and also (2.3).

Besides, it is straight forward that P = Q = R = (1/3) if a = b = c. Consequently,

the first order PT for a sphere at a fixed conductivity k where 0 < k 6= 1 < +∞ is a

multiple of the identity of size 3 as given in (2.4). Conversely, we give the following

corollary to highlight that any non-zero real matrix which is the multiple of the identity

of size 3 is actually the first order PT for some sphere at some specified conductivity k

where 0 < k 6= 1 < +∞.

Corollary 1. Let the conductivity k be specified where 0 < k 6= 1 < +∞. Let M be

any non-zero real matrix such that M is positive definite if k > 1 or negative definite if

0 < k < 1. If M is a multiple of the identity of size 3, then M is the first order PT

for some sphere at the specified k.

Proof. The corollary is actually a direct result from the explicit formula of the first

order PT for a sphere and can be shown by expressing the multiple of the identity of

size 3, M as (2.4) at the specified k.

The next lemma explains that there always exist a unique sphere E of radius r with

a fixed conductivity k from a 3× 3 non-zero real matrix M when M has one distinct

eigenvalue. Here, both M and the first order PT for E have one similar eigenvalues.

Moreover, if M is a diagonal matrix, then it is also the first order PT for E.

Lemma 4. Let the conductivity, k be fixed where 0 < k 6= 1 < +∞. Assume that

a 3 × 3 non-zero real matrix M is positive definite if k > 1 or negative definite if

0 < k < 1. If M has only one distinct eigenvalue denoted by m, then there exist a

unique r > 0 satisfying

m =
4(k − 1)πr3

2 + k

where r is the radius of a sphere with the fixed conductivity k.

Proof. Let the conductivity, k be fixed where 0 < k 6= 1 < +∞. Assume that a 3× 3

non-zero real matrix M is positive definite if k > 1 or negative definite if 0 < k < 1. If
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M has only one distinct eigenvalue denoted by m, we can construct a matrix ME by

ME =


m 0 0

0 m 0

0 0 m


such that ME is a multiple of identity of size 3. Therefore, ME is the first order PT

for a sphere by Corollary 1. By using (2.4), we can then have

m =
4(k − 1)πr3

2 + k
, 0 < k 6= 1 < +∞

where r > 0 is the radius of the sphere at the fixed k.

Introduce a function f such that m = f(r) =
4(k − 1)πr3

2 + k
for r > 0, 0 < k 6= 1 <

+∞ and it can be shown that f is one to one. This means f is also invertible where,

the inverse of f denoted by g is given by f−1(r) = g(m) = 3

√
m(2 + k)

4(k − 1)π
. Therefore,

there is a unique r satisfying m = f(r).

Corollary 1 and Lemma 4 are special as they give a unique sphere from any 3× 3

non-zero real matrix M that has one distinct eigenvalues. Generally, some 3 × 3

non-zero real matrix can be associated to the first order PT for the ellipsoid as both of

them have three eigenvalues. In this case, it might be possible to obtain an ellipsoid

with conductivity, k where 0 < k 6= 1 < +∞ from the matrix such that the matrix

is positive definite if k > 1 or negative definite if 0 < k < 1. Similarly, it might be

possible to obtain an ellipsoid from any first order PT since the first order PT is a 3× 3

non-zero real matrix as given by (2.1). At this stage, we will discuss the possibility

to obtain an ellipsoid from a given first order PT, M by assuming that M is the first

order PT for some ellipsoid.

During this study, it is more diffcult to investigate the existence and the uniqueness

of an ellipsoid from a given first order PT. This is because we have to deal with

the complicated integrals P,Q and R as given in (2.3). By using the substitution

y = a2(t2 − 1), it can be actually shown that P = d1(a, b, c), Q = d2(a, b, c) and

R = d3(a, b, c) such that

di(a, b, c) =
abc

2

∫ ∞
0

dy

(l2i + y)
√

(a2 + y)(b2 + y)(c2 + y)
(4.3)

where l1 = a, l2 = b and l3 = c for i = 1, 2 and 3. Here, di(a, b, c) is called in [6]

as the depolarization (demagnetizing) factors for ellipsoid with semi principal axes
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a, b and c. It has been shown by [6] that di(a, b, c) can also be expressed as elliptic

integrals and these integrals are equivalent to the classical integrals given in [47].

Furthermore, Osborn [47] has presented some numerical values for di(a, b, c) to suggest

that 0 < di(a, b, c) ≤ 1. For a non-zero di(a, b, c) satisfying
∑3

i di(a, b, c) = 1, it is

claimed by Milton [6] that one can always find the semi principal axes a, b and c for an

ellipsoid from the triplet di(a, b, c).

Now, we will investigate whether a, b and c obtained from the triplet di(a, b, c)

(denoted by di) are unique. For some special cases of the ellipsoid, the explicit formula

for di is given by [47] and also [6]. In Appendix A.1, we use the explicit formula of d1

for prolate spheroid (where in this case, the semi principal axes are a < b = c while

the depolarization factors are d1 and d2 = d3 = 1− d1) to find a specific interval for

ψ =
√

1− (b/a)2 so that ψ is a unique solution to d1 on the interval. By using ψ and

specifying the volume of the prolate spheroid, we then show that a and b are unique.

After that, we repeat the same steps and determine an interval for ϕ =
√

1− (a/b)2

so that ϕ is a unique solution to d1 for oblate spheroid to show that a and b for the

oblate spheroid are unique on the interval. For a general ellipsoid, the task is more

difficult since we have to determine the derivatives of the complicated integrals given

in (4.3) so, we leave this as our future investigation. We believe that this can be done

by examining the properties of the elliptic integrals which represent (4.3).

On the other hand, in order to investigate the existence of an ellipsoid from a given

first order PT, we substitute di(a, b, c) (denoted by di) in (2.2). For a fixed conductivity

k, 0 < k 6= 1 < +∞, we can express

di =
(k − 1)|B| − λi

λi(k − 1)
, i = 1, 2 and 3 (4.4)

where λi is the eigenvalues of the first order PT for any ellipsoid E denoted by ME

such that ME is positive definite if k > 1 or negative definite if 0 < k < 1. Note

that we can also use the diagonal element instead of λi since ME is a diagonal matrix.

Therefore, following the claim by [6], we can always obtain a, b and c for an ellipsoid

B for the correspond λi from di, i = 1, 2 and 3 (where
∑3

i di(a, b, c) = 1) if given to us

the volume of the ellipsoid, |B|. However, we will not investigate whether a, b and c

are unique for the given λi, i = 1, 2 and 3 when |B| is specified due to time constraint

during this study. Besides, it is also possible to find an ellipsoid from the given first

order PT without specifying the volume of the ellipsoid. For the same reason, we only
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aim to explore this in the future. So, in order to reflect our results in this chapter, we

state the hypothesis in the next conjecture.

Conjecture 1. Let the conductivity, k be fixed where 0 < k 6= 1 < +∞. Let MS be

the first order PT for an arbitrary ellipsoid S where MS is positive definite if k > 1

or negative definite if 0 < k < 1. There exist semi principal axes a, b and c for the

ellipsoid, E so that the eigenvalues of the first order PT for E at the fixed k are equal

to the eigenvalues of MS.

4.2 Finding an Ellipsoid from the First Order PT

In this section, we present a strategy to determine an ellipsoid from a given first order

PT. By assuming the given first order PT is also the first order PT for an ellipsoid, we

first specified the conductivity, k for the ellipsoid where 0 < k 6= 1 < +∞ so that the

given first order PT is positive definite if k > 1 or negative definite if 0 < k < 1. After

that we set the given first order PT equal to (2.2) to derive three nonlinear equations

with three unknowns a, b and c and simultaneously solve them to obtain a, b and c

representing the semi principal axes for the ellipsoid.

4.2.1 Formulating the nonlinear equations

In order to derive three nonlinear equations from a given first order PT by using (2.2),

we first observe the integrals in (2.3). Each integral cannot be analytically determined

thus, Lemma 3 is firstly used to approximate the integrals. Since all integrals have

one infinite interval, a common approach to approximate them is by truncating the

limits where the infinite range is replaced by a sufficiently large value L so that the

infinite range becomes finite. The integrals can then be approximated by a standard

numerical integration method of finite interval [48]. In this case, it is neccessary to

properly choose L to avoid inaccurate results if L is underestimated or, expending

needless effort if L is overestimated.

Before proceeding further, we first consider a problem to approximate integral with

an infinite interval by an integral with a finite interval given by∫ ∞
1

(20/t4)dt ≈
∫ C

1

(20/t4)dt. (4.5)
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By following [48], the constant C > 1 in (4.5) is firstly estimated by evaluating∫ +∞

C

(20/t4)dt. (4.6)

For t ≥ C then t4 ≥ Ct3. Hence,∫ +∞

C

(20/t4)dt ≤
∫ +∞

C

(20/Ct3)dt = 20/2C3. (4.7)

Thus, if C = 100 for example, then 20/2C3 ≈ 0.00001 so, (4.5) can be approximated

to four figures of computation by
∫ C

1
(20/t4)dt with C = 100.

Now, suppose that we want to approximate
∫ +∞

1
f1(t, a, b, c)dt. Since f1(t, a, b, c) is

integrable according to [8] for 1 < t < +∞, f1(t, a, b, c) is also integrable for 1 < t < C1

such that ∫ +∞

1

f1(t, a, b, c)dt =

∫ C1

1

f1(t, a, b, c)dt+

∫ +∞

C1

f1(t, a, b, c)dt. (4.8)

By using Lemma 3, we have∫ C1

1

f1(t, a, b, c)dt ≤
∫ C1

1

(1/t4)dt (4.9)

for 0 < a ≤ b ≤ c and ∫ C1

1

f1(t, a, b, c)dt ≤
∫ C1

1

(K/t4)dt (4.10)

for 0 < c ≤ b ≤ a where K is a positive constant. Furthermore,
∫ C1

1
(1/t4)dt ≤∫ C1

1
(K/t4)dt. Following the previous explanation to approximate (4.5) by

∫ C
1

(K/t4)dt

for K = 20 and C = 100, we now approximate
∫ +∞

1
f1(t, a, b, c)dt by sufficiently∫ C1

1
f1(t, a, b, c)dt where

∫ C1

1
f1(t, a, b, c)dt is bounded for both 0 < a ≤ b ≤ c and

0 < c ≤ b ≤ a. Similarly,
∫ +∞

1
f2(t, a, b, c)dt and

∫ +∞
1

f3(t, a, b, c)dt are approximated

respectively by
∫ C2

1
f2(t, a, b, c)dt and

∫ C3

1
f3(t, a, b, c)dt. Our objective now is to derive

the nonlinear equations from (2.2) by approximating the integrals in (4.2) (or (2.3))

with
∫ C1

1
fi(t, a, b, c)dt (denoted by f̂i(a, b, c)) for i = 1, 2 and 3 as follows∫ +∞

1

f1(t, a, b, c)dt ≈
∫ C1

1

f1(t, a, b, c)dt = f̂1(a, b, c),

∫ +∞

1

f2(t, a, b, c)dt ≈
∫ C2

1

f2(t, a, b, c)dt = f̂2(a, b, c), (4.11)∫ +∞

1

f3(t, a, b, c)dt ≈
∫ C3

1

f3(t, a, b, c)dt = f̂3(a, b, c).
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In this study, the trapezoidal rule from numerical integration technique of finite

interval is used to develop the desired system of nonlinear equations from (2.2) and

(4.11). The method is chosen with the hope to develop a simple set of equations that

can be easily and directly solved. By using the trapezoidal rule, we obtain the equations

f̂1(a, b, c) = h1

[
f1(1, a, b, c) + f1(C1, a, b, c)

2
+

n1−1∑
κ=1

f1(1 + κh1, a, b, c) +R1

]
, (4.12)

f̂2(a, b, c) = h2

[
f2(1, a, b, c) + f2(C2, a, b, c)

2
+

n2−1∑
κ=1

f2(1 + κh2, a, b, c) +R2

]
, (4.13)

f̂3(a, b, c) = h3

[
f3(1, a, b, c) + f3(C3, a, b, c)

2
+

n3−1∑
κ=1

f3(1 + κh3, a, b, c) +R3

]
, (4.14)

where for i = 1, 2, 3, Ri is the small error in the approximation and hi = (Ci − 1)/ni

must be very small to increase the accuracy of the computation [48]. Then, if given

the first order PT of any object S (denoted by M(k, S)) as diagonal matrix of size 3,

the desired system of nonlinear equation is obtained by comparing the diagonals of

(2.2) with the diagonals of M(k, S). Finally, by using (2.3) with (4.11) and rearrange,

the system will be in the form

mii + (k − 1)

[
mii

bc

a2
f̂i(a, b, c)− |B|

]
= 0 (4.15)

where mii is the diagonal element of the given M(k, S) for i = 1, 2, 3 and |B| =

(4/3)πabc.

4.2.2 Solving system of nonlinear equations

In this study, given the first order PT for an object, the system of nonlinear equations

(4.15) is numerically solved at a fixed conductivity k to obtain the desired ellipsoid.

For this purpose, the values Ci and hi for f̂i(a, b, c) in (4.15) must firstly be specified

where, in general, the value Ci is large and can be set like C in (4.5) (due to (4.9)

and (4.10)). In this case, it is impossible to estimate Ci (like we did in (4.5)) since∫ +∞
Ci

fi(t, a, b, c)dt cannot be analytically integrated. On the other hand, hi is set to

be sufficiently small. At this stage, the function fsolve.m of Matlab is used to solve

(4.15) for a, b, and c with the initial values a = b = c = 0. The resulting a, b and

c can then be used in the analytical formula (2.2) to ensure that the first order PT

for the determined ellipsoid at the fixed k agress with the given first order PT. The
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computation can be repeated with different values of Ci and hi until the results agree

at some degree of accuracy.

4.2.3 Limitations

There are some limitations of this strategy especially since this method is designed for

our specific application in the study. First of all, the ellipsoid can only be obtained if

the given first order PT, M is a diagonal matrix such that M has the same form with

the first order PT for some ellipsoid as given by (2.2). This is possible because the first

order PT for most objects that we have encountered so far are diagonal matrices at

certain decimal places. Moreover, the conductivity k of the ellipsoid must be specified

so that the given first order PT satisfies Theorem 3 (see Chapter 2). Otherwise,

the system (4.15) cannot be solved by fsolve.m or it can be solved but the values

a, b, c < 0.

We also do not have any result about the existence and the uniqueness of the

solutions for (4.15) which are equivalent to (4.4) as they are out of the scope of the

study at this moment. So far, we only know based on the claim by [6] that we can

obtain an ellipsoid E from the first order PT if the volume of E is given. However, we

generalize the system of nonlinear equations (4.15) and solve them for some E that

have some unspecified volume. The steps taken to solve (4.15) without specifying the

volume are also consistent with the proposed Conjecture 1. In this case, the diagonals

of the given first order PT for some objects are used instead of the eigenvalues so that

the determined ellipsoid and the object will have the same first order PT.

In addition, according to [49], at least n nonlinear equations are needed if we want

to find a unique solution for n independent variables provided the solution exists. This

seems to be true if the system is solved by analytical techniques. However, our system

(4.15) can only be solved by numerical method. Furthermore, some authors such as [50]

and [51] have also claimed that there is no guarantee to find the unique or all solutions

for the system of nonlinear equations by numerical method because of the difficulties

in analyzing the existence and uniqueness of the solutions for the system. Therefore,

following the claim by Press et. al [52] that there is no particular ‘good method’ in

solving the system of nonlinear equations, only the standard method in the function

fsolve.m of Matlab is used to solve (4.15) to achieve our purpose.
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4.3 Results and Discussion

In order to provide numerical examples, given the first order PT for an object S denoted

by M(k, S), the conductivity k for the to be determined ellipsoid E in (4.15) is firstly

fixed so that the given first order PT satisfies Theorem 3 (see Chapter 2). Moreover,

the conductivity in (4.15) for E here is set to be equal to the conductivity of S (in this

case, we may say that both E and S are constructed from the same material). We now

assume small error in the approximations (4.12), (4.13) and (4.14) such that R1 ≈ 0,

R2 ≈ 0 and R3 ≈ 0. By choosing C1 = C2 = C3 = 50 and h1 = h2 = h3 = 0.00001

for (4.12), (4.13) and (4.14), the system (4.15) can be solved in Matlab by using the

function fsolve.m to determine a, b and c of E. Table 4.1 shows a few common objects

S and every semi axes of ellipsoids E at four decimal places which are obtained by

solving (4.15) equal to M(k, S) at the same conductivity k for both S and E.

In addition, it is more useful to represent the first order PT for an object with three

of its eigenvalues. Since the eigenvalues of the first order PT of ellipsoids are just the

diagonals as given by (2.2), we can then determine an ellipsoid E from all eigenvalues

of M(k, S) by solving (4.15) equal to the corresponds eigenvalues of M(k, S). By

doing this, instead of having the same first order PT, the ellipsoid E and the object

S will have similar eigenvalues of their first order PT (see Table 4.2 for examples).

Furthermore, by using (2.2) and Theorem 2 (see Chapter 2), if an object S is rotated,

we can show that the eigenvalues of the first order PT for E are still similar to the

eigenvalues of M(k, S) for some rotation on S. In this case, the first order PT for E

does not necessary equal to M(k, S).

We also want to highlight that by using a, b and c for ellipsoid E in Table 4.1 with

the given k in (2.2), the first order PT for E is exactly the same as M(k, S) in the

table at two decimal places. Besides, after the first order PT for ellipsoid E in Table

4.2 and its eigenvalues are recomputed with (2.2), the eigenvalues for the first order

PT for E are exactly equal at two decimal places to the eigenvalues of M(k, S) except

for the shaft where the eigenvalues for the first order PT for E are only equal to the

eigenvalues of the first order PT for the shaft after they are rounded to three significant

figures. This suggests good agreements between the first order PT for the determined

ellipsoid and the given M(k, S) in the results.
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Table 4.1: Ellipsoid and object with the same first order PT

Object, S k M(k, S)
Ellipsoid, E

( x
a
)2 + ( y

b
)2 + ( z

c
)2 = 1

5× 10−5

−33.80 0.00 0.00
0.00 −33.80 0.00
0.00 0.00 −33.52

 a = 1.7425
Cylinder b = 1.7425

d = 3 , h = 3 c = 1.7669

1× 10−2

−9.70 0.00 0.00
0.00 −9.70 0.00
0.00 0.00 −15.42

 a = 1.5240
Hemisphere b = 1.5240

d = 3 c = 0.7699

1.5

27.95 0.00 0.00
0.00 29.90 0.00
0.00 0.00 25.05

 a = 2.5212
Cuboid b = 4.3181
2× 4× 1 c = 1.4064

500

12.85 0.00 0.00
0.00 12.85 0.00
0.00 0.00 8.50

 a = 1.0775
Pyramid b = 1.0775
2× 2× 2 c = 0.7569

10000

28.90 0.00 0.00
0.00 28.90 0.00
0.00 0.00 28.90

 a = 1.3201
Cube b = 1.3201

2× 2× 2 c = 1.3201

note : d = diameter, h = height
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Table 4.2: The similar eigenvalues of the first order PT for S and E

Object, S k
Eigenvalues of Ellipsoid, E

M(k, S) ( x
a
)2 + ( y

b
)2 + ( z

c
)2 = 1

1.5
56.50 a = 4.4860

half-Ring on 56.50 b = 4.4860
Cuboid 46.62 c = 1.4607

500
30.90× 105 a = 84.8042

Shaft 12.42× 105 b = 41.8165
8.40× 105 c = 29.2011

10000
87.42 a = 1.9735

Mushroom 79.00 b = 1.8144
79.00 c = 1.8144
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4.4 Conclusions

In this chapter, an approach to determine an ellipsoid from a given first order PT at

some fixed conductivity has being highlighted. In this case, based on the analytical

formula (2.2) and (2.4), we firstly discuss some existences and uniquenesses of the

ellipsoid from the first order PT. Numerical examples are also given to show that an

object and the ellipsoid can have the same first order PT.



Chapter 5

The First Order PT with Complex

Conductivity

An asymptotic formula representing the perturbation in the electromagnetic field for the

complete time harmonic Maxwell’s equations due to the presence of isolated conducting

and magnetic objects has been derived by Ammari et al. [33]. This formula could be

useful to describe the isolated objects for examples in microwave tomography, radar

and ground penetrating radar (GPR). Moreover, in their recent works on GPR, Watson

and Lionheart [53] have claimed that the PT derived from the asymptotic formula [33]

is equivalent to the first order PT (the Pólya-Szegő PT). In this case, k of the first

order PT is the relative complex permittivity of the isolated object. This motivates

us to investigate the first order PT for complex conductivity k = a+ bi where i is the

standard imaginary unit. In this chapter, the first order PT for a few objects at complex

conductivity are numerically evaluated and presented. Since complex permittivity

depends on the frequency of the electromagnetic field, by setting k equal to the relative

complex permittivity as suggested by [53], we also investigate the first order PT at a

few different frequencies.

5.1 Some Known Properties

The first order PT for an object B at complex conductivity k = a+ bi in the form (2.1)

can be determined by solving the same (1.3)-(1.5). In addition, the analytical solutions

(2.2) and (2.4) for ellipsoids and spheres are also applicable. Following Theorem 1 (see

73
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Chapter 2), it is easy to see that the first order PT in this case is complex symmetric.

Therefore, the first order PT can then be expressed as R+ J i such that R and J are

the real and imaginary parts of the first order PT. In this case, both R and J are

3× 3 symmetrical real matrices.

In addition, we also define the relative complex permittivity of B denoted by εr as

εr =
1

ε0

(
εB −

σB
ω

i
)

(5.1)

where ε0 = 8.854× 10−12 F/m (Farads per meter) is the permittivity of the free space

and ω (rad/s) is the frequency while εB and σB each is the permittivity and conductivity

of B. Note that J for the first order PT is a non-zero matrix only if b 6= 0 for k. Thus,

by setting k equal to εr of an object B, J of the first order PT for B depends on σB

and ω as given by (5.1).

5.2 Approximating the First Order PT at Complex

Conductivity and Complex Permittivity

First of all, to numerically compute the first order PT for the object B at complex

conductivity k (or complex permittivity) by solving (1.3)-(1.5), our previous codes

in both Matlab and BEM++ (see Appendix B.2 and Chapter 3) are modified. In

Matlab, we only have to assign complex value for k (Matlab then will automatically

define and solve functions (1.3) and (1.4) as complex-valued). However, for BEM++,

besides specifying complex value for k in the Python script, we also need to specify

the quadStrategy of BEM++ (see [41] for details) so that it produces and solves

complex-valued functions for each (1.3) and (1.4). After that, both codes can be used

to approximate the first order PT for an object B by using the mesh of the boundary

of B. Similarly, the computation is repeated by uniformly increasing the number of

elements for the mesh with Netgen until there is no relative difference at six decimal

places between the current and the previous solutions where the current computed

solution is then chosen to approximate the first order PT.



CHAPTER 5. THE FIRST ORDER PT WITH COMPLEX CONDUCTIVITY 75

5.3 Results and Discussions

In this section, we firstly approximate the first order PT for a sphere and an ellipoid

with complex conductivity k in BEM++ so that we can compare the results to the

analytical solutions (2.4) and (2.2). After that, we approximate the first order PT for

an object (no analytical solution for the first order PT) by our codes in both Matlab and

BEM++ at the same complex conductivity k to describe the object. Finally, by setting

the relative complex permittivity equal to complex conductivity k, we investigate the

first order PT for two objects with a fixed real part and a few different imaginary parts

of k where the imaginary parts are generated according to a few frequencies for the

relative complex permittivity.

5.3.1 The first order PT for some geometric objects

Figure 5.1 shows the agreement between the elements of the approximated first order

PT computed by BEM++ with the analytical solution (2.4) for the sphere of radius 1

centimeters (cm) at k = 3.4 + 0.02i. Here, the approximated first order PT is obtained

on the mesh with 14720 triagular elements. It can be seen that the approximated first

order PT for the sphere is a complex diagonal matrix at six decimal places where the

diagonal are all equal.

On the other hand, an agreement between the elements of the approximated first

order PT computed by BEM++ with the analytical solution (2.2) for the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1 where a = 0.3, b = 0.2, c = 0.1 cm at k = 1.9 − 0.3i is shown

in Figure 5.2. Here, the mesh for the ellipsoid consists of 14272 triangular elements.

Similarly, it can be seen that the approximated first order PT for the ellipsoid is a

complex diagonal matrix at five decimal places.

We are also motivated to investigate the first order PT for the vs50 landmine. This

is due to the recent study conducted by [53] with the purpose of locating a buried

vs50 landmine from the soil by using the GPR. The model of the landmine is given in

Figure 5.3 (see [31] for its actual diagram) while its dimension is according to [54]. By

setting k = 2.9− 0.0052i (which is the complex permittivity of the explosive TNT at

frequency 3 GHz as given in [32]), the first order PT is computed with BEM++ on

the mesh with 1033 triangles. Since the first order PT in this case has no analytical
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(a)

(b)

Figure 5.1: A comparison between the elements of the approximated first order PT
obtained with BEM++ and the analytical solution (2.4) for the sphere of radius 1 cm
at k = 3.4 + 0.02i (a) real part (b) imaginary part
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(a)

(b)

Figure 5.2: A comparison between the elements of the approximated first order PT
obtained with BEM++ and the analytical solution (2.2) for x2

a2
+ y2

b2
+ z2

c2
= 1 (a = 0.3,

b = 0.2, c = 0.1 cm) at k = 1.9− 0.3i (a) real part (b) imaginary part
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Figure 5.3: A model for a vs50 landmine [31]

solution, the same mesh is used to recompute the first order PT this time with our

code in Matlab for later comparison.

In order to show an acceptable agreement between the two approximated first order

PT for vs50, all elements for the real and imaginary parts of both approximated first PT

are plotted in the same graph in Figure 5.4. Based on these graphs, both approximated

first order PT for vs50 are complex diagonal matrices at four decimal places. Moreover,

the first diagonal is equal to the second diagonal for both approximations. Not only

that, by using Definition 2 (see Chapter 2), it can be shown that the real part of the

approximated first order PT is a positive definite matrix whereas the imaginary part

is a negative definite matrix. These results could be very useful to identify the vs50

landmine from the GPR later on.

5.3.2 The first order PT at a few different frequencies

Previously, Rehim et al. [55] presented the capability to determine the magnetic

polarizibility tensor from a metal detector for landmine detection by investigating

frequency response for the polarizibility tensor. Moreover, Ledger and Lionheart [30]

has recently showed that the frequency response of the polarizibility tensor in [55]
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(a)

(b)

Figure 5.4: A comparison between the elements of the approximated first order PT
obtained by Matlab with the elements of the approximated first order PT obtained
by BEM++ for the model of vs50 landmine at k = 2.9 − 0.0052i (a) real part (b)
imaginary part
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actually agrees with the expilicit formula of the PT for metal detection, where, the PT

for metal detection will be discussed during this study in Chapter 7. Similarly, this

motivates us to investigate frequency response for the first order PT with a relative

complex permittivity with the hope to improve the GPR in the future for locating and

describing landmine.

In this section, we investigate the first order PT at different frequencies ω for a few

complex permittivities. First of all, we show the agreements between the approximated

first order PT and the analytical solution (2.4) for the sphere of radius 1 cm at a few

complex permittivities. The real part of the permittivities are fixed to be equal but

the imaginary part are changed according to a few chosen frequency, ω (rad/s) where

1 ≤ ω ≤ 4.7124 × 1011. After that, by using the same permittivities, we investigate

for different ω, the approximated first order PT for the model of vs50 landmine as it

is one of objects of interest for landmine clearance by using the GPR. Note that the

complex permittivities with different ω considered here are actually generated based

on the actual complex permittivity of the explosive TNT as given in [32].

The first order PT for the sphere of radius 1 cm is computed with BEM++

and also by using the analytical formula (2.4) at various complex permittivities,

k = 2.9− (9.8216× 107)ω−1i where 1 ≤ ω ≤ 4.7124× 1011. Here, the mesh consisting

9920 triangular elements for the sphere is used in BEM++. Next, the first order

PT obtained from the formula (2.4) and also BEM++ are plotted against ω where

the agreements between every element of the first order PT obtained from (2.4) and

BEM++ at all ω are shown in Figure 5.5 until Figure 5.8. Obviously, all graphs in

Figure 5.5 are equal to each other and the same thing happens to the graphs in Figure

5.7 since the diagonal elements for both real and imaginary parts of the first order PT

for the sphere are equal (the diagonal elements for both real and imaginary parts of

the approximated first order PT for the sphere are equal to each other at six decimal

places). Moreover, for all chosen ω, the approximated first order PT for the sphere are

complex diagonal matrices at six decimal places since all non-diagonal elements for the

real and imaginary parts of the approximated first order PT are zero at six decimal

places as given by the graphs in Figure 5.6 and Figure 5.8.
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(a)

(b)

(c)

Figure 5.5: Diagonal elements (real part) of the analytical solution and the approximated
first order PT by BEM++ for the sphere of radius 1 cm against frequencies ω (a) first
diagonal (b) second diagonal (c) third diagonal
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(a)

(b)

(c)

Figure 5.6: Non-diagonal elements (real part) of the analytical solution and the
approximated first order PT by BEM++ for the sphere of radius 1 cm against frequencies
ω
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(a)

(b)

(c)

Figure 5.7: Diagonal elements (imaginary part) of the analytical solution and the
approximated first order PT by BEM++ for the sphere of radius 1 cm against frequencies
ω (a) first diagonal (b) second diagonal (c) third diagonal
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(a)

(b)

(c)

Figure 5.8: Non-diagonal elements (imaginary part) of the analytical solution and
the approximated first order PT by BEM++ for the sphere of radius 1 cm against
frequencies ω
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On the other hand, Figure 5.9 until Figure 5.12 show the elements of the ap-

proximated first order PT computed by BEM++ against ω for the model of vs50

landmine (the mesh consists 4132 triangular elements) also at complex permittivities,

k = 2.9 − (9.8216 × 107)ω−1i where 1 ≤ ω ≤ 4.7124 × 1011. Based on the graphs in

Figure 5.9 and Figure 5.11, we can see that the first and the second diagonal for both

real and imaginary parts of the approximated first order PT are equal at four decimal

places for every ω. Furthermore, for every ω, the approximated first order PT for the

model of vs50 landmine are also complex diagonal matrices at four decimal places since

all non-diagonal elements for both real and imaginary parts of the approximated first

order PT are zero at four decimal places as given by the graphs in Figure 5.10 and

Figure 5.12.

Moreover, based on Figure 5.5 and Figure 5.9, every diagonal element for the

real part of the approximated first order PT for both objects remains a constant at

frequency, ω between 1 and 106 before drop significantly to another constant when ω

is between around 106 and 109. The value for each diagonal remains at the constant

as ω inceases from 109 to 4.7124× 1011. In contrast, every diagonal element for the

imaginary part of the approximated first order PT for both objects has non-zero value

only at ω between 105 and 1011 as shown in 5.7 and Figure 5.11. Not only that, every

diagonal element for the imaginary part of the approximated first order PT for both

objects has a minimum value at ω around 3 × 108. As the same complex relative

permittivities are used for both objects, the curves for graphs in Figure 5.5 are similar

to the curves for graphs in Figure 5.9 while the curves for graphs in Figure 5.7 are

similar to the curves for graphs in Figure 5.11.

Although the curves of the graphs are similar for each real and imaginary part,

the absoulte values of the diagonals for the approximated first order PT for vs50 are

larger than the absoulte values of the diagonals for the approximated first order PT for

the sphere probably because vs50 has larger volume. Furthermore, by combining the

real and the imaginary parts in the figures, the graphs also provide a unique diagonal

for the objects at each different frequency. These values can then be used to further

identify the objects from their first order PT in the future related applications by using

the appropriate tools.
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(a)

(b)

(c)

Figure 5.9: Diagonal elements (real part) of the approximated first order PT by BEM++
for the model of vs50 landmine against frequencies ω (a) first diagonal (b) second
diagonal (c) third diagonal
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(a)

(b)

(c)

Figure 5.10: Non-diagonal elements (real part) of the approximated first order PT by
BEM++ for the model of vs50 landmine against frequencies ω
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(a)

(b)

(c)

Figure 5.11: Diagonal elements (imaginary part) of the approximated first order PT
by BEM++ for the model of vs50 landmine against frequencies ω (a) first diagonal (b)
second diagonal (c) third diagonal
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(a)

(b)

(c)

Figure 5.12: Non-diagonal elements (imaginary part) of the approximated first order
PT by BEM++ for the model of vs50 landmine against frequencies ω
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5.4 Conclusions

In this chapter, we have investigated the first order PT for some objects with complex

conductivities. We give numerical examples to show that the explicit formula of the

first order PT with the real conductivity can also be used if the conductivity is complex.

Here, we also investigate the frequency response of the first order PT with the hope to

apply it in the future potential applications such as radar and GPR.



Chapter 6

The First Order PT in

Electrosensing Fish

Weakly electric fish can be found in the rivers of South America and Africa. They

perform electrosensing for navigation as well as to characterize objects and locate

prey. Given that electrical imaging is a nonlinear and illposed inverse problem of

considerable computational complexity, it would be surprising if electrosensing fish

are able to perform a complete three dimensional spatial image reconstruction in real

time. Experimental studies by von der Emde and Fetz [11] have shown that the fish

Gnathonemus petersii can be trained to recognize and discriminate between conducting

and insulating objects with variety kinds of shapes. Here, one possible mechanism for

the fish to recognize shapes of objects from electrical data at some distance without

using the image is to use the GPT of the object. In this chapter, we evaluate numerically

the first order GPT for several objects used in the experiments. We then examine the

first order GPT (or the first order PT) to provide evidences from the experimental

study to support our hypothesis that it is used by weakly electric fish as part of their

characterization algorithm.

6.1 Mathematical Model

Let the conductivity of the water or other objects in the water in the region exterior to

a weakly electric fish be σ. The electrical voltage u due to electrical current generated
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by the fish in the region is assumed to satisfy the equation

∇ · (σ∇u) = 0 (6.1)

to indicate that there is no other current source exterior to the fish. Consider the

domain Ω = R3 − F where F is the fish. Suppose that there is an isolated object

B ⊂ Ω which is assumed to be a Lipschitz bounded domain in R3 at some distance

from the fish and for any point x ∈ Ω,

σ(x) =

k for x ∈ B

1 for x ∈ Ω−B
(6.2)

where k constant. According to Ammari and Kang [8], the perturbation in the voltage

due to a small object in the region Ω can be approximated by an asymptotic expansion

where the dominant term of the expanison is determined by the PT.

Let H be the voltage inside the water without the object B such that ∇ ·H = 0

(H harmonic) from (6.1). Then, from [8] we have

(u−H)(x) = −∇Γ(x) ·M∇H(0) +O(1/|x|2) as |x| → ∞ (6.3)

where the origin O ∈ B , Γ(x) = −(4π|x|)−1 and M is the first order PT. Thus, instead

of using the voltage in (6.3), one can now consider the first order PT, M to describe B.

Here M of an object B is a 3× 3 matrix in the form of (2.1) and can be determined

by solving the similar integral equation (1.3), (1.4) and (1.5). Furthermore, M is

independent of position B from the fish, F as given by (6.3) and it is shown in [8] that

M is symmetry. In addition, M of an object rotates when the object rotates as given

by Theorem 2 (see Chapter 2) and this suggests that the eigenvalues of M describe the

shape while the eigenvectors tell the orientation of the object. At the same time, this

also means shape of two objects might not be discriminated if both objects have the

same first order PT. We also assume that the shape is independent of position when

discriminated by the electrosensing fish through M .

In their series of experiments, von der Emde and Fetz [12] suggested that weakly

electric fish Gnathonemus petersii were actually able to perform complex objects

recognition tasks. However, they did not consider the PT of the objects in their

findings. In this study, the PT of objects used in [12] are calculated and used to

reexamine the experiments to support our hypothesis and stimulate further research

for investigating the role of the PT in object characterization by the fish.
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6.2 Experimental Biology and the First Order PT

In order to investigate the role of the first order PT in electrosensing by weakly electric

fish, we have considered a few experiments done by von der Emde and Fetz [12].

Previously, they conducted a series of experiments to the fish to investigate the ability

of the fish to recognize shape and conductivity contrast of a few objects. During their

study [12], eight fish were trained to accept or reject two different objects. Each fish

was rewarded for choosing the correct object and punished for choosing the wrong

object until they were able to choose the correct object with 75% succession rate in

three consecutive days. Some controls were also used to ensure that the fish depended

only on their electrical sense in making decision. The period taken by each fish to

complete the training was then recorded. In this study, only five fish from the study

are used. For later convenient, we have renamed Fish 1, Fish 2, Fish 3, Fish 7 and

Fish 8 in [12] as Fish B, Fish A, Fish E, Fish C and Fish D respectively.

For the purpose of this study, we compute the first order PT for the objects used

in the chosen experiments with BEM++ according to Chapter 3. In order to make

computation, mesh of triangular elements for each object is firstly generated by Netgen.

After that, we repeat the computation in BEM++ by uniformly increasing the number

of elements for the mesh with Netgen until there is no relative difference at six decimal

places between the current and the previous solutions where the current computed

solution is then chosen to approximate the first order PT for each object.

The resulting first order PT as matrices for all objects are then analyzed to achieve

our purpose. Here, for the first order PT of an object, B denoted by MB, all three

eigenvalues of MB are firstly determined. Each eigenvalues of MB is then normalized

by taking its ratio to the largest eigenvalue of MB. After that, the average of the

normalized eigenvalues is computed to measure MB. In this case, if the fish use the

first order PT to recognize objects in the previous experiment, we say that two objects

are electrically similar to the fish if the average of the normalized eigenvalues of MB

for both objects are the same.
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Table 6.1: The first order PT for a few objects presented in [12]

Object, B Dimension (cm) The First Order PT, MB êMB
ĉ

10−5 ×

0.28 0 0
0 0.28 0
0 0 0.31

 0.9032

Cone d = h = 3 0.9032 0.9355
1.0000

10−5 ×

0.98 0 0
0 0.98 0
0 0 0.98

 1.0000

Cube l = w = h = 3 1.0000 1.0000
1.0000

10−5 ×

0.42 0 0
0 0.42 0
0 0 0.32

 0.7619

Pyramid l = w = h = 3 1.0000 0.9206
1.0000

note : cm = centimeter, d = diameter, h = height, l = length, w = width

Table 6.2: Results for the training in [12]

Fish Accept, S+ Reject, S- Period (Days) v

A
Pyramid Cube

4
0.0794

B 7

C
Cone Cube

8
0.0645

D 10

E Cone Pyramid 19 0.0149

6.3 Results and Discussion

Since objects from [12] considered here are made from high conducting metal, the first

order PT of each object, MB is calculated at conductivity 107 in this study. Each MB

is shown accurately at six decimal places in Table 6.1 together with its normalized

eigenvalues, êMB
. The average of the normalized eigenvalues of MB denoted by ĉ is

also included in the table. Based on Table 6.1, we can see that each MB is a diagonal

matrix. Furthermore, cone and pyramid have two distinct eigenvalues while cube has

only one.

Table 6.2 then shows the time taken by the fish in [12] to complete their training

in accepting and rejecting two objects (denoted by S+ and S- respectively) based on

the explanation in the previous section. Here, we extend these results by finding the

absolute difference of ĉ for S+ and S- denoted by v to deduce the role of the first

order PT in this training. According to this table, Fish E takes the longest time to

discriminate cone and pyramid and we can see that these two objects have the smallest

v between them. Furthermore, Fish A and Fish B are able to achieve their tasks in
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Table 6.3: The similar first order PT for S and B

Object, S Ellipsoid, B The First Order PT for S and B

a = 1.28
10−5 ×

0.28 0 0
0 0.28 0
0 0 0.31

Cone b = 1.28
d = h = 3 c = 1.40

a = 1.98
10−5 ×

0.98 0 0
0 0.98 0
0 0 0.98

Cube b = 1.98
l = w = h = 3 c = 1.98

a = 1.69
10−5 ×

0.67 0 0
0 0.67 0
0 0 0.82

Cylinder b = 1.69
d = h = 3 c = 1.99

a = 1.50
10−5 ×

0.31 0 0
0 0.31 0
0 0 0.15

Hemisphere b = 1.50
d = 3 c = 0.82

a = 1.56
10−5 ×

0.42 0 0
0 0.42 0
0 0 0.32

Pyramid b = 1.56
l = w = h = 3 c = 1.24

note : dimensions are in centimeter (cm), d = diameter, h = height, l = length, w = width

a shorter period than Fish C and Fish D. At the same time, v between pyramid and

cube differentiated by Fish A and Fish B is larger than v between cone and cube

differentiated by Fish C and Fish D. This suggests that the fish use the first order

PT as part of their recognition algorithm where they need more time to complete the

training when the objects have almost similar first order PT. In this case, the similarity

between the first order PT for both objects is represented by v.

However, our findings here are not yet conclusive. In order to conclude whether

the first order PT has a role in the way fish perform this task, further experiments to

test whether fish can distinguish two objects with similar first order PT need to be

carried out. If the fish can discriminate these two objects then we can conclude that it

uses not just the first order PT. It might be that it uses higher order PT as well for

example. Table 6.3 shows a few ellipsoids with semi principal axes a, b and c that have

similar first order PT with the given objects, S where the ellipsoids are determined

based on the method in the previous chapter. Here, the conductivity of all objects and

the ellipsoids are fixed to 107 to indicate that in this example, all of them are made by

the same high conducting metal. A pair of objects with similar first order PT from

this table can then be used during the experiment to the fish in the future.
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Besides, another easy future test that can be performed is by giving, for example,

a pair of a cone pointing up and down for the fish to discriminate since both cone

pointing up and down have the same first order PT. This can be quickly shown by

using Theorem 2 (see Chapter 2) and appropriate rotation matrix to find the first order

PT for the cone pointing down from the first order PT for the cone pointing up where

cone pointing down is a result after cone pointing up is rotated 180◦. Indeed, as the

first order PT in some sense is the best electrically in fitting ellipsoid, it is probably

insufficient to only test whether the fish can discriminate between a cone pointing up

and down. Since two similar ellipsoids can be constructed from both cones, asking the

fish to electrically distinguish cone pointing up and down might be similar with asking

whether it can discriminate two equal ellipsoids. This is a false test in our case as we

want to investigate how the first order PT characterizes different objects.

In addition, when investigating electrosensing fish, it might be useful to consider

the PT with complex conductivity k = σ + ωεi (as defined by [56]) where σ and ε

are object’s conductivity and permittivity while ω (rad/s) is the frequency. During

electrosensing, black ghost knife fish use almost pure sine wave whereas elephant nose

fish use something more like a square wave with a wider range of frequencies (see

[14] and [15]). Here, the knife fish have to use a pure frequency to not interfere with

each other but the elephant nose fish do not have that restriction. Thus, the PT with

complex conductivity which depends on frequency might discriminate between objects

of interest for different fish. In this case, for example, it might be worth to conduct

experiments to test whether the elephant nose fish can distinguish objects that cannot

be discriminated by the black ghost knife fish.

Furthermore, by considering fictional complex conductivity k = 1.5 + 0.1ωi for

ellipsoid with semi-principal axes 3 cm, 2 cm and 1 cm, we evaluate using (2.2) its first

order PT at a few frequencies, f Hz (Hertz) denoted by Mf where ω = 2πf . As in

Chapter 5, each Mf is now a complex matrix and thus can be expressed as R + J i

such that the 3 × 3 symmetrical real matrices R and J are the real and imaginary

parts of Mf . Similarly, for every Mf , the three eigenvalues of R are normalized by

dividing each of them with the largest eigenvalues of R while the three eigenvalues of

J are also normalized by dividing each of them with the largest eigenvalues of J . In

Table 6.4, the normalized eigenvalues of both R and J denoted by êMfR and êMfJ are
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Table 6.4: Mf for an ellipsoid at a few frequencies, f (Hz)

Frequency, f (Hz) êMfR ĉMfR êMfJ ĉMfJ

0.3370 0.0927
20 0.6778 0.6716 0.3998 0.4975

1.0000 1.0000

0.2821 0.0766
50 0.6015 0.6279 0.3524 0.4763

1.0000 1.0000

0.2730 0.0740
120 0.5880 0.6203 0.3441 0.4727

1.0000 1.0000

0.2715 0.0736
250 0.5857 0.6191 0.3427 0.4721

1.0000 1.0000

0.2712 0.0735
500 0.5852 0.6188 0.3424 0.4720

1.0000 1.0000

Table 6.5: The average between ĉMfR and ĉMfJ for each Mf

Frequency, f (Hz) ĉMf

20 0.5846
50 0.5521
120 0.5465
250 0.5456
500 0.5454

shown for each Mf . In addition, for each Mf , we also include in the same table the

average for both êMfR and êMfJ and denoted them respectively by ĉMfR and ĉMfJ .

Next, in order to further describe each Mf , we also evaluate ĉMf , the average

between ĉMfR and ĉMfJ as shown in Table 6.5. From this table, we can see that the

values of ĉMf are different for each f . In this case, if ĉMf is used to represent the

ellipsoid, the ellipsoid will be described distinctly for each frequency. Thus, there is

a possibility of differently recognizing one same ellipsoid by electrosensing fish with

different generating frequencies. This could be a very useful strategy that can be

learned from the fish to describe eletrical objects for the related applications in the

future.
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Finally, as the expansion (6.3) is asymptotic in distance, the tests should be

performed in such a way that the fish are at least a certain distance from the object.

Some controls need to be made to ensure that the distance is not too close to ensure

formula (6.3) is mathematically valid. On the other hand, the object also must not be

too far from the fish so that it can be eletrically sensed by the fish.

6.4 Conclusions

In this chapter, the role of the first order PT in electrosensing fish has being presented,

where, we first discuss the related mathematical background that is similar to the

EIT. After that, we study some experiments conducted by the biologists to find some

evidences to suggest that the first order PT for an object is considered by the fish when

characterizing the object. We also recommend future researches that can be conducted

to the fish to further investigate this by considering the first order PT with both real

and complex conductivities.



Chapter 7

Investigating the PT for Metal

Detection

In the eddy current approximation to Maxwell’s equations, Ammari et al. [27] derived

an asymptotic formula that represented the perturbation of the magnetic field due

to the presence of an isolated conducting (could also be magnetic) object. Based on

this foundation, Ledger and Lionheart [29] applied tensor operations to introduce a

new rank 2 polarization tensor (PT) by combining the magnetic and conductivity

polarization tensors given in [27]. Furthermore, it is shown by [29, 30] that the magnetic

polarizibilty tensor from engineering literatures for metal detection in [24, 25, 26, 55] is

equivalent to the rank 2 polarization tensor in [29]. Therefore, instead of experimental

works or simulations, the polarizibility tensor [24, 25, 26, 55] can be alternatively

determined for the first time from an explicit formula of the rank 2 polarization tensor

[29]. In this chapter, we compute the rank 2 polarization tensor according to [29] and

compare it to the polarizibility tensor from engineering works in [24] and [26] in order

to numerically justify the agreements between the two tensors.

7.1 Mathematical Formulation and Some Proper-

ties of the PT

Metal detectors use low frequency electromagnetic field to locate a high conducting

target in a low conducting background from electromagnetic induction data. By
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neglecting the displacement currents in the Maxwell’s equations, metal detection can

be modelled by the eddy current equations (see [27, 29]). In this case, a mathematical

justification for approximating Maxwell’s equations by the eddy current model can

be found in [57] and [58]. Now, the mathematical formulation of the PT for metal

detection is discussed here by considering first the eddy current model presented in

[27, 29]. We assume the presence of an object in the form Bα = z + αB where B is a

unit object centered at the origin, α denotes a scaling for B and z denotes a translation

vector. Introduce

µα =

µ∗ in Bα

µ0 in R3 \Bα

, σα =

σ∗ in Bα

0 in R3 \Bα

(7.1)

where µ0 = 4π × 10−7 NA−2 (Newton per Ampere−2) is permeablitiy of the free space

while both µ∗ and σ∗ denote the permeability and conductivity of the inclusion Bα. In

this case, µ∗ and σ∗ are just constants and we drop the subscript α when considering B

later on. Moreover, the conductivity contrast between the object and the background

has been assumed to be sufficiently high such that the background can be approximated

by a zero conductivity.

Let Eα and H α be the time harmonic eddy current fields (electric and magnetic)

in the presence of conducting object Bα that result from a current source J 0 located

outside Bα. Suppose that ∇ · J 0 = 0 in R3. Both fields Eα and H α satisfy the eddy

current equations

∇×Eα = iωµαH α in R3,

∇×H α = σαEα + J 0 in R3,

Eα(x ) = O(|x |−1), H α(x ) = O(|x |−1) as |x | → ∞,

(7.2)

where i is the standard imaginary unit and ω is a fixed angular frequency of the current

source. The depth of penetration of the magnetic field in the conducting object is

desribed by its skin depth, s =
√

2/(ωµ∗σ∗). On the other hand, without the object

Bα, the fields E 0 and H 0 that result from the time varying current source satisfy

∇×E 0 = iωµ0H 0 in R3,

∇×H 0 = J 0 in R3,

E 0(x ) = O(|x |−1), H 0(x ) = O(|x |−1) as |x | → ∞.

(7.3)
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By introducing ν = 2α2/s2, the related asymptotic formula for the above model

that describes the pertubation in the magnetic field at a position x , away from z ,

due to the presence of Bα when ν = O(1) and (µ∗/µ0) = O(1) as α → 0 is given by

Ammari et al. [27] in the form

(H α −H 0)(x ) = − iνα3

2

∑3
i=1 H 0(z )i(

∫
B
D2

xG(x , z )ξ×

(θi + êi × ξ)dξ) + α3
(

1− µ0
µ∗

)
(
∑3

i=1 H 0(z )iD
2
xG(x , z )

∫
B

(
êi + 1

2
∇× θi

)
dξ) +R(x)

(7.4)

where ξ is measured from the center of B. Here, G(x , z ) = (4π|x− z|)−1 is the

free space Laplace Green’s function and R(x) = O(α4) is a small remainder term.

Furthermore, for i = 1, 2, 3, êi is a unit vector for the i-th Cartesian coordinate

direction, H 0(z )i denotes the i-th element of H 0(z ) and θi is the solution to the

transmission problem

∇ξ × µ−1∇ξ × θi −iωσα2θi = iωσα2êi × ξ in B ∪Bc,

∇ξ · θi = 0 in Bc,

[θi × n̂]Γ = 0 on Γ,

[µ−1∇ξ × θi × n̂]Γ = −2[µ−1]Γêi × n̂ on Γ,

θi(ξ) = O(|ξ|−1) as |ξ| → ∞

(7.5)

where n̂ is the outward normal vector to Γ, the boundary of B. Based on (7.4) and

(7.5), the conductivity polarization tensor (CPT) and the magnetic (or permeability)

polarization tensor (MPT) have been introduced in [27].

Using this framework, Ledger and Lionheart [29] have applied tensor operations to

combine both CPT and MPT as well as reformulate (7.4) in the alternative form

(H α −H 0)(x ) = D2
xG(x , z ) ˇ̌MH 0(z ) +R(x) (7.6)

where ˇ̌M is the new polarization tensor for a conducting and magnetic inclusion Bα.

Importantly, they show that ˇ̌M is a complex symmetric rank 2 tensor defined by

six complex coefficients after reducing (7.4) to (7.6). The hp-finite element method

presented in [59] is also used in [29] to numerically compute ˇ̌M and some analysis
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for the errors in the method are also given. In this study, the same ˇ̌M is considered,

where our main motivation for choosing this is because it agrees with the engineering

prediction about the polarization tensor for metal detector [29]. The rank 2 tensor ˇ̌M

is given by [29] as

ˇ̌M = Nji − Cji (7.7)

where

Nji = α3

(
1− µ0

µ∗

)∫
B

(
êj · êi +

1

2
êj · ∇ × θi

)
dξ (7.8)

and

Cji =

(
− iνα3

4

)
êj ·

∫
B

ξ × (θi + êi × ξ)dξ (7.9)

for j = 1, 2, 3 and θi is the solution to the previous (7.5) for i = 1, 2, 3. Note that

Nji (denoted as N) is an equivalent form of the original rank 2 tensor MPT in [27].

Furthermore, the rank 2 tensor Cji (denoted as C) is a reduction of the original rank 4

tensor CPT in [27] introduced by [29] using tensor operations.

After some manipulations, it can be shown that the coefficients (or elements) of the

rank 2 tensor ˇ̌M can be expressed as 3× 3 complex matrix and if ˇ̌M is expressed as

ˇ̌M = R+ J i, each R and J has three real eigenvalues. For a conducting (magnetic)

sphere, the analytical formula for ˇ̌M is also given in [29] on page 13. In addition,

[29] also explain that ˇ̌M = N when Bα has σ∗ = 0 such that Bα is a magnetic

non-conducting object. Therefore, ˇ̌M = N for a magnetic non-conducting object Bα

is real symmetric as given by (7.8). Moreover, according to [29], N for a magnetic

non-conducting object Bα here reduces to the first order GPT so ˇ̌M = N can now be

determined by solving the previous boundary integral equations (1.3)-(1.5) where the

parameter k is now the contrast µ∗/µ0 (or the relative permeability of Bα).

7.2 Polarizibility Tensor and the Rank 2 PT

In the engineering literatures (for examples [24, 25, 26]), the polarization (polarizibility)

tensor ¯̄M for a metallic object was expressed as

V ind = H T · ( ¯̄MH R) (7.10)

where V ind were measurements of induced voltage in a coil due to the presence of

an object while both H T and H R were the fields generated by the transmitting and
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receiving coil respectively. Rather than using the explicit formula, the coefficients of

¯̄M in [24] and [26] were approximated after simulating or measuring V ind, H
T and

H R. Recently, the equivalence between ¯̄M and ˇ̌M was established in [30] and for the

first time, an explicit formula of ¯̄M was given and equal to (7.7) of ˇ̌M .

In Dekdouk et al. [26], electromagnetic induction data due to the presence of a few

objects were simulated in two systems namely the trial axial Helmholtz coil system

(TAHC) and the electromagnetic induction plannar sensor (EMIPS, which is a type of

metal detector). An optimization technique was then applied by [26] to (7.10) based on

the simulated data from both systems to estimate ¯̄M for the objects. Two sets of ¯̄M

for each object were obtained for both systems and hence were then compared in [26].

On the other hand, Marsh et al. [24] conducted several experiments for a walk-

through metal detector (WTMD) to determine ¯̄M for a few test objects in security

screening. Measurements from an array of coils in WTMD were taken following the

passage of a candidate carrying the tested object. These measurements were then used

in their proposed algorithm to determine ¯̄M for the object and its location from (7.10).

In order to compare ¯̄M for objects in [24] and [26] to the rank 2 tensor ˇ̌M in

(7.6), the same hp-FEM method described in [29] will be used to numerically compute

ˇ̌M for the object by approximating the solution to (7.5) and then using (7.7)-(7.9).

Three objects each from [24] and [26] are considered where they are listed in Table 7.1

together with their material properties, µ∗ in NA−2 (Newton per ampere2) and σ∗ in

Sm−1 (Siemens per meter). The objects from [26] are aluminium sphere (AS) and two

metal components of two landmines (ring of elsie mine (REM) and detonator analogue

of type 72 AP mine (DA72)) while ferrite sphere and two models of gun are from [24].

Before computing the rank 2 tensor ˇ̌M for an object Bα, a finite domain B̃c at

a finite distance from the unit object, B of Bα must be created as required by the

method where B̃c can be any suitable domain. Next, the software Netgen is used to

create the mesh with N tetrahedral elements for the union B ∪ B̃c (the mesh in Table

7.1 represents the unit object, B for each Bα). Either linear or quadratic elements for

representing the geometry can be used in the method. In our study, after setting α

according to the actual dimension of Bα, the method proposed by [29] is repeatedly run

by uniformly increasing the polynomial degree, p of the hp-FEM or alternatively, fixing

the polynomial degree and refining the mesh in order to approximate ˇ̌M for the object
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Table 7.1: A few objects from [24, 26] with their type of material and dimension

Object, Bα Material µ∗ (NA−2) σ∗ (Sm−1) Dimensions

Sphere
Ferrite 12µ0 0 d = 3.7

Aluminium µ0 3.5× 107

d = 1

REM

dmax = 5.2

hmax = 1.5

DA72

dmax = 0.6

hmax = 1

lmax = 7.5

Gun wmax = 5.8

hmax = 1.4

Steel 100µ0 6× 106

lmax = 7.5

wmax = 5.8

hmax = 1.8

note : dimensions are in centimeter (cm), d = diameter, h = height, l = length, w = width
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Table 7.2: The setting in hp-FEM to compute ˇ̌M for objects in [26]

Object, Bα Geometry Representation N p

AS Quadratic 2425 3

REM Linear 10473 3

DA72 Quadratic 5629 3

Bα. The former procedure is called p-refinement while the latter is called h-refinement.

These are done until there is no relative difference at some decimal places (depending

on the object Bα) between the latest computed solution and the previous computed

solution. The latest computed solution is then chosen to approximate ˇ̌M .

7.3 Results and Discussions

In this section, ˇ̌M for each Bα in Table 7.1 are firstly approximated by the hp-FEM

method. After that, we compare the coefficients of ¯̄M obtained from simulations in the

systems TAHC and EMIPS to the coefficients of the approximated ˇ̌M and analyze the

results. Then, the coefficients of ¯̄M determined from experiments by using the WTMD

are compared to the coefficients of ˇ̌M .

7.3.1 ¯̄M and ˇ̌M for systems TAHC and EMIPS

Besides µ∗ and σ∗ of the object, Table 7.2 shows settings employed in the hp-FEM

method to approximate every coefficient of ˇ̌M for the object, Bα presented in [26] at

the same frequency as [26]. In the table, N is the number of tetrahedral elements for

B ∪ B̃c in Netgen and for each object Bα, p of the hp-FEM is equal to 3. Computation

to ten decimal places in the hp-FEM produces a complex diagonal matrix for the

approximated ˇ̌M for the AS where the diagonals are all equal, which also agrees with

the analytical solution given in [29].

For convenience of later comparisons, the polarizibility tensor for the object obtained

by [26] from the systems TAHC and EMIPS are now respectively denoted by ¯̄MTAHC

and ¯̄MEMIPS. In this case, each object Bα is represented by three tensors which are

the approximated ˇ̌M , ¯̄MTAHC and ¯̄MEMIPS. By arranging their coefficients, all three

tensors are complex symmetric matrices so, we express each ˇ̌M , ¯̄MTAHC and ¯̄MEMIPS
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Table 7.3: c ˇ̌M
, c ¯̄MTAHC

and c ¯̄MEMIPS
for object Bα

Object, Bα

c ˇ̌M
c ¯̄MTAHC

c ¯̄MEMIPS

R J R J R J

AS 1.500 1.500 1.500 1.500 1.570 1.575

REM 2.624 2.236 2.791 2.513 2.489 2.343

DA72 1.505 1.500 1.503 1.502 1.926 1.969

for all object Bα as R+J i where R and J are real and imaginary parts of the tensor.

In order to compare the approximated ˇ̌M to ¯̄MTAHC and ¯̄MEMIPS for the same

object Bα, the absolute value of the ratio between the standard deviation of the

coefficient to the mean of the coefficient of R and J for each ˇ̌M , ¯̄MTAHC and ¯̄MEMIPS

are determined to three decimal places. These ratios are denoted by c ˇ̌M
, c ¯̄MTAHC

and

c ¯̄MEMIPS
respectively, and are shown for each object, Bα in Table 7.3. For an object

Bα, we say ˇ̌M = ¯̄MTAHC (or ˇ̌M = ¯̄MEMIPS or ¯̄MTAHC = ¯̄MEMIPS) if c ˇ̌M
= c ¯̄MTAHC

(or

c ˇ̌M
= c ¯̄MEMIPS

or c ¯̄MTAHC
= c ¯̄MEMIPS

) for both R and J . Based on the values in Table

7.3, ˇ̌M = ¯̄MTAHC for AS since c ˇ̌M
= c ¯̄MTAHC

= 1.500 at three decimal places for both R

and J (since each R and J for ˇ̌M and ¯̄MTAHC for AS is actually the multiple of the

identity matrix). However, there are no ˇ̌M = ¯̄MEMIPS and ¯̄MTAHC = ¯̄MEMIPS for the

object in Table 7.3.

For further comparisons, the absolute difference between c ˇ̌M
and c ¯̄MTAHC

denoted

by |c ˇ̌M
− c ¯̄MTAHC

| for R and J are also determined to three decimal places and shown

in the first row of Table 7.4. Obviously, there is no difference at three decimal places

between c ˇ̌M
and c ¯̄MTAHC

for both R and J for AS since ˇ̌M and ¯̄MTAHC for AS are equal.

In addition, the resuts also suggest that ˇ̌M and ¯̄MTAHC for DA72 are almost similar but

ˇ̌M and ¯̄MTAHC for REM are slightly different where for each R and J , |c ˇ̌M
− c ¯̄MTAHC

|

for DA72 is less than |c ˇ̌M
− c ¯̄MTAHC

| for REM. When comparing ˇ̌M and ¯̄MEMIPS from

|c ˇ̌M
− c ¯̄MEMIPS

|, the smallest difference between c ˇ̌M
and c ¯̄MEMIPS

for both R and J occur

also for the AS. However, the largest difference between c ˇ̌M
and c ¯̄MEMIPS

for both R
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Table 7.4: The absolute difference between c ˇ̌M
, c ¯̄MTAHC

and c ¯̄MEMIPS
for object Bα

Difference
AS REM DA72

R J R J R J

|c ˇ̌M
− c ¯̄MTAHC

| 0.000 0.000 0.167 0.277 0.002 0.002

|c ˇ̌M
− c ¯̄MEMIPS

| 0.070 0.075 0.135 0.107 0.421 0.469

|c ¯̄MTAHC
− c ¯̄MEMIPS

| 0.070 0.075 0.302 0.170 0.423 0.467

and J are now happen for DA72 and not REM.

In the study by [26], the polarizibility tensor for Bα obtained from simulated data

in a metal detector, ¯̄MEMIPS is compared to ¯̄MTAHC to identify the object. The system

TAHC is used to build a library of the polarizibility tensor for metal components of

landmine so that it can be referred to identify the objects later on. Because of this, we

now determine the absolute difference between c ¯̄MTAHC
and c ¯̄MEMIPS

for AS, REM and

DA72 and compare them with the absolute difference between c ˇ̌M
and c ¯̄MEMIPS

to decide

whether ˇ̌M or ¯̄MTAHC gives better approximation to ¯̄MEMIPS. Based on Table 7.4, at

three decimal places, the values of |c ˇ̌M
− c ¯̄MEMIPS

| are less than or equal to the values

of |c ¯̄MTAHC
− c ¯̄MEMIPS

| except for J of DA72 but |c ˇ̌M
− c ¯̄MEMIPS

| and |c ¯̄MTAHC
− c ¯̄MEMIPS

|

for J of DA72 are almost equal, where, they are actually equal at two decimal places.

These results suggest that for each Bα, ˇ̌M are closer to ¯̄MEMIPS than ¯̄MTAHC so ˇ̌M

which are computed according to (7.5), (7.8) and (7.9) by the hp-FEM method can be

an alternative to create the library of the polarizibility tensor for Bα in the future.

7.3.2 ¯̄M and ˇ̌M for WTMD

Similarly, Table 7.5 shows the setting employed in the hp-FEM method besides µ∗ and

σ∗ of the object to approximate every coefficient of ˇ̌M for the object, Bα presented in [24]

at the same frequency with [24]. Computation in the hp-FEM gives the approximated

ˇ̌M for the ferrite sphere with only real coefficients as it is a magnetic but non-conducting

object. Moreover, the approximated ˇ̌M for the ferrite sphere computed by the hp-FEM
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Table 7.5: The setting in hp-FEM to compute ˇ̌M for objects in [24]

Object, Bα Geometry Representation N p

Ferrite Sphere Quadratic 2425 3

Aluminium Gun Quadratic 8002 5

Steel Gun Quadratic 4913 5

at eight decimal places is a multiple of the identity matrix and equal to the analytical

solution given in [29] (and also (2.4) as ˇ̌M here reduces to the first order GPT).

According to [25], the WTMD in [24] was callibrated to produce the identity matrix

as the polarizibility tensor, ¯̄M for the ferrite sphere of diameter 3.7 cm. This means ¯̄M

for the objects given in Table 7.5 are scaled according to the ¯̄M for the ferrite sphere

of diameter 3.7 cm. Theoretically, the real matrix ˇ̌M as in (2.4) for the ferrite sphere

of diameter 3.7 cm can be scaled by multiplying ˇ̌M to the reciprocal of the diagonal

coefficient of ˇ̌M so that the resulting ˇ̌M is the identity. Thus, for consistency when

making comparison, the approximated ˇ̌M for every Bα is also scaled by multiplying

each coefficient of the approximated ˇ̌M (the coefficients are complex valued for both

guns) to the reciprocal of the diagonal coefficient of ˇ̌M for the ferrite sphere of diameter

3.7 cm. This reduces the approximated ˇ̌M for the ferrite sphere of diameter 3.7 cm to

the identity at eight decimal places.

We now denote for every Bα, the scaled ¯̄M generated in [24] from WTMD by

¯̄MWTMD while the scaled version of the approximated ˇ̌M as ˇ̌M. Similarly, since both

ˇ̌M and ¯̄MWTMD for all Bα are complex symmetric, each of them can be expressed as

R + J i where R and J are real and imaginary parts of the tensor (in this case, J

for ˇ̌M for the ferrite sphere is a zero matrix). In order to compare ˇ̌M to ¯̄MWTMD for

the same object Bα, the standard deviation of the coefficients for R and J for each

ˇ̌M and ¯̄MWTMD are determined to three decimal places and are shown in Table 7.6

by ĉ ˇ̌M and ĉ ¯̄MWTMD
. Note that the ratio standard deviation to the mean as in the

comparison for systems TAHC and EMIPS is not used here since it is undefined for the

zero matrix J for ˇ̌M for the ferrite sphere. For further comparisons, for each Bα, the

absolute difference |ĉ ˇ̌M − ĉ ¯̄MWTMD
| for R and J are also determined to three decimal

places and shown in Table 7.7.

From Table 7.6, the value 0.5 for ĉ ˇ̌M for R for the ferrite sphere is obviously the
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Table 7.6: ĉ ˇ̌M and ĉ ¯̄MWTMD
for object Bα

Object, Bα

ĉ ˇ̌M ĉ ¯̄MWTMD

R J R J

Ferrite Sphere 0.500 0.000 0.431 0.021

Aluminium Gun 0.668 0.062 0.868 0.077

Steel Gun 0.375 0.272 0.359 0.577

Table 7.7: The absolute difference between ĉ ˇ̌M and ĉ ¯̄MWTMD
for object Bα

Object, Bα

|ĉ ˇ̌M − ĉ ¯̄MWTMD
|

R J

Ferrite Sphere 0.069 0.021

Aluminium Gun 0.200 0.015

Steel Gun 0.016 0.305

absolute value of the standard deviation for the coefficients of the identity (identity

has 9 coefficients : six of them are zero while the other three are equal to one). On

the other hand, ĉ ˇ̌M for J for the ferrite sphere is zero since J is a zero matrix of size

three ( ˇ̌M is a scaling version of ˇ̌M so ˇ̌M also has only real coefficients). In addition,

although WTMD is already callibrated, it does not produce the identity for ¯̄MWTMD

for the ferrite sphere since ĉ ¯̄MWTMD
for R is not 0.5 and ĉ ¯̄MWTMD

for J is not 0. In

this case, ¯̄MWTMD for the ferrite sphere generated has imaginary coefficients. This

suggests errors in the system when estimating ¯̄MWTMD.

Furthermore, we can see that in Table 7.7, there are significant differences between

ĉ ˇ̌M and ĉ ¯̄MWTMD
of both R and J for all Bα. Here, quite large differences occur in R

for aluminium gun and J for steel gun. Generally, both ˇ̌M and ¯̄MWTMD computed
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have their own errors. The error in the system might cause by errors during field

measurements and also errors in the inversion algorithm for computing ¯̄MWTMD from

the measurements. Moreover, errors also occur when approximating ˇ̌M from the

explicit formula by using the numerical method hp-FEM. The approximated ˇ̌M here

is also less accurate since we do not know the exact value of µ∗ and σ∗ for each Bα

used. However, for each Bα, ¯̄MWTMD is equal to ˇ̌M at zero decimal place since

|ĉ ˇ̌M − ĉ ¯̄MWTMD
| = 0 for both R and J at zero decimal place.

7.3.3 Further discussions

The explicit formula in (7.7)-(7.9) can be directly used to find the rank 2 PT ˇ̌M for

an object if the geometry (dimension and orientation) and material properties of the

object are known. However, there are also several other parameters which will influence

the values of ˇ̌M if it is determined from field measurements or experimental works such

as in [24] and [26]. Notice that the asymptotic formula for the PT in (7.4) is derived for

α→ 0 and ν = 2α2/s2 = O(1) where s =
√

2/(ωµ∗σ∗) so, the rank 2 PT ˇ̌M is actually

for a small object (target) inclusion where the depth of penetration of the magnetic

field in the object, s must be at the same order with the size of the object, α. In our

case, the values for s and α are not comparable in TAHC and EMIPS since they are

the same for both systems but, in WTMD, ˇ̌M (and also ¯̄M) for objects with non-zero

s and α (aluminium and steel guns) are scaled from a non-conducting magnetic sphere

that has an undefined s (σ∗ = 0) but a non-zero α. So, it is possible that ¯̄MWTMD

and ˇ̌M in the previous section are closer to each other if both of them are scaled from

¯̄MWTMD and ˇ̌M of a conducting (or conducting magnetic) object.

Moreover, the electromagnetic field generated by a metal detector has a wide range

of penetration when using a low frequency. But, the formula of the rank 2 PT ˇ̌M is for

a small target inclusion. Therefore, there must be some distance between the target

and metal detector so that the depth of penetration in the target is not large than the

size of the target.

Besides, the model for the PT in (7.1)-(7.3) and the asymptotic formula (7.4)

show the interaction between the transmitting coil and the inclusion only while the

interaction between the inclusion and the receiving coil is given in (7.10) by letting

¯̄M= ˇ̌M as shown by [29]. Nevertheless, no direct interaction between transmitting and
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receiving coil stated in the model which suggest that there must be a certain distance

between both coils so that they do not interact with each other when the inclusion is

close to both of them. However, in reality, both coils have physical (electromagnetic)

effect to the nearby inclusion and this makes field measurements about the inclusion to

be less accurate. Therefore, the inclusion can be moved away from both coils to improve

¯̄M from the field measurements where, at the new further distance, the inclusion still

generates eddy current by using the field from the transmitting coil and then, the

generated eddy current is detected by the receiving coil. From our previous results

based on the experiments conducted by [26], we can see that ¯̄M is closer to ˇ̌M in

EMIPS than in TAHC where the distance between the inclusion and the coils as given

in [26] are larger in EMIPS than TAHC.

In addition, there are numerical errors in the method for computing the rank 2 PT

ˇ̌M either from the explicit formula or field measurements by using metal detectors.

The computation is even less accurate in the field measurement due to errors in the

measurement itself when there are other conducting objects nearby the metal detectors

that have wide range of field penetration. Therefore, it might be possible to improve

this computation by performing experimental works for field measurements in a less

conducting environment. However, in the real complex situation such as during airport

security screening, it will not be easy to reduce the errors in computing the PT when

making real field measurements. This is because metal detection in that particular

situation generally is more complicated and sometimes less efficient.

7.4 Conclusions

In this chapter, the polarization tensor computed from the recently introduced explicit

formula has being compared with the polarization tensor from the engineering literatures

(engineers called it as the polarizibility tensor) for metal detection. Here, the explicit

formula as a rank 2 tensor is firstly given. Our results suggest that computing the

polarization tensor based on the explicit formula can be an alternative to performing

field measurements for determining the polarizibility tensor to improve metal detection.



Chapter 8

Some Properties of the Eddy

Current PT

Previously, we have discussed the polarization tensor (PT) specifically for metal

detection based on the new explicit formula introduced by [29]. The formula which

is given as the rank 2 tensor ˇ̌M in (7.7) enables us to compute the PT for a target

according to the shape and material properties of the target. Besides, it is possible that

ˇ̌M can also be used in any other applications of the eddy current such as magnetic

resonance imaging (MRI) [61] and nondestructive testing [62, 19]. For example, the

polarizibility tensor is used to describe ellipsoidal defect on layered media in Orlowsky

[62] so, it might be interesting to investigate whether ˇ̌M is the same as the polarizibility

tensor in [62]. Therefore, for the purpose of future applications, we will numerically

explore a few properties of ˇ̌M in this chapter. For this purpose, the same hp-FEM

method as in the previous is again used to compute ˇ̌M . Furthermore, unless stated

otherwise and by following [29], the frequency ω is fixed to 133.5 rad/s in this chapter.

8.1 ˇ̌M for Translated and Rotated Objects

It can be seen from (7.5)−(7.9) that ˇ̌M for an object Bα depends on the size, geometry

as well as material of Bα and also the value of ω being used. In addition, by following

[8] and [28], it can be shown that ˇ̌M for Bα depends on the orientation of Bα but is

independent of the position of Bα. Thus, our aim now is to numerically investigate ˇ̌M

for Bα with the fixed size, material and ω at different orientations and positions.

112
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Figure 8.1: The base of a L-shaped object

Basically, ˇ̌M for rotated and translated objects are examined. In order to demon-

strate the effect on the coefficients of ˇ̌M under rotation and translation, we consider

Bα = L as a conducting and magnetic three-dimensional L-shaped object where, it

is actually the steel gun in [60]. A real situation is actually considered as our main

motivation for this investigation where a person might carry a gun with many possible

orientations on any part of his body when passing a metal detector during security

checking. Here, the base of the object if viewed in two dimensions, is shown in Figure

8.1 (dimension of the object is in centimeter (cm)). Three points P , Q and R are also

chosen for references when translating or rotating the object.

We now assign the base to be above the xy-plane. For any point, p ∈ L such

that (xp, yp, zp) is the coordinate of p in the three dimensional Cartesian coordinate

system, xp, yp, zp ≥ 0. We also let the height of the object to be equal to 1.5 so that

0 ≤ zp ≤ 1.5. In this case, P,Q and R are firstly set to be (0,0,0), (5.8,0,0) and (0,7.6,0)

respectively. Then, a linear mesh for L with 57456 tetrahedra is created in Netgen

and after setting σ∗ = 4.5× 106 S/m (Siemens per meter) and µ∗ = 1.26× 10−4 NA−2

(Newton per ampere2), each coefficient of ˇ̌M for the object is approximated by the

hp-FEM method with the degree of polynomial equal to three. The approximated ˇ̌M

for L is now denoted as ˇ̌ML and is written in the form ˇ̌ML = R+ J i where

R = 10−3 ×


0.2274 −0.0814 0.0001

−0.0814 0.3484 0

0.0001 −0 0.0671

 (8.1)
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Table 8.1: Rotation of the L-shaped object

Rotation, r P Q R z
(min)
p z

(max)
p N R

90◦ about z-axis (0,0,0) (0,-5.8,0) (7.6,0,0) 0 1.5 41583 Rz(90◦)

90◦ about y-axis (0,0,0) (0,0,5.8) (0,7.6,0) 0 5.8 58648 Ry(90◦)

90◦ about x-axis (0,0,0) (5.8,0,0) (0,0,7.6) 0 7.6 42358 Rx(90◦)

and

J = 10−3 ×


−0.0200 0.0168 0

0.0168 −0.0400 0

0 0 −0.0024

 . (8.2)

As given by (8.1) and (8.2), ˇ̌ML for the object at the chosen position is complex

symmetric as predicted by the theory in [29] for a conducting and magnetic object.

8.1.1 ˇ̌M for a rotated object

The L-shaped object at the original position in the Cartesian plane is now rotated three

times. Points P ,Q and R after rotation as well as minimum and maximum value for zp

of point p lying in the object, are given in Table 8.1. ˇ̌M for each object at the new

position after rotation is denoted by ˇ̌MLr and computed after that. Similarly, linear

mesh for each rotated object is firstly generated in Netgen. The number of tetrahedral

elements N, for the mesh needed in order to approximate ˇ̌MLr for all rotated objects

by using the hp-FEM method with third order polynomial are also given in Table 8.1.

Next, ˇ̌ML for the object at the original position (given by (8.1) and (8.2)) is

transformed three different times according to each rotation performed to the object

by also using Theorem 2 (see Chapter 2) where rotation matrix R used are given in

Definition 1 (see Chapter 2) and shown in Table 8.1. The resulting transformed ˇ̌ML is

then denoted by ˜̃MLr for each rotation r. Each coefficient of ˜̃MLr is then compared

to the coefficient of ˇ̌MLr for every rotation r in Figure 8.2 until Figure 8.4 where the

coefficients are denoted by mij for i, j = 1, 2, 3.
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(a)

(b)

Figure 8.2: A comparison between the coefficients for ˇ̌MLr (mLr) and ˜̃MLr ( ˜̃mLr) for r
= rotation 90◦ around z-axis (a) real part (b) imaginary part
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(a)

(b)

Figure 8.3: A comparison between the coefficients for ˇ̌MLr (mLr) and ˜̃MLr ( ˜̃mLr) for r
= rotation 90◦ around y-axis (a) real part (b) imaginary part
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(a)

(b)

Figure 8.4: A comparison between the coefficients for ˇ̌MLr (mLr) and ˜̃MLr ( ˜̃mLr) for r
= rotation 90◦ around x-axis (a) real part (b) imaginary part



CHAPTER 8. SOME PROPERTIES OF THE EDDY CURRENT PT 118

In these figures, each coefficient of ˇ̌MLr and ˜̃MLr for every r is very similar and thus

suggests that ˇ̌MLr computed after the object L is rotated is the same as transforming

ˇ̌ML to ˜̃MLr for every rotation r. These also give numerical evidences to suggest that ˇ̌M

for an object at the original position can be used directly to find ˇ̌M for the same object

after it is rotated, as given by Theorem 2 (see Chapter 2). Therefore, it is then possible

to identify any object from experiments by estimating its ˇ̌M and then comparing the

ˇ̌M to a transformed ˇ̌M for a known object.

8.1.2 ˇ̌M for a translated object

In order to investigate ˇ̌ML under a few translations, every point p that lies in the object

is translated from its initial position by a translation coordinate v = (vx, vy, vz) such

that every p for the translated object becomes (xp + vx, yp + vy, zp + vz). A few v are

considered, as listed in Table 8.2, where the new P,Q,R as well as the new minimum

and maximum values of zp are given. 9 translations have been performed to the object

where the first eight of L′ move the object in each octant of the three dimensional

space without including the origin. The last L′ translates the object from its initial

position and lies within the intersection of every octant in three dimensional space,

which will include the origin. Each translated object is then created in Netgen as well

as approximated by a linear tetrahedral mesh. Using these approximations, ˇ̌M for

the object at every translation L′ denoted by ˇ̌ML′ is recomputed with the hp-FEM

method. Here, every approximated ˇ̌ML′ which is complex symmetric is obtained by

using the third order polynomial on the mesh with N number of tetrahedra, where N is

also included in Table 8.2.

After that, in making comparison between ˇ̌ML with ˇ̌ML′ , the coefficients mij,

i, j = 1, 2, 3 in (8.1) for R of ˇ̌ML are firstly normalized by taking the ratio for each mij

to the largest absolute value of mij for R. Then, the ratio for each mij in (8.2) for J

to the largest absolute value of mij of J is also determined. Similarly, the coefficients

for both real and imaginary parts of each ˇ̌ML′ are also normalized. Next, using the

normalized coefficients, we compute
∥∥∥R ˇ̌ML

−R ˇ̌ML′

∥∥∥
2

and
∥∥∥J ˇ̌ML

− J ˇ̌ML′

∥∥∥
2

for all L′

where ‖ · ‖2 denotes the similar matrix entry-wise norm in Chapter 2 and Chapter 3.

The values for
∥∥∥R ˇ̌ML

−R ˇ̌ML′

∥∥∥
2

and
∥∥∥J ˇ̌ML

− J ˇ̌ML′

∥∥∥
2

are then displayed in Table 8.3.
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Table 8.2: Translation, L′ for the object L

L′ v P Q R z
(min)
p z

(max)
p N

1 (2,2,2) (2,2,2) (7.8,2,2) (2,9.6,2) 2 3.5 52993

2 (2,2,-2) (2,2,-2) (7.8,2,-2) (2,9.6,-2) -2 -0.5 55096

3 (-6,2,2) (-6,2,2) (-0.2,2,2) (-6,9.6,2) 2 3.5 55871

4 (-6,2,-2) (-6,2,-2) (-0.2,2,-2) (-6,9.6,-2) -2 -0.5 54844

5 (2,-8,2) (2,-8,2) (7.8,-8,2) (2,-0.4,2) 2 3.5 54242

6 (2,-8,-2) (2,-8,-2) (7.8,-8,-2) (2,-0.4,-2) -2 -0.5 51678

7 (-6,-8,2) (-6,-8,2) (-0.2,-8,2) (-6,-0.4,2) 2 3.5 53723

8 (-6,-8,-2) (-6,-8,-2) (-0.2,-8,-2) (-6,-0.4,-2) -2 -0.5 51248

9 (-1,-1,-0.5) (-1,-1,-0.5) (4.8,-1,-0.5) (-1,6.6,-0.5) -0.5 1 54918

In this case, ˇ̌ML = ˇ̌ML′ if and only if
∥∥∥R ˇ̌ML

−R ˇ̌ML′

∥∥∥
2

= 0 and
∥∥∥J ˇ̌ML

− J ˇ̌ML′

∥∥∥
2

= 0

where ˇ̌ML = R ˇ̌ML
+ iJ ˇ̌ML

and ˇ̌ML′ = R ˇ̌ML′
+ iJ ˇ̌ML′

. Based on Table 8.3, we can see

that all
∥∥∥R ˇ̌ML

−R ˇ̌ML′

∥∥∥
2

and
∥∥∥J ˇ̌ML

− J ˇ̌ML′

∥∥∥
2

have small values so, ˇ̌ML′ for each L′ is

close to ˇ̌ML as expected. For convenient, the graphs in Appendix A.2 are included to

show the agreement between the original real and complex coefficients of ˇ̌ML with the

coefficients of ˇ̌ML′ for all L′.

8.2 ˇ̌M for Magnetic non-Conducting Objects

In their studies, [29] show that (7.7) reduces to the real symmetric ˇ̌M = N when Bα

has σ∗ = 0 such that Bα is magnetic but non-conducting. Not only that, they also

explain that ˇ̌M = N does not depend on frequency, ω and actually reduces to the first

order generalized polarization tensor (GPT), M of [8] and can now be determined by

solving boundary integral equations (1.3)-(1.5) where the parameter k is the contrast

µ∗/µ0 (or the relative permeability of Bα). In this case, the analytical formula of M of

the first order GPT for ellipsoids and spheres are also applicable.

Let Bα be the ellipsoid defined by
x2

a2
+
y2

b2
+
z2

c2
= 1 where a = 3, b = 2, c = 1 cm

and suppose that Bα is non-conducting and its relative permeability is equal to 1.5.

By using 11665 tetrahedral elements and polynomial of degree three in the hp-FEM

method, an agreement of the coefficients of the approximated ˇ̌M for Bα to the analytical

solution (2.2) is obtained. Figure 8.5 compares every coefficient of M denoted by mij
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Table 8.3: The difference between ˇ̌ML and ˇ̌ML′

L′
∥∥∥R ˇ̌ML

−R ˇ̌ML′

∥∥∥
2

∥∥∥J ˇ̌ML
− J ˇ̌ML′

∥∥∥
2

1 0.0025 0.0034

2 0.0021 0.0030

3 0.0018 0.0036

4 0.0017 0.0034

5 0.0023 0.0046

6 0.0019 0.0037

7 0.0016 0.0032

8 0.0008 0.0024

9 0.0016 0.0031

where i, j = 1, 2, 3 for Bα based on analytical solution (2.2) with the same coefficients

of the approximated ˇ̌M computed by the hp-FEM method.

On the other hand, Figure 8.6 shows a comparison of the coefficients of M and ˇ̌M for

a non-conducting toroidal object with relative permeability 500 computed respectively

based on boundary integral formula of the first order GPT (1.3)-(1.5) and also by

hp-FEM method. The diameter and height of the object are 0.2 and 0.1 cm, respectively,

and the object has a cylindrical hole with diameter and height both approximately

equal to 0.1 cm. Here, the approximated ˇ̌M in the hp-FEM method is obtained on

the mesh with quadratic elements consisting 27919 tetrahedra and using polynomial of

degree three. On the other hand, M is approximated by BEM++ on the mesh with

16174 triangular elements.

In these two examples, ˇ̌M for magnetic but non-conducting objects are verified with

M of the first order GPT. In this case, the ellipsoid and the torus each is an example

of simply and multiply connected objects. Moreover, we consider a low permeability

contrast for ellipsoid and a high permeability contrast for torus. The ellipsoid is chosen

because there is a specified analytical formula for its first order GPT (as given by

(2.2)). On the other hand, the torus with the chosen permeability is a model of toroidal
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Figure 8.5: A comparison between the values of coefficients for ˇ̌M and M for a magnetic
non-conducting ellipsoid (at relative permeability equal to 1.5) as obtained by hp-FEM
method (F) and the analytical solution (A)

Figure 8.6: A comparison between the values of coefficients for ˇ̌M and M for a magnetic
non-conducting torus (at relative permeability equal to 500) as obtained by hp-FEM
method (F) and the boundary integral formulation of the first order GPT in BEM++
(B)
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inductor, built by strong magnetic material, for example ferrite (nickel zinc). Figure

8.5 and Figure 8.6 show excellent agreement between the approximated ˇ̌M computed

by hp-FEM method and the approximated M of the first order GPT for both objects.

It can be seen that ˇ̌M and M for both ellipsoid and torus here are diagonal matrices.

In addition, the first diagonal and the second diagonal entries of ˇ̌M and M for the

torus are equal.

8.3 ˇ̌M for Conducting non-Magnetic Objects

An object Bα is conducting and non-magnetic if it has µ∗ = µ0. For this kind of object,

ˇ̌M = −C is complex symmetric as given by (7.7)-(7.9) and depends on σ∗ of the object.

On the other hand, if Bα is a magnetic and non-conducting object such that Bα has

σ∗ = 0, its ˇ̌M (where ˇ̌M = N) depends on the relative permeability µr = (µ∗/µ0).

Moreover, ˇ̌M (where ˇ̌M = N) can be recognized according to µr by adapting Theorem 3

(see Chapter 2). This is because N here reduces to the first order GPT as shown in [29].

In this case, ˇ̌M (where ˇ̌M = N) is positive definite if µr > 1 while it is negative definite

if 0 < µr < 1. Consequently, we are motivated to investigate ˇ̌M (where ˇ̌M = −C) at

different σ∗ to further describe ˇ̌M for a conducting and non-magnetic object.

Previously, ˇ̌M for a conducting and non-magnetic sphere with σ∗ = 5.96 × 107

S/m has been numerically investigated in [29]. In this section, in order to achieve our

purpose, we repeatedly compute ˇ̌M for the conducting non-magnetic sphere of radius 1

cm with a few different values of σ∗ (Sm−1) by using the analytical formula given in

[29]. Since ˇ̌M in this case is a diagonal matrix where the diagonals are all equal and

also complex-valued, we only consider the values for the diagonal to investigate the

relationship between σ∗ and ˇ̌M of the object.

Figure 8.7 (a) and Figure 8.7 (b) show the values for the real and imaginary parts

of the diagonal of ˇ̌M for the conducting non-magnetic sphere of radius 1 cm as σ∗

increases from 0.5 to 1× 1011. Based on Figure 8.7 (a), the real part of the diagonal

decreases from 0 (at six decimal places) to −6×10−6 as σ∗ increases from 0.5 to 1×1011

where, it is only non-zero and strictly negative when σ∗ ≥ 1× 108. On the other hand,

according to Figure 8.7 (b), the imaginary part of the diagonal is zero (at six decimal

places) for 0.5 ≤ σ∗ ≤ 1× 107 but, when 1× 107 < σ∗ ≤ 1× 1011, the imaginary part
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of the diagonal is strictly negative and has a minimum value at σ∗ around 1 × 109.

Therefore, we can conclude that ˇ̌M are zero matrices (at six decimal places) when

0.5 ≤ σ∗ ≤ 1 × 107 since the diagonal for both real and imaginary parts of ˇ̌M are

zero. Moreover, by using Definition 2 (see Chapter 2), it can be shown that when

σ∗ > 1× 107, the real part of ˇ̌M are either zero or negative definite matrices whereas

the imaginary part of ˇ̌M are strictly negative definite matrices. Thus, these results

provide extra information which might increase the possibility of correctly identifying

objects based on their ˇ̌M in the future. For example, we may claim that an object is a

conducting non-magnetic sphere if the real and complex parts of ˇ̌M for the object each

is a diagonal and also a negative definite matrix.

However, the results in Figure 8.7 might not be very helpful to describe objects

that has σ∗ between 0.5 and 1× 107 since their ˇ̌M are equal to zero matrices (at six

decimal places). In fact, many popular conductors has σ∗ between 1× 106 and 1× 108

so, we are going to further investigate ˇ̌M for conducting non-magnetic sphere to extract

more information about ˇ̌M when σ∗ is between 0.5 and 1 × 107. Note that unlike

ˇ̌M for magnetic non-conducting objects, ˇ̌M for conducting non-magnetic objects also

depend on the frequency, ω where the results in Figure 8.7 are actually generated when

ω = 133.5 rad/s (around 20 Hz). Now, by using the analytical formula given in [29] as

well as fixing the frequency f equal to 500 Hz, 10 kHz, 43 kHz, 700 kHz, 3 MHz and

75 MHz such that ω = 2πf , we again determine ˇ̌M for the conducting non-magnetic

sphere of radius 1 cm at σ∗ also between 0.5 and 1× 1011. After that, we extend the

graphs in Figure 8.7 by including the values for the diagonal of ˇ̌M as σ∗ increases from

0.5 to 1× 1011 for the other six frequencies in Figure 8.8.

Based on Figure 8.8, except for f = 20 Hz, we can now see that ˇ̌M are non-zero

matrices at σ∗ between 1× 106 and 1× 108 for all other frequencies, f . In this case, the

real part of ˇ̌M is either a zero matrix or a negative definite matrix but the imaginary

part of ˇ̌M is always a negative definite matrix. For each frequency, the imaginary part

of ˇ̌M also has a minimum value at a fixed σ∗.

Thus, by using the appropriate frequency and combining the unique real and

imaginary parts of ˇ̌M , we might be able to estimate σ∗ from ˇ̌M . For example, let

us consider a standard metal detector where the frequency used is around 10 kHz.

According to Figure 8.8, at that frequency, the imaginary part of the diagonal of ˇ̌M has
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(a)

(b)

Figure 8.7: The values for the diagonal of ˇ̌M for the conducting non-magnetic sphere
of radius 1 cm when σ∗ in Sm−1 (denoted as sigma in the figures) is between 0.5 and
1× 1011 (a) real part (b) imaginary part
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(a)

(b)

Figure 8.8: The values for the diagonal of ˇ̌M for the conducting non-magnetic sphere
of radius 1 cm when σ∗ in Sm−1 (denoted as sigma in the figures) is between 0.5 and
1× 1011 at seven different frequencies (a) real part (b) imaginary part
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a minimum value at σ∗ around 1× 106 which is around −2× 10−6 and the correspond

real part is also around −2× 10−6. So, if ˇ̌M for an object is produced as a diagonal

matrix by the metal detector where the diagonals are all equal to (−0.5× 10−6)i, it is

possible that σ∗ for the object is less than 1× 106 while if the diagonals are all equal to

10−6 × (−5.5− 0.5i), it is possible that σ∗ for the object is greater than 1× 106. This

helps us to classify the material of conducting non-magnetic object based on its ˇ̌M .

8.4 Conclusions

In this chapter, we have numerically explored some properties of the polarization tensor

for the eddy current problem (like metal detection) as a rank 2 tensor. First of all, we

investigate some invariants (translation and rotation) for the tensor. After that, we

numerically show the agreemeent between the first order GPT and the rank 2 tensor

for magnetic non-conducting objects. Lastly, we also investigate conductivity response

of the rank 2 tensor for conducting non-magnetic sphere at a few fixed frequencies.

While specific geometries and materials are used during the studies, we believe that

the properties will hold for any other objects as well.



Chapter 9

Summary and Recommendation

This chapter concludes the study on some mathematical aspects and applications of the

polarization tensor (PT) in electrics and electromagnetics. A few real applications are

highlighted (electro-sensing fish, GPR and metal detector) in using the PT specifically

to characterize objects presented in electric and/or electromagnetic fields without

reconstructing the image of the objects. Moreover, this study also discusses the

mathematical background for the related PT for each application. For the GPR,

the PT arises from the time harmonic Maxwell’s equations is the same as the first

order PT when the conductivity of the first order PT is complex. On the other

hand, in metal detection, when the magnetic fields are perturbed by magnetic but

non-conducting object, the rank 2 PT for the object which is derived from the eddy

current approximation to the Maxwell’s equations reduces to the first order PT where,

the conductivity of the first order PT is now the relative permeability of the object.

We show the PT discussed in this study and a few relations between them in Figure

9.1. Now, all works done in the thesis are summarized here. After that, this chapter

ends with several recommendations for future researches.

9.1 Summaries for each Chapter

This research begins with the revision about the first order PT or the first order

generalized polarization tensor (GPT) for three dimensional (3D) domains in Chapter 2

as it is the basis for the whole study. This in fact probably is the main reason why the

first order PT appears in every chapter of the thesis. During the review, the quadrature

127
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method is firstly used to numerically compute the first order PT. A code in Matlab is

then written for this purpose (see Appendix B.2). By using the code, the first order PT

for a few objects are computed as well as desribed while transformation and positivity

of the first order PT are also numerically investigated.

In order to improve the previous numerical method, a recent developed code called

as BEM++ is also used to compute the first order PT. In Chapter 3, the reasons

and procedures to use BEM++ are explained. Furthermore, when comparing the

results computed with both codes in Matlab and BEM++, the chapter shows better

approximations for the first order PT in BEM++.

Chapter 4 then describes a strategy to numerically determine an ellipsoid from the

given first order PT for an object. The analytical and numerical results from the study

show that it is possible for an object and an elliposid to have the same first order PT

(accurately at some decimal places). Moreover, if the first order PT for the object and

the ellipsoid are different, the eigenvalues for their first order PT can still be the same.

The parameter conductivity of the first order PT is then extended to be a complex

number to investigate the PT for the time-harmonic Maxwell’s equations in Chapter

5. By using BEM++, the first order PT for a few objects with complex conductivity

are numerically computed and discussed. The study also investigates the frequency

response for the first order PT of two objects with complex permittivities to further

describe the objects.

After that, the role of the first order PT in electrosensing fish is mathematically

investigated in Chapter 6. The results obtained in the chapter are consistent with

the hypothesis that the fish use the first order PT to recognize object. However, the

findings are inconclusive, thus, further investigations are also suggested in the chapter.

Following recent mathematical works which introduce the new PT for the eddy

current approximation to the Maxwell’s equations, Chapter 7 presents numerical

agreements between the introduced rank 2 PT and the polarizibility tensor from

engineering literatures. For this purpose, the explicit formula of the rank 2 PT is

firstly given and computed for a few objects used in the experiments conducted by the

engineers. The results suggest that the formula for the rank 2 PT can be an alternative

to determine the PT (or the polarizibility tensor) for a few targets relevance in metal

detection in the future.
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Finally, a few properties of the rank 2 PT are numerically investigated in Chapter

8. Some of the properties discussed there are actually similar to the properties of the

first order PT stated in Chapter 2. In this case, understanding the properties could be

useful to further describe and characterize the objects represented by the rank 2 PT in

the related applications.

9.2 Recommendations for Future Researches

During this research, two programmes to numerically compute the first order PT for

3D domains are developed in both Matlab and BEM++. It can be seen that from the

results, both codes are capable to approximate the first order PT to an acceptable

level of accuracy. However, we do not perform numerical analysis to the results in

more details as we have other priorities in this study. Therefore, it is suggested to do

numerical analysis to the results to further describe the effectiveness of both methods.

Here, another suitable method to improve the approximation of the first order PT can

also be investigated. Moreover, only positivity and rotation of the 3D first order PT

are discussed here. Perhaps, other properties can also be explored to further describe

and characterize objects represented by the first order PT in the future.

This study also investigates the role of the first order PT in electrosensing fish and

highlights how electrical objects can be discriminated based on only their first order

PT from the experiments conducted by [12] but the results presented are inconclusive.

In order to further justify this, similar experiments to [12] can be conducted in the

future to test whether the fish during electrosensing can discriminate a few objects

with different shapes such that the first order PT for all objects are similar. However,

it seems like only two objects can be used for this purpose at the moment where one of

them is an ellipsoid. We can determine an ellipsoid from a given first order PT for an

object since the first order PT for ellipsoid has an analytical solution as given by (2.2).

Therefore, it might be useful to derive an analytical solution of the first order PT for

the other object and used the formula to construct the object from a given first order

PT. If the fish can discriminate two or more objects that have similar first order PT,

we can then conclude that the fish use more than the first order PT to discriminate the

objects. For example, they might use the higher order PT as well in the recognition
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mechanism.

Instead of real values for the conductivity, we also introduce the first order PT with

complex conductivity and complex permittivity as it is useful for object characterization

and description in many applications of the Maxwell’s equations especially the GPR.

Numerical examples are given in the study but the discussion about the properties

of the PT for this case are still less and can be further explored. Moreover, we also

hope to improve the related applications by performing real measurements from the

appropriate system such as the GPR to determine the first order PT with complex

conductivity and complex permittivity.

Meanwhile, the polarizibility tensor determined from measurements in metal de-

tectors has been compared to the recently introduced rank 2 PT during this study.

Here, numerical agreements between the polarizibility tensor and the rank 2 PT are

discussed. Our results suggest that the polarizibility tensor can be computed from the

explicit formula of the rank 2 PT. For later improvement, the code in BEM++ can be

used as an alternative to approximate the rank 2 PT especially since the rank 2 PT is

defined as transmission boundary value problem. Besides, another suitable method

such as statistical approaches or fuzzy algorithms to compare the polarizibility tensor

and the rank 2 PT can also be explored and investigated in the future.

Moreover, only two invariant (rotation and translation) and two material properties

of the rank 2 polarization tensor are discussed in this study. Unlike the established first

order GPT, the rank 2 polarization tensor is a new terminology in electromagnetics

and eddy current. There are still many of its properties that can be explored and

investigated to further understand and properly use it in the related applications.

During this study, the explicit formula of the PT for each application (the first

order GPT and the rank 2 ˇ̌M) is derived from the leading order term of the related

asymptotic formulas. However, using the higher order term of the asymptotic formula

could also be useful to further describe and classify electrical and electromagnetic

objects in the presented applications. In electrosensing fish, the higher order term of the

GPT might discriminate two objects that have the same first order PT. On the other

hand, the higher order term will provide more information and increase the possibility

of identifying the correct target in metal detection. Therefore, we also recommend to

investigate the PT from the higher order term of the asymptotic formulas in the future.
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Appendix A

Additional Results

A.1 A unique Solution to the Depolarization Fac-

tors for Spheroids

For a fixed conductivity, k where 0 < k 6= 1 < +∞, let λi, i = 1, 2 and 3 be the

eigenvalues of the ME, the first order PT for ellipsoid E such that ME is positive definite

if k > 1 or ME is negative definite if 0 < k < 1. The corresponding depolarization

factor, di of E for i = 1, 2 and 3 can be evaluated by using (4.4) if the volume of E

is also given. In this section, we use the explicit formula of di (or di(a, b, c)) given in

[6] and [47] to determine a unique solution a, b and c for di(a, b, c) when E is either a

prolate or oblate spheroid with a fixed volume such that a, b and c each is the semi

principal axes of the spheroid.

A.1.1 Prolate spheroids

The first order PT for a prolate spheroid (with a > b = c and volume |B| = (4/3)πab2)

has two distinct eigenvalues λ1 > λ2 = λ3. Therefore, by using (4.4), we can see that

its depolarization factors are d1 and d2 = d3. According to [6] and [47],

d1 =
1− ψ2

ψ2

{
1

2ψ
ln

(
1 + ψ

1− ψ

)
− 1

}
(A.1)

where ψ =
√

1− (b/a)2 and d1 = 1− (d2/2). Next, it can be shown that lim
ψ→0

d1 = 1
3

while lim
ψ→1

d1 = 0. We now plot the graph of d1 defined by (A.1) in Figure A.1 for

ψ ∈ (0, 1) (ψ is denoted by psi in the figure). Moreover,
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Figure A.1: The graph of d1 in (A.1) for ψ ∈ (0, 1)

d

dψ
(d1) =

6ψ + (ψ2 − 3)ln
(

1+ψ
1−ψ

)
2ψ4

≈ −4ψ

15
− 8ψ3

35
− 4ψ5

21
− 16ψ7

99
− 20ψ9

143

(A.2)

and suggests that the derivate of d1 with respect to ψ is negative for ψ ∈ (0, 1) so, d1

is a monotonic decreasing function on (0, 1). Therefore, d1 is invertible and there exist

a unique solution ψ for d1 when ψ ∈ (0, 1).

Next, by using the volume |B| and the solution ψ, we have ψ=

√
1− 3|B|

4πa3
. By

definition from [6] and [47], 0 < ψ < 1 for 0 < b < a. Let f : a → ψ be a function

ψ = f(a)=

√
1− 3|B|

4πa3
for a > 0 and 0 < f(a) < 1 where, it can be shown that f is

one to one and hence, invertible. Therefore, there is a unique solution a for f(a) = ψ.

Finally, the unique b > 0 can be obtained from a by solving |B| = (4/3)πab2 for b.

A.1.2 Oblate spheroids

The first order PT for an oblate spheroid (with a < b = c and volume |B| = (4/3)πab2)

has two distinct eigenvalues λ1 < λ2 = λ3. Moreover, its depolarization factors are also

d1 and d2 = d3. In this case, d1 is given by [6] and [47] as

d1 =
1

ϕ2

{
1−

√
1− ϕ2

ϕ
sin−1 ϕ

}
(A.3)

where ϕ =
√

1− (a/b)2 and d1 = 1 − (d2/2). It can also be shown that lim
ϕ→0

d1 = 1
3

while lim
ϕ→1

d1 = 1. Next, we include Figure A.2 to show the graph of d1 defined by (A.3)
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Figure A.2: The graph of d1 in (A.3) for ϕ ∈ (0, 1)

for ϕ ∈ (0, 1) (ϕ is denoted by phi in the figure). Furthermore,

d

dϕ
(d1) =

3 sin−1 ϕ− 3ϕ
√

1− ϕ2 − 2ϕ2 sin−1 ϕ

3ϕ4
√

1− ϕ2

≈ 4ϕ

15
+

32ϕ3

105
+

32ϕ5

105
+

1024ϕ7

3465
+

2560ϕ9

9009

(A.4)

and suggests that the derivate of d1 with respect to ϕ is positive for ϕ ∈ (0, 1) so, d1 is

a monotonic increasing function on (0, 1). Therefore, d1 is invertible and there exist a

unique solution ϕ for d1 when ϕ ∈ (0, 1). Similarly, the unique solution a and b for d1

such that 0 < a < b can be obtained by solving |B| = (4/3)πab2 and ϕ =
√

1− (a/b)2.

A.2 Graphs of ˇ̌M for Translated Objects

Following Section 8.1.2, in order to alternatively compare ˇ̌ML with ˇ̌ML′ , each coefficient

of ˇ̌ML and ˇ̌ML′ denoted by mij for i, j = 1, 2, 3 is plotted in the same graph for every

L′ in Figure A.3 until Figure A.11. It can be seen in all figures that all coefficients for

both real and imaginary parts of ˇ̌ML and ˇ̌ML′ are the same for all translation L′ and

suggest that ˇ̌ML′ for each translated object is the same as ˇ̌ML for the object before

translation. The results here consistent with our previous theory that ˇ̌M does not

depend on the position of the object.
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(a)

(b)

Figure A.3: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 1, both
are computed by hp-FEM (a) real part (b) imaginary part
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(a)

(b)

Figure A.4: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 2, both
are computed by hp-FEM (a) real part (b) imaginary part
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(a)

(b)

Figure A.5: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 3, both
are computed by hp-FEM (a) real part (b) imaginary part
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(a)

(b)

Figure A.6: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 4, both
are computed by hp-FEM (a) real part (b) imaginary part
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(a)

(b)

Figure A.7: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 5, both
are computed by hp-FEM (a) real part (b) imaginary part
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(a)

(b)

Figure A.8: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 6, both
are computed by hp-FEM (a) real part (b) imaginary part
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(a)

(b)

Figure A.9: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 7, both
are computed by hp-FEM (a) real part (b) imaginary part



APPENDIX A. ADDITIONAL RESULTS 149

(a)

(b)

Figure A.10: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 8, both
are computed by hp-FEM (a) real part (b) imaginary part
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(a)

(b)

Figure A.11: A comparison between the coefficients for ˇ̌ML and ˇ̌ML′ for L′ = 9, both
are computed by hp-FEM (a) real part (b) imaginary part



Appendix B

The Matlab Codes

B.1 A code to explicitly compute the first order

PT for ellipsoid

The following is the code in Matlab to compute the first order PT for ellipsoid with

semi principal axes a = 3 cm, b = 2 cm and c = 1 cm at conductivity k = 1.5 Sm−1 by

using (2.2) and (2.3). In order to use it, the code can simply be copied to a .m file of

Matlab. The code can also be modified to compute the first order PT for any ellipsoid

at any conductivity by specifying a,b,c and k in the code.

Note : k can also be a complex number

————————————————–

%A code to compute the first order PT for ellipsoid with semi principal

axes a,b and c at conductivity k

%Specify the conductivity, k

k=1.5;

%Specify the semi principal axes

a=0.03; b=0.02; c=0.01;

%Approximate the integrals (2.3) of the thesis

valA = quadgk(@(x) b*c/a/a *(x.^2.*(x.^2-1+(b/a)^2).^0.5.*(x.^2-1+(c/a)

^2).^0.5).^(-1), 1, Inf);

valB = quadgk(@(x) b*c/a/a *((x.^2-1+(b/a)^2).^1.5.*(x.^2-1+(c/a)^2).

^0.5).^(-1), 1, Inf);
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valC = quadgk(@(x) b*c/a/a *((x.^2-1+(b/a)^2).^0.5.*(x.^2-1+(c/a)^2).

^1.5).^(-1), 1, Inf);

%Computing the first order PT by using (2.2) of the thesis

M = zeros(3, 3);

for i=1:size(k,2)

M(1,1) = (k-1)*4/3*pi*a*b*c/((1-valA)+(k*valA));

M(2,2) = (k-1)*4/3*pi*a*b*c/((1-valB)+(k*valB));

M(3,3) = (k-1)*4/3*pi*a*b*c/((1-valC)+(k*valC));

end;

disp('The first order PT is')

disp(M)

B.2 A code to compute the first order PT by solv-

ing the boundary equations (1.3)-(1.5)

In this section, we provide a code in Matlab to compute the first order PT for a choosen

object at conductivity k = 1.5 Sm−1 by solving the boundary equations (1.3)-(1.5)

according to the method presented in Chapter 2. The code can also be modified to

compute the first order PT at any real and complex conductivity by specifying k in

the code. However, in order to use the code, the mesh of the boundary for the chosen

object must firstly be given where, barycentre, outward normal vector and area for each

element of the mesh must be determined. In this study, we use the mesh generated by

Netgen and compute the barycentre, outward normal vector and area for all elements

with our own other code. However, some codes such as Gmsh, BEM++ and Mesh

Doctor also provide barycentre, outward normal vector and area for each element of

most popular mesh (such as sphere, ellipsoid, cube, etc). Therefore, one can access

one of those codes to obtain the barycentre, outward normal vector and area for all

elements and use the given values as inputs to our code to compute the first order

PT for the object represented by the mesh. Here, barycentre, outward normal vector

and area for each element are called by vectors Midpoints, Normals and Areas. In

addition, we also assume the mesh has N total elements in the code.

————————————————–
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%A code to compute the first order PT at conductivity 1.5 according

to the method presented in Chapter 2 of the thesis.

%Specify the conductivity, k.

k=1.5;

%Specify the number of elements for the mesh.

s=N;

%Discritize the integral operator (1.5) of the thesis based on

(2.5), (2.6) and (2.7).

KB = zeros(s);

for i=1:s

for j=1:s

if i==j

KB(i,j)=0;

else

L=Midpoints(i,:)-Midpoints(j,:);

KB(i,j)=(dot(L,Normals(i,:))*Areas(j))/(4*pi*(norm(L))^3);

end

end

end

%Solve the system of equations (1.4) of the thesis (see also (2.8)).

la=(k+1)/(2*(k-1));

A=la*eye(s)-KB;

Phi=A\Normals;

%Determine the first order PT from (2.10) of the thesis.

DA = eye(s);

for r=1:s

DA(r,r)=Areas(r);

end

M=transpose(Phi)*DA*Midpoints;

disp('The first order PT is')

disp(M)
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