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COMPRESSING VARIABLE-COEFFICIENT
EXTERIOR HELMHOLTZ PROBLEMS VIA RKFIT

VLADIMIR DRUSKIN∗, STEFAN GÜTTEL† , AND LEONID KNIZHNERMAN‡

Abstract. The efficient discretization of Helmholtz problems on unbounded domains is a challenging
task, in particular, when the wave medium is nonhomogeneous. We present a new numerical approach
for compressing finite difference discretizations of such problems, thereby giving rise to efficient perfectly
matched layers (PMLs) for nonhomogeneous media. This approach is based on the solution of a nonlinear
rational least squares problem using the RKFIT method proposed in [M. Berljafa and S. Güttel, SIAM
J. Matrix Anal. Appl., 36(2):894–916, 2015]. We show how the solution of this least squares problem can
be converted into an accurate finite difference grid within a rational Krylov framework. Several numerical
experiments are included. They indicate that RKFIT computes PMLs more accurate than previous analytic
approaches and even works in regimes where the Dirichlet-to-Neumann functions to be approximated are
highly irregular. Spectral adaptation effects allow for accurate finite difference grids with point numbers
below the Nyquist limit.

Key words. finite difference grid, Helmholtz equation, Dirichlet-to-Neumann map, perfectly matched
layer, rational approximation, continued fraction
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1. Introduction. Finite difference (FD) methods are widely used for the numerical
solution of partial differential equations. Due to their simplicity and potential for high
computational efficiency they are often preferred to more sophisticated techniques like, e.g.,
finite element or spectral methods. A prominent example is the finite difference time domain
(FDTD) solution of Maxwell’s equations [27] over a fixed time interval, which can be shown
to have optimal computational efficiency in the sense that O(n4/3) numbers are produced in
O(n4/3) operations; see [15] and [14, Section 4.6]. Here, n is the number of grid points in each
coordinate direction of a three-dimensional cube. FD methods are also attractive in that it
is relatively straightforward to model wave problems on unbounded domains by stretching
the FD grid steps. This approach pioneered and analyzed in [15, 18, 6, 4] is nowadays known
as complex coordinate stretching, leading to so-called perfectly matched layers (PMLs). By
appropriately choosing the complex grid steps, one can even construct short-term recurrence
FD grids with spectral accuracy [17, 5]. However, due to the analytic construction of these
PMLs they require the medium to be invariant in the stretching direction. A more detailed
review of these techniques is given in [16].

In this work we present a new approach to the compression of the FD grids with a
variation in the PDE coefficients. As a prototypical problem we consider the infinite FD
scheme

2

h

(
u1 − u0

h
+ b

)
= (A+ c0I)u0, (1.1a)

1

h

(
uj+1 − uj

h
− uj − uj−1

h

)
= (A+ cjI)uj , j = 1, 2, . . . , (1.1b)

where either u0 ∈ CN or b ∈ CN is given, A is a Hermitian N × N matrix, cj = 0 for all
j > L, and the solution {uj}∞j=0 ⊂ CN is assumed to be bounded. This problem may arise,
for example, from the FD discretization of the three-dimensional (indefinite) Helmholtz
equation

∇2u+ (k2∞ − c(x))u = 0,
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Figure 1.1. Typical setup of a seismic exploration of the Earth’s subsurface. We aim to compress the
layered structure in x ≥ 0 into a single PML with a small number of grid points.

for (x, y, z) ∈ [0,+∞) × [0, 1] × [0, 1] with a compactly supported offset function c(x) for
the wave number k∞ and appropriate boundary conditions. In this case the matrix A
corresponds to the discretization of the transverse differential operator −∂2yy − ∂2zz − k2∞ at
x = 0 and is Hermitian indefinite. After discretization the variation of the wave number in
the x-direction is modeled by varying coefficients cj , with the “overall” wave number being√
k2∞ − cj at each grid point. Most interesting are oscillatory Helmholtz problems where

k2∞ − cj is positive on the entire domain.

Problems such as the above arise, for example, in geophysical seismic exploration; see
Figure 1.1 for an illustration. Here a pressure wave signal of a single frequency is emitted
by an acoustic transmitter in the Earth’s subsurface, travels through the underground, and
is then logged by receivers on the surface. From these measurements geophysicists try
to infer variations in the wave speed which then allows them to draw conclusions about
the subsurface composition. The computational domain of interest is a three-dimensional
portion of the Earth and we might have knowledge about the sediment layers below this
domain, i.e., for x ≥ 0 in Figure 1.1. While the acoustic waves in x ≥ 0 may not be of
interest on their own, the layers might cause wave reflections back into the computational
domain and hence need be part of the model.

Referring again to the illustration in Figure 1.1, with the techniques developed in this
paper it is possible to efficiently compress an FD grid for the nonhomogeneous medium in
x ≥ 0. By “compressing an FD grid” we mean the task of computing an equivalent short-
term recurrence FD grid with a small number of points that preserves essential features of the
original grid like, for example, the linear relation between Dirichlet and Neumann data at a
certain grid point. The associated Dirichlet-to-Neumann (DtN) operator plays an important
role in many applications, including domain decomposition methods (see, e.g., [19, 20, 13])
and the construction of PMLs. For our concrete example (1.1), the DtN operator at x = 0
is a matrix F such that Fu0 = b. Since (1.1) is a linear recurrence relation it is easy to
verify that F = fh(A) is a matrix function in A. In the simplest case where cj ≡ 0, the DtN

function for (1.1) at x = 0 is fh(λ) =
√
λ+ (hλ/2)2. As h→ 0 we obtain the DtN function

f(λ) =
√
λ for the continuous problem.

As will be explained in more detail below, a compact representation of the FD grid (1.1)
can be obtained by computing a low-order rational matrix function rn(A) ≈ fh(A). In the
case where A is Hermitian and f(λ) =

√
λ, a near-optimal rational approximant rn to f

can be constructed analytically. More precisely, let the eigenvalues of A be contained in the
union of two intervals K = [a1, b1]∪ [a2, b2], with a1 < b1 < 0 < a2 < b2. Then [16] gives an

explicit construction of a rational function r
(Z)
n of type (n, n− 1) such that

max
λ∈K
|1− r(Z)

n (λ)/f(λ)| � exp

−n · 2π2

log
(

256 · a1b2a2b1

)
 as n→∞, (1.2)
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for sufficiently large interval ratios a1/b1 and b2/a2. The construction is based on combining
two Zolotarev approximants (see [28] and [2, Appendix E]), one being optimal for [a1, b1] and
the other being optimal for [a2, b2], and then balancing their degrees carefully. It can also be
shown that the convergence factor in (1.2) is optimal. As a consequence, the approximation
error

‖f(A)− r(Z)
n (A)‖2 ≤ C max

λ∈K
|1− r(Z)

n (λ)/f(λ)|

also decays exponentially at the same optimal rate. Interestingly, the continued fraction

form of the rational approximants r
(Z)
n gives rise to a geometrically meaningful three-point

FD scheme, called for short the optimal grid. By “geometrically meaningful” we mean that
the complex grid points align on a curve in the complex plane which can be interpreted as
a “smooth” deformation of the original x-coordinate axis.

The analytic approach is essentially limited to the scalar approximation of DtN func-
tions such as

√
λ and

√
λ+ (hλ/2)2. If the coefficients cj in (1.1) are nonconstant, fh is

more involved and an explicit construction of a rational approximant rn ≈ fh is generally
impossible. In the case of non-oscillatory boundary value problems (i.e., when k2∞ − c(x)
is nonpositive for all x ≥ 0), variable-coefficient media have been considered in the context
of inverse problems; see, e.g., [11, 12]. In this case fh is analytic and of Stieltjes–Markov
type on the spectral interval of A, and rational approximants can be obtained efficiently via
(multi-point) Padé techniques. The coefficients of the continued fraction representation of
these approximants can again be interpreted as geometrically meaningful FD grids.

The approximation problems become much more difficult in the oscillatory case. An
illustrating example is given in Figure 1.2, where the top panels show the amplitude/phase
of the solution of a waveguide problem on [0,+∞) × [0, 1], truncated and discretized by
300×150 points. The step size is h = 1/150 in both coordinate directions. For this problem
we have chosen k∞ = 14 and cj = −92 for the grid points j = 0, 1, . . . , L = 150. An
absorbing boundary condition has been fitted to the right end of the domain to mimic the
infinite extension x → ∞. The modulus of the associated DtN function fh is shown in the
bottom of Figure 1.2 (solid red curve). Apparently this function has several singularities
between and close to the eigenvalues of the transverse FD matrix A (the eigenvalue positions
are indicated by the black dots). In particular, one eigenvalue λj ≈ 50.5 is extremely close
to a singularity of fh, which can be associated with the near-resonance observed in the left
portion of the waveguide. These singularities make it impossible to construct a uniform
approximant rn ≈ fh over the negative and positive spectral subintervals.

Further complications arise when A is non-Hermitian, in which case the problem rn(A) ≈
F = fh(A) may require rational approximation in the complex plane. In order to overcome
these problems, we propose a new numerical approach using RKFIT, which is an iterative
rational Krylov-based algorithm for computing a rational function rn such that, for a given
nonzero training vector v ∈ CN , rn(A)v ≈ Fv in the Euclidean norm [7, 9]. The RKFIT
approximant naturally incorporates the spectral weights present in v and it exploits the
discreteness of the spectrum of A. In particular the latter property is crucial for solving
the aforementioned approximation problems where fh has singularities in or nearby the
spectral region of A. This is exemplified by the RKFIT approximant rn shown on the
bottom of Figure 1.2 (dashed blue curve). This approximant is of degree n = 8 and has
a relative accuracy of ‖Fu0 − rn(A)u0‖2/‖Fu0‖2 ≈ 1.4 · 10−6. As the plot illustrates, rn
achieves this high accuracy by being close to fh in the vicinity of the eigenvalues of A, but
not necessarily in between them. We emphasize that this remarkable spectral adaptation is
achieved without requiring a spectral decomposition of A explicitly ; RKFIT merely requires
the repeated computation of matrix-vector products with F .

The rational Krylov framework is very natural not only for the efficient computation
of rn, but we also present a rational Krylov-based algorithm for its direct conversion into
an implementable three-point FD scheme. We refer to the resulting grid as an RKFIT-
FD grid. Unlike the above mentioned optimal grids for constant-coefficient oscillatory and
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Figure 1.2. A waveguide with varying coefficient (wave number) in the x-direction (piecewise constant
over the first 150 grid points and the remaining grid points until infinity). The top row shows the amplitude
and phase of the solution, with the position of the coefficient jump highlighted by vertical dashed line. The
bottom shows a plot of the exact DtN function fh (solid red line) over the spectral interval of the indefinite
matrix A. The plot is doubly logarithmic on both axis, with the x-axis showing a negative and positive part
of the real axis, glued together by the gray linear part in between. The RKFIT approximant of degree n = 8
(dotted blue curve) exhibits spectral adaptation to some of the eigenvalues of A (black dots).

variable-coefficient non-oscillatory problems, RKFIT-FD grids may not have a nice geometric
interpretation but can nevertheless be used as efficient PMLs for nonhomogeneous media.

We typically observe that the RKFIT-FD grids are exponentially accurate as an ap-
proximation to the full FD scheme, with only a small number of grid points required for
practical accuracy. In fact, we will demonstrate that the Nyquist limit of two grid points
per wavelength does not fully apply to RKFIT-FD grids due to spectral adaptation effects.
For the problem in Figure 1.2, for example, we computed an RKFIT-FD grid of only n = 8
points which accurately (to about six digits of relative accuracy) mimics the response of the
full variable-coefficient waveguide discretized by 300 grid points in the x-direction. This is
a significant compression of the full grid.

The outline of this paper is as follows: in section 2 we derive analytic expressions of
DtN maps for constant- and variable-coefficient media. We also show how the optimization
of DtN approximants relates to rational approximation problems. In section 3 we establish
a new connection between rational Krylov spaces and FD grids. In section 4 we briefly
review the RKFIT algorithm and tailor it to our specific application of FD grid optimiza-
tion. A pseudocode of our algorithm, together with computational considerations, is given
in section 5. Sections 6 and 7 are dedicated to convergence comparisons of our FD approx-
imants, with relations made to convergence results from the literature whenever possible.
In section 8 we discuss the numerical results and compare them to the Nyquist limit and
other (spectral) discretization schemes. In the appendix we give a rational approximation
interpretation of the Nyquist limit and explain why this limit is not necessarily strict for
RKFIT-FD grids.

All our numerical experiments have been performed in MATLAB using the Rational
Krylov Toolbox (RKToolbox) [8], which has been extended for this paper; for details see
section 5. Example files for reproducing our results are available online at
http://guettel.com/rktoolbox/examples/html/example_ehcompress.html.

http://guettel.com/rktoolbox/examples/html/example_ehcompress.html
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2. Analytic forms of DtN maps. There is a beautiful connection between FD grids
and rational functions. In order to illustrate this connection we will first consider a scalar
constant-coefficient FD grid and show how to convert it into an equivalent continued fraction.
We will then discuss the variable-coefficient case and finally introduce the problem of grid
optimization.

2.1. The constant-coefficient case. Consider the ODE u′′(x) = λu(x) on x ≥ 0 and
its associated FD scheme

1

h

(
uj+1 − uj

h
− uj − uj−1

h

)
= λuj , j = 1, 2, . . . , (2.1)

where λ and u0 are given constants, and we demand that un remains bounded as n → ∞.
This linear recurrence relation is a scalar version of (1.1b) with c ≡ 0. It can easily be solved
by computing the roots of the associated characteristic polynomial p(t) = (t2− (2 +h2λ)t+
1)/h2 and choosing the solution

uj =

(
1 +

h2λ

2
− h
√
λ+

h2λ2

4

)j
u0.

Indeed this is the only solution that decays for λ > 0. Moreover, this solution is bounded
under the condition1 λ ≥ −4/h2 and unbounded for λ < −4/h2.

We can use the explicit solution {uj} to extract interesting information about the prob-
lem. For example, from the FD relation

2

h

(
u1 − u0

h
+ b

)
= λu0 (2.2)

we obtain an approximation b to the Neumann boundary data −u′(x = 0) for the continuous
analogue of the FD scheme. Eliminating u1 using the above formula, we can directly relate
u0 and b via

b =

√
λ+

h2λ2

4
u0 =: fh(λ)u0.

This is the Dirichlet-to-Neumann (DtN) relation, with fh being referred to as the DtN
function. By letting h → ∞ we recover the DtN relation b =

√
λu0 =: f(λ)u0 and indeed

b = −u′(0) for the continuous solution u(x) = exp(−x
√
λ)u0.

While closed formulas of DtN maps are certainly useful for the theoretical analysis of
solutions, they are not suitable for practical implementation in an FD framework. Hence
our aim is to approximate DtN maps by FD grids with a small (and finite) number n
of grid points. One approach to obtain a finite FD scheme is to simply truncate (2.1)
after its first n − 1 terms, setting un = 0. Together with (2.2) and the auxiliary variables
ûj−1 = (uj − uj−1)/h we can then form a linear system

hλ
2 −1
1 h −1

1 hλ −1

1 h
. . .

. . .
. . . −1
1 hλ −1

1 h





u0
û0
u1
û1
...

un−1
ûn−1


=



b
0
0
0
...
0
0


.

1This is an interesting condition in the indefinite Helmholtz case, where the role of λ is played by the
eigenvalues of the shifted Laplacian −∇2 − k2 and k is the wave number. Because we require λ ≥ −4/h2,
we have a condition k2 ≤ 4/h2 on the wave number, which is equivalent to kh ≤ 2. The solution of the
Helmholtz equation in a homogeneous medium has wave length ` = 2π/k. Hence the number of FD grid
points per wavelength, n = `/h, must satisfy n = `/h = 2π/(kh) ≥ π in order to approximate a bounded
oscillatory solution.
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By row-wise Gaussian elimination of the −1’s on the superdiagonal, starting from the
bottom-right and going up to the left, we find that

b/u0 =
hλ

2
+

1

h+
1

hλ+
1

h+ · · ·+
1

hλ+
1

h

=: rn(λ).

The rational function rn is of type (n, n− 1), that is, numerator and denominator degree n
and n − 1, respectively, and we expect that rn ≈ fh in some sense. Indeed, one can verify
that rn is the type (n, n− 1) Padé approximant to fh with expansion point λ =∞. Hence
rn can be expected to be a good approximation to fh for large values of λ, i.e., for rapidly
decaying solutions of (2.1).

2.2. Variable-coefficient case. The scalar form of the variable-coefficient FD scheme
(1.1) is

2

h

(
u1 − u0

h
+ b

)
= (λ+ c0)u0,

1

h

(
uj+1 − uj

h
− uj − uj−1

h

)
= (λ+ cj)uj , j = 1, 2, . . . .

By eliminating the grid points with indices j > L (at which we assumed cj = 0) in the same
manner as above, we find the DtN relation b/u0 = fh(λ) with

fh(λ) =
h(λ+ c0)

2
+

1

h+
1

h(λ+ c1) +
1

h+ · · ·+
1

h(λ+ cL) +
1

h+
1

hλ

2
+

√
λ+ h2λ2

4

. (2.3)

2.3. Optimizing FD grids. In view of the original vector-valued problem (1.1), the
role of λ is played by the eigenvalues of the matrix A. When employing a rational approx-
imant rn ≈ fh it hence seems reasonable to be accurate on the spectral region of A. For
example, if A is diagonalizable as A = X diag(λ1, λ2, . . . , λN )X−1, we have

‖fh(A)− rn(A)‖2 ≤ ‖X‖2‖X−1‖2 max
1≤j≤N

|fh(λj)− rn(λj)|.

Hence if the condition number κ(X) = ‖X‖2‖X−1‖2 is moderate, we can directly relate the
accuracy of rn(A) as an approximation to the DtN map fh(A) to a scalar approximation
problem on the eigenvalues λj .

The crucial observation for optimizing the rational approximant rn, or equivalently an
FD grid, is that the grid steps do not need to be equispaced, and not even real-valued.
Consider the FD scheme

1

ĥ0

(
u1 − u0
h1

+ b

)
= λu0, (2.4a)

1

ĥj

(
uj+1 − uj
hj+1

− uj − uj−1
hj

)
= λuj , j = 1, . . . , n− 1, (2.4b)
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with arbitrary complex-valued primal and dual grid steps hj and ĥj−1 (j = 1, 2, . . . , n),
respectively. The continued fraction form of the associated DtN maps, derived in exactly
the same manner as for the case of constant h above, is

rn(λ) = ĥ0λ+
1

h1 +
1

ĥ1λ+
1

h2 + · · ·+
1

ĥn−1λ+
1

hn

. (2.5)

As before, rn is a rational function of type (n, n − 1), and by choosing the free grid steps
we can optimize it for our purposes. In particular, we can tune (2.4) so that it implements
a rational approximation to any DtN map, even if the associated analytic DtN function
fh is complicated. To this end, we need a robust method for computing such rational
approximants and a numerical conversion into continued fraction form. This will be subject
of the following two sections.

3. From FD grids to rational Krylov spaces. Let us turn to the vector form of
(2.4), which is

1

ĥ0

(
u1 − u0

h1
+ b

)
= Au0, (3.1a)

1

ĥj

(
uj+1 − uj
hj+1

− uj − uj−1
hj

)
= Auj , j = 1, . . . , n− 1. (3.1b)

In the previous section we have derived that b = rn(A)u0 with a rational function rn =

pn/qn−1 whose continued fraction form (2.5) involves the grid steps hj and ĥj−1. The vectors
uj and b = rn(A)u0 satisfy a rational Krylov decomposition

AUn+1K̃n = Un+1H̃n, (3.2)

where Un+1 = [ rn(A)u0 |u0 |u1 | · · · |un−1 ] ∈ CN×(n+1), and K̃n, H̃n ∈ C(n+1)×n are given
as

K̃n =


0

ĥ0
ĥ1

. . .

ĥn−1

 , H̃n =



1
−h−11 h−11

h−11 −h−11 − h
−1
2

. . .

. . .
. . . h−1n−1
h−1n−1 −h−1n−1 − h−1n

 . (3.3)

The entries in (H̃n, K̃n) encode the recursion coefficients in (2.4), and the columns of Un+1

all correspond to rational functions in A multiplied by the vector u0. The span of such
vectors is called a rational Krylov space [25]. In the next section we will show how to
generate decompositions of the form (3.2) numerically and how to interpret them as FD
grids.

4. The RKFIT approach. Assume that F,A ∈ CN×N are given matrices, and v ∈
CN with ‖v‖2 = 1. Our aim is to find a rational approximant rn(A)v such that

‖Fv − rn(A)v‖2 → min . (4.1)

For the purpose of this paper, F is the linear DtN operator for a BVP with possibly varying
coefficients, and the sought rational function rn is of type (n, n− 1), i.e., rn = pn/qn−1 with
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pn ∈ Pn and qn−1 ∈ Pn−1. Note that (4.1) is a nonconvex optimization problem which may
have many solutions, exactly one solution, or no solution at all. However, this difficulty
has not prevented the development of algorithms for the (approximate) solution of (4.1);
see [9] for a discussion of various algorithms. The RKFIT algorithm developed in [7, 9] is
particularly suited for this task, and in this section we shall briefly review it and adapt it
to our application.

4.1. Search and target spaces. Given a set of poles ξ1, ξ2, . . . , ξn−1 ∈ C and an
associated nodal polynomial qn−1(λ) =

∏n−1
j=1 (λ − ξj), RKFIT makes use of two spaces,

namely an n-dimensional search space Vn defined as

Vn := qn−1(A)−1Kn(A, v),

and an (n+ 1)-dimensional target space Wn+1 defined as

Wn+1 := qn−1(A)−1Kn+1(A, v).

Here, Kj(A, v) = span{v , Av , . . . , Aj−1v} is the standard (polynomial) Krylov space for
(A, v) of dimension j. Let Vn ∈ CN×n and Wn+1 ∈ CN×(n+1) be orthonormal bases for Vn
and Wn+1, respectively.

The space Vn is a rational Krylov space with starting vector v and the poles ξ1, . . . , ξn−1,
i.e., a linear space of type (n − 1, n − 1) rational functions (pj/qn−1)(A)v , all sharing the
same denominator qn−1. As a consequence, we can arrange the columns of Vn such that
Vne1 = v and a rational Krylov decomposition

AVnKn−1 = VnHn−1 (4.2)

is satisfied. Here, (Hn−1,Kn−1) is an unreduced upper Hessenberg pencil of size n× (n−1),
i.e., both Hn−1 and Kn−1 are upper Hessenberg matrices which do not share a common
zero element on the subdiagonal. Decompositions of the form (4.2) can be computed by
Ruhe’s rational Krylov sequence (RKS) algorithm [25]. The following result, established in
[7, Thm. 2.5], relates the generalized eigenvalues of the lower (n− 1)× (n− 1) subpencil of
(Hn−1,Kn−1), the poles of the rational Krylov space, and its starting vector.

Theorem 4.1. The generalized eigenvalues of the lower (n − 1) × (n − 1) subpencil
of (Hn−1,Kn−1) of (4.2) are the poles ξ1, . . . , ξn−1 of the rational Krylov space Vn with
starting vector v .

Conversely, let a decomposition AV̂nK̂n−1 = V̂nĤn−1 with V̂n ∈ CN×n of full column

rank and an unreduced upper Hessenberg pencil (Ĥn−1, K̂n−1) be given. Assume further that

none of generalized eigenvalues ξ̂j of the lower (n− 1)× (n− 1) subpencil of (Ĥn−1, K̂n−1)

coincides with an eigenvalue of A. Then the columns of V̂n form a basis for a rational Krylov
space with starting vector V̂ne1 and poles ξ̂j.

4.2. Pole relocation and projection step. The main component of RKFIT is a pole
relocation step based on Theorem 4.1. Assume that a guess for the denominator polynomial
qn−1 is available and orthonormal bases Vn and Wn+1 for the spaces Vn and Wn+1 have
been computed. Then we can identify a vector v̂ ∈ Vn, ‖v̂‖2 = 1, such that F v̂ is best
approximated by some vector in Wn+1. More precisely, we can find a coefficient vector
cn ∈ Cn, ‖cn‖2 = 1, such that

‖(IN −Wn+1W
∗
n+1)FVncn‖2 → min .

The vector cn is given as a right singular vector of (IN −Wn+1W
∗
n+1)FVn corresponding to

a smallest singular value.
Assume that a “sufficiently good” denominator qn−1 of rn = pn/qn−1 has been found.

Then the problem of finding the numerator pn such that ‖Fv−rn(A)v‖2 is minimal becomes
a linear one. Indeed, the vector rn(A)v := Wn+1W

∗
n+1Fv corresponds to the orthogonal

projection of Fv onto Wn+1 and its representation in the rational Krylov basis Wn+1 is

rn(A)v = Wn+1cn+1, where cn+1 := W ∗n+1Fv . (4.3)
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4.3. Conversion to continued fraction form. Similarly to what we did in (4.2), we
can arrange the columns of Wn+1 so that Wn+1e1 = v and a rational Krylov decomposition

AWn+1Kn = Wn+1Hn (4.4)

is satisfied, where (Hn,Kn) is an unreduced upper Hessenberg pencil of size (n + 1) × n.
Indeed, we have Vn ⊂ Wn+1 and Wn+1 is a rational Krylov space with starting vector v ,
finite poles ξ1, . . . , ξn−1, and a formal additional “pole” at ∞.

Our aim is to transform the decomposition (4.4) so that it can be identified with (3.2)
when u0 = v . This transformation should not alter the space Wn+1 but merely transform
the basis Wn+1 into the continued fraction basis Un+1 and the pencil (Hn,Kn) into the
tridiagonal-and-diagonal form of (3.3).

As a first step we transform (4.4) so that rn(A)v defined in (4.3) becomes the first vector
in the rational Krylov basis, and v the second. To this end, define the transformation matrix

X = [ cn+1 | e1 |x3 | · · · |xn+1] ∈ C(n+1)×(n+1),

with the columns x3, . . . ,xn+1 chosen freely but so that X is invertible, and rewrite (4.4)
by inserting XX−1:

AW
(0)
n+1K

(0)
n = W

(0)
n+1H

(0)
n , (4.5)

where W
(0)
n+1 = Wn+1X, K

(0)
n = X−1Kn and H

(0)
n = X−1Hn. By construction, the trans-

formed rational Krylov basis W
(0)
n+1 is of the form

W
(0)
n+1 =

[
rn(A)v | v | ∗ | · · · | ∗

]
∈ CN×(n+1).

The transformation to (4.5) has potentially destroyed the upper Hessenberg structure of the

decomposition and (H
(0)
n ,K

(0)
n ) generally is a dense (n + 1) × n matrix pencil. Here is a

pictorial view of decomposition (4.5) for the case n = 4:

AW
(0)
n+1


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 = W
(0)
n+1


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 . (4.6)

We now transform (H
(0)
n ,K

(0)
n ) into tridiagonal-and-diagonal form by successive right

and left multiplication, giving rise to pencils (H
(j)
n ,K

(j)
n ) (j = 1, 2, . . . , 5) all corresponding

to the same rational Krylov space Wn+1 and all without the two leading vectors in W
(0)
n+1

being altered. More precisely, the transformations we are allowed to perform are:

• right-multiplication of the pencil by any invertible matrix R ∈ Cn×n,

• left-multiplication of the pencil by an invertible matrix L ∈ C(n+1)×(n+1), the first

two columns of which are [ e1 | e2 ]. This ensures that inserting L−1L into the
decomposition will not alter the leading two vectors [ rn(A)v | v ] in the rational
Krylov basis.

Here are the transformations we perform:

1. We right-multiply the pencil (H
(0)
n ,K

(0)
n ) by the inverse of the lower n × n part of

K
(0)
n , giving rise to (H

(1)
n ,K

(1)
n ) (we now only show a pictorial view of the trans-

formed pencils):

AW
(1)
n+1


0 ∗ ∗ ∗
1

1
1

1

 = W
(1)
n+1


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .
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The Krylov basis matrix W
(1)
n+1 = W

(0)
n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ] has not changed.

The (1, 1) element of the transformed matrix K
(1)
n = [k

(1)
ij ] is automatically zero

because the decomposition states that the linear combination k
(1)
11 Arn(A)v + k

(1)
21 v

is in the column span of W
(1)
n+1, a rational Krylov space of type (n, n − 1) rational

functions. This linear combination is a type (n+ 1, n− 1) rational function unless
k11 = 0.

2. We left-multiply the pencil to zero the first row of K
(1)
n completely. This can be

done by adding multiples of the 3rd, 4th, . . . , (n+ 1)th row to the first. As a result
we obtain

AW
(2)
n+1


0
1

1
1

1

 = W
(2)
n+1


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 . (4.7)

This left-multiplication does not affect the leading two columns of the Krylov basis,

hence W
(2)
n+1 is still of the form W

(2)
n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ].

3. We right-multiply the pencil to zero all elements in the first row of H
(2)
n except the

(1, 1) entry, which we can assume to be nonzero (see Remark 4.1). This can be done
by adding multiples of the first column to the 2nd, 3rd, . . . ,nth column. As a result
we have

AW
(3)
n+1


0
1 ∗ ∗ ∗

1
1

1

 = W
(3)
n+1


∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .
Again, this right-multiplication has not affected W

(3)
n+1 = W

(2)
n+1.

4. With a further left-multiplication, adding multiples of the 3rd, 4th,. . . , (n+ 1)st

row to the second row, we can zero all the entries in the second row of K
(3)
n , except

the entry in the (2, 1) position:

AW
(4)
n+1


0
1

1
1

1

 = W
(4)
n+1


∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .
Note that H

(4)
n still has zero entries in its first row. Also, W

(4)
n+1 is still of the form

W
(4)
n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ].

5. We apply the two-sided Lanczos algorithm with the lower n×n part of H
(4)
n , using e1

as the left and right starting vector. This produces biorthogonal matrices ZL, ZR ∈
Cn×n, ZHL ZR = In. Left-multiplying the decomposition with blkdiag(1, ZHL ) and
right-multiplication with ZR results in the demanded structure:

AW
(5)
n+1


0
1

1
1

1

 = W
(5)
n+1


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 . (4.8)
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6. Finally, let the nonzero entries of H
(5)
n be denoted by ηi,j (1 ≤ j ≤ n, j ≤ i ≤

j + 2), then we aim to scale these entries so that they are matched with those of

the matrix H̃n in (3.3). This can be achieved by left multiplication of the pencil

with L = diag(1, 1, `3, . . . , `n+1) ∈ C(n+1)×(n+1) and right multiplication with R =
diag(ρ1, ρ2, . . . , ρn) ∈ Cn×n. The diagonal entries of L and R are found by equating

H̃n in (3.3) and LH
(5)
n R, starting from the (1, 1) entry and going down columnwise.

We obtain

r1 =
1

η1,1
, h1 =

−1

η2,1ρ1
, `3 =

1

η3,1h1ρ1
,

and for j = 2, 3, . . .

rj =
1

`jηj,jhj−1
, hj =

−1

1/hj−1 + `j+1ηj+1,jρj
, `j+2 =

1

ηj+2,jhjρj
.

The diagonal entries of K̃n in (3.3) satisfy

ĥj−1 = `j+1ρj , j = 1, . . . , n,

and thus the pencil has been transformed exactly into the form (3.3).

The above six-step procedure allows us to convert the rational function rn computed
via the RKFIT iteration into continued fraction form, and hence reinterpret it as an FD
scheme. This scheme is referred to as an RKFIT-FD grid. Note that all transformations
only act on small matrices of size (n+1)×n and the computation of the tall skinny matrices

W
(j)
n+1 is not required if one is only interested in the continued fraction parameters.

Remark 4.1. In Step 3 we have assumed that the (1, 1) element of H
(2)
n is nonzero.

This assumption is always satisfied: assuming to the contrary that the (1, 1) element of H
(2)
n

vanishes, the first column of (4.7) reads Av = W
(2)
n+2[0, ∗, . . . , ∗]T . This is a contradiction

as the left-hand side of this equation is a superdiagonal rational function in A times v ,

whereas the trailing n columns of W
(2)
n+1 can be taken to be a basis for Vn ⊂ Wn+1, which

only contains diagonal (and subdiagonal) rational functions in A times v (provided that all
poles ξ1, . . . , ξn−1 are finite).

Remark 4.2. In Step 5 we have assumed that the lower n × n part of H
(4)
n can be

tridiagonalized by the two-sided Lanczos algorithm. While this conversion can potentially
fail, we conjecture that if rn admits a continued fraction form (2.5) then such an unlucky

breakdown cannot occur. (The conditions for the rational function (rn(λ) − ĥ0λ) to posses
this so-called Stieltjes continued fraction form [26] are reviewed in [23]; see Theorem 1.39
therein.) Even if our conjecture were false, the starting vector v will typically be chosen at
random in our application. So if an unlucky breakdown occurs, trying again with another
vector v would easily solve the problem. We have not encountered any unlucky breakdowns
in our numerical experiments.

5. Computational aspects.

5.1. Pseudocode and implementation. The pseudocode for a single RKFIT itera-
tion is given in Algorithm 5.1. A MATLAB implementation is contained in the RKToolbox
which is available online at http://rktoolbox.org. The provided rkfit method is very
easy to use. For example, the following three lines of MATLAB code will compute an RKFIT
approximant rn(A)v ≈

√
Av for A = tridiag(−1, 2,−1) and a random vector v of size 100:

A = gallery('tridiag', 100); F = @(V) sqrtm(full(A))*V;

v = randn(100, 1); xi = inf(1, 9); param.k = +1;

[misfit, ratfun] = rkfit(F, A, v, xi, param);

http://rktoolbox.org
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Algorithm 5.1 One RKFIT iteration for superdiagonal approximants.

Input: Matrices A,F ∈ CN×N , nonzero v ∈ CN , and initial poles ξ1, ξ2, . . . , ξn−1 ∈
C \ Λ(A) (in the first iteration typically all chosen at ∞).

Output: Improved poles ξ̂1, ξ̂2, . . . , ξ̂n−1.

1. Compute rational Krylov decomposition AWn+1Kn = Wn+1Hn with Wn+1e1 = v/‖v‖2
and poles ξ1, ξ2, . . . , ξn−1,∞.

2. Define Vn = Wn+1[ In |0 ]T .

3. Compute a right singular vector cn ∈ Cn of (I −Wn+1W
∗
n+1)FVn corresponding to a

smallest singular value.

4. Form AV̂nĤn−1 = V̂nK̂n−1 spanning R(Vn) with V̂ne1 = Vncn.

5. Compute ξ̂1, ξ̂2, . . . , ξ̂n−1 as the generalized eigenvalues of the lower (n − 1) × (n − 1)

part of (Ĥn−1, K̂n−1).

Note that F is a function handle for computing the action of
√
A onto a block of vectors, and

typically this can be done more efficiently than using dense matrix algorithms like sqrtm.
In particular, rational Krylov techniques themselves can be used for this purpose (see, e.g.,
[22, 21]). The degree (10, 9) of rn is specified by 9 initial poles at infinity (the variable
xi) and the numerator degree offset parameter k = +1 given to RKFIT. In all our numerical
experiments we choose all the initial poles to be at ∞. When used with its default options,
rkfit performs 10 iterations and then returns the solution rn (represented by the output
ratfun) with the smallest relative misfit

misfit =
‖Fv − rn(A)v‖2

‖Fv‖2
.

For the numerical experiments in the following sections we report the number of RKFIT
iterations required to achieve a relative misfit below 1.01 times the overall minimum achieved
in (at most) 30 iterations. This is to avoid artificially high iteration numbers being reported
in the case that RKFIT stagnates on its final accuracy level (where tiny misfit fluctuations
may occur due to floating point arithmetic).

For the purpose of this paper we have extended the RKToolbox by the contfrac method,
which allows for the conversion of an RKFUN, the fundamental data type to represent and
work with rational functions rn, into continued fraction form. The implementation fol-
lows exactly the procedure given in section 4.3. Numerically, these transformations may
be ill conditioned and the use of multiple precision arithmetic is recommended. The RK-
Toolbox supports both MATLAB’s Variable Precision Arithmetic (vpa) and, preferably,
the Advanpix Multiprecision Toolbox (mp) [1]. To compute the continued fraction coef-

ficients hj and ĥj−1 in (2.5) for the above ratfun object one simply types [h, hath] =

contfrac(mp(ratfun)).

5.2. Training and testing vectors. In section 2 we established that many DtN maps
can be written in the form b = fh(A)u0, where u0 is the Dirichlet data at the interface
x = 0 for (1.1b), and b is the corresponding Neumann data. In section 4 we have replaced
u0 by a general vector v because in many applications the Dirichlet data u0 may actually be
unknown. For example, if the DtN approximation is incorporated into an existing FD scheme
to mimic a perfectly matched layer, then u0 appears only implicitly as an unknown variable
in the FD grid. One may not know a priori which spectral components will be present in
u0, or in terms of the indefinite Helmholtz problem mentioned in the introduction, it may
not be clear a priori which wave modes will arrive at the x = 0 interface.

In order to still apply RKFIT in such situations and to compute a DtN approximation
rn(A) ≈ fh(A) independent of u0, we will compute the RKFIT approximant for a training
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vector v and then assume that it is accurate for all testing vectors u0. In all our experiments
we choose both vectors at random, so that almost surely all spectral components of A enter
as weights into the computation of rn. We observed in the numerical experiments that if
rn(A)v ≈ fh(A)v is a good approximation, then typically also rn(A)u0 ≈ fh(A)u0 is a good
approximation.

5.3. Surrogate approximation. In some cases A ∈ CN×N may be too large to com-
pute F = f(A) or FVn directly. In this case we perform the RKFIT computation with a

surrogate matrix Ã ∈ CÑ×Ñ and a surrogate training vector ṽ ∈ CÑ , Ñ � N , instead of
(A, v). Similar approaches have been applied successfully in [10, 9]. In the case where A is
Hermitian, for example, the surrogate may be chosen as a diagonal matrix with sufficiently
dense eigenvalues in the spectral interval of A (which requires eigenvalue estimates) and
the vector ṽ = [1, 1, . . . , 1]T . The main operations in the RKFIT algorithm (like matrix-

vector products and linear system solves) involving a diagonal matrix become trivial O(Ñ)

operations. Moreover, the application of fh(Ã) reduces to Ñ scalar evaluations of the DtN
function. In some of our numerical experiments we will use this surrogate approach to test
the performance of RKFIT when being applied with a matrix A that has “essentially dense”
spectrum, thereby mimicking uniform approximation over its spectral interval.

6. Convergence comparisons for the constant-coefficient case. The nonlinear
rational least squares problem (4.1) is nonconvex and there is no guarantee that a mini-
mizing solution exists, nor that such a solution would be unique. Concrete examples of
nonlinear rational least squares problems with no or highly sensitive solutions are given in
the introduction of [9]. As a consequence of these theoretical difficulties and due to the
nonlinear nature of RKFIT’s pole relocation procedure, a comprehensive convergence anal-
ysis seems currently intractable. (An exception is [9, Corollary 3.2], which states that in
exact arithmetic RKFIT converges within a single iteration if F itself is a rational matrix
function of appropriate type.) However, for some special cases we can compare the RKFIT
approximants to analytically constructed near-best approximants. The aim of this section
is to provide such a comparison to the two-interval Zolotarev approach in [16], and the
one-interval approximants studied by Newman and Vjacheslavov [24, Section 4].

Throughout this section we assume that A is Hermitian with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λN . In our discussion of available convergence bounds we will usually focus on the
function f(λ) =

√
λ, however, as has been argued in [16, Section 5.1], it is possible to

obtain similar bounds for the “discrete impedance function” fh(λ) =
√
λ+ (hλ/2)2. Some

of our numerical experiments will be for the latter function, illustrating that the convergence
behavior is indeed similar to that for the former.

6.1. Two-interval approximation with coarse spectrum. Our first example fo-
cuses on the approximation of F = fh(A), fh(λ) =

√
λ+ (hλ/2)2, where A is a nonsingular

indefinite Hermitian matrix with relatively large gaps between neighboring eigenvalues. We
recall the convergence result (1.2) from the introduction, which states that the geometric
convergence factor is governed by the ratios of the spectral subintervals [a1, b1] and [a2, b2],
a1 < b1 < 0 < a2 < b2.

Example 6.1. In Figure 6.1 (top left) we show the relative errors

‖Fu0 − rn(A)u0‖2/‖Fu0‖2

of the type (n, n − 1) rational functions obtained by RKFIT (dashed red curve) and the
two-interval Zolotarev approach (dotted blue) for varying degrees n = 1, 2, . . . , 25. Here the
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matrix A is defined as A = L/h2 − k2∞I ∈ RN×N , where N = 150, h = 1/N , k∞ = 15, and

L =


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 . (6.1)

The matrix L corresponds to a scaled FD discretization of the 1D Laplace operator with
homogeneous Neumann boundary conditions. The spectral subintervals of A are

[a1, b1] ≈ [−225,−67.2] and [a2, b2] ≈ [21.5, 8.98 · 104].

The vector u0 ∈ RN is chosen at random with normally distributed entries. To compute
the RKFIT approximant rn we have used another random training vector v with normally
distributed entries. The corresponding errors ‖Fv − rn(A)v‖2/‖Fv‖2 together with the
number of required RKFIT iterations are also shown in the plot (solid red curve). For
all degrees n at most 5 RKFIT iterations where required to satisfy the stagnation criterion
described in section 5.1. Note that the two RKFIT convergence curves (for the vectors u0 and
v) are very close together, indicating that the random choice for the training vector does not
affect much the computed RKFIT approximant. Note further that the RKFIT convergence
follows the geometric rate predicted by (1.2) (dotted black curve) very closely initially (up to a
degree n ≈ 10), but then the convergence becomes superlinear. This convergence acceleration
is due to the spectral adaptation of the RKFIT approximant.

The spectral adaptation is illustrated in the graph on the top right of Figure 6.1, which
plots the error curve |fh(λ)−r10(λ)| of the RKFIT approximant r10 (solid red curve) over the
spectral interval of A, together with the attained values at the eigenvalues of A (red crosses).
In particular, close to λ = 0, there are two eigenvalues at which the error curve attains a
relatively small value in comparison to the other eigenvalues farther away (meaning that rn
interpolates fh nearby). These eigenvalues have started to become “deflated” by RKFIT,
effectively shrinking the spectral subintervals [a1, b1] and [a2, b2], and thereby leading to the
observed superlinear convergence.

In the bottom of Figure 6.1 we show the poles and residues of the RKFIT approximant
r10 (left) and the associated continued fraction parameters (right), giving rise to the RKFIT-
FD grid steps. All the involved quantities have been calculated using the RKFUN calculus
of the RKToolbox as described in section 5.1.

6.2. Two-interval approximation with dense spectrum. The superlinear conver-
gence effects observed in the previous example should disappear when the spectrum of A is
dense enough so that, for the order n under consideration, no eigenvalues of A are deflated
by interpolation nodes of rn. The next example demonstrates this.

Example 6.2. In Figure 6.2 we show the relative errors ‖Fu0 − rn(A)u0‖2/‖Fu0‖2
of the type (n, n− 1) rational functions obtained by RKFIT and the Zolotarev approach for
varying degrees n = 1, 2, . . . , 25. Now the matrix A corresponds to a shifted 2D Laplacian
A = (L⊗L)/h2 − k2∞I ∈ RN×N , where N = 1502, h = 1/150, k∞ = 15, and with L defined
in (6.1). The special structure of L (and A) allows for the use of the 2D discrete cosine
transform for computing F = fh(A). The spectral subintervals of A are

[a1, b1] ≈ [−225,−27.7] and [a2, b2] ≈ [21.5, 1.80 · 105].

The vector u0 ∈ RN is chosen at random with normally distributed entries. We also show
the relative error of the RKFIT approximant rn(A)v with another randomly chosen training
vector v , and the number of required RKFIT iterations. As in the previous example there is
no big difference in accuracy when evaluating the RKFIT approximant for u0 or v , however,
the number of required RKFIT iterations is slightly higher in this example. As the eigenvalues
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← spectral adaptation

Figure 6.1. Top: Accuracy comparison of RKFIT and Zolotarev approximants for a shifted 1D Lapla-
cian which has a rather coarse spectrum, hence resulting in superlinear RKFIT convergence. The DtN
function is fh(λ) =

√
λ+ (hλ/2)2. The small numbers on the solid red convergence curve on the left indi-

cate the number of required RKFIT iterations. Bottom: The poles and residues of the RKFIT approximant
r10 (left) and the associated continued fraction parameters (right).

of the matrix A are relatively dense in its spectral interval, we now observe that no spectral
adaptation takes place and both the RKFIT and the Zolotarev approximants converge at the
rate predicted by (1.2).

In the bottom of Figure 6.2 we show the grid vectors uj satisfying the FD relation (3.1)

for n = 10, with the RKFIT-FD grid parameters hj and ĥj−1 (j = 0, 1, . . . , 10) extracted
from r10. The entries of uj are complex-valued, hence we show the log10 of the amplitude
and phase separately. Note how the amplitude decays very quickly as the random signal
travels further to the right in the grid, illustrating the good absorption property of this grid.

6.3. Approximation on an indefinite interval. In order to remove superlinear
convergence effects and the spectral gap [b2, a1] from which the previous two examples
benefited, we now consider the approximation on an indefinite interval. The following test
uses a diagonal matrix with sufficiently dense eigenvalues and hence is an example for the
surrogate strategy described in section 5.3.

Example 6.3. We approximate f(λ) =
√
λ on the indefinite interval

[a1, b2] = [−225, 1.80 · 105].

Note that [a1, b2] is the same as in the previous Example 6.2, but without the spectral gap
about zero. This problem is of interest as, in the variable-coefficient case, one cannot easily
exploit a spectral gap between the eigenvalues of A which are closest to zero. This is because
a varying coefficient c(x) can be thought of as a variable shift of the eigenvalues of A; hence
an eigenvalue-free interval [b1, a2] may not always exist.
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Figure 6.2. Top: Comparison of RKFIT and Zolotarev approximants for a shifted 2D Laplacian.
Bottom: The log10 of the amplitude and phase of the grid vectors uj (j = 0, 1, . . . , n = 10). Qualitatively,
the poles and residues and the complex grid steps for the associated RKFIT approximant r10 look similar
to those in Figure 6.1 and are therefore omitted.

To mimic continuous approximation on an interval, we use for A a surrogate diagonal
matrix of size N = 200 having 100 logspaced eigenvalues in [a1,−10−16] and [10−16, b2],
respectively. The training vector v is chosen as [1, 1, . . . , 1]T . We run RKFIT for degrees
n = 1, 2, . . . , 25. The relative error of the RKFIT approximants ‖Fv − rn(A)v‖2/‖Fv‖2
seems to reduce like exp(−π

√
n); see Figure 6.3 (left).

We also compare RKFIT to a two-interval Remez-type approximant which is obtained
by using the interpolation nodes of numerically computed best approximants to

√
λ on [0, 1],

scaling them appropriately, and unifying them for the intervals [a1, 0] and [0, b2]. The number
of interpolation nodes on both intervals is balanced so that the resulting error curve is closest
to being equioscillatory on the whole of [a1, b2]. Again the error of the so-obtained Remez-
type approximant seems to reduce like exp(−π

√
n).

Remark 6.1. The uniform rational approximation of
√
λ on a semi-definite interval

[0, b2] has been studied by Newman and Vjacheslavov. In particular, it is known that the
error of the best rational approximant reduces like exp(−π

√
2n) with the degree n; see [24,

Section 4]. Based on the observations in Figure 6.3 we conjecture that the error of the best
rational approximant to

√
λ on an indefinite interval [a1, b2] reduces like exp(−π

√
n).

7. Variable-coefficient case. We now consider the case of a variable coefficient func-
tion c. Here analytic results are not available and numerical approximation appears to be
the only option. In this section we mainly present the numerical results, which are then
discussed in more detail in the following section 8.

Example 7.1. We consider the seismic exploration setup in Figure 1.1. At the x = 0
interface of the computational domain we assume to have a 2D Laplacian A = (L⊗L)/h2−
k2∞I with L defined in (6.1), and N = 1502, h = 150, and k∞ = 15. Now the function fh
of interest is (2.3), with the coefficients cj obtained by discretizing the piecewise-constant
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Figure 6.3. RKFIT approximation of f(λ) =
√
λ on an indefinite interval [a1, b2], a1 < 0 < b2,

compared to a two-interval Remez-type approximant. Qualitatively, the poles/residues and the complex grid
steps associated with r10 look similar to those in Figure 6.1 and are therefore omitted.

coefficient function c given by

c(x) =


−400 if 0 ≤ x < T,

+125 if T ≤ x < 2T,

0 if 2T ≤ x <∞,

where the thickness of the two finite layers T is varied over {0.25, 0.5, 1, 2}. For each thick-
ness T , the four panels in the top of Figure 7.1 show the modulus of fh over the spectral
subintervals [a1, b1] and [a2, b2] of A, glued together with the gray linear region [b1, a2]. It
becomes apparent that with increasing T the function fh exhibits more poles on or nearby
the spectral interval of A, indicated by the upward spikes in the plot.

The convergence of the RKFIT approximants for varying degree parameter n is shown in
Figure 7.1 on the bottom left. For each thickness T there are two curves very nearby: a solid
curve showing the relative 2-norm approximation error for Fv (where v is a random training
vector) and a dashed curve for Fu0 (where u0 is another random testing vector). We observe
that RKFIT converges very robustly for this piecewise constant-coefficient problem. Similar
behavior has been observed in many numerical tests with other offset functions c. While we
cannot report on all these tests here, we highlight again that the codes for producing our
examples are available online and can easily be modified to other coefficient functions.

Example 7.2. Here we consider a diagonal matrix A with the same indefinite spec-
tral interval as the matrix in the previous example but with dense eigenvalues, namely 100
logspaced eigenvalues in [a1,−10−16] and [10−16, b2], respectively. The convergence is shown
on the bottom right of Figure 7.1. Again the RKFIT behavior is very robust even for high
approximation degrees n, but compared to the above Example 7.1 the convergence is delayed,
indicating that spectral adaptation has been prevented here.

8. Discussion and conclusions. An obvious alternative to our grid compression ap-
proach in the two examples of section 7 would be to use an efficient discretization method
on c’s support, and then to append it to the constant-coefficient PML of [16]. In principle
such an approach requires at least the integer part of

N =

∫ H

0

√
k2∞ − c(x)

π
dx

discretization points according to the Nyquist sampling rate, where H is the total thickness
of c’s support. In fact, the classical spectral element method (SEM) with polynomial local
basis requires at least π

2 N grid points [3]. (The downside of SEM compared to our FD
approach is its high linear solver cost per unknown caused by the dense structure of the
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Figure 7.1. Top: The four panels show the modulus of the discrete variable-coefficient DtN function
fh for varying thickness T of the two finite layers. Bottom: The two plots show the RKFIT convergence for
approximating fh(A)v when A is a shifted 2D Laplacian (left) and a diagonal matrix with dense eigenvalues
in the same spectral interval (right), respectively.

resulting linear systems.) The following table shows the minimal number of grid points
required for discretizing the two finite layers in the examples of section 7, depending on
the layer thickness T , as well as the number of RKFIT-FD grid points to achieve a relative
accuracy of 10−5 for the same problem:

T = 0.25 T = 0.5 T = 1 T = 2
Nyquist minimum N 8.75 17.5 35 70
SEM minium π

2 N 13.7 27.5 55.0 110.0
RKFIT-FD (Example 7.1) 8 10 16 19
RKFIT-FD (Example 7.2) 14 11 17 28

Although we also observe with RKFIT-FD a tendency that the DtN functions become more
difficult to approximate when the layer thickness increases (an increase of the coefficient
jumps between the layers will have a similar effect), the number of required grid points can be
significantly smaller than the Nyquist limit N. A possible explanation for this phenomenon
is RKFIT’s ability to adapt to the spectrum of A, not being slowed down in convergence by
singularities of the DtN function well separated from the eigenvalues of A. In the appendix
we give some insight into this phenomenon.
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Appendix A. A Nyquist limit-type criterion for rational approximation. The
plots in Figure 7.1 suggest that the DtN function fh, specified in (2.3), develops more and
more poles on the real axis as the thickness of the finite layers increases. In order to obtain
a better understanding of this behavior, we consider a two-layer waveguide problem with
piecewise constant wave numbers similar to the one in Figure 1.2, but now in the continuous
setting without any FD approximation. This problem is governed by the equations

u′′(x) = (λ+ c)u(x), x ∈ [0, T ),

u′′(x) = λu(x), x ∈ [T,∞),

http://www.advanpix.com/
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5 real poles → no real poles

Figure A.1. The DtN function f defined in (A.1), as well as its discrete counterpart (2.3), for two
different choices of the parameters (T, c).

with given u(0) = u0 and the decay condition u(x)→ 0 as x→∞. Here, T is the thickness
of the first layer with an offset coefficient c. In terms of the Helmholtz equation, a value
c = −k20 < 0 means that the wave number on the first layer is larger than on the second,
whereas c > 0 means that the wave number on the first layer is smaller than on the second.
If c = 0 we have a homogeneous infinite waveguide.

Our aim is to solve for u explicitly and to determine a formula for the DtN function f
satisfying f(λ)u0 = −u′(0). For x ∈ [0, T ] we have

u(x) = αex
√
λ+c + (u0 − α)e−x

√
λ+c

= 2α sinh
(
x
√
λ+ c

)
+ e−x

√
λ+cu0,

where the square roots are understood as the analytical continuation through the upper
half plane from the axis λ > −c. For x ∈ [T,∞) we require a decaying solution, hence

u(x) = βe−x
√
λ there. By continuity of u(x) at x = T , we have

β =
(
2α sinh

(
T
√
λ+ c

)
+ e−T

√
λ+cu0

)
· eT
√
λ.

By continuity of u′(x) at x = T we further require

√
λ+ c ·

(
2α cosh(T

√
λ+ c)− e−T

√
λ+cu0

)
= −β

√
λ · e−T

√
λ,

hence

√
λ+ c ·

(
2α cosh(T

√
λ+ c)− e−T

√
λ+cu0

)
= −

(
2α sinh

(
T
√
λ+ c

)
+ e−T

√
λ+cu0

)
·
√
λ,

from which α can be determined as

α =
u0
2
·

(√
λ+ c−

√
λ
)
e−T

√
λ+c

√
λ+ c cosh(T

√
λ+ c) +

√
λ sinh

(
T
√
λ+ c

) .
Note that α = αλ is a function of λ. Using the fact that u′(0) = (2αλ−u0)

√
λ+ c, the DtN

function f satisfying f(λ)u0 = −u′(0) is given as

f(λ) =

√
λ+ c · sinh(T

√
λ+ c) +

√
λ · cosh

(
T
√
λ+ c

)
√
λ+ c · cosh(T

√
λ+ c) +

√
λ · sinh

(
T
√
λ+ c

) · √λ+ c. (A.1)

A plot of this function for two different parameter choices T = 5 and c = ±9 is shown in
Figure A.1. It appears that for c ≥ 0, this function is smooth over the whole real axis, while
it develops singularities for c < 0. The following lemma shows that the number of real poles
is proportional to c and T .
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Lemma A.1. The function f defined in (A.1) can be analytically continued from λ >
max{0,−c} through the upper half plane to the whole real axis except for two ramification
points λ = 0 and λ = −c and possibly a finite number of poles. For c > 0, the function f

has no poles on the real axis. For c < 0, the function f has
⌊
T
√
−c
π

⌋
+ q real poles, where

q ∈ {0, 1}, all located in the interval (0,−c).

Proof. We investigate the roots of the denominator function

g(λ) =
√
λ+ c · cosh(T

√
λ+ c) +

√
λ · sinh(T

√
λ+ c).

We first consider the case c < 0 and argue that there are no real roots of g outside [0,−c]. For
λ < 0, the factors

√
λ+ c and

√
λ are purely imaginary and nonzero, while cosh(T

√
λ+ c) =

cos(Tz) is purely real and sinh(T
√
λ+ c) = i sin(Tz) purely imaginary (here and throughout

the proof z = imag(
√
λ+ c)). Hence, λ can only be a root of g if cos(Tz) = sin(Tz) = 0,

but this cannot happen as cos(·) and sin(·) do not have any roots in common. A similar
argument shows that there are no roots of g for λ > −c.

For λ ∈ (0,−c), z = imag(
√
λ+ c) varies in (0,

√
−c) and we want to count the number

of roots of the purely imaginary function h(z) = g(λ) = iz cos(Tz)+
√
z2 + c·sin(Tz) on that

interval. Consider the subintervals Ik = ((k−1)π/T, kπ/T ] for k = 1, 2, . . . ,K = bT
√
−c/πc.

Then on the first half of each Ik the function imag(h) is strictly positive (or negative), while
on the second half it is strictly monotonically decreasing (increasing) with a sign change.
Therefore each Ik contributes exactly one root of h. The final interval (Kπ/T,

√
−c) may or

may not contain a further root of h. By the same argument one shows that the roots of the
numerator of f are located on the first half’s of Ik, and hence the roots of the denominator
do not cancel out.

For c ≥ 0 one argues similarly to the first part of the proof that the denominator function
g has no roots for all real values of λ.

To interpret this result in terms of the indefinite Helmholtz equation (∂yy + ∂zz)u +
(k2∞ − c(x))u = 0 for c < 0, first note that the DtN function (A.1) does not depend on
k∞, but merely on the offset c. We may therefore set k∞ = 0, in which case the wave
number on the first finite layer is simply k =

√
−c. Furthermore, ` = 2π/k = 2π/

√
−c is

the corresponding wavelength. Using this notation, Lemma A.1 states that f has ≈ 2T/`
poles on the real axis, that is, two real poles per wavelength!

Although Lemma A.1 is stated for the continuous waveguide problem, discrete DtN
functions fh seem to have poles very close to those of their continuous counterparts f .
An example is shown in Figure A.1 (dashed red curve), which corresponds to (2.3) with
“piecewise” constant coefficients cj and h = 0.05.

Returning to the RKFIT convergence, we observed in the experiments in section 7 that
the minimal number n of RKFIT-FD grid points required to achieve convergence does not
seem to be directly linked to the Nyquist criterion. Although fh may have a large number
N of singularities on the spectral interval of A, RKFIT’s spectral adaptation capabilities
mean that rn does not need to resolve them all, and therefore the degree n can be signifi-
cantly smaller than N. Although Lemma A.1 effectively states a Nyquist-type criterion for
the layered waveguide, from a rational approximation point of view RKFIT-FD grids can
outperform it in case of a favorable spectral distribution of the matrix A.


