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The relative importance of nodes in a network can be quantified via functions of the adjacency matrix.
Two popular choices of function are the exponential, which is parameter-free, and the resolvent function,
which yields the Katz centrality measure. Katz centrality can be the more computationally efficient,
especially for large directed networks, and has the benefit of generalizing naturally to time-dependent
network sequences, but it depends on a parameter. We give a prescription for selecting the Katz parameter
based on the objective of matching the centralities of the exponential counterpart. For our new choice of
parameter, the resolvent can be very ill conditioned, but we argue that the centralities computed in floating
point arithmetic can nevertheless reliably be used for ranking. Experiments on six real networks show
that the new choice of Katz parameter leads to rankings of nodes that generally match those from the
exponential centralities well in practice.

Keywords: Katz centrality; Katz parameter; adjacency matrix; matrix exponential; matrix resolvent;
network analysis; inverse iteration; condition number.

1. Introduction

The term centrality refers to a real number associated with a node of a network that conveys information
about its relative ‘importance’. Centrality measures came to prominence in social network analysis [1],
but have proved to be extremely useful tools across network science [2,3].

A popular way to define centrality is to quantify the ability of a node to initiate walks around the
network, a concept that leads naturally to the use of matrix functions. Using standard notation, we let
A = (aij) denote the adjacency matrix for an unweighted network of n nodes, so that aij = 1 if there is
an edge from i to j and aij = 0 otherwise. It follows that the number of walks of length k from node i
to node j is given by (Ak)ij; see, for example, [4]. Resolvent-based centrality measures, first suggested
by Katz [5], penalize long walks through multiplication by a fixed factor α for each edge used. This
leads to a series of the form

∑∞
k=0 αkAk , where for i |= j the (i, j) element gives a weighted count of the
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number of walks of all lengths from i to j. This series converges to the resolvent (I − αA)−1 for any
α ∈ [0, 1/ρ(A)), where ρ(A) denotes the spectral radius of A. The ith row sum of the resolvent therefore
summarizes the ability of node i to initiate walks to all nodes in the network. Similarly, the (i, i) element
of the resolvent gives a weighted count of closed walks, that is, walks that start and finish at node i,
with a uniform unit shift. Since we are concerned with the comparative performance across nodes, this
shift is not important.

A related centrality concept arises from the suggestion by Estrada and Rodrígues-Velázquez [6] to
weight walks of length k by the factor 1/k!, so that the resolvent is replaced by

∑∞
k=0 Ak/k!, which is

the matrix exponential function, eA [7, Chapter 10]. They define the subgraph centrality of a node to
be the weighted sum of all closed walks originating from it, which can be computed as the diagonal
entry (i, i) of eA. Some justification for this definition is given by Estrada et al. [8, Section III] using the
metaphor of a network as a system of oscillators.

In this work, we measure the importance of a node via a weighted sum of both the open and closed
walks starting from it; that is, we use the total subgraph communicability of a node, introduced by Benzi
and Klymko [9], as its measure of centrality. The associated exponential-based centrality measure of
node i is thus given by the ith element of the vector

ce(A) = eA1, (1.1)

where 1 = [1, 1, . . . , 1]�. Similarly, the resolvent-based centrality of node i is the ith element of the
vector

cα(A) = (I − αA)−11. (1.2)

We note that the combinatoric ‘weighted walk count’ interpretation of the matrix resolvent and
matrix exponential extends naturally to the case of non-negative integer weights if we interpret aij as
recording the number of distinct connections between node i and j. For example, in a road network, if
there are two distinct roads connecting town A and town B and three distinct roads connecting town B
and town C, then there are 2 × 3 = 6 distinct ways to get from town A to town C in two hops via town
B. The adjacency matrix power Ak therefore continues to count walks in this generalized sense, and the
centrality vectors ce in (1.1) and and cα in (1.2) have a clear meaning. We also point out that in the
case where A is non-symmetric computing these centrality measures on the transpose, A�, quantifies
the propensity of nodes to receive, rather than broadcast, information.

The motivation for our work is that there currently seems to be no agreed mechanism for selecting
the Katz parameter α, and, as we will show in Section 4, centrality rankings can be strongly dependent
on this value. To derive and judge an approach for choosing α, we make the assumption that exponential-
based total communicability is the ‘gold standard’ and thereby seek to match this measure as closely as
possible. Therefore, we select α in (1.2) to match closely the centralities in (1.1).

In Section 2, we pursue this approach for selecting a Katz parameter α, both for directed and undi-
rected networks, and propose a new choice of the parameter. In Section 2.2, we give an overview of
some particular choices of α that have appeared in the literature. In Section 3, we show that our new
choice of Katz parameter can lead to a very ill conditioned resolvent and explain why the ill condi-
tioning is innocuous. Numerical experiments are presented in Section 4 that test the performance of the
proposed new value of the Katz parameter for ranking nodes in real networks. In Section 5, we briefly
explain why computing resolvent-based centrality measures may be more favourable than the expo-
nential versions for very large and sparse networks and also for time-dependent networks. Concluding
remarks are given in Section 6.
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2. Katz parameter

The exponential-based centrality measure penalizes longer walks more heavily than the resolvent-based
one; for a walk of length k the coefficient in the exponential series is 1/k!, compared with αk in the
resolvent series. The exponential-based centrality has been found to yield meaningful results for some
particular problems, for example those arising from biochemical applications [10]. Furthermore, in
social networks and in other human interactions direct acquaintanceship is typically more important,
which can be successfully exploited via the exponential-based centrality analysis [2, Chapter 19]. As
we explain in Section 5, resolvent-based centrality has the advantage of extending naturally to the case
of time-dependent network sequences. The resolvent measure is also more flexible, since α can be tuned
according to the requirements of the specific problem. This, however, requires good knowledge of the
network, which may not always be readily available to the person constructing the model. It is therefore
desirable to have a prescription for a Katz parameter that closely matches the node rankings produced
by the exponential measure. This will provide a computational alternative to the matrix exponential
function for obtaining reliable node rankings.

2.1 A new Katz parameter

We propose a new method for selecting the Katz parameter that aims to minimize the norm of the
difference between the centrality vectors ce in (1.1) and cα in (1.2). This approach naturally ensures that
the centralities of the nodes with the highest scores are closely matched. Indeed, in many applications
it is only the best ranked nodes that are of practical interest. We would therefore like to find α that
solves

min
α

err(α) := min
α

‖ce(A) − cα(A)‖2 subject to 0 � α < 1/ρ(A), (2.1)

where the 2-norm is defined by ‖x‖2 = (x�x)1/2. Initially, we will make no assumptions about the net-
work except that A is a diagonalizable matrix, so that A = VDV−1, where D = diag(λi) contains the
eigenvalues of A and V is non-singular. (In fact, our derivation can be modified to use the Jordan canon-
ical form when A is not diagonalizable, and the same value of α is obtained.) Since the matrix A is
non-negative, the Perron–Frobenius theory [11, Theorem 8.4.4] applied to A� tells us that ρ(A) is an
eigenvalue of A with an associated non-negative left eigenvector y: y�A = ρ(A)y�. Without loss of
generality, we can take λ1 = ρ(A) and the first row of V−1 to be y�. We have

err(α)2 = ‖V(eD − (I − αD)−1)V−11‖2
2

� ‖V‖2
2‖(eD − (I − αD)−1)V−11‖2

2 (2.2)

= ‖V‖2
2

n∑
i=1

∣∣∣∣eλi − 1

1 − αλi

∣∣∣∣
2

|wi|2, (2.3)

where w = V−11. Then

min
α

err(α)2 � err(αmin)
2 � ‖V‖2

2

n∑
i=2

∣∣∣∣eλi − 1

1 − αminλi

∣∣∣∣
2

|wi|2, (2.4)
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where αmin is such that (eλ1 − 1/(1 − αminλ1))
2w2

1 = 0. But w1 = y�1 |= 0 as y is a non-zero vector with
non-negative entries, so

αmin = 1 − e−λ1

λ1
. (2.5)

The value of the upper bound (2.4) on the minimum is governed both by the distribution of the eigen-
values of A and the sums wi of the elements of the left eigenvectors of A.

Clearly, we need λ1 = ρ(A) > 0 for αmin to be defined. For an undirected network, ρ(A) = 0 implies
A = 0, so ρ(A) > 0 can be assumed. For a directed network, if λ1 = 0, then all the eigenvalues of A are
zero and eA and (1 − αA)−1 have the same eigenvalues for all α. It is therefore not possible to choose α

based purely on considerations of the spectrum and so some other approach must be used.
For the special case of normal adjacency matrices, i.e., ones that satisfy A�A = AA� and hence are

diagonalizable by orthogonal matrices—in particular, symmetric matrices, corresponding to undirected
networks—we can take V orthogonal, and (2.2) and the second inequality in (2.4) are then equali-
ties. Some classes of directed networks are known to have normal adjacency matrices. For example,
(unweighted) ‘ring’ networks are such that for i = 1 : n − 1 there is an edge from node i to node i + 1
and an edge from node n to node 1, and for these it is always true that A�A = AA� = I.

The upper bound (2.4) on minα err(α) is attained for certain types of graphs. For example, for
unweighted and undirected k-regular graphs, where each node has degree k, it is easy to see that 1
is always an eigenvector of the adjacency matrix [4, Chapter 3] and then from the orthogonality of the
eigenvectors it follows that wi = 0 for all i � 2 [12]. In general, the upper bound (2.4) provides a good
estimate for minα err(α) either if A is such that there is a relatively big separation |λ1 − Re(λ2)| between
its two eigenvalues with largest real part, or if |w1| is significantly larger than |wi| for all i > 1. These
cases are common in practice, as we see from the examples in Section 4.

Benzi and Klymko [13, Section 9] observe experimentally that for both undirected and directed
networks the exponential and resolvent measures differ the most for values of the Katz parameter that
satisfy 0 � α � 0.9/λ1. Provided λ1 > log 10 ≈ 2.3026, αmin avoids this interval. We note that by [11,
Theorem 8.1.22] λ1 lies between the smallest and largest row sums of the adjacency matrix of the
network, so in practice such a small value for λ1 will rarely be observed.

Finally, we note that αmin can be readily adapted to match the rankings obtained from the more
general parametrized exponential centrality eAβ [2, Section 5.2]. The parameter β > 0 can be inter-
preted as an artificial inverse temperature and reflects the influence of stress factors external to the
system. This corresponds to a homogeneous scalar weighting of all the edges in a network, so the
largest eigenvalue of the scaled system becomes βλ1. For the corresponding Katz parameter we have
αmin = (1 − e−βλ1)/(βλ1).

2.2 Other Katz parameters

Many different choices for the Katz parameter in the resolvent-based centrality measure have appeared
in the literature, some of them proving more popular than others. In his original paper, Katz suggests
that a value for α in the interval [1/(2λ1), 1/λ1) should be suitable [5]. Some authors have in particular
chosen the value

α0.5 = 1

2λ1

to study similarity in texts [14, p. 4411]. This Katz parameter has also successfully been used in the
context of supply chain management [15]. We will use this value in our comparison studies in Section 4.
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Another favoured choice for the Katz parameter is [9]

α0.85 = 0.85

λ1
.

It arises by analogy with the damping factor of Google’s PageRank sorting algorithm, usually set to
0.85 [16].

In many applications, the induced node rankings have been found to be very strongly dependent
on the choice of the Katz parameter, so either an α particular to the model has been computed [17]
or rankings have been reported for many values of α [18]. In some cases, the Katz parameter has a
particularly meaningful interpretation, such as in protein–protein interaction networks [19], where it is
indicative of the balance between the influence of the neighbours and the difference in activity levels.

Since λ1 is bounded by any subordinate norm of the adjacency matrix it is natural to propose a value
for α that depends on such a norm. Foster et al. [20] suggest

αdeg = 1

‖A‖∞ + 1
,

where the subscript relates to the fact that for networks with undirected and unweighted edges the ∞-
norm is the largest node degree. The upper bound λ1 � ‖A‖∞ is known to be attained for several classes
of networks. For k-regular (undirected and unweighted) graphs it is always true that λ1 = ‖A‖∞ = k.
This includes complete graphs and rings.

In Section 4, we present a comparison between the node rankings obtained using the exponential-
based centrality measure and its resolvent-based counterpart, computed with the Katz parameter taken
as αmin and the other options discussed in this section. But first we look more closely at the properties
of αmin.

3. Conditioning

The resolvent-based centralities are the solution of a linear system, so it is of interest to know the
conditioning of the coefficient matrix I − αA of that linear system, since this will influence the accuracy
of the solution obtained in floating point arithmetic. Upper and lower bounds on the 2-norm condition
number κ2(I − αminA) = ‖I − αminA‖2‖(I − αminA)−1‖2 are given in the next result.

Lemma 3.1 Let A be non-negative and let λ1 be an eigenvalue such that λ1 = ρ(A). Let
αmin = (1 − e−λ1)/λ1.

(a) If A is diagonalizable, so that A = VDV−1 with D = diag(λi) and V non-singular, then

κ2(I − αminA) � κ2(V)2(2 eλ1 − 1). (3.1)

(b) If A has an eigenvalue with non-positive real part, then κ2(I − αminA) � eλ1 .

Proof. We have

κ2(I − αminA) = ‖V(I − αminD)V−1‖2‖V(I − αminD)−1V−1‖2 � κ2(V)2κ2(I − αminD).
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Now

max
i

|1 − αminλi| � max
i

(1 + αmin|λi|) = 1 + αminλ1 = 1 +
(

1 − e−λ1

λ1

)
λ1 = 2 − e−λ1 .

Also, mini |1 − αminλi| = |1 − αminλ1| = e−λ1 . Hence

κ2(I − αminD) � 2 − e−λ1

e−λ1
= 2eλ1 − 1.

Finally, if λk has non-positive real part then ‖I − αminA‖2 � |1 − αminλk| � 1, and ‖(I − αminA)−1‖2 �
|1 − αminλ1|−1 = eλ1 , which gives the lower bound. �

The condition in part (b) of the lemma is often satisfied in practice; indeed it is satisfied for the
adjacency matrices of all the networks used in the experiments of Section 4, and more generally it is
satisfied for any non-negative A with zero diagonal.

The bounds in Lemma 3.1 are a cause for concern because they suggest that I − αminA is potentially
very ill conditioned when either λ1 � 1 or V is ill conditioned, the latter case corresponding to A being
highly non-normal. It is certainly possible that λ1 � 1; indeed λ1 is as large as 94 in our test problems
in Section 4. Therefore, I − αminA can be extremely ill conditioned, and in floating point arithmetic we
can expect the computed centrality vector to have a large relative error. However, the ill conditioning is
innocuous, as we now explain.

When we solve the linear system (I − αminA)x = 1, we are effectively carrying out inverse iteration
according to (A − α−1

minI)x = −α−1
min1, and for large λ1, α−1

min = λ1/(1 − e−λ1) is a very good approxima-
tion to the eigenvalue λ1 of A. Standard theory of inverse iteration [21, Section 6.3, 22, Section 4.3, 23,
Section 2] shows that the error in the computed x will be almost parallel to x, that is, the inaccuracy
is concentrated in its length and not its direction. Inverse iteration theory therefore tells us that while
the computed centrality vector may be inaccurate the relative sizes of the elements will be accurately
determined. Since our interest in centralities is to assess the relative importance of nodes, we conclude
that we can safely use αmin in practice. We also observe that when α−1

min is a good approximation to λ1,
the vector of centrality scores x will be almost parallel to the non-negative eigenvector corresponding to
λ1. In such cases, the entries of this eigenvector give the relative importance of each node, and if only
the relative importance of the nodes is required it is then not necessary to compute the centralities.

It is interesting to note that I − αminA is an M -matrix, since αmin < 1/λ1 [24], but the above argument
does not depend on any special properties of A.

4. Experiments with ranking

In our experiments, we compare node rankings obtained from centrality vectors computed using the
exponential- and resolvent-based measures. Our computations are done in IEEE double precision arith-
metic, which has unit roundoff u ≈ 1.1 × 10−16.

For the resolvent measure, we use each of the four choices for the Katz parameter suggested in
Section 2: αmin, α0.5, α0.85 and αdeg. The first three depend on the largest eigenvalue λ1 of the adjacency
matrix A, which we compute using the MATLAB sparse eigensolver eigs with the vector of all ones
as starting vector.

Although we state the value of the relative error errrel(α) := ‖ce(A) − cα(A)‖/‖ce(A)‖ for every
choice of α, the conclusions of our tests are based on correlation coefficients between the rankings
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arising from ce and cα . We compute three types of correlation coefficients: Kendall’s τ [25], Spearman’s
ρ [26] and Pearson’s r [27]; see [28, Chapter 14] for a summary of them. The first is a popular statistic
used to measure the association between rankings of objects by counting the numbers of concordant and
discordant pairs of elements. Similarly, Spearman’s ρ is a non-parametric statistic indicative of whether
the relation between two sets of elements can be expressed as a monotonic function. Spearman’s ρ is
better suited to lists with repeated values, and hence equal ranks. We also report the values of Pearson’s r
statistic. It serves as a test for linear dependence which, while not of immediate interest when comparing
rankings, can still provide some indication as to how the different centrality measures relate. All three
statistics take real values in the interval [−1, 1], where 1 indicates perfect agreement and −1 indicates
perfect disagreement between the objects.

In practice, only the top ranked nodes may need to be identified and there are several ways of reflect-
ing this in the reported correlation coefficients. One of them is to apply a weighting to the test statistics,
so that a disagreement of the best ranked nodes results in a lower than usual correlation coefficient. For
example, Langville and Meyer [29] suggest a weighted version of Spearman’s ρ. Another alternative,
also described in [29], is to tune the statistics to take into account that the compared lists are only par-
tial. We will use the standard forms of the statistics to compute the correlation coefficients between the
rankings obtained from full centrality vectors, and also from the top ranked k% of the nodes.

As a representative notation, we will use τ0.05(ce(A), cαmin(A)) to mean Kendall’s correlation coeffi-
cient between the exponential- and resolvent-based rankings of the top 5% of the nodes of network A,
obtained using the Katz parameter αmin.

To check the reliability of the centralities computed in floating point arithmetic we compute the
quantity

errdir =
(

1 − x̂T xq

‖x̂‖2‖xq‖2

)1/2

≡ (1 − cos θ)1/2,

where θ is the angle between the computed x̂ and a reference vector xq computed in quadruple preci-
sion. We compute xq using the Advanpix Multiprecision Computing Toolbox for MATLAB [30], which
has very efficient IEEE 754-2008-compliant quadruple precision arithmetic. We actually compute errdir

from the alternative formula

errdir = 1√
2

∥∥∥∥ x̂

‖x̂‖2
− xq

‖xq‖2

∥∥∥∥
2

,

which is more accurately evaluated in floating point arithmetic. A value errdir of order u indicates that the
computed and reference solutions are parallel to working precision. For each network we also compute
the 1-norm condition number κ1(I − αA) for each α, or, for the three largest networks, an estimate of the
condition number computed using the MATLAB function condest, which implements the algorithm
of [31].

We will use five examples of real networks available in the literature and one which is new and
consists of recorded communication on the social networking platform Twitter. Table 1 summarizes the
basic features for each network, including the spectral radius λ1 and the eigenvalue with next largest real
part, λ2. We also give the condition number κ2(V) of the eigenvector matrix of A. For the undirected
networks κ2(V) = 1. For the largest network Strathclyde MUFC, we compute the condition number
of the rectangular matrix of eigenvectors corresponding to the 100 eigenvalues with largest real parts.
Figures 1–5 show the sparsity patterns and/or eigenvalue distributions, as appropriate. Sparsity plots for
networks ca-CondMat and ca-AstroPh are omitted as they lack a distinctive visual pattern, at least in
the node orderings provided.
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Table 1 Basic characteristics of test networks. ‘Sparsity’ denotes the proportion of non-zeros

Name Nodes Edges Sparsity Directed Weighted λ1 λ2 κ2(V)

Karate 34 78 1.3e−2 No No 6.7257 4.9771 1
p53 133 558 3.2e−2 Yes No 5.4032 2.0696 + 0.2998i �1e16
Minnesota 2642 3303 9.4e−4 No Yes 3.2324 3.2319 1
ca-CondMat 23,133 93,497 3.5e−4 No No 37.9541 30.6438 1
ca-AstroPh 18,772 198,110 1.1e−3 No No 94.4415 75.5007 1
Strathclyde

MUFC
148,918 193,032 8.7e−6 Yes Yes 41.1511 34.2307 5.7e2
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Fig. 1. Sparsity and eigenvalue distribution plots for Zachary’s Karate Club network.

nz = 558
0 50 100

0

20

40

60

80

100

120

Real part of the eigenvalues
-5 0 5 10

Im
ag

in
ar

y 
pa

rt
 o

f t
he

 e
ig

en
va

lu
es

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 2. Sparsity and eigenvalue distribution plots for the p53 network.
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Fig. 3. Sparsity and eigenvalue distribution plots for the Minnesota network.
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Fig. 4. Eigenvalue distribution (100 largest positive) plots for the ca-CondMat (left) and ca-AstroPh (right) networks.

The correlation coefficients penalize heavily variations in the rankings, even though the centrality
scores of some nodes may be very close together, and in this case the rankings may change greatly with
small variations in α. Such sensitivity of the ordering can arise for networks whose adjacency matrices
have a very clustered spectrum or very ill conditioned eigenvectors. We give two such examples, the
networks p53 and Minnesota.

First we consider a rather well-studied example, Zachary’s Karate Club [32]. The network is of
dimension 34 and the value of its largest eigenvalue λ1 is 6.7257. The values of the different Katz
parameters and the respective correlation coefficients between the rankings arising from cα(A) and
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Fig. 5. Sparsity and eigenvalue distribution (100 with largest real part) plots for the Strathclyde MUFC network.

Table 2 Correlation coefficients between node rankings (all nodes and top 20%) obtained from
exponential-based centrality and resolvent centralities computed using αmin, α0.5, α0.85 and αdeg

applied to Zachary’s Karate Club network

Katz parameter τ0.20 τ1 ρ0.20 ρ1 r0.20 r1 errrel κ1(I − αA) errdir

αmin = 0.1485 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0059 5.5e3 1.3e−16
α0.5 = 0.0743 0.4286 0.1052 0.6429 0.1419 0.1546 0.1474 0.9976 7.1e0 1.9e−16
α0.85 = 0.1264 0.5238 0.5579 0.6786 0.5866 0.2619 0.5866 0.9920 3.8e1 1.8e−16
αdeg = 0.0556 0.4286 0.0624 0.6429 0.0845 0.1489 0.0845 0.9981 4.5e0 1.5e−16

ce(A) are summarized in Table 2. We observed that all the choices for the Katz parameter agree on
the best ranked 5% of the nodes. However, this is not a very indicative since the network has only
34 elements, so we have shown instead how the parameters perform on the top 20% (7 out of the 34)
of the nodes and all the nodes. All four choices for the Katz parameter yield node rankings that are
positively correlated with the exponential result. For αmin, α0.5 and αdeg the correlation between the top
ranked 20% of the nodes is stronger than between the full rankings. On the contrary α0.85 matches the
full rankings better than the partial ones for Kendall’s τ and Pearson’s r. This observation emphasizes
the sensitivity of node rankings to the exact choice of Katz parameter. For the Karate Club network
the resolvent-based measure evaluated with αmin yields identical node rankings to its exponential-based
counterpart. Figure 6 shows the dependence of both τ1(ce(A), cα(A)) and τ0.20(ce(A), cα(A)) on different
values of the Katz parameter α.

Next, we consider a network consisting of 133 nodes arising from recorded levels of the oncogene
p53 [33]. The network has 558 directed unweighted edges and an edge from node i to node j exists if i
expresses above its usual level while j expresses below its usual level. The network is part of the NESSIE
collection of networks [34]. Correlation coefficients between the resolvent- and exponential-based mea-
sures are summarized in Table 3 and their variation with α can be seen in Fig. 7. For both the best 10%
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Fig. 6. Kendall correlation coefficients between node rankings obtained from ce(A) and cα(A) for different α for Zachary’s karate
network with all nodes (left) and top 20% of nodes (right).

Table 3 Correlation coefficients between node rankings (all nodes and top 10%) obtained from
exponential-based centrality and resolvent centralities computed using αmin, α0.5, α0.85 and αdeg applied
to the p53 network

Katz parameter τ0.10 τ1 ρ0.10 ρ1 r0.10 r1 errrel κ1(I − αA) errdir

αmin = 0.1842 0.4066 0.3830 0.3978 0.4353 0.4225 0.3665 0.0215 4.2e3 1.8e−16
α0.5 = 0.0925 0.0769 0.0980 0.1033 0.1608 0.1188 0.1462 0.9924 1.4e1 1.4e−16
α0.85 = 0.1573 0.2088 0.2796 0.2044 0.3645 0.2131 0.3645 0.9713 9.8e1 1.9e−16
αdeg = 0.0435 0.0110 0.1107 −0.0110 0.1333 −0.0606 0.1333 0.9955 4.3e0 9.5e−17
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Fig. 7. Kendall correlation coefficients between node rankings obtained from ce(A) and cα(A) for different α, for network p53
with all nodes (left) and top 10% of nodes (right).
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Table 4 Correlation coefficients between node rankings (all nodes and top 1%) obtained from
exponential-based centrality and resolvent centralities computed using αmin, α0.5, α0.85 and αdeg

applied to the Minnesota network

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1 errrel κ1(I − αA) errdir

αmin = 0.2972 −0.0313 0.0089 −0.0885 0.0134 −0.1510 0.0134 0.5748 1.2e2 3.3e−16
α0.5 = 0.1547 0.0199 0.00656 0.0208 0.0976 −0.1306 0.0976 0.8926 4.3e0 4.0e−16
α0.85 = 0.2630 −0.0199 0.0429 −0.0440 0.0646 −0.0748 0.0646 0.7600 2.3e0 1.6e−16
αdeg = 0.1667 −0.0370 0.0486 −0.0556 0.0712 −0.1548 0.0712 0.8858 4.9e0 5.3e−16
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Fig. 8. Kendall correlation coefficients between node rankings obtained from ce(A) and cα(A) for different α for the Minnesota
network with all nodes (left) and top 1% of nodes (right).

of the nodes (top 14 out of the total 133 nodes) and all nodes, αmin performs better than the other avail-
able options for the Katz parameter. The resolvent-based measure with αmin and the exponential-based
measure yield identical rankings for the top-ranked 8 nodes of this network. The parameter based on
maximum node degree, αdeg, produces partial ranking negatively correlated to the exponential-based
one. We note that the eigenvector matrix of A for this network is extremely ill conditioned, but nev-
ertheless err(αmin) is close to being minimal: | minα err(α) − err(αmin)|/ minα err(α) ≈ 9e−5. For this
network, then, our strategy of minimizing the distance between the exponential-based and resolvent-
based centrality vectors does not result in the best correlation possible.

The third network we consider, Minnesota, reflects the road connections of Minnesota and
is available from the University of Florida Sparse Matrix Collection (http://www.cise.ufl.edu/
research/sparse/matrices/Gleich/minnesota.html). The network consists of 2642 nodes and 3303 undi-
rected weighted edges. Correlation coefficients between the resolvent- and exponential-based measures
are summarized in Table 4 and their variation with α can be seen in Fig. 8. The exponential-based cen-
trality scores for this network are very close together, and the correlation results show that in this case
minimizing the distance between the exponential- and resolvent-based centrality vectors may not yield
highly correlated rankings. The ranking of the resolvent-based centrality scores changes significantly
with very small variations in α due to the clustering of the eigenvalues of the adjacency matrix.
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Table 5 Correlation coefficients between node rankings (all nodes and top 1%) obtained from
exponential-based centrality and resolvent centralities computed using αmin, α0.5, α0.85 and αdeg

applied to the ca-CondMat network

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1 errrel κ1(I − αA) errdir

αmin = 0.0263 0.8848 0.4158 0.9422 0.5020 0.9335 0.5020 0.8015 4.6e16 1.3e−15
α0.5 = 0.0132 −0.0340 0.0171 −0.0476 0.0252 −0.0536 0.0252 1.0000 3.5e1 7.9e−13
α0.85 = 0.0224 0.0358 0.0022 0.0615 0.0030 0.0344 0.0030 1.0000 2.6e2 5.3e−14
αdeg = 0.0036 −0.0299 0.0168 −0.0044 0.0248 −0.0427 0.0248 1.0000 4.2e0 6.5e−13

Table 6 Correlation coefficients between node rankings (all nodes and top 1%) obtained from
exponential-based centrality and resolvent centralities computed using αmin, α0.5, α0.85 and αdeg applied
to the ca-AstroPh network

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1 errrel κ1(I − αA) errdir

αmin = 0.0106 0.9573 0.8283 0.9551 0.9826 0.9548 0.8728 1.0000 2.8e16 1.3e−15
α0.5 = 0.0053 0.0686 −0.0012 0.1042 −0.025 0.1087 −0.0248 1.0000 2.3e1 8.6e−13
α0.85 = 0.0090 0.0282 0.0198 0.0427 0.0289 0.0372 0.0244 1.0000 1.8e2 2.7e−13
αdeg = 0.0020 0.0162 0.0139 0.0216 0.0207 0.0300 0.0263 1.0000 4.4e0 7.6e−13

We next consider two undirected and unweighted networks, ca-AstroPh and ca-CondMat, which
record research collaborations in the areas of condensed matter and astrophysics, respectively. Both
networks are such that aij = 1 if and only if scholars i and j co-authored at least one publication. They
are available from the Stanford Network Analysis Project [35] and are described by Leskovec et al. [36].
Correlation coefficients between the node rankings are presented in Tables 5 and 6. The dominance
of αmin is most appreciable when we compare only the top ranked 1% of the nodes. The alternative
choices for the Katz parameter produce rankings which are weakly or even negatively correlated to the
exponential ones. This is also true for other choices of the Katz parameter, as can be seen from Figs. 9
and 10. We observed that the resolvent-based measure with αmin and the exponential-based measure
yield identical rankings for the top-ranked 113 nodes of ca-CondMat and top-ranked 161 nodes of
ca-AstroPh.

The final real-world network example arises from the online social networking service Twitter. It
consists of 148,918 nodes and 193,032 directed edges. Unlike the previous examples, this network has
edges with non-negative integer weights. The weight of an edge from node i to node j specifies how
many times Twitter account i sent a (meaningful) communication to Twitter account j on the newsworthy
topic of Sir Alex Ferguson’s retirement from his position as manager of Manchester United Football
Club in May 2013. The individual time-stamped interactions are available via the Strathclyde MUFC
Twitter Data Set at http://www.mathstat.strath.ac.uk/outreach/twitter/mufc, and have also been studied
in [37]. Our network was built by aggregating the tweets over the 12-h period.

We consider ranking the nodes of the network and its transpose, where the top ranked nodes of
Strathclyde MUFC and its transpose represent the best broadcasters and receivers, respectively, of
information.

Correlation coefficients between the rankings of the nodes of Strathclyde MUFC and its transpose
obtained using resolvent- and exponential-based measures are presented in Tables 7 and 8, respectively.
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Fig. 9. Kendall correlation coefficients between node rankings obtained from ce(A) and cα(A) for different α, for network ca-
CondMat with all nodes (left) and top 1% of nodes (right).

Fig. 10. Kendall correlation coefficients between node rankings obtained from ce(A) and cα(A) for different α, for network
ca-AstroPh with all nodes (left) and top 1% of nodes (right).

For the correlations obtained using all the values of the Katz parameter, except αmin, we observe that
the full rankings are matched significantly better than the partial ones. So α0.5, α0.85, and αdeg more
successfully retrieve the position of the lower ranked nodes. This is usually of less practical interest,
especially for the case of very large networks. Only αmin is able to successfully match a greater part of
the highly ranked nodes, both in their broadcaster and receiver capacities. To be precise, the resolvent-
based measure with αmin and the exponential-based measure yield identical rankings for the top-ranked
91 broadcasters and top-ranked 128 receivers. Figures 11 and 12 illustrate the variation of the node
ranking with respect to parameter α.
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Table 7 Correlation coefficients between node rankings (all nodes and top 1%) obtained from
exponential-based broadcaster centrality and resolvent broadcaster centralities computed using αmin,
α0.5, α0.85 and αdeg applied to the Strathclyde MUFC network

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1 errrel κ1(I − αA) errdir

αmin = 0.0242 0.7850 0.6939 0.8959 0.7558 0.8893 0.7558 0.9997 6.9e17 1.1e−14
α0.5 = 0.0121 0.0257 0.4524 0.0287 0.5419 0.0150 0.5419 1.0000 1.5e3 1.5e−13
α0.85 = 0.0205 0.0512 0.4523 0.0620 0.5423 0.0393 0.5423 1.0000 1.2e4 8.9e−13
αdeg = 0.0003 0.0317 0.4467 0.0210 0.5401 0.0023 0.5401 1.0000 1.8e0 1.4e−13

Table 8 Correlation coefficients between node rankings (all nodes and top 1%) obtained from
exponential-based receiver centrality and resolvent receiver centralities computed using αmin, α0.5,
α0.85 and αdeg applied to the transpose of the Strathclyde MUFC network

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1 errrel κ1(I − αA) errdir

αmin = 0.0242 0.7188 0.7015 0.7735 0.7529 0.7714 0.7529 0.9985 6.5e18 2.6e−14
α0.5 = 0.0121 0.0237 0.5263 0.0340 0.6287 0.0253 0.6287 1.0000 1.5e4 1.9e−13
α0.85 = 0.0205 0.0409 0.5405 0.0617 0.6336 0.0563 0.6336 1.0000 1.1e5 5.8e−13
αdeg = 0.0001 0.0741 0.5365 0.1407 0.6328 0.0991 0.6328 1.0000 1.6e1 2.6e−14
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Fig. 11. Kendall correlation coefficients between node rankings obtained from ce(A) and cα(A) for different α for network Strath-
clyde MUFC, with all nodes (left) and top 1% of nodes (right).

Finally, we note that for every network the values of errdir are all less than 10−12. Even though by
its definition αmin tends to lead to more ill conditioned systems than the other choices of α, it produced
values of errdir that were sometimes the smallest over all choice of α and never the largest. Our exper-
iments therefore support the conclusions drawn from the analysis of inverse iteration in Section 3 that
ill conditioning does not vitiate the rankings obtained.
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Fig. 12. Kendall correlation coefficients between node rankings obtained from ce(A�) and cα(A�) for different α for transpose of
network Strathclyde MUFC, with all nodes (left) and top 1% of nodes (right).

5. Computational considerations

We now discuss some aspects of the computation of the exponential- and resolvent-based measures, and
consider potential advantages and challenges associated with a few different methods.

First, note that to compute the exponential-based centrality scores ce(A) = eA1 we do not require
the full matrix exponential: just the action of this matrix on a vector. This opens up the possibility of
using algorithms based on matrix–vector products involving A (and optionally A�). For our numerical
examples in Section 4, we used Al-Mohy and N. J. Higham’s expmv algorithm for computing the action
of the matrix exponential [38], which takes advantage of the non-negativity of A in its norm estimation
phase. It is based on scaling the matrix and applying truncated Taylor series approximations. There
is a wide range of alternative algorithms based on Krylov subspace projection techniques [39–41]. A
comparison of available algorithms for computing the action of the matrix exponential on a vector,
along with a new implementation of a method based on Leja interpolation, is presented by Caliari et al.
[42]. Available software is surveyed by N. J. Higham and Deadman [43].

For the resolvent-based measure the computation of αmin requires the computation of λ1. This can
be done, for example, with the power method or the Arnoldi method. These and other methods (see
[44] for a broad overview) are able to exploit one or more of the properties of sparsity, non-negativity,
and symmetry associated with adjacency matrices. There has also been interest in approximating λ1 for
directed or undirected, unweighted networks [45].

The resolvent-based centrality vector satisfies the linear system (I − αA)x = 1, which can be solved
using direct solvers [46]. Iterative methods are not likely to be successful due to the potential ill condi-
tioning of the coefficient matrix. For undirected networks, the linear system is symmetric, which can of
course be exploited. For directed networks usually both the receiver and broadcaster scores of the nodes
are of interest. A matrix decomposition can be re-used to compute both cα(A) and cα(AT ).

There are also established resolvent-based methods for computing centrality scores for the nodes
of temporally evolving networks [47,48]. To see how resolvent-based centrality extends naturally to
the case of a time-ordered network sequence, let A[0], A[1], A[2], . . . , A[M ] represent non-negative integer-
valued adjacency matrices for a fixed set of nodes. So, over a discrete time sequence, t0 < t1 < · · · < tM ,
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Table 9 Time (seconds) required to compute the centrality vectors ce(A) and cα(A) using αmin for the
networks ca-CondMat, ca-AstroPh and Strathclyde MUFC from Section 4

ca-CondMat ca-AstroPh Strathclyde MUFC

ce: expmv 0.2882 0.7741 1.2812
ce: funm_quad 0.0838 0.1067 2.1942
cα 0.6143 1.7607 0.8967

the matrix A[k] records interactions at time tk . For example, in the social interaction context, we may
have (A[k])ij = 1 if individual i contacted individual j at least once in the time period (tk−1, tk] and
(A[k])ij = 0 otherwise. In this setting, there is a natural concept of dynamic walks through the network—
such traversals may use whatever edges are available at one time and then continue at the next time
point using the new edge list. The time-ordered product of resolvents

(I − αA[0])−1(I − αA[1])−1(I − αA[2])−1 · · · (I − αA[M ])−1

collects together weighted counts of such dynamic walks, where a walk using k edges is downweighted
by αk . This combinatorial interpretation relies on the index law αm × αn = αm+n, which allows walks
to be correctly pieced together across time points. By contrast, the product of matrix exponentials

eA[0]
eA[1]

eA[2] · · · eA[M ]

does not allow this simple combinatorial interpretation, since 1/(m!) × 1/(n!) |= 1/((m + n)!) in gen-
eral. Hence, from this dynamic walk perspective, the resolvent-based centrality is a more natural choice
than the exponential alternative when we wish to extend to time-dependent interactions.

Finally, we present in Table 9 the time required to compute the node rankings of the larger
real-world networks introduced in Section 4, using the exponential-based measure ce(A) and the
resolvent-based measure cα(A) with the value of the Katz parameter αmin. The tests were performed
in MATLAB 2014b under Windows 7 on a machine with an Intel Xeon X5650 2.67Ghz 6-core pro-
cessor and are averaged over ten runs. The total communicability ce(A) was computed using both
the function expmv from http://www.mathworks.com/matlabcentral/fileexchange/29576-matrix- expo-
nential-times-a-vector, which implements the algorithm of [38], and the function funm_quad from
http://guettel.com/funm_quad, which implements the algorithm of [49], with a stopping accuracy 2−53.
The Katz centrality cα(A) was computed using the MATLAB backslash algorithm for sparse matrices;
the time for computing the Katz centrality includes the time required to compute the parameter αmin

(which is done using eigs, as before). The Katz centrality is computed faster than the exponential-
based centrality for the directed network Strathclyde MUFC, while for the two less sparse, undirected
networks the exponential-based centrality is obtained more quickly. Table 9 shows that there is no
ordering between the three methods. A more thorough investigation would be required to draw any
general conclusions about the relative costs of computing ce and cα .

6. Conclusion

Our aim in this work was to find a value for the damping parameter α such that the centrality scores
obtained from the Katz centrality vector (I − αA)−11 and the action of the exponential of the adjacency
matrix eA1 are similar. By considering an upper bound on the distance between the two vectors we
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obtained a value for the Katz parameter α = (1 − e−λ1)/λ1 that performs substantially better in our
tests than alternatives that have been previously proposed. The new Katz parameter leads to linear
systems that are potentially much more ill conditioned than those corresponding to existing choices,
but ill conditioning has essentially no effect on the suitability of the computed centralities for ranking.
A natural extension of this idea is to automate the choice of Katz parameter in the case of temporally
evolving networks [48].
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