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Strong Linearizations of Rational Matrices

A. Amparan? F. M. Dopicol S. Marcaida! I. Zaballa*

Abstract

This paper defines for the first time strong linearizations of arbi-
trary rational matrices, studies in depth properties and different char-
acterizations of such linear matrix pencils, and develops infinitely many
examples of strong linearizations that can be explicitly and easily con-
structed from a minimal state-space realization of the strictly proper
part of the considered rational matrix and the coefficients of the poly-
nomial part. As a consequence, the results in this paper establish
a rigorous foundation for the numerical computation of the complete
structure of zeros and poles, both finite and at infinity, of any ratio-
nal matrix by applying any well known backward stable algorithm for
generalized eigenvalue problems to any of the strong linearizations ex-
plicitly constructed in this work. Since the results of this paper require
to use several concepts that are not standard in matrix computations,
a considerable effort has been done to make the paper as self-contained
as possible.

Key words. Linearization, minimal polynomial system matrix, nonlinear
eigenvalue problem, rational matrix, strong block minimal bases linearization, strong
linearization

AMS subject classification. 65F15, 15A18, 15A22, 15A54, 93B18, 93B20,
93B60

1 Introduction

Given a nonsingular rational matrix G(\) (i.e., a matrix whose entries are
rational functions) the rational eigenvalue problem (REP) is to find scalars

*Departamento de Matemadtica Aplicada y EIO, Universidad del Pais Vasco UPV/EHU,
Apdo. Correos 644, Bilbao 48080, Spain. E-mail addresses: agurtzane.amparan@ehu.eus
(A. Amparan), silvia.marcaida@ehu.eus (S. Marcaida), ion.zaballa@ehu.eus (I. Za-
balla). Supported by Ministerio de Economia y Competitividad of Spain through
grants MTM2013-40960-P and MTM2015-68805-REDT, by Gobierno Vasco through grant
GIC13/1T-710-13, and by UPV/EHU through grant UFI11/52.

tDepartamento de Matemadticas, Universidad Carlos III de Madrid, Avda. Universidad
30, 28911 Leganés, Spain. E-mail address: dopico@math.uc3m.es. Supported by Ministe-
rio de Economia y Competitividad of Spain through grants MTM2012-32542, MTM2015-
65798-P, and MTM2015-68805-REDT.



A and nonzero vectors x satisfying
G(\)z =0.

The scalars A and the vectors = are called, respectively, eigenvalues and
eigenvectors of the rational matrix G(A). The REP arises in many applica-
tions and several approaches can be used to tackle it (see [29] and references
therein). Actually, in [29] a new method for solving numerically the REP
is given based on the fact that any rational matrix G(\) can be uniquely
written as the sum of a polynomial matrix and a strictly proper one. The
method consists in applying any well established algorithm for computing
the eigenvalues of a linear pencil [16] to a pencil constructed out of a lin-
earization of the polynomial part of G(\) and a realization of its strictly
proper part, which preserves the finite zeros of G(A). This method has been
formalized and generalized in [1] where a precise definition of linearization of
a square rational matrix is given. The definition of linearization in [1] relies
on the fact that every rational matrix G(\) admits a right coprime matrix
fraction description G(\) = N(A)D(A)~!, where N()\) and D()) are poly-
nomial matrices. Such a decomposition of G(A) has the important property
that the finite zeros of G(\) are the eigenvalues of N(\) and the finite poles
of G(X) are the eigenvalues of D(X) [19]. A linearization of G()) is then

defined to be a linear pencil

AE+ A B

L) = C AY + X (1)
such that L(\) is a linearization of N(\) and AE + A is a linearization of
D(}), in the standard sense of linearizations of polynomial matrices (see
[20, 9] and the references therein). If such a linearization exists, one has
access to the finite zeros and poles of G(\) by solving two linear eigenvalue
problems: L(A)z =0 and (AE + A)y = 0. The notion of polynomial system
matrix introduced by Rosenbrock is then used in [1] to show that Fiedler-
type linearizations of square rational matrices always exist.

The linearizations defined in [1] reflect the finite structure of rational
matrices but no evidence is given that they preserve also the infinite struc-
ture. The main goal of the present paper is to provide a new definition
of linearization of rational matrices that preserve the finite as well as the
infinite poles and zeros of the original matrix. We emphasize that this goal
will be achieved in the general context of arbitrary rational matrices, i.e.,
square or rectangular, regular or singular, in contrast to the references [1, 29]
which only consider square matrices. In addition, infinitely many of such
linearizations will be explicitly constructed.

This new definition of linearization takes advantage of the following prop-
erty of the minimal polynomial system matrices of a rational matrix G(\)



(see Theorem 2.1): under very mild conditions if

C[AN B
P = [—cm D(A)}

is a minimal polynomial system matrix giving rise to G(\) (i.e., G(\) =
D(A\) + C(A)A(N)"IB())) then the finite poles and zeros of G(\), counting
with multiplicities, are the finite zeros of A(A) and P(\), respectively, count-
ing with multiplicities. With this property in mind, a linear pencil L(\)
is said to be a linearization of G(\) if it is a minimal polynomial system
matrix of a rational matrix @()\) such that, for some nonnegative integers
51, 82, Diag(é()\),lsl) and Diag(G()), Is,) are equivalent via unimodular
polynomial matrices. This definition looks very much like the definition
of linearization of matrix polynomials that can be found, for example, in
[22, 20, 9] and can be generalized to preserve also the poles and zeros of
G()) at infinity (Definition 6.2). We will see that when G(\) is polynomial
it reduces to the definition of strong linearization of polynomial matrices.

Notions like polynomial system matrices, least order, realizations, Smith—
McMillan forms (finite and at infinity), strict system equivalence, transfer
function matrices (which are well-established in the theory of linear systems)
will play an important role. They will be reviewed in Section 2. Polynomial
system matrices of least order, or minimal, are important in our develop-
ments. Since the eigenvalues of the REP G(\)xz = 0 are the finite zeros
of G(\) that are not finite poles, we want linearizations that preserve the
poles of G(A) (with their partial multiplicities) but that do not incorporate
spurious ones. It will be shown in Section 3 that this leads us to polynomial
system matrices of least order. The concept of least order will be discussed
in detail in Section 2.

The new definition of linearization of a rational matrix will be given
in Section 3 (see Definition 3.3). It will be shown that, when applied to
polynomial matrices, it reduces to the usual one [22, 20, 9]. Also, a spectral
characterization of the linearizations, in the spirit of [9, Thm. 4.1] will be
provided (Theorem 3.9). The relationship between our definition and that
of [1] will be analyzed in Section 5 showing that when L(A) in (1) is required
to be of least order then the definition of [1] is a particular case of Definition
3.3.

Furthermore, in view of the proposed definition of linearization, it is
important to determine when two polynomial system matrices give rise to
equivalent rational matrices. Based on the strict system equivalence in-
troduced in [27], a new equivalence relation is defined in Section 4 whose
equivalence classes are formed by the polynomial system matrices having
equivalent transfer function matrices. For a given rational matrix G(\),
this equivalence relation gives us the precise amount of freedom to obtain
linearizations out of any polynomial system matrix whose transfer function



matrix is G(A). A general procedure is then proposed to construct lineariza-
tions for any rational matrix. Practical implementations of this procedure
were used in [29] and [1] to show the existence of Frobenius companion-type
and Fiedler-type linearizations of square rational matrices. This procedure
will be fundamental to construct in Section 8 infinitely many linearizations
of arbitrary rational matrices. More precisely, we will show how any strong
block minimal bases linearization of a matrix polynomial [11, Def. 3.1] can
be used very easily to construct a linearization of any rational matrix. Since
strong block minimal bases linearizations of matrix polynomials form a very
wide class containing infinitely many linearizations which include, among
many others, Frobenius companion forms, all Fiedler linearizations [12, 5, §]
modulo permutations, and all block Kronecker linearizations [11, Def. 5.1],
we construct in this way the widest class known so far of linearizations of
arbitrary rational matrices.

Strong linearizations of rational matrices are introduced in Section 6 (see
Definition 6.2). As for the case of linearizations which are not necessarily
strong, we show that this new notion is a natural extension of strong lin-
earizations for matrix polynomials and present a spectral characterization
of strong linearizations, which establishes that such linearizations preserve
not only the finite but also the infinite structure of rational matrices. Also,
a new equivalence relation is introduced in Section 7 that classifies sys-
tem matrices that give rise to equivalent at infinity rational matrices. This
equivalence relation together with the one defined in Section 4 allows us to
show in Section 8 that all the linearizations of rational matrices constructed
from strong block minimal bases linearizations of matrix polynomials are
always strong linearizations in the rational case. In addition, two examples
are taken from [29] to practically implement the construction of strong lin-
earizations of real symmetric rational matrices that preserve the symmetry
of the original problem. Finally, we discuss in Section 9 the main conclu-
sions of this work and some possible lines of future research motivated by
the results in this paper.

All along this paper polynomial matrix and matrix polynomial will be
used as synonymous terms.

2 Preliminaries

In this section we review the basic notions of linear system theory that we
will use in the subsequent sections. Our basic references are [27, 19, 32].
Although for practical purposes the rational matrices of interest are those
whose elements have real or complex coefficients, the results in this paper
are of algebraic nature and apply for matrices with coefficients in arbitrary
fields. Thus F will denote any arbitrary field, F[A] the ring of polynomials
with coefficients in F and F(\) the field of rational functions, i.e., quotients



of coprime polynomials of F[A]. A rational function r(\) = % is said

to be proper if deg(n(A)) < deg(d())), where deg(-) stands for degree. If
deg(n(\)) < deg(d(\)) then 7(X) is called strictly proper. Let F(X)P*™
be the set of p x m matrices with elements in F(A). Any rational matrix
G(A) € F(A)P*™ can be written as

G(A) = D) + C(NAN) B, 2)
for some nonsingular matrix polynomial A(\) € F[A]"*" and matrix poly-
nomials B(A) € F[A]"*™, C(\) € FINP*" and D(\) € FA]P*™ with n >
deg(det A(\)) (see [27]). The matrix polynomial

_[A0) BOY
=0 o) ?

is called a polynomial system matriz of (or giving rise to) G(A). In other
words, a polynomial matrix P(\) with the form of (3) and such that A(\) is
nonsingular and deg(det A(A)) < n will be said to be a polynomial system
matrix of the rational matrix G(\) if G(A) is the Schur complement of A(\)
in P(A). Then G(\) is called the transfer function matriz of P(\) and
deg(det A()\)) is its order.

The reason why condition n > deg(det A(\)) is required will be clarified
later on (see Remark 4.5). Nevertheless notice that if n < deg(det A(\)) =d
in (2) then by putting

A= ] B = 2men) G0 = [y CO).

we get G(A) = D(A) + C(A)AN)LB()), with A(\) € F[\J?¥4. Therefore
we will assume that the order of P()) is always not bigger than the size of
A(X). The matrix A(X) will be called the state matriz of the system.

When A(A) is a monic linear matrix polynomial, say A(\) = A, —
A, B(A\) = B and C(\) = C are constant matrices, P()) is said to be a
polynomial system matrix of G(\) in state-space form.

As already seen, the integer n or the polynomial matrices of (2) are not
uniquely determined by G(A). It turns out that different polynomial system
matrices may exist with different orders giving rise to the same transfer
function matrix. For example, for any nonsingular polynomial matrix A(\),
the rational matrix (2) can be written as follows:

GO =DM + [ 0] [AE)A) 2&)]_1 [B(()A)].

A polynomial system matrix of G()\) is said to have least order, or to be
manimal, if its order is the smallest integer for which matrix polynomials



A(A) (nonsingular, with size n x n, n > deg(det A(\))), B(\), C(\) and
D(\) satisfying (2) exist. The least order is uniquely determined by G(\)
and is denoted by v(G(A)). It is called the least order of G(X\) ([27, Ch. 3,
Sec. 5.1] or [32, Sec. 1.10]). Let us recall three equivalent conditions that
characterize when the polynomial system matrix in (3) has least order (|27,

Ch. 3)):
(i) P(\) has no decoupling zeros.
(ii) A(X) and B() are left coprime and A(A) and C()) are right coprime.

(iii) (A, B) is controllable and (A, C) is observable assuming that P()) is
in state-space form.

The meaning of these three conditions is well-known in the theory of linear
control systems but we will not go into the details. Only property (ii) will
be analyzed: Two polynomial matrices A(A) € FAP*™, B(\) € F[\7*"
are called right coprime if their only right common divisors are unimodular
matrices (polynomial matrices with nonzero constant determinant). That is
to say, if there exist A(\) € F[A]P*", B(\) € F[A]7*", X ()\) € F[A]™*" such
that B
AA) = AN X(N)

B(\) = BO)X(\) = X (A) unimodular.

A useful characterization is that A(\) € F[A]P*™ and B(\) € F[A]9*™ are
right coprime if and only if the Smith form of [283] is [I(ﬂ (see [27, Ch.
2, Sec. 6]). On the other hand, A(X\) € F[\]"*P, B(\) € F[\]"*? are left
coprime if their transposes A(A)T and B(A)T are right coprime.

Any rational function 7(\) € F(X\) can be uniquely written as

T(/\) = p()‘) + Tsp()‘)

with p()) a polynomial and 7, () a strictly proper rational function. Using
this decomposition for all entries of G(\) € F(A\)P*"™ we find that

G(A) = D) + Gsp(N) (4)

where D(X) € F[A]P*™ is a polynomial matrix and Ggy,(X) is a strictly proper
rational matriz, i.e., the entries of Ggp(\) are strictly proper rational func-
tions. Now, it is a well-known fact that any strictly proper rational ma-
trix admits realizations (see, for example, [27, Ch. 3, Sec. 5.2] or [19,
Sec. 6.4]). This means that for some positive integer n there exist ma-
trices A(A) € F[A]™*", B(A) € FA\]" and C(\) € F[AJP*"™ such that
Gsp(N) = C(N)AN)IB(N) and

et 20
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is a polynomial system matrix of G(\). Notice that, when G(\) is de-
composed as in (4), the polynomial part D(\) is uniquely determined by
G(A) while the integer n and the matrices A(A), B(\) and C(\) are not.
Furthermore, it is also well-known that any strictly proper rational matrix
admits state-space realizations. Therefore any rational matrix G(\) can be
written as G(\) = D(A\) + C(\I, — A)~1B where D()) is polynomial and
C(M,, — A)"!B is strictly proper. Moreover, the realization may always be
taken of least order (i.e., such that the corresponding polynomial system
matrix in state-space form is of least order). Such realizations are called
mainimal.

Minimal polynomial system matrices convey precise information about
the finite poles and zeros of their transfer function matrices. Recall (see, for
example, [27, Ch. 3, Sec. 4] or [19, Sec. 6.5.2]) that any rational matrix
is (finite) equivalent! to its (finite) Smith-McMillan form. That is to say,
if G(A) € F(A)P*™ then there are unimodular matrices U(\) € F[A]P*P and
V(A) € F]A]™*™ such that

M) =UNGANV(A) =

. e1(N) er(N)
Diag (71111(/\)""’1#7«(%)) 0 ] (5)
0 0

where r = rank G()), €1(A), ..., (N),¥1(N),...,¥r(N\) are nonzero monic
polynomials, €;(\),1;(A) are coprime for all « = 1,...,7, and e;(\) | --- |

€-(A\) while ¥, (A) | -+ - | ¥1(\), where | stands for divisibility. The irreducible
fractions ;11(8\)) e ;TT(()/‘\)) are called the (finite) invariant rational functions

of G(A). In addition, () is the monic least common denominator of the
entries in G(A) and so, G()) is polynomial if and only if ¢;(A\) = 1. In this
case (i.e., if G()\) is a polynomial matrix), M () is called the (finite) Smith
normal form of G(\) and the monic polynomials €;(A) | - - - | €,(\) are called
the invariant polynomials of G(\).

The (finite) poles of G(\) are the roots in F (the algebraic closure of )
of ¥1()\) and its (finite) zeros are the roots in F of €.()\). If Ay € F is a zero
of G()\) then, for i = 1,...,r, we can write €(\) = (A — X\g)"€(N\) with
€ (Xo) # 0 and m; > 0. The nonzero elements in (mq,...,m,) are called
the partial multiplicities of Ao as a zero of G(\). The partial multiplicities
of the poles of G()\) are defined similarly. Notice that although ¢;(\) and
1;(\) are coprime polynomials for all i = 1,...,r, G(\) may have zeros and
poles at the same points.

When G(\) € FA\JP*™ is a polynomial matrix then ¢;(\) = 1 for i =
1,...,r and the polynomials (A—Xg)™ with m; # 0 are the finite elementary
divisors of G(\) with respect to, or associated to, \g.

Tn this manuscript, two rational matrices G1(\) and G2(\) are said to be equivalent
if there exist two unimodular polynomial matrices U(A) and V() such that G1(\) =
U(X)G2(A)V(X). Other types of equivalence relations are often used in this paper, but in
those cases the corresponding type of equivalence will be always explicitly mentioned.



As announced, the finite poles and zeros of any rational matrix can be
found through any of its polynomial system matrices of least order. This
follows from the following result by Rosenbrock ([27, Ch. 3, Thm. 4.1]). In

what follows we will use a notation like

[ A(N) B\

(n+p) x (n+m)
—o D(AJ e F

to mean that A(X) € F[A]"*".
Theorem 2.1 Let G(N\) € F(A)P*™ be a rational matriz of rank r and let

A(A) - B(A)

P()\) — |:_C(>\) D()\):| e F[)\](n+P)><(n+m) (6)

be a polynomial system matriz of least order whose transfer function matriz
is G(A) such that n > r = rank G(\). Let the Smith—-McMillan form of
G(X) be the matriz M(X) in (5). Then, the invariant polynomials of A(X)
are 1| -+ |1tor(A)] - - - |91 () with at least n — r invariant polynomials equal
to 1, and the invariant polynomials of P(\) are 1|---|1ler(A)] - - |e(A\) with
at least n invariant polynomials equal to 1.

Remark 2.2 We have stated Theorem 2.1 exactly with the hypotheses as-
sumed originally by Rosenbrock. However, we emphasize that Theorem 2.1
also holds if the assumption n > r = rank G(\) is replaced by the weaker
one n > t, where ¢ is the number of denominators ©1(), ..., ¥, (\) differ-
ent from 1 in the Smith-McMillan form of G(A). In order to check this,
let P(\) in (6) be a polynomial system matrix of least order of G(\) with
n < r =rank G(\). Then also

I_n 0 0
P(\) = 0 A\ | B\
0 —C(\) | D(N)

is a polynomial system matrix of least order of G(\). Therefore, Theorem
2.1 can be applied to P(\) by replacing n by r, A(\) by [Iran A?)\)] and
P()) by P()\). This leads to the following result for P(\) in (6) with n < r =
rank G(\): “the invariant polynomials of A(A) are 1]---|1|tpt(A)]---[1p1(N)
with n — ¢t invariant polynomials equal to 1, and the invariant polynomials
of P(\) are 1|---|1|lex(A)]- - |er(N) with at least n invariant polynomials
equal to 1. This remark is relevant because very often the REPs arising
in applications (see [29]) satisfy ¢ < rank G()), as a consequence of having
strictly proper parts Gp(A) in (4) with rank much smaller than rank G(\).

A consequence of Theorem 2.1 is that the order of any polynomial system
matrix of least order giving rise to G(A) is the degree of the polynomial



PY(A) =1 (N) -+ (N), i.e., the product of the denominators in the Smith—
McMillan form of G(\) (see [27, Ch. 3, Sec. 5.1]). Hence v(G(X)) =
deg((M).

Also, if P()) is a polynomial system matrix of least order of G(\) then
the finite poles of G(\) are the finite zeros of A(\) and the finite zeros of
G(\) are the finite zeros of P(\) (counting in all cases the corresponding
partial multiplicities). In particular, if P()\) is a minimal polynomial system
matrix in state-space form and D()) is a linear polynomial, then P()\) is a
linear pencil, its finite zeros are the finite zeros of G(\) and the finite zeros
of A(A) = A — A are the finite poles of G(\).

G(A) may also have poles and zeros at infinity, which are the poles and
zeros at A = 0 of G(1/X) (see [19]). Let F,.(\) denote the ring of proper
rational functions. Its units are called biproper rational functions, that is,
rational functions having the same degree of numerator and denominator.
Fpr (A)P*™ denotes the set of p xm proper matrices, i.e., matrices with entries
in Fp,(A\). A biproper matriz is a square proper matrix whose determinant
is a biproper rational function. Biproper matrices are also called bicausal.
Two rational matrices G1(X), G2(X) € F(A)P*™ are equivalent at infinity if
there exist biproper matrices B1(A) € Fp(A)P*P, Ba(X) € Fpr(A)™*™ such
that Ga(\) = B1(A)G1(A)Ba(A). Every rational matrix G(A) € F(A\)P*™ is
equivalent at infinity to its Smith-McMillan form at infinity:

Diag (A%,,A%)

pXm
0 ol € F(A)

where 7 = rank G(\) and ¢; < --- < ¢, are integers (see [4] or [32]). The
rational functions /\%1, ceey )\% are called the invariant rational functions at
infinity of G(\). The integers qi,...,q, are called the invariant orders at
infinity of G(A). The invariant orders at infinity form a complete system
of invariants for the equivalence at infinity in F(A)P*"™ and they determine
the zeros and poles at infinity of G(A) (see [4, Prop. 6.11]). Namely, if
@< S <0=q41 =" =¢qu-1 < qu < - < g are the invariant
orders at infinity of G(\) then G(\) has r — u + 1 zeros at infinity each one
of order qy,...,q, and k poles at infinity each one of order —q1, ..., —qk.

Notice that G(\) is proper if and only if ¢, ..., ¢, are nonnegative inte-
gers, that is, proper matrices do not have poles at infinity (they are analytic
at oo when F = C). However, non-constant polynomial matrices always
have poles at infinity (they are never analytic at co when F = C) and they
may have zeros at infinity as well. Moreover for any non strictly proper
rational matrix —¢; is the degree of the polynomial part of the matrix in
the expression (4) ([4, 32]). The degree of a polynomial matrix is the degree
of the entries of highest degree.

In addition to finite elementary divisors, matrix polynomials may have
elementary divisors at infinity as well [15, p. 185]. The elementary divisors
at infinity or infinite elementary divisors of a matrix polynomial Q(X) are



defined as follows: Consider the reversal of Q(\), i.e., the matrix polynomial
rev Q(A) := A?Q (3) where d = deg(Q(A)). This matrix polynomial may or
may not have 0 as an eigenvalue. If it has 0 as an eigenvalue then Q () is said
to have oo as an eigenvalue or to have eigenvalues at infinity. The infinite
elementary divisors of Q()\) are the elementary divisors associated to the
eigenvalue 0 of the reversal of Q(A). Let qi,...,¢ be the invariant orders
at infinity of the polynomial matrix Q(\) of degree d and rank r and let
AL ..., A°" be its infinite elementary divisors (including possible exponents
equal to zero). Then (see [4])

ei=q¢-—q=d+q, i=1...m (7)

Similarly to the finite case, the zeros and poles at infinity of a ratio-
nal matrix G()\) can be determined by its polynomial system matrices (3).
However, while for the finite case the minimality of the polynomial sys-
tem matrix is required (Theorem 2.1), for the infinite case the matrices
AN)7IB()) and C(A)A(X)~! must both be proper. In fact, we can prove
the following lemma.

Lemma 2.3 Let G(\) € F(A\)P*™ and let

A(A) - B(A)

POI= | 700 Do) €

be a polynomial system matriz of G()\) such that both A(N)"'B()\) and
C(N AN~ are proper rational matrices. Then P()) is equivalent at in-

finity to
ot

Proof.- The desired result is obtained by pre and post multiplying P(\)

. : I, 0 L, —AN)'B(\)
by the biproper matrices [C(A)A(A)l IJ and [O I ,
spectively. [ |
Corollary 2.4 Under the conditions of the previous lemma, if qf‘, .. ,q,f
are the invariant orders at infinity of A(\) and qu, ..., 4% are the invariant

orders at infinity of G(\) then the invariant orders at infinity of P(\) are
qf,...,qf;_r where

P P A A G G
(anrr?"'7q1):(qn7'”ﬂql)U(qrﬂ”'7q1)'

In words, the invariant orders at infinity of P()\) are the ordered reunion
of the invariant orders at infinity of A(\) and of G(\). This means that
the invariant orders at infinity of G(\) are determined by those of P()) and
A()N). Therefore, the infinite poles of G(\) are determined by the infinite

10



poles of P(A) and A(A) while the infinite zeros of G(\) are determined by
the infinite zeros of P(\) and A(\).

Nevertheless there is an important difference between the finite and in-
finite cases. While the finite zeros of G()\) are those of P()) and the finite
poles of G(X) are the finite zeros of A()), an analogous distinction cannot
be made in the infinite case, i.e., the infinite zeros of G(\) come from those

of both P(\) and A()\) and so do the infinite poles.

3 Linearizations of rational matrices

As said in the introduction, given a nonsingular rational matrix G(\) €
F(N)™*™ the rational eigenvalue problem (REP) is to find scalars A and
nonzero vectors x satisfying

G(N)z = 0.

The scalars A and the vectors z are called, respectively, eigenvalues and
(right) eigenvectors of the rational matrix G(A). Any rational matrix G(\) €
F(A)P*™ can be written as

_ N
()

where N(\) € F[A]P*™ is polynomial and 9 (\) is the monic least common
denominator of the entries of G(\), which coincides with the denominator of
the first finite invariant rational function of G(A). Thus, if G(\) € F(A)™*™
is nonsingular, )\ is an eigenvalue of G(\) if G(\g)x = 0 for some nonzero
x, that is, if there exists x # 0 such that N(Ag)x = 0 and 11(\g) # 0. This
condition is equivalent to 11 (Ag) # 0 and rank N(Ag) < m or to 11(Ag) # 0
and rank G(\g) < m. Therefore, we can define the set of eigenvalues of G(\)
as (see [1])

G(N)

Eig(G) = {\o € F : 1(\g) # 0,rank G()\g) < m}.

Let ;11(&)), ey ;’:L(a)) be the finite invariant rational functions of G(\). The

set of finite zeros of G(A) is
Zeros(G) = {A\o € F : e (o) = 0}.

Since rank G(A\g) < m if and only if €,,(Ag) = 0, the set of eigenvalues of
G(A) can be also defined as

Eig(G) = {Xo € F : 91(Xo) # 0, €m(Xo) = 0}

It may happen ¢1(\g) = €n(Xo) = 0 (as in Example 2.6 of [1]). Hence
Eig(G) C Zeros(G). However, if G(\) is polynomial (i.e., ¥1(A) = 1) then
Eig(G) = Zeros(G).
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The approach proposed in [29] to solve the REP G(\)z = 0 is to con-
struct a linearization of G(\) out of a polynomial system matrix of G()) in
state-space form. In fact, the following proposition shows that, for any poly-
nomial system matrix P(A) of G(\), the REP G(\)x = 0 and the polynomial
eigenvalue problem (PEP) P(\)x = 0 are very closely related.

Proposition 3.1 Let G(A) € F(A\)™*™ be a nonsingular rational matriz

and
A(N)  B(A)
PO = [—cm D))

be any polynomial system matriz with G(\) as transfer function matriz. As-

sume that (Ao, xg) is a solution of the REP G(A)x = 0 such that det A(\o) #
0; and define yy as the unique solution of A(Xo)yo + B(Ao)xo = 0. Then

()\0, [iﬂ) is a solution of the PEP P(\)z = 0.
0

] e F[)\](ner)X(ner)

And conversely, if <)\0, Bﬂ) is a solution of the PEP P(\)z = 0 such
0
that det A(Xg) # 0, then (Ao, xg) is a solution of the REP G(\)x = 0.

Proof.- Let G(A\g)zp = 0 with g # 0, det A(X\g) # 0, and define yy =
—A()\o)ilB()\(])a}(). Then

s ol
0 Zo
Thus A(do) B(A
5 o)) -
and

POo) [2] = Leomioa 1) [0 otm] ] =0

The converse is proved similarly. [ |

In this proposition P()) is not required to have least order. However,
if we want to use the PEP to find all eigenvalues of G(X) (i.e., the finite
zeros of G(A) which are not poles) then using polynomial system matrices
of least order is advisable. In fact, if P()\) is a polynomial system matrix of
least order giving rise to G(\) then, by Theorem 2.1, all finite poles of G(\)
are roots of det A(\), and conversely. But if P()\) is not of least order then
there may be roots of det A(\) which are not poles of G(\). Spurious poles
are then introduced that may coincide with some zeros of G(\). Such zeros
would not be computed. The following example illustrates this situation.
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Example 3.2 Consider the 1 x 1 rational matrix G(\) = ’\;—3, which has

one finite pole Ag = —2 and two finite zeros: +1 and —1. The least order of
G(A) is 1. Consider the following polynomial system matrices of G(\)

P = P—JF?)Q )\£2}’

with A(\) = A+ 2, B(\) =1, C(A) = 3 and D(A) = XA — 2, and

A+1 0 0

PN=1] 0 A+2 1 |,
0 -3 A-2
o A+1 0 ] 5 0] » ~
with A(\) = [ 0 A+2], B(\) = M C(A\)=1[0 3] and D(A) =A—2.

The order of P(A) is 1, which is minimal, and the order of ﬁ(/\) is 2. The
root of det A(X) is the pole of G(\) while —1 is a root of det A(\). Since
det ﬁ(—l) = 0, Proposition 3.1 cannot be used with ]3()\) to compute the
eigenvalue —1 of G(A). It must be remarked that while P()) is a linearization
of G(A) in the sense of [1], P()) is not.

Example 3.2 illustrates that if Proposition 3.1 is applied with non-minimal
polynomial system matrices, some eigenvalues of G (), which are not poles,
may not be computed. As a conclusion, in order to obtain all elements of
Eig(G) through the polynomial eigenvalue problem P(\)z = 0, the eigen-
values of the submatrix A(A) of P(A\) must be exactly the poles of G(\).
Polynomial system matrices of least order guarantee that this condition is
always satisfied.

As mentioned, Proposition 3.1 shows the equivalence between the REP
for G(\) and the PEP for any of its polynomial system matrices for those
scalars that are not eigenvalues of A(\). Note that this property does not
depend on whether P()) is a linear polynomial or not. It will be shown
next how to obtain an equivalent linear eigenvalue problem (LEP). For this
purpose, we will need a precise definition of linearization for rational ma-
trices. It will be a natural extension of the usual definition for polyno-
mial matrices. Recall (see [20, 9] for example) that for a given matrix
polynomial P(X) € F[AP*™  a linearization of P()\) is any linear matrix
polynomial (linear pencil) L(A) = L1\ + Ly € F[A]2*" for which there are
integers 51,5 > 0 and unimodular matrices U(\) € F[A]®+s0)x(+s1) and
V()\) € F[A|(mHs0)x(mts1) guch that s; — sy = ¢ — p = 7 — m and

U(A) Diag(P(A), Is, )V (A) = Diag(L(A), L, ).

Thus linearizations of matrix polynomials preserve the finite elementary
divisors of P(\). Linearizations of matrix polynomials that also preserve

13



the infinite elementary divisors are called strong linearizations. In this and
next section we will focus on linearizations that preserve the finite zeros
and poles (with their partial multiplicities) of rational matrices. Strong
linearizations that preserve both the finite and infinite zeros and poles will
be introduced and studied in Section 6.

Our definition of linearization of a rational matrix follows a similar pat-
tern to that of a matrix polynomial. As announced in the introduction, we
allow rational matrices of arbitrary size, in contrast to the references [29, 1]
which consider only square rational matrices.

Definition 3.3 Let G(\) € F(A\P*™. A linearization of G(X\) is a linear
pencil of the form
Al)\ + AO BlA + BO

— (n+q)x (n+r)
L) —(C1A+Coy) DiA+ Dy €F ’ (®)

with n > 0, such that the following conditions hold:
(a) if n > 0 then det(A1 A + Ap) # 0, and
(b) if G(A) = (D1 + Do) 4 (CLA 4 Co) (AL + Ag)"H(BiA + By) then:

(i) L(\) is a minimal polynomial system matriz of G()\), and

(i1) there are integers si,s2 > 0 and unimodular matrices U(X) €
R\ PHs)xPEs) gnd V(X)) € F[A|mts)xm+s) sych that s —
So=q—p=r—m and

~

U(A) Diag(G(A), Is, )V (A) = Diag(G(N), Is, ).

Notice that L()\) is always a polynomial system matrix because n >
deg(det(A1A+Ap)). Now, by the minimality of L(\), the degree of det(A; A\ +
Ap) is the least order of G()), that is, deg(det(A1 A+ Ag)) = v(G())), which
is the sum of the degrees of the denominators in the (finite) Smith-McMillan
form of G(A\). On the other hand, condition (#) means that the matrices
Diag(G(A), I,,) and Diag(G()), Iy,) have the same Smith-McMillan form.
A natural question is whether v(G(\)) = v(G(\)) and, in general, how the
invariant rational functions of G(\) and G()) are related. We answer this
question in the following lemma.

Notice that in the definition of linearization we can always take s; = 0
or sg = 0 according as p > ¢ and m > r or ¢ > p and r > m. In what
follows we will assume, for notational simplicity and because it is the most
usual case, s :=s1 > 0 and so = 0.

Lemma 3.4 Let G(A\) € F(A\)P*™ be a rational matriz with Smith-McMillan

form
: e1(N) er(N)
Dlag(wll(x)""’wru)> 0
0

] e F(\)P*™,
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Then the Smith—McMillan form of Diag(G(\), Is) is

: a) €rys(A)
Diag ({p} N ¢r+s(>\)> 0 ] € F(\)Pro)x(mts), (9)
0 0
where
G = =B =1 Gu)=a(), izl
qzbl()\) = 7/)1()\), 1= 1 Ty ¢r+1(>‘) == 1/]7‘4‘5()\) =1

Proof.- Observe that if s = 0 then there is nothing to prove. Moreover,
if s > 0, we only need to prove the result for s = 1 because the result
for s > 1 follows from the result for s = 1 applied to Diag(G(\), Is—1)
instead of G(X). Note also that from the divisibility relations of the Smith—
McMillan form of G(A) it follows that €;(\) and v;()) are coprime if ¢ < j
and, so, (9) indeed defines a Smith-McMillan form, i.e., the fractions in
(9) are irreducible. Obvious unimodular transformations allow to see that
Diag(G(\), 1) is equivalent to

with

Diag (q(A) (A) 856( )5183

Q) = 0 0

Thus if a;(\) = ﬁi((i‘)) fori=1,...,r then

Q) = [ Diag (61(/\),62()\)042(/\)(,). 6N ag(N), 1 (X)) 8 } ‘

Note that
e1(A) [e2(A)az(A) | -+ [ e (N)ar(N)
and

ged (€ (A)aj (), 1 (V) = ged(€i(A)aj(A), (N (V) = e (A), § = 2,...,7,

where ged stands for greatest common divisor. This implies that if for
j=2,...,7 D;j()) is the determinantal divisor of order j (i.e., the greatest
common divisor of all j x j minors) of Q()), then
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D;(A) = ea(Nea(MNaza(A) - €j—1(N)aj—1(A) ged(¥1(N), €5 (N)aj(N))

= ae(N)az(A) - g_1(MN)aj—1(A)a;(A),

as already seen above. In addition Dj(\) = ged(er(N),¥1(A)) = 1. Hence
the invariant polynomials of Q()) are

o (33) ) (33) v

The result follows by dividing these polynomials by 11 (\) . [

Example 3.5 Take
Py )\)\ 0
G = [( E A] :
A—1

which is in Smith—-McMillan form. According to Lemma 3.4, the Smith—
McMillan form of
[G()\) O]

0 1
is L
[EEDeE) 2 0
0 o1 0
0 0 A

This can also be easily computed via the Smith normal form of the polyno-
mial

(A — 1)(A — 2) Diag(G()\), 1).

_A consequence of Definition 3.3 and Lemma 3.4 is that v(G(\)) =
v(G(N)). Thusif L(\) of (8) is a linearization of G(\) then n > deg(det(Aj A+
Ap)) = v(G(N)). Therefore, the minimum size of A; A+ Ap is obtained when
Aj is invertible. In fact, in this case and only in this case the order of
a linearization of G(\) is equal to n, i.e., to the size of A;A + Ap. This
observation motivates the following definition.

Definition 3.6 Let G(\) € F(A\)P*™. A linearization

. AN+ Ap B\ + By (n+q) X (n+r)
LA = —(CiA+Cy) Did+ Dy € FIA

of G(X) is said to be a linearization with state matriz of minimum size if
n =v(G(N)) or, equivalently, if Ay is nonsingular when v(G(X)) > 0.
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Linearizations of G(\) with state matrices of minimum size have obvious
computational advantages. In addition, we will see in Section 6 that they are
fundamental in the definition of strong linearizations of rational matrices.
However, we emphasize that the results of this section remain valid for any
linearization, i.e., independently of the size of A1\ + Ag.

Definition 3.3 extends the usual definition of linearization of matrix poly-
nomials. In fact, let P(A) € FIA\JP*™ with €1(A),. .., & (\) as invariant poly-

A+ Ag BiA+ By
—(C1A+Co) D1A+ Do
be a linearization of P(A) in the sense of Definition 3.3 (recall that we are
assuming s := s; > 0 and sy = 0). Let G(\) = (D1A + Dp) + (C1A +
C())(Al/\ + Ao)fl(Bl)\ + Bo). Then

nomials and let L(\) = € F[\] (vt pts))x(nt(mts))

e Since v(P())) =0, n > deg(det(A;A + Ap)) = 0. This implies n =0
or Aj A+ Ap unimodular. In both cases, G()) is a matrix polynomial.

e From Definition 3.3 (i) and Lemma 3.4 the invariant polynomials of
G\ arel,...,1,e1(N),...,e(N) (with at least s invariant polynomials
equal to 1).

e From Definition 3.3 (i) and Theorem 2.1 the invariant polynomials of
L(XA) are 1,...,1,€e1(A),...,e(N) (with at least n + s invariant poly-
nomials equal to 1). Thus, there exist E()\) € F[\|(tp+s)x(ntp+s) and
F()\) € F[\|(mtmts)x(ntmts) hoth unimodular such that

EO)LOF()) = [P (3) 0 ] (10)

0 In-l—s
Therefore L(\) is a linearization of P(A) in the usual sense of matrix
polynomials [22, 20, 9]. And conversely, if a matrix pencil L(\) is a lin-
earization of the polynomial matrix P()\) in the usual sense then, taking

n = 0 in Definition 3.3, L(\) is a linearization of P(\) in the sense of Defi-

nition 3.3.

The following definition is introduced in order to state concisely the

spectral characterization of linearizations presented in Theorem 3.9.

Definition 3.7 Let G(\) € F(\)P*™ and let L(\) € F\|+t)x(m+r) pe g
minimal linear polynomial system matriz as in (8). We will say that L(\)
preserves the finite structure of poles and zeros of G(\) if the following
condition holds true: For all A\g € F, (A — X\o)¥, with w > 0, appears in
the prime factorization of exactly k denominators (respectively numerators)
Yi(\) (respectively €;(\)) in the Smith—McMillan form of G(X) if and only if
AiX + Ag (respectively L(N\)) has exactly k finite elementary divisors equal
to (/\ — Ao)w.
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Equivalently, L(\) preserves the finite structure of poles and zeros of
G(A) if (and only if) the poles of G()\) are the zeros of A1\ + Ay, with the
same partial multiplicities in both matrices, and the zeros of G()\) are the
zeros of L(\) with the same partial multiplicities in both matrices.

If L()) is a minimal linear polynomial system matrix as in (8) and G()\)
is its transfer function matrix then, by Theorem 2.1, L(\) preserves the
finite structure of poles and zeros of é()\) Even more, it follows directly
from Definition 3.3, Theorem 2.1 and Lemma 3.4 that all linearizations of a
given rational matrix G(\) preserve the finite structure of zeros and poles of
G(A). The converse however is not true in general, i.e., if L(\) is a minimal
linear polynomial system matrix as in (8) which preserves the finite structure
of zeros and poles of G(A) then L(A) may not be a linearization of G(A).
In fact, if G(X) is the transfer function matrix of L(A) then, by Theorem
2.1 and Lemma 3.4, G()\) and Diag(G()\), I,) will have exactly the same
numerators and denominators different from 1 in their invariant rational
functions, but they are not equivalent if they do not have the same rank.
Thus, in answering when a matrix pencil L(\) preserving the finite structure
of poles and zeros of G(\) is a linearization, the null-spaces of G(\) and G (M)
will play an important role. Once these spaces are taken into account, we
will see (Theorem 3.9) that for linearizations of rational matrix functions a
result similar to [9, Thm. 4.1] for matrix polynomials holds true.

Let us denote Np(G(N)) and N;(G()N)) the left and right null-spaces over
F(\) of G(N), respectively, i.e., if G(A) € F(A)P*™,

Ne(G(N)) = {z(\) € FA)P - 2(\)TG(A) = 0},
NA(GN) = {z(A) e FON)™L: G(N)z(N) =0}
These sets are vector subspaces over the field of rational functions of F(A)P

and F(\)™, respectively. Recall the rank-nullity theorem: dimNy(G()))
p —rank G(\) and dim NV,.(G(X)) = m — rank G()\). Notice that for G())
A) i
(

m |l

F(A)P*™ and T(\) € F(\)PTOxm+a) ¢ > 0, rank T(\) = ¢ + rank G(
and only if dim N, (G(X)) = dim N, (T (). Also rank T'(\) = ¢ + rank G(A
if and only if dimANy(G(\)) = dimNy(T())). In what follows we wil
bear in mind that dim N, (G(\)) = dimN,(T(N\)) and dimNy(G(N)) =
dim Ay (T (X)) are equivalent and, so, exchangeable conditions.

Also, in computing the partial multiplicities of the poles and zeros of
G(A) only the numerators and denominators different from 1 in the Smith—
McMillan form of G(A) must be taken into account. They will be called
nontrivial or non-unity numerators and denominators of G()), respectively.
Similarly the non-unity or nontrivial invariant polynomials of a matrix poly-
nomial are those different from 1.

= /=

Lemma 3.8 Let G(\) € F(\)P*™ and let

L(}\) - Al)\ + AO Bl)\ + BO c IF[A] (n+(p+s)) x (n+(m+s))

- —(Cl)\ + C()) D1+ Dy
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be a minimal polynomial system matriz giving rise to @()\) Then L()) is a
linearization of G(\) if and only if the following two conditions hold:

(a) dimN,(G(N)) = dimN,(G())), and

(b) G(\) and G(\) have ezactly the same nontrivial numerators and ez-
actly the same nontrivial denominators in their Smith—McMillan forms.

Proof.- The necessity follows from Lemma 3.4, Theorem 2.1 and the defi-
nition of linearization. For the suﬁﬁig\iency, note that the rank-nullity theorem
and condition (a) imply that rank G(\) = s +rank G(\). Let r = rank G(\)

and let %(/\A)),. c %&)) be the invariant rational functions of G(\). Assume

that ep1(N)|er2(N)] -+ - |er(A) and g (A)[1g—1(A)] - - - |¥1 () are the nontriv-
ial numerators and denominators, respectively, of G(A). By hypothesis these
polynomials are also the nontrivial numerators and denominators of @()\)
Then, the Smith—-McMillan form of this matrix is

3 € (>\) €rs (A)
Dlag (12;1()‘) B "Zr—&-kc()\))

] € F(\)PHs)x(mts),

0 0
where
é()‘) ::gs()‘ :17 %-FI()\) :ei()\)a Z.NZ 1,...,7”,
¢Z()\) = ¢Z(>\)7 1= ]-a - T wT+l()\) == wT+S()\) =1

It follows from Lemma 3.4 that G(\) and Diag(G()),I,) are equivalent.
This completes the proof. ]

Theorem 3.9 (Spectral characterization of linearizations) Let G(\) €
F(N)P*™ and let

L(}\) o Al)\ + AO BiA + By c F[)\] (n+(p+s)) x (n+(m+s))

- —(Cl)\ + C()) D1+ Dy

be a polynomial system matriz of least order. Then L(\) is a linearization
of G(N) if and only if the following two conditions hold:

(a) dimN,.(G(N\)) = dim N,.(L())), and
(b) L(\) preserves the finite structure of poles and zeros of G(\).

Proof.- Let G (M) be the transfer function matrix of L(\). By Theorem
2.1, dim N, (G(N)) = dim N;(L(A)). In addition, L(A) preserves the finite
structure of poles and zeros of G(A). The result follows from Lemma 3.8. B
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Remark 3.10 As explained before condition (a) in Theorem 3.9 is equiva-
lent to dim NVy(G(X)) = dim Ny(L(A)). Therefore condition (a) in Theorem
3.9 can be equivalently stated as “G(A) and L(A) have the same number of
left and the same number of right minimal indices”, as it was done in [9,
Thm. 4.1] for linearizations of polynomial matrices. Analogously, condition
(a) of Lemma 3.8 can be equivalently stated as “G(\) and G(A) have the
same number of left and the same number of right minimal indices”.

4 Transfer system equivalence

We analyze deeper the relationship between rational matrices and lineariza-
tions. Let us recall at this point the notion of strict system equivalence (see
[27, Ch. 2, Sec. 3.1]): Two polynomial system matrices

AN Bi(A) | A2(N) Ba(N)
A= o] m P =[G D)

(A;(A) € F[A]™*™ nonsingular, deg(det A;(\)) < n, B;j(\) € F]\]"*™, C;(\) €
F[AP*™, D;(X) € FIAJP*™, i = 1,2) are said to be strictly system equivalent
if there exist unimodular matrices U(A), V(A) € F[A]"*" and polynomial
matrices X () € FIAP*™, Y(\) € F[]A]"*"™ such that

[U()\) oHAlm Blm] [vw Y(A)]_[Azw BM] (11)

X(A) L] [-Ci(A) Di(N)] [ O Ip | [=C2(N) D2(N)]°

An important feature of strict system equivalence is that any two strictly
system equivalent polynomial system matrices have the same order and give
rise to the same transfer function matrix ([27, Ch. 2, Thm. 3.1]). Bearing in
mind Definition 3.3, we are interested in characterizing when two polynomial
system matrices have equivalent transfer function matrices. We extend the
definition of strict system equivalence in an obvious way to reach this goal.

Definition 4.1 Two polynomial system matrices

T AN B _ [ A2(\)  Ba()
PO =G0 o] =60 b

both of size (n 4+ p) x (n 4+ m), will be said to be transfer system equivalent
if there exist unimodular matrices U(X),V(X) € FI\]"*™, W(A) € F[A]P*P,
T(N) € FIA]™™ and polynomial matrices X (\) € F[A]P*™, Y (\) € F[A]"*™

such that
U(N) 0 V(N Y
o won) B0 7] = Ry

Theorem 3.3 of [27, Ch. 2| shows that strict system equivalence reduces
to system similarity when P;(\) and P>()) are polynomial system matrices
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in state-space form?

proposition.

. The same proof can be used to prove the following

Proposition 4.2 Let

CAE - A B C[AEy— Ay By
Pl(/\)[ -C Dl()‘)] and PQ()\)[ —Cy Do ()

be polynomial system matrices in state-space form with det E; # 0 for i =
1,2. Then Pi(\) and Pa2(\) are transfer system equivalent if and only if
there are invertible constant matrices T,S € F™"*™ and unimodular matrices
U(N), V(XA) such that

0wty B3 vy =P

Proposition 4.3 If the polynomial system matrices

A0 B (A B
TR v R A I VR e ein]

are transfer system equivalent then their transfer function matrices G1(\) =
D1i(\) 4+ C1 (N AL (NI B1 () and Ga()\) = Da(X) + Co(N) Aa(N) "1 Ba(N) are
equivalent rational matrices. Moreover, A1(X\) and Aa(X) are equivalent poly-
nomial matrices.

Proof.- A straightforward computation shows that if

Uy o vy YO
[X(A) W(A)] Pl“)[ 0 T<A>]‘Pz(”
then Ga(\) = W(N)G1(AT(A) and As(N) = UM A AV () . n

The converse of this result is not true in general, i.e., two polynomial
system matrices of the same size that give rise to equivalent transfer function
matrices are not necessarily transfer system equivalent. But, as we show in
a moment, it does hold true when the polynomial system matrices are of
least order. The following result in [27, Ch. 3, Sec. 3] is fundamental for
minimal polynomial system matrices.

Theorem 4.4 Let Py(\) and P2(\) be two (n + p) x (n + m) polynomial
system matrices of least order. Then Py()\) and Py(\) are strictly system
equivalent if and only if they have the same transfer function matrix.

2 According to the classical reference [27, p. 43], in Section 2 we have defined that a
polynomial system matrix is in state-space form if A()) is a monic linear polynomial matrix
and B(\) and C'()\) are constant matrices. In the sequel, with a slight abuse of notation,
we will say that a polynomial system matrix is in state-space form if A(A) = AE — A with
E and A constant matrices, F is nonsingular, and B(A) and C()\) are constant matrices.
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Remark 4.5 We must recall at this point that for

_ A()\) B()‘) (n+p) x (n+m)
P =10 Do) <P
to be a polynomial system matrix, the condition n > deg(det(A(\)) is im-
posed. In proving Theorem 4.4 it is where this condition plays a fundamental
role. Specifically, if A1(\), A2(A\) € F[A]™*™ and

40 BN Az(A)  Ba(N)

are minimal polynomial system matrices of size (n + p) x (n + m) with
the same transfer function matrix then condition n > deg(det A;(\)) =
deg(det A2(A)) = v(G(A)) is necessary for Pi(A) and Py()) to be strictly
system equivalent. This fact is illustrated by the following two matrices [27,
p. 108]:

[ O+2)2 | a+1 [ (A+2)2 | -1
il 0 } P2(A)_[ A1 0]

Note that P;(A) and P()\) are not polynomial system matrices, because
n =1 < deg(det 4;(\)) = 2, for i = 1,2. Nevertheless, it is immediate
to check that Pj(\) and P»(\) satisfy all other requirements of minimal

polynomial system matrices of g(\) = (f‘jzl)Q. However, it is shown in [27,

p. 108] that P;(A\) and P>(\) are not strictly system equivalent.
We prove our main result in this section with the help of Theorem 4.4.

Theorem 4.6 Let Pi(\) and Py(\) be two (n + p) X (n + m) polynomial
system matrices of least order. Then Pi(\) and Py(\) are transfer system
equivalent if and only if their transfer function matrices are equivalent.

Proof.- By Proposition 4.3, if two polynomial system matrices are trans-
fer system equivalent then their transfer function matrices are equivalent.

Assume now that G1(A), Ga(N\) € F(A\)P*™ are the respective transfer
function matrices of the following polynomial system matrices of least order:

AN Bi(©) | A2(N) Ba(XA)
A= B0 ] ma =G0 D)

and G2(\) = W(A)G1(A\)T(A) for some unimodular matrices W(\) and
T(A). Then

Da(N) + Co(M)A2(N) 7' B2(A) = W(A)(D1(A) + Cr(\) A1 (N) ' Bi(A\)T(N)
= WA)D1(NTA) + WA C1(A) A1 (X)) BL(A)T(N).
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Now since Aj(A) and Cy(\) are right coprime, Aj(\) and W(X)Cy(\) are
also right coprime. In fact, if X()) is a common right factor of A;(\) and
W(A)CL(A) then A1(A) = A1(A)X(\) and W(A)C1(A) = C1(A)X(N), with
A1 (M) and C7(A) both matrix polynomials. But since W (\) is unimodular,
Ci(A) = W(A)"ICL(A)X(N). Hence Aj(\) and Ci(A) have also X(\) as
a right common factor. It must be a unimodular matrix because Aj(\)
and C7(A) are right coprime. The proof that A;(\) and By (A)T'(\) are left
coprime is similar.

Now, we have two polynomial system matrices of G2()\), both of least
order: P»()\) and

S AW Bi(MNT(N)
Pi(\) = [W(;\)Cl()\) W(AiDl()‘)T(A)] '

By Theorem 4.4 these two polynomial system matrices are strictly system
equivalent. Thus,

{%3 H B mﬁ) Yf(j)} =P

for some unimodular matrices U(\) and V(\) and matrix polynomials X (\)
and Y (). Therefore

U\ 0 V) Y
[X(A) W(A)] PM)[ 0 T(A)]:PM’

and this means that P;(\) and P»(\) are transfer system equivalent, as
desired. -

Theorem 4.6 allows us to obtain linearizations of rational matrices out
of their minimal polynomial system matrices by means of elementary oper-
ations. This will be a consequence of Theorem 4.8 below. We will need the
following technical result.

Lemma 4.7 Let Pi()\), Py(\) € FI\|"P)X(4m) be polynomial system ma-
trices. If Pi(\) and Pa(\) are transfer system equivalent then Py(\) is of
least order if and only if Pa(X) is of least order.

Proof.- Let

CTAN B A B
A= [—cﬂw Dim] B3 = {—éw DZ(A)] '

We recall (see Section 2) that P;()) is of least order if and only if Aj(\)
and Bj(\) are left coprime and A;(\) and C;(\) are right coprime. Ac-
cording to [27, Thm. 6.1, Ch. 2] two matrix polynomials R(X\) € F[\]""*"
and S(A) € F[A]"™*P are left coprime if and only if the Smith normal form
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of [R(\) S(A\)] is [Im 0]. It is easy to prove (see [27, p. 55]) that if
Pi(\) and Py(\) are transfer system equivalent then [A;(\) Bi(\)] and
[A2(X)  Ba(A)] have the same Smith normal form. Thus A;(\) and By())
are left coprime if and only if A2(\) and Ba2(\) are left coprime.

It can be proved in a similar way that A;(A) and C;()) are right coprime
if and only if A2(\) and Ca(\) are right coprime. |

Theorem 4.8 Let G(\) € F(A)P*™ and let

AN B\

P(\) = [—C’()\) D()\)] € F[\)(atp)x(atm)

be a polynomial system matrixz of least order of G(\). Let

_ | AiA+40  BiA+ B (n-+(p+8)) X (n+(m+s))
Ly = [—(Cl/\ +Cy) DA+ Do] € FI

such that n,s > 0. Define

Inoq 0 0 0
POV = | — —Ac(*(Ai) ggi 0| amd Iy =LY
o 0 | o I

or

AN |

B(A) 0 R Iy 0 0
—C(A\) | D(A) 0 and L(\) = 0 AN+ Ay | Bi1A+ By
0 I 0 —(CiA+Cp) | DiA+ Do
according as m > q or ¢ > n. Then L(\) is a linearization of G() if and
only if P(\) and L(\) are transfer system equivalent.
Proof.- Let us assume ¢ > n. The proof in the other case is similar.

Put E(A) =[B(\) 0] € FA]ax (mts) 6()\) = [C’E}A)] € F[A|(P+9)%4 and

D(\) = [Dé)\) 1(.]] € F[\]+s)x(m+s)  Notice also that
—(ACl + C()) AD1 + Dy
with
~ |Ig—p O ~ |0 0
AO_[ 0 AO]’ A= [0 AJ’
and for ¢ = 0,1,

Ei_[o], G=[ c].
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AN B
~C(\) D))
)
IS

is a polynomial system matrix

So, P(\) = {P W ?] _

Gé/\) as transfer function matrix and L(\) and

of least order with [
L()) have the same transfer function matrix, G(\) say.

Assume that L()) is a linearization of G(\). This means that L(\) is a
minimal polynomial system matrix of G (M) and this matrix is equivalent to
Diag(G()), I5). Since det(AA1+A4p) = det()\gl —|—fAlg), Z(/\) is also a minimal
polynomial system matrix of G (A\). Thus we have two minimal polynomial
system matrices of the same size, Z(/\) and ]3()\), of least order with equiv-
alent transfer functions matrices. By Theorem 4.6 they are transfer system
equivalent.

Conversely, assume that P()\) and L()\) are transfer system equivalent
and let G()) be the transfer function matrix of L(A) (and L(\)). As P(}) is
of least order, it follows from Lemma 4.7 that L(\) (and so L())) are of least
order. By Theorem 4.6, G(\) and Diag(G()), I,) are equivalent. In conclu-
sion, L(A) is a minimal polynomial system matrix of G (M) and this matrix
and Diag(G(\), Is) are equivalent. By definition, L()) is a linearization of
G(N). ]

4.1 A general procedure to obtain linearizations

Theorem 4.8 can be used to give a very general procedure to obtain lineariza-
tions for a given rational matrix G(\) € F(A)P*™ from any of its minimal
polynomial system matrices. In fact, a particular case of this procedure will
be used in Section 8 to construct a wide family of infinitely many lineariza-
tions of any rational matrix with the additional property of being strong
linearizations according to Definition 6.2. Let

_ | A B

0= 60 oy

be such a minimal polynomial system matrix of G(\). First we must choose
the size n of the linear pencil AA; + Ag in the linearization

] € F\(etp)x(atm)

_ | AiA+40  BiA+Bo (n+(p+5)) X (n+(m+s))
LV = [—(Cl/\ +Cy) Dih+ Do] € F)

that we are searching for. According to Theorem 4.8 (and Proposition 4.3),
if L(\) is a linearization of G(A) then there are unimodular matrices U(\)
and V(\) such that either

UM + Ag)V(A) = Diag(Lu—q, A(N))

or

UMN)ANV(X) = Diag(I;—n, N1 + Ao).
Thus, the matrices A(\) and AA; + Ao must satisfy the following constraints:
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(c1) v(G(N)) = deg(det A()) < g,
(c2) v(G(N)) = deg(det(AA1 + Ap)) < n, and
(c3) MAj + Ap is a linearization of A(A).

It follows from (c¢;) that A(\) admits linearizations of size v(G(\)). In fact,
if a1(A) | -+ | ar(A) are the invariant polynomials of A(A) different from 1
then deg(ag(\))+---+deg(ayr(N)) = deg(det A(X)) = v(G(N)). Choosing A,
as the companion matrix of a;(A) for i = 1,...,r and A = Diag(Ay, ..., 4,),
it turns out that AI — A is a linearization of A(\) of size v(G(X)) X v(G(A)).
Thus, we take n > v(G())), form matrix P(\) of Theorem 4.8 and the
goal is to produce E()\) of that theorem by using transfer system equivalent
transformations. If ¢ > n then the desired linearization L(\) is obtained by
removing from L(\) the first ¢—n rows and columns; otherwise, L(A) = L(A).
As a consequence of Theorem 4.8, the procedure described above is the
most general method one can imagine to construct linearizations of a rational
matrix G(A) when one of its minimal polynomial system matrices is given.
However, we emphasize that in all the explicit constructions of linearizations
presented in Section 8 just a very particular instance of this procedure is
used. The two key ingredients of this particular method are that it takes
v(G(\)) = n = ¢ and that both the starting minimal polynomial system
matrix of G(\) and the target linearization are in state-space form. This fact
restricts and simplifies considerably the class of transfer system equivalent
transformations that can be performed in view of Proposition 4.2. The
constructions in Section 8 are based on Corollary 4.9, whose proof is omitted
since it is an immediate consequence of Theorem 4.8 and Proposition 4.2.

Corollary 4.9 Let G(\) € F(A\)P*™ and let

_|MEp—Ap Bp (n+p) x (n+m)
P\ = [ “op D(A)] e F[\] (12)
be a minimal polynomial system matriz of G(\) with Ep € F™*™ nonsingu-
lar. A pencil

_ AEL — Af By, (n+(p+s)) x (n+(m+s))
LX) = [ “c AD; + Do] € F[\] ) (13)
with Er, € F"*™ nonsingular, is a linearization of G(X\) if and only if there
exist constant nonsingular matrices T, S € F™™ and unimodular matrices
U(N) € F\|te)xets) () € A+ x(m+s) such that

[g U?A)} L(A) {g V?)\)] = AEEOC_pAP DBE:)D\) 185 (14)
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Note that equation (14) is equivalent to the four equations

T(MAEL — AL)S = (AEp — Ap), U(X) (AD1+ Do) V(A) = Diag(D(A), L),

UNCLS = [(ﬂ : TBLV(\) = [Bp 0],

which reveal that in order L(A) in (13) to be a linearization of G(\), AD1+Dy
must necessarily be a linearization of the polynomial matrix D()) in the
usual sense of matrix polynomials [22, 20, 9]. Thus, Corollary 4.9 suggests
the following symbolic algorithm for constructing linearizations in state-
space form of G()).

Algorithm 4.10 Given a minimal polynomial system matrix P()) in state-
space form as in (12) of a rational matrix G(\), this algorithm constructs a
linearization of G(\) in state-space form, when it ends.

Step 1. Choose any linearization ADj + Dy of the polynomial matrix D(\)
together with unimodular matrices U(\), V(A) such that U(X) (AD; +
Do)V (A) = Diag(D()\),Is). We emphasize that there are infinitely
many choices available in the literature for constructing linearizations
of polynomial matrices (see, for instance, [2, 5, 6, 7, 8, 11, 17, 22, 25]
and the references therein).

Step 2. Construct U(\)~! [ Cp } and [Bp OHXS] V(A)~! and check whether

OSXTL
these matrices are constant matrices. If true, continue; if false, stop.

Step 3. Choose any pair of n X n constant nonsingular matrices 7, S and
define

(/\EL — AL) =71 (/\Ep — Ap)Sil,
Cp

Os><n

Cp:=UN)"! { ] S~1 and

Br:=T""[Bp Onxs] V(AL

Step 4. The pencil L(\) constructed as in (13) with all the pencils specified
in Steps 1 and 3 is a linearization of G(\) by Corollary 4.9.

Algorithm 4.10 is the method we have used to construct in Section 8
infinitely many linearizations of any rational matrix and is the method we
recommend to construct linearizations of rational matrices based on pre-
viously known linearizations of polynomial matrices. It is a rather general
procedure that includes, as very particular cases, the constructions presented
in [29, 1]. However, the reader should notice that Algorithm 4.10 is itself
quite particular when compared with the general method described in the
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first part of this section, which is based on Theorem 4.8, and that may pro-
duce, in general, linearizations where D1\ + Dy is not a linearization of the
polynomial matrix D(\). In addition, we emphasize that Algorithm 4.10
may stop and fail in Step 2. However, note that the unimodular matrices
U(A) and V(A) satisfying U(X) (AD1 + Do) V() = Diag(D(\), I5) are by no
means unique and that a considerable freedom is available in their choice,
though it is an open problem to characterize such precise amount of free-
dom. Finally, note also that Steps 2 and 3 of Algorithm 4.10 only need to
use the first p columns of U(A)~! and the first m rows of V()7L

5 Comparison with Alam-Behera’s definition of lin-
earization

The definition of linearization in [1, Def. 5.3] relies on the fact that every
rational matrix G(\) € F(A)P*™ can be written as a right or left coprime
matrix fraction description [19, Ch. 6]. This means that there are square
and nonsingular polynomial matrices Dg(A) € F[\"*™, Dr(\) € F[A]P*P
and polynomial matrices Nr(\), N () € F[A]P*™, such that

e Dgr(A) and Ng(\) are right coprime,
e D () and Np(\) are left coprime, and
° G()\) = NR()\)DR()\)_l = DL()\)_INL(A).

Nr(A)Dg(MN) ™! (respectively Dr(X\)~'Np(N)) is called a right coprime (re-
spectively left coprime) Matriz Fraction Description (MFD) of G(A).

It turns out ([19, p. 447]) that the nontrivial invariant polynomials of
Dr(A) and Dg(A) are the same and they coincide with the nontrivial de-
nominators of the Smith-McMillan form of G(A). Similarly, the nontrivial
invariant polynomials of Np(A\) and Ng(\) are the same and they coincide
with the nontrivial numerators of the Smith-McMillan form of G()). Bear-
ing these facts in mind, we can adapt the definition of linearization in [1, Def.
5.3] (stated only for square rational matrices) to include rational matrices
of any size.

Definition 5.1 ([1]) Let G(\) € F(A\)P*™ and let G(A\) = N(A)D(\)~!
be a right coprime MFD. Let n = deg(det D(\)) and r = max(m,n). A
linearization of G(X) is a linear pencil of the form

_[AE+A B (n+q) x (n+1)
ZOVES AN S P (15)

such that the following conditions hold:
(a) A\E + A € FI\™™ and det E # 0,
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(b) Diag(l,—m, D(N)) and Diag(l,_n, \E + A) are equivalent polynomial
matrices,

(c) there are integers si,s2 > 0 satisfying s1 —sa =n+q—p =n+
t —m such that Diag(ls,, N(\)) and Diag(Is,, L(\)) are equivalent
polynomial matrices.

Conditions (b) and (¢) are equivalent to saying that AE+ A is a linearization
of D(A) and that L()\) is a linearization of N(\), respectively.

In our opinion, Definition 5.1 has two drawbacks. First, ¢ and t are
positive integers that must be allowed to be big enough for L(\) to have
the same nontrivial invariant factors as N(A). For example, if G(\) =
Diag((A — 1)~ (A = 3)3(A — 1)7!) and we define

N()\) = Diag(1,(A — 3)%), D(\) = Diag((A — 1), (A — 1))

then G(\) = N(A\)D(A\)~! is a right coprime MFD. All 2 x 2 linearizations
of D(A) have a1 (A) = aa(A) = A — 1 as invariant polynomials and the 3 x 3
linearizations of N()\) have 71(\) = 72(A) = 1 and 73(\) = (A — 3)3 as
invariant polynomials. However there is no 3 x 3 linear pencil L(\) with
these invariant polynomials and having a 2 x 2 linear pencil in the upper left
hand side corner with a1 () = as(\) = A — 1 as invariant polynomials. The
reason is that the invariant polynomials of L(\) must satisfy the interlacing
inequality (see [24, 31])

1(A) [aa(A) [3(A).

The minimum possible value of ¢ and ¢ for L()) in this example is ¢ = ¢t = 2;
but then L(A) will necessarily have infinite elementary divisors. Are they
related to the infinite poles and zeros of G(\)? According to Lemma 2.3 the
answer is in the affirmative provided that for some s > 0, Diag(G(\), I5)
and the transfer function of L(\) have the same structure at infinity, which
is not guaranteed by Definition 5.1.

The second, and perhaps more important remark, about Definition 5.1
is that AE + A and B are not required to be left coprime and A\E + A
and C' are not required to be right coprime. Thus L()A) can be seen as a
polynomial system matrix in state-space form that may not be of least order.
In other words, L()\) is allowed to have input or output decoupling zeros.
This implies that the structure of poles and zeros of G(\) is not the same
as that of the transfer function matrix of L(\) (compare with Lemma 3.4).
The following is an extreme case. Let

A1 )\+2)_[)\+1 0 HA+2 0 }‘1

G(A):Dlag<x+2’x+1 Lo at2/| 0 at1
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This is a right coprime MFD and a linearization of G()\) that satisfies the
conditions of Definition 5.1 is

A+2 0 1 0
0 X+1 00
L=1 0 10
0 1 01

Its transfer function matrix is é()\) = I5. No information about the poles
and zeros of G()) is conveyed to the transfer function matrix of L(A). While
the REPs G(A\)z = 0 and G(\)Z = 0 are equivalent when we use Defini-
tion 3.3, this property may be lost when using Definition 5.1. Nevertheless
whether L(\) is of least order or not, it reflects the finite structure of poles
and zeros of G(\) and may be useful for computing them.

Now, if L(\) in (15) is required to be of least order then Definition 5.1
is a particular case of Definition 3.3. In fact, notice first that rank G(\) =
rank N (\) and so, bearing in mind that G(\) and N(\) have the same size,
dim N, (G(\)) = dim N, (N (A)). Assume now that L(A) is a linearization in
the sense of Definition 5.1. Then Diag(ls,, N()\)) and Diag(Is,, L()\)) are
equivalent matrix polynomials for some nonnegative integers s; and ss, i.e.,
they have the same size and rank. Hence, dim N, (N (X)) = dim N, (L()\))
and so dimN,.(G(\)) = dim N;.(L()\)). Also, the finite zeros of G(\), in-
cluding partial multiplicities, are those of L(\) and the finite poles of G(\),
including partial multiplicities, are the finite zeros of A\E + A. Therefore
conditions (a) and (b) of Theorem 3.9 are fulfilled for G(\) and L(\). Since
L(\) is a polynomial system matrix of least order, it follows from Theorem
3.9 that L(\) is a linearization in the sense of Definition 3.3.

It was shown in [1] that for square rational matrices, certain linear pencils
(see, more precisely, [1, Def. 3.2 and Thm. 3.6]), which are generalizations
of the Fiedler linearizations for matrix polynomials [12, 5, 8], are lineariza-
tions in the sense of Definiton 5.1. Thus linearizations in the sense of this
definition always exist for square rational matrices. In constructing such
linearizations for a given G(X) € F(X\)™*™ the authors of [1] start with one
of its minimal polynomial system matrix in state-space form

\ME—-A B
_ (ntm) x (n-+m)
P()\) = [ o D(A)] € F[)\] :

where det £ # 0, and show that for some s > 0 and any permutation o,
there are unimodular matrices U(\), V/(X) € F[\]("+9)%(m+5) such that

5 o) AE‘O; AD];” 18 5 i) =

where L, () is the Fiedler-like linearization corresponding to o. In addition,
Theorem 3.6 in [1] proves that L,(\) is a minimal linear polynomial system
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matrix in state-space form. By Proposition 4.2, L,(A) and Diag(P()), I5)
are transfer system equivalent. So, since P()) is a polynomial system matrix
of least order, by Theorem 4.8 (or more clearly by its Corollary 4.9), L,(\)
is also a linearization in the sense of Definition 3.3.

In conclusion, although L()\) is not required to be of least order in Def-
inition 5.1, the Fiedler-like linearizations constructed in [1] are of least or-
der and so they are linearizations in the sense of Definition 3.3. It must
be noticed that in constructing these linearizations the general procedure
of Section 4.1 is implemented with P()) in state-space form from the be-
ginning and with a target linearization L, (\) which is also in state-space
form, therefore the construction in [1] can be seen as a particular appli-
cation of Algorithm 4.10. All these Fiedler-like linearizations preserve the
finite structure of poles and zeros of square rational matrices G(A). We
will see in Section 8 how to construct a very wide class of linearizations of
arbitrary (possibly rectangular) rational matrices G(\) that include in par-
ticular (modulo permutations with structure Diag(1,,II)) all the Fiedler-like
linearizations from [1] (and so the companion Frobenius-like linearizations
in [29]) and that have the fundamental additional property of being strong
linearizations, i.e., they preserve both the finite and infinite structures of
poles and zeros of G(\).

6 Strong linearizations of rational matrices

Our aim in this section is to provide a definition of strong linearization for
any rational matrix. We want it to be a natural extension of the usual
definition for matrix polynomials. We will rely primarily on that of [20]
although we use a different notation. Alternative references are, for example,
[22, 9]. Let Fy(A) be the local ring of F[\] at \; that is, the ring of rational
functions with denominators prime with A
p(A)
R = { 23 5 a(0) 20}

A matrix U(A) is invertible in Fy () if all its entries are in Fy(\) and both
the numerator and denominator of its determinant are prime with A. Let
P(\) be a matrix polynomial. We denote by rev P(\) the reversal of P()),
that is (see Section 2), rev P(A) = AP (1), where d = deg(P()\)). A strong
linearization of P(A) € F[AJP*™ is any linear matrix polynomial L(\) €
F[A]2*" such that there are integers s1, s > 0, unimodular matrices U () €
F[A]Pts0)x(pts0) Y (X) € F[A](m+s1)x(m+s1) and invertible matrices in Fy()),
E(\) € Fy(\)ets0)xts1) and F(A) € Fy(X\)mrs)xmts1) such that s —
sSo=q—p=r—m and

U(A) Diag(P(A), L5, )V (A) = Diag(L(A), I, ), (16)
E(X) Diag(rev P(\), I5,)F(X) = Diag(rev L()\), Is,). (17)
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Remark 6.1 Note that, assuming that (16) holds, the condition (17) is
equivalent to the existence of unimodular matrices U(\) and V(\) such
that U(\) Diag(rev P(\), I,,)V(A) = Diag(rev L()), I,,), which is a condi-
tion used often in the definition of strong linearizations of matrix polyno-
mials [9, 22]. We emphasize that such condition includes a high level of
redundancy while (17) does not, because unimodular matrices are very par-
ticular instances of matrices invertible in Fy(A). The equivalence of these
two conditions when (16) holds is a consequence of the effect of Mébius trans-
formations on the elementary divisors of polynomial matrices [4, 23, 30].

Recall (see Section 2) that for every rational matrix G(\) € F(\)P*™
there exist biproper matrices Bi(\) € Fp(A)P*P, Ba(A) € Fp(A)™*™ such
that

. 1 1
BUNG)Bo(y) = | P8 B3 O] ¢ e

where r = rankG(\) and ¢; < --- < g, are integers, called the invariant
orders at infinity of G(X). These integers determine the zeros and poles
at infinity of G(X), i.e., if the invariant orders at infinity are of the form
@1 << gp <0=gry1 = =qu-1 < qu < < ¢ then G(A) has
r —u+ 1 zeros at infinity each one of order ¢, ..., q- and k poles at infinity
each one of order —gq1, ..., —qi. Moreover, if G(\) is not strictly proper then
—qy is the degree of its polynomial part (recall (4)). Furthermore, recall also
that the least order of G(\), ¥(G(A)), is the sum of the multiplicities of its
finite poles.

Our definition for strong linearization of a rational matrix is the follow-
ing.

Definition 6.2 Let G(\) € F(A\)P*™. Let q1 be its first invariant order at
infinity and g = min(0,q1). Let n = v(G(X)). A strong linearization of G(\)
s a linear polynomial matriz

_ | Aix+A40 Bid+ By (n+q)x (n+r)
LV =1(cix+co) DA+ Dy) €T (18)

such that the following conditions hold:
(a) if n > 0 then det(A1 A + Ap) # 0, and

(b) if @()\) = (Dl)\ + Do) + (Cl)\ + Co)(Al)\ + Ao)_l(Bl)\ + Bo), al 15 1ts
first invariant order at infinity and g = min(0, q1) then:

(1) there are integers si,s2 > 0 and unimodular matrices Uy () €
R\ Ps0xts1) gnd Uy(N) € F[A|mHs0)x(m+s1) 5o that 51 — s9 =
qg—p=r—m and

U1 (A) Diag(G(A), I, )Uz(A) = Diag(G()), I,), and

32



(i) there are biproper matrices By(\) € Fp, (\)PT5)XP+51) gnd By()) €
Py (X) (s x(mts1) sych that

Bi(\) Diag(\G(\), I,) Bo(\) = Diag(MG()), I, ).

Notice that n = 0 if v(G(\)) = 0, i.e., G()\) is a matrix polynomial.
In this case A1\ + Ag, BiA + By and C1 A + Cy are not present and so
L(\) = CAJ()\) = Di1A+ Dy and Dy + ClAlel = D;y. Furthermore, g = 0
(respectively, g = 0) if and only if G(\) (respectively, @()\)) is proper;
otherwise g (respectively, g) is minus the degree of the polynomial part of
G()) (respectively, G(\)). In any case, NG()\) and MG()) are both proper
rational matrices.

Remark 6.3 Strong linearizations of polynomial matrices are often defined
as those linearizations that satisfy in addition condition (17) (or its redun-
dant version via unimodular matrices [9, 22]). However, Definition 6.2 does
not follow that pattern because L()) is not explicitly required to be a lin-
earization of G(A). This is however a consequence of that definition. In
fact, since n = v(G(A)), by Definition 6.2 (i) and Lemma 3.4, n = V(GN)).
Therefore, L(A) is a minimal polynomial system matrix of G(\) and so L(\)
is a linearization of G(\). In summary, we can equivalently define a strong
linearization of a rational matrix as a linearization with state matrix of
minimum size (recall Definition 3.6) that satisfies in addition condition (i)
in Definition 6.2. In our opinion, the self-contained Definition 6.2 is more
convenient.

Observe also that if n > 0, as n = deg(det(A; A + Ap)), then A4; is
invertible. However, A; invertible does not imply the minimality of L(\)
(for instance matrix P()) in Example 3.2).

Remark 6.4 It is a straightforward consequence of A; being invertible that
(A1 A+ Ag) "1 (B1A+ By) is proper and so is (C1 A+ Cp) (A1 A+ Ag) L. These

properties are important in view of Lemma 2.3.

Remark 6.5 The transfer function matrix G(\) of L(A) in (18) is G(\) =
(D14 C1 AT By)A+G)pr(N), where G- (N) is proper. Thus, Dy +Cy A7 By #
0 if and only if g = —1, and Dy + ClAl_lBl =0 if and only if g = 0.

Condition (7i) in Definition 6.2 is equivalent, by [4, Lem. 6.9 and Prop.
6.10], to:

(i4’) there are invertible matrices in Fy(X), U1(\) € Fy(X)Pts)x@+s1) and
Us(X) € Fy(X)(mHs1)x(mts1) guch that

U.()\) Diag (;gG (i) ,Isl) Us()\) = Diag (Al,gf; (i) ,152> .
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Notice that both 3G (3) and %é (}) are matrices with elements in Fy()).

Remark 6.6 Similarly to the discussion in Remark 6.1, if condition (%) in
Definition 6.2 holds, then condition (7i’) is equivalent to the existence of
unimodular matrices W7 (\) and Wa(\) such that

Wi(\) Diag (;G (i) ,Isl) Wa(\) = Diag (Algé <i> ,152> . (19)

This equivalence can be proved by using the results in [4, Sect. 6] that de-
scribe how the finite and infinite structures of a rational matrix are modified
by a Mobius transformation. As in Remark 6.1, it is worth to emphasize
that condition (19) is redundant with respect to (i’).

In the particular case that G(A) is polynomial then n = v(G(\)) = 0
and, therefore, any strong linearization is of the form L(\) = D1 + Dy,
with G(\) = L()\) such that (i) and (ii) are satisfied. The first condition
means that L()) is a linearization of G(\) in the classical sense of matrix
polynomials (see Section 3). If L(\) also satisfies the second condition then
it is a strong linearization of G(\) in the usual sense of matrix polynomials.

» g

In fact, g = g1 = —deg(G(\), § = @ = — dea(G(\), G(\) = L(A) and
condition (ii’) yields

U, () Diag(rev G(N), Iy, )Us(N) = Diag(rev L()), I,),

showing that Diag(rev G(\), I5,) is equivalent at A to Diag(rev L(\), Is,).

Since strong linearizations of matrix polynomials have been extensively
and deeply analyzed, we will focus mainly on the case n = v(G(\)) > 0.

While condition (%) in Definition 6.2 means that matrices Diag(G(X), I, )
and Diag(G()), I,) are equivalent, condition (i) says that matrices Diag(AG(\), L, )
and Diag(AM9G(N), I s,) are equivalent at infinity. With this in mind the proof
of the following lemma is straightforward.

As in Section 3, we can always take s; = 0 or s5 = 0 according as p > ¢
and m > r or ¢ > p and r > m, respectively. In what follows we will assume
s:=s1 > 0 and so = 0. The invariant orders at infinity different from zero
will be called nontrivial.

Lemma 6.7 Let G(\) € F(A\P*™. Let q1 be its first invariant order at
infinity, g = min(0, ¢1) and n = v(G(N)). Let

L\ = AiA+ Ay BiA+ By € F[\|(nHHs)x (n(me+5))

a —(Cl>\ + Co) D1+ Dy
be a polynomial system matriz of é()\), q1 be the first invariant order at

infinity of @()\) and g = min(0,q1). Then L(X) is a strong linearization of
G(X) if and only if the following three conditions hold:
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(a) dimA;(G(N)) = dim N (G(N)),

(b) G(\) and G(\) have the same nontrivial numerators and the same
nontrivial denominators in their (finite) Smith—McMillan forms, and

(c) MG(A) and NIG(N) have the same nontrivial invariant orders at in-
finity.

Proof.- Notice that condition (i) of Definition 6.2 is equivalent to con-
ditions (a) and (b) simultaneously. And condition (7i) of Definition 6.2 is
satisfied if and only if conditions (a) and (c) are fulfilled . |

Lemma 6.8 Let n >0 and

| Add+Ay  BiA+ By (n+p) x (n+1i)
LN =1 _cia+Cy) Dur+ Dy| €T

with A1 invertible if n > 0. Let é()\) be its transfer function matriz. Then
L(\) is equivalent at infinity to Diag(AL,, G(X)).

Proof.- If n = 0, L(A\) = D1A + Dy and L(\) = G()\). Otherwise, by
Remark 6.4 and Lemma 2.3, L(\) is equivalent at infinity to Diag(A;\ +
Ay, @()\)) Moreover, since A1 is invertible, % = A+ % is biproper.
Thus, w is equivalent at infinity to I, and Aj A+ Ag to Al,. Therefore,
L()) is equivalent at infinity to Diag(A,,, G())). ]

el . . .
From now on we use symbol ~ for equivalence at infinity.

Lemma 6.9 Let G(\) € F(A\)P*™, let q1 be its first invariant order at in-
finity, g = min(0,q1) and n = v(G(X)). Let

L(}\) . Al)\ + AO BiA + By c F[)\] (n+(p+s)) x (n+(m+s))

- —(Cl)\ + C()) D1+ Dy

be a strong linearization of G(\). If Dy + C1 A7 By # 0 then L()\) is equiv-
alent at infinity to Diag(Al s, NYTIG(N)); otherwise, L(\) is equivalent at
infinity to Diag(AI,, Is, \9G(X)).

Proof.- Let @(/\) be the transfer function matrix of L(\). By the pre-
vious lemma,

LN Diag(M,, G(A)). (20)

Moreover, condition (i) of Definition 6.2 is equivalent to
NGNE Diag(NG (M), I,).
Now, if Dy + ClAlel # 0, by Remark 6.5, g = —1 and so

Diag(M, G(N)< Diag(Alys, A FLG(N)).
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However, if Dy + ClAlel =0, by Remark 6.5, g = 0 and so
Diag(Al,., G(A)< Diag(AL,, I, MG(N)).

Hence, by (20), in the first case L()) is equivalent at infinity to Diag(A 15, NTIG(N)),
and in the second case, L(\) is equivalent at infinity to Diag(Al,, Is, \YG(N)).
|
The following definition is introduced with the purpose of stating con-
cisely the spectral characterization of strong linearizations proved in Theo-
rem 6.11. Observe that in Definition 6.10 the matrices A" L(\), MG(\) and
Diag(A =11, M71G())) are all proper.

Definition 6.10 Let G(\) € F(ANP*™ with q1 as first invariant order at
infinity and g = min(0,q). Let L(\) € FIN+O>04) be o minimal lin-
ear polynomial system matriz as in (18). We will say that L(\) preserves
the finite and infinite structures of poles and zeros of G(\) if the following
conditions hold true:

(a) For any Ao € F, (A — X\o)¥, with w > 0, appears in the prime fac-
torization of exactly k denominators (respectively numerators) 1;(X\)
(respectively €;(N)) in the (finite) Smith—-McMillan form of G(X) if and
only if AyA+ Ag (respectively L(\)) has exactly k finite elementary di-
visors equal to (A — X)™.

(b) A1 is invertible if n > 0 and for any nonzero integer w, u is an in-
variant order at infinity with multiplicity k of A\"'L()\) if and only
if u is an invariant order at infinity with multiplicity k of NG (X) if
Dy + C1AT By # 0 or of Diag(A\~ I, M1G())) otherwise.

Equivalently, L(\) preserves the finite and infinite structures of poles
and zeros of G(A) if (and only if) the finite poles of G(X) are the finite zeros
of Aj\+ Ap, with the same partial multiplicities in both matrices, the finite
zeros of G(A) are the finite zeros of L(\), with the same partial multiplicities,
and the number and orders of the infinite zeros of A"'L()) are the same as
the number and orders of the infinite zeros of NG (\) if Dy + ClAl_lBl #0
or of Diag(A\ ™11, A9~ 1G(\)) otherwise.

Theorem 6.11 (Spectral characterization of strong linearizations)
Let G(A) € F(AN)P*™ and n = v(G(N)). Let

LV = AN+ Ay BiA+ By € F\ () x (ot (me)),

| —(C1A+ Cy) DA+ Dy

Then L(\) is a strong linearization of G(X) if and only if the following two
conditions hold:

(I) dim N, (G(N)) = dimN;.(L(N)), and
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(IT) L(\) preserves the finite and infinite structures of poles and zeros of

G(N).

Proof.- The necessity is a direct consequence of Theorem 3.9 and Lemma
6.9. For the sufficiency, notice that n = v(G(\)) and conditions (I) and
(IT) imply, by Theorem 3.9, that L(\) is a linearization of G(\). Therefore,
conditions (a) and (i) of Definition 6.2 are satisfied. Let G()) be the transfer
function matrix of L(\). It follows from Lemma 6.8 that L(\) is equivalent
at infinity to Diag(Al,, @(A)) Therefore,

A~ L(A)Z Diag(I,, A" 'G(N)). (21)

Now, conditions (I) and (II) imply (recall that (I) is equivalent to rank L(\) =
n+ s+ rank G(\))

1. e | Diag(Ings, MG(N)), if D1 +C1A7 By #0
AT { Diag(L,, A1, M-1G(N)), if Dy + C1A By =0 © (22
Recall (Remark 6.5) that if D; + C1AT'B; # 0 then g = —1 and g = 0
otherwise. Thus, by (21) and (22),

ALEE Diag(I,, NG(N)), if Dy +C1A7 By #0
Diag(A\~' I, N7'G(N)), if Dy +C1A'By =0 °
In any case condition (i) of Definition 6.2 follows. ]

Remark 6.12 As in Remark 3.10 condition (I) in Theorem 6.11 is equiva-
lent to dim Ny(G(X\)) = dim Ny(L(A)). Therefore condition (I) is equivalent
to state that “G(\) and L()\) have the same number of left and the same
number of right minimal indices”.

This theorem allows us to obtain the infinite structure of a rational ma-
trix from the elementary divisors at infinity of any of its strong linearizations
in a very simple form. Namely, let G()\) be a p x m rational matrix of rank
r,let ¢1 <--- < ¢, be its invariant orders at infinity and let L(\) be a strong
linearization of G(\). Define g = min(0, q1). By (I), rank L(\) = n + s + r.

Let A, ... A=t be the infinite elementary divisors (including possible
exponents equal to zero) of L(A). Thus, 0 <e; <+ < eptstr. We want to
get the invariant orders at infinity of G(\) out of ey, ..., ep+s4+r. Recall that

the degree of the polynomial part of G(\) (if present) is —q;. Suppose that
the degree of L(\) is d (d can only be equal to 1 or 0). By (7), the invariant
orders at infinity of L(\) are ¢; —d, i = 1,...,n+ s + r. We distinguish
three cases:
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e n>0and Dy + ClAlel # (0. In this case d = 1 and, by Lemma 6.9,
e, =0fori=1,....,n+s and ep4s+1 — 1,...,€p4s+r — 1 are the
invariant orders at infinity of A9**G(\). Thus,

gi = €nts+it g, L <i <

e n>0and Dy + C’lAlel = 0. Then d = 1 and, by Lemma 6.9, ¢; = 0
fori=1,...,n,epp; =1fori=1,...,s,and epqs41—1,...,€ntspr—1
are the invariant orders at infinity of AYG(\). Thus,

G =¢€ntsri +g—1, 1< <r

e n=0and D; =0. In this case G(\) is a matrix polynomial, L(\) =
G(\) = Dy, Diag(G(\), I,) is equivalent to Dy (i.e., all its invariant
factors are equal to 1) and Diag(A9*G()), I5) is equivalent at infinity
to Dg. Since the invariant orders at infinity of Dy are 0, ¢; = ¢1 for
1=1,...,r.

7 Transfer system equivalence at infinity

In this section we define the transfer system equivalence at infinity in a
similar way as we defined the transfer system equivalence. We will work
with rational matrices, instead of matrix polynomials, of the following form:

B Fi(N) () B\
mov=[ 50 B = me=[50 20 @

with E;(A) € F(AN)™™ nonsingular, F;(A) € F(A)™™ J;(\) € F(\)P*™,
Ki(A) e F(A)P*™, i =1,2. Ri(\) and Ra(\) are said to be in rational form
in [27].

Definition 7.1 R;(\) and Ra2(\) as in (23) are said to be strictly sys-
tem equivalent at infinity if there exist biproper matrices By(\), Ba(\) €
Fpr (A)™*™ and proper matrices W () € Fp.(AN)P*™, Z(X) € Fpp(A)™™ such
that

[Bl(/\) 0 Ba(A) Z(N)

W(A) Ip} () [ 0 In } = Ra(N). (24)

This is an equivalence relation since the inverse and product of the block
triangular biproper matrices in (24) are biproper matrices with the same
block triangular structures (including the identity blocks). Moreover, if two
matrices are strictly system equivalent at infinity then they are equivalent
at infinity.

Let G;(\) = K;(\) 4+ J;(A\)E;(\) 7' EF;()\) be the transfer function matrix
of R;(A), i =1,2. The next result can be proved straightforwardly.
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Proposition 7.2 If Ri(\) and Ra(\) as in (23) are strictly system equiv-
alent at infinity then they give rise to the same transfer function matriz.
Moreover, E1(\) and Ea(X\) are equivalent at infinity.

Definition 7.3 Ri(A) and Ra(X\) as in (23) will be said to be transfer sys-
tem equivalent at infinity if there exist biproper matrices By(\), Ba(\) €
Fpr(A)™*™, B3(X) € Fpr(AN)P*P, By(X) € Fp(N)™*™ and proper matrices
W(A) € Fpp(MN)P*™, Z(X) € Fpr(A)"*™ such that

Bi(A) 0 Bs(\) zZ(\)]
WO m) Y S =B e

This is again an equivalence relation. Furthermore, if two matrices are
transfer system equivalent at infinity then they are equivalent at infinity as
well.

Proposition 7.4 If R1(\) and R2(\) as in (23) are transfer system equiva-
lent at infinity then their transfer function matrices are equivalent at infinity.
Moreover, E1(\) and E(X\) are equivalent at infinity.

Proof.- If
Bi(\) 0 Bo(\) Z(\)]
Wi ] P07 )] =
then EQ()\) = Bl(A)El(A)BQ(}\) and GQ(/\) = B3()\)G1(/\)B4(/\) |

The converse of this result is not true in general, i.e., two matrices of the
form (23) that give rise to equivalent transfer function matrices at infinity
are not necessarily transfer system equivalent at infinity. However, it does
hold true when J;(A\)E;(\)~! and E;(\)~1F;()\) are proper for i = 1,2.

The proof of the following lemma is the same as that of Lemma 2.3.

Lemma 7.5 Let

EQN) FQ)

R = [—J(A) K(A)} S F()rxiem

with J(N)E(A)™Y and E(A\)"YF()\) proper matrices. Let G(\) = K(\) +
JN)E\)"LF(N). Then R()\) and Diag(E()\), G()\)) are strictly system equiv-
alent at infinity.

Theorem 7.6 Let R;(\) and G;(\) be as in the previous lemma with J;(A\)E;(\) ™t
and E;(\)" F;(\) proper, i = 1,2.

1. R1(N) and Ra(\) are strictly system equivalent at infinity if and only
if E1(X) and E3(X) are equivalent at infinity and G1(\) = G2(\).
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2. R1(\) and Ra(X) are transfer system equivalent at infinity if and only
if E1(\) and Ex(\) are equivalent at infinity and G1(X) and Ga(\) are
equivalent at infinity.

Proof.- The necessity follows from Propositions 7.2 and 7.4. Suppose
that E1(A) and E2(\) are equivalent at infinity and G1(\) = G2(A). Then
there exist biproper matrices By (), Ba(A) € Fp.(A)™*™ such that

" SIER a2 ]

This means that Diag(E1(\), G1(A)) and Diag(E2()), G2(A)) are strictly sys-
tem equivalent at infinity. By Lemma 7.5, R1(\) and Ra(\) are strictly sys-
tem equivalent at infinity. Analogously, if F4(\) and E()) are equivalent at
infinity and G1()\) and G2(\) are equivalent at infinity, there exist biproper
matrices Bi(\), Ba(A) € Fpr (A", B3(A) € Fpr(NPX2, By(\) € F,p (N5
such that

[Bl()\) 0 HEl(A) 0 } [BQ(A) 0 ]: [EQ(A) 0 }
0 B3\ 0 Gi(N) 0 BN 0 Ga(N)]’
Then Diag(E1 (M), G1())) and Diag(E2(N), G2(\)) are transfer system equiv-

)
alent at infinity. By Lemma 7.5, R1(\) and Ra(\) are transfer system equiv-
alent at infinity. [ ]

If AH,AQl € F™*"™ are invertible and Alg, A20 € F™**™ then AHA + A10
and Ag) A+ Ay are equivalent at infinity (see the proof of Lemma 6.8). The
next result is a straightforward consequence of Theorem 7.6.

Corollary 7.7 Let

Apn X+ A Fi(\)
_Jz()‘) Kz( )
F(

with A;1 € F™*™ invertible, Ao € F™*", F;(\) 6 AP Ji(A) € F(A)PX™,
Ki(\) € F(A)P*™ such that JZ‘(A)(Azl)\"_AZO) and (A A+ Ay) "LF; () are
proper matrices, i = 1,2. Let G;(\) = K;(\) + J;(A\)(AaX + Ai) " LEi(N),
i=1,2.

1. Ri(\
if G

2. Ri(\
if G

Ri(A\) =

and Ra(\) are strictly system equivalent at infinity if and only
)-

\) = Ga(r

and Ra(\) are transfer system equivalent at infinity if and only
A) and G2(\) are equivalent at infinity.

—_— —

The next corollaries provide means to obtain strong linearizations of
rational matrices from their minimal polynomial system matrices by per-
forming elementary transformations that preserve both the transfer system
equivalence and the transfer system equivalence at infinity.
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Corollary 7.8 Let G(\) € F(ANP*™, let q1 be its first invariant order at
infinity, g = min(0,q1) and n = v(G(\)). Let

Api A+ Apg B()\)

— (n+p) X (n+m)
PO =M™ Do) <

be a polynomial system matrixz of least order giving rise to G(\) such that
both C(N)(ApiA + Apo) ™t and N (Api A+ Apo) 1 B(\) are proper. Let

Aid+ Ay BiX + By

— (n4(p+s)) x (n+(m+s))
L)) [—(01)\ +Co) DA+ D0:| €F (s20)

with Ay invertible if n > 0. Let g = —1 if D1 + ClAl_lBl #0and g =0
otherwise. Then L(\) is a strong linearization of G(\) if and only if

(i) Diag(P(\),Is) and L(\) are transfer system equivalent, and

ApiA+Apo | MB(A) 0
(ii) —C(\) MDA 0 | and [
0 0 I a
transfer system equivalent at infinity.

AN+ Ap )\:’?(Bl)\ + Bo)
(Clx\ + C()) )\g(Dlx\ + Dy)

Proof.- By Theorem 4.8, L()\) is a linearization of G()) if and only if
condition (i) is satisfied. Let G()) be the transfer function matrix of L(\).
We prove now that AG()\) and Diag(AMG(N), I,) are equivalent at infinity
if and only if condition (7i) holds true. Notice that Diag(AG(N), I) is the
transfer function matrix of

ApiA+Apo | MB(A) 0
—C(\) [MD(N) 0 |,
0 0 I,

while A9G()) is that of

A+ A Af(Blero)
—(CiA+Cy) N(DiA+Dy) |-

The result follows from Corollary 7.7, by taking into account that Ap; is
invertible, since P()\) is of least order and n = v(G(\)), and that (Ch A +
Co) (A1 A+ Ag)~t and N (A1 N+ Ag)~H(BiA+ By) are proper by Remark 6.4.
|

Analogously, we can prove the following result.

Corollary 7.9 Let G(\) € F(A\P*™, let q1 be its first invariant order at
infinity, g = min(0, q1) and n = v(G(N)). Let

_ Ap1A+ Apo B(/\) (n+p)x (n+m)
PO = | AP Do)| € FI
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be a polynomial system matrixz of least order giving rise to G(\) such that
both MC(A)(Ap1 A + Apo)~! and (Api A+ Apg) "LB()\) are proper. Let

AiA+ A0 BiA+ By (n+(p+8)) X (n+(m+s))
p— >
L= _en+ co) &)+DJEFN (s20)

with Ay invertible if n > 0. Let g = —1 if D1 + C’lAlel #0and g =0
otherwise. Then L(\) is a strong linearization of G(\) if and only if

(i) Diag(P(\),Is) and L(\) are transfer system equivalent, and

ApiA+Apy | B(A) 0
(ii) —MC() [ MD(O) 0
0 0 I

are transfer system equivalent at infinity.

d A1>\+A0 Bl)\—I—BQ
“NI(ChA + Co) AI(DyA+ Do)

8 Construction of strong linearizations of rational
matrices

We show in this section that strong linearizations always exist for every
rational matrix by constructing explicitly infinitely many examples. The
proposed construction is based on Algorithm 4.10 in Section 4.1 and the
formal proof that the constructed pencils are indeed strong linearizations
relies on Corollary 7.8. The new class of strong linearizations contains, as
very particular cases, the Fiedler-like linearizations (modulo permutations)
introduced in [1] only for square rational matrices, and so the extension to
rational matrices of the classical Frobenius companion pencils ([1, Prop. 3.7]
and [29]). We emphasize once again that the strong linearizations introduced
in this section are much more general than those in [1] from several important
points of view: (1) they are strong linearizations, while [1] does not guarantee
that the structure at infinity of the original rational matrix is preserved; (2)
they are valid for rational matrices of arbitrary sizes, while [1] only considers
square rational matrices, as it also happens in [29]; and (3) the class of
linearizations presented here is much wider.

Algorithm 4.10 needs two key ingredients: a minimal polynomial system
matrix in state-space form of the given rational matrix G(\) and a lineariza-
tion of its polynomial part D(A) (see (4)) when deg(D()\)) > 1, together
with the unimodular matrices that transform the linearization of D(A) into
Diag(D(\), Is). As linearizations of polynomial matrices, we will use the
very recently introduced class of strong block minimal bases pencils [11, Sec-
tion 3|, which includes Fiedler-type linearizations, among many others, and
has already been used in a number of applications [21, 26]. Strong block
minimal bases linearizations of matrix polynomials and the corresponding
unimodular transformations will be revised in Section 8.1. Next, we pay
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attention to the construction of the starting minimal polynomial system
matrix in state-space form via the following two-step approach.
Let G(X) € F(A\)P*™ be any rational matrix.

1. Compute the unique decomposition G(A) = D(A) + Gsp(A) with D(X)
polynomial and G,(A) strictly proper. In many applications [29], this
decomposition can be obtained (or guessed) without any computa-
tional effort.

2. Compute a minimal order state-space realization (A, B, C) of Ggp(\)
Gsp(A) = C(AL, — A)7'B, (26)

where n = v(G(N)) = v(Gsp(N)). A summary of stable algorithms for
constructing minimal state-space realizations for Gg,(\) can be found
in [28]. In addition, in many applications [29], this realization can be
obtained (or guessed) without any computational effort.

The fact that (A, B,C) in (26) is a minimal realization is equivalent to
the facts that (A, B) is controllable and that (A, C') is observable [27]. That
is to say:

C
CA

rank [B AB A’B '-‘A”_IB] =mn, rank CA* | — .

_CAnil_

Under these conditions

AM,—A B ] (27)

P(A):{ -C D\

is a polynomial system matrix in state-space form of least order n whose
transfer function matrix is G(\). A key observation on (27) is that if
D(\) = 0 or deg(D(X\)) < 1, then P(\) is itself a strong linearization of
G()\) according to Definition 6.2, since G(A\) = G()) in that definition.
Therefore, in Section 8.2 we will assume deg(D(\)) > 1.

8.1 Strong block minimal bases linearizations of polynomial
matrices

In this section we review the definition and key properties of strong block
minimal bases linearizations of polynomial matrices and related unimodular
transformations. More information on this topic can be found in [11, Secs.
3, 4, 5]. In addition, some results from [11] are refined in order to use strong
block minimal bases linearizations of polynomial matrices in the construction
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of strong linearizations of rational matrices in Section 8.2. Classical concepts
on minimal bases of rational vector spaces are often used in this section.
For brevity, we do not review such concepts here and refer the reader to the
original paper [13] or to the standard reference [19, Ch. 6]. The summaries
presented in [10, Sec. 2| and [11, Sec. 2] may be of interest since they
use exactly the nomenclature employed here. For instance, the definitions
of minimal bases and indices can be found in [10, Defs. 2.1 and 2.2], the
classical characterization of a minimal basis in terms of ranks of constant
matrices appears in [10, Thm. 2.4], the definition of dual minimal bases
is given in [10, Def. 2.10], etc. For brevity, we say that a polynomial
matrix with more columns than rows is a minimal basis when its rows are
a minimal basis of the rational subspace they span. The Kronecker product
of two matrices, denoted by A® B, is also used in this section. Its definition
and properties are studied in [18, Ch. 4].

The following polynomial matrices?
-1 A
-1 A ex(h
Li(A) = e FAJFx -+, (28)
-1 A
and
AeWT = [V X 1] e FPERD, (29)

and their Kronecker products with an identity matrix, i.e., L(\) ® I; and
Ar(\)T ® I, are important in this section. Note that Li()\) and Ax(\)T are
a pair of dual minimal bases, as well as Ly(\) ® I; and Ax(\)T ® I, [11, Ex.
2.6]. With these matrices and the last column of I, denoted by ey, we
define the unimodular matrix

-1 A
-1 A
Li(\)
ViA) = |~ ]: € FAJFHDxHD - (30)
€11
-1 A
0 0 1|
whose inverse is
[ 1 =X =22 . R NE
-1 =) k-1
Vi) = TLo AR e mpyx,
’ -A 2
-1 A
. 1 -

(31)

3In the rest of the paper, we often omit some or all of the zero entries of a matrix.
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Note that the last column of Vi(\)~! is A ()).
The next definition is taken from [11, Def. 3.1 and Thm. 3.3].

Definition 8.1 Let D(\) € F{A|P*™ be a polynomial matriz. A strong block
minimal bases pencil associated to D(N) is a linear polynomial matriz with
the following structure

_ [ M) KT }otp
L=k o b )
e

where K1(X\) € FIA™* () (respectively Ko(X) € FINP*®HP) ) 4s o minimal
basis with all its row degrees equal to 1 and with the row degrees of a minimal
basis N1(X) € FIN™ () (respectively No(X) € FIAJP*P1P)) dual to K1(N\)
(respectively Ko(\)) all equal, and such that

D(A) = Na(W) M) N () (33)

If, in addition, deg(D (X)) = deg(Na(N\))+deg(Ni(N))+1 then L(N) is said to

be a strong block minimal bases pencil associated to D(X) with sharp degree.

The most important property of any strong block minimal bases pencil
associated to D(\) with sharp degree is that it is a strong linearization of
D(A) [11, Thm. 3.3]. Note that, for i = 1,2, the row degrees of any minimal
basis dual to K;(A) are the right minimal indices of K;(\) and so they are
independent of the considered particular dual basis N;(A). Another impor-
tant remark (see [11, Rem. 3.4]) is that there are infinitely many minimal
bases dual to Kj(\) and also infinitely many dual to K2(\), but once two
of them, say Ni(A) and Na()), are fixed, it is always possible to choose the
pencil M () in such a way that (33) is satisfied. The choice of M (])) is, in
general, not unique. We emphasize that in [11, Sec. 3], strong block minimal
bases pencils were defined without an explicit reference to the polynomial
matrix D(A), while here we take D()) as the basic starting point. Taking
into account [11, Rem. 3.4], another way to look at strong block minimal
bases pencils is as follows: fixed Ni(A) and Na(\) with the properties men-
tioned in Definition 8.1, then for any polynomial matrix D(\) € F[A|P*™
with deg(D(\)) = deg(Na(A)) + deg(N1(A\)) + 1, it is possible to choose
M () in such a way that £(\) in (32) is a strong linearization of D(\) and
(33) is satisfied.

The sizes of the submatrices in (32) are related to the degrees of the dual
minimal bases Ni(A) and Na(A) via [13, Corollary p. 503] (see [10, Thm.
2.12] for a more explicit statement) as follows. Set

e:=deg(N1(A\)) and 7 :=deg(N2(N)). (34)
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Since the row degrees of Ny(\) (respectively No(\)) are all equal, they must
be all equal to e (respectively ) and [13, Corollary p. 503] implies

m=me and p=pn. (35)

Definition 8.1 includes the “degenerate” cases m = 0, when the second
block row in (32) is not present (or is an empty matrix), or p = 0, when
the second block column in (32) is not present (or is an empty matrix). If
m = 0 (respectively p = 0) then Nj(A) (respectively Na())) is taken to be
a nonsingular constant matrix of size m x m (respectively p x p) and the
simplest choice is just Nj(\) = I, (respectively Na(X\) = I,,).

A final remark on Definition 8.1 is that in [11, Thm. 3.3] the condition
deg(D(\)) = deg(Na(A))+deg(N1(A))+1 defining the strong block minimal
bases pencils with sharp degree is not mentioned at all. The reason is that
the reversal of D()) is defined in [11] with respect to the “grade” (see [11,
Sec. 2]) deg(Na(A))+deg(N1(A))+1, while here reversals of polynomial ma-
trices are always defined in an intrinsic way with respect to the degree (recall
Section 2). We emphasize that deg(D())) = deg(N2(A)) + deg(N1(N)) + 1
is used in the proof of Theorem 8.11 on the construction of strong lineariza-
tions of rational matrices in Section 8.2 and that this condition together
with (33) implies deg(M (X)) = 1.

Strong block minimal bases linearizations of polynomial matrices are a
very wide set of linearizations which include different types of linearizations
(see [11, Secs. 4 and 5], [21], [26]). In the next example, we present a par-
ticular class of strong block minimal bases linearizations introduced in [11,
Sec. 5], which were called block Kronecker linearizations. They correspond
to particular choices of K1(\) and K2(A) in (32). Even with this particular
choice, there are infinitely many block Kronecker linearizations for any poly-
nomial matrix D(A). They correspond to infinitely many choices of M (\)
and can be very easily obtained out of the coefficients of D()) (see [11, Thm.
5.4] and the comments after that theorem).

Example 8.2 Consider D(A) = DA\ + Dy A7 + .- + Dy € F[A]PX™,
with ¢ > 1 and D, # 0, and the matrices in (28) and (29). Then, a block
Kronecker linearization of D(\) is a pencil

MR [ LyW"®L, | }a+roe
L) ® I, | 0 Yem

L) =

v~

(e+1)m np

such that
D(A) = (AN ® L) M(A) (Ac(A) @ L)

Theorem 5.4 in [11] explains how to construct all possible M () that sat-
isfy the previous equation (there are infinitely many). Observe that in the
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notation of Definition 8.1, we are taking N1(A\) = A.(A\)T ® I, and No()\) =
A;(MNT @ I,. Particular examples of block Kronecker linearizations of D()\)
are the first Frobenius companion form, which corresponds to M(\) =
[Dq)\ +Dy1 Dygo - DO], € =q¢—1 and n = 0, and the second Frobe-
nius companion form, with M(\) = [DIA+ DI, DI", ... Dg]T, n=
g — 1 and € = 0. The block Kronecker linearizations corresponding to the
remaining (permuted) Fiedler pencils are extremely easy to construct as is
discussed in [11, Thm. 4.5]. An interesting block Kronecker linearization for

polynomial matrices with odd degrees ¢ = 2k + 1 is constructed by taking
L:(X\) = Ly(A) = Li(X) and

Dog 1A+ Doy,

Do 1A+ Doj_o
M) =

D)+ Dy

Such linearization is very simple and in the case D()\) is symmetric or Her-
mitian the linearization is also symmetric or Hermitian. Note that the con-
dition Dy # 0 guarantees that (36) is a strong block minimal bases pencil
associated to D(A) with sharp degree [11, Thm. 5.4].

Lemma 8.4 refines [11, Thm. 2.10] for the dual minimal bases as those
appearing in Definition 8.1. The refinement comes from the fact that I?l
and [?2 in Lemma 8.4 are constant matrices, a property not guaranteed in
[11] and that is essential in Section 8.2. In order to prove Lemma 8.4 we
need to prove first Lemma 8.3.

Lemma 8.3 For i = 1,2 let K;(\) be a linear pencil as in Definition 8.1
and let N;(\) be a minimal basis dual to K;(N). If Q;()\) is another minimal

basis dual to K;(\), then there exists a nonsingular constant matriz H; such

Proof.- The columns of Q;(\)? form a basis of the right null-space
N.-(K; (M) over F()\) defined in Section 3 and the columns of N;(\)T form
another basis of N, (K;()\)). Therefore, there exists a nonsingular rational
matrix H;(\) such that Q;(\) = H;(A) N;(A). Since N;(A) and Q;(\) are
both minimal bases, the row degrees of N;(\) are all equal, the row degrees
of Q;(\) are all equal, and the row degrees of N;(\) are equal to those of
Qi(X), we get that H;(A) must be a constant matrix. ]

Lemma 8.4 Let Ki(\) € F]N™*"+7) be g linear pencil as in Definition
8.1 and N1()) € RN "+7) be any of its minimal dual bases. Then there
exist both Ni(\) € FN™ ™) and a constant matriz K, € Fmx(m+m)
such that
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(a) U1(\) = [Kll?()\)] € FN\m+m)x(m+m) s o unimodular polynomial ma-

1
triz, and

(b) hi(\) ! = [ﬁl()\)T Nl()\)T} € F[\)(m+m)x(ftm)

An analogous result holds for Ko(\) € FINP*PHP) a5 in Definition 8.1 just
by replacing 1 by 2, m by p, and m by p.

Proof.- We only prove the result for Kj(\). In the proof, the matrices
in (28), (29), (30) and (31) are frequently used. In addition, Vi(A)~! is
partitioned as Vi(A)™' = [Wi(X) Ag(X)]. We take ¢ = deg(N1(\)) as in
(34) and so m = me as in (35). Since all the row degrees of K;(\) =
)\Kgl) + Kfo) are equal to 1 and K (\) is a minimal basis, Kfl) has full row
rank. This fact and [10, Thm. 2.4] implies that K () has neither infinite nor
finite eigenvalues and has no left minimal indices. Therefore the Kronecker
canonical form [14, Ch. XII] of K;(A) has only right singular blocks of size
e x (e + 1) (because the row degrees of Ni(\) are all equal to ¢), i.e., there
exist nonsingular constant matrices R € F™mex™e and § ¢ Frleth)xm(e+l)
such that

KiAN) =R '(I,®L(\)S™L

Let e.41 be the last column of I.;;. Define the constant matrix
Ky = (I ® eaTH) S g prxmietl)

and the linear polynomial matrix

Sy KLV _[RTY 0] [In @ Le(V)] g1 (m(e+1))x (m(e+1))
T\ ._[ b ]_ [ 0 1) [ Tomd |57 e .

Observe that U;()) is unimodular because via an obvious row permutation
IT we obtain

I @ Le(N) Le(N)
IT =1 = 1Im € )
[ Im ® esTH m e esT+1 @V

whose determinant is (det(Ve(\)))™ and so it is constant. Observe also that
Q1(A) = (Im ® Ag()\)T)ST c F[)\]mxm(a-f—l)

is a minimal basis dual to K; () because it is a minimal basis by [10, Thm.
2.4], K1(\)Q1(A\)T = 0. From Lemma 8.3, we know that N1(\) = H; 7Q1()\)
for some nonsingular constant matrix H;. With this matrix, we finally define

R o A !
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which is unimodular since U;()) is. In addition, note that
D)7 = [SIm @ We(M)R - Ni(N)T]

since a direct multiplication proves that U;(A\) Ui (\)~! = m(e+1)- To per-
form this last matrix multiplication, take into account that (30) and the par-
tition Vxz(A\)™! = [Wi(A)  Ax(N)] imply Le(MW(A) = I, e, ;W-(X) = 0,
Le(MA:(A) =0and el A (N) = 1. ]

Example 8.5 In the case of block Kronecker linearizations as those in (36)
(which include the standard Frobenius companion forms), if we take Nj(\) =
A:(N)T®I, and Na(A) = Ay(A\)T ®1I,, then the constant matrices K1 and Ky
in Lemma 8.4 can be taken simply to be K| = el,1 @1, and Ky = egﬂ ®Ip.
This follows immediately from (30) and (31).

Following the discussion of degenerate cases, if m = 0 (respectively
p = 0) in Lemma 8.4, then U;(\) = Ky = Ni(A)~T € F™X™ (respectively
Us(\) = Ky = NQ(A)*TAE [FP*P) is any nonsingular constant matrix and the
simplest choice is just Ky = I,,, (respectively Ky = I,).

Lemma 8.4 allows us to construct in Theorem 8.6 unimodular matrices
U(A) and V' (\) that will be used in Section 8.2 to develop (strong) lineariza-
tions of rational matrices via Algorithm 4.10. The proof of Theorem 8.6 is
only briefly sketched, since it can be essentially found in [11, Proofs of Thm.
3.3 and Lem. 2.14].

Theorem 8.6 Let L()) as in (32) be a strong block minimal bases pen-
cil associated to D(X\) € FAP*™, let N1(\) € FIN™ ™) and No(N\) €
FINP*®*P) be minimal bases dual to K1(\) and K3()\), respectively, and for
i=1,2 let
K;(A _ ~
Ui(\) = [ f§ )] and Ui(\)~' = [N, Ni(A)T}

%

be unimodular matrices with K; a constant matriz and N; as in Lemma

%

8.4. There are matrices X (\) € FAP*™, Y(\) € FAP*™ and Z(\) €
FINP*™ such that
- 0 Iz 0
T T m
V() = ng) Nl(OA) IOJ Ln 0 o0f,
- PEI=X(\) 0 I;
[0 I, =Y(\)] [No(A) 0
UAXN:=1]10 0 I No(A) 0],
Iz 0 —Z(\) 0 I
are unimodular matrices and
U(N) £(\) V() = Diag(D(\), I +). (37)
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Remark 8.7 We emphasize that Theorem 8.6 does not assume that £(\)
is a strong block minimal bases pencil with sharp degree. This remark will
be important to obtain Corollary 8.8 below.

Proof of Theorem 8.6.- Since the two factors defining V' (\) and U(\)
are unimodular matrices so are V(A) and U(\). Proving (37) is a matter
of multiplication. However it is easier to split the proof into two steps. In
the first one, we use K1(A)N1(\)T = I, K1(A) N1 (M) =0, KiN;(M\)T =0,
K 1N1(MN)T = I,,,, the analogous expressions obtained by replacing 1 by 2, m
by p, and m by p, and (33) to prove that

M) 0T oy kW) [RO)T MO 0
N2(§)\) [OA [K1()\) 20 ][10 10 I
Z(A) X\ Iy
= |Y(A\) D(A) 0f. 38)
I 0 0

In the second step, the matrix in (38) is multiplied by

0 I, -Y(\) 0 Iz, 0
0 0 I and I, 0 0
I 0 —Z() ~X(\) 0 I
on the left and on the right, respectively, to get Diag(D(\), I545)- ]

The final goal of the rest of this subsection is to construct certain biproper
matrices related to strong block minimal bases pencils with sharp degree that
will be used in Section 8.2 to prove by means of Corollary 7.8 that the new
class of linearizations of rational matrices introduced in Theorem 8.11 are
strong. To this purpose, let us revise first some properties of the reversal of
a strong block minimal bases pencil associated to D(\) with sharp degree
as in (32)-(33). This pencil is

~[revM(\) rev Ko(AW)T
rev £(A) = rev Ki(\) 0 ’
since deg(M (X)) = 1 by (33) and the condition deg(D (X)) = deg(N2(\)) +
deg(Ni(N)) + 1 in Definition 8.1. In [11, Thm. 2.7 and Proof of Thm. 3.3],
it is proved that rev £(\) is a strong block minimal bases pencil associated
to
rev D(X) = (rev Na()\)) (rev M () (rev Ny (M),

although that it has sharp degree cannot be guaranteed. In particular, it is
proved in [11, Thm. 2.7], that for ¢ = 1,2, rev N;(\) is a minimal basis dual
to rev K;(\) with deg(rev N;(A)) = deg(V;(A)). These observations allow
us to apply Theorem 8.6 to rev £(\) and rev D(A) and to obtain directly
Corollary 8.8.
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Corollary 8.8 Let L()\) be a strong block minimal bases pencil associated
to D(X) € FINP*™ with sharp degree as in Definition 8.1 and let Ni(\) €
FIN™*(m+7) gnd No(\) € FNP*P+P) be mmzmal bases dual to Ki(\)
and K()), respectively. Then there exist Ni(\) e FA] | (mtm) Ng()\)
FINP*®PHP) | X (\) € FAJP*™, Y()\) € FIAP*™ and Z(\) € F[A]pxm such
that

o~ 0 Iz O
V() = Nl(OA)T re”\;IWT Dm0 ol
- Pl-X\) 0 Ij
N [0 I, =Y\ [ No(h) 0
UAXN:=1]0 0 I rev Nao(A) 0 |,
LI; 0 —Z(\) 0 I
are unimodular matrices and
U(N) (rev £(N)) V(A) = Diag(rev D(N), I, 15)- (39)

In addition, each of the factors defining V(X) and U(X) is unimodular.

A particular class of biproper rational matrices can be obtained from
unimodular matrices as follows (see [3, Lem. 4.1]).

Lemma 8.9 If U(\) € F[A]™ ™ is a unimodular matriz, then U(1/\) €
Fpr (A)™*™ 4s a biproper matric.

Combining Corollary 8.8 and Lemma 8.9, we obtain the last result of
this section.

Corollary 8.10 With the same assumptions and notation as in Corollary
8.8, let V(N\) € F[A|m+m+D)x(m+m+40) gnd [(N) € F[\|P+m+D)x@+m+p) pe
the unimodular matrices introduced in Corollary 8.8 and define from them
the biproper matrices

V(1/A) = Ni(1/N)T rev Ny (1/0)T O] IO IgL 8
' 0 0 I, XG/A) AR
0 I, —Y(1/)) No(1/A) 0
0

U1/N):= [0 0 Is rev No(1/X)
I 0 —Z(1/)\) 0 I;
Then
U(1/A) (AT L) V(1/A) = Diag(A\"“D(N), T1p), (40)

where q = deg(D(A)). In addition, each of the factors defining V(1/\) and
U(1/\) is biproper and any submatriz of these factors is a proper matriz.
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Proof.- The properties of U(1/\), V(1/)), their factors, and the sub-
matrices of them follow from Lemma 8.9. The equality (40) follows from
(39) by replacing A by 1/X and taking into account that deg(L£()\)) = 1 since
deg(M (X)) = 1. ]

8.2 Strong block minimal bases linearizations of rational ma-
trices

The goal of this section is to state and prove Theorem 8.11, which is the
main theorem of this paper on the existence and explicit construction of
strong linearizations of any rational matrix G(\) € F(\)P*™. For future
reference, Theorem 8.11 includes all the needed assumptions and notations.
The constructed strong linearizations are presented in equation (41) and
the formal proof relies on Corollary 7.8. However, before getting into more
details, we emphasize that such linearizations have been constructed via
Algorithm 4.10 with input the minimal polynomial system matrix of G(\)
in (27) and choosing in Step 1 any strong block minimal bases pencil L£(\)
as in (32) associated to the polynomial part D(A) of G()), the unimodular
matrices U(A) and V(A) in Theorem 8.6, and taking s = m + p. To check
this, note that

p.
0 Z(\) I
ooyt = [TV Kr 00y o
o0 |0
m

which in Step 2 in Algorithm 4.10 yields

UMt oﬁin :[

O'ﬁxn

~ R
éirixfj ) [B Onxim Onxﬁ] V()‘)_l = [BKI 0n><ﬁi| :
Since these two matrices are constant, Algorithm 4.10 does not stop. Then
taking arbitrary nonsingular matrices 7" and S in Step 3, the linearization
in (41) is obtained where matrices X and Y in that expression are 7! and
S~1 respectively. For obvious reasons, these linearizations are called strong
block minimal bases linearizations of rational matrices.

Theorem 8.11 Let G(A) € F(ANP*™ be a rational matriz, let G(A) =
D(X) + Ggp(N) be its unique decomposition into its polynomial part D(X\) €
F[XPX™ and its strictly proper part Gsp(A) € F(A)P*™, and let Ggp(N) =
C(MI, — A)"'B be a minimal order state-space realization of Gsp(N), where
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n=v(G(\) =v(Gsp(N)). Assume that deg(D (X)) > 1 and let

£ M) Ky(\)T }otp

T K)o b
N—— N——
m+m P

be a strong block minimal bases pencil associated to D(\) with sharp degree,
with Ni(\) € FI\™ 47 and Ny(\) € FIAP*PHP) minimal bases dual to
K1()\) and Ka()\), respectively, such that D(X\) = Na(A\)M(N)N1(\)T. Let
I?l e Frx(m+m) gnd .[?2 e FP*®+D) pe constant matrices such that, for
i = 1,2, the matrices

Ui(\) = [Kz(/\)] and Ui()\)_l _ [Nz(/\)T Nz‘O\)T}

are unimodular. Then, for any nonsingular constant matrices X,Y € F**"
the linear polynomial matriz

X(M, — A)Y | XBK, 0
L(\) = — KTcy M\ K(W)T (41)
0 Ki(\) 0

is a strong linearization of G(\).

Remark 8.12 If £()\) in Theorem 8.11 is a block Kronecker linearization
of D()) as in (36), Example 8.5 implies that

XBE; =el\y ® XB = [Opxm -+ Onxm XB]

and I?QT CY = ey41 ® CY, which has a similar zero column block structure.
Recall also that in the degenerate case m = 0 (respectively p = 0) K, €
Fmxm (respectively K, € FP*P) can be any nonsingular matrix with I,
(respectively I),) as the simplest choice. There are infinitely many strong
block minimal bases pencils £(\) associated to D(\) with sharp degree and,
so, infinitely many strong linearizations of G(\) inside the framework of
Theorem 8.11. A subset of these infinitely many can be constructed very
easily in the case we restrict ourselves to block Kronecker linearizations £(\)
of D(\).

Proof of Theorem 8.11.- The proof is based on Corollary 7.8. In this
proof, we adopt the notation in (34) for the degrees of N;1(A) and N2(\) and
q := deg(D(A)) > 1. Therefore, ¢ = ¢ + n + 1 according to the condition on
the degrees stated in Definition 8.1. Note that this condition and (33) imply
that deg(M (X)) = 1, therefore the parameter g in Corollary 7.8 is in this
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case g = —1 for L(A) in (41), since in the notation of that corollary D; # 0,
C1 =0, and B; = 0. In addition, the parameter g in Corollary 7.8 is ¢ = —¢q
here. A key ingredient in this proof is the minimal polynomial system matrix
in state-space form P(A) in (27) giving rise to G(\). Obviously, for this P()\)
the matrices C(AI,, — A)~! and A=9(\I,, — A)~!B are both proper, and we
are in the scenario of Corollary 7.8 in this respect.

According to Corollary 7.8, Theorem 8.11 is proved if

M, — A | BK 0
L) =| —KIC | M) Ky\)T (42)
0 Ki()\) 0

is proved to be a strong linearization of G(\). The reason is that
Diag(X, Ip+im+p) L(A) Diag(Y, Inymip) = L(A),
which means that L(\) and L(\) are transfer system equivalent, and that

Diag(X’ Ip—i—ﬁ@—l—ﬁ) (L(A) Diag(Ina )\_IIm—i-fﬁ-‘rﬁ)) Diag(yv Im—i—ﬁm-‘rﬁ)
- L(A) Dla‘g(I’rLa Ail[m+ﬁl+ﬁ)7

which means that L(A) Diag (L, A" L, + 1 p) and L(\) Diag(L, A Lyiimsp)
are transfer system equivalent at infinity. Therefore, in the rest of the proof
we focus only on L(\).

We prove first that L()\) is transfer system equivalent to Diag(P(\),
Is+5), ie., we prove first (i) in Corollary 7.8. To this purpose, the unimod-
ular matrices U(A) and V() in Theorem 8.6 and (37) are used to prove that
the transfer system equivalence

Diag(L,,, U(\)) L(\) Diag(In, V() = Diag(P(\), I 7)

holds. In order to get the previous equation recall that I?lﬁl()\)T = 0,

I?lNl(A)T == Im, I?Q]/\?2()\)T = 0, I?QNQ()\)T = Ip. Therefore,

[Bf?l onxﬁ} V)

0 In 0
= [BEANiNT BEiNNT Opp| | In 0 0] = [B Ouuiasp)]
—X(\) 0 I
and o
700 gt ] = o
Omxn O(+5) xn

Next, we proceed to prove that (ii) in Corollary 7.8 holds for L(\) in
(42) and P(X) in (27), which requires considerable more effort. The proof
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of this fact is split into two steps. The first step uses the biproper matrices
U(1/A) and V(1/)) introduced in Corollary 8.10 and the submatrices of
their factors to define the following proper matrices

(A" = 1),
W(A) = Omxp | CAL, — A)7Y,
No(1/X) KF

ZO\) = A"V (A, — A)7B [()\—‘1“ A — Ky N1/NT O] -

We have first that (40) holds, K rev Ny (1/A)T = A~¢1,,, and rev No(1/\) KT =
A7"I,. With all these properties and ¢ = e+n+1 in mind, one can prove, af-
ter somewhat long but direct algebraic manipulations, the following transfer
system equivalence transformation at infinity

; . [ M, - A | \'BEK; 0 Lz
n - _ T -1 -1 T no A
[W(A) U(l/AJ Br@ A7 MO) AT {o v<1/A>]
0 ALK () 0
[ M, —A| \B 0 0
- —C [ AID(\) Hxa(\) 0 |
- 0 0 L, o | FO
L0 Hip(A)  Haz(A) I
where
Hys(N) (D) Ny (1/N) KT Gep(N),

2\
Hyz(\) = A=) G, (WK N (1/0)T,

Hyz(\) = A No(1/ N KT Gy (VK1 Ny (1/0)T

are strictly proper rational matrices. The second step of our proof of (i) in

Corollary 7.8 consists of the following transfer system equivalence transfor-
mation at infinity

L]0 0 0 Li| 0 0 0
01, —Hxa(\) 0 0 I, 0 0
010 I o [FM] o 0 I 0

010 0 I; 0 | —Hap2(\) —Huz(\) I; |

My—A| X9B 0 0]
B —C [AID(\) 0 0

- 0 0 I, 0 |’
0 0 0 I
which completes the proof of Theorem 8.11. ]
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8.3 Examples of strong linearizations of symmetric rational
matrices

In the following two examples we implement the schemes developed in this
paper to obtain strong linearizations for two symmetric rational matrices
discussed in [29, Sec. 4.3 and 4.4] and that appear in applications. In
addition, the corresponding strong linearizations will preserve the symmetric
structure of the problems.

Example 8.13 Vibration of a fluid-solid structure. Let

E’L7

k
A
G()\)_A—)\B—k;)\_ai

with A and B n x n real nonzero symmetric positive semidefinite matrices,
o; >0,and E; = C’Z-CiT, C; e R"" and rank C; = r;,1=1,...,k. First, we
separate the polynomial and strictly proper parts of G(\):

k
G(A) = A+ CiCl = AB+ Gyp(N)
=1
where

oNeN

o
A — 0

k
GSP()‘) = Z
i=1

The realization of Gy,(X\) proposed in [29] is
Gsop(\) = C(\IL — %) 'no” (43)

where ¥ = Diag(o11,,,021y,,...,0%l;,), C = [C’l Cy --- C’k] and r =
r1 4+ -+ 4+ ri. Without further assumptions on the matrices C;, we cannot
conclude that this realization is minimal and so, some ¢; may not be poles
of G(X). Henceforth the result about the number of eigenvalues of G()) in a
given interval (o, ) given at the end of Section 4.3 of [29] may not be correct.
It turns out, however, that under very mild conditions the realization of
(43) is controllable and observable. If, for example, rank C' = r and we put
H = YC7T then (X, H) is controllable, (X, C) is observable and Gp()\) =
C(MI, — ¥)71H is a minimal realization of Gg,()\). Hence, if rank C = r,

A, —% sCT
Loy = { -C  A+cCT - )\B]

is a strong linearization of G()), according to the observation in the para-
graph below (27). In addition, if

=¥t 0 A+ —CcT
Ly = [ 0 I,J Liv=""_¢ " B4 (A+CCT)]
_ -2 0 e -cT
- 0 -B -C A+cct
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then Li(\) and L(A) are strictly system equivalent. Also,

A, — X e yen ud A 4L —\icT
-C A YA+0CT - AB) —C A Y=AB+ (A+CCT))

are strictly system equivalent at infinity. Thus, by Corollary 7.8, L(A) is
also a strong linearization of G(A). L(\) is a symmetric positive semidefinite
(see Proposition 4.1 of [29]) strong linearization of G(A). The eigenvalues
(finite and at infinity) of G(A) can be computed via the linear polynomial
eigenvalue problem L(\)z = 0.

Example 8.14 Damped vibration of a structure. Let

k
G =NM+K->"
=1

1

1+ bi)\AGl ’

where M and K are n x n real symmetric positive definite matrices, b; > 0
and AG; = LiLfiF with L; € R™" and rank L; = r;, 1 = 1,..., k. The goal
of this example is to use Theorem 8.11 to construct a strong linearization of
G(A) that preserves the symmetric structure of the problem. Let us define
o; = b%-' Then, the decomposition of G(A) into its polynomial and strictly
proper parts is

G(\) = N>M + K + G4p(N),

where i
o
G (\) = — LT,
sp( ) ; >\+Uz )
Let us denote
L= [Ll L2 Lk] 5 E:Diag(alfrl,JQIm,...,kark),

and assume that rank L = r = ry + 19 + --- + 1. Again, if C = —L and
B = XLT then Gsp(A\) = C(AI,+X) "1 B is a minimal state-space realization
of Gsp(N). In addition,

=[5

is a strong block minimal bases pencil associated to the polynomial part
D(\) = MM + K with sharp degree. To check this, note that in the no-
tation of Definition 8.1, M(\) = [K AM], K1(\) = [AM —M], which is
a minimal basis by [10, Thm. 2.4], Ni(A) = [I, Al,] is a minimal bases
dual to K3(\) with all its row degrees equal to 1, and p = 0, which al-
lows us to take Na(\) = I,,. So, D(\) = M(A)N1(A\)T and deg(D()\)) =
deg(N2(N\)) + deg(N1(A)) + 1. Now, the use of Theorem 8.11 to construct
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strong linearizations of G(\) requires to know K 1, since I?2T can be taken to
be any nonsingular matrix, and in particular I,,. To this purpose, note that

M —M _ 0 I,

are unimodular, which means that we can choose I?l = [In O]. With all
this information, we can take X = ¥~! and Y = I, in (41) to obtain, as a
consequence of Theorem 8.11, that

AXX-t4+1. LT 0
Ly(N) = L K M
0 AM —M

is a strong linearization of G(A). In addition, L2(\) preserves the symmetric
structure of the problem.

We remark that the linearizations constructed in the two examples of
this subsection not only preserve the (finite and infinite) poles and zeros
of the original rational matrices but also its symmetric structure. Clearly,
preserving the symmetry is not always possible, since it is well known [9,
Sec. 7] that there are real symmetric polynomial matrices with even degree
which do not have symmetric strong linearizations and we have proved that
the Definition 6.2 of strong linearizations of rational matrices reduces to
the standard one in the polynomial case. It remains as an open problem to
study if in the non-polynomial rational case it is always possible to construct
strong linearizations that preserve the symmetry or if restrictions similar to
those in the polynomial case hold or if additional constraints arise coming
from the interaction between the polynomial and strictly proper parts of the
rational matrix.

9 Conclusions and future work

This paper develops for the first time in the literature a theory of strong lin-
earizations of arbitrary rational matrices. In this process, a new definition of
linearization (not necessarily strong) of rational matrices is introduced and
compared with other definitions available in the literature. This comparison
reveals a number of advantages of the new definition. A key feature of the
definitions in this work is that they generalize smoothly the corresponding
ones for polynomial matrices. The developed theory includes detailed nec-
essary and sufficient spectral characterizations of linearizations and strong
linearizations of rational matrices that show that the defined linear objects
have precisely the expected properties. In addition, the concepts of transfer
system equivalence and transfer system equivalence at infinity are defined
and used to characterize the most general class of transformations that allow
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us to construct strong linearizations of rational matrices. These equivalence
relations are used to obtain infinitely many explicit examples of strong lin-
earizations of rational matrices. Any of these explicit linearizations can be
used to compute reliably the complete set of finite and infinite poles and ze-
ros of an arbitrary rational matrix via well established algorithms for linear
pencils as a consequence of the theory established in this paper.

In the last years considerable work has been devoted by many prestigious
research groups all over the world to study different properties of lineariza-
tions and strong linearizations of polynomial matrices that are essential for
understanding their behavior in the numerical solution of polynomial eigen-
value problems. Therefore, it can be expected that the complete theory
presented in this paper will foster further research on strong linearizations
of rational matrices as, for instance, the study of the preservation of differ-
ent structures, the comparison of the conditioning of the eigenvalues of the
linearizations with the conditioning of the zeros and poles of the original
rational matrix, the analysis of the backward errors introduced in the origi-
nal problem by those introduced by a backward stable eigenvalue algorithm
applied on the linearization, the development of recovery procedures for the
minimal indices and bases and eigenvectors, etc. We emphasize that many
of these problems are of a different nature than the corresponding ones for
polynomial matrices, since a minimal realization of the strictly proper part
of a rational matrix can be chosen in many different ways.

References

[1] R. Alam, N. Behera, Linearizations for rational matrix functions and
Rosenbrock system polynomials, STAM J. Matrix Anal. Appl. 37 (1)
(2016), 354-380.

[2] A. Amiraslani, R. M. Corless, P. Lancaster, Linearization of matrix poly-
nomials expressed in polynomial bases, IMA J. Numer. Anal. 29 (2009),
141-157.

[3] A. Amparan, S. Marcaida, I. Zaballa, Wiener—Hopf factorization indices
and infinite structure of rational matrices, STAM J. Control Optim. 42
(6) (2004), 2130-2144.

[4] A. Amparan, S. Marcaida, I. Zaballa, Finite and infinite structures of ra-
tional matrices: a local approach, Electron. J. Linear Algebra 30 (2015),
196-226.

[5] E. N. Antoniou, S. Vologiannidis, A new family of companion forms of
polynomial matrices, Electron. J. Linear Algebra 11 (2004), 78-87.

99



[6] D. A. Bini, L. Robol, On a class of matrix pencils and ¢-ifications equiv-
alent to a given matrix polynomial, Linear Algebra Appl. 502 (2016),
275-298.

[7] M. I. Bueno, K. Curlett, S. Furtado, Structured strong linearizations
from Fiedler pencils with repetition I, Linear Algebra Appl. 460 (2014),
51-80.

[8] F. De Terén, F. M. Dopico, D. S. Mackey, Fiedler companion lineariza-
tions and the recovery of minimal indices, SIAM J. Matrix Anal. Appl.
31 (2010), 2181-2204.

[9] F. De Teran, F. M. Dopico, D. S. Mackey, Spectral equivalence of ma-
trix polynomials and the index sum theorem, Linear Algebra Appl. 459
(2014), 264-333.

[10] F. De Teran, F. M. Dopico, D. S. Mackey, P. Van Dooren, Polynomial
zigzag matrices, dual minimal bases, and the realization of completely
singular polynomials, Linear Algebra Appl. 488 (2016), 460—504.

[11] F. M. Dopico, P. W. Lawrence, J. Pérez, P. Van Dooren, Block Kro-
necker linearizations of matrix polynomials and their backward errors,
submitted. Extended version available in MIMS EPrint 2016.34, Manch-

ester Institute for Mathematical Sciences, The University of Manchester,
UK, 2016.

[12] M. Fiedler, A note on companion matrices, Linear Algebra Appl. 372
(2003), 325-331.

[13] G. D. Forney, Jr., Minimal bases of rational vector spaces, with ap-
plications to multivariable linear systems, SIAM J. Control, 13 (1975),
493-520.

[14] F. R. Gantmacher, The Theory of Matrices Vols. 1, 2, Chelsea Publish-
ing Co., New York, 1959.

[15] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Aca-
demic Press, New York-London, 1982.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, MD, fourth ed., 2013.

[17] N. J. Higham, D. S. Mackey, N. Mackey, F. Tisseur, Symmetric lin-
earizations for matrix polynomials, SIAM J. Matrix Anal. Appl. 29
(2006), 143-1509.

[18] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge
University Press, Cambridge, 1994. Corrected reprint of the 1991 original.

60



[19] T. Kailath, Linear Systems, Prentice Hall, New Jersey, 1980.

[20] P. Lancaster, Linearization of regular matrix polynomials, Electron. J.
Linear Algebra 17 (2008), 21-27.

[21] P. Lawrence, J. Pérez, Constructing strong linearizations of matrix
polynomials expressed in the Chebyshev bases, submitted. Also avail-
able as MIMS EPrint 2016.12, Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, 2016.

[22] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Vector spaces of
linearizations for matrix polynomials, STAM J. Matrix Anal. Appl. 28
(4) (2006), 971-1004.

[23] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Mobius transforma-
tions of matrix polynomials, Linear Algebra Appl. 470 (2015), 120-184.

[24] E. Marques de S4, Imbedding conditions for A-matrices, Linear Algebra
Appl. 24 (1979), 33-50.

[25] V. Noferini, J. Pérez, Chebyshev-Fiedler pencils, MIMS EPrint 2015.90,
Manchester Institute for Mathematical Sciences, The University of
Manchester, UK, 2015.

[26] L. Robol, R. Vandebril, P. Van Dooren, A framework for structured lin-
earizations of matrix polynomials in various bases, submitted. Available
as arXiv preprint arXiv:1603.05773, 2016.

[27] H. H. Rosenbrock, State-space and Multivariable Theory, Thomas Nel-
son and Sons, London, 1970.

[28] B. de Schutter, Minimal state-space realization in linear system theory:
an overview, J. Comput. Appl. Math. 121 (2000), 331-354.

[29] Y. Su, Z. Bai, Solving rational eigenvalue problems via linearization,
SIAM J. Matrix Anal. Appl. 32 (1) (2011), 201-216.

[30] F. Tisseur, I. Zaballa, Finite and infinite elementary divisors of ma-
trix polynomials: A global approach, available as MIMS EPrint 2012.78,
Manchester Institute for Mathematical Sciences, The University of
Manchester, UK, 2012.

[31] R. C. Thompson, Interlacing inequalities for invariant factors, Linear
Algebra Appl. 24 (1979), 1-31.

[32] A.I. G. Vardulakis, Linear Multivariable Control, John Wiley and Sons,
New York, 1991.

61



