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A RATIONAL DEFERRED CORRECTION APPROACH

TO PDE-CONSTRAINED OPTIMIZATION

STEFAN GÜTTEL∗ AND JOHN W. PEARSON†

Abstract. The accurate and efficient solution of time-dependent PDE-constrained optimization problems is a chal-
lenging task, in large part due to the very high dimension of the matrix systems that need to be solved. We devise a new
deferred correction method for coupled systems of time-dependent PDEs, allowing one to iteratively improve the accuracy
of low-order time stepping schemes. We consider two variants of our method, a splitting and a coupling version, and
analyze their convergence properties. We then test our approach on a number of PDE-constrained optimization problems.
We obtain solution accuracies far superior to that achieved when solving a single discretized problem, in particular in
cases where the accuracy is limited by the time discretization. Our approach allows for the direct reuse of existing solvers
for the resulting matrix systems, as well as state-of-the-art preconditioning strategies.
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1. Introduction. In this paper, we consider the accurate and efficient solution of time-dependent
partial differential equation (PDE)-constrained optimization problems. Whereas the numerical solution
of PDEs has been an active area of research in computational mathematics and applied science for many
decades, PDE-constrained optimization problems have come to the forefront of the field more recently;
here a cost functional is sought to be minimized with one or more PDEs acting as constraints. Such
problems have many interesting applications, for example, in flow control [15], medical imaging [1, 6],
finance [5], and the control of chemical and biological processes [2, 11, 14]. For overviews of the field of
PDE-constrained optimization, we recommend [4, 19, 22, 46]. The efficient solution of PDE-constrained
optimization problems is a highly challenging task. This is especially true for time-dependent problems,
which typically require the solution of very large matrix systems arising from the discretization of time
derivatives.

There are many possible forms of the cost functional to be minimized. Perhaps the most common
model, and the one we examine in this article, is of the form

min
y,c

1

2

∫ T

0

∫
Ω

(y − yd)2
dΩ dt+

β

2

∫ T

0

∫
Ω

c2 dΩ dt.

Here y denotes the state variable of the problem, which one wishes to be “as close as possible” in some
sense to the desired state yd, and c represents the control variable. The quantity β > 0 is the Tikhonov
regularization parameter, which determines to what extent one wishes to achieve realization of the
desired state and minimization of the control. The functional is posed on a spatial domain Ω ⊂ Rd in
d ∈ {2, 3} dimensions with boundary ∂Ω, and over the time interval [0, T ]. Of course it is also possible
to consider cost functionals that involve norms other than L2(Ω× [0, T ]).

For the distributed control problems considered here (i.e., problems where the control function c acts
on the whole domain Ω), the PDE constraint is of the form Dy = c, with some differential operator D.
For instance, for the well-studied heat equation control and convection–diffusion control problems, D is
given by

D =
∂

∂t
−∇2 and D =

∂

∂t
− ν∇2 + w · ∇, (1.1)

respectively. Here, ν represents viscosity and w denotes some wind vector, which may be dependent on
the spatial variable. It is also possible to consider a system of PDEs as constraints: in particular, for
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the time-dependent Stokes control problem,

D =



 ∂
∂t −∇

2 ∂
∂x1

∂
∂t −∇

2 ∂
∂x2

− ∂
∂x1

− ∂
∂x2

O

 , if d = 2,


∂
∂t −∇

2 ∂
∂x1

∂
∂t −∇

2 ∂
∂x2

∂
∂t −∇

2 ∂
∂x3

− ∂
∂x1

− ∂
∂x2

− ∂
∂x3

O

 , if d = 3,

where x = [x1, x2]> or [x1, x2, x3]> denote the spatial coordinates of the problem. In each case, the
PDEs are accompanied by appropriate initial and boundary conditions. The range of problems which
can be considered is vast, just as is the range of application areas.

Devising strategies for solving such complex time-dependent problems efficiently is an important and
challenging problem. In this work, we consider the solution of PDE-constrained optimization problems
using the deferred correction framework. Deferred correction can be interpreted as an extrapolation
scheme where the accuracy of a low-order integrator is iteratively improved by repeatedly solving
correction equations for the error. The idea goes back to early work by Zadundaisky [47, 48] and Pereyra
[34, 35]. The important ingredient of deferred correction methods for ordinary differential equations
(ODEs) is a high-order representation of the residual, often based on polynomial interpolation of the
solution over the time interval [0, T ]. An important contribution of Dutt, Greengard & Rokhlin [7] was
to point out that such a polynomial scheme requires the interpolation nodes to be chosen carefully for
ensuring numerical stability. The resulting class of methods is referred to as spectral deferred correction.
These methods have been applied successfully to a wide range of PDE and ODE problems, e.g., recently
for the purpose of parallel-in-time integration [23, 24].

A computational drawback of spectral deferred correction is that the interpolation nodes should
not be chosen equidistant on [0, T ], leading to varying time steps in the low-order integrator. With
Chebyshev nodes, for example, the interpolation nodes have an inverse square root density at the
endpoints of the time interval. As explained in [17], this can be very inconvenient in particular with
implicit integration schemes where linear matrix systems with the Jacobian have to be solved at every
time step. When direct linear system solvers are used, the Jacobian matrix needs to be refactored very
often and in the worst case at every time step. When iterative solvers are used, non-equal time steps are
also inconvenient as a large body of literature on the preconditioning of PDE-constrained optimization
problems crucially assumes equidistant time steps (see, e.g., [29, 30, 31, 40, 41, 42, 44, 49]).

To overcome the problems mentioned in the previous paragraph, we generalize the rational deferred
correction (RDC) method presented in [17] to PDE-constrained optimization problems. The RDC
method is based on the barycentric rational interpolants developed by Floater & Hormann [10]. These
interpolants achieve a high rate of approximation even with equidistant interpolation nodes (provided
the so-called blending parameter is chosen carefully). This allows for stable high-order integration
of interpolants at equidistant time nodes, which is a mandatory ingredient for a practical deferred
correction scheme. The resulting method solves PDE-constrained optimization problems to much higher
accuracy than conventional methods, while requiring fewer time steps and less memory. Moreover, the
involved linear systems are of significantly smaller size but can still be treated by existing solution
techniques, including the reuse of previously developed preconditioners.

The outline of this work is as follows. In section 2 we review the optimize-then-discretize approach
for PDE-constrained optimization problems, yielding systems of high-dimensional coupled ODEs and
corresponding large linear systems to be solved. Section 3 then introduces two deferred correction
approaches for the solution of these ODEs, a splitting-based and a coupling-based approach. We find
that the coupling-based approach performs much better on linear control problems and in section 4 we
give some theoretical insight into this observation. In section 5 we discuss several computational aspects
of our method. Numerical experiments are given in section 6, followed by conclusions in section 7.
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2. Discretization of PDE-constrained optimization problems. In this section we develop
discretizations of selected PDE-constrained optimization problems. To this end, we apply an optimize-
then-discretize approach, meaning that we derive optimality conditions on the continuous space and then
select an appropriate discretization. The reason for this choice is that, to apply a deferred correction
approach, one typically requires a clearly stated system of PDEs on the continuous level. The alternative
discretize-then-optimize approach, which involves deriving a discrete cost functional and using it to write
optimality conditions on the discrete space, is also popular within the PDE-constrained optimization
community, but is less applicable for the methods presented in this paper.

We first consider the heat equation control problem

min
y,c

1

2

∫ T

0

∫
Ω

(
y − yd

)2
dΩ dt+

β

2

∫ T

0

∫
Ω

c2 dΩ dt (2.1)

s. t.
∂y

∂t
−∇2y = c in Ω× [0, T ],

y(~x, t) = h(~x, t) on ∂Ω× [0, T ],

y(~x, 0) = y0(~x) at t = 0.

To solve this problem, we may find the continuous optimality conditions for the Lagrangian

L =
1

2

∫ T

0

∫
Ω

(y − yd)2
dΩ dt+

β

2

∫ T

0

∫
Ω

c2 dΩ dt

+

∫ T

0

∫
Ω

(
∂y

∂t
−∇2y − c

)
λΩ dΩ dt+

∫ T

0

∫
∂Ω

(y − h)λ∂Ω dsdt,

where the Lagrange multiplier (or adjoint variable) λ has components λΩ and λ∂Ω on the interior and
boundary of Ω, respectively. Here the initial condition y(~x, 0) = y0(~x) is absorbed into the Lagrangian.

From here, the continuous optimality conditions are obtained by differentiating L with respect to
the adjoint, control, and state variables. Firstly, differentiating with respect to λ (on the interior and
boundary in turn) returns the forward problem

∂y

∂t
−∇2y = c in Ω× [0, T ],

y(~x, t) = h(~x, t) on ∂Ω× [0, T ],

y(~x, 0) = y0(~x) at t = 0.

Next, differentiating with respect to c gives us the gradient equation

βc− λ = 0.

Finally, differentiating with respect to y gives the adjoint problem

−∂λ
∂t
−∇2λ = yd − y in Ω× [0, T ],

λ(~x, t) = 0 on ∂Ω× [0, T ],

λ(~x, T ) = 0 at t = 0.

We now use the proportionality of control and adjoint, given by the gradient equation, to observe that
the conditions reduce to a coupled system of PDEs

∂y

∂t
−∇2y =

1

β
λ, (2.2)

−∂λ
∂t
−∇2λ = yd − y, (2.3)
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with initial condition on y, final condition on λ, and boundary conditions on y and λ. These are referred
to the first-order optimality conditions (or Karush–Kuhn–Tucker conditions) for this problem.

For this particular (self-adjoint) PDE, the Laplacian is applied to both y and λ within the coupled
system. In general this is not the case and, in fact, for problems of this form the PDE in λ relates
to the adjoint operator D∗. For example, if the original PDE constraint were the time-dependent
convection–diffusion problem given in (1.1), the optimality conditions would read

∂y

∂t
−∇2y + (~w · ∇)y =

1

β
λ, (2.4)

−∂λ
∂t
−∇2λ− (~w · ∇)λ = yd − y. (2.5)

There is also no reason why the constraints should always arise in the form of a single PDE. For
example, let us consider the following Stokes control problem:

min
~y,~c

1

2

∫ T

0

∫
Ω

‖~y − ~yd‖2 dΩ dt+
β

2

∫ T

0

∫
Ω

‖~c‖2 dΩ dt, (2.6)

s. t.
∂~y

∂t
−∇2~y +∇p = ~c+ ~z in Ω× [0, T ],

−∇ · ~y = 0 in Ω× [0, T ],

~y(~x, t) = ~h(~x, t) on ∂Ω× [0, T ],

~y(~x, 0) = ~y0(~x) at t = 0.

In this problem setup, ~y denotes the velocity of a fluid over d dimensions, with p representing pressure,
and ~z some (given) function. The variable ~c is the control variable over d dimensions. The continuous
Lagrangian which we then seek to minimize is given by

L =
1

2

∫ T

0

∫
Ω

‖~y − ~yd‖2 dΩ dt+
β

2

∫ T

0

∫
Ω

‖~c‖2 dΩ dt+

∫ T

0

∫
Ω

(
∂~y

∂t
−∇2~y +∇p− ~c− ~z

)
~λΩ dΩ dt

+

∫ T

0

∫
Ω

(~y − ~h)~λ∂Ω dΩ dt+

∫ T

0

∫
Ω

µ(−∇ · ~y) dΩ dt,

where ~λ (over d dimensions) and µ denote the adjoint variables for velocity and pressure, respectively.

The variable ~λ is denoted as ~λΩ and ~λ∂Ω within the interior and on the boundary of Ω, respectively.
When differentiating with respect to the adjoint variables, one recovers the forward problem

∂~y

∂t
−∇2~y +∇p = ~c+ ~z in Ω× [0, T ],

−∇ · ~y = ~0 in Ω× [0, T ],

~y(~x, t) = ~h(~x, t) on ∂Ω× [0, T ],

~y(~x, 0) = ~y0(~x) at t = 0.

The gradient equation (obtained by differentiating with respect to the control) is given by β~c− ~λ = 0,
and differentiating with respect to the state variables gives the adjoint equations

−∂
~λ

∂t
−∇2~λ+∇µ = ~yd − ~y in Ω× [0, T ],

−∇ · ~λ = 0 in Ω× [0, T ],

~λ(~x, t) = ~0 on ∂Ω× [0, T ],

~λ(~x, T ) = ~0 at t = 0.
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Incorporating the gradient equation with the forward problem again gives a coupled system of PDEs:

∂~y

∂t
−∇2~y +∇p =

1

β
~λ+ ~z, (2.7)

−∇ · ~y = 0, (2.8)

−∂
~λ

∂t
−∇2~λ+∇µ = ~yd − y, (2.9)

−∇ · ~λ = 0, (2.10)

with initial/final conditions on ~y/~λ, and boundary conditions on both.
Although we have provided a brief derivation of the optimality conditions for these examples of

PDE-constrained optimization problems, we also refer to [46] for a more rigorous derivation of such
linear-quadratic problems. We note that many other systems of PDEs can be written in this form,
including systems which are not self-adjoint (which the Stokes system above is).

Having posed the first-order optimality conditions for our PDE-constrained optimization problems
as coupled systems of PDEs using this optimize-then-discretize approach, we now wish to consider the
discretization of these PDEs. We first observe that all of the systems derived in this section can be
discretized as {

Muu
′(t) = K1u(t)−K2v(t) + f̂(t), Muu(0) = Muu0 ∈ RN given,

Mvv
′(t) = K3u(t)−K4v(t) + ĝ(t), Mvv(T ) = MvvT ∈ RN given,

(2.11)

(2.12)

with two vector functions u,v : [0, T ] 7→ RN , and the matrices {K1,K2,K3,K4,Mu,Mv} ⊂ RN×N
arising, e.g., from finite difference, finite element, or spectral discretization of the spatial differential
operators. For example, in the heat control problem (2.2)–(2.3) the individual terms are discretizations
of the following operators:

Mu ← I, K1 ← ∇2, K2 ← −
1

β
I,

Mv ← I, K3 ← I, K4 ← ∇2,

u(t)← y(t), v(t)← λ(t), f̂ ← 0, ĝ(t)← −yd(t).

For the convection–diffusion control problem (2.4)–(2.5) we have

Mu ← I, K1 ← ν∇2 − (~w · ∇), K2 ← −
1

β
I,

Mv ← I, K3 ← I, K4 ← ν∇2 + (~w · ∇),

u(t)← y(t), v(t)← λ(t), f̂ ← 0, ĝ(t)← −yd(t).

Furthermore, for the 2D Stokes control problem (2.7)–(2.10), we have

Mu ←

 I
I

O

 , K1 ←

 ∇2 − ∂
∂x1

∇2 − ∂
∂x2

− ∂
∂x1

− ∂
∂x2

O

 , K2 ←

 − 1
β I

− 1
β I

O

 ,
Mv ←

 I
I

O

 , K3 ←

 I
I

O

 K4 ←

 ∇2 − ∂
∂x1

∇2 − ∂
∂x2

− ∂
∂x1

− ∂
∂x2

O

 ,
u(t)←

 y1(t)
y2(t)
p(t)

 , v(t)←

 λ1(t)
λ2(t)
µ(t)

 , f̂(t)←

 z1(t)
z2(t)

0

 , ĝ(t)←

 −yd,1(t)
−yd,2(t)

0

 ,
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with yi, zi, λi, yd,i denoting the components of ~y, ~z, ~λ, ~yd in the i-th spatial dimension. The 3D cases
are analogous. For each problem I is the identity matrix of appropriate dimension.

One popular approach for solving (2.11)–(2.12) is to discretize both equations via the implicit Euler
scheme at time points t0, t1, . . . , tn, forward and backward in time, giving rise to the recursions

Mu
uj − uj−1

τj
= K1uj −K2vj + f̂j , Muu0 ∈ RN given,

Mv
vj − vj−1

τj
= K3uj−1 −K4vj−1 + ĝj−1, Mvvn ∈ RN given,

where τj = tj − tj−1. When rearranged, these equations can be written in the form

τjK3uj−1 + (Mv − τjK4)vj−1 − Mvvj = − τj ĝj−1,

−Muuj−1 + (Mu − τjK1)uj + τjK2vj−1 = τj f̂j ,

for j = 1, . . . , n. We may now gather these recursions into the linear system[
K3,τ M>v −K4,τ

Mu −K1,τ K2,τ

]
︸ ︷︷ ︸

A

[
vec(U)
vec(V)

]
=

[
ĝτ
f̂τ

]
, (2.13)

where U = [u0,u1, . . . ,un], V = [v0,v1, . . . ,vn], and

Mu =



I
−Mu Mu

−Mu Mu

. . .
. . .

−Mu Mu

−Mu Mu


, f̂τ =



u0

τ1f̂1
τ2f̂2

...

τn−1f̂n−1

τnf̂n


,

Mv =



Mv

−Mv Mv

−Mv Mv

. . .
. . .

−Mv Mv

−Mv I


, ĝτ =



−τ1ĝ0

−τ2ĝ1

...
−τn−1ĝn−2

−τnĝn−1

vT


,

Ki,τ =





O
τ1Ki

τ2Ki

. . .

τn−1Ki

τnKi


, i = 1, 2,



τ1Ki

τ2Ki

. . .

τn−1Ki

τnKi

O


, i = 3, 4.

We have replaced the initial condition Muu(0) = Muu0 in (2.11) with Iu(0) = u0, which can always
be satisfied even if Mu is singular, but is computationally more convenient. We do likewise for (2.12).
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A great deal of work has been devoted to the development of efficient preconditioners for linear
systems of the form (2.13); see [20, 30, 31, 33, 50] for example. With this optimize-then-discretize
approach, however, the accuracy is limited to that of the time-stepping scheme, i.e., first-order accuracy
in time in this case. Hence memory consumption can become very large if the number of time steps
needs to be increased due to accuracy requirements. Unfortunately, the forward–backward structure
of the equations does not easily allow one to split the time interval [0, T ] into smaller chunks without
introducing additional coupling conditions. The aim of this work is to show how deferred correction
can be employed to enhance the accuracy in time by repeatedly solving linear systems with the original
time discretization matrices, allowing one to reuse existing preconditioners and compute more accurate
solutions than previously possible.

Remark. Each of the PDE-constrained optimization problems that we have considered, for which
we present analysis of the deferred correction method, are of the linear-quadratic form

min
y,c

∫ T

0

1

2
y(t)>Qy(t) + d(y)>y(t) +

1

2
c(t)>Rc(t) dt

s. t. Myy
′(t) = Ay(t) +Bc(t) + f(t),

y(0) = y0.

These problems lead immediately to coupled systems of the form stated in (2.11)–(2.12).

Remark. We highlight that there are a range of other problems to which one could also apply this
methodology, see [18, 46]. For example, one may impose additional constraints on the state or control
variable – this would require a Newton type method to handle the nonlinearity involved, as well as a
suitable modification of the deferred correction scheme. In addition, one may apply different norms
within the cost functional, for example an H1-norm, or a norm applied on ∂Ω or some subdomain of
Ω. The reason we consider the precise formulations stated in this section is that, as there is has been
considerable work undertaken on the theory for these problems and exact solutions for test cases, this
places us in the best position to provide evidence of the potency of the deferred correction scheme.
However, we believe that this methodology could be extended to provide algorithms for more general
cases, as well as associated nonlinear PDE-constrained optimization formulations.

3. Deferred correction. As we have seen in the previous section, we are required to solve coupled
initial/final value problems{

Muu
′(t) = f(t,u,v), Muu(0) = Muu0 ∈ RN given,

Mvv
′(t) = g(t,u,v), Mvv(T ) = MvvT ∈ RN given,

(3.1)

(3.2)

for two vector-valued functions u,v : [0, T ] 7→ RN . Let us assume that approximations uj and vj at
time points 0 = t0 < t1 < . . . < tn = T are available and consider the interpolants

ũ(t) =

n∑
j=0

`j(t)uj and ṽ(t) =

n∑
j=0

`j(t)vj , (3.3)

where `j(t) are differentiable Lagrange functions satisfying `j(ti) = δij . The concrete choice of these
functions will be discussed in section 3.4. Our aim is to compute improved approximations for u(t)
and v(t), and in section 3.1 we will describe the general deferred correction framework for this task.
Afterwards we present two variants of deferred correction particularly tailored to our application. The
first variant, which is described in section 3.2 and referred to as splitting approach, is applicable when
f and g are nonlinear or linear functions. Although nonlinear problems are not the main focus of this
paper, and such problems would lead to additional theoretical questions related to sufficient optimality
conditions and convergence of the outer iterative scheme, we include this approach for its generality. In
section 3.3 we discuss a coupling approach which is only applicable to linear problems but is typically
more efficient.
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3.1. General derivation. We start by using the Picard formulations of (3.1)–(3.2), which are
Muu(t) = Muu0 +

∫ t

0

f(τ,u(τ),v(τ)) dτ,

Mvv(t) = Mvvn +

∫ t

T

g(τ,u(τ),v(τ)) dτ,

(3.4)

(3.5)

or equivalently,
Mu(ũ(t) + eu(t)) = Muu0 +

∫ t

0

f(τ, ũ(τ) + eu(τ), ṽ(τ) + ev(τ)) dτ,

Mv(ṽ(t) + ev(t)) = Mvvn +

∫ t

T

g(τ, ũ(τ) + eu(τ), ṽ(τ) + ev(τ)) dτ,

with some unknown error functions eu(t) and ev(t). Using (3.4)–(3.5) to define the residuals
ru(t) := Muu0 +

∫ t

0

f(τ, ũ(τ), ṽ(τ)) dτ −Muũ(t),

rv(t) := Mvvn +

∫ t

T

g(τ, ũ(τ), ṽ(τ)) dτ −Mvṽ(t),

(3.6)

(3.7)

we immediately find

Mueu(t) = ru(t) +

∫ t

0

f(τ, ũ(τ) + eu(τ), ṽ(τ) + ev(τ))− f(τ, ũ(τ), ṽ(τ)) dτ (3.8)

= ru(t) +

∫ t

0

hf (τ, eu(τ), ev(τ)) dτ,

with hf (τ, eu(τ), ev(τ)) := f(τ, ũ(τ) + eu(τ), ṽ(τ) + ev(τ)) − f(τ, ũ(τ), ṽ(τ)). This is a Picard-type
formulation for the error eu(t), and a completely analogous relation involving hg(τ, eu(τ), ev(τ)) can
be derived for ev(t).

A high-order accurate representation of the residual function ru(t) in (3.6) is obtained by integrating
a smooth interpolant for fj := f(tj ,uj ,vj), i.e.,

ru(t) ≈Muu0 +

n∑
j=0

fj

(∫ t

0

`j(τ) dτ

)
−Muũ(t).

Denoting by ru,j the approximations to the residuals ru(tj) at times tj , we can write

[ru,0, ru,1, . . . , ru,n] = Muu0[1, 1, . . . , 1] + [f0, f1, . . . , fn]Cu −Mu[u0,u1, . . . ,un],

where Cu = [ci,j ] ∈ R(n+1)×(n+1) is a collocation matrix for cumulative integration, i.e.,

ci,j =

∫ tj

0

`i(τ) dτ, i, j = 0, 1, . . . , n, (3.9)

with c0,0 being the top-left entry of Cu. An analogous representation for the residual approximations
rv,j can be easily derived. As the integrand in (3.8) can be expected to be smooth, we may apply
a low-order quadrature rule to the integral and thereby obtain a time-stepping method for the error
eu(t) at the time points tj . The right-endpoint rectangular rule gives rise to an implicit Euler scheme,
starting with eu,0 = 0,

Mueu,j = Mueu,j−1 + (ru,j − ru,j−1) + (tj − tj−1) · hf (tj , eu,j , ev,j), j = 1, . . . , n. (3.10)

Analogously, the time-stepping scheme for ev(t), with ev,n = 0, reads

Mvev,j−1 = Mvev,j − (rv,j − rv,j−1)− (tj − tj−1) · hg(tj−1, eu,j−1, ev,j−1), j = n, . . . , 1. (3.11)

Finally the current approximations ũ and ṽ are updated via ũnew = ũ + eu and ṽnew = ṽ + ev, which
concludes one deferred correction sweep.
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3.2. Splitting approach. To solve the coupled time-stepping recursions for eu and ev in (3.10)–
(3.11), one way is to “freeze” the component ṽ, while computing a correction eu for ũ, and vice versa.
In order to give a precise description, let us again denote by uj approximations for u(tj) on a time grid
t0, t1, . . . , tn; analogously we denote by vj the approximations for v(tj). Here is a complete description
of our procedure.

Algorithm 1: Deferred correction for optimal control via splitting.

1. Initialize uj := u0 and vj := vT for all j = 0, 1, . . . , n.
2. Compute residuals ru,j (j = 0, 1, . . . , n) associated with ũ(t) via quadrature of

ru(t) = u0 +

∫ t

0

f(τ, ũ(τ), ṽ(τ)) dτ − ũ(t).

3. Compute errors eu,j via (3.10).
4. Update approximations uj := uj + eu,j (j = 0, 1, . . . , n).
5. Compute residuals rv,j (j = 0, 1, . . . , n) associated with ṽ(t) via quadrature of

rv(t) = vT +

∫ t

T

g(τ, ũ(τ), ṽ(τ)) dτ − ṽ(t).

6. Compute errors ev,j via (3.11).
7. Update approximations vj := vj + ev,j (j = 0, 1, . . . , n).
8. If error criterion is satisfied, stop. Otherwise go to step 2.

3.3. Coupling approach for linear problems. Consider the coupled system of linear ini-
tial/final value problems (2.11)–(2.12). It is possible to write down a global system for the errors
in ũ and ṽ, and to solve for both error components simultaneously. The equations for the errors
simplify due to linearity (cf. (3.8)):

Mueu(t) = ru(t) +

∫ t

0

K1eu(τ)−K2ev(τ) dτ,

Mvev(t) = rv(t)−
∫ t

T

K3eu(τ)−K4ev(τ) dτ.

Discretizing both equations using the implicit Euler method we obtain

Mueu,j = Mueu,j−1 + (ru,j − ru,j−1) + (tj − tj−1) · (K1eu,j −K2ev,j), Mueu,0 = 0,

Mvev,j−1 = Mvev,j − (rv,j − rv,j−1)− (tj − tj−1) · (K3eu,j−1 −K4ev,j−1), Mvev,n = 0.

We can write these relations in form of the following matrix system:



K3,τ M>v −K4,τ

Mu −K1,τ K2,τ


︸ ︷︷ ︸

A



eu,0
eu,1

...
eu,n−1

eu,n
ev,0
ev,1

...
ev,n−1

ev,n


=



rv,0 − rv,1
rv,1 − rv,2

...
rv,n−1 − rv,n

0
0

ru,1 − ru,0
...

ru,n−1 − ru,n−2

ru,n − ru,n−1


. (3.12)
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Note that the matrix A is exactly the same as that in (2.13). This is a major advantage of the deferred
correction approach as we can reuse existing solvers and preconditioners for the solution of (3.12). Only
the right-hand side changes from one sweep to the next, incorporating the latest residuals ru,j and rv,j .
We obtain the following algorithm.

Algorithm 2: Deferred correction for optimal control via coupling.

1. Get initial approximations uj and vj (j = 0, 1, . . . , n) by solving the linear system (2.13).
2. Compute residuals ru,j (j = 0, 1, . . . , n) associated with ũ(t) via quadrature of

ru(t) = u0 +

∫ t

0

K1ũ(τ)−K2ṽ(τ) + f̂(τ) dτ − ũ(t).

3. Compute residuals rv,j (j = 0, 1, . . . , n) associated with ṽ(t) via quadrature of

rv(t) = vT +

∫ t

T

K3ũ(τ)−K4ṽ(τ) + ĝ(τ) dτ − ṽ(t).

4. Compute errors eu,j and ev,j by solving the linear system (3.12).
5. Update approximations uj := uj + eu,j and vj := vj + ev,j (j = 0, 1, . . . , n).
6. If error criterion is satisfied, stop. Otherwise go to step 2.

3.4. Rational interpolation scheme. We now draw attention to the choice of Lagrange basis
functions `j (j = 0, 1, . . . , n) in (3.3). Ideally we want these functions to be smooth so that they can
be integrated to high accuracy, but at the same time we wish to be flexible in the spacing of the time
points tj . In most cases, we would like to collocate our approximations uj and vj at equidistant time
points on [0, T ]. As polynomial interpolation through equidistant data abscissae exhibits exponential
instability with increasing degree n, we prefer here to use the rational barycentric interpolants proposed
in [10]. More precisely, given a blending parameter b such that 0 ≤ b ≤ n, we define as in [10, eq. (11)]
the index set

Jk = {0, 1, . . . , n− b} ∩ {k − b, k − b+ 1, . . . , k}

and the weights

wk = (−1)k−b
∑
i∈Jk

i+b∏
j=i,j 6=k

1

|tk − tj |
.

One can easily verify that the barycentric formula

`j(t) =
wj
t− tj

/ n∑
k=0

wk
t− wk

represents a rational function satisfying `j(ti) = δij as required, and has no poles on the real axis (hence
is smooth). It has been shown in [10] that the resulting interpolation scheme achieves an approximation
error of O((1/n)b+1), provided that the function to be approximated has b+2 continuous derivatives on
[0, T ] and the interpolation nodes are quasi-equispaced. In [16] is has been shown that stable exponential
convergence can be achieved when the function to be approximated is analytic in a neighborhood of
[0, T ] in the complex plane, and b increases linearly with n. The ideal ratio b/n depends on the location
of the singularities of the function to be approximated, and is found by balancing fast convergence with
the growth of the Lebesgue constant associated with the interpolation scheme.

In our application the functions to be approximated are the unknown solutions ũ and ṽ. We
therefore use an a-priori choice for the blending parameter similar to [17], which describes a deferred
correction scheme for initial value problems, and find b = min(n, 10) to be a good compromise between
high approximation accuracy and low condition number of the interpolation scheme.
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4. Convergence analysis. In this section we analyze the splitting and the coupling approach for
a scalar linear system{

u′(t) = k1u(t)− k2v(t), u(0) ∈ R given,

v′(t) = k3u(t)− k4v(t), v(T ) ∈ R given.

(4.1)

(4.2)

We will show that both approaches are related to power iteration for a certain eigenvalue problem, and
how the spectral properties of the iteration matrices relate to the convergence of each method. For
basic convergence results on the power iteration we refer to [37, Section 4.1]. A similar connection to
iterative linear algebra methods, in this case the Gauss–Seidel method, has been made in [24] for the
single-ODE deferred correction scheme.

4.1. Splitting approach. Assume we are given Ũ = [u0, u1, . . . , un], a vector which collects the
values of a deferred correction approximation ũ(t) at time points t0, t1, . . . , tn. Likewise, we define

Ṽ = [v0, v1, . . . , vn]. The residual vector Ru = [ru,0, ru,1, . . . , ru,n] associated with Ũ is defined as

Ru = [u0, u0, . . . , u0] +

[∫ tj

0

[I (k1Ũ− k2Ṽ)](τ) dτ

]
j=0,1,...,n

− Ũ, (4.3)

where the interpolation operator I maps a row vector with n + 1 entries to its interpolating function.
The cumulative integration of I ũ is a linear operation and can hence be represented as a matrix product
with a collocation matrix Cu ∈ R(n+1)×(n+1) defined in (3.9), i.e.,

Ru = [u0, u0, . . . , u0] + (k1Ũ− k2Ṽ)Cu − Ũ. (4.4)

We now turn our attention to the implicit Euler recursion (3.11), which for the linear test problem
simplifies to eu,0 = 0 and

eu,j = eu,j−1 + (ru,j − ru,j−1) + τjk1eu,j , j = 1, . . . , n, (4.5)

where τj = tj − tj−1. Defining the vector Eu = [eu,0, eu,1, . . . , eu,n] and the (n+ 1)× (n+ 1) matrices

Du =



0 −1
1 −1

1
. . .

. . . −1
1

 , Eu =



1 −1
1− τ1k1 −1

1− τ2k1
. . .

. . . −1
1− τnk1

 ,

we can write the implicit Euler recursion (4.5) in the form

EuEu = RuDu.

Combining this with formula (4.4) for Ru, and using that [u0, u0, . . . , u0]Du = [0, 0, . . . , 0], we obtain

Eu = Ũ(k1CuDu −Du)E−1
u − Ṽk2CuDuE

−1
u .

Finally, in deferred correction the next iterate is obtained via Ũnew = Ũ + Eu, and hence

Ũnew = Ũ(Eu + k1CuDu −Du)E−1
u − Ṽk2CuDuE

−1
u = ŨMu + ṼNu,

with Mu = (Eu + k1CuDu −Du)E−1
u and Nu = −k2CuDuE

−1
u . A similar derivation for Ṽ yields

Ṽnew = ŨnewMv + ṼNv,
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where Mv = k3CvDvE
−1
v , Nv = (Ev − k4CvDv −Dv)E

−1
v , and

Dv =



1

−1
. . .

. . . 1
−1 1 0

−1 0

 , Ev =



1− τ1k4

−1
. . .

. . . 1− τn−1k4

−1 1− τnk4

−1 1

 .

Combining these two nested recursions for Ũ and Ṽ into one gives

[Ũnew, Ṽnew] = [Ũ, Ṽ]

[
Mu O
Nu Nv

] [
I Mv

O I

]
︸ ︷︷ ︸

S

. (4.6)

This finally shows that our deferred correction approach with splitting applied to a linear problem is
equivalent to a power iteration with the matrix S. Due to the special structure of the matrices Mu and
Nv, it is easy to see that S has an eigenvalue equal to 1 of geometric multiplicity at least 2. Together
with the conditions for u0 and vn the power iteration is then guaranteed to converge to a unique solution
(a linear combination of the two eigenvectors associated with the eigenvalue 1) if all other eigenvalues of
the iteration matrix have modulus strictly less than 1. The following theorem summarizes our findings.

Theorem 4.1. The matrix S defined in (4.6) has an eigenvalue λ = 1 of geometric multiplicity
at least 2. The splitting deferred correction method given in Algorithm 1 applied to the linear test
problem (4.1)–(4.2) is guaranteed to converge to an eigenvector of S if the eigenvalues of S sorted by
non-increasing modulus satisfy

1 = λ1 = λ2 > |λ3| ≥ |λ4| ≥ · · · .

We will illustrate this convergence result in section 4.3 and at a heat control problem in section 6.

4.2. Coupling approach. We now analyze the coupling approach for the same linear test prob-
lem (4.1)–(4.2). The scalar form of the coupled time-stepping scheme reads

τ1k3

τ2k3

. . . E>v
τnk3

0
0

τ1k2

E>u
. . .

τn−1k2

τnk2





eu,0
eu,1

...
eu,n−1

eu,n
ev,0
ev,1

...
ev,n−1

ev,n


=



rv,0 − rv,1
rv,1 − rv,2

...
rv,n−1 − rv,n

0
0

ru,1 − ru,0
...

ru,n−1 − ru,n−2

ru,n − ru,n−1


,

or equivalently (written in transposed form),

[Eu,Ev]

[
Tu Eu
Ev Tv

]
= [Ru,Rv]

[
Du

Dv

]
, (4.7)

where Eu, Ev, Eu, Ev, Du, Dv are defined as in the previous subsection, Tu = k3 ·diag(τ1, τ2, . . . , τn, 0)
and Tv = k2 · diag(0, τ1, . . . , τn−1, τn). Now, using the linear forms of the residuals (cf. (4.3)) we have

[Ru,Rv]

[
Du

Dv

]
= [Ũ, Ṽ]

[
k3CvDv k1CuDu −Du

−k4CvDv −Dv −k2CuDu

]

= [Ũ, Ṽ]

[
k1Cu − I k3Cv
−k2Cu −k4Cv − I

] [
Du

Dv

]
.
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Combining this relation with formula (4.7) for the error [Eu,Ev] we arrive at

[Ũnew, Ṽnew] = [Ũ, Ṽ] + [Eu,Ev]

= [Ũ, Ṽ]

(
I +

[
k1Cu − I k3Cv
−k2Cu −k4Cv − I

] [
Du

Dv

] [
Tu Eu
Ev Tv

]−1
)

︸ ︷︷ ︸
C

. (4.8)

Again, this is a power iteration applied with the matrix C and the following theorem is immediate.

Theorem 4.2. The matrix C defined in (4.8) has an eigenvalue λ = 1 of geometric multiplicity at
least 2. The coupling deferred correction method given in Algorithm 2 applied to the linear test problem
(4.1)–(4.2) is guaranteed to converge to an eigenvector of C if the eigenvalues sorted by non-increasing
modulus satisfy

1 = λ1 = λ2 > |λ3| ≥ |λ4| ≥ · · · .

4.3. Numerical illustration and the non-scalar case. In Figure 4.1 we illustrate the above
results for the scalar test problem

u′ = − 4.935u+ 20v, u(0) = 1,

v′ = u+ 4.935v, v(1) = 0.

The parameters are chosen to match those of the (non-scalar) heat equation example in section 6.1.
The time interval [0, 1] is discretized by equispaced time points tj = j/n, j = 0, 1, . . . , n = 10, using
the barycentric rational interpolation scheme with blending parameter b = 10 (as b = n this actually
amounts to polynomial interpolation; see [10]). On the left of Figure 4.1 we plot the eigenvalues of the
splitting and coupling iteration matrices, S (blue circles) and C (red pluses), respectively. The enclosing
circles are of radius |λ3|. On the right of Figure 4.1 we show the error of the approximate solutions
obtained via the two deferred correction approaches. We observe geometric convergence at rate |λ3|
(indicated by the dotted line), as expected from a power iteration. The convergence factor of the
coupling approach, |λ3| = 0.26, is significantly better than that of the splitting approach, |λ3| = 0.47.

Let us also comment on non-scalar problems, in particular, the heat control problem. The homo-
geneous form of (2.2)–(2.3) with finite difference or spectral discretization (i.e., Mu = Mv = I) isu′(t) = Lu(t) +

1

β
v(t), u(0) = u0 ∈ RN given,

v′(t) = u(t)− Lv(t), v(T ) = vT ∈ RN given,

with L ∈ RN×N corresponding to a discretization of ∇2. Assuming that L = XDX−1 is diagonalizable
with D = diag(λ1, λ2, . . . , λN ), the above system decouples into N scalar equations of the studied form.

In section 6.1 we will demonstrate that the smallest eigenvalue of the discretization matrix for
the diffusion operator ∇2 indeed dictates the convergence behavior of our deferred correction scheme.
Hence for the heat equation a good understanding of the expected convergence behavior can be gained
by eigenvalue information alone. We note, however, that this observation does not necessarily extend
to problems where the involved matrices are not diagonalizable (or at least highly nonnormal) or when
singular mass matrices are present (like the matrices Mu,Mv in the Stokes problem). In this case more
advanced techniques based on pseudospectra or from spectral theory of differential-algebraic equations
may be required; see, e.g., [21, 45]. Such techniques are beyond the scope and aim of this paper and we
will leave a more general and complete convergence analysis for future work.
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Fig. 4.1: Illustration of our convergence analysis of the splitting and coupling approaches applied to a linear test
problem. Left: Eigenvalues of the iteration matrices associated with the splitting (blue circles) and coupling (red
pluses) approaches. The eigenvalues λ1 = λ2 = 1 are outside the visible region. Right: Convergence curves for
both components u and v of the solutions after each sweep. Sweep 0 corresponds to the initial guess (which is
constant in the splitting approach and obtained from a single implicit Euler run in the coupling approach).

5. Computational considerations. We discuss a number of computational aspects which play
a role when implementing the deferred correction methods presented in this article. In particular, there
are three main sources of numerical error in our method:

• error from the spatial discretization,
• error from the time discretization,
• linear algebra error from inner solves of (2.13).

These errors need to be balanced to obtain an efficient method, and such considerations become par-
ticularly relevant when solving large-scale and very complex problems.

As the main focus of this paper is on the algorithmic presentation and analysis of our method, we
conduct our numerical experiments using both spectral and finite element discretizations in space, and
also solve accurately on the discrete level, in order to demonstrate the potency of our methodology.
However, as this is a relatively new subject area, we believe it is important to present an overview of
the potential sources of error, so that users of this deferred correction approach can tailor their method
to the particular application being examined.

5.1. Discretization in space. The methods proposed in section 3 are presented in a general
form, and should be implementable with any method of spatial discretization (for example spectral
methods, finite elements, finite differences, meshless methods).

The choice of the “best” method for spatial discretization will depend on the problem being solved,
and the domain on which the solution is sought. One of the determining factors is the size of the matrix
systems being solved and their conditioning. For example, in many scenarios a spectral method will
generate a much more accurate solution than a finite element method with a comparable number of
mesh points, however, the conditioning of the discretization matrices is likely to be much worse (to
illustrate, for the Laplacian operator the conditioning of a finite element matrix can grow in inverse
proportion to the square of the mesh size [9, Chapter 2], whereas the conditioning of a spectral collo-
cation matrix is more severe [36, Chapter 6]). This trade-off between a method’s theoretical accuracy
and the conditioning of the resulting matrix is an important consideration when solving large-scale
PDE-constrained optimization problems.

To illustrate the high solution accuracy that can be achieved with our deferred correction approach,
we predominantly use spectral space discretizations for the numerical experiments in section 6. However,
we will also demonstrate that a high-order time discretization can significantly reduce the computational
cost even with low-order spatial discretizations (such as finite elements) because the number of required
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time steps is smaller.

5.2. Discretization in time. Along with the spatial discretization, consideration needs to be
given to the discretization in time. In this paper we exclusively used an implicit Euler time stepping
scheme with constant time steps τj = tj − tj−1 = constant. In principle we could apply any quadrature
rule (time stepping scheme) to the error equation (3.8), however, we found the right-endpoint rectangular
rule (implicit Euler method) effective and particularly easy to implement within the deferred correction
framework. In particular, with equidistant time steps the matrices Mu−τjK1 and Mv−τjK4 implicitly
appearing in (2.13) will be identical across all time steps. When a direct linear system solver is employed,
only a single matrix factorization needs to be computed across all time steps. If the systems are solved
iteratively, we can benefit from constant time steps by employing one of the many preconditioners that
have been developed for such a situation (see, e.g., [29, 30, 31, 40, 41, 42, 44, 49]).

5.3. Inexact inner solves. Another key aspect of our deferred correction method is that of the
required accuracy when solving the matrix system (2.13). Note that this system is solved repeatedly
with different right-hand sides at each deferred correction sweep. For early sweeps in particular, where
the accuracy in the approximate solution is relatively poor, it seems unnecessary to solve this system
to high accuracy. We are therefore presented with the option of constructing preconditioned iterative
methods, of the form discussed in [20, 30, 31, 33, 50], for the matrix systems (2.13) (as opposed to
applying direct methods). Of course the viability and effectiveness of such an approach will depend on
the PDE which we wish to solve, and the resulting complexity of the matrix system. Once a fast and
robust iterative method has been constructed for the problem at hand, it can easily be applied within a
deferred correction method. A reasonable heuristic would be to solve the matrix system to a tolerance
a fraction of the size of the expected update (e.g., if the update is of O(10−3) there is little point solving
the system to a much lower error tolerance).

The choice of whether to apply a direct or iterative method is likely to be influenced by the method
of spatial discretization. For instance, if a finite element discretization is applied, the matrix (2.13) will
be large and sparse, and hence a preconditioned iterative method will be the preferred option (provided
a suitable preconditioner can be constructed). By contrast when a spectral space discretization is used,
the matrix system will be denser and of lower dimension, and hence a direct method should be used.

In addition, the choice of solver will also depend on whether the coupling or splitting approach is
used. For the coupling approach, the systems to be solved are much larger and an iterative solution
method may be the only option. For the splitting approach, one is solely required to compute solutions
to (smaller) block triangular systems and direct solution methods may be attractive. To summarize,
the solver for (2.13) should be tailored to the PDE-constrained optimization problem at hand, the space
and time discretization approach being used, and the accuracy requirements.

6. Numerical experiments. The development of test problems for PDE-constrained optimiza-
tion is a highly non-trivial task. A contribution of the following two subsections is to derive test problems
with analytic solutions. In order to evaluate the accuracy of the deferred correction solutions we dis-
cretize these problems using spectral methods. The third subsection considers a convection–diffusion
problem without a known analytic solution, and the fourth problem is of a larger scale using a finite
element discretization and a preconditioned iterative solver.

The MATLAB codes for all tests are available online at http://guettel.com/dccontrol.

6.1. 2D heat control problem with spectral space discretization. The components of our
first test problem, for the heat equation control problem (2.1), are stated below. It can be shown that
this is an exact solution of the continuous optimality conditions (2.2) and (2.3), along with all initial

http://guettel.com/dccontrol
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and boundary conditions imposed on y and λ,

y =

(
4

dπ2β
eT − 4

(4 + dπ2)β
et
) d∏

k=1

cos
(πxk

2

)
,

λ = (eT − et)
d∏
k=1

cos
(πxk

2

)
,

[
c =

1

β
λ

]

yd =

([
dπ2

4
+

4

dπ2β

]
eT +

[
1− dπ2

4
− 4

(4 + dπ2)β

]
et
) d∏

k=1

cos
(πxk

2

)
,

y0 =

(
4

dπ2β
eT − 4

(4 + dπ2)β

) d∏
k=1

cos
(πxk

2

)
,

h = 0,

where d ∈ {2, 3} is the dimension of the problem, which is solved on the space domain [−1, 1]d and
the time interval [0, T ]. For the purpose of this test we choose d = 2, T = 1, and β = 0.05. We are
then able to input the above yd, y0, and h into the heat equation control problem (2.1), and compare
the solutions obtained with the explicit expressions for y and λ. For the space discretization we use a
spectral collocation scheme with 11 Chebyshev points on [−1, 1] in each coordinate direction. The time
interval [0, 1] is discretized by equidistant time points tj = j/n, j = 0, 1, . . . , n = 10, using the rational
barycentric interpolation scheme with blending parameter b = 10.

The numerical results are shown in Figure 6.1. On the left, we plot the relative error in the solutions
(u,v) (which are the discretization vectors of (y, λ)) computed by the splitting and coupling approaches
after 0, 1, . . . sweeps. Here, 0 sweeps corresponds to the error of the initializations of uj and vj in both
cases, i.e., a constant initialization uj = u0 and vj = vT (j = 0, 1, . . . , n) in the splitting approach,
and for the coupling approach the implicit Euler approximations obtained by solving (2.13) once. The
relative error of the approximation ũ(t) defined in (3.3) is measured after each sweep as

relerr =
maxj=0,...,n ‖u(tj)− ũ(tj)‖∞

maxj=0,...,n ‖u(tj)‖∞
,

where u(t) is the vector function that corresponds to the evaluation of the analytic solution at the
spatial grid points. An analogous error measure is used for ṽ(t).

We also show in Figure 6.1 (left) the convergence rate predicted by the scalar analysis in section 4.
The parameters are chosen as in section 4.3, with k1 = k4 corresponding to the eigenvalue of smallest
modulus of the matrix K1 = K4, the discretization matrix of ∇2, k2 = −1/β = −20, and k3 = 1. We
find that the convergence behavior is very well described by this scalar approximation. The stagnation
of the error curves at level ≈ 4e-10 indicates that the spatial discretization is of that accuracy (note
that we always compare to the analytic solution).

On the right of Figure 6.1 we show the relative error in u after 0, 1, 2, 5 and 10 deferred correction
sweeps with the coupling approach, when the number of time steps n is varied. This test verifies
numerically that ` sweeps of the coupling deferred correction scheme yield the accuracy of an (`+ 1)-th
order time-stepping scheme; i.e., relerr ≈ C/n`+1 for some constant C. This is remarkable as these
high accuracies are obtained merely by running the first-order implicit Euler scheme `+ 1 times.

Additional information is given in Table 6.1. For example, we can read off this table that with only
one deferred correction sweep over n = 10 time steps we can achieve a relative error of 6.29e-4 in u,
whereas the plain implicit Euler discretization requires n = 160 time steps to achieve a comparable
accuracy of 7.36e-4. (The spatial discretization errors in u and v are both of order 4e-4, as indicated by
the n =∞ row in Table 6.1. We have estimated these errors by performing deferred correction sweeps
until stagnation.) The table gives evidence of how deferred correction can significantly reduce memory
requirements and solution time (using MATLAB’s backslash in all cases) due to the smaller number n
of time steps required for a desired accuracy.



RATIONAL DEFERRED CORRECTION FOR PDE-CONSTRAINED OPTIMIZATION 17

0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

number of sweeps

re
la

tiv
e 

er
ro

r

heat2d − splitting vs coupling (n = 10)

 

 

error in u (splitting)
error in v (splitting)
predicted rate
error in u (coupling)
error in v (coupling)
predicted rate
direct solve
direct solve

2 5 10 20 40 80 160 320
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

number of time nodes n

re
la

tiv
e 

er
ro

r 
in

 u

heat2d − coupling approach

 

 

0 1 2 5 10 sweeps 

Fig. 6.1: Convergence of deferred correction methods for a 2D heat control problem with analytic solution,
discretized by a spectral method. Left: The problem is solved using the splitting and coupling approach with
n = 10 time steps. The horizontal lines entitled “direct solve” indicate the error levels in u and v of the Euler
time discretization without any deferred correction (i.e., after 0 deferred correction sweeps). Right: Relative
error in u achieved by the coupling approach after 0, 1, 2, 5, 10 sweeps, respectively, when the number of time
steps n is varied. The dashed curves indicate algebraic convergence of order 1, 2, 3, 6, 11, respectively.

6.2. 2D Stokes control problem with spectral space discretization. Our second test prob-
lem relates to the Stokes control problem (2.6). We can verify that the functions and vector fields stated

for ~y, p, ~λ, µ satisfy the optimality conditions (2.7)–(2.10) (along with associated initial/boundary con-

ditions) with ~yd, ~z, ~y0, ~h as presented:

~y =
[
(ζ + ηet) sin2(πx1) sin(2πx2), − (ζ + ηet) sin(2πx1) sin2(πx2)

]>
,

p = − π(ζ + ηet) sin(2πx1) sin(2πx2) + constant,

~λ =
[
−(eT − et) sin2(πx1) sin(2πx2), (eT − et) sin(2πx1) sin2(πx2)

]>
,

[
~c =

1

β
~λ

]
µ = x1 + x2 + constant,

~yd =
[
1 +

(
−et + (ζ + ηet)

)
sin2(πx1) sin(2πx2) + 2π2(eT − et)

(
1− 4 sin2(πx1)

)
sin(2πx2),

1 +
(
et − (ζ + ηet)

)
sin(2πx1) sin2(πx2) + 2π2(eT − et) sin(2πx1)

(
4 sin2(πx2)− 1

)]>
,

~z =
[
−4π2(ζ + ηet) cos(2πx1) sin(2πx2), 0

]>
,

~y0 =
[
(ζ + η) sin2(πx1) sin(2πx2), − (ζ + η) sin(2πx1) sin2(πx2)

]>
,

~h = [0, 0]
>
,

with ζ = −eT /(4π2β) and η = 1/((1 + 4π2)β). The regularization parameter is chosen as β = 0.01.
The problem is solved over the time interval [0, T = 1] on the spatial domain [−1, 1]2 discretized

using a spectral collocation scheme with 21 Chebyshev points in each coordinate direction. The numer-
ical results are shown in Figure 6.2. The left plot shows the relative error in the solution vectors (u,v)
after each sweep, with the time interval being discretized by n = 20 time steps. When computing these
relative errors we have only taken into account the components of (u,v) which correspond to (~y,~λ).
The remaining components correspond to the functions (p, µ) which are only determined up to additive
constants. In the right plot of Figure 6.2 we show the relative error in u after ` = 0, 1, 2, 5 and 10
deferred correction sweeps with the coupling approach, when the number of time steps n is varied. We
find that the accuracy monotonically improves as n is increased and more sweeps are being performed.
In contrast to the heat equation example, however, the accuracy does not improve algebraically with
(`+ 1)-th order in n.
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Table 6.1: Accuracies, memory requirements, and timings for the 2D heat control problem without (top) and
with (bottom) deferred correction with varying number of time steps n and sweeps, respectively. The row n =∞
for the solution without deferred correction shows estimates for the spatial discretization error in u and v.

direct solution via MATLAB backslash (i.e., 0 sweeps)

time steps n relerr in u relerr in v system size memory (MB) solution time (ms)

2 4.68e-02 3.04e-02 486 0.1 3

5 2.14e-02 9.90e-03 972 0.3 13

10 1.12e-02 4.38e-03 1782 0.5 26

20 5.75e-03 2.02e-03 3402 1.0 52

40 2.91e-03 9.61e-04 6,642 2.1 108

80 1.47e-03 4.68e-04 13,122 4.2 228

160 7.36e-04 2.31e-04 26,082 8.3 452

320 3.69e-04 1.15e-04 52,002 16.6 900

∞ 4.55e-10 4.24e-10 — — —

coupling approach with n = 10 time steps

sweeps relerr in u relerr in v system size memory (MB) solution time (ms)

0 1.12e-02 4.38e-03 1,782 0.5 26

1 6.29e-04 7.58e-04 1,782 0.5 55

2 6.05e-05 7.94e-05 1,782 0.5 83

3 5.99e-06 1.02e-05 1,782 0.5 110

4 2.16e-06 2.05e-06 1,782 0.5 139

5 5.84e-07 2.24e-07 1,782 0.5 167

Table 6.2 gives some additional information about the coupling deferred correction method com-
pared to the plain implicit Euler solution. Similarly to the heat equation example we find that only one
deferred correction sweep improves the solution accuracy significantly without the need of an increased
number of time steps n. The benefit is a much reduced system size, memory requirement, and solution
time (again using MATLAB’s backslash in all cases).

6.3. A convection–diffusion problem. We now consider a 2D control problem with

D =
∂

∂t
− ν∇2 + w · ∇.

Although we do not have an analytic solution for this problem, we can use as a measure of convergence
the contraction of the residuals ru and rv defined in (3.6)–(3.7). On the top of Figure 6.3 we show
plots of the residual norm for each of 20 deferred correction sweeps. Below we show plots for the state
variable y and the adjoint variable λ. We use a 20-point spectral method in two spatial dimensions,
the time domain is chosen as [0, T = 1], and we select ν = 0.01 and yd = tex1+x2 sin(πx1) sin(πx2).
The two experiments shown in Figure 6.3 involve different values of the regularization parameter β and
wind vector w.

6.4. 2D heat control problem with finite elements. So far we have considered numerical
experiments involving spectral discretization in space. A more widely used approach, however, is to
apply a finite element discretization in space, and this experiment tests our coupling deferred correction
method in this context. Let us consider the matrix system (2.13) for the heat equation control problem
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Fig. 6.2: Convergence of the coupling deferred correction method for a 2D Stokes control problem with analytic
solution, discretized by a spectral method, with varying number of deferred correction sweeps. The horizontal
lines entitled “direct solve” indicate the error levels in u and v of the Euler time discretization without deferred
correction (i.e., after 0 deferred correction sweeps). Left: Error dependent on the number of sweeps with a fixed
time discretization (n = 20). Right: Convergence of the u component with a fixed number of sweeps over a
varying number of time steps n.

Table 6.2: Accuracies, memory requirements, and timings for the 2D Stokes control problem without (top) and
with (bottom) deferred correction.

direct solution via MATLAB backslash (i.e., 0 sweeps)

time steps n relerr in u relerr in v system size memory (MB) solution time (s)

2 7.78e-03 5.08e-03 7,932 5.0 0.7

5 4.17e-03 2.31e-03 15,864 12.3 2.5

10 2.24e-03 1.21e-03 29,084 24.5 4.9

20 1.17e-03 6.26e-04 55,524 48.9 9.9

40 6.01e-04 3.20e-04 108,404 97.6 54.4

coupling approach with n = 20 time steps

sweeps relerr in u relerr in v system size memory (MB) solution time (s)

0 1.17e-03 6.26e-04 55,524 48.9 9.9

1 1.20e-04 1.37e-04 55,524 48.9 19.8

2 3.93e-05 2.28e-05 55,524 48.9 29.8

5 5.70e-06 3.40e-06 55,524 48.9 59.6

10 2.50e-07 5.75e-07 55,524 48.9 108.4

(2.2)–(2.3) using a finite element discretization. The relevant blocks of A are given as follows:

Mu =Mv =


M
−M M

. . .
. . .

−M M
−M M

 ,

K1,τ = blkdiag
(
O,−τK, . . . ,−τK,−τK

)
, K2,τ = blkdiag

(
O,− τ

β
M, . . . ,− τ

β
M,− τ

β
M

)
,

K3,τ = blkdiag
(
τM, τM, . . . , τM,O

)
, K4,τ = blkdiag

(
− τK,−τK, . . . ,−τK,O

)
,
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Fig. 6.3: Top: Residual norms after each deferred correction sweep for a 2D convection–diffusion control problem,
discretized by a spectral method. Middle: Plots of the state y(t) at time t = 0.5. Bottom: Plots of the adjoint
λ(t) at time t = 0.5. For each experiment, yd = tex1+x2 sin(πx1) sin(πx2), ν = 0.01, T = 1, and zero initial
and boundary conditions are taken. For the left plots, the wind vector is w = [ 1√

2
, 1√

2
]> and the regularization

parameter is β = 10−2; for the right plots, w = [−1, 0]> and β = 10−4.

where M and K denote finite element mass and stiffness matrices, respectively, and τ is the constant
time step. The right-hand side incorporates boundary/initial conditions and the desired state yd [31, 43].

The matrix system (2.13) is of extremely large dimension, even for very coarse finite element
discretizations in space. In order to solve this system efficiently, it is necessary to employ preconditioned
iterative methods. Fortunately, because the matrix (2.13) is similar to that used for previously developed
solvers which do not incorporate deferred correction, we can apply existing preconditioning techniques.
In this case of heat equation control, we follow a similar strategy as in [31, 32] by constructing a saddle
point preconditioner

P =

[
K̂3,τ 0

0 Ŝ

]
,
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where K̂3,τ and Ŝ denote (invertible) approximations of K3,τ and the approximate Schur complement1

S̃ := −K2,τ +
(
Mu −K1,τ

)
K̂−1

3,τ

(
M>v −K4,τ

)
.

To construct an invertible matrix K̂3,τ , we ‘perturb’K3,τ and take K̂3,τ := blkdiag(τM, τM, . . . , τM, γτM),
for a small parameter γ of our choosing (we use γ = 10−6 for our experiments). We now approximate

S̃ using a ‘matching strategy’ (as in [31]) to arrive at

Ŝ :=
(
Mu −K1,τ + M̂

)
K̂−1

3,τ

(
M>v −K4,τ + M̂

)
,

where M̂ is chosen so that additional (outer) term M̂K̂−1
3,τM̂ ‘matches’ the term −K2,τ in S̃. This is

achieved by selecting M̂ := blkdiag
(
O, τ√

β
M, . . . , τ√

β
M, τ

√
γ
βM

)
.

For our experiments, we consider the heat control test problem from section 6.1, but now on an
L-shaped domain and for the time interval [0, T = 5]. We discretize in space using piecewise quadratic
(Q2) finite elements. We solve the relevant matrix system with a preconditioned GMRES [38] method
using the Incompressible Flow and Iterative Solver Software (Ifiss) [8, 39]. Within the preconditioner
we apply Chebyshev semi-iteration [12, 13] to approximately invert mass matrices, and the Aggregation-
Based Algebraic Multigrid (AGMG) software [25, 26, 27, 28] for sums of stiffness and mass matrices. (For
other PDE-constrained optimization problems one will need to incorporate different preconditioners.)

Figure 6.4 shows the convergence of our coupling deferred correction method when the regularization
parameter is chosen as β = 10−2, along with the solution obtained for the state variable. Table 6.3
compares the achievable accuracy without and with deferred correction sweeps for a range of mesh
parameters h. We observe in the upper table that the accuracy is limited by the time discretization,
as a decrease in h does not result in a more accurate solution. In such cases, our deferred correction
approach is very attractive. For example, when h = 2e − 2 and n = 20 time steps are taken, then
only 4 deferred correction sweeps can improve the accuracy from 1.43e-2 to 2.67e-4. Extrapolating the
accuracies in Table 6.3, we estimate that plain implicit Euler would require approximately n = 950 time
steps to achieve a similar accuracy. This would be prohibitive.

We further observe in Table 6.3 that increasing the number of time steps n decreases the number
of deferred correction iterations required until stagnation. We consider the method to have stagnated
if the accuracy of the solution u does not exceed by a factor of 1.1 the best accuracy achieved within
the first 60 sweeps. It is natural that an increase in n will make each deferred correction sweep become
“more accurate” and thereby reduce the number of sweeps required until stagnation. On the other
hand, the dimension of the matrix systems to be solved increases linearly with n and it is advisable to
choose n merely depending on accuracy requirements. Decreasing the mesh parameter h also results in
larger linear systems, but is only worthwhile when deferred correction is used to improve the accuracy
in time.

Table 6.4 shows the average number of GMRES iterations required to solve the matrix systems
with A to a relative residual tolerance of 10−6, averaged over the first ten deferred correction sweeps,
for a range of h and β values. The robustness of the linear solver matches the observations in [31, 32],
and we highlight that the computational cost per iteration scales linearly with the system size, i.e., we
have employed an optimal solver.

The performance of the deferred correction scheme, as well as that of the inner iterative solver,
leads us to conclude that the method presented here can readily be applied within existing finite
element schemes for PDE-constrained optimization problems with minor code changes. The resulting
combination has the proven potential to give highly accurate solutions within a small number of deferred
correction iterations and with low memory consumption.

1The exact Schur complement of A does not exist in this case, due to the non-invertibility of K3,τ ; we therefore

instead consider S̃ by incorporating our approximation K̂3,τ of K3,τ . See [3] for a comprehensive review of numerical
methods for saddle point systems.
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Fig. 6.4: Convergence of deferred correction method for a 2D heat control problem with analytic solution, dis-
cretized using Q2 finite elements on an L-shaped domain, with varying number of deferred correction sweeps.
The horizontal lines entitled “direct solve” indicate the error levels in u and v of the Euler time discretization
without deferred correction (i.e., after 0 deferred correction sweeps). Left: The problem is solved using the cou-
pling approach with n = 20 time steps. Right: A plot of the solution y(t) at time t = 3. The finite element mesh
with parameter h = 2−3 is also shown.

Table 6.3: Achievable accuracies for the 2D heat equation without (top) and with (bottom) deferred correction.
The problem is posed on an L-shaped domain discretized with finite elements depending on the mesh parameter h
and the number of time steps n.

implicit Euler accuracy for u (i.e., 0 sweeps)

grid parameter h n = 10 n = 15 n = 20 n = 25

2e-2 2.9123e-02 1.9340e-02 1.4285e-02 1.1245e-02

2e-3 2.9074e-02 1.9293e-02 1.4241e-02 1.1203e-02

2e-4 2.9071e-02 1.9290e-02 1.4238e-02 1.1201e-02

2e-5 2.9071e-02 1.9290e-02 1.4238e-02 1.1200e-02

stagnation accuracy for u with the coupling approach (number of sweeps in brackets)

grid parameter h n = 10 n = 15 n = 20 n = 25

2e-2 3.1194e-04 (10) 2.7623e-04 (5) 2.6719e-04 (4) 2.8705e-04 (3)

2e-3 1.9819e-05 (31) 2.2406e-05 (16) 2.0833e-05 (10) 2.1649e-05 (7)

2e-4 1.4231e-06 (45) 1.5591e-06 (26) 1.4830e-06 (18) 1.3932e-06 (13)

2e-5 1.4619e-07 (51) 1.0604e-07 (38) 9.3860e-08 (26) 9.1240e-08 (19)

Table 6.4: Matrix system size for a 2D heat equation example on an L-shaped domain, for different values of
the grid parameter h, and the average number of GMRES iterations required to reduce the residual norm by a
factor of 10−6.

coupling approach with n = 20 time steps

regularization parameter β

grid parameter h system size 102 10 1 10−1 10−2 10−3 10−4 10−5 10−6

2e-2 9,450 9.9 10.4 12.8 15.1 14.6 14.3 13.9 12.0 10.1

2e-3 34,986 9.3 11.3 13.7 15.8 15.6 16.4 12.6 11.4 12.3

2e-4 134,442 9.1 11.1 13.7 16.0 15.0 15.8 12.8 11.9 11.9

2e-5 526,890 9.2 11.0 13.7 15.6 15.8 14.9 12.8 10.9 11.6

2e-6 2,085,930 9.5 11.2 14.4 16.4 14.6 14.9 12.8 10.9 11.0
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7. Concluding remarks. We have presented a rational deferred correction framework for solving
time-dependent PDE-constrained optimization problems. This framework enabled us to solve a range
of such problems to much higher accuracy than conventional discretize-in-time-and-solve schemes. The
reduced number of required time steps resulted in much smaller matrix systems to be solved, and fewer
solution vectors to be stored. Our deferred correction approach is beneficial in particular when the
desired accuracy is limited by the time discretization. An important feature of our approach is that it
can be implemented with minimal effort alongside existing linear system solvers and preconditioners.

We believe there is much future research which may be spawned by this work. First of all, exploring
the ideas mentioned in section 4.3 and extending them to a more general convergence analysis would
be desirable. Moreover, the interpretation of both schemes in terms of subspace iteration may lead the
way to other solution approaches with more efficient linear algebra kernels. Note in particular that the
slow convergence of the splitting approach is often caused by a single eigenvalue λ3 being relatively
large in modulus compared to |λ4|, |λ5|, . . . (see Figure 4.1). If the splitting approach could be solved
via subspace iteration with three vectors (instead of two) it may outperform the coupling approach.

We also believe that there would be great value in applying a similar approach to time-dependent
problems governed by nonlinear PDEs, as well as optimization problems with additional box constraints
on the state and/or control variables. While the splitting approach presented here has been found to be
relatively inefficient for linear problems (compared to the coupling approach), it may well be attractive
in the nonlinear case due to its simplicity. A detailed convergence analysis of deferred correction
methods for coupled problems, beyond the scalar analysis we have offered, will also be a subject of
future research.
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[17] S. Güttel and G. Klein. Efficient high-order rational integration and deferred correction with equispaced data.

Electronic Transactions on Numerical Analysis, 41:443–464, 2014.
[18] M. Hintermüller and K. Kunisch. PDE-constrained optimization subject to pointwise constraints on the control,

the state, and its derivative. SIAM J. Optim., 20(3):1133–1156, 2009.
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