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Abstract

We present a new theoretical model and reconstruction results for a new class of fast
x-ray CT machine, the Real Time Tomography (RTT) system, which uses switched
sources and an offset detector array. We begin by reviewing elementary properties
of the Radon and x-ray transforms, and limited angle tomography. Through the
introduction of a new continuum model, that of sources covering the surface of a
cylinder in R3, we show that the problem of three-dimensional reconstruction from
RTT data reduces to inversion of the three-dimensional Radon transform with limited
angle data. Using the Paley-Wiener theorem, we then prove the existence of a unique
solution and give comments on stability and singularity detection.

We show, first in the two-dimensional case, that the conjugate gradient least
squares algorithm is suitable for CT reconstruction. By exploiting symmetries in
the system, we then derive a method of applying CGLS to the three-dimensional
inversion problem using stored matrix coefficients.

The new concept of source firing order is introduced and formalised, and some
novel visualisations are used to show how this affects aspects of the geometry of the
system. We then perform a detailed numerical analysis using the condition number
and SVD of the reconstruction matrix A, to show that the choice of firing order
affects the conditioning of the problem. Finally, we give reconstruction results using
phantom data that support the numerical analysis.
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Chapter 1

Introduction

X-ray computed tomography, or CT, is a technique for imaging slices through a body

or object by measuring x-ray projections through the object from a range of angles;

the word tomography comes from the Greek τoµos, meaning slice. We begin with a

short history of the evolution of CT.

1.1 A Brief History of CT

The origins of CT can be traced back to 1917, with the publication of the Swiss math-

ematician Johann Radon’s paper “On the Determination of Functions From Their

Line Integrals Along Certain Manifolds”1 [55]. The next important development in

CT came from Cormack in 1963 [8], who developed important theory for CT from a

medical perspective, completely unaware of the work of Radon. The first practical

implementation of a CT system was made by Hounsfield in 1972 [24], who later went

on to share the Nobel prize for Medicine with Cormack in 1979.

The evolution of CT through the 1970’s is described by Kalender as the “4 gen-

erations of CT”, for example in [30] or [31]. This can be summarised as follows:

1st generation: Single source, single detector, parallel beam geometry; translate

and rotate between measurements

1English translation from original German title “ber die Bestimmung von Funktionen durch ihre
Integralwerte lngs gewisser Mannigfaltigkeiten”

14



CHAPTER 1. INTRODUCTION 15

2nd generation: Single source, multiple detectors, partial fan-beam geometry;

translate and rotate between measurements

3rd generation: Single source, multiple detectors, fan-beam geometry; rotating

source and detectors

4th generation: Single source, full ring of multiple detectors, fan-beam geometry;

only source rotates

These four generations applied to two-dimensional scanners, imaging a single slice

through the object. Evolution through the 1980’s and 1990’s saw the development

of three-dimensional scanning, first in a slice-by-slice manner, where the object or

patient being scanned would be physically moved between slices.

Developments since then have essentially concentrated solely on the 3rd generation

of CT scanner. In the late 1980’s to early 1990’s, with the development of multi-row,

area detectors, fast three-dimensional scanning became a reality, with the source

describing a helical path around the object being scanned. Through the 1990’s and

into the 21st century, detector sizes have become larger and larger, enabling faster

and faster scanning times and increased spatial resolution.

Scanning times with these 3rd generation conventional scanners are limited, how-

ever, by the physical constraints of rotating a source and detectors around the object.

The very fastest conventional scanners perform around 3 full source revolutions per

second; for example, modern dual-source scanners described in [31]. Clearly, if we are

to improve the scan time, a radical redesign of the scanner is needed; this is where

RTT comes in.

1.2 The RTT System

1.2.1 The Basic Design Concept

The RTT system is a new type of x-ray CT machine developed by the security

company Rapiscan systems. The motivation behind the design of the RTT system
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comes from baggage scanning for airport security. The aim of the system is to produce

full 3D scans of bags as they pass through on a conveyor belt at 0.5ms−1; hence Real

Time Tomography or RTT. As mentioned in section 1.1, the barrier to achieving

this using conventional helical cone-beam CT scanners lies in the laws of physics and

the limited speed with which one can physically rotate an x-ray source around on a

gantry.

Rather than physically rotating a single x-ray source about the scanner, the RTT

system instead uses a fixed ring of multiple sources and several fixed rings of detectors,

positioned around the region of interest. The sources are switched on and off in

sequence, creating the same effect as source movement. In this way, we can think of

the RTT system in terms of Kalender’s CT generations as a ‘5th generation’ of CT

scanner.

The principal advantage of this system over traditional CT scanners is that with

no heavy machinery to move around, we are only limited by the speed with which the

sources can be switched on and off. Currently this results in a maximum of 30 virtual

source revolutions per second, which should be enough to produce 3D reconstructions

at the required belt speed.

Of potential secondary benefit, and certainly of interest, is that with a switched

source system we have the ability to switch the sources in almost any order we

choose. In a conventional CT scanner the physical rotation of the source means that

we are forced to move it in a circular path. This therefore traces out a helical source

trajectory as the object or body moves through the scanner in the z direction. It

would seem like the natural thing to do in the RTT system would be to switch the

sources on and off consecutively in order to achieve the same effect; however, there is

no particular reason why we should do this (in fact it is not actually possible in the

real RTT system for practical reasons).

We refer to the source switching pattern as a firing order. It seems logical to

expect that this will have an effect on the outcome of the reconstruction; this will be

explored in detail in later chapters.
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1.2.2 Drawbacks Of The RTT System

Of course, this system is not without its disadvantages; these are summarised in this

section.

Offset Detectors

Due to the construction of the RTT system using complete rings of sources and de-

tectors, in order for rays from a particular source to not pass through the back of the

detectors nearest that source, we must offset the detector region by a small amount.

This actually leads to a totally different scanning geometry from conventional CT

machines, where we always have rays in, and on both sides of, a ‘transaxial’ plane

perpendicular to the axis of motion through the scanner. This leads to major chal-

lenges in developing a suitable reconstruction algorithm for the RTT system, which

will be explored in this thesis.

Lack of Collimation

Since the detectors must be capable of detecting rays from several sources, they must

be capable of detecting rays from a wide range of angles; therefore there is very little

in the way of detector collimation. The implication of this is higher levels of scatter

being detected which, depending on the material being scanned, can lead to a high

level of noise in the measurements. It is possible that the increased scatter could be

exploited to our advantage; this is a whole research topic in itself and will not be

covered here.

Polygonal Rings

Of slightly less significance, but still a problem with smaller size RTT scanners, is the

fact that, due to the physical constraints of manufacturing the scanner, the source

and detector rings are not actually rings, but polygons. This creates an uneven

angular sampling of the source and detector positions, which can be a problem for

conventional analytical reconstruction algorithms.
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1.2.3 The RTT Geometry

A general RTT system consists of a fixed ring of sources and several rings of detectors

arranged on parallel planes. We define a Cartesian coordinate system such that each

ring of sources and detectors is located in a plane parallel to the xy-plane and is

centred on the z-axis. We think of the object being scanned as stationary while the

scanner moves; the direction of motion being along the positive z-axis. In reality,

due to the way the machine is constructed, the sources and detectors are actually

arranged in straight blocks of 32 and 16 respectively, resulting in source and detector

polygons. However, for simplicity’s sake these will still be referred to as rings.

We define the number of sources as NS, the number of detectors per ring as ND

and the number of rings as NR. The set of all sources will be of particular importance

and is denoted by

S = {s1, . . . , sNS
}. (1.1)

Similarly, we denote the set of all detectors as

D = {d1, . . . , dNDNR
}. (1.2)

Detectors are numbered first by position on the detector ring, then by ring number.

For a given source si, the active detector region Di is the subset of D defined by the

limits [α, α + δ] as

Di = {dj ∈ D : j = (m−1)NR+n,m = 1, . . . , NR, n = ((α, . . . , α+δ) mod ND)+1},

(1.3)

where 1 ≤ α ≤ ND and 1 ≤ δ ≤ ND.

1.2.4 Two Modes of Operation

In addition to using the RTT system to produce 3D scans of entire objects, by keeping

the object stationary within the scanner we can also use it to produce images of a

two-dimensional cross-section of part of an object. Of course, with static objects this

has been possible since the very early days of CT but the difference with RTT is that,
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given the speed of the system, we now have the potential to image time-dependent

processes with a high degree of temporal resolution.

This opens up some very exciting possibilities; for example, we could use the

RTT system to produce images of the inside of mixing fluids or granular flows. In

particular, it is anticipated that we will be able to use RTT to validate theoretical

results in granular flow. This type of imaging also has the potential to be used

industrially, for example in imaging flow through oil pipes or mixing of liquids in

chemical plants.

This gives us two problems to investigate; the main problem of 3D reconstruction

from the RTT system, and the considerably less complicated sub-problem of two-

dimensional time dependent reconstruction.

1.3 Organisation of the Thesis

We give here a brief outline of the organisation of the thesis.

In chapter 2 we introduce the fundamental mathematical concepts of CT recon-

struction, and develop theory for the RTT system in the continuum case.

Chapter 3 looks at two-dimensional reconstruction from the RTT20 system by

analytical methods, while chapter 4 introduces algebraic reconstruction in the two-

dimensional case and applies this to RTT20 reconstruction.

In chapter 5 we consider the practical problem of three-dimensional reconstruction

from the RTT80 system. We introduce the important concept of the firing order and

develop a method of applying algebraic reconstruction to RTT80 data using stored

matrix coefficients.

In chapter 6 we further develop the concept of the firing order and consider the

problem of its optimisation. We introduce ways of visualising its effect and perform

numerical comparisons between some different firing orders, with the conclusion that

the standard helical trajectory actually represents the worst case for the RTT system.

In chapter 7 we give results of applying the reconstruction algorithm of chapter

5 to phantom RTT80 data, for three different firing orders. The results support the
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numerical analysis of chapter 6.

Finally, chapter 8 summarises our conclusions and offers some suggestions for

further work.



Chapter 2

The Continuum Model

We begin our investigation by reviewing the mathematical model of computed to-

mography and the elementary properties of the fundamental transforms; much of the

introductory work in this chapter is based on the notation of Frank Natterer’s books

[47] and [48]. We then derive a new mathematical model for the RTT system and go

on to prove the existence of a unique solution.

2.1 The Mathematical Model

The fundamental problem of x-ray computed tomography is to reconstruct the un-

known density of an object, given only knowledge of the intensity lost by a set of

x-ray beams passed through it. We let f(x) represent the density of the object at the

point x ∈ R3 and represent the x-ray beams as straight lines. Since the function f

represents density in some real physical object, we generally assume that f has com-

pact support. We assume that the intensity lost by an x-ray beam passing through a

small distance δx in the neighbourhood of x depends linearly on the density at that

point, and neglect all other physical effects such as scattering and beam hardening.

Consider an x-ray beam as the line L given by x = a + sθ, where a ∈ R3 and

θ ∈ S2, the unit sphere, and let I(x) represent the intensity of the beam at the point

x ∈ L. Then we have

dI(x)

ds
= −f(x)I(x). (2.1)

21
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Let the measured intensity of L be represented by I, and let the initial intensity be

I0. Then integrating (2.1) along the line L gives

I

I0
= exp

(
−
∫
L

f(x)dx

)
, (2.2)

which on rearranging becomes∫
L

f(x)dx = − log

(
I

I0

)
. (2.3)

Therefore, the intensity data give us the line integrals of f , and the reconstruction

problem becomes that of recovering a function f from its line integrals. This was first

solved in an abstract setting by Radon in 1917 in his paper [55]; the integral transform

introduced in the following section is named in his honour.

2.2 The Fundamental Transforms

We now introduce the integral transforms which form the mathematical foundations

of computed tomography. In the following section, we assume that the function f

belongs to the Schwartz space S(Rn), defined in appendix A.

For f ∈ S(Rn), we denote by R the n-dimensional Radon transform. For θ ∈ Sn−1

and s ∈ R, where Sn = {x ∈ Rn : |x| = 1} is the unit n-sphere, we have

Rf(θ, s) =

∫
x·θ=s

f(x)dx =

∫
θ⊥
f(sθ + y)dy, (2.4)

where θ⊥ denotes the orthogonal complement of θ, giving the integral of f over the

hyperplane perpendicular to θ and distance s from the origin. Therefore R maps a

function f to the set of its integrals over hyperplanes in Rn. Note that Rf(θ, s) =

Rf(−θ,−s), so Rf defines an even function on the unit cylinder Z = Sn−1×R. It is

clear from the definition that R defines a linear operator on S(Rn).

In two dimensions, we can view the Radon transform of a compactly supported

function f as an image, since in this case S1 is simply the one-dimensional unit circle.

By the evenness property of Rf , we need only consider θ in the range [0, π). Such an

image is known as a sinogram; since the Radon transform of a delta distribution is
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Figure 2.1: Example of a sinogram

a sine curve, if we think of an image f as a collection of delta distributions, then by

the linearity of R, the resulting Rf appears as a set of superimposed sine curves. An

example of this is shown in figure 2.1 for a two-dimensional Shepp-Logan phantom,

designed to represent a slice through the human head.

We will sometimes use the alternative notation

Rθf(s) = Rf(θ, s). (2.5)

In the case of x-ray CT, we have integrals over lines in Rn. We therefore introduce

the n-dimensional x-ray transform, denoted by X, mapping the function f ∈ S(Rn)

to the set of its line integrals in Rn. For θ ∈ Sn−1 and x ∈ Rn, we have

Xf(θ, x) =

∫ ∞
−∞

f(x+ sθ)ds, (2.6)

giving the integral of f along the straight line through x in direction θ. If x is moved

in the direction θ, Xf(θ, x) does not change. Hence, Xf defines a function on the

tangent bundle T = Sn−1 × θ⊥.

Again, we sometimes use the alternative notation

Xθf(x) = Xf(θ, x). (2.7)

For some θ ∈ Rn, Xθ is referred to as the projection of f onto θ⊥. In the case n = 2

the x-ray transform can be considered equivalent to the Radon transform.
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We can think of the x-ray transform as taking projections through the support

of f along sets of parallel rays. However, in most practical CT problems, barring

synchrotron CT, we do not measure such sets of rays. We therefore introduce the

n-dimensional divergent beam transform, denoted by D. For a ∈ R and θ ∈ Sn−1,

we have

Df(a, θ) =

∫ ∞
0

f(a+ sθ) ds, (2.8)

giving the integral along the half-line with end point a in direction θ. We will some-

times use the alternative notation

Daf(θ) = Df(a, θ). (2.9)

We can identify the divergent beam transform with the x-ray transform by

Xf(θ, x) = Df(x, θ) +Df(−x, θ). (2.10)

2.3 Properties of the Transforms

We now describe some properties of the fundamental transforms, and introduce some

important theorems.

2.3.1 The Fourier Slice Theorem

For f ∈ S(Rn), we denote by f̂ and f̌ respectively the Fourier and inverse Fourier

transforms of f , defined as follows

f̂(ω) = (2π)−n/2
∫
Rn

e−ix·ωf(x)dx, (2.11)

f̌(x) = (2π)−n/2
∫
Rn

eix·ωf(ω)dω. (2.12)

We note that for f ∈ S(Rn), the Fourier and inverse Fourier transforms f̂ and f̌ are

also in S(Rn).

We have the following theorem relating the Radon and x-ray transforms with the

Fourier transform, sometimes referred to as the projection-slice theorem.
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Theorem 2.1 (Fourier Slice Theorem). Let f ∈ S(Rn); then for θ ∈ Sn−1 we have

R̂θf(s) = (2π)(n−1)/2f̂(sθ), where s ∈ R, (2.13)

X̂θf(x) = (2π)1/2f̂(x), where x ∈ θ⊥. (2.14)

Proof. See, for example, [47], p11.

Since the Fourier transform has a well-defined inverse, this proves that the Radon

and x-ray transforms are also invertible, and provides us with inversion formulae.

However, although in principle we could use these formulae for direct inversion of

the transforms, this is rarely done in practice since it involves calculating the inverse

Fourier transform in 2 or 3 dimensions.

2.3.2 The Formal Adjoint Operator R∗

Using the notation of [58], the Schwartz spaces S(Rn) and S(Z) are equipped with

inner products

〈f1, f2〉 = 〈f1, f2〉S(Rn) =

∫
Rn

f1(x)f2(x) dx, (2.15)

(g1, g2) = (g1, g2)S(Z) =

∫
Sn−1

∫ ∞
−∞

g1(θ, s)g2(θ, s) ds dθ, (2.16)

where the bar denotes the complex conjugate. Then the formal adjoint operator R∗

is defined by

(Rf, g) = 〈f,R∗g〉. (2.17)

Since we are only considering real valued functions, may may drop the complex

conjugation and after some manipulation obtain

R∗g(x) =

∫
Sn−1

g(θ, θ · x) dθ. (2.18)

Geometrically, the formal adjoint operator R∗ is the dual of R in the sense that

while R integrates over all points on a hyperplane, R∗ integrates over all hyperplanes

through a point. Its action can be viewed as projecting back the data Rf onto its

image in Rn; for this reason R∗ is often referred to as the backprojection operator.
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2.3.3 Inversion Formulae

We are now in a position to introduce a practical method of inversion for the Radon

transform. We first introduce the Riesz potential, defined as follows:

Definition 2.1. For a function f defined on Rn, and α < n, the Riesz potential is

the linear operator Iα given by

Îαf(ξ) = |ξ|−αf̂(ξ). (2.19)

For f defined on Z or T , the Riesz potential is defined as acting on the second

variable. The Radon inversion formula is given by the following theorem:

Theorem 2.2. Let f ∈ S(Rn). Then for any α < n, we have

f =
1

2
(2π)1−nI−αR∗Iα−n+1g, where g = Rf. (2.20)

Proof. For a proof of this see, for example, [47], p19.

Putting α = 0 in (2.20) gives

f =
1

2
(2π)1−nR∗I1−ng, (2.21)

which is commonly known as filtered backprojection, since the data g are first fil-

tered by the one-dimensional filter I1−n, and then backprojected by R∗. Since the

filter involved is only one-dimensional, this inversion formula can be implemented

numerically very efficiently.

Similarly to the Radon transform inversion, we can derive explicit inversion for-

mulae for the X-ray transform by

f =
1

|Sn−2|
(2π)−1I−αX∗Iα−1g, where g = Xf, (2.22)

where X∗ is the formal adjoint of the X-ray transform. Again, for the derivation and

proof of this, see [47], p19.
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2.3.4 Stability Estimates

The Schwartz space S(Rn) is the natural space to start any investigation of the Radon

and x-ray transforms, since it is closed under the Fourier transform. However, the

Schwartz space is not the natural space in which to consider the practical inversion

problem, since in general we cannot assume the function f is smooth. Natterer gives

more general results in [47] by first proving continuity in L2 spaces (p17), and then

stability estimates in Sobolev spaces in section II.5.

2.4 Limited Angle Tomography

For f ∈ S(Rn), the inversion formula of (2.21) requires knowledge of the Radon

transform for all values of θ ∈ Sn−1. Limited angle tomography refers to the case

where we only have Radon transform data for θ in some subset Ω ⊂ Sn−1. Figure

2.2 shows the effect in two dimensions of reconstructing a limited angle version of

the Radon transform data for the Shepp-Logan phantom of figure 2.1, setting the

unknown data to zero.

The artefacts present in the image are typical for reconstruction of limited angle

data. We see that singularities (i.e. edges) in directions tangent to angles whose rays

are not measured are no longer visible. We also get strong streaking artefacts in the

direction of the missing angles. Intuitively, this is what we should expect, since the

only way of detecting such a singularity is to detect the difference in tangent ray

integrals in some neighbourhood of the singularity. This is treated in the framework

of microlocal analysis by Quinto for the x-ray transform in [53], and for the Radon

transform in [54].

2.5 The RTT Problem

We now consider the problem of reconstruction in 3D with the RTT geometry. The

basic problem of 3D reconstruction is essentially the inversion of the 3D x-ray trans-

form. However, inversion using explicit formulae of the type 2.22 requires knowledge
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Figure 2.2: Example of limited angle reconstruction

of the integrals of f over all lines in R3. In most practical situations, and in particu-

lar the RTT geometry, we clearly cannot measure all the line integrals and so in this

sense the problem is one of limited data.

Considering all lines in R3, this forms a four-dimensional set, since almost all lines

in R3 may be parameterised by their points of intersection with two parallel planes.

For the problem of reconstructing the unknown three-dimensional density function,

it seems intuitive that certain three-dimensional subsets of the set of all lines in R3

should be sufficient. Indeed, the three-dimensional set formed by all lines in the set

of all planes parallel to some plane Π is certainly sufficient, since we have complete

two-dimensional data in every such plane. We have to show that the subset of line

integrals that we can measure in the RTT case is sufficient to determine the function

f uniquely.

2.5.1 Sources on a Curve in R3

The standard continuum model for conventional 3D CT reconstruction is to consider

divergent beam sources located at all points on some smooth curve L ⊂ R3. This gives

us a three-dimensional set of lines, since for each point on the one-dimensional curve

L, almost all lines through that point may be parameterised by their intersection

with a plane not containing that point. We assume that f is of compact support
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Figure 2.3: Source positions on a regular lattice

Ω ⊂ R3. An inversion formula was proved for this problem by Tuy in 1983 [66],

where the curve L is assumed to be bounded and satisfies the condition that every

plane intersecting Ω also intersects the curve L in at least one point.

This is known as Tuy’s condition and is clearly applicable to the problem of stan-

dard helical cone-beam CT reconstruction. However, for any a ∈ L, Tuy’s inversion

method assumes knowledge of Daf(θ) for all θ ∈ S2. Clearly this can never happen

in practical situations, and in particular the RTT geometry with its restricted size,

offset detectors. We therefore seek an alternative model.

2.5.2 Sources on a Cylinder

With the RTT system the sources may be fired in any order we choose. Motivated

by our knowledge of helical scan cone-beam CT, it seems natural for us to think of

the firing order as defining the trajectory L ⊂ R3 that a virtual source or sources

will follow. However, consider the firing order whose source positions are shown in

figure 2.3. Here it is not clear whether there should be a single helical trajectory at

a narrow pitch, or several helical trajectories at a much wider pitch.

We therefore propose the following alternative model; instead of regarding the

firing order as defining one or more one-dimensional trajectories, we simply view it
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as defining a sampling pattern on the surface of a cylinder.1 For an arbitrary number

of sources, the firing order may always be chosen so as to arrange the sources on

a regular lattice as in the example above. Therefore, in the limit as the number of

sources tends to infinity, the sources cover the whole surface of the cylinder, so in the

continuous case we may assume that we have source positions at all points on the

boundary of some cylinder. Hence the RTT problem becomes that of inversion of the

divergent beam transform for sources on the surface of a cylinder.

It should be noted that the set of lines for this problem is actually a four-

dimensional set, since, for example, a point on a vertical cylinder can be parame-

terised by its positions relative to its angular and z-axis coordinates. Then for any

such point, almost all lines can be parameterised as in the case for sources on a curve

by their points of intersection with a plane not containing that point. Therefore, it

seems intuitive that line integrals given on this four-dimensional set should be enough

to determine the function f .

2.5.3 Relations Between the 3D X-Ray and Radon Trans-

forms

We wish to prove uniqueness of solution for the RTT system by relating the three-

dimensional divergent-beam transform with sources on a cylinder with the three-

dimensional Radon transform. Relations between the three-dimensional parallel-

beam are simple to derive, since we just integrate the parallel rays across planes

to get the corresponding plane integrals. The case of the divergent beam transform

is not so easy, as due to the divergence, we cannot simply integrate over planes.

Grangeat proved the following result, relating the divergent-beam transform with

the first derivative of the three-dimensional Radon transform:

Theorem 2.3. Let f ∈ S(R3). Then for θ ∈ S2, x ∈ R3 and x · θ = s, we have

∂

∂s
(Rf)(θ, s) =

∫
S2∩α⊥

∂

∂θ
(Df)(x, β) dβ, (2.23)

1In the real RTT80 system, the sources will actually be on the surface of a 24 sided prism, as in
figure 2.3. However, in our idealised model we assume that this is a cylinder.



CHAPTER 2. THE CONTINUUM MODEL 31

where ∂
∂θ

denotes the partial derivative in the direction θ, acting on the second argu-

ment of Df .

The proof of this is given in [14] and [15]; however, this is really a corollary of a

more general result given by Hamaker et al. in [17], which also yields other formulae

such as those of Smith [63], and Gel’fand and Goncharov [11].

We will take a more direct approach to the relation between the divergent-beam

and Radon transforms; by making careful assumptions about the geometry of the

system, the geometry of sources at all points on the surface of a cylinder allows us to

construct sets of parallel rays. We may then simply integrate over these to get the

Radon transform; this is dealt with in the next section.

2.5.4 The RTT Geometry – an Idealised Model

Let x ∈ R3 be represented in cylindrical polar coordinates (rx, φx, zx), and let Za =

{x ∈ R3 : rx ≤ a} be the cylinder of radius a centred on the z-axis. The boundary of

such a cylinder is denoted by Ca = {x ∈ R3 : rx = a}. We then define the geometry

of the idealised RTT system as follows.

Let Za,l be some subset of the cylinder Za, of finite length l in the z direction and

centred at the origin, and let the function f ∈ L2(Za,l) be supported on this. Let

the sets of source positions and possible detector positions be defined as Cb and Cd

respectively, where a < d < b. Let ε2 > ε1 > 0 represent the source-detector offsets in

the z direction, and let the angular extents of the detectors be −γ, γ. Then, relative

to some source position x ∈ Cb, the active detector region is defined as the subset of

Cd given by

Dx =
{
y ∈ Cd : (π + φx − γ ≤ φy ≤ π + φx + γ), (zx + ε1 ≤ zy ≤ zx + ε2)

}
, (2.24)

as shown in figure 2.4.

The geometry is assumed to be shift-invariant, so that the active detector region is

the same viewed from the perspective of any source position x ∈ Cb. Now, considering

an arbitrary x ∈ Cb, let α ∈ S2 such that the plane Πα,x, with equation y ·α = s and
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Figure 2.4: The idealised RTT geometry

containing x, for some s ∈ R, intersects the plane z = zx in a line tangent to Cb at

the point x. Then any α ∈ S2, s ∈ R defines such an x uniquely and we may write

x = x(α, s), for some α ∈ S2, s ∈ R. (2.25)

Let Lx be the line in Πα,x intersecting x and the z-axis, and let w be the point where

Lx meets the active detector region Dx. We then make the following assumption:

Assumption 2.1. The detector region extents are defined such that for any x =

x(α, s) ∈ Cb, there exists some α ∈ S2, defined as above, such that all rays in the

plane Πα′,x, parallel to Lx and intersecting the support cylinder Za,l, for α′ in an

arbitrary small neighbourhood of α, are measured.

The consequence of assumption 2.1, and the fact that f is assumed to be of

compact support, is that there exists an open set Ω ⊂ S2, defined by the detector

extents ε1, ε2 and radii a, b, d of the support, source and detector cylinders, with the
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following property:

For any x ∈ Cb, there exists α ∈ Ω, s ∈ R such that all line integrals

parallel to the line Lx in the plane Πα,x are measured. (2.26)

Clearly, by (2.25), the converse of this is also true, so for any α ∈ Ω, s ∈ R, there

exists x ∈ Cb such that all line integrals parallel to the line Lx in the plane Πα,x are

measured. This gives us the following theorem.

Theorem 2.4. For f ∈ L2(Za,l), the data Df(x, θ) for x ∈ Cb and θ as defined by

the active detector region for each x, determine uniquely the three-dimensional Radon

transform for all α ∈ Ω and s ∈ R.

Proof. Let α ∈ Ω, s ∈ R. Then by (2.25) and assumption 2.1, we can find a unique

x = x(α, s) ∈ Cb such that all rays parallel to Lx in the plane Πα,x given by y · α = s

and intersecting the support of f are measured. Since f is of compact support, all

rays not measured are zero and we may integrate over the plane Πα,x in the direction

perpendicular to Lx, giving the Radon transform Rf(α, s). Therefore the result is

proved.

We can define Ω explicitly in terms of ε1, ε2, a, b and d as follows. First, we

represent α in spherical polar coordinates by α = (1, α1, α2). Therefore, for particular

x ∈ Cb, α is defined solely by the α1 coordinate. α1 is the angle between the line L

and the z-axis, as shown in figure 2.5.

The upper limit for α1 is given by the angle of the line Lx passing through x and

w, when the point w, shown in figure 2.5, lies on the circle z = zx + ε2, r = d. A

cross-section of this is shown in two dimensions in figure 2.6 and gives the following

condition:

b+ d

tanα1

< ε2. (2.27)

Let Lx′ be the line in Πα,x, parallel to Lx and tangent to the support cylinder Za,

and let the points of intersection of Lx′ with the source and detector cylinders Cb and

Cd respectively be x′ and w′. Then the lower limit of α1 is given by the angle of the
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line Lx′ when the point w′ lies on the circle z = zx′ + ε1, r = d. The projection of

this line onto a transaxial plane is shown in figure 2.7, giving a horizontal length of

(
√
d2 − a2 +

√
b2 − a2). Therefore, similar to the derivation of (2.27), this gives the

condition: √
d2 − a2 +

√
b2 − a2

tanα1

> ε1. (2.28)

Combining (2.27) and (2.28) and re-arranging gives

b+ d

ε2
< tanα1 <

√
d2 − a2 +

√
b2 − a2

ε1
, (2.29)

and since tan is increasing on (−π, π) we get

arctan

(
b+ d

ε2

)
< α1 < arctan

(√
d2 − a2 +

√
b2 − a2

ε1

)
, (2.30)

as shown in figure 2.8.

Approximate values of the constants for the RTT80 system are given in table 2.1.

Using (2.26) therefore gives, for the RTT80 system,

88.01◦ < α1 < 88.37◦. (2.31)

Although this is a very narrow range of angles, this shows that the theory pre-

sented here is applicable to the practical problem of reconstruction from the RTT80

data. The fact that the measured set of angles, Ω, does not contain angles in a

neighbourhood of α1 = 90◦ has an important consequence. Given that no rays are
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Figure 2.8: The open set Ω of points on S2 for which the Radon transform is known

Constant Value (mm)
a 400
b 620
d 460.7
ε1 19.998
ε2 37.498

Table 2.1: Values of the constants for RTT80

measured at all in planes perpendicular to angles in this neighbourhood, by the dis-

cussion in section 2.4, we cannot expect to be able to recover singularities tangent to

these planes. For the RTT80 system, this essentially means we cannot reconstruct

edges perpendicular to the direction of motion through the scanner. We also expect

to see the limited angle type artefacts shown in figure 2.2b in reconstructions made

from the RTT80 data.

2.5.5 Uniqueness of Solution

By theorem 2.4, the problem of RTT reconstruction reduces to that of the inversion of

the three-dimensional Radon transform Rf(α, s) for the limited angle data given by

α ∈ Ω. Therefore, in order to prove uniqueness, it is enough to prove that the function

f is uniquely determined by its Radon transform on this limited angle data. To do
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this, we make use of a theorem commonly known as the Paley-Wiener theorem. The

original version of this applied to functions, the version given here is due to Schwartz

and applies to distributions; we state the theorem as in [58], p399. For definitions of

the spaces of test functions and distributions, see appendix A.

Theorem 2.5 (Paley-Wiener-Schwartz). Let f ∈ E ′(Rn), the set of distributions with

compact support on Rn. Let U = supp f and let HU be the support function of U ,

defined as

HU(ξ) = sup
x∈U

(x · ξ). (2.32)

Then the Fourier transform f̂(ξ), ξ ∈ Cn is an entire analytic function. Additionally,

there exists a constant c > 0 and integer N such that

|f̂(ξ)| ≤ c(1 + |ξ|)NeH(Im ξ), ξ ∈ Cn. (2.33)

Conversely, let F (ξ), ξ ∈ Cn be an entire analytic function, let H be the support

function of a compact convex set K ⊂ Rn and suppose that

|F (ξ)| ≤ c(1 + |ξ|)NeH(Im ξ), ξ ∈ Cn, (2.34)

for some constants c and N . Then there exists a unique f ∈ E ′(Rn) such that f̂ = F

and supp f ⊂ K.

Proof. For a proof of this in the case when U is a ball see [22], p22 or [72], p162.

We are now in a position to prove uniqueness in the RTT case.

Theorem 2.6. Let f ∈ L2(Za,l). Then the the data Df(x, θ) for x ∈ Cb and θ as

defined by the active detector region for each x determine f uniquely.

Proof. By theorem 2.4, the three-dimensional Radon transform is known uniquely

for all α ∈ Ω and s ∈ R. Therefore, let α ∈ Ω, then by the Fourier Slice Theorem,

the Fourier transform f̂(ξ) is known uniquely for all ξ on the line ξ = λα, λ ∈ R.

Let K be the open conical set in R3 defined by K = {ξ ∈ R3 : ξ = λα, λ ∈ R, α ∈

Ω}. Then by the above, f̂(ξ) is known uniquely for all ξ ∈ K. For f ∈ L2(Za,l), we

may represent f as a distribution of compact support, therefore f ∈ E ′(R3). So by the
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Paley-Wiener theorem f̂(ξ) is an entire analytic function, and therefore by analytic

continuation, f̂(ξ) is determined uniquely for all ξ ∈ Cn. Hence f(x) is determined

uniquely for all x ∈ R3 and the result is proved.

2.5.6 Inversion and Stability Estimates

An explicit inversion method for Radon transform data known only for some subset of

Sn−1 is given by Ramm in [57], based on reducing the problem to that of the inversion

of the Fourier transform known in some arbitrarily small ball, and then extending

this using analytic continuation. Numerical aspects of the inversion procedure are

discussed in [56]. This is extremely ill-posed and therefore highly unstable; it is

unknown whether this could be applied to practical problems of reconstructing real

data.

Theoretically, we should be able to apply a similar reconstruction method to the

RTT system. Given that we have the Fourier transform data for some conical set

K, defined as in the proof of theorem 2.6, the conditioning of the problem should be

better than for the case of a ball, since we have more data to work with. However, it

is still unknown whether such a reconstruction algorithm would be of any practical

use.



Chapter 3

2D RTT Reconstruction

We begin our study of the practical problem of RTT reconstruction by looking at the

reconstruction a two-dimensional slice through an object. Our ultimate aim in this

respect is to achieve real-time imaging of moving objects; however, in this chapter

we will only be considering the static case.

The problem is essentially just the inversion of the two-dimensional divergent

beam transform, which has been well understood for quite some time. However, the

RTT geometry leads to a highly irregular sampling of the projections which presents

some challenges.

3.1 The RTT20 Machine

RTT20 is a small-scale prototype RTT machine built by Rapiscan to demonstrate the

new technology and attract investment for further development of commercial RTT

scanners. The machine has now been acquired by the university, where it is expected

to be used for research into granular flow and fluid dynamics, specifically to image

slices through fluids in motion. It is also possible that the machine could be useful

in industrial applications, for imaging flow through oil pipes for example.

A two-dimensional cross-section of the geometry of RTT20 is shown in figure 3.1.

The detectors are actually offset from the sources in the z direction by 5.48mm, giving

a maximum offset of approximately 2.5mm within the region of interest (ROI), which

39
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Figure 3.1: The RTT20 geometry

technically means that the geometry of RTT20 is not actually two-dimensional, but

rather a kind of ‘tilted fan beam’ arrangement. In practice, since the offset within

the ROI is relatively small, in this chapter we will ignore this offset and perform

approximate two-dimensional reconstruction on a flat slice. To see the extent of the

approximation, figure 3.2 shows the maximum z-axis deviation of the rays intersecting

each pixel, relative to the plane of average z values, in a 200×200 grid covering the

entire ROI. This should give a measure of how much z-axis resolution we can expect

in the reconstruction; we therefore expect higher resolution in the centre of the image.

The sources are arranged in 8 blocks of 32; however, we note that there are two

‘missing’ blocks of sources at the bottom, creating a large gap in the ring. The two

blocks adjacent to the gap also do not use their outermost 4 sources giving a total of

248 sources. There is one full ring of detectors arranged in 21 blocks of 16 giving 336

detectors in total. The tunnel diameter is 20cm (hence RTT20) giving the ROI as a

circle of diameter 200mm.
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Figure 3.2: Maximum z-axis deviation per pixel

3.2 Analytical Reconstruction Methods

As introduced in section 2.3.3, filtered backprojection is a highly efficient and easily

implemented method for reconstruction from two-dimensional parallel beam Radon

transform data. The numerical implementation of this generally calculates the one-

dimensional filter by means of discrete convolution. Implementations also exist for

the direct inversion of two-dimensional divergent beam data, assuming an equiangular

sampling of the projections with source positions on some circle and either equally

spaced collinear or equiangular sampling of the rays within each projection. These

formulae define weighted filtered backprojections, which incur considerably higher

computational overheads than the standard parallel beam filtered backprojection. A

good introduction to these implementations is given in [29], chapter 3.

In the case of RTT20, looking back at figure 3.1 we see that due to the rela-

tively small size of the system, the polygonal shape of the source ring is exaggerated,

making the sampling of the source position far from equiangular. The gaps between

neighbouring source blocks are also significant, creating what equates to a missing

source between them.
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Figure 3.3: Angles in degrees between adjacent detectors in the active region for
source 1

Looking at the detectors, we obviously do not have an equal linear spacing. Also,

a similar phenomenon as with the sources occurs with the detectors and the gaps

between the detector banks, making the sampling of rays within each projection

far from equiangular. This is shown in figure 3.3, which shows the angles between

adjacent rays for source number 1 (at the bottom left).

3.2.1 The Initial Approach

Looking at the RTT20 geometry and figure 3.3, it would seem that neither of the

direct fan-beam reconstruction algorithms would be suitable for RTT20 reconstruc-

tion. However, the initial approach taken by CXR was to apply the equiangular fan

beam formula, as described in [29], chapter 3. Results of this initial approach were

somewhat less than satisfactory, with significant streak artefacts present in the recon-

struction. Clearly if we are to apply one of these methods, some kind of interpolation

will have to be used.
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3.2.2 Interpolation to Parallel Beams

The preliminary approach to the interpolation problem was to focus on the gaps

between the source blocks and attempt to interpolate the ‘missing’ sources. This

could be achieved, for example, by the methods discussed in [34], using the concept

of optical flow (see [23]) across the gaps to interpolate the missing data. However,

this would do nothing to take account of the uneven sampling created by using

linear blocks of sources, nor the uneven angular distribution of the rays within each

projection.

A so-called rebinning of fan beam projection data to parallel beams is a standard

technique in fan beam reconstruction; see for example [29], chapter 3. Given the

additional advantage that standard filtered backprojection is computationally more

efficient, it therefore seems much more sensible to interpolate the RTT projection

data to parallel beams.

In order to do this, for every ray in the RTT data, we calculate the θ and s

values for that ray as if it were from parallel beam Radon transform data. Thus

every sampling point in the RTT sinogram is associated with a point in parallel

beam sinogram space and the problem becomes one of two-dimensional scattered

data interpolation. Figure 3.4 shows the sampling of parallel beam sinogram space

created by the RTT system. This shows the data plotted over the full range [−π, π);

when performing the interpolation, we can either discard the data outside the range

[−π/2, π/2), or reverse the roles of source and detector outside of this range in order

to keep angles within [−π/2, π/2).

3.2.3 Triangulation Based Interpolation

One way to approach the interpolation of the scattered RTT data is using a trian-

gulation of the data points, as described in [1]. The method uses two steps; we first

compute a triangulation, then interpolate within the triangles. Obviously, for a given

set of data points, there are many possible triangulations; it seems desirable that we

should use one which avoids as much as possible creating long, thin triangles. Such
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Figure 3.4: Sampling points in parallel-beam sinogram space of the RTT20 data

a triangulation is given by the Delaunay triangulation.

For a given set of points P in R2, the Delaunay triangulation is a triangulation

T (P ) with the property that the circumcircle of any triangle in T (P ) contains no

points of P . It should be noted that this triangulation is not unique; considering

for example four points arranged in a square, the two possible triangulations are

both valid Delaunay triangulations. To calculate the triangulation, we use the MAT-

LAB function griddata, which also performs the interpolation step. Interpolation is

performed within the triangles by using linear or cubic interpolation.

In order to find such a triangulation for the RTT data, we need to scale the axes

appropriately; we have θ data in the range [−π, π) and s data in the range [−100, 100].

Applying the Delaunay triangulation procedure to this data will result in rather long

and thin triangles. Somewhat arbitrarily, we scale the data so that the axes cover an

equal range; the resulting triangulation is shown in figure 3.5.
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Figure 3.5: A small section of the Delaunay triangulation of the RTT20 data

3.2.4 Results with Phantom Data

Phantoms were calculated for simple rectangular and circular objects by assuming an

infinite extent in the z direction and analytically calculating the exact path length of

each measured ray through the object, from the centre of the source to the centre of

the detector. By the linearity of the ray transform, more complicated phantoms can

be created by summing the data for each simple object. We then add 5% Gaussian

noise to the resulting data.

The phantom we use is a simple resolution test type phantom, consisting of 16 rect-

angles of height 80mm in the y direction and of width and spacing 8, 7.5, . . . , 0.5mm

in the x direction. The RTT sinogram for this phantom is shown in figure 3.6. Lin-

ear and cubically interpolated parallel-beam sinograms obtained using the Delaunay

triangulation with griddata are shown in figure 3.7.

Reconstruction of the interpolated parallel-beam sinograms was done using the

MATLAB function iradon, using cubic interpolation and Ram-Lak filter, with the

reconstruction region covering the whole circular ROI. Results of this are shown in

figure 3.8. In both cases the rectangles are clearly discernible down to 2mm; the
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Figure 3.6: RTT sinogram of the RTT20 test phantom

cubically interpolated case is slightly smoother, which is to be expected.
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Figure 3.7: Parallel-beam sinograms obtained using Delaunay triangulation based
interpolation
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Figure 3.8: Reconstructions of the parallel-beam sinograms using iradon



Chapter 4

Algebraic Reconstruction Methods

The reconstruction methods described so far have all relied on numerical implementa-

tion of an analytic inversion formula, which necessarily has to make certain assump-

tions about the geometry of the system and sampling of the rays. We now turn our

attention to an entirely different way of looking at the reconstruction problem; alge-

braic reconstruction. This is essentially a direct discretisation of the divergent beam

equation, and effectively breaks the forward projection process down into a system

of linear equations which can then be solved to reconstruct the density function f .

This has both advantages and disadvantages over the analytical approach. The

main disadvantage is speed of reconstruction; algebraic methods can take considerably

longer than the highly efficient analytical algorithms. This is a big disadvantage

for time-critical applications such as the airport security applications that the RTT

system was designed for; however, for the scientific applications for which we envisage

the RTT20 machine at the university being used, all reconstruction will be taking

place offline so this will not be a significant problem.

The main advantage of algebraic reconstruction is that the reconstruction process

no longer makes any assumptions about the scanner geometry or ray sampling. Hence

the gaps between sources and non-equiangular spacing of the rays should no longer

matter, making this an attractive choice for reconstruction from the RTT system if

reconstruction time is not important.

49
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4.1 Modelling the Projection Process

In order to discretise the divergent beam equation and form a system of linear equa-

tions, we must first have a mathematical model of the projection process. We dis-

cretise the function f(x) into a regular grid of cubic voxels, referenced by a single

index i = 1, . . . , N . The value of each fi represents the average value of the under-

lying continuous function f over the volume of the cube. Considering all rays in all

projections, we number the rays 1, . . . ,M and denote the measured value of the jth

ray as bj. We model rays by lines of zero thickness, with end points at the centre of

the relevant source and detector surfaces.

We now consider the intersection of the jth ray with the ith voxel, and denote the

length of this intersection by aij. Each aij represents the contribution that the value

of f in the ith voxel makes to the integral along the jth ray; in the two-dimensional

case, this is shown in figure 4.1. We note that for any given ray, most of the aij will be

zero since a ray only intersects a small number of the voxels in the grid. Considering

the jth ray, the total contribution to that ray is given by summing over all aij for

that ray; hence we write

N∑
i=1

aijfi = bj, for all 1 ≤ j ≤M. (4.1)

This gives us the desired system of linear equations, which can be written in

matrix form as

Ax = b, (4.2)

where A is the M×N matrix of coefficients aij, x = (f1, . . . , fN)T is an N -dimensional

vector representing the discretised density function f , and b = (b1, . . . , bM)T is the

M -dimensional vector of projection data.

We note that this is by no means the only way of modelling the projection process;

we should in theory be able to take into account the thickness of the rays and the

physical properties of the sources and detectors. It is also possible to use alternative

basis functions for the voxels, providing a better sampling.
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Figure 4.1: Discretisation of the projection process

4.2 Iterative Solution Methods

Given measured data b, we wish to solve the system in (4.2) for x. The number of

rows and columns of A will in general not be equal and the measurements will usually

be noisy, so some form of regularised least squares solution will usually be sought.

The main problem we have is that the matrix A will in general be far too big to find

an explicit generalised inverse and solve using this. However, given the very sparse

nature of A, we can apply one of many iterative methods to find a solution.

A general iterative method starts with some initial guess of the solution, x(0),

and then refines this by a sequence of approximations x(1), . . . ,x(n) for some integer

number of iterations n.

4.2.1 Iterative Algorithms Conventionally Used in CT

We begin our discussion of iterative methods by looking at those methods whose use

for CT reconstruction is well understood. A good introduction to these methods from

the perspective of CT reconstruction may be found in [68] or [29], chapter 7. A more

thorough treatment from the perspective of general inverse problems may be found

in [19], chapter 6.
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The Kaczmarz Method

Let the system of equations Ax = b be defined as in (4.2), and let the ith row of the

matrix A be represented by aTi , for 1 ≤ i ≤ M . Starting with some arbitrary initial

guess x(0), the Kaczmarz method is the iteration procedure given by

x(n+1) = x(n) + ω(n)

(
bi − aTi x(n)

aTi ai

)
ai, n = 0, 1, 2, . . . , i = (n mod M) + 1,

(4.3)

where ω(n) is a real relaxation parameter, which may or may not depend on the

iteration number, and bi is the ith element of b. One iteration of the algorithm is

represented by one complete sweep through all equations; we generally start with

initial guess x(0) = 0. The effect of the relaxation parameter is to control the rate

of convergence, as explained in [68], which, for ω(i) < 1 also provides a regularising

effect, at the expense of slower convergence (see, for example, [29], chapter 7).

Conceptually, the effect of the iteration is as follows; consider the approximated

solution at the ith step, x(i). We calculate the projection of this along the ith ray and

subtract this from the ith data value bi. The result of this can be thought of as a

correction factor, which is normalised and then backprojected onto the reconstruction

volume and added to the approximate solution.

The Kaczmarz method operates on the matrix A one row at a time and is hence

known as a row action method. As such, the result for each row of A is dependent

on the results from previous rows, which makes the method less suitable for parallel

implementation.

In the CT community, the Kaczmarz method is commonly known as Algebraic

Reconstruction Technique, or ART, and was first applied to image reconstruction

problems by Gordon, Bender and Herman in [13]. The method is a generalisation

of Kaczmarz’s original method given in [28] which applied only to square, invertible

matrices.
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A Generalised Kaczmarz Method

The Kaczmarz method can be generalised into the block iteration scheme

x(n+1) = x(n) + ATi Ω(n)(bi − Aix(n)), n = 0, 1, 2, . . . , i = (n mod M) + 1,

(4.4)

where Ai and bi represent a block of L equations of the system 4.2, and Ω(n) is an

L × L relaxation matrix. Clearly in the case L = 1, for an appropriate choice of Ω

this is equivalent to the Kaczmarz method, and in the case L = M , is equivalent to

the Landweber method described in the next section. Convergence results for this

method, and therefore the Kaczmarz and Landweber methods also, are proved by

Eggermont et al. in [9].

The Landweber Method

For the system of equations Ax = b, defined again as in (4.2), then starting with

some arbitrary initial guess x(0), the Landweber method is the iteration procedure

given by

x(n+1) = x(n) + τAT (b− Ax(n)), n = 0, 1, 2, . . . , (4.5)

where τ is a real relaxation parameter.

Conceptually, this is equivalent to calculating the correction factors of the ART

algorithm for all rays and then applying them simultaneously. For this reason, the

method is often known as Simultaneous Iterative Reconstruction Technique, or SIRT,

and was introduced as such for applications in image reconstruction by Gilbert in [12].

The method was introduced by Landweber in the context of solving general Fredholm

integral equations of the first kind in [35]; however, it is originally attributed to

Cimmino [7], in the context of solving systems of linear equations. Therefore, the

method also goes by the name of the Cimmino method, amongst others, but is referred

to here as Landweber.

It can be shown (for example in [2], p260) that convergence of the method is

guaranteed for τ satisfying

0 < τ <
2

σ2
max

, (4.6)
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where σmax is the largest singular value of A. It is also shown that Landweber iteration

acts as a filter on the SVD of the linear operator represented by A; therefore, the

number of iterations n acts as a regularisation parameter.

Since the Landweber method acts on all projections at the same time, this makes

it much more suitable for parallel implementation than the row action methods.

However, convergence for Landweber can be very slow; this can be explained by the

following. The Landweber method is simply the Richardson iteration

x(n+1) = x(n) + ωr(n), n = 0, 1, 2, . . . , (4.7)

where r(n) = b−Ax(n) is the residual at the nth step, applied to the normal equations

ATAx = ATb. Considering the quadratic form associated with (4.7), the residual

always points in the direction of maximum negative gradient. Therefore, at each step

of the algorithm, we are moving in the ‘right’ direction, but by a constant amount

each time; this is clearly far from optimal. One way to optimise convergence is to

consider minimising the quadratic form associated with (4.7) along the line in the

direction of the residual; this gives us the so-called method of steepest descent.

4.2.2 Conjugate Gradient Least Squares

The conjugate gradient method is a well-known iterative method for solving sparse

systems of equations Ax = b where the matrix A is positive-definite. For a simple,

well-written derivation and explanation of this, see [61]; for a more rigorous treatment

see, for example [59], section 6.7. An analysis of the convergence rate of the method

is given in [67].

Since the matrix ATA is positive-definite for any matrix A, we may apply the

Conjugate Gradient algorithm to the normal equations ATAx = ATb; the resulting

algorithm is known as Conjugate Gradient Least Squares, or CGLS. The algorithm

was originally proposed by Hestenes and Stiefel [21], and is stated here as it appears
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in [19], p143. The nth step of the algorithm is described, for n = 1, 2, . . ., as follows

αn =
‖AT r(n−1)‖22
‖Ad(n−1)‖22

,

x(n) = x(n−1) + αnd
(n−1),

r(n) = r(n−1) − αnAd(n−1),

βn =
‖AT r(n)‖22
‖AT r(n−1)‖22

,

d(n) = AT r(n) + βnd
(n−1), (4.8)

where r(n) is the residual at the nth step and d(n) is an auxiliary vector of length N .

We start with some arbitrary x(0) and set r(0) = b − Ax(0),d(0) = AT r(0). Usually,

we take x(0) = 0, giving r(0) = b and d(0) = ATb. It should be noted that the above

algorithm avoids explicitly calculating the matrix product ATA.

The approximated solution at the nth step, x(n), lies in the Krylov subspace

Kn(ATA,ATb) = span {ATb, ATAATb, . . . , (ATA)n−1ATb}. (4.9)

The CGLS algorithm also has a regularising effect, similar to the Landweber

method, with the number of iterations n again playing the role of regularisation

parameter. However, unlike the Landweber method, the regularising effect is not

well-defined; a rigorous analysis of this is given in [19], sections 6.3 and 6.4.

Although the use of CGLS for tomography problems is not widespread, we find

examples of its use in limited data problems in [32], in seismic tomography in, for

example [60] and [36], and in a more general CT context in [52].

The main problem with methods like CGLS which involve the normal equations is

that the condition number of the matrix ATA is the square of the condition number

of A; therefore, for ill-conditioned problems convergence can be slow. However, if the

condition number of A is not particularly high, we can reasonably expect CGLS to

converge more quickly than Landweber; we therefore choose to apply CGLS to the

RTT20 problem.
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4.3 Applying Algebraic Reconstruction to RTT20

We now consider the practicalities of applying algebraic reconstruction to RTT20

data. The RTT20 system has 248 sources; each of these has an active detector region

consisting of 130 detectors, so a complete set of data consists of 32240 measurements.

We cover the entire 20cm reconstruction circle with a 200× 200 grid of 1mm2 pixels,

giving 40,000 in total. Since the reconstruction region only covers the circle inscribed

within this square, this actually gives only 31,428 pixels within the ROI, making the

system effectively slightly overdetermined. With modern computer hardware, the

system matrix A is easily stored in memory, and so can be calculated in advance.

4.3.1 Calculating A

To create a 2D reconstruction grid, but also take into account the z-axis offset of the

detectors, we use a 200× 200 voxel square grid, covering the whole 200mm diameter

ROI, and extend the voxels in the z direction so that each voxel is 1 × 1 × 10mm

in size. The coefficients of A are then calculated using the raytracing algorithm of

Jacobs et al. described in [25], which is itself a more efficient version of Siddon’s

algorithm of [62]. This has been implemented as a C .mex routine by David Szotten;

for an explanation of this, see [64], section 5.1.4. The results are stored as a sparse

matrix in MATLAB.

4.3.2 Solving Using CGLS

To solve the system for x, we use the MATLAB function cgls.m provided in Hansen’s

Regularisation Tools package [20]. This applies CGLS to the normal equations im-

plicitly, without forming the considerably denser ATA. The function returns x after

each iteration and also outputs the 2-norm of the residual at each step to track

convergence.
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4.3.3 Regularisation

Although with CGLS, the number of iterations plays the role of a regularisation

parameter, it is unclear how many iterations should be performed in order to provide

the correct degree of regularisation. We may therefore apply additional Tikhonov

regularisation by solving the augmented system A
αL

x =

b

0

 , (4.10)

where α is the regularisation parameter and L is either the N ×N identity matrix or

finite difference approximation to a differential operator, for example the Laplacian.

4.4 Results With Phantom Data

Results are given for phantom data, using the same phantom as in section 3.2.4.

Figures 4.2–4.4 show the results of reconstruction after 10, 20, 50 and 100 iterations

with respectively no regularisation, and regularisation with L as the finite-difference

Laplacian for α = 1 and α = 5. Figure 4.5 shows plots of the 2-norm of the residual

in each case, as a measure of convergence. We also plot the 2-norm of the solution in

each case; this is shown in figure 4.6.

We see that in the unregularised case, the solution norm appears to be growing

without bound. If we were to continue iterating then we would be adding components

to the image corresponding to the small singular values of the matrix A. With the

addition of Tikhonov regularisation, we see that the solution norm seems to be tending

to some clearly defined bound. This well-defined convergence behaviour allows us to

avoid having to choose some arbitrary number of iterations to stop at.

We see that in the regularised case with α = 5, results are comparable to those

obtained by interpolation and filtered backprojection in section 3.2.4.
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Figure 4.2: Reconstruction of resolution phantom – no regularisation
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Figure 4.3: Reconstruction of resolution phantom – regularised with Laplacian, α = 1
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Figure 4.4: Reconstruction of resolution phantom – regularised with Laplacian, α = 5
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Figure 4.5: 2-norm of the residuals for the reconstructions in figures 4.2–4.4
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Figure 4.6: 2-norm of the solutions for the reconstructions in figures 4.2–4.4



Chapter 5

3D RTT Reconstruction

We now consider the problem of 3D reconstruction from the RTT80 system.

5.1 The RTT80 System

RTT80 is the final production model of the machine that is expected to be used

in airport baggage screening. The main purpose of the machine is to detect direct

threats to aircraft, which essentially means improvised explosive devices. This would

generally mean a lump, or sheet, of solid explosive material or a liquid explosive with

a means of detonation connected by wires to some kind of electronic controller. Thus

it is important to be able to accurately measure density, and also to resolve detailed

structures which could potentially be wiring.

The geometry of the RTT80 machine is shown in figure 5.1. It consists of 768

sources arranged in 24 blocks of 32, and 8 rings of 1152 detectors arranged in 72 blocks

of 16. A precisely controlled belt can be set to either a slow speed of 250mms−1 or

a fast speed of 500mms−1. At the slow speed, all sources are used at 15 revolutions

per second, whilst at the fast speed only alternate sources are used at 30 revolutions

per second. In both cases the length in the z-direction covered during one revolution

is 16.67mm; this is known as the z-pitch, which will be denoted by πz.

62
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Figure 5.1: The RTT80 geometry

5.2 The Firing Order

As introduced in section 1.2, one of the major differences between the RTT system

and conventional CT scanners is the ability to switch the sources in almost any

order we desire. This presents us with the challenge of investigating the effect the

firing order has on reconstruction and in some way optimising this. The problem of

optimising the firing order will be treated in chapter 6; we just introduce some basic

definitions here.

5.2.1 A Formal Definition

The firing order is defined as follows:

Definition 5.1. For an RTT system with NS sources, a firing order of period 1

revolution is defined as the periodic extension of the sequence

. . . , φ(1), . . . , φ(NS), . . . , (5.1)

determined by some function

φ : {1, . . . , NS} → {1, . . . , NS}. (5.2)
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This definition may be extended to cover firing orders of an arbitrary period R

revolutions by associating with each revolution a revolution number r (mod R) and

defining multiple functions φr for each 1 ≤ r ≤ R. The firing order of period R

revolutions is then defined as the periodic extension of the sequence

. . . , φ(1), . . . , φ(RNS), . . . , (5.3)

defined by the function

φ
(
i+ rNS

)
= φr(i). (5.4)

Although theoretically it is possible to have a completely aperiodic firing order,

this would not be particularly useful in practice and so will not be considered here.

The firing order determines the sequence in which the physical sources in the RTT

system are switched on and off; for a particular firing order φ, as we let i run from 1

to RNS, the sources sφ(1), . . . , sφ(RNS) are switched in sequence.

Although it is not strictly necessary to do so, it makes sense to consider only firing

orders where the functions φr are bijective (i.e. permutations of {1, . . . , NS}). This

ensures all sources are used and justifies the use of the term revolution, since a full

set of projections from the physical sources s1, . . . , sNS
is analogous to a complete

revolution of the gantry of a conventional CT scanner. Given this restriction, and

the assumption that the firing order has finite period, without loss of generality we

can adopt the convention that for any firing order, φ(1) = 1.

5.2.2 Rotational Invariance

An important property of the firing order is the idea of rotational invariance, defined

as follows:

Definition 5.2. For an RTT system with NS sources, the firing order of period R

revolutions defined by the function φ is said to be rotationally invariant order-n

if for 1 ≤ n < NS and some fixed integer k we have:

φ(i) ≡ (φ(i+ n)− k) (mod RNS) for all i = 1, . . . , RNS. (5.5)
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Interpreting this geometrically, what this means is that from the perspective of

some source si, if we then move to source si+n, the positions of all other sources in

three-dimensional space relative to the source we are at do not change.

5.2.3 The Inverse Firing Order

A useful concept is that of the inverse firing order; for a firing order φ(i) of period 1

revolution, this is simply defined by the inverse function φ−1(j), if this exists, where

j represents a source number. We can extend this definition to firing orders with

higher period by associating a revolution number with each source as fired by the

order. Then the inverse firing order for revolution r is defined by the inverse function

φ−1r (jr), where jr is a source number for revolution r.

For a given source sj, the inverse firing order gives us the position of that source

within the firing order, and therefore the z-coordinate of that source relative to the

z-coordinate of the first source in the order.

5.3 Reconstruction Algorithms

We give here an overview of reconstruction algorithms applicable to RTT80. Using the

model of the divergent beam transform with sources on a cylinder, the RTT80 problem

has been shown to be one of limited angle reconstruction; hence any reconstruction

algorithm will be approximate.

5.3.1 The RayConStruct Algorithm

The algorithm currently in use on the prototype and final production versions of

RTT80 is referred to in the Rapiscan literature as ‘Advanced Cone-Beam Back Pro-

jection’ or ACBP, and was developed by RayConStruct. Due to licensing issues, full

details of this algorithm are unavailable; however, from the limited information we do

have, we are told that it is an FDK based approximate algorithm, presumably based

on some modified version of the cone-beam backprojection algorithm of Feldkamp,
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Figure 5.2: ‘Windmill’ artefact shown over 8 consecutive slices

Davis and Kress given in [10]; a good survey of such algorithms is given in [65]. The

method reconstructs onto a 1.04× 1.04× 1.04mm voxel grid.

This method has already been proven to be efficient enough for online recon-

struction in the required time and gives acceptable image quality. However, there

are some undesirable artefacts present in the reconstructed volumes; it is unknown

whether these are attributable to the algorithm or firing order used, or the design of

the machine itself.

The first of these is known as the ‘windmill’ artefact, and is characterised by

streaks appearing in a distinctive 4-spoked pattern at high contrast interfaces in the

z direction, shown in figure 5.2.1 This can affect the accuracy of automatic threat

detection segmentation algorithms, since streaks created by a high density object

can obscure low density objects in the reconstruction. It is likely that this is a

consequence of the limited angle nature of the RTT data, since interfaces in the z

direction represent singularities tangent to planes in which no rays are measured.

However, it is possible that the effects of this could be mitigated to an extent by the

choice of firing order; the 4-spoked patterns being a consequence of the approximately

4-helical firing order.

Secondly, we have the ‘zigzag’ artefact, characterised by gaps appearing in thin

sheets every unit of z-pitch, as shown in figure 5.3.2 Again, this can affect the accuracy

1Figure courtesy of Rapiscan
2Figure courtesy of Rapiscan
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Figure 5.3: ‘Zigzag’ artefact

of automatic threat detection algorithms, and has been attributed to the fact that

in the radial centre of the reconstruction volume, in a neighbourhood of the z-axis,

the z-pitch is greater than the relative extent of the detectors in the z direction. It is

possible though, that due to the angular distribution created by the firing order (see

section 6.2.2), this could be an artefact of the specific firing order used.

5.3.2 Rebinning Based Methods

Rebinning based methods seek to approximate the complicated 3D reconstruction

problem by a set of simple two-dimensional reconstruction problems which can be

solved efficiently by inversion of the two-dimensional Radon transform. The simplest

way to do this is to approximate the 3D cone-beam data by fan or parallel-beam data

in a series of transaxial slices; see, for example [4] or [49]. However, this is far from

optimal, especially for the RTT system with its offset detectors.

Various more advanced rebinning methods have been proposed; for conventional

helical scan CT machines, rebinning to tilted planes was proposed in [26] and [27],

and to general non-planar surfaces in [43].

For the RTT system, a more advanced rebinning algorithm, multi-sheet surface

rebinning, has recently been proposed by Betcke in [3]. The essence of this is that

for the RTT system, the optimal rebinning surface is that of a double cone. Recon-

structing in two dimensions onto the superimposed double surfaces presents us with
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an additional deconvolution step in the reconstruction process, increasing the com-

putational overhead but results are promising. The method also gives us flexibility

in the choice of firing order used.

5.3.3 Algebraic Reconstruction

Algebraic reconstruction for RTT80 can be viewed as a direct discretisation of the

divergent beam transform equation with sources on a cylinder. Algebraic recon-

struction has the considerable disadvantage of being much slower than the analytical

methods, especially for 3D reconstruction of moderately large data sets, as we have

with RTT80. It is therefore extremely unlikely that algebraic methods could be used

for online RTT80 reconstruction at the current time. However, we justify its con-

sideration for three reasons; firstly, if we can show that algebraic reconstruction can

produce better reconstruction than the analytical methods but in a longer time, we

may still be able to use it in airport security as an additional level of offline inspec-

tion. If a bag has been identified as a potentially serious threat and cannot be cleared

without further inspection then it could be placed in a holding system while the alge-

braic reconstruction process is run on it, potentially identifying objects which could

not be identified using the analytical methods.

Secondly, as affordable computer power increases over the next few years, we may

get to a position where we are able to implement an algebraic algorithm for the

online reconstruction; hence it makes sense to look into it now with the future in

mind. Finally, from a purely theoretical point of view, algebraic reconstruction gives

us a way to directly apply reconstruction using the new model and hopefully provide

some validation of it; it also gives us no restriction on the firing order we can use.

Perhaps due to the success of the analytical methods, and their ease of efficient im-

plementation, algebraic methods have not seen much application to three-dimensional

cone-beam CT reconstruction.3 Studies we have found concentrate mainly on imple-

mentations of Kaczmarz and Landweber type algorithms and the choice of relaxation

3See [51] for a discussion on why the FDK based analytical methods are still in widespread use
in commercial CT scanners.
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matrix or voxel basis functions; see, for example [5], [6] and [45]. Much work has been

done on improving the efficiency of implementations of these methods; see for exam-

ple [46] and [44]; and more recently in [70] and [40], through the use of commodity

graphics hardware.

We propose a different approach – to use the CGLS algorithm for reconstruction

and assess its effectiveness for the RTT case. The CGLS algorithm should in theory

converge more quickly than the traditional Landweber based algorithms; studies such

as [52] indicate that the CGLS algorithm may indeed be a better choice for CT

problems. If we can show that the method is effective then it is possible that more

efficient implementations could also be developed for CGLS.

5.4 Applying Algebraic Reconstruction to RTT80

Given the potential advantages of algebraic reconstruction over the known analytical

methods, it seems natural to expect that we should be able to produce high qual-

ity images from RTT80 data using algebraic reconstruction. We now consider the

practical implications of doing this.

The main problem we face is that for a typical object scanned in RTT80, the

matrix A will have many millions of rows and many millions of columns. Even using a

sparse format, this is far too big to be stored in memory. For this reason it is usually

the case that the matrix coefficients are worked out ‘on the fly’ and not stored in

memory at all. Therefore, in order to perform reconstruction at an acceptable speed,

a simplified model of the projection process such as that introduced in section 4.1 is

used.

By exploiting structure in the matrix A, we now present an efficient way of storing

the coefficients, which could in the future enable us to use a more accurate, compu-

tationally expensive model of the projection process. It is also possible that this

structure may allow us to improve the efficiency of the calculations if we were to

compute the coefficients on the fly.
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5.4.1 The Structure of A

Let V ⊂ R3 represent the reconstruction volume, discretised into voxels of size vx, vy

and vz in the x, y and z directions respectively, and let Vx, Vy and Vz be the total

number of voxels in each direction. We think of the volume as being sliced in the

z direction into slices of thickness 1 voxel. As with the existing RTT algorithm, we

would like to set up the reconstruction grid so that there are an integer number of

slices in the z direction for every unit of z-pitch. Letting NSR represent the number

of slices per revolution this gives:

vz =
πz
NSR

. (5.6)

The rows of A represent rays and are ordered first by revolution, then by source,

then by detector ring and finally by detector. The columns of A represent voxels,

ordered by z, then y, then x. Since we chose an integer number of slices per revolution,

it should be clear that for the section of reconstruction volume representing one

revolution, the ray paths through this will be the same for each revolution. Therefore

A has the following block Toeplitz structure

A =



A1 0 0 . . . 0 0

A2 A1 0 . . . 0 0

...
...

...
. . .

...
...

Am Am−1 Am−2 . . . 0 0

0 Am Am−1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Am Am−1

0 0 0 . . . 0 Am



, (5.7)

where each of the blocks Ai is of size NSNRND rows by VxVyNSR columns, repre-

senting the coefficients for all rays from one complete revolution intersecting a block

of NSR slices. One block-column of A therefore represents all rays intersecting NSR

slices of the reconstruction volume; we let with M equal to the number of blocks,

and hence revolutions, needed to completely specify all such rays.
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This immediately gives us a more economical way of storing A; we just store each

of the blocks A1, . . . , AM and apply multiplication by A and its transpose using the

stored blocks. However, to reconstruct with NSR = 24 and vx = vy = 1mm, even

storing A like this will take approximately 40GB of memory. At the current time

of writing, given additional memory overheads in storing the reconstruction volume

and applying the algorithm, this would require the use of very expensive computer

hardware. We will now show that through a careful choice of the firing order, the

memory overhead can be cut dramatically and a full resolution reconstruction can be

achieved using fairly modest consumer hardware.

5.4.2 Reducing the Block Size

Looking at figure 5.4, we see that the geometry of the RTT80 machine is actually

rotationally symmetrical. Each block of 32 sources is lined up with 3 blocks of 16

detectors, so from the point of view of a source, if we start at some source si and

then move to another in a different block, but in the same position within the block,

the geometry of the machine will look the same, but rotated through some angle

θ. If we denote by b(si) the position of a source within the block then we have

b(si) = i mod 32, since there are 32 sources in each block.

Recall that an order-1 rotationally invariant firing order is one of the form φ(i) =

ki mod NS + 1 for some integer k coprime to NS. So for RTT80 this means orders of

the form

φ(n) = (ki mod 768) + 1, (5.8)

where k is coprime to 768. Note that k being coprime to 768 also implies that k is

coprime to 32; hence the sequence (b(si)) repeats itself every 32 sources. Taking the

symmetry of the system into account, this means that if we divide the firing order

up into subsequences of length 32, then from the point of view of the first source in

each subsequence, the geometry of the system looks the same but rotated by some

angle θ.
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Figure 5.4: Enlarged cross-section of RTT80 geometry showing lines of rotational
symmetry
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Now if we slice the reconstruction volume up in the z direction so that the thick-

ness of each slice contains the z values of 32 sources then each slice contains exactly

the same ray paths, but rotated through θ. This gives a maximum of 24 slices per

revolution with a slice thickness vz of 0.69mm. We can also set vz to include an in-

teger multiple of 32 sources in the slice thickness, as long as this multiple divides 24,

giving 12, 8, 6, 4, 3, 2 or 1 slices per revolution. Letting mblock and nblock represent

the number of rows and columns respectively in each block, this gives us:

mblock =
NSNRND

NSR

; nblock = VxVyNSR. (5.9)

The angle subtended by each block of sources is 15◦, therefore for a firing order

of the form (5.8) with k coprime to 768, the angle θ, in degrees, is given by

θ(k) = 15 · 24

NSR

(k mod NSR). (5.10)

Now, let Sz ⊆ V represent a slice, where z = 1, . . . , Vz is the slice number. Then

we can define the transformation Θ(Sz) representing the rotation of each slice as

Θ(Sz) =


cos(θ(k)(z mod 24)) sin(θ(k)(z mod 24)) 0

− sin(θ(k)(z mod 24)) cos(θ(k)(z mod 24)) 0

0 0 1

 . (5.11)

Now we construct the blocks of the matrix A using only the coefficients for the

slice S1. Taking NSR = 24 and vx = vy = 1mm, the storage requirements for storing

this much simplified version of A are roughly 2GB; obviously much less than storing

coefficients for every slice. Solving the system of equations represented by this matrix

will reconstruct the slices of the volume transformed by Θ(Sz). It is a simple process

to apply the inverse transformation and recover the original volume V .

We can generalise the block storage of A to firing orders with higher order ro-

tational invariance. However, the block size may need to be larger; if we use the

maximum number of slices per revolution, we will need to store coefficients for a

number of slices equal to the order of the rotational invariance. For example, the

rotationally invariant extension of the RTT firing order is the 4-helix, defined with a



CHAPTER 5. 3D RTT RECONSTRUCTION 74

period of 4 revolutions. Taking NSR = 24, we can represent A by a block of coeffi-

cients for 4 slices; each block of 4 slices in the reconstructed volume will be rotated

by 15 degrees. Letting O(φ) be the order of the rotational invariance, in general we

have

mblock =
NSNRNDO(φ)

NSR

; nblock = VxVyNSRO(φ). (5.12)

5.4.3 Choosing an Appropriate Resolution

Clearly, for a given reconstruction volume V , the number of voxels in the discretisation

of V gives us the number of columns in the matrix A, and hence the number of

unknowns in the system of equations represented by A. For a given set of data, the

number of rows of A cannot change, so changing the resolution of the discretisation

will affect whether the system is over or under-determined. We therefore wish to

choose values for vx, vy and vz to give as fine a discretisation as possible without

making the system of equations represented by A underdetermined.

The number of rays intersecting the whole reconstruction volume can be expressed

as a simple linear equation as follows. Let the total number of rays be r; then thinking

of the volume as a stack of slices, the smallest possible volume is just a single slice;

we let the number of rays intersecting this be b. Then each slice we add subsequently

adds a constant number of rays to this; let this constant number be represented by

a. Then the total number of rays is given by

r = aVz + b. (5.13)

The size of the reconstruction volume is set to 800 × 800 × vzVz mm. We let

vxy = vx = vy and, as noted in section 5.4.2, we choose vz according to (5.6) by

setting NSR equal to some factor of 24. Some values of a, b and VxVy, the number of

voxels per slice are summarised in table 5.1. The value of b changes slightly depending

on the firing order, therefore the values given are approximate.

Considering the limit as the number of slices tends to infinity, in order to ensure

the system will not be underdetermined for any value of Vz we just consider the
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NSR vz vxy a b VxVy
24 0.69 1.0 167,936 ∼5,300,000 640,000
12 1.39 1.0 335,872 ∼5,300,000 640,000
12 1.39 1.39 335,872 ∼5,300,000 331,776
12 1.39 2.0 335,872 ∼5,300,000 160,000

Table 5.1: Values of a, b and VxVy for different resolutions

relationship between b and VxVy. We therefore choose a resolution of 1.39 × 1.39 ×

1.39mm cubic voxels.

5.4.4 Calculating the Coefficients

In order to calculate the coefficients for the required blocks of A, we must make sure

that we use enough complete revolutions to cover all the rays passing through the

slice or slices covered by the blocks. With NSR = 12 and up to 2 slices per block it

is sufficient to calculate A over 3 full revolutions, giving source z coordinates in the

range 0–50mm. We position the reconstruction slice at z = 50mm and set the x and

y ranges to -400 – 400mm to completely cover the 80cm tunnel. If more slices are

needed then we simply increase the number of revolutions we calculate over.

The coefficients aij are then found as in section 4.3.1. The resulting sparse matrix

contains all blocks Ai needed to completely recover A in the reconstruction process.

It will also contain some zero blocks at the top which can be deleted. The number

of non-zero blocks needed to represent A is denoted as above by M .

An important point to note is that in order for the block process to work at

different rotation angles, the ordering of the rows (i.e. rays) of the computed matrix,

and the projection data itself, by detector number must be relative to the number of

the first active detector for a particular source.

5.4.5 Implementing the Reconstruction

The discretised reconstruction volume is represented by the vector x and the projec-

tion data by the vector b. Elements of x are ordered first by growing z-coordinate (or

equivalently slice number), then by growing y-coordinate and finally x-coordinate, so
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x can be divided into Vz sub-vectors of length VxVy, each representing a slice. The

elements of b are ordered in the same order as the rows of A as described in section

5.4.4.

Applying the CGLS algorithm (or indeed many of the other iterative methods)

involves calculating matrix-vector products of A and AT with vectors the same size

as x and b respectively; storing A in block form we obviously cannot evaluate these

directly. The matrix A has the following Kronecker product decomposition

A = J1 ⊗ A1 + J2 ⊗ A2 + . . .+ JM ⊗ AM , (5.14)

where M is as defined above and the Ji are defined as follows

Ji =


0(i−1)×N

IN

0(M−i)×N

 , i = 1, . . . ,M, (5.15)

where N is the total number of blocks needed to represent the whole reconstruction

volume V , In is the n×n identity matrix and 0m×n is the m×n all zero matrix. This

suggests the following process.

We reshape the vector x, representing the reconstruction volume, into the matrix

X, whose columns are the blocks of x containing the number of slices represented

by the blocks of A. The number of columns of X is equal to N ; for the order-

1 rotationally invariant firing orders, this is equal to the number of slices in the

reconstruction volume. The product Ax can then be expressed in terms of the sum

of products of the blocks Ai with X as follows:

Ax = vec

{
M∑
i=1

[
0mblock×(i−1) AiX[:,(M−i+1):(N−i+1)] 0mblock×(M−i)

]}
, (5.16)

where vec denotes the vectorisation of the matrix on the right hand side, and the

subscript on X defines sub-matrices of X using MATLAB colon notation. A similar

decomposition exists for calculating ATb.

These processes have been implemented as openmp parallelised C .mex routines

which are called from a modified version of cgls.m from Hansen’s Regularisation

Tools; for information about openmp see [50]. Due to the way MATLAB handles
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sparse arrays it is quicker to store both the original blocks of A and transposed

versions for use in these routines, since indexing down columns is much quicker than

indexing across rows.

5.4.6 Regularisation

Explicit Tikhonov regularisation can be applied in the same way as in section 4.3.3.

However, in order to apply this, the transformation of (5.11) and its inverse would

have to be applied at every iteration. For this reason, further regularisation is not

implemented in the current method; it is hoped that in future this will be able to be

applied.



Chapter 6

Optimising the Firing Order

We now consider the problem of finding a firing order that is in some sense optimal.

Our interpretation and ultimate choice of the firing order is determined to a large

extent by the mathematical model we use for the system and the resulting recon-

struction algorithm. Therefore the optimisation process must take this into account.

Clearly if we are modelling the system in the conventional CT sense where it is as-

sumed that a source follows a given trajectory in R3 then it makes sense to think

of the firing order as defining such a trajectory or trajectories. Thus in this case we

would be inclined to look for firing orders where the structure of such trajectories is

clear.

However, using the model introduced in section 2.5 it no longer makes sense to do

this. Whether we are reconstructing analytically or algebraically using this model, we

now view the firing order as defining a sampling pattern on the surface of a cylinder.

Therefore we may now consider firing orders which do not define a clear trajectory,

but instead define a sampling pattern on the surface of a cylinder.

Regardless of the model used, it is also interesting to see how the firing order affects

the geometry of the system. The firing order has a significant effect on the distribution

of x-ray energy within the reconstruction volume and also on the distribution of the

illumination angles of the rays intersecting particular regions of the volume.

As remarked in section 5.2, in all of what follows we regard a firing order as being

defined over R revolutions by some bijective functions φr, for 1 ≤ r ≤ R. In order

78
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to simplify the problem, we also only consider firing orders of period 1, or structured

such that the functions φr for r ≥ 2 are completely defined by φ1; thus we have a

finite number of firing orders and the problem is essentially combinatorial in nature.

6.1 Types of Firing Order

Considering all the paossible period 1 firing orders would give us 768! possible func-

tions φ, which is clearly too many to consider individually. In any case, it seems

sensible to consider mainly firing orders with some kind of structure which fits in

with the mathematical model we are using. We therefore classify firing orders into

types with certain properties; the key property we use is that of rotational invariance.

This work was started before the new theoretical model of sources on a cylinder

was discovered; hence certain firing orders are sometimes still referred to by the type

of trajectory they can be viewed as approximating. However, it is interesting to

compare properties of firing orders optimised for both models in order to provide

validation of the theory.

6.1.1 Rotationally Invariant Firing Orders

The rotationally invariant firing orders can be split into two sub-types as follows:

Order-1 Rotational Invariance

Of particular importance will be firing orders with order-1 rotational invariance; these

are defined over one revolution by functions φ of the form:

φ(i) =
(
k(i− 1) mod NS

)
+ 1, (6.1)

where k is some integer coprime to NS. Because k is coprime to NS, these firing

orders are always of period 1 revolution and have some useful properties which will

be explained in future sections. As we change the value of k we find that we get cases

where the firing order can be viewed as defining a clear trajectory and others where

the sampling pattern is much more even.
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A special case of the order-1 rotationally invariant firing order is the sequential

firing order. This is the ‘obvious choice’ of firing order in the sense of conventional

CT; it is the period 1 firing order defined simply by the identity mapping φ(i) = i,

giving a classical single helical source trajectory.

For an order-1 rotationally invariant firing order as defined in (6.1) we note that

the inverse firing order is defined in the same way as follows:

φ−1(j) =
(
k−1(j − 1) mod NS

)
+ 1, (6.2)

where k−1 is the inverse of k modulo NS.

For RTT80 with 768 sources, we find a total of 256 order-1 rotationally invari-

ant firing orders. However, k = 1, . . . , 383 can be viewed as equivalent to k =

385, . . . , 767; hence there are 128 possibilities for firing orders with order-1 rotational

invariance.

Higher Order Rotational Invariance

Higher order rotationally invariant firing orders are necessarily defined over periods

of greater than one revolution, and can be viewed as a generalisation of the order-

1 case above, where we choose the integer k such that gcd (k,NS) > 1. If we let

m = gcd (k,NS) then the sequence created by (6.1) repeats every NS/m sources. In

order to avoid this we therefore need to introduce a second increment q, coprime to

k, that gets added every NS/m sources. If we let q = 1 this can be expressed by

functions φr, for 1 ≤ r ≤ NS/m, defined as follows

φr(i) =
[(
k(i− 1) +m(r − 1) +

⌊
((i− 1)m/NS)

⌋)
mod NS

]
+ 1, (6.3)

where b.c is the round towards negative infinity operator. Such a firing order is often

referred to as a multi-helix, since it can be viewed as defining helical trajectories for

multiple sources.
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6.1.2 Non-Rotationally Invariant Firing Orders

The RTT80 Firing Order

The firing order defined in the RTT80 specification is referred to in the Rapiscan

literature as 4-helical but is in fact only the first revolution of the 4-helix firing order

on 768 sources. As such it lacks rotational invariance, but can be thought of as being

approximately order-4 rotationally invariant, since at the belt speed of the RTT

machine, the maximum z-axis error relative to the 4-helix order is approximately

0.065mm (see section 7.2.4).

Random Firing Orders

Although theoretically we could define a totally random firing order, this would not

be of much practical use. Therefore, for RTT80, we think of a random firing order

as a period 1 revolution firing order defined by a random permutation of the integers

1–768. This can be thought of as a random sampling of points on a cylinder and

gives a good point of reference for the new theory.

Some Other Firing Orders

Several other structured firing order schemes were devised during the initial investiga-

tions; these included discrete approximations to saddle trajectories, counter-rotating

helices and the so-called ‘inverse binary’ firing order where, for a theoretical RTT

system with NS = 2n for some n ∈ Z, sources enumerated in binary are switched

according to the sequence created by reversing the order of the bits and counting in

sequence.



CHAPTER 6. OPTIMISING THE FIRING ORDER 82

6.2 Heuristic Arguments for the Choice of Firing

Order

6.2.1 An Even Sampling Lattice

Using the new continuum model for the RTT system introduced in section 2.5, the

firing order is viewed as creating a pattern of sampling points on the surface of a

cylinder. In reality, due to the construction of the RTT80 machine this is actually a

24 sided prism, which is viewed as approximating a cylinder.

For a given belt speed and source firing rate of the RTT80 machine, for some

fixed length in the z direction we will have the same number of sources regardless of

our choice of firing order. Therefore, the number of sampling points over this length

cannot change, only the distribution of them on the surface. It therefore seems logical

to expect that the distribution of the source points on the surface of the prism should

be as even as possible.

The most even distribution of discrete points on a surface is given by a regular

equilateral triangle lattice. Ignoring the effect of the gaps created between neigh-

bouring source segments, by considering order-1 rotationally invariant firing orders

we can achieve a distribution very close to this ideal over the flat prism surfaces.

Consider 3 neighbouring sources si, si+1, si+2 in the same source block; the distance

between these within the block is 5mm. Now consider the triangle formed by the

z positions zi, zi+1, zi+2 of these sources. For an order-1 rotationally invariant firing

order defined as in (6.1), the distance in the z direction between neighbouring sources

is given by the inverse firing order and so taking zi = 0 we get zi+1 = (k−1πz)/768,

where k−1 is the inverse of k modulo 768. To construct the triangle, for k−1 > 384,

we take zi+2 in the same revolution, and for k−1 < 384, we take zi+2 in the previous

revolution, giving zi+2 = πz(k/384− 1), as shown in figure 6.1.
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Figure 6.1: Constructing an approximately equilateral triangle lattice

We get the following expressions for the lengths l1, l2, l3 of the sides of the triangle:

l21 = 25 +

(
kπz
768

)2

, (6.4)

l22 = 100 + π2
z

(
k

384
− 1

)2

, (6.5)

l23 = 25 + π2
z

(
1− k

768

)2

. (6.6)

Plotting the standard deviation of l1, l2, l3 for each value of k shows a minimum at

k = 384, which would give side lengths l1 = 9.72, l2 = 10, l3 = 9.72, so almost

equilateral. Therefore, we wish to choose k such that its inverse modulo 768 is close

to 384.

6.2.2 Even Angular Distribution

Since with the RTT80 machine the angular extent in the z direction is limited, the

angles we refer to here are the angles of projections of the rays onto transaxial planes.

The initial approach to the RTT80 reconstruction problem was to look at rebinning

type reconstruction algorithms, which perform approximate 3D reconstruction by

breaking the problem down into a series of 2D reconstruction problems. In this case,

in order to get an even sampling of rays on the 2D surfaces, we should attempt to

keep the distribution of the angles of rays intersecting all regions of the volume as

even as possible. Indeed, in Betcke’s work on multi-sheet surface rebinning, a regular
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sampling of the volume is important for stability of the deconvolution process (see

[3]).

It also makes sense to think of the distribution of angles in the context of direct

inversion and algebraic reconstruction. Although the RTT problem is already one

of limited angles, if the set of possible known angles is Ω, as in section 2.5.4, then

the distribution of ray angles in certain regions of the reconstruction volume affects

the sampling of Ω in those regions. If there are regions in the volume where the

distribution of illumination angle is uneven, resulting in few rays intersecting the

region from some range of angles, then we effectively only have Radon data for some

subset of Ω within that region. This would lead to limited angle type artefacts within

the region; hence, again, we would like to keep the distribution of angles as even as

possible.

Considering a rotationally invariant firing order with increment k, in order to

achieve an even distribution of angles, it seems intuitive that we should choose k so

that, over the distance in the z direction of the size of one voxel, there is as wide a

distibution of angles as possible. We actually find that for most values of k coprime

to 768 the distribution of angles is good in this sense; it is easier to consider those

values of k where the distribution is narrower. This essentially happens for values of

k near to the more extreme factors of 768, such as k = 1, 5, 193, 257 or 383.

6.2.3 Firing Orders to Compare

Our reference firing orders will be the sequential and RTT80 orders, plus a random

permutation over 1 revolution. Based on the arguments of the previous two sections,

we compare these against the order-1 rotationally invariant firing order for k = 35.

This value of k is close to optimal in the sense of providing an even sampling of the

surface of the cylinder, and is also good in the sense of providing an even distribu-

tion of illumination angles. For convenience, we abbreviate these 4 firing orders by

sequential, RTT, random and k = 35.
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6.3 Visualising the Firing Order

Before making numerical comparisons it is enlightening to visualise certain aspects

of the firing order.

6.3.1 The Sampling Pattern

We can view the distribution of the sampling points by simply plotting them in three

dimensions, as seen in figure 2.3. However, we can actually view the sampling pattern

more clearly by plotting just a small section of the surface in two dimensions; in effect,

what we are doing is cutting the prism open down the side and flattening it out. We

examine a section of the surface 1 source block wide and over 10 revolutions in the z

direction. The results of this are shown in figure 6.2.

We see that the sequential and RTT firing orders both sample along definite lines,

whereas the k = 35 firing order gives a more even, regular sampling pattern.

6.3.2 The Ray Density

It is useful to look at the distribution of the rays within the reconstruction volume,

since this will show if there are any ‘holes’ in the illumination pattern which could

potentially cause a nullspace, for a high enough belt speed. We can achieve this

by summing the columns of the reconstruction matrix A, giving the total length of

intersection of the idealised rays through each voxel. This quantity will be referred to

as the ray density, and can be viewed as an image. Results for a single slice through

the whole 800 × 800mm reconstruction volume at 1.4 × 1.4 × 1.4mm resolution are

shown in figure 6.3. For the order-1 rotationally invariant firing orders all other

slices can be obtained by simple rotations. For the other orders, the single slice is

representative of the volume as a whole.

We see that for the sequential firing order, there are regions of the slice with very

high and very low ray density; it is reasonable to expect that reconstruction within

these regions might not be as good quality as reconstruction in the higher density

regions. Indeed, if the belt speed were increased, these regions could actually become
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Figure 6.2: Plots of the sampling pattern for the different firing orders
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Figure 6.3: Ray density images for the different firing orders
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Firing Order µ σ
Sequential 758.3425 230.6479

RTT 758.4147 169.8920
Random 758.3571 58.0326
k = 35 758.3417 53.5454

Table 6.1: Mean and standard deviation of ray density for the different firing orders

a nullspace. We see that some unevenness remains with the RTT firing order, but

for the random and k = 35 orders, the distribution of ray density is much more even.

To quantify this, mean and standard deviation for the ray density within the circular

ROI are given in table 6.1.

6.3.3 The Angular Distribution

It is also useful to look at the distribution of the angles from which the rays orig-

inated, as this will reveal regions of the reconstruction volume which are unevenly

illuminated. As in section 6.2.2, the angle is taken to mean the angle within the plane

of the projection of a ray onto a transaxial plane. Since the rays are not actually

two-dimensional, in order to consider the distribution of sampled angles within the

set of possible angles Ω, we take the angle of the detector relative to the source, giving

the full range of angles [−π, π).

Each row of the reconstruction matrix A represents a ray, so for each row of A we

calculate the angle of the projection of this ray in the xy-plane. We then sum down

the columns of A as in section 6.3.2, but this time bin the results into angular bins

of width 10◦. In order to normalise the distributions, for each voxel, we divide each

bin by the total ray density for that voxel. This gives us the relative distribution

of angles of illumination for each voxel represented by A; the problem is how do we

visualise this data.

Given that we are mainly interested in seeing evenness of illumination angles, we

can simply look at an image of the standard deviation of the angular data for each

voxel. If there are regions in the image showing higher standard deviation then these

voxels are likely to be illuminated from an uneven distribution of angles. Results for a
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Figure 6.4: Images of standard deviation of the angular distribution for the different
firing orders

single slice through the whole 800×800mm reconstruction volume at 1.4×1.4×1.4mm

resolution are shown in figure 6.4. We ignore voxels outside the ROI as these tend

to be illuminated from a much narrower range of angles, causing poor scaling of the

colour map within the ROI.

We see that the RTT, random and k = 35 firing orders all have relatively low

standard deviation over the entire ROI, the only exception to this being some regions

near the edge for the RTT firing order. However, for the sequential firing order,

we have regions where the standard deviation is much higher. Figure 6.5 shows bar

graphs of the distribution of angles for individual ‘worst case’ voxels for each firing
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Figure 6.5: Distributions of angles for individual voxels for the different firing orders

order.1

Figure 6.5a shows us that with the sequential firing order, there are voxels that

are not illuminated at all from a wide range of angles. It should be noted that the

distribution of angles for this particular voxel is quite typical for the voxels within

the low ray density region of figure 6.3a; this can be seen using visualisations of the

type shown in figure 6.6, which plots an angular bar graph showing the distribution

at each voxel location, the colour being set by the ray density of the voxel, according

to the same colour mapping as figure 6.3. For clarity, the angular bins have been

increased in size to 20◦.

Figures 6.5b, 6.5c and 6.5d show a much more even distribution of angles for

individual high standard deviation voxels with the other firing orders. Although

1Actually, for the RTT order, there are worse cases than the distribution for the voxel shown.
However, these are very close to the edge, and therefore of little practical consequence.
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there is still some unevenness, apart from with the RTT firing order where a small

gap remains, there are no gaps in the distribution. A visualisation of a small region

at the centre of the reconstruction slice is shown in figure 6.6b, showing much more

even distribution across this ‘worst case’ region than the sequential firing order.

6.3.4 Expected Results

From observations made about the visualisations in this section, we can reasonably

expect the sequential firing order to perform significantly worse than the other firing

orders. In the regions within the reconstruction volume where the distribution of

illumination angles is particularly uneven we may expect to see limited angle type

artefacts. We can also reasonably expect the k = 35 firing order to perform better

than the RTT order, although perhaps only slightly.

6.4 Numerical Comparisons

Our main numerical tools for analysing differences between firing orders are the SVD

and condition number of the reconstruction matrix A, representing a discretisation

of the divergent beam equation describing the system. We assume in the following

that the matrix A is large, sparse, real-valued and of size m× n.

6.4.1 Condition Number Estimation

We denote by κ(A) the standard 2-norm condition number, defined as

κ(A) = ‖A‖2 · ‖A−1‖2 =
σmax(A)

σmin(A)
, (6.7)

where σmax(A) and σmin(A) are the largest and smallest singular values respectively of

A. Hence, we may calculate κ(A) by first calculating the SVD of A. For an arbitrary

real-valued m×n matrix A, we denote the SVD by the respective m×m,m×n and

n× n matrices U,Σ and V such that

A = UΣV T =
n∑
i=1

uiσiv
T
i . (6.8)
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Figure 6.6: Visualisation of the angular distribution for a small region of the recon-
struction slice using radial histograms for each voxel
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The matrix Σ is the diagonal matrix whose diagonal entries σ1, . . . , σn are the singular

values of A. The columns of the matrices U = (u1, . . . ,um) and V = (v1, . . . ,vn) are

the left and respectively right singular vectors.

The size of A is essentially determined by the size of the reconstruction volume

and the coarseness of the discretisation of this volume; the problem we have is that

the calculation of the full SVD is a computationally expensive and memory intensive

process, and at the size of a typical practical reconstruction problem, the size of A

makes this impossible to achieve with current computer hardware.

Therefore, our initial thoughts were to consider estimation algorithms such as that

of Hager [16], which estimates the 1-norm condition number and is implemented in the

MATLAB function condest. Also considered were statistical condition estimation

techniques such as [33], and approaches based on data mining techniques such as

given in [71] and [18]. However, since we are interested in comparing the condition

numbers of the matrices for different firing orders, it was decided that none of these

methods would be suitable; a direct calculation approach was therefore sought.

In order to calculate κ(A) we do not need the full SVD; only the first and last

singular values. We have the following well known relationship

ATA = V ΣTUTUΣV T = V ΣTΣV T , (6.9)

which shows that the eigenvalues of the square matrix ATA are the squares of the

singular values of A.

For a large, sparse, square matrix B, the Implicitly Restarted Arnoldi Method is

an efficient method of calculating small sets of the eigenvalues of B; this is imple-

mented in ARPACK library routines which are called from the MATLAB function

eigs (see [37]). Hence we can use eigs to calculate the largest and smallest eigen-

values of ATA and then take square roots to calculate κ(A). This has important

implications for numerical precision; the tolerance to rounding error when calculat-

ing the eigenvalues of ATA with double precision arithmetic is approximately 10−16.

Since we then have to take the square root to get the corresponding singular values,

this gives us a tolerance of only approximately 10−8. Therefore any singular values
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calculated as less than this must be assumed to be zero.

For a typical matrix A representing the RTT80 projection process, using a com-

puter with 48GB memory, this technique allows us to calculate the condition number

via matrices ATA up to size approximately 100,000×100,000. However, the size of

the matrix ATA for a typical reconstruction volume is much larger than this; we

therefore work with smaller volumes and at coarser discretisations. The coarseness

of the discretisation clearly has an effect on the condition number of A, hence we can

calculate condition numbers for A at varying discretisation sizes and examine this

relationship.

From looking at the ray density images in section 6.3.2, we observe that with

certain firing orders, particularly the sequential order, we get a ‘hole’ of low ray

density that rotates from slice to slice. Such a ‘hole’ would be invisible at lower z-

axis resolution; therefore, our approach is to keep the z resolution high at 12 slices per

unit z-pitch but vary the resolution in the x and y directions. Clearly, our maximum

resolution in the x and y directions is going to be affected by the number of slices we

use in the z direction. Therefore, we do this for a single slice, giving an upper limit on

the x, y resolution of 2mm, and also for a whole unit of z-pitch (i.e. 12 slices), giving

an upper limit of 11mm. In both cases, we use a fixed volume and vary the size of the

voxels to fit the volume. In order to avoid creating a nullspace by considering voxels

outside of the reconstruction area that are not intersected by any rays, we restrict

the x and y extents of the volume so as to cover a square inscribed within the 80cm

circle.

The condition number will also be affected by the size of the reconstruction vol-

ume. In order to examine this relationship, we calculate the condition number for

different volume sizes by keeping the z resolution high at 12 slices per unit z-pitch,

and for the same x, y resolution, varying the number of slices in the volume. Again,

we use the same x, y extents as before. Using approximately 20× 20× 1.4mm voxels

allows us to vary the size of the volume from 1–60 slices.
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Firing order a b
Sequential -1.1031 214.14

RTT -0.8507 50.22
Random -0.5646 14.86
k = 35 -0.5755 15.65

Table 6.2: Values of constants in equation (6.10) for different firing orders – 1 slice

6.4.2 Condition Number Results

Dependence on Discretisation Size in x, y – 1 Slice

The condition number was calculated at x, y discretisation sizes from approximately

2–20mm. Results of this for the different firing orders are shown plotted on a log-

log scale in figure 6.7a. As we see, the points lie approximately on straight lines,

suggesting a relationship of the form

κ(A) = b.vaxy, (6.10)

where vxy is the discretisation size in the x and y directions. The values of the

constants a and b are summarised for the different firing orders in table 6.2. The

results and least-squares fit curves of these relationships are shown plotted on a

normal scale in figure 6.7b. We see that the condition number for the sequential

firing order is significantly higher than that for the other firing orders, which is as we

expect.

Dependence on Discretisation Size in x, y – 12 Slices

The condition number was calculated at x, y discretisation sizes from approximately

11–50mm. As for the single slice case, results for the different firing orders are plotted

on a log-log scale in figure 6.8a, and on a normal scale with least-squares fit curves of

equations of type (6.10) in figure 6.8b. Values of the constants in these equations are

given in table 6.3. We see less difference between the firing orders this time; however,

the sequential firing order still has higher condition number. A possible reason for

the smaller differences could be that the minimum xy voxel size of 11mm simply gives

too coarse a discretisation for the differences to be noticeable.
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Figure 6.7: Condition number by discretisation size – 1 slice
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Firing order a b
Sequential -1.3848 13,670

RTT -1.3580 11,610
Random -1.3807 11,740
k = 35 -1.3721 11,380

Table 6.3: Values of constants in equation (6.10) for different firing orders – 12 slices
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Figure 6.9: Condition number by volume slices – 20× 20× 1.39mm voxels

Dependence on Volume Size

The condition number was calculated at a discretisation size of approximately 20 ×

20 × 1.39mm voxels, for reconstruction volumes with between 1–60 slices in the z

direction. Results are plotted on a normal scale in figure 6.9. We see that for

all firing orders, the condition number increases with the size of the reconstruction

volume; again, the condition number is higher for the sequential firing order.

6.4.3 Calculating the SVD

In order to calculate the full SVD we need to work at a much reduced resolution.

Given that we are only interested in the singular values and the right singular vectors,

we compute the SVD using the normal matrix ATA, as we did for the condition
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number calculations. For the condition number calculations, the MATLAB function

eigs was used since we only needed the smallest and largest singular values. For the

full SVD, it is actually more efficient to convert the matrix ATA to full format and

use the MATLAB function eig. Using an 8 core Intel Xeon machine with 48GB RAM

this restricts the size of the matrix we can work with to approximately 30000×30000.

Again, in order to avoid creating a nullspace by considering voxels outside the ROI,

we restrict ourselves to the central square region inscribed within the 80cm tunnel.

We calculate the SVD for volumes of a single slice and 12 slices, keeping the

z resolution at 12 slices per unit z-pitch. For the single slice case, we use an x, y

resolution of ∼4mm; for the 12 slice case we use ∼12mm.

6.4.4 SVD Results

1 Slice

Normal and log scale plots of the singular values are shown in figures 6.10a and 6.10b

respectively. We see that for the sequential and RTT firing orders, the small singular

values decay more rapidly, which is to be expected based on the condition number

results.

Images of the first 6 right singular vectors are shown for each firing order in figures

6.11–6.14. Some interesting patterns can be seen; in particular, we note that the the

singular vectors for the k = 35 firing order are smooth and symmetric, while those

for the sequential and RTT orders are highly asymmetric.

12 Slices

Normal and log scale plots of the singular values are shown in figures 6.15a and 6.15b

respectively. Although the differences are smaller, we still see a more rapid decay of

the small singular values with the sequential and RTT firing orders.
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Figure 6.10: Singular values of A representing 1 slice
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Figure 6.11: First 6 right singular vectors of A for sequential firing order
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Figure 6.12: First 6 right singular vectors of A for RTT firing order



CHAPTER 6. OPTIMISING THE FIRING ORDER 103

 

 

20 40 60 80 100 120 140

20

40

60

80

100

120

140

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

(a) 1

 

 

20 40 60 80 100 120 140

20

40

60

80

100

120

140

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

(b) 2

 

 

20 40 60 80 100 120 140

20

40

60

80

100

120

140

−5

0

5

10

15

20

x 10
−3

(c) 3

 

 

20 40 60 80 100 120 140

20

40

60

80

100

120

140

−0.01

−0.005

0

0.005

0.01

0.015

0.02

(d) 4

 

 

20 40 60 80 100 120 140

20

40

60

80

100

120

140

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

(e) 5

 

 

20 40 60 80 100 120 140

20

40

60

80

100

120

140

−0.015

−0.01

−0.005

0

0.005

0.01

(f) 6

Figure 6.13: First 6 right singular vectors of A for random firing order
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Figure 6.14: First 6 right singular vectors of A for k = 35 firing order
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Figure 6.15: Singular values of A representing 12 slices
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Figure 6.16: ‘Phantom’ for singular vector projections

6.4.5 Projections Onto The Singular Vectors

Any vector x, of length n, representing the discretisation of an object density function,

may be written in terms of the right singular vectors of A as follows

x =
n∑
i=1

(vTi x)vi . (6.11)

Here, each vTi x is the projection of x onto the ith singular vector. Each such projection

represents the relative contribution of that singular vector to the image x. For a

particular image x, it is interesting to look at the distribution of the projections onto

the singular vectors, and also to examine approximations of x by sums of the form

(6.11) for only the first p singular vectors, for some p < n.

In order to do this, for simplicity and ease of visualisation, we consider only a

single slice reconstruction volume, and use the ‘phantom’ image in figure 6.16. This

consists of a square of 1’s against a background of 0’s, positioned so that it corresponds

to the low ray density ‘hole’ of the sequential firing order.

Graphs of the absolute value of the projections, averaged over every 47 consecutive

projections for ease of visualisation, are shown for each firing order in figure 6.17. We

see that the plot for the sequential firing order shows a much greater dependence on

the singular vectors corresponding to the small singular values.

Images of approximations to the phantom by sums of the form (6.11) for the first p
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Figure 6.17: Projections onto singular vectors for the different firing orders

singular vectors are shown in figures 6.18–6.21. As expected, results for the sequential

firing order are significantly worse than for the others, with even the p = 10000

approximation showing significant artefacts. Results for the random and k = 35

firing orders are similar and noticeably better than the other two.
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Figure 6.18: Approximation by first p
singular vectors – sequential
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Figure 6.19: Approximation by first p
singular vectors – RTT
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Figure 6.20: Approximation by first p
singular vectors – random
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Figure 6.21: Approximation by first p
singular vectors – k = 35



Chapter 7

Reconstruction Results

We give reconstruction results using the method of section 5.4, with the aim of

examining the effect of the firing order. Reconstruction for both phantom and real

data is performed at the resolution of 1.39 × 1.39 × 1.39mm voxels, as discussed in

section 5.4.3.

7.1 Results With Phantom data

We give results of reconstruction from simple phantoms for the sequential, RTT and

k = 35 firing orders. Since the random firing order lacks rotational invariance, the

matrix A does not have the structure exploited in the process of section 5.4.2 for

reducing the memory requirement, so reconstruction by this method at the required

resolution is not possible due to memory constraints.

7.1.1 Calculating Phantom Data

Phantom data for simple rectangular objects were calculated analytically by essen-

tially the same method as for the two-dimensional case in section 3.2.4, with the

added complication that we now have to consider edges in the z direction. Before

calculating the ray paths, we set a number of full revolutions to calculate over based

on the size of the object, and then calculate z-coordinates for all source positions

based on the firing order. The data are stored in a four-dimensional MATLAB array,

110
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the dimensions representing source number, detector number, detector ring number

and revolution number. This is then reshaped into a vector which is sorted so that

the projections for each source start at the first active detector, as stated in section

5.4.4. By the linearity of the ray transform, more complicated phantoms are created

by simply summing the data for the single objects.

Two simple phantoms were created; the first consists of a 14×14 array of 20 ×

20× 30mm cuboids, positioned so that the long edges are parallel to the z-axis and

spaced 20mm apart in the x and y directions. This will be known as the multi-cuboid

phantom.

The second phantom is a z resolution test and consists of a stack of cuboids, edge

length 250mm in the x and y directions, and of thickness 5, 4.5, . . . , 0.5mm in the z

direction. This will be known as the resolution test phantom. In both cases and for

all firing orders, 5% Gaussian noise was added.

7.1.2 Results

Multi-cuboid Phantom

Reconstruction results for the multi-cuboid phantom after respectively 20 and 50

iterations are shown in figures 7.1 and 7.2. For each firing order we show a transaxial

slice through the centre of the cuboids and a sagittal slice though the centre of the

8th row of cuboids. The images for the sagittal slices are stretched in the z direction

to make them clearer. A plot of the 2-norms of the residuals for each firing order,

showing the convergence rate, is shown in figure 7.5.

As we see, the reconstructions for the k = 35 firing order show far fewer artefacts

than those for the sequential and RTT firing orders, which is as we expected. The

transaxial slice for the sequential firing order shows typical limited angle type artefacts

for some of the cuboids, presumably located in the low ray density ‘hole’ of figure

6.3a. If we look at other slices in the volume, we see these same type of artefacts,

but at rotated positions in the slice, backing up this theory. We see these regions as

the off-vertical streaks in the sagittal slice.
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Although the artefacts in the sequential and RTT firing order images have become

much reduced after 50 iterations, the k = 35 firing order still gives better looking re-

sults after just 20 iterations. All reconstructions show an increased level of noise after

50 iterations, which is as expected, since we are not using any additional Tikhonov

regularisation.

Resolution Test Phantom

Reconstruction results for the resolution test phantom after respectively 20 and 50

iterations are shown in figures 7.3 and 7.4. For each firing order we show a transaxial

slice through the centre of the thickest cuboid and a sagittal slice though the centre of

the cuboids. Again, the images for the sagittal slices are stretched in the z direction

to make them clearer. A plot of the 2-norms of the residuals for each firing order,

showing the convergence rate, is shown in figure 7.6.

Since the cuboids in the resolution test phantom have edges that are parallel to

planes in which no rays are measured (the planes parallel to the xy-plane), we expect

this to be a difficult phantom to reconstruct using any of the firing orders under

test. Looking at the reconstructions, this is indeed the case, with all reconstructions

suffering extensively from the typical limited angle streak type artefacts. However, the

sequential firing order still gives significantly worse results, with significant artefacts

even in the transaxial slice. The RTT and k = 35 firing orders are comparable, with

the k = 35 firing order showing the fewest artefacts. Again, this is as we expect.

7.2 Working With Real Data

There are additional considerations to be taken into account when working with real

data; these are described in this section.

7.2.1 The RTT Data Format

The output from the RTT80 detectors is processed by two separate integrator cir-

cuits, to allow for data from one integrator to be processed while the other collects
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(a) Sequential – transaxial slice
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(b) Sequential – sagittal slice
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(c) RTT – transaxial slice
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(d) RTT – sagittal slice
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(e) k = 35 – transaxial slice
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(f) k = 35 – sagittal slice

Figure 7.1: Reconstruction of the multi-cuboid phantom for the different firing orders
– 20 iterations CGLS with no additional regularisation
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(a) Sequential – transaxial slice
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(b) Sequential – sagittal slice
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(c) RTT – transaxial slice
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(d) RTT – sagittal slice
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Figure 7.2: Reconstruction of the multi-cuboid phantom for the different firing orders
– 50 iterations CGLS with no additional regularisation
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(a) Sequential – transaxial slice
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(c) RTT – transaxial slice
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(d) RTT – sagittal slice
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(e) k = 35 – transaxial slice
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Figure 7.3: Reconstruction of the z resolution phantom for the different firing orders
– 20 iterations CGLS with no additional regularisation
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(a) Sequential – transaxial slice
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(b) Sequential – sagittal slice
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(c) RTT – transaxial slice
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(d) RTT – sagittal slice
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(e) k = 35 – transaxial slice
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Figure 7.4: Reconstruction of the z resolution phantom for the different firing orders
– 50 iterations CGLS with no additional regularisation
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Figure 7.5: 2-norm of the residual at each iteration of the CGLS algorithm for the
multi-cuboid phantom
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Figure 7.6: 2-norm of the residual at each iteration of the CGLS algorithm for the
resolution test phantom
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more data. Data from the detector integrators is passed to the online reconstruction

hardware in an HD video format. The data provided by Rapiscan for our analysis has

been converted to the .pfm format, which is easily read by MATLAB. We load the

RTT data into a four-dimensional MATLAB array, with the order of the dimensions

being source number, detector number, detector ring number and then revolution

number, and apply calibration before performing reconstruction. For a given set of

RTT data, we let the total number of revolutions be Nrev.

Our model of the RTT80 machine for the phantom reconstructions and matrix

calculation adopted the convention that the source z-coordinates increased with the

belt travel, so that the belt effectively moves in the direction of the negative z-

axis. The Rapiscan convention is the other way around; therefore, to get the correct

reconstruction, we reverse the order of the sources and revolutions in the RTT data

and use the reverse firing order for the reconstruction matrix.

7.2.2 Data Preprocessing

There are several procedures that can be applied to the raw RTT data as a pre-

processing step; these include corrections for physical effects such as scatter, beam

hardening and afterglow, caused by the sources’ tendency to carry on emitting x-rays

for a short time after switching off. However, these corrections will not be discussed

here.

The main calibration procedure is known as normalisation; the purpose of this is

to correct for output differences between individual sources and differences in the re-

sponses of the detectors and associated electronics. The basic procedure for achieving

this uses so-called light and dark images. The light image, denoted by l, is what we

get by firing the sources in order with the RTT80 machine empty and averaging over

all revolutions measured; an example of this is shown in figure 7.7. The sinusoidal

patterns in this image are caused by the tunnel and conveyor belt of the RTT80

machine.

The dark image, denoted by d, as its name implies, is the result of measuring all
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Figure 7.7: Example RTT80 calibration light image

detectors for the sources in sequence, but without actually firing the sources. In this

case, in addition to averaging over the revolutions measured, we also calculate the

average for each of the two integrators; an example of this is shown in figure 7.8. It

should be noted that in figures 7.7 and 7.8 the rows (representing each source) have

been permuted according to the inverse firing order, in order to make the images

clearer; the firing order used was k = 35.

The light and dark images give calibration coefficient for all source-detector pairs

over one revolution. If we let x be the raw, uncalibrated data for one revolution, then

the calibrated data xcal is obtained from by

xcal =
x− d

l− d
. (7.1)

Figure 7.9 shows uncalibrated and calibrated sinograms for detector ring 1 of a rev-

olution in the middle of the scan of a test bag, scanned with the k = 35 firing order.

Again, the order of the projections has been permuted by the inverse firing order to

make things easier to see. The colour map for the calibrated data has been windowed

to the range [0, 1].

The raw uncalibrated data are given as 16-bit integers, directly from the detector
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Figure 7.8: Example RTT80 calibration dark image

integrators’ analogue-to-digital conversion. Theoretically, after the calibration pro-

cedure, all values in the calibrated data, representing relative intensity, should be

between 0 and 1. However, in practice this is rarely the case; although most of the

calibrated data do indeed lie between 0 and 1, we get some negative and also some

extreme positive values. This is mainly due to the presence of faulty detectors; an

example of this is shown by the vertical streak in figure 7.9b.

Since the calibrated data represent relative intensity, we must take the logarithm

before performing reconstruction. The choice of what to do with the extreme valued

data before taking the logarithm, in order to avoid creating negative attenuation

values, is fairly arbitrary. It should be noted that most of the extreme values are for

source-detector pairs outside the active detector regions, so these can be ignored. We

usually still find that the majority of the remaining data lie in some range [0−ε1, 1+ε2],

for some small values ε1, ε2. Any remaining extreme values are then clipped to lie in

this range, which is then scaled to [0, 1].
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Figure 7.9: Example uncalibrated and calibrated RTT80 sinograms
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7.2.3 Correcting for Defective Sources and Detectors

The most severe form of source and detector faults are respectively non-emitting

sources and detectors producing saturated output. The presence of the effects of

both of these in the data causes severe streak artefacts in the reconstruction. If a

non-emitting source is identified during the machine setup process, then that source is

disabled and a neighbouring one used instead. This will obviously cause inconsistency

in the data but is better than having no data at all for that source. In theory, we

could simply update the firing order and corresponding change in the reconstruction

matrix to take account of the change in sources, but this would destroy the rotational

invariance property of the firing order and is therefore not done in our method.

In order to correct for faulty detectors, the procedure currently employed for the

analytical algorithm is to interpolate the data from neighbouring detectors. However,

with algebraic reconstruction, there is no need to do this; we can simply set the data

from such sources and the corresponding rows of the matrix A to zero. This can be

done without affecting rotational invariance by zeroing out the relevant elements of

the matrix-vector product Ax, within the CGLS algorithm.

7.2.4 Approximate Reconstruction with the RTT Firing Or-

der

Although the RTT firing order lacks strict rotational invariance, we can actually

approximate the order-4 rotationally invariant 4-helix firing order by some simple

permutations of the data. The period of the 4-helix is 4 revolutions, so letting r

represent the revolution number, for each source si, we wish to permute the source

numbers as follows:

r − 1 ≡ 0 (mod 4) i 7−→ i,

r − 1 ≡ 1 (mod 4) i 7−→ (i+ 192) (mod 768),

r − 1 ≡ 2 (mod 4) i 7−→ (i+ 384) (mod 768),

r − 1 ≡ 3 (mod 4) i 7−→ (i+ 576) (mod 768).
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This has the effect of lining up the data source positions with those of the 4-

helix firing order. Of course, the z-coordinates of these sources will not be correct,

since we cannot change the order in which they were actually fired. However, the

z-axis errors are actually very small; the greatest difference between the actual and

assumed firing orders is 3 successive projections, giving a maximum z-axis difference

of 3× (πz/768) ≈ 0.065mm.

7.2.5 Restrictions on the Firing Order

We hope to be able to compare between firing orders using reconstructions from real

data. Currently, there are some limitations imposed on the firing order by the design

of the RTT80 machine; the first of these is due to the controller electronics.

Limitation 1. The period of the firing order must be one revolution, equal to 768

projections.

The second limitation is due to the type of x-ray source used and exists to give

the sources sufficient time to cool between operations.

Limitation 2. For every set of three consecutive projections (in time), sources from

three separate blocks must be used.

Note that this not only includes sources within the period of the firing order,

but also when moving from the end of one period to the beginning of the next. As

a consequence of this, for an order-1 rotationally invariant firing order of the type

given in (6.1), we get the following restrictions on the value of k:

32 ≤ k ≤ 368 and 400 ≤ k ≤ 736, (7.2)

since values outside these ranges would lead to sources in the same block being fired

after only 1 or 2 time steps. Clearly, this limitation disallows the use of the sequential

firing order, for example.
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7.3 Results with Real Data

Figure 7.10 shows the results of reconstruction of a test bag using the RTT firing

order; the scan for this was made during machine testing at Manchester Airport.

The reconstruction shows numerous artefacts; these could be for a variety of reasons.

Firstly, the machine used had several faulty sources which have been substituted by

other sources; a similar procedure had been used for the faulty detectors, but using

interpolation. If the raw data had been given and the faulty sources and detectors

identified, we would expect algebraic reconstruction to give better results with the

faulty sources and detectors omitted.
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Figure 7.10: Reconstruction of a test bag from real data scanned using the RTT firing
order and reconstructed using the approximation of section 7.2.4



Chapter 8

Conclusions and Future Work

We give in this chapter the conclusions of this investigation into reconstruction from

switched source, offset detector x-ray CT machines. However, some aspects of the

work present new and open problems; we therefore give some ideas on where these

investigations should go next.

8.1 Conclusions

In chapter 2 we introduced a new mathematical continuum model of the geometry of

a CT machine, applicable to the case of the RTT system; that of sources covering the

surface of a cylinder in R3. This allowed us to prove the existence of a unique solution

to the problem of three-dimensional reconstruction from the RTT system, and to show

that the problem can be reduced to that of the inversion of the three-dimensional

Radon transform with limited angle data. This also allowed us to comment on the

detection of singularities of the function f , and to predict that reconstructions will

typically suffer from limited angle type artefacts around edges parallel to transaxial

planes.

In chapter 4 we showed that the Conjugate Gradient Least Squares algorithm

can be applied to the problem of two-dimensional fan-beam CT reconstruction, and

gives good results even with poorly distributed angular sampling, as with the RTT20

system. We also showed that an additional Tikhonov regularisation term gives the

126
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method well-defined convergence behaviour, as opposed to just letting the number of

iterations perform the role of regularisation parameter.

In chapter 5 we introduced and formalised the important new concept of the

firing order for switched source CT machines. Properties of the firing order and their

effect on the conditioning of the problem were then investigated further in chapter

6. The effect of the firing order on the sampling of source points on the surface

of the cylinder, and the distribution of ray angles within the reconstruction volume

allowed us to heuristically predict which firing orders might be in some sense optimal.

Through some novel visualisations of these effects we were then able to perform a

comparison between four different firing orders, and predict which would give the best

and worst results. These predictions were then confirmed with a thorough numerical

comparison between the four different firing orders, analysing the condition number

and SVD of the reconstruction matrix A. The main results of this were that, for

this type of CT machine, the sequential firing order, giving a standard helical source

trajectory, is the worst choice of firing order, and that a firing order giving an even

sampling lattice on the surface of a cylinder gives much better results.

By exploiting symmetries in the system and the rotational invariance property

of certain firing orders, we developed a way of applying the CGLS algorithm to the

RTT80 system using stored matrix coefficients, allowing us to quickly and easily per-

form three-dimensional reconstruction for a wide variety of firing orders. In chapter

7, this was used to compare reconstructions of two simple phantoms, confirming the

results of the numerical comparisons of chapter 6, and also providing some validation

of the model of chapter 2.

8.2 Future Work

8.2.1 Improved Modelling of the Projection Process

It was noted in chapter 4 that the model of the projection process used here is by

no means the only one; since the reconstruction method of chapter 5 uses stored
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matrix coefficients, we should be able to introduce more complicated modelling of

the projection process, as long as this does not reduce the sparsity of the matrix A

by too much. Rather than modelling the sources and detectors simply as points, and

the rays as lines, it would be interesting to see the effect on real data reconstruction

of modelling the physical size and properties of the sources and detectors.

It would also be interesting to change the basis functions used to discretise the

continuous function f that we are imaging. In terms of sampling theory, the simple

voxel grid is less than ideal; the use of spherically symmetric Kaiser-Bessel window

functions as alternatives to voxels was presented by Lewitt in [38] and [39]. Practical

aspects of applying this to image reconstruction problems are dealt with in [41] and

[42]. These basis functions have been used by Carvalho, Herman and Matej in their

work on algebraic reconstruction from helical cone-beam CT in a medical context,

for instance in [5] and [6].

8.2.2 Reconstruction from Real Data

Ideally, to further validate our results on the optimisation of the firing order, we

would like to perform further reconstructions from real RTT80 data. Although, due

to constraints imposed by the design of the RTT80 machine, it is impossible to test

the sequential firing order with real data, it would still be enlightening to perform a

comparison between the RTT and k = 35 firing orders.

8.2.3 Analytical Inversion of the New Model

It would be interesting to see if it is possible to apply the analytical inversion method

of section 2.5.6 to the practical problem of RTT80 reconstruction, and to assess the

practicality of applying this to reconstruction from real data.

8.2.4 Two-Dimensional Imaging of Dynamic Processes

As introduced in section 1.2.4, a potentially very interesting possibility with the

RTT system is the ability to image a two-dimensional slice through time-dependent,
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dynamic processes. It has been proposed to apply this to the experimental validation

of some theoretical results in granular flow, using small glass beads as our granular

material. Although the RTT20 machine has now been acquired by the University,

it is not yet clear whether the experiments will be performed in this, or an RTT80

machine owned by Rapiscan; the theory in both cases is the same.

This presents us with the problem of improving the temporal resolution of the

system. An initial thought is to choose a firing order such that every full revolution

can be divided into an integer number of more sparsely sampled sub-revolutions,

allowing us to trade temporal against spatial resolution in the reconstruction process.

For instance, for RTT80, we could choose the firing order

1, 9, . . . , 761, 2, 10, . . . , 762, . . . , 8, 16, . . . , 768, (8.1)

giving 8 sub-revolutions sampled with an angular frequency one eighth that of the

maximum.

Another thought is to apply Kalman filtering to the projections in order to get

better estimates of the state of the system at particular points in time. If we think

of each reconstructed slice as a frame of a film, then ideally, all projections for a

particular frame would be taken at the same time. Of course, this is not the case

in reality, as each frame will be reconstructed from projections taken at a range

of time values. For fast moving objects this will introduce motion artefacts into

the reconstructions; it is hoped that the Kalman filter can be used to reduce such

artefacts. For an introduction to the Kalman filter, see, for example [69].
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Appendix A

Elementary Distribution Theory

We give here a summary of the elementary definitions of the spaces of test functions

and distributions, based mainly on the notation of [58], section 14.2. Before intro-

ducing the various spaces, we first introduce the concept of a multiindex, defined as

follows:

Definition A.1. An n-dimensional multiindex α is an n-tuple of non-negative inte-

gers αi, where 1 ≤ i ≤ n; so

α = (α1, . . . , αn). (A.1)

For multiindex α, we define the absolute value |α| and partial derivative ∂α by

|α| = α1 + . . .+ αn, (A.2)

∂α =
∂α1

∂xα1
1

· · · · · ∂
αn

∂xαn
n

. (A.3)

We now introduce the spaces of test functions, D, S and E . In the following, we

take the word ‘smooth’ to mean infinitely differentiable.

Definition A.2. The space D = C∞0 (Rn) is the space of smooth functions with

compact support. We define a topology on D by defining the limit of a sequence of

functions in D as follows; a sequence of functions φn ∈ D converges in D to zero if

there exists a compact set K such that for all n ≥ 0, supp(φn) ⊂ K and, for any

integer m,

sup
x∈K,|α|≤m

|∂αφn(x)| → 0 as n→∞, (A.4)
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where α is a multiindex.

Definition A.3. The space S = S(Rn) is the space of smooth functions which decay

rapidly at infinity with all their derivatives; this is known as the Schwartz space, after

Laurent Schwartz. Formally, we have φ ∈ S if and only if the norms

‖φ‖m,k = sup
x∈Rn,|α|≤k

|(1 + |x|)m∂αφ(x)|, (A.5)

are finite for all m, k ∈ N. A sequence of functions φn ∈ S converges in S to zero if,

for any integers m and k,

‖φ‖m,k → 0 as n→∞. (A.6)

Definition A.4. The space E = C∞(Rn) is the space of smooth functions with with

no restriction on their growth at infinity. A sequence of functions φn ∈ E converges

in E to zero if, for any integer k and compact set K ⊂ Rn,

sup
x∈K,|α|≤k

|∂αφn(x)| → 0 as n→∞. (A.7)

Corresponding to the spaces D, S and E , we have the dual spaces D′, S ′ and

E ′. Elements of D′ are known as distributions, elements of S ′ are known as tempered

distributions and elements of E ′ are known as distributions with compact support. The

embeddings D → S and S → E are continuous with dense images, so therefore, the

dual mappings E ′ → S ′ and S ′ → D′ are also continuous with dense images.


