
Ghosts of Order on the Frontier of Chaos

Muldoon, Mark

1989

MIMS EPrint: 2016.46

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Ghosts of Order on the Frontier of Chaos

Thesis by

Mark Muldoon

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1989

(Submitted May, 1989)

ii

Then from the heart of the tempest Yahweh spoke and gave Job his an-
swer. He said:

Brace yourself like a fighter; now it is my turn to ask questions
and yours to inform me.

Where were you when I laid the earth’s foundations?
Who decided the dimensions of it? Do you know?
Who laid its cornerstone when all the stars of morning were
singing with joy?

Who pent up the sea when it leapt tumultuous out of the womb,
when I wrapped it in a robe of mist and made black clouds its
swaddling bands?

Have you ever in your life given orders to the morning or sent
the dawn to its post?

Have you journeyed all the way to the sources of the sea, or
walked where the abyss is deepest?

Have you an inkling of the extent of the earth?
Which is the way to the home of the light and where does the
darkness dwell?

The Jerusalem Bible

There are seven or eight categories of phenomena in the world that are
worth talking about, and one of them is the weather. Any time you care
to get in your car and drive across the country and over the mountains,
come into our valley, cross Tinker Creek, drive up the road to the house,
walk across the yard, knock on the door and ask to come in and talk about
the weather, you’d be welcome.

Annie Dillard

Then we would write the beautiful letters of the alphabet, invented by
smart foreigners long ago to fool time and distance.

Grace Paley

iii

Acknowledgements

I offer my thanks to my advisor, Anatole Katok, to my scientific correspondents,

Jim Meiss, Robert MacKay, and Rafael de la Lllave, and to Steve Wiggins of Caltech;

without their many intellectual gifts I would have written a different, and lesser, thesis.

More profoundly, I thank my friends, Susan Volman, Dave Wark, Bette Korber,

James Theiler, Paul Stolorz, Brian Warr, Chi-Bin Chien, Dawn Meredith, Joel Mor-

gan, Morgan Gopnik and Tom Bondy, and especially my mother and sister, Lucille

and Maureen Muldoon; without their love and encouragement I could not have writ-

ten a thesis at all.

Last, I thank Steve Frautschi for his patience and for providing me, through The

Mechanical Universe, with the most enjoyable summer job I have ever had. I also

gratefully acknowledge Caltech’s Concurrent Computation Program, whose machines

both performed my calculations and typeset my thesis.

iv

Abstract

What kinds of motion can occur in classical mechanics? We address this question

by looking at the structures traced out by trajectories in phase space; the most or-

derely, completely integrable systems are characterized by phase trajectories confined

to low-dimensional, invariant tori. The KAM theory examines what happens to the

tori when an integrable system is subjected to a small perturbation and finds that,

for small enough perturbations, most of them survive.

The KAM theory is mute about the disrupted tori, but, for two dimensional

systems, Aubry and Mather discovered an astonishing picture: the broken tori are

replaced by “cantori,” tattered, Cantor-set remnants of the original invariant curves.

We seek to extend Aubry and Mather’s picture to higher dimensional systems and

report two kinds of studies; both concern perturbations of a completely integrable,

four-dimensional symplectic map. In the first study we compute some numerical ap-

proximations to Birkhoff periodic orbits; sequences of such orbits should approximate

any higher dimensional analogs of the cantori. In the second study we prove converse

KAM theorems; that is, we use a combination of analytic arguments and rigorous,

machine-assisted computations to find perturbations so large that no KAM tori sur-

vive. We are able to show that the last few of our Birkhoff orbits exist in a regime

where there are no tori.

v

Contents

Acknowledgments iii

Abstract iv

Table of Contents v

List of Figures vii

1 Introduction 1

1.1 Integrability and the KAM Theorem 3

1.2 The Taylor-Chirikov Standard Map 6

2 Ghosts of Order 10

2.1 Basic notions and notations . 11

2.1.1 spaces and maps . 11

2.1.2 a variational principle . 12

2.1.3 area-preserving twist maps . 13

2.2 Higher dimensional analogs . 17

2.2.1 the maps and orbits . 19

2.2.2 shapes of orbits and Lyapunov exponents 22

2.2.3 non-existence of tori: a prelude 36

2.2.4 smoothness . 37

vi

2.3 Hedlund’s examples . 38

3 The Frontier of Chaos 47

3.1 Converse KAM results on the cylinder 49

3.1.1 definitions and a first criterion 49

3.1.2 Lipschitz cone families and their refinement 51

3.1.3 some new coordinates and two more criteria 57

3.1.4 non-existence for minimalists 60

3.2 Rigorous Computing . 63

3.2.1 two reductions and a plan . 64

3.2.2 bounding images of prisms . 66

3.2.3 choices for the matrix A . 70

3.3 On to higher dimension . 73

3.3.1 maps and tori . 73

3.3.2 Lipschitz cones: old formulae in new guises 75

3.3.3 minimalism revisited . 76

3.3.4 global estimates: narrowing the cones 79

3.4 A converse KAM theorem . 80

3.4.1 analytic preliminaries . 80

3.4.2 the computations . 81

3.4.3 results . 82

3.4.4 using symmetry . 83

A Approximate Numerical Methods 88

A.1 Methods of minimization . 88

A.2 Rational approximation of irrational vectors 90

A.3 Lyapunov exponents . 93

vii

B Converse KAM Methods 95

B.1 What the program does . 95

B.1.1 the map . 96

B.1.2 sketch of a computation . 96

B.1.3 using the program: a sample 97

B.2 Representation of data . 100

B.2.1 numbers and arithmetic . 100

B.2.2 intervals and expressions . 102

B.2.3 prisms . 103

B.3 Algorithms . 103

B.3.1 special functions . 104

B.3.2 uniform cones and the starting point 108

B.3.3 bounding traces and eigenvalues 109

B.3.4 bounding the images of prisms 110

C Computer Programs 123

C.0.1 Arbitrary precision library . 123

C.1 Source code . 131

C.1.1 special functions . 131

C.1.2 interval arithmetic . 141

C.1.3 starting points and global bounds 146

C.1.4 control of the computation . 159

C.1.5 the map . 168

C.1.6 images of prisms . 174

viii

List of Figures

1.1 A system of two equally massive stars, m1 and m2, and a test mass,

m3, which travels on a line through the center of mass. [Moser73] . . 2

1.2 The phase space of a completely integrable system. [Arn78] 4

1.3 Orbits of the standard map for several sizes of the perturbation k. Each

panel shows 200 iterates from the orbits of 20 different initial conditions. 9

2.1 The cylinder and its coordinate system. 11

2.2 A twist map carries vertical lines to monotone curves. 14

2.3 The billiard ball dynamical system. [Birk27] 15

2.4 A cantorus for the standard map. The vertical axis is measured in

units of y = p − k
4π

sin(2πx), where k = 1.001635 is the size of the

perturbation and the rotation number is ≈ 1
γ2

where γ = 1+
√

5
2

is the

golden mean. [MMP84] . 17

2.5 Contour maps of −Vε(x) for the (a) trigonometric, (b) polynomial,

and (c) fast-Froeschlé perturbations. The conour interval is 0.1 and

the contours corresponding to negative values are dashed. 21

2.6 The Lyapunov exponents for the rotation vector (377,2330)/3770 and

the trigonometric and polynomial perturbations. Also those for the vec-

tor (1432,1897)/2513 with the trigonometric and fast-Froeschlé pertur-

bations. 25

ix

2.7 Birkhoff orbits for the trigonometric perturbation and the rotation vec-

tor (1432,1897)/2513. This panel illustrates the collapse along fila-

ments. Notice how the ε = 0.0075 state has momenta seeming to lie

on a smooth surface. 26

2.8 Birkhoff orbits for the trigonometric perturbation and the rotation vec-

tor (1432,1897)/2513. This pair shows the appearance of Cantor-like

clumping along the filaments. 27

2.9 Weakly perturbed Birkhoff orbits for the trigonometric perturbation and

the rotation vector (377, 2330)/3770). 28

2.10 Strongly perturbed Birkhoff orbits for the trigonometric perturbation

and the rotation vector (377, 2330)/3770). 29

2.11 Birkhoff orbits for the polynomial perturbation and the rotation vec-

tor (1432,1897)/2513. Note that the momenta remain very near their

unperturbed values. 30

2.12 Birkhoff orbits for the polynomial perturbation and the rotation vec-

tor (1432,1897)/2513. This pair shows the appearance of Cantor-like

clumping along the filaments. 31

2.13 Birkhoff orbits for the polynomial perturbation and the rotation vector

(377, 2330)/3770). 32

2.14 Birkhoff orbits for the polynomial perturbation and the rotation vector

(377, 2330)/3770). 33

2.15 Birkhoff orbits for the fast-Froeschlé perturbation and the rotation vec-

tor (1432,1897)/2513. Notice how even the ε = 0.0075 state seems to

have its moment concentrated on a curve. 34

2.16 Birkhoff orbits for the fast-Froeschlé perturbation and the rotation vec-

tor (1432,1897)/2513. 35

x

2.17 Pairs (L, ‖ ∆x ‖) calculated for the 800 most closely spaced pairs of

points in states of the rotation vector (1432,1897)/2513 with the trigono-

metric perturbation. 39

2.18 Some minimizing periodic geodesics for the two dimensional torus; the

shortest curve of type (2,4) is just 2 copies of the shortest one of type

(1,2). 43

2.19 Some minimizing periodic geodesics for a Hedlund example on the three

dimensional torus; the shortest curve of type (2,4,2) is not 2 copies of

the shortest one of type (1,2,1). 44

2.20 The largest displacement between a point in a perturbed minimizing

state and the position it would occupy in the abscence of the pertur-

bation. Note the abrubt jumps in the deviations for the fast-Froeschlé

example. 45

2.21 A series of orbits whose rotation vectors approximate (377,2330) /

3770. 46

3.1 The space of near-integrable maps, showing the frontier of non-integrability

around T0, an integrable system. 48

3.2 The cylinder and several invariant circles, some (a) rotational and

some (b) encircling a periodic orbit. 50

3.3 A curve and its image. The area between the two is shaded. 51

3.4 Numerical error may carry a point across an invariant circle. 52

3.5 If orbits with initial momentum less than p1 never rise above p = p2

there is an invariant circle. 52

3.6 An invariant curve and with some Lipschitz cones. 54

3.7 Refining the cone family. The inverse image of the cone at zn+1 and

the forward image of the cone at zn−1 intersect in a new, smaller cone

at zn. 55

xi

3.8 A piecewise constant cone family for the standard map with k =1.0.

No invariant circles can pass through the shaded squares. 56

3.9 An invariant curve and some Lipschitz cones in the delay coordinate

system. 58

3.10 Rotational invariant circles must cross every vertical line, and, for our

examples, must be periodic in p as well as θ. 64

3.11 The n-dimensional hypercube Qn is mapped to the prism by the matrix

P . 67

3.12 A prism, its image, and a prism bounding the image. 67

3.13 The bounding lemma applied to a lift of the circle map, φ(x) = x+Ω+

ε
2π

sin (2πx), with Ω = 0.3, ε = 0.8. The interval I1, at right, is the one

given by the lemma; it contains the image of I0. 69

3.14 The fixed-form fattener applied to the image of a singular, vertical

prism. The map is the delay-embedded version of the standard map

with k = 0.8. The new prism, shown in grey, fits snuggly in the u

direction but is much more generous in the v direction. 71

3.15 The column-rotor scheme applied to a narrow prism. The initial prism

is at the lower left; it is outlined in black and its center is marked

with a dot. The prism’s true image is solid black. A bounding prism,

produced with the column-rotor scheme using an angle of 27◦, is shown

in light grey, the darker prism beneath used an angle of 90◦. 72

3.16 The system of prisms used to show εc ≤ 0.0276. 84

3.17 εc ≤ 0.0274 . 85

3.18 εc ≤ 0.0272 . 86

3.19 Two symmetrically related states have the same action. 87

xii

A.1 Several levels of the Farey tree. The solid dot shows the position of the

golden mean. Its nth approximation is always the mediant which has

the largest sum pn + qn of any appearing at at the nth level. 91

A.2 The mediant operation which refines Farey triangles. The parent trian-

gle is represented by an equilateral right triangle. The algorithm divides

this into two similar, daughter triangles by adding a new point in the

middle of the hypotenuse. The coordinates of the new point are sums

of the coordinates of the end points of the hypotenuse. [KimOst86] . 92

A.3 Five levels of the Farey triangulation, (a), and, (b), the corresponding

partition of the unit square. [KimOst86] 93

1

Chapter 1

Introduction

There is a maxim which is often quoted, that “The same causes will
always produce the same effects.” . . .

It follows from this, that if an event has occured at a given time and
place it is possible for an event exactly similar to occur at any other time
and place.

There is another maxim which must not be confused with that quoted
at the beginning of this article, which asserts “That like causes produce
like effects.”

This is only true when small variations in the intial circumstances
produce small variations in the final state of the system. In a great many
physical phenomena this condition is satisfied; but there are other cases
in which a small initial variation may produce a very great change in the
final state of the system, as when the displacement of the “points” causes
a railway train to run into another instead of keeping its proper course.

James Clerk Maxwell, 1877

Maxwell’s warning, that like causes need not produce like effects, can apply to even

the simplest looking physical systems. Consider two equally massive stars bound in a

binary system. Their orbits both lie in the same plane and, in a suitable coordinate

system, their center of mass is at rest at the origin. If the orbits are nearly (but not

quite) circular the system will look like the one pictured in figure (1.1). Now imagine

adding a third body, a test mass so small that it does not disturb the motion of the

stars. Place the test mass at the origin and give it a velocity v0 normal to the plane

2

Figure 1.1: A system of two equally massive stars, m1 and m2, and a test mass, m3,

which travels on a line through the center of mass. [Moser73]

of the orbit. The test mass will bob up and down on the line through the origin and,

if the initial velocity, v0, is near enough to the escape velocity, the subsequent motion

of the test particle will display a fantastically sensitive dependence on the value of v0;

by suitable choice of v0 one can arrange for test mass to begin in the orbital plane,

spend ≈ s1 periods of the binary system above the plane, pass through to spend ≈ s2

periods below, then ≈ s3 above . . . and so on, producing a sequence,

· · · s0, s1, s2 · · · ,

where each sj is an integer counting the number of complete periods of the binary

which pass between visits by the test mass. The sj can be chosen completely inde-

pendently, subject only to the restriction sj > C for a constant C.

This system is described by Moser in [Moser73]. He begins his study by drastically

simplifying the problem; when t = 0 he notes the phase, θ0, of the binary orbit and

the speed, v0, of the test mass, then asks for θ1 and v1, the corresponding phase and

speed at the instant when the test particle first returns to the orbital plane. Certainly

they depend only on θ0 and v0, so he constructs some functions θ′(θ, v) and v′(θ, v)

3

such that

θ1 = θ′(θ0, v0) and v1 = v′(θ0, v0),

then uses them to find a sequence, · · · (θ0, v0), (θ1, v1) · · ·, which captures the essential

features of the dynamics. Moser shows that the wild behaviour described above occurs

because the mapping,

(θ, v)→ (θ′(θ, v), v′(θ, v)), (1.1)

behaves like the celebrated horseshoe example of Smale, [Smale65]. Smale constructed

the horseshoe by a process of abstraction; he began by trying to understand the

qualitative behaviour of a system of differential equations1, but eventually pared away

most of the original problem, leaving a simple, illuminating model of the dynamics.

A detailed description of the horseshoe, along with a host of examples and criteria for

recognizing horseshoe-like behaviour, appear in [Wig88]; for us it will be enough to

recognize that complicated dynamics arise even in simple classical systems and that

these dynamics can be explained in terms of structures in the phase space. For the

rest of the thesis we will be concerned with a different relationship between structure

and dynamics; we will be examine how the highly structured phase space of an orderly

classical system changes under perturbation.

1.1 Integrability and the KAM Theorem

The most orderly of Hamiltonian systems are the completely integrable ones; these

systems have so many constants of the motion, (N for an N -degree-of-freedom sys-

tem,) that we can reformulate the problem in terms of action-angle variables2 (θ,J),

1Smale gives a non-technical account of all this in one of the papers collected in [Smale80].
2We will use boldface symbols to denote n-dimensional objects, so that θ is in Tn, the n-

dimensional torus, p in Rn. We will write θj for the angular coordinate of the jth image of
some phase point, (θ0,p0), and xj (which is in ordinary type) for the real number which is the jth
component of some x ∈ Rn. Ocassionally we will need to express, “the kth coordinate of the jth
image of the phase point (θ0,p0).” That will be written θj,k.

4

Figure 1.2: The phase space of a completely integrable system. [Arn78]

so that the Hamiltonian, H(p,q), becomes a funtion of the actions alone. Then

Hamilton’s equations are

J̇i = −∂H
∂θi

= 0,

θ̇i =
∂H

∂Ji
≡ ωi. (1.2)

Figure (1.2) illustrates the structure of the phase space for a completely integrable,

2 degree-of-freedom system. Conservation of energy restricts the motion to a 3-

dimensional energy surface, represented here as a solid torus. A phase trajectory

winds around on a two dimensional torus, covering it densely unless ω1 and ω2 are

rationally dependent, that is, unless there are integers m1 and m2 such that

m1ω1 = m2ω2. (1.3)

Tori for which (1.3) holds are called resonant and they are entirely covered by periodic

phase trajectories.

Figure (1.2) also illustrates a construction we will use throughout the thesis, the

Poincaré surface of section. This technique reduces the continuous Hamiltonian flow,

(1.2), whose trajectories lie in a 2n-1 dimensional energy surface, to a discrete-time

map, T , which acts on a 2n-2 dimensional surface. In figure (1.2), the surface of

5

section is given by θ1 = 0 and the map T carries a phase point, x, to the next point

where x′s trajectory intersects the surface. That is,

T (J , θ1 = 0, θ2) = (J , θ1 = 0, θ2 + 2π
ω2

ω1

).

The structures of integrability leave a clear signature on the surface of section; all the

orbits of T are confined to circles, so that the orbit of a typical point hops around its

circle, eventually filling it densely. Those circles that are cross sections of resonant

tori are covered by periodic orbits; if a circle arises from a torus obeying a relation

like (1.3), then the points on it are periodic with period m2 and hop m1 times around

the circle before repeating.

This extremely regular structure has profound qualitative effects on the physics

of the motion; integrable systems are far from satisfying the ergodic hypothesis of

statistical mechanics. A phase trajectory, confined by conservation laws to an n

dimensional submanifold of the 2n-1 dimensional energy surface, does not even come

close to exploring the whole of energetically accessible phase space and so predictions

based on the microcannonical ensemble, which gives equal weight to all points with the

same energy, will certainly be wrong. These remarks, along with the evident success

of statistical mechanics, suggest that complete integrability must be rare, that most

of the structure of integrability cannot survive perturbation. Indeed, Fermi believed

that the slightest perturbation would completely disrupt integrability, [FPU55].

The fate of invariant tori is, however, much more complicated and wonderful; it

is the subject of the most spectacular theorem in Hamiltonian dynamics.

Theorem (KAM)

If an unperturbed (completely integrable) system is non-degenerate3, then for suffi-

3The non-degeneracy condition is that

det

∣∣∣∣∂ω∂J
∣∣∣∣ = det

∣∣∣∣∂2H0

∂J2

∣∣∣∣ 6= 0,

where H0(J) is the unperturbed Hamiltonian. It means that the ωi(J) are independent as functions.

6

ciently small conservative Hamiltonian perturbations, most non-resonant tori do not

vanish, but are only slightly deformed, so that in the phase space of the perturbed

system, too, there are invariant tori densely filled with phase curves winding around

them conditionally-periodically, with a number of independent frequencies equal to the

number of degrees of freedom. These invariant tori form a majority in the sense that

the measure of the complement of their union is small when the perturbation is small.

That is, most tori survive small perturbations! The statement above is taken from

Arnold’s book, [Arn78], but he does not give a proof. Moser’s book, [Moser73] gives

an argument and [Bost86] gives a thorough review.

1.2 The Taylor-Chirikov Standard Map

We conclude our introduction with a brief review of an exhaustively studied example,

the Taylor-Chirikov standard map. It is a 2-dimensional, area-preserving map acting

on the set S1 ×R = {(x, p)|x ∈ [0, 1), p ∈ R}.

p′ = p− k

2π
sin(2πx),

x′ = x+ p′ mod 1. (1.4)

Chirikov [Chkv79] describes this example as a periodically-kicked rotor, sampled at

the frequencey of the kicking; x is a normalized angle variable with p the corresponding

angular momentum. Chirikov’s rotor recieves periodic, impulsive blows whose size

and direction depend on the rotor’s angular position at the moment the impulse is

delivered. For k = 0, the system is completely integrable; p is a constant of the

motion and the orbits are confined to one-dimensional curves.

Figure (1.3) shows the structure of the phase space for various values of the per-

turbation. Each panel shows the orbits of several points from the the set {(x, p)|x ∈

[0, 1), p ∈ [0, 1)}. Here we will give a qualitative discussion of these pictures, at the

7

same time introducing ideas which we will study fully in later chapters. The series

begins in the top panel with a small perturbation; many orbits still seem to lie on or

between circles. The arcs in the corners of the picture, when associated by periodic

boundary conditions, form ovals encircling the fixed point z0 ≡ (x = 0, p = 0). The

ovals arise because z0 is an elliptic fixed point; that is, the derivative of the map,

DT =


∂x′

∂x

∂x′

∂p

∂p′

∂x

∂p′

∂p

 ,

is such that the matrix DTz0 has its eigenvalues on the unit circle. Consequently,

points which start near z0 stay nearby and their orbits form the arcs. If we were to

restrict our attention to this elliptic island we would find that it has much the same

structure as the whole phase space; the ovals would play the role of invariant circles

and in amongst them would lie yet smaller elliptic islands. If we magnified one of

those islands . . . the structure goes on forever. There is also another fixed point, at

z1 ≡ (x = 1
2
, p = 0), but it is hyperbolic; the matrix DTz1 has eigenvalues off the

unit circle, so almost every orbit which begins near it eventually moves away with

exponential speed. Besides the fixed points, there are always at least two periodic

orbits for every rational rotation number p
q
. Chapter 2 gives a longer and more

technical discussion of periodic orbits and also discusses some special sets, the cantori,

which are, in a sense, the ghosts of disrupted tori. The chapter begins with a review

of the two dimensional theory then shows some numerical work aimed at higher

dimensional generalizations.

In the middle panel, many more elliptic islands are evident, as is a broad stochastic

layer, a region which no longer contains any invariant tori; the orbits in such a region

are quite complicated and chaotic, and are confined to a layer only because the phase

space is two dimensional and thus the invariant circles divide phase space into two

disjoint pieces and so pairs of circles can trap even very chaotic orbits. In higher

8

dimensional systems the tori have too low a dimension to isolate parts of the phase

space; points not actually contained in tori are free to diffuse throughout the whole

stochastic part of the phase space, though they do so only very slowly, in a process

called Arnold diffusion [Arn64, Nekh71]. Although we will not have much more to say

about Arnold diffusion, we will have cause to consider the topological consequences of

higher dimension; in both the remaining chapters we will find that topology prevents

us from proving results as strong as those available for two dimensional systems.

The final panel shows a perturbation large enough to gaurantee very strong chaos;

k is so large that Mather, [Ma84], has shown analytically that no invariant circles (of

the type which wind all the way around the cylinder) remain. Numerical experiments

by Greene suggest that no circles exist for |k| > kc ≈ 0.971635406. We leave this

subject for the moment, but Chapter 3 is entirely devoted to converse KAM results,

theorems that say, as Mather does, that for large enough perturbations, no tori exist at

all. There we will review Mather’s work, as well as the computer-assisted arguments

of MacKay and Percival then discuss higher dimensional generalizations and show

some new results.

9

Figure 1.3: Orbits of the standard map for several sizes of the perturbation k. Each

panel shows 200 iterates from the orbits of 20 different initial conditions.

10

Chapter 2

Ghosts of Order

In this chapter we ask, “What becomes of invariant tori?” We have seen that the

phase space of completely integrable Hamiltonian systems is filled by such tori and

that the KAM theory assures us that some of them persist even in the face of small

perturbations. What becomes of the tori for which KAM fails? In general, one

can’t say. But for certain two dimensional, area-preserving maps Mather [Ma82a]

and, independently, Aubry [Aub83a], demonstrated the existence of some remarkable

sets. They are reminiscent of invariant tori, but are not complete curves, rather,

they look like graphs supported above a Cantor set. Orbits on these “cantori” are

similar to rotation on an invariant torus; one may consider Mather’s sets the ghosts

of destroyed invariant tori. Here we review the two dimensional results, then present

some numerical investigations1 from on effort to find the higher dimensional analogs

of Mather’s sets. At the end of the chapter we discuss a topological obstacle which

prevents simple generalization of the Aubry-Mather theory.

1Kook and Meiss, [KM88], have reported similar studies; J. Meiss has been especially helpful in
discussing this work.

11

Figure 2.1: The cylinder and its coordinate system.

2.1 Basic notions and notations

In this section we give careful definitions of the maps we will study, the spaces they

will act on, and the tools we will use to understand them. We will also review the two

dimensional theory, describing cantori and explaining how to approximate them by

periodic orbits. In the course of the review we will introduce a variational principle

that will be the foundation of all our work.

2.1.1 spaces and maps

We will study maps based on the Poincaré map of a near-integrable, action-angle

system and so they will act on the n-dimensional multi-annulus, An = Tn × Rn,

where Tn is the n-torus and Rn is n-dimensional Euclidean space. To avoid having to

worry about factors of 2π, we will always normalize the angles, and so write points in

An as (θ,p) where θ = (θ1, θ2 · · · θn) and the θi are periodic coordinates with period

1.

The one-dimensional annulus, A = T×R, is conveniently represented as a cylinder

with coordinates as pictured in figure (2.1). Maps taking the cylinder to itself will

be called T , or Tε if they depend on parameters; maps acting on An for n > 1 will

be either f or fε. In all cases, our maps will be symplectic, that is, they will preserve

12

the standard symplectic form (see e.g. [Arn78, KB87]),

Ω =
n∑
j=1

dθi ∧ dpi. (2.1)

For a map T on the cylinder, preservation of (2.1) means that T preserves area

and orientation and so is equivalent to Liouville’s theorem about the preservation of

volume in phase space. For higher dimensional systems, preservation of (2.1) also

implies preservation of volume, but is stronger.

We will often need to work with a lifting, Fε, of a symplectic map, fε, to the

universal cover of An. This is essentailly a version of fε extended periodically so that

acts on the whole of Rn×Rn. If fε : An → An, fε(θ,p) = (θ′(θ,p),p′(θ,p)) then Fε

acts on Rn ×Rn Fε(x,p) = (x′(x,p),p′(x,p)), and agrees with fε up to an integer

translation. That is, if fε(θ0,p0) = (θ1,p1) and Fε(x0 = θ0,p0) = (x1,p1) then

x1 − θ1 = m (2.2)

for some integer vector m ∈ Zn. Further,

Fε(x0 + m,p0) = Fε(x0,p0) + m.

The choice of a lift, Fε, which comes down to the choice of m in (2.2) does not affect

any qualitative features of the dynamics. For example, a lift of the standard map is

p′ = p− k

2π
sin(2πx),

x′ = x+ p′,

which is just the same as (1.4) except that the position coordinate is no longer taken

mod 1. We will always use the convention that Fε : Rn×Rn is a lift of fε : An → An.

2.1.2 a variational principle

The dynamics of an autonomous Hamiltonian system can be characterized with the

principle of least action; to specify a segment of a phase trajectory, γ(t) = (p(t),q(t)),

13

one need only note the values of the position coordinates at the ends of the segment

and require that γ be an extremal of the “reduced action” functional [Arn78],

S(q0,q1) =
∫ q1

q0

pdq. (2.3)

In particular, one can get the momenta at the endpoints of the segment by taking

derivatives of S(q0,q1);

p1 =
∂S

∂q1

and p0 = − ∂S
∂q0

.

The analogous thing for a symplectic map Fε : Rn → Rn is an action-generating func-

tion, a function, Hε : Rn ×Rn → R, where Hε = Hε(x,x
′) is such that if Fε(x0,p0) =

(x1,p1), then

p1 =
∂Hε

∂x′
and p0 = −∂Hε

∂x
(2.4)

The point of constructing a generating function is that it enables us to discuss dy-

namics entirely in terms of the position coordinates. In the next section we will

demonstrate the usefulness of variational arguments by reviewing the theory of area-

preserving twist maps of the cylinder. These maps get their name because of a

geometric property of their action; a C1 map T is twist if it carries every vertical line

into a monotone curve; see figure (2.2). More analytically, if T (θ, p) = (θ′(θ), p′(θ, p)

is a symplectic map of the cylinder, then T is twist if

∂θ′

∂p
6= 0.

2.1.3 area-preserving twist maps

Here we will examine the kinds of orbits which can occur for an area-preserving twist

map. Since we will be wanting to make variational arguments we require that, in

addition to being a twist map, T posses a generating function, h(x, x′). For conve-

nience, we will work with a lift of T , call it T̃ , and will use coordinates in R × R

14

Figure 2.2: A twist map carries vertical lines to monotone curves.

rather than on the cylinder. First we will use the generating function to construct

some periodic orbits.

A periodic orbit is characterized by its period and by the number of times it winds

around the cylinder before closing. Suppose we want an orbit which, in q steps, makes

p turns. Such an orbit would appear on the universal cover as a sequence of points

{· · · (x0, p0), (x1, p1), · · · (xq−1, pq−1), (xp, qp), · · ·} with xj+q = xj + p. We could seek

it by trying to find a sequence of position coordinates,

X = {x0, x1, . . . , xq−1, xq; xq = x0 + p}, (2.5)

such that the function

Lp,q(X) =
q−1∑
j=0

h(xj, xj+1) (2.6)

was minimized. We will call such a sequence a p-q minimizing state. If we could find

one, then, automatically, we could compute the desired kind of periodic orbit. To see

how, consider the condition that (2.6) be extremal:

∂Lp,q
∂xj

=
∂h

∂x
(xj, xj+1) +

∂h

∂x′
(xj−1, xj) = 0 for j = 0, 1, · · · , q − 1. (2.7)

We will call these the Euler-Lagrange equations. Now, if X were the projection of

some periodic orbit, we would be able to recover the missing momentum coordinates

in two ways; we could use either

pj =
∂h

∂x′
(xj−1, xj) or pj = −∂h

∂x
(xj, xj+1).

15

Figure 2.3: The billiard ball dynamical system. [Birk27]

The condition (2.7) is that these two be equal, so that if we can find a sequence like

(2.5) we have found the desired periodic orbit. Arguments like this were first made

by Birkhoff, who used them to construct periodic orbits for the map given by the

motion of a point particle in a convex, rigid walled box. This system can be reduced

to an area preserving twist map by considering the particle’s collisions the wall and

using coordinates given by a length, r measured along the perimeter of the domain,

and the variable σ = − cos(θ) where θ is the angle the particle’s path makes with

the tangent to the wall, see figure (2.3). In this system the generating function is

just the negative of the length of the path traced by the ball, and so the minimizing

periodic orbit with p = 2, q = 5 is just the orbit which corresponds to the longest

inscribed star. Besides the minimizing periodic orbit, there is another, a minimax

orbit. To see how this orbit arises take one point of the minimizing orbit and slide it

along the boundary, allowing the other points to shift so as to keep the total length

of the star as large as possible. At first the length must decrease; we have assumed

that the initial, undistorted star was the longest possible. Eventually, though, the

length of the distorted star will have to stop decreasing and begin to increase because

eventually the verticies will reach a configuration which is a cyclic permutation of the

original star. The configuration for which the length again begins to increase must

also be a sationary point of Lp,q; it satisfies the Euler-Lagrange equations and so it

too corresponds to a genuine periodic orbit.

16

The action-minimizing periodic orbits, which are called Birkhoff orbits, are dis-

tinguished by the numbers p and q used in their construction. The rational number

p
q
, which is the orbit’s average angular speed, is called the rotation number of the

orbit. More generally, an orbit (x0, p0), (x1, p1), . . . on the universal cover is said to

have rotation number α if

α = lim
n→∞

xn − x0

n
. (2.8)

This limit does not always exist. Most of the points in the stochastic regions of the

standard map do not have well-defined rotation numbers, though all of the orbits

lying on invariant circles do; orbits on non-resonant circles have irrational α.

This observation prompted Mather, in [Ma82a], to try to find orbits that had irra-

tional rotation numbers, but were not part of invariant tori. He succeeeded dramati-

cally, discovering whole, complicated sets of such orbits and revealing an unexpected,

rich structure in the phase space.

We can construct one of Mather’s sets by taking a limit of minimizing, Birkhoff

periodic orbits. That is, we take a sequence of rational numbers {p0/q0, p1/q1 · · ·}

which has an irrational ω as a limit, construct the corresponding Birkhoff minimizing

orbits, and see whether they accumulated to any interesting limit set. Katok, [Kat82],

has shown that they do. If there is an invariant circle with rotation number ω, then

the Birkhoff orbits accumulate on it. If there is no invariant circle, then the orbits

accumulate on a cantorus, a set which looks like an invariant circle with a countable

set of holes cut out of it, see figure (2.4).

The cantori have many properties reminiscent of irrational invariant circles; orbits

lying in the cantorus are dense and the motion on the cantorus, is, by a continuous

change of coordinate, equivalent to rotation by the angle ω. Also, the cantorus has

the same kind of smoothness2 as an invariant circle. If (θ0, p0) and θ1, p1) are any two

2A theorem of Birkhoff states that the invariant circles are Lipschitz graphs.

17

Figure 2.4: A cantorus for the standard map. The vertical axis is measured in units

of y = p − k
4π

sin(2πx), where k = 1.001635 is the size of the perturbation and the

rotation number is ≈ 1
γ2

where γ = 1+
√

5
2

is the golden mean. [MMP84]

points from the cantorus then there is a constant L, independent of the θ’s, such that

|p0 − p1| ≤ L|θ0 − θ1|,

that is, the momenta are Lipschitz functions of the positions.

Katok’s scheme for approximating the cantorus by a of periodic orbits is different

from the approach first used by Mather, but it is much better suited to numerical

experiment; all computational investigations of cantroi depend on approximnation by

periodic orbits e.g. [MMP84, MP87, Grn79].

2.2 Higher dimensional analogs

In this section we formulate the numerical investigations reported in the rest of the

chapter. Our studies are based on the Katok and Bernstien’s paper, [KB87] in which

they study certain n-dimensional symplectic maps generated by a function Hε(x,x
′)

and prove the existence of action-minimizing periodic orbits. For these orbits, which

18

are defined by analogy with the Birkhoff orbits on the cylinder, the role of the rational

rotation number p
q

is played by a rotation vector, p
q

where q is the length of the orbit

and p ∈ Zn, p = (p0, p1, . . . , pn) gives the number of times the orbit winds around

each of the coordinate directions. As above, each rational vector has a corresponding

type of p, q-minimizing state,

X = x0,x1, . . . ,xq−1,xq; xq = x0 + p

an action functional, Lp,q, some Euler-Lagrange equations,

Lp,q(X) =
q−1∑
j=0

Hε(xj,xj+1) (2.9)

∂Lp,q
∂xj

=
∂Hε

∂x′
(xj−1,xj) +

∂Hε

∂x
(xj,xj+1), (2.10)

and at least one minimizing periodic orbit. Katok and Bernstien’s maps are small

perturbations of some completely integrable system whose unperturbed generating

function, H0(x,x′), satisfies H0(x,x′) = h(x′−x) where h(u) is strictly convex, i.e.,

the Hessian matrix of h,

∂2h

∂u2
=



∂2h
∂u20

∂2h
∂u0∂u1

· · · ∂2h
∂u0∂un−1

∂2h
∂u1∂u0

∂2h
∂u21

· · · ...
...

. . .

∂2h
∂un−1∂u0

· · · ∂2h
∂u2n−1


, (2.11)

is positive definite. This condition is a higher dimensional analog of the twist condi-

tion, but is not the only possible generalization; Herman, in [Herm88], gives another.

In the next section we will present some explicit 4-d symplectic maps and their gener-

ating functions and section 2.2.2 we show some pictures of minimizing periodic orbits

and discuss how their shapes and stability depend on the size of the perturbation.

The real question here is “Are there cantori in 4-d symplectic maps?” On the an-

alytic side, the answer seems to be “maybe.” Katok and Bernstien are able to show

19

that if a sequence of rational rotation vectors {p0

q0
, p1

q1
, . . . }, pi ∈ Zn, q ∈ Z, con-

verges to some irrational rotation vector, ω = (ω1, ω2, · · ·ωn), then the corresponding

sequence of Birkhoff orbits also has a limit. Unfortunately their results on the prop-

erties of the limiting set are not as strong as those available for twist maps. They

cannot say what the limiting set looks like or much about the motion on it. They

are able to establish that the momenta should be Hölder continuous functions of the

positions, but with index α = 1
2
, that is if, (θ0,p0) and (θ1,p1) are points from this

limit set then, except, perhaps for a single isolated point,

||p0 − p1|| ≤ C||θ0 − θ1||
1
2 , (2.12)

for some constant C, independent of the θi. We present some ambiguous numerical

investigations aimed at verifying or improving this smoothness estimate, but are

unable to report any definite results.

Finally, in section 2.3 we discuss a pathology forseen by Hedlund. Hedlund’s exam-

ples complicate any discussion of the behaviour of very long orbits and are an obstacle

to both analytic and numerical investigation of higher dimensional cantori. We re-

port on some qualitative investigations designed to see whether Hedlund’s pathology

actually occurs.

2.2.1 the maps and orbits

We follow [KB87] and study maps which are generated by functions of the form

Hε(x,x
′) = h(x′ − x)− Vε(x,x′), (2.13)

where h(x′−x) : Rn → R, the unperturbed part of the generating function, satisfies

(2.11) and the perturbation Vε(x,x
′) : Rn×Rn → R, is a small, C2 function satisfying

Vε(x+m,x′+m) = Vε(x,x
′) ∀m ∈ Zn. We will study 4-d sympectic maps generated

by (2.13) with

h(x,x′) =
1

2
‖ x′ − x ‖2

, Vε(x,x
′) = εV (x).

20

Where

V (x) =



one of

Vtrig(x) = − 1
Mtrig

{ 1
2
(sin 2πx0 + sin 2πx1) + sin 2π(x0 + x1) },

Vpoly(x) = − 1
Mpoly

{ [x2
0(1− x0)2(x0 − 3

4
)(1

4
− x0)] [x2

1(1− x1)2] },

or

Vff (x) = −1
2
{ 1

2
(c(x0) + c(x1)) + c(x0 + x1) },

with c(x) =

 1− 24x2 + 32x3 if x mod 1 ≤ 1
2
,

9− 48x+ 72x2 − 32x3 if x mod 1 > 1
2
.

(2.14)

Call the first perturbation the trigonometric perturbation, the second the polynomial

perturbation3 and the third the fast-Froschlé. The constants Mtrig and Mpoly are

chosen so that maxx∈Tn |V (x)| = 1. Vff (x) is a polynomial approximation to a map

originally introduced as a model of star motion in elliptical galaxies [Fro71]. The real

Froschlé map has cosines where ours has c(x) and has three independent constants,

one for each of the terms. Since its introduction the map has been popular as a model

for chaotic Hamiltonian dynamics e.g. [Fro72, Fro73, KnBg85, KM88, MMS89].

All our examples use “standard-like” perturbations, ones where Vε(x,x
′) depends

on x but not on its successor, x′. We made this choice of perturbation because it

simplifies the map. Using (2.4) we obtain

p′(x,p) = p− ε ∂V
∂x

(x),

x′(x,p) = x+ p− ε ∂V
∂x

(x). (2.15)

3The xi appearing in the definition of Vpoly are all taken mod 1.

21

Figure 2.5: Contour maps of −Vε(x) for the (a) trigonometric, (b) polynomial, and

(c) fast-Froeschlé perturbations. The conour interval is 0.1 and the contours corre-

sponding to negative values are dashed.

22

2.2.2 shapes of orbits and Lyapunov exponents

Figures (2.7)–(2.16) present several families of approximate Birkhoff orbits. Each

orbit is displayed as a pair of projections; one, on the left, is the projection into the

angular coordinates, the other, on the right, shows the momenta. Both projections

are computed from a p,q-periodic state which is an approximate solution to the Euler-

Lagrange equation (2.10). The angular projection of a point xj is an ordered pair

(θj,0, θj,1), with

θj,i = xj,i mod 1;

The horizontal is the θ0 direction and the vertical the θ1; both angles lie between 0.0

and 1.0. The momenta, which are calculated as

pj = −∂Hε

∂x
(xj,xj+1), (2.16)

are arranged similarly; the horizontal is the p0 direction and the vertical the p1.

measures of quality

Beside each pair rotation vector in the form (p0, p1)/q, and two measures of the quality

of the orbit, shadow and grad size. The first of these measures how closely our orbit,

which has its momenta given by (2.16), approaches the ideal

(xj+1,pj+1) = Fε(xj,pj),

= (p′(xj,pj), p′(xj,pj));

the value shadow is

max0≤j≤q−1 ‖ (xj+1,pj+1)− Fε(xj,pj) ‖

= max0≤j≤q−1

√
‖ xj+1 − x′(xj,pj) ‖2 + ‖ pj+1 − p′(xj,pj) ‖2

= max0≤j≤q−1

√√√√ 1∑
k=0

(xj+1,k − x′(xj,pj)k)2 + (pj+1,k − p′(xj,pj)k)2.

23

Most of the states displayed here have shadow ≈ 10−6. The other measure, grad size,

is  1

q

q−1∑
i=0

∥∥∥∥∥∂Lp,q∂xi

∥∥∥∥∥
2
 1

2

;

it is essentially the norm of the gradient of the action functional, normalized by the

length of the state.

shapes

We display orbits for all three perturbations and for two rotation vectors, (1432,1897)

/2513 and (2330,377) /3770. The first is an approximation to a irrational vector

called the spiral mean, the second approximates (1
10
, γ), where γ is the golden mean.

Both approximations come from the Farey triangle scheme of Kim and Ostlund,

[KimOst86], see appendix A for details.

For small ε the orbit is well distributed over the angular variables and the mo-

menta look as though they lie on a torus. With increasing perturbation the orbits

abruptly contract and concentrate along one dimensional filaments. The system of

filaments depends on both the perturbation and the rotation vector; in figure (2.7b)

the (1432,1897)/2513 orbit has contracted onto a system of three curves, each of

which winds around the torus once in each angular direction; we will call these curves

of type (1,1). In figure (2.12b) the same rotation vector and the polynomial pertur-

bation lead to a union of seven curves, each of type (0,1). On the other hand, this

same perturbation forces the (2330,377)/3770 state to concentrate along a curve of

type (4,1).

Lyapunov exponents

The qualitative behaviour of the orbits is correlated with their stability properties.

The Lyapunov exponents measure the exponential rate of divergence of nearby tra-

24

jectories (see, e.g., [Osc68]) and, for a periodic orbit, are just the eigenvalues4 of

DF q
ε,(x0,p0) = DFε,(xq−1,pq−1) ◦DFε,(xq−2,pq−2) ◦ · · · ◦DFε,(x0,p0) (2.17)

where DFε,(x,p) is the Jacobian of the map. From 2.15 we can calculate

DFε,(x,p) =


∂x′

∂x
∂x′

∂p

∂p′

∂x
∂p′

∂p

 =


I− ∂2Vε

∂x2 −I

−∂
2Vε
∂x2 I



where I is the d -dimensional identity matrix and ∂2Vε/∂x
2 is the Hessian of the per-

turbation. Each of the DFε,(xi,pi) is a real symplectic matrix and so the entire product

is real and sympectic too. The eigenvalues of DF q
ε,(x0,p0) thus occur in reciprocal pairs

(λ0, 1/λ0) and (λ1, 1/λ1) , [Arn78]; for the unperturbed map, all four are equal to

one. As the perturbation increases first one pair, then the other, depart from the unit

circle. At about the same parameter value for which the first pair leaves the circle we

see the minimizing state contract along the filaments. For large enough perturbation

both pairs are non-zero and the distribution along the direction of the filaments is

also Cantor-like. See figure (2.6) for the exponents of most of the orbits presented

here.

At about the same value of the perturbation for which the states begin to con-

centrate along filaments, the first pair of Lyapunov exponents departs form the unit

circle. The eigenvector corresponding to the largest exponent projects to a vector

transverse to the filaments. As we increase the perturbation further the states begin

to form into clumps along the direction of the filaments until, in the last panels of

each series of orbits, the orbits are concentrated near points.

4The accurate, direct calculation of the matrix product in (2.17) is usually not possible; see
appendix A for a discussion.

25

Figure 2.6: The Lyapunov exponents for the rotation vector (377,2330)/3770

and the trigonometric and polynomial perturbations. Also those for the vector

(1432,1897)/2513 with the trigonometric and fast-Froeschlé perturbations.

26

Figure 2.7: Birkhoff orbits for the trigonometric perturbation and the rotation vector

(1432,1897)/2513. This panel illustrates the collapse along filaments. Notice how the

ε = 0.0075 state has momenta seeming to lie on a smooth surface.

27

Figure 2.8: Birkhoff orbits for the trigonometric perturbation and the rotation vector

(1432,1897)/2513. This pair shows the appearance of Cantor-like clumping along the

filaments.

28

Figure 2.9: Weakly perturbed Birkhoff orbits for the trigonometric perturbation and

the rotation vector (377, 2330)/3770).

29

Figure 2.10: Strongly perturbed Birkhoff orbits for the trigonometric perturbation and

the rotation vector (377, 2330)/3770).

30

Figure 2.11: Birkhoff orbits for the polynomial perturbation and the rotation vector

(1432,1897)/2513. Note that the momenta remain very near their unperturbed values.

31

Figure 2.12: Birkhoff orbits for the polynomial perturbation and the rotation vector

(1432,1897)/2513. This pair shows the appearance of Cantor-like clumping along the

filaments.

32

Figure 2.13: Birkhoff orbits for the polynomial perturbation and the rotation vector

(377, 2330)/3770).

33

Figure 2.14: Birkhoff orbits for the polynomial perturbation and the rotation vector

(377, 2330)/3770).

34

Figure 2.15: Birkhoff orbits for the fast-Froeschlé perturbation and the rotation vector

(1432,1897)/2513. Notice how even the ε = 0.0075 state seems to have its moment

concentrated on a curve.

35

Figure 2.16: Birkhoff orbits for the fast-Froeschlé perturbation and the rotation vector

(1432,1897)/2513.

36

2.2.3 non-existence of tori: a prelude

Notice that the very perturbed orbits look as though they are full of holes, as though

there are some parts of the torus they cannot visit. One might imagine that this is

just a consequence of the finite lengths of the our orbits, that if we had orbits with

ten times as many points some of them would be bound to land in the holes. We

can show that, for sufficiently large perturbations, the holes are genuine; there are

neighborhoods which all minimizing Birkhoff orbits must avoid.

Suppose Vε(x) is a C2, standard-like perturbation to the generating function

H0(x,x′) = 1
2
‖ x′ − x ‖. Suppose further that Vε(x) has a minimum at x = xmin.

Then there is an εc, such that for ε > εc, all minimizing states must avoid a region

containing xmin.

Proof A globally mininimizing state, X, must be an extremum of Lp,q such that

every small, local, variation, xi → xi + δ increases the action. That means that X

must satisfy the Euler-Lagrange equations (2.10) and also that

∂2Lp,q
∂x2

i

=


2− ε ∂

2V
∂x2

0

(xi) −ε ∂2V
∂x0∂x1

(xi)

−ε ∂2V
∂x0∂x1

(xi) 2− ε ∂
2V
∂x2

1

(xi)

 , (2.18)

is positive definite. Because xmin is a minimum, the eigenvalues, µ0(ε) ≤ µ1(ε), of the

Hessian of −Vε(xmax) are negative. If one of them is less than −2 then (2.18) cannot

be satisfied. Since the µi are decreasing functions of ε we need only find that value,

εc, for which µ0(εc) = −2.

For the trigonometric perturbation εc ≈ 0.03856; for the polynomial perturbation

εc ≈ 0.04167. The appearance of the states suggests that neither of these is a very

good estimate; the region near the maximum is completely devoid of points long

before ε = εc. The real interest of an argument like the one above is that it can

provide an estimate of the size of perturbation needed to destroy all the original

invariant tori; since the whole next chapter is devoted to such estimates, we leave the

37

subject for now.

2.2.4 smoothness

We would like to be able to say that very long periodic orbits approximate a Cantor

set which we could view as the tattered remnant of an invariant torus. Such a remnant

would have a kind of smoothness; two points which lay lie very close to each other

in the angular variables should not have wildly different momenta. What we need is

a result like the theorem of Birkhoff, generalized by Katok [Kat82], which says that

for points in a Mather set, the momenta are Lipschitz functions of the coordinates,

i.e. ‖ pi − pj ‖ ≤ C ‖ xi − xj ‖ where C is a constant. Katok and Bernstien [KB87]

looked for such a result and, as mentioned above, were able to show that, except

perhaps at one point, the momenta are Hölder continuous with index 1/2, that is,

‖ pi − pj ‖ ≤ ‖ xi − xj ‖α α =
1

2
.

for some constant C independent of the xi.

Hoping to verify or improve their estimate, we computed pairs (L, ‖ ∆x ‖) , where

L = ‖ ∆p ‖/‖ ∆x ‖ , and displayed them on logarithmic axes. If some kind of Hölder

continuity applies, then

L =
‖ ∆p ‖
‖ ∆x ‖

≤ C ‖ ∆x ‖α−1,

so

logL ≤ logC + (α− 1) log ‖ ∆x ‖.

We can tell whether our orbits are compatible with Lipschitz continuity by looking

at the upper envelope of (L, ‖ ∆x ‖). If the envelope is a decreasing function of ‖ ∆x ‖

then the Hölder index is less than one and the momenta are not Lipschitz functions.

If the envelope is flat or sloping upward then the continuity is Lipschitz or better.

Figure (2.17) shows some collections of (L, ‖ ∆x ‖) pairs. The results are ambiguous

38

at best. At very small perturbation the upper envelope has a positive slope, see

figure (2.17 parts a and b). For intermediate values of ε, those for which the orbit has

contracted into filaments but has not yet begun to concentrate in points, the situation

looks worse; the largest values of L occur for the smallest values of ‖ ∆x ‖, see figures

(2.17parts c and d). This would seem to doom any hope that p is a Lipschitz function

of x. Note, however, that the upper envelope has a slope of −1. This suggests that

‖ ∆p ‖ ≈ const. On the other hand, we have, from Katok and Bernstien, that p is

Hölder 1
2

. It is thus possible that the lack of smoothness may come from not having

enough points. At very large ε, those for which the orbit has contracted into a few

small clumps, (L, ‖ ∆x ‖) begins to have an increasing envelope again. Unfortunately,

it is just at these very short distances that we must begin to doubt the quality of our

orbits. Typically we have shadow = 10−6 and so must expect the x’s, p’s and their

differences to be uncertain at about that level too.

Finally, we note that the uncertainty in the p’s could expalin the behavior at

intermediate ε. If the components of p’s are uncertain beyond σp, their differences

are uncertain to
√

2σp. Then, no matter what the continuity properties of p, for

small enough ‖ ∆x ‖ we should expect to see ‖ ∆p ‖ ≈ const. This explaination is not

vompletely satisfactory in that it fails to explain why some of the graphs in figure 2.17

seem to have two different populations of constant ‖ ∆p ‖’s.

2.3 Hedlund’s examples

In this section we will worry about whether the shapes of our states have anything to

say about the shapes of much longer states with similar rotation vectors. A central

premise of our program of rational approximation is that they do; unfortunately,

except for the two dimensional case (twist maps on the cylinder), we cannot prove

this. We cannot even show that states with the same rotation vector must have the

39

Figure 2.17: Pairs (L, ‖ ∆x ‖) calculated for the 800 most closely spaced pairs of points

in states of the rotation vector (1432,1897)/2513 with the trigonometric perturbation.

40

same shape. Consider the family of minimizing states with rotation vectors,

p0

q0

,
2p0

2q0

, . . . ,
np0

nq0

, . . . n ∈ Z+,

where p0/q0 is in lowest terms. For each of these states there is certainly one solution

to the Euler-Lagrange equation which is just a concatenation of n copies of the p0/q0

minimizing state, but there may also be other solutions, some of which may have

lesser total action.

To see how this can happen, we consider the problem of finding minimal geodesics,

curves of smallest possible length, on either the two (or three) dimensional torus. This

problem arises, for example, in the motion of a free particle in a system with peri-

odic boundary conditions and could be reduced to a symplectic map via a surface of

section, but in the discussion below it will be simpler to think about continuous time

and smooth trajectories. We will work with two different representations of the prob-

lem, one on the two (or three) dimensional torus and another made by periodically

extending the torus to get the plane (or R3). In either representation, we will allow

the metric to be other than the usual Euclidean one.

In the Rn version of the problem, a minimal geodesic is a curve, γ : R→ Rn,

parameterized in terms of, say, arc length and for which every finite segment is the

shortest possible curve connecting its endpoints. Our special interest will be the

periodic geodesics; on the torus these are curves which wind around and eventually

begin to retrace themselves. In Rn they appear as curves for which ∃τ ∈ R such that

γ(t+ τ) = γ(t) + m, m ∈ Zn (2.19)

and we may classify them according to m, which gives the number of times γ winds

around each of the coordinate directions on the torus before repeating itself. Hedlund

studied these curves on the two dimensional torus and, in [Hed32], showed that for

every pair (m0,m1) ∈ Z2, there is a minimal periodic geodesic which winds m0 times

around the θ0 direction and m1 times in the θ1 direction before closing.

41

He also made an observation which connects the geodesic problem to the problem

of finding Birkhoff periodic orbits. He asked whether, for example, the minimizing

periodic geodesic for the pair (10,20) could be different from the which traces 10 times

over the (1,2) geodesic. He found that it could not. The corresponding statement for

Birkhoff orbits is that the pathology outlined at the beginning of the section does not

occur for two dimensional twist maps of the annulus.

In the last section of his paper, Hedlund demonstrated that one cannot expect

the analagous result in higher dimension. He presented an explicit example of a

metric on T3 for which the shortest geodesic of type (ni, nj, nk) is not n copies of

the shortest (i, j, k) geodesic. Victor Bangert [Bang87] has proved that a metric on

Tn has at least n+ 1 minimal geodesics and has given some principles for the design

of Hedlund-type examples.

Figures (2.18) and (2.19) contain the main ideas. Bangert sets up the metric so

it has certain non-intersecting lattices of “tunnels,” tubes in the middle of which the

metric is so small that the length of a segment is, at most, say, 1/100 of its Euclidean

length. Outside the tunnels the metric is such that the length of a segement is a bit

longer than its Euclidean length. In Bangert’s examples the tunnels run along the

lines (0, t, 1
2
), (1

2
, 1

2
, t), and (t, 0, 0), t ∈ R and along all their Zn translates. Under

these rather severe conditions he is able to show that a minimizing geodesic must

spend essentially all its time inside the tunnels, venturing out only to leap from one

system of tunnels to another.

A minimizing, periodic geodesic then has only three short segments lying out-

side the tunnels, no matter how long it is. Note that such a geodesic strays a long

way from the straight line which connects its endpoints; the latter is a minimizing

periodic geodesic for the flat, Euclidean metric. In the language of Birkhoff orbits,

Hedlund’s pathology would occur if some few p-q periodic states turned out to have

such tiny actions that all very long states would be composed of a few segments,

42

with each segment containing many copies of the few economical states. Although

we cannot preclude this possibility, we feel it is unlikely. Hedlund and Bangert’s ex-

amples require that the curves through the tunnels be much, much shorter than their

Euclidean lengths, consequently, their metrics are very far from flat. By contrast,

our generating functions are close to the unperturbed ones. We might thus hope that

our minimizing states are obliged to stay close to the unperturbed states. Katok has

shown, in [Kat88], that if the perturbed states stay within some bounded distance of

the unperturbed distance and if the bound is independent of the length of the state,

then Hedlund’s pathology does not occur.

We undertook two studies to investigate these issues. In the first, figure (2.20),

we measured the deviation of our minimizing states from the straight line connecting

x0 to xq. The distance always remains smaller than the diameter of the torus, 1/
√

2.

In the second study we used the Farey triangle algorithm of Kim and Ostlund, (see

appendix A), to get a sequence of rotation vectors tending to (377, 2330)/3770. The

states for these vectors are displayed in figure 2.21. The longest orbits look very much

like the shortest. We also did some experiments on families of rotation vectors of the

form5 np0/nq0; The longer states were indistinguishable from the shorter ones.

5An unperturbed minimizing state is n copies of the unperturbed p0/q0 state and our procedures
for constructing perurbed minimizing states are such that this shorter, internal periodicity would
be retained throughout the calculation. We tried to circumvent this problem by adding a small,
random displacement to each of the points in the starting guess, see appendix A.

43

Figure 2.18: Some minimizing periodic geodesics for the two dimensional torus; the

shortest curve of type (2,4) is just 2 copies of the shortest one of type (1,2).

44

Figure 2.19: Some minimizing periodic geodesics for a Hedlund example on the three

dimensional torus; the shortest curve of type (2,4,2) is not 2 copies of the shortest

one of type (1,2,1).

45

Figure 2.20: The largest displacement between a point in a perturbed minimizing state

and the position it would occupy in the abscence of the perturbation. Note the abrubt

jumps in the deviations for the fast-Froeschlé example.

46

Figure 2.21: A series of orbits whose rotation vectors approximate (377,2330) / 3770.

47

Chapter 3

The Frontier of Chaos

Our first investigations aimed at the question “What remains after invariant tori have

been destroyed?” Our next set asks the more basic “How could we tell if the tori

were there?” To answer this question we might follow Kolmogorov, Arnold and Moser

and seek to find perturbations so small that some tori would be guaranteed to exist.

Conversely, we could try to find perturbations so large that no invariant tori remain.

Numerical evidence suggests that the first approach will be hard; tori seem to persist

well beyond the point where traditional KAM arguments break down.1 We will adopt

the latter strategy; we will try to fill in the blanks in the following “converse KAM”

theorem :

Theorem For the n-dimensional symplectic twist map Fε : An → An,

Fε(x, r) = (x′, r′) =

depending on the parameters, ε, we are guaranteed that no KAM tori exist for any

ε ∈ SF = { }.

1Several authors have now proved machine-assisted, constructive KAM theorems for specific
maps; these are in much better agreement with non-rigorous numerical predictions. See e.g. [CC88],
[Rana87], and [LR88].

48

Figure 3.1: The space of near-integrable maps, showing the frontier of non-integrability

around T0, an integrable system.

Proof

Herman, in [Herm83] first saw that one might get a better notion of where invariant

tori exist by looking at the edge of the region where they do not. He considered maps,

Tε : T×R→ T×R, of the form2

Tε(x, p) = (x′, p′) = (x+ p, p+ εf(x+ p)), (3.1)

small perturbations to the integrable system, and envisioned a kind of cartography of

non-integrability. By choosing different f ’s he could consider different directions in

the space of perturbations. For each fixed f he could increase the value of ε until it

reached a size, ε = εc(f), such that no invariant tori remained. By calculating pairs

(f, εc(f)) he could map out the edge of non-integrability, the frontier of chaos.

We will concentrate on ways to get rigorous bounds for εc(f) but will not make

a very extensive survey3 of f ’s. The rest of the chapter is organized by dimension of

the phase space and sharpness of non-existence criteria. In the next section we review

converse KAM theorems for area-preserving twist maps on the cylinder, and in section

3.2 we explain how to prove them with a digital computer. In 3.3 we formulate some

criteria for higher dimensional systems and finally, in section 3.4, apply them to an

example.

2Our examples are not of this form, but, after a change of coordinate, their inverses are.
3Jacob Wilbrink, in [Wilb87], used a non-rigorous existence criterion to survey a whole one

parameter family of maps.

49

3.1 Converse KAM results on the cylinder

Most of the ideas presented here originated with Herman’s paper [Herm83]. Mather

picked up these techniques and made applications to the standard map, [Ma84], and to

billiards, [Ma82b]. He also introduced a different, more generally applicable criterion

based on the existence of action-minimizing states. MacKay and Percival augmented

Herman’s argument with rigorous computation and discovered a connection between

Herman’s work and Mather’s action criterion.4 The presentation below owes a great

deal to their excellent paper, [MP85], and to [Strk88], which came out of Stark’s

thesis.

3.1.1 definitions and a first criterion

We will study maps given by (3.1) and try to find criteria which preclude the existence

of the kind of tori produced by the KAM theory. We cannot, of course, rule out the

existence of tori in the broadest sense. No matter how large the perturbation, some

tori may remain in the islands around elliptic periodic points. In the two dimensional

case we will restrict our attention to the kind of circles which wind once around the

cylinder; such circles5 can be smoothly deformed into the curve p = 0. In higher

dimension we will consider those tori which can be smoothly deformed into the torus

p = (0, 0, . . . , 0).

Maps given by (3.1) are automatically area and orientation preserving. We will

add the further restrictions that the perturbation, f , be differentiable, periodic, and

have average value zero, i.e.

f(x) = f(x+ 1),
∫ 1

0
f(x) dx = 0.

4Recently, Rafael de la Llave (personal communication) has developed an extremely promising
criterion based on the construction of hyperbolic orbits.

5These circles are also called rotational because the restriction of the map to such a circle gives
a motion conjugate to a rotation.

50

Figure 3.2: The cylinder and several invariant circles, some (a) rotational and some

(b) encircling a periodic orbit.

The restriction on the average value is essential; if it is not met Tε has no invariant

tori at all. To see why consider a curve, (x,Γ0(x)), and its image, (x,Γ1(x)), where

Γ1 is given implicitly by

Γ1(x′) = p′(x,Γ0(x)),

or

Γ1(x+ Γ0(x)) = Γ0(x) + εf(x). (3.2)

Preservation of area and orientation gaurantee that the area between the two is in-

dependent of Γ0 since, if we consider another curve, Γ′0, and its image, Γ′1, we can

write

∫ 1

0
Γ′0 − Γ0 =

∫ 1

0
Γ′1 − Γ1 so

∫ 1

0
Γ′0 − Γ′1 =

∫ 1

0
Γ0 − Γ1

and hence we can calculate it for any curve we like. Using Γ0(x) = p0 and equation

(3.2) we get

Γ1(x+ p0) = p0 + εf(x), or Γ1(x) = p0 + εf(x− p0).

Thus we find

∆Γ(x) ≡ Γ1(x)− Γ0(x) = εf(x− p0).

The area between the two curves is then

51

Figure 3.3: A curve and its image. The area between the two is shaded.

∫ 1

0
∆Γ(x)dx =

∫ 1

0
εf(x− p0),

the average value of f . Now suppose Γinv0 is an invariant circle. That means Γinv1 =

Γinv0 . Then ∫ 1

0
∆Γ(x)dx = 0

and we have our first and simplest test for the non-existence of invariant circles.

Unfortunately this is not a very decisive criterion; it leaves open the possibility of

circles for any value of k in the Taylor-Chirikov standard map. To do any better we

must more carefully consider the geometry of invariant circles, a task we turn to next.

3.1.2 Lipschitz cone families and their refinement

The first thing to notice is that invariant circles divide the cylinder into two disjoint

pieces. Orbits which begin below an invariant circle must always remain below it. One

might hope to turn this observation into a non-existence criterion, say, by starting an

orbit at some point (θ0, p0) and evolving it forward. If the orbit eventually attains

arbitrarily large momenta then the map has no invariant circles. Chirikov [Chkv79]

calls orbits with indefinitely increasing momentum “accelerator modes” and notes

that they exist in the standard map for k ≥ 2π.

Rigorous implementation of this strategy is hard. The simple calculation described

above does not work because one can never be sure that a computational error will

52

Figure 3.4: Numerical error may carry a point across an invariant circle.

not carry the orbit across a genuine invariant circle. Simply following an orbit cannot

establish the non-existence of circles. One might instead try to follow an orbit and

say that if it never rises above a certain momentum p = pmax then it must be trapped

beneath an invariant circle. That is, one might try to prove the existence of circles.

From an analytic point of view this seems like a good idea. A theorem of Birkhoff

[Birk22] says that if the twist map is continuously differentiable and if there are two

values of the momentum, p1 and p2, p1 < p2, such that any orbit which begins with

momentum less than p1 never attains a momentum greater than p2 then there is an

invariant circle somewhere in the band p1 < p < p2. Further, the circle6 is a the graph

of some Lipschitz function, Γ(θ).

Figure 3.5: If orbits with

initial momentum less than

p1 never rise above p = p2

there is an invariant circle.

Despite this analytic support, we cannot get a good existence criterion either.

Not only is computational error again a problem, but we must also worry about the

cantori. Although they are not true barriers to the diffusion of phase points, they

6[Ma84] gives a sketch of the proof of this theorem.

53

can be formidable partial barriers7. Even if we could calculate an orbit with perfect

precision we could never be sure that it was permanently trapped below a particular

pmax. To get a really useful criterion we must pay closer attention to Birkhoff’s

theorem, particularly to the part where he tells us that rotational invariant circles

are the graphs of Lipschitz functions.

Suppose the invariant circle has rotation number ω, then we will say that it is the

graph of Γω(θ). Since Γω is Lipschitz we have

|Γω(θ + ∆θ)− Γω(θ)| ≤ L |∆θ|, (3.3)

where L is a constant independent of θ. On the graph this means that a vector

tangent to the circle is confined inside a cone, see figure (3.6). Since Γω is only a

Lipschitz function it need not have a well-defined tangent at every point. That is,

although (3.3) implies that both the right and left limits,

(Γ′ω)right ≡ lim
∆θ↘0

|Γω(θ + ∆θ)− Γω(θ)|
|∆θ|

(Γ′ω)left ≡ lim
∆θ↗0

|Γω(θ + ∆θ)− Γω(θ)|
|∆θ|

must exist, they need not be the same. Nonetheless, both limits must be smaller than

L, and so both the vectors (1, (Γ′ω)left) and (1, (Γ′ω)right) are in the cones8 pictured in

figure (3.6).

The constant L is a property of Γω and is defined only along the curve. We could,

instead, draw a cone at every point, (θ, p), such that if an invariant circle passes

through (θ, p) its tangent must lie inside. We will call such a system of cones a cone

family and represent it with two θ-periodic functions, L+(θ, p) and L−(θ, p); a vector

tangent to a circle through (θ, p) may only have slope, `, with L−(θ, p) ≤ ` ≤ L+(θ, p).

7For the golden cantorus of the standard map, with k = 1.0, [MMP84] find the mean crossing
time to be on the order of 106 iterations.

8Indeed, a Lipschitz function is absolutely continuous and so has a derivative defined almost
everywhere, see e.g. [Ttch39].

54

Figure 3.6: An invariant curve and with some Lipschitz cones.

The simplest possible cone family is

L−(θ, p) = L0−, L+(θ, p) = L0+. (3.4)

We will call this a naive or uniform cone family. We can always get such a family

by taking, at the worst, −L0− = L0+ = ∞. Often, as we shall see, we can do much

better.

Each tangent vector lying inside the cone family is ostensibly a permissible tangent

to an invariant curve but the dynamics may preclude some of the slopes permitted

by the naive cone condition. Consider the action of the map on a tangent vector, say

the vector ν with footpoint (θ, p).

ν ′ = DTε,(θ,p)ν

is its image and has footpoint (θ′, p′). We can apply the map DTε to all the vectors

allowed by the Lipschitz cone at some point zn = (θn, pn) and examine their images

at zn+1 = (θn+1, pn+1) = Tε(zn). In this way we can use the map on tangent vectors

to define a map on cones. The image of the cone from zn will not usually coincide

with the cone at zn+1. This means we can eliminate part of the cone at zn, for if there

were an invariant graph above θn its tangent vector would have to be one of the ones

whose images lie inside the naive cone at zn+1. We could make a similar argument

involving DT−1
ε and zn−1 and so refine the cone at zn even further, see figure (3.7).

55

More formally, we can use the map to recursively define a sequence of cone families,

Cn(θ, p) ≡ {Ln−(θ, p), Ln+(θ, p)} by

C0 = {L0−, L0+}

Cn+1(θ, p) = DT−1
ε {Cn(Tε(θ, p))} ∩ Cn(θ, p) ∩ DT 1

ε

{
Cn(T−1

ε (θ, p))
}

(3.5)

where C0 is the naive cone family, (3.4). The vectors permitted by the nth cone family

have n allowed images and preimages. For twist maps this refinement procedure

produces increasingly restrictive cone families [Strk88]. If it ever happens that Cn(θ, p)

is empty, i.e. that the intersection in (3.5) contains no vectors, then no invariant circle

can pass through the point (θ, p).

Figure 3.7: Refining the cone family. The inverse image of the cone at zn+1 and the

forward image of the cone at zn−1 intersect in a new, smaller cone at zn.

Cone crossing arguments turn out to be quite successful, though they need a little

more elaboration to be suitable for computation. So far we have seen how to prove

that no invariant circle can pass through a particular point, now let us use this to

prove non-existence of circles. Because a rotational invariant circle must cross every

vertical line, we can establish non-existence by proving that no circle can cross a

particular vertical line {(θ, p)|θ = θ0, p ∈ [0, 1)}. To do that we divide the phase

space up into finitely many pieces. For example, each piece might be a rectangle of

the form Rij = {(θ, p)| p ∈ [pj, pj+1] θ ∈ [θj, θj+1] } We can use this decomposition

56

Figure 3.8: A piecewise

constant cone family for

the standard map with

k =1.0. No invariant cir-

cles can pass through the

shaded squares.

to construct a sequence of piecewise constant cone families, see figure (3.1.2).

Cn(Rij) ≡ {Ln−(Rij), Ln+(Rij)} C0(Rij) = {−L,+L}

Ln−(Rij) = l.b.
Rij

Ln−(θ, p),

Ln+(Rij) = u.b.
Rij

Ln+(θ0, p). (3.6)

where the notations “u.b.” and “l.b.” mean “upper bound” and “lower bound.” If

the rectangles are small enough, refinements like (3.6) can eventually produce a whole

vertical strip of empty cones.

Finally, we note that the foregoing serves to prove non-existence for a single map.

In practice one wants non-existence results for a whole class of maps, for example,

for all the standard maps with parameters kmin ≤ k ≤ kmax. One need only modify

(3.6) a little, taking the bounds over both Rij and k.

Stark has shown that such a program, allied with some extra observations, can

reveal non-existence of circles with only a finite amount of work. He shows, for

57

example, that if one has a family of maps depending on parameters and one studies

a compact set of the parameters for which no invariant circles exist, then the cone-

crossing criterion will demonstrate their non-existence after only a finite amount of

computation9.

3.1.3 some new coordinates and two more criteria

Here we will begin to explain one way to implement the ideas of the previous section

on a digital computer. In the process we will reformulate the cone-crossing criterion

in a way that obscures its geometric origin10 but reveals a connection to minimizing

states. The first step is to recast the map in terms of delay coordinates; we have

been considering Tε(θ, p) = (θ′, p′), let us now speak of gε : T×T 7→ T×T so that

gε(θn, θn+1) = (θn+1, θn+2) where the θ′s are angular coordinates of successive points

in an orbit. We will also need a lift of g, Gε : R×R→ R×R, Gε(u, v) = (u′, v′).

As before, Tε and Gε are related by an action generating function, Hε(u, v), where

Hε(xn, xn+1) =
1

2
(xn+1 − xn)2 − εV (xn+1), V (x) = −

∫ x

0
f(y) dy,

∂1Hε(xn, xn+1) = −pn,

∂2Hε(xn, xn+1) = pn+1,

and

Gε(xn−1, xn) ≡ (xn, xn+1),

xn+1 = x′(xn, pn),

= x′(xn, ∂2Hε(xn−1, xn)).

In terms of these coordinates an invariant circle appears as a curve xn+1 = γ(xn)

9Here “finite” means that one could do the calculations to some finite precision and refine the
cone families for some finite number of steps.

10See [MP85] for a more direct implementation.

58

Figure 3.9: An invariant

curve and some Lipschitz

cones in the delay coordi-

nate system.

satisfying

γ(u+ 1) = γ(u) + 1,

Gε(xn, γ(xn)) = (xn+1, xn+2) = (γ(xn), γ(γ(xn))).

The most naive Lipschitz cone, (3.4) with L0± = ±∞, appears here as 0 ≤ ` ≤ ∞

where ` is the slope of γ. The lower bound of zero is just the requirement that the

original map, when restriced to an invariant curve, be order preserving.

For examples like (3.1) u′ and v′ have very simple forms:

u′(u, v) = v,

v′(u, v) = v + (v − u) + εf(v),

= 2v − u+ εf(v). (3.7)

Gε’s action on tangent vectors is equally simple: δu′

δv′

 =

 0 1

−1 2− εd2V
dx2


 δu

δv

 . (3.8)

For later convenience we will refer to 2− εd2V
dx2

(x) as β(x).

If we take a tangent vector, [1, `], representing a slope of ` then (3.8) tells us that

59

its image will represent a slope `′ given by:

`′ =
δv′

δu′
,

=
β(v)δv

δv
− δu

δv
,

= β(v)− 1

`
. (3.9)

Preservation of order requires both ` and `′ be positive. Combining that with (3.9)

we obtain our first real criterion.

Criterion 1 If there are any values v ∈ [0, 1] for which β(v) < 0 then the map

Gε(u, v) to which β corresponds has no rotational invariant circles. For the standard

map this criterion says kc ≤ 2.

We can squeeze one further analytic criterion out of (3.9) by noticing that `′

will surely be negative if ever ` is very small, and that, always, `′ < maxv∈[0,1] β(v).

Suppose we have m and M such that 0 ≤ m ≤ β(v) ≤M holds everywhere. Then

`′ ≤M − 1

`
(3.10)

and `′ ≥ 0 together imply

0 ≤M − 1

`
or ` ≥ 1

M
. (3.11)

Inequality (3.11) is a global restriction on slopes, a new lower bound for the

uniform Lipschitz cone family. We could thus run through the argument again, this

time requiring `′ ≥ 1
M

. Having done that we would have a better, narrower cone family

and could repeat the argument yet again . . . better to carry this process straight to

its conclusion and realize that our estimates will stop improving when we find a slope,

`−, such that

`− = M − 1

`−
.

This has two roots. The least of them is just the `− we wanted; the larger one is a

global upper bound on slopes. It comes from the remark above, that `′ ≤ M . Since

60

every vector tangent to an invariant curve is the image of some other tangent we can

conclude ` ≤ M . Once that’s done we can argue `′ ≤ M − 1
M

and so on. Finally we

attain

`− ≤ ` ≤ `+ where `− =
M −

√
M2 − 4

2
,

`+ =
M +

√
M2 − 4

2
. (3.12)

Armed with this best of all possible uniform cones, we are able to make a genuine,

dynamical cone crossing argument.

Criterion 2 (“Mather 4
3
”) If m ≤ β(v) ≤ M and `+ and `− are the bounds of

the uniform cone family given by (3.12), then there are no rotational circles if

`− > m− 1

`+

. (3.13)

Remark For the standard map, m = (2 − k) and M = (2 + k) and so (3.13)

implies that kc ≤ 4
3
.

Proof The idea is to concentrate on those states which contain the point where

β attains its minimum, where β(v) = m. Visits to this point are most punishing to

the slopes of tangent vectors; they lead to the smallest possible values of `′ in (3.9).

If m is so small that even the slope from the upper edge of the uniform family, `+, is

diminished to an untenable value, then certainly no others can survive.

3.1.4 non-existence for minimalists

We will now reformulate Criterion 2 in the language of minimizing states. The new

version will prove more fruitful for higher dimensional generalizations. Here again we

follow MacKay and Percival, who demonstrated that their cone crossing criterion is

equivalent to the action-difference criterion put forward by Mather in [Ma86].

We begin by assuming that an invariant circle exists, then we deduce some facts

about the minimizing orbits lying on it. Then, to prove non-existence, we will do

61

a calculation that contradicts these facts. Define a minimizing state to be sequence

{· · ·xn−1, xn, xn+1, · · ·} such that every finite segment xn, xn+1, · · · , xm is a minimum

of the action functional,

Wm,n(X) =
n−1∑
j=m

Hε(xj, xj+1), (3.14)

where Hε is the action generating function and we consider variations which leave xn

and xm fixed. Mather’s action-difference idea is to note that if an irrational invariant

circle exists then every orbit on it is minimizing and has the same action. That is,

if we take two states arising from orbits on the circle, Xa = {· · · , xa0, xa1, · · ·} and

Xb = {· · · , xb0, xb1, · · ·} and take the limit

lim
n→∞

n−1∑
j=−n

Hε(x
a
j , x

a
j+1)−Hε(x

b
j, x

b
j+1) (3.15)

it should come out to be zero11. He suggests that to test the existence of an invariant

circle having irrational rotation number ω one should approximate ω by a sequence

of rational numbers, pn
qn

, and use the rational numbers to construct the two sequences

of Birkhoff periodic orbits, the minimax and minimizing orbits. These sequences

accumulate on two distinct sets on the putative invariant circle. If the circle is really

present, orbits on the two sets should have the same action and so the limit

∆Wω ≡ lim
pn
qn
→ω

∆Wpn,qn = W(pn,qn) minimax −W(pn,qn) minimizing (3.16)

should tend to zero. If it tends to some other value then no circle with rotation

number ω exists.

Another way to state this argument is to say that every orbit on a rotational

invariant circle must have the same action, the action corresponding to the limit of

the minimizing Birkhoff orbits. Thus every state X = {· · · , x−1, x0, x1, · · ·} arising

11Showing that the action difference (3.15) vanishes is different, and harder, than showing that the
average values of the actions are the same. While the latter follows from the ergodicity of irrational
rotation, Mather’s result requires a more delicate examination of the action functional. See [Ma86]
for details.

62

from an orbit {· · · , (x−1, p−1), (x0, p0), (x1, p1), · · ·} lying in an invariant circle must be

minimizing; every finite segment snipped out of such a state must be a non-degenerate

minimum over all segments having the same endpoints12.

The foregoing suggests a strategy for proving converse KAM theorems. One

chooses an auspicious starting point, x0, for which the perturbation to the gener-

ating function is large, and considers every possible state containing it. This is not

quite so huge a task as it sounds. Since the map, Gε(u, v), determines the whole state

once, say, x0 and x1 have been given, we need only consider all possible successors,

x1. For each x1 we work out the state, X, and the variation of the action over finite

segments, {x−1, x0, · · · , xn},

δW−1,n =
n−1∑
j=1

∂W−1,n

∂xj
δxj + 1

2
δxTD2W−1,nδx

= 0 + 1
2

n−1∑
j,k=1

∂2W−1,n

∂xj∂xk
δxjδxk.

The term linear in δxj is automatically zero because X is a minimizing state. For our

examples, (3.1), the quadratic term can be represented by the symmetric matrix,

D2W−1,n =



2 + ε dfdx(x0) −1 0 · · · · · · 0

−1 2 + ε dfdx(x1) −1 · · · · · · 0
...

. . .
...

...
. . .

...

0 · · · · · · −1 2 + ε dfdx(xn−2) −1

0 · · · · · · · · · −1 2 + ε dfdx(xn−1)


,

which we shall call Mn(X), or Mn for short.

If X is minimizing then Mn is positive definite. Since Mn is so simple it is easily

rendered into diagonal form, a form which makes it simple to calculate the determi-

12The reader may wonder why the states lying on an invariant circle do not belong to a one
parameter family, and ask how they can lead to non-degenerate minima. The answer is that we
consider only variations which leave the endpoints of finite segments fixed; if we allowed them to
move the minima would be degenerate.

63

nant. We can write



2 + ε df
dx

(x0) −1 0 0 · · ·

−1 2 + ε df
dx

(x1) −1 0 · · ·

0 −1 2 + ε df
dx

(x2) −1 · · ·
...

...
...

...


→



d0 0 0 0 · · ·

0 d1 0 0 · · ·

0 0 d2 0 · · ·
...

...
...

...


where the dj are computed recursively using

d0 = 2 + ε
df

dx
(x0),

dj+1 = β(xj+1)− 1

dj
, where β(xj+1) = 2 + ε

df

dx
(xj+1). (3.17)

If ever one of the dj is negative we may conclude that Mj is not positive definite

and so does not arise from a minimizing state. Notice the similarity between the

evolution equation for the diagonal entries, (3.17), and the one for slopes, (3.9). As

we refined the limits on slopes, so we can refine those on diagonal entries. We obtain

a d− such that if dj < d− then some later dk, k > j is sure to be negative. We also

get d+, a global upper bound on the dj. We can thus modify (3.17) so that we begin

with d−1 = d+, so d0 = β(x0) − 1
d+

. The original prescription corresponds to taking

d−1 =∞.

3.2 Rigorous Computing

In this section we will see how to implement the action criterion of the last section on

a digital computer. Since we will eventually want to treat maps in spaces of arbitrary

dimension we will outline some of the procedures in greater generality than required

for the cylinder. The most important part will be a technique for rigorously bounding

the image of a set.

64

3.2.1 two reductions and a plan

As in section (3.1.2), we need only show that no invariant circle crosses a particular

vertical line. In the language of the previous section this means our problem is reduced

to showing that some particular x0 cannot appear as a member of any minimizing

state. We can get a further reduction by noticing that our examples satisfy

p′(θ, p+ 1) = p′(θ, p) + 1;

their dynamical structure is periodic in p as well as in θ. So, if an invariant circle

passes through the point (θ, p), there is also one through (θ, p + 1); if no invariant

circles pass through some vertical segment I0 ≡ {(θ, p)|θ = θ?, p ∈ [0, 1]}, then there

cannot be any at all. Studying a segment like I0 is equivalent to studying a collection

Figure 3.10: Rotational invariant circles must cross every vertical line, and, for our

examples, must be periodic in p as well as θ.

of states {X| x0 = x?, x1 ∈ [0, 1]}, where x? is a lift of θ?. With these reductions in

hand, we are ready to plan the main computation. Our goal will be to prove:

Theorem

There is an x? ∈ [0, 1] and an interval of parameter values, Iε ≡ [ε−, ε+], such that

none of the maps, Gε, ε ∈ Iε, have a minimizing state with x0 = x?.

Plan for the proof:

(i) Formally extend the phase space to include the parameter ε and use the map

65

Gε(u, v) to define a new one, G : R×R×R→ R×R×R, where

G(ε, u, v) = (ε, Gε(u, v)). (3.18)

(ii) Select a starting point x?. For examples (3.1) we will want x? such that β(x?) is

a minimum, a choice which is independent of ε.

(iii) Divide the interval [0,1] into a collection of closed intervals, Ij,
N⋃
j=1

Ij = [0, 1]. Us-

ing the Ij, which should intersect only at their endpoints, we can construct a col-

lection of sets in the extended phase space, Sj ≡ {(ε, u, v)| ε ∈ Iε, u = x?, v ∈ Ij}.

In practice this division is done by the program itself.It begins by trying to prove

the theorem on the whole interval at once, and gets either, “Yes, the theorem

is true,” or “Maybe it’s true.” If the answer is “maybe” it splits the interval in

half and tries the two pieces separately. If one of them yields “maybe” it gets

subdivided too The process of subdivision will go on forever if the theorem

is false, but if it is true the work of Stark suggests that the cutting will stop

after finitely many steps.

(iv) For each piece Ij, try to prove that no minimizing state with x0 = x? can have

x1 ∈ Ij.

The last step is where the computation comes in; we will use an argument like the

one at the end of section (3.1.4), but here we calculate upper bounds13 d̄k for the kth

diagonal entry in (3.17).

d̄0 = u.b.
ε∈Iε

β(x?)− 1

d+

,

d̄1 = u.b.
(ε,u,v)∈Sj

β(v)− 1

d̄0

,

d̄2 = u.b.
(ε,u,v)∈G(Sj)

β(v)− 1

d̄1

,

13We will often want to evaluate upper bounds, as opposed to maxima. The former are realizeable
on computers, the latter may not be.

66

...

d̄n+1 = u.b.
(ε,u,v)∈Gn(Sj)

β(v)− 1

d̄n
. (3.19)

Finding a way to calculate the kind of bound which appears in the definition of d̄2,

an upper bound over an image of Sj, is the last hurdle in the argument. What we

need is a procedure to rigorously bound the image of a set. In the next section we

will explain a quite general scheme due to MacKay and Percival.

3.2.2 bounding images of prisms

For concreteness, and to get an algorithm straightforward enough to be realized

as a computer program, we will concentrate on sets with a prescribed form, par-

allelepipeds, or prisms for short. An n-dimensional prism is specified by a center

point, xc, and an n× n matrix, P . The prism is the set

{x ∈ Rn|x = xc + Pη, η ∈ Qn}, (3.20)

where Qn is the n-dimensional hypercube, {η ∈ Rn| − 1 ≤ ηj ≤ 1}, see figure (3.11).

Our principal technical tool is the following result.

Lemma ([MP85]) Suppose Φ : Rn → Rn is a C1 map. Then the Φ - image of the

prism S ≡ (xc, P) is contained in the prism (xc
′, P ′) where xc

′ is arbitrary, P ′ = A◦W

for an arbitrary invertible matrix A, and W the diagonal matrix

W =



w1 0 · · · 0

0 w2 · · · 0

...
. . .

...

0 0 · · · wn


with

wj = u.b.

(
|(Φ(xc)− xc′)j|+ u.b.

x∈S

n∑
k=1

∣∣∣[A−1 ◦DΦx ◦ P]jk
∣∣∣) . (3.21)

67

≡ (xc, P), P =


∆x
2

0 0

0 ∆y
2

0

0 0 ∆z
2



Figure 3.11: The n-dimensional hypercube Qn is mapped to the prism by the matrix

P .

Figure 3.12: A prism, its image, and a prism bounding the image.

Remark The lemma seems unnecessarily general; we are left to choose the matrix

A and the new center point, xc completely arbitrarily. If we choose them unwisely the

new prism will surround the image of S, but may be much larger than necessary.

Usually we will want

xc
′ ≈ Φ(xc), and A ≈ DΦxc ◦ P.

The freedom allowed by the lemma will make it easy to handle errors in computing

Φ(xc) and cases where DΦxcP is singular or nearly singular.

68

Example (Proof of the lemma for one dimensional maps)

We start in with a one dimensional example, see figure (3.13). Here the map is some

C1 function, φ : R → R, and a prism, S, is just an interval xc − ∆x ≤ x ≤ xc + ∆x.

We can use the computer to find φ̄(x), a numerical approximation to φ(x) for which

|φ(x)− φ̄(x)| ≤ δ. Then, choosing xc
′ = φ̄(xc) and14 A = φ′(xc)∆x, we find

u.b. |x′c − φ(xc)| ≤ δ,

A−1 =
1

φ′(xc)∆x
,

W =
δ

|φ′(xc)∆x|
+ u.b.

x∈S

∣∣∣∣∣ φ′(x)∆x

φ′(xc)∆x

∣∣∣∣∣ ,
=

δ

|φ′(xc)∆x|
+ u.b.

x∈S

∣∣∣∣∣ φ′(x)

φ′(xc)

∣∣∣∣∣ ,
and

P ′ ≡ ∆x′ = A ◦W ≥ δ + ∆x(max
x∈S
|φ′(x)|). (3.22)

Now let us check some point x ∈ S, and see that its image is inside the prism

S ′ = (x′c, P
′). Since x is in S we can write x = xc + η ∆x with −1 ≤ η ≤ 1. If φ(x) is

in S ′, then,

x′c − ∆x′ ≤ φ(x) ≤ x′c + ∆x′ or |φ(x)− x′c| ≤ ∆x′.

To see that this is true, consider γ(t) = φ(xc + tη ∆x). γ(t) is a C1 function from

[0,1] to R with γ(0) = φ(xc), γ(1) = φ(x). By the Mean Value Theorem there is a

t0 ∈ [0, 1] such that

γ(1)− γ(0) =
dγ

dt
(t0),

φ(x)− φ(xc) =
d

dt
(φ(xc + t0η ∆x)),

= η ∆xφ′(xc + t0η ∆x).

14The choice of A is meant to suggest the form required by the higher dimensional theorem. If
φ′(xc) = 0 we will have to make another choice; any constant will do.

69

Figure 3.13: The bounding lemma

applied to a lift of the circle map,

φ(x) = x + Ω + ε
2π

sin (2πx), with

Ω = 0.3, ε = 0.8. The interval I1,

at right, is the one given by the

lemma; it contains the image of

I0.

Rewriting this,

|φ(x)− x′c| = |φ(xc)− x′c + η ∆xφ′(xc + t0η ∆x)|,

≤ |φ(xc)− x′c|+ |∆xφ′(xc + t0η ∆x)|,

≤ ∆x′, (3.23)

even as the lemma claimed.

Proof (The general case)

The argument is much the same as the 1-dimensional argument above. Here the

assertion of the theorem is that every point in the initial prism, S = (xc, P), has its

image in S ′ = (x′c, P
′). If one writes a point, x ∈ S, as x = xc +Pη, η ∈ Qn then the

theorem says

P ′
−1

(Φ(xc + Pη)− x′c) = η′, η′ ∈ Qn. (3.24)

If we take (3.24) one component at a time we find

∣∣∣[P ′−1
(Φ(xc + Pη)− x′c)]j

∣∣∣ ≤ 1. (3.25)

To prove this for the jth component we consider a function γj : [0, 1] → R,

γj(t) = [P ′−1Φ(xc + t Pη)]j. γj(t) has the same smoothness as the map and so the

70

Mean Value Theorem says ∃t0 ∈ [0, 1] such that

γj(1)− γj(0) =
dγj
dt

(t0),

or [P ′−1(Φ(xc + Pη)− Φ(xc))]j =
[
P ′−1 ◦DΦ(xc+t0 Pη) ◦ Pη

]
j
.

Arguing as we did in the sequence (3.23);

∣∣∣[P ′−1(Φ(xc + Pη)− x′c)]j
∣∣∣ =

∣∣∣∣[W−1 ◦ A−1
{

(Φ(xc)− x′c) +DΦγ(t0) ◦ Pη
}]

j

∣∣∣∣ ,
=

1

wj

∣∣∣∣[A−1
{

(Φ(xc)− x′c) +DΦγ(t0) ◦ Pη
}]

j

∣∣∣∣ ,
≤ 1

wj


|[A−1(Φ(xc)− x′c)]j|

+
n∑
k=1

∣∣∣[A−1 ◦DΦγ(t0) ◦ P]jk
∣∣∣
 ,

≤ 1,

which is just the thing required by (3.25).

3.2.3 choices for the matrix A

Although we usually take A ≈ DΦxc ◦ P we may sometimes need to make a different

choice to avoid a singular A. Indeed, the very first prisms we consider, the ones

of the form Iε × x? × Ij, have zero width in the u direction and so have singular

71

matrices, P . In this section we will illustrate two schemes for fattening up the matrix

DΦxc ◦ P . The first, the fixed-form scheme, is borrowed directly from [MP85]. The

second, called, the column-rotor, is a slight generalization of theirs. These techniques

have not been carefully optimized and are probably not the best. They work well

enough and, in any case, are not the most time consuming part of the algorithm.

Fattener 1 (fixed-form) Require the new matrix to have a particular form. Sup-

pose, for example, that the initial prism, P , and the derivative of the map, DΦxc ,

are

P =

 0 0

0 ∆y
2

 , DΦxc =

 0 1

−1 β(xc)

 , and so DΦxc ◦ P =

 0 ∆y
2

0 ∆y
2
β(xc)

 ,
We might then look for a matrix A of the form

A =

 0 a12

1 a22

 .
Figure (3.14) shows an application of this scheme.

Figure 3.14: The fixed-form fattener

applied to the image of a singular, ver-

tical prism. The map is the delay-

embedded version of the standard map

with k = 0.8. The new prism, shown

in grey, fits snuggly in the u direction

but is much more generous in the v di-

rection.

72

Figure 3.15: The column-rotor

scheme applied to a narrow prism.

The initial prism is at the lower

left; it is outlined in black and

its center is marked with a dot.

The prism’s true image is solid

black. A bounding prism, produced

with the column-rotor scheme us-

ing an angle of 27◦, is shown in

light grey, the darker prism be-

neath used an angle of 90◦.

Fattener 2 (column-rotor) This method deals with matrices whose columns, when

viewed as vectors, are all very nearly parallel. Such matrices will be close to singular,

and must be expected to arise if the dynamics are hyperbolic. If we neglect the

fattening steps the matrix of the prism bounding Φn(S0) looks like

Pn ≈ DΦΦn−1(xc) ◦DΦΦn−2(xc) ◦ · · · ◦DΦxc ◦ P. (3.26)

If any of the Lyapunov exponents are positive the columns of the matrix product

(3.26) will be parallel to each other and to the eigenvector corresponding to the

largest eigenvalue of DΦn
xc . The idea of this scheme is to rotate the columns with

respect to one another so as to guarantee a certain minimum angle between each

pair. In two dimensions, (see figure (3.15)), this is an entirely satisfactory program.

In three and more dimensions it is possible to find linearly dependent collections of

column vectors each pair of which is separated by a sizeable angle - one could have a

triple of coplanar vectors, for example. Such collections do not seem to arise in our

73

calculations, and we have made no special provisions to avoid them. The details of

column rotation are described in appendix (B).

3.3 On to higher dimension

Here we develop some new results. The forms of the arguments will be much the

same as in the preceding sections, but the maps, tori, and cones will exist in higher

dimensional spaces. The general results for higher dimensional invariant tori are not

so strong as for circles on the cylinder, so we must make a few new restrictions and will

obtain somewhat weaker results. We will see how to generalize the cone-crossing and

action criteria and then show an application to the example with the trigonometric

perturbation, (2.14).

3.3.1 maps and tori

As above, we will consider only small perturbations of integrable systems. We will

have 2n-dimensional symplectic maps, fε : Tn ×Rn → Tn ×Rn, of the form

fε(θ,p) = (θ′(θ,p),p′(θ,p))

θ′ = θ + p− ∂Vε
∂θ

p′ = p− ∂Vε
∂θ

(3.27)

where Vε(θ) : Tn → R is some periodic function with at least two continuous deriva-

tives and ε is drawn from some, perhaps multi-dimensional, parameter space. We will

work mostly with a lift, Fε : Rn ×Rn → Rn ×Rn. As we noted in chapter 2, maps

like (3.27) are the higher dimensional analogs of standard-type maps.

The generating function for a map like (3.27) is

Hε(x,x
′) =

1

2
‖ x− x′ ‖2 − Vε(x)

74

=
n∑
j=1

(x′j − xj)2 − Vε(x). (3.28)

Although Hε(x,x
′) is formally very similar to the generating functions used earlier

in the chapter it is not quite the same; the perturbion, Vε, depends on x rather

than x′. As we shall see, this makes no real difference in the formulation of non-

existence criteria. We make this small change because the examples of chapter 2 have

generating functions like (3.28).

As on the cylinder, we will not be able to prove the non-existence of all possible

types of tori, only those which are invariant graphs, sets of the form {(θ,p)|θ ∈

Tn, p = ψ(θ)} for some ψ : Tn → Rn. In higher dimension we must add the further

requirement that the graphs be Lagrangian, that is, they must have15

∂ψi
∂θj

=
∂ψj
∂θi

. (3.29)

On the cylinder we have the mighty theorem of Birkhoff to assure us that any ro-

tational invariant circle must be a graph. Unfortunately, for n > 1 we have no

such assurance; there may be “accidental” invariant tori which are graphs, but not

Lagrangian graphs, and there may even be rotational invariant tori which are not

graphs at all. Still, (3.29) is not a disastrous restriction. Our techniques are fully

complementary to traditional KAM theory in that constructive versions of KAM

produce just the sort of tori we can preclude, invariant, Lagrangian graphs.

Herman, in [Herm88], has announced some results along the lines of a higher

dimensional version of Birkhoff’s theorem, but they are not so comprehensive as the

original. He has, however, shown that a Lagrangian graph, invariant under a map like

(3.27), is Lipschitz. This will prove helpful when we try to obtain global inequalities

like (3.12).

15Equivalently, a Lagrangian torus is one on whose tangent space the symplectic two-form,
ω =

∑n
j=1 dpj ∧ dθj , vanishes.

75

3.3.2 Lipschitz cones: old formulae in new guises

Both the cone-crossing and action minimizing criteria have higher dimensional analogs.

We will briefly examine the former because of its intuition-pleasing geometric roots,

then concentrate on the latter. Most of the formulae will bear a strong formal resem-

blance to the ones from the first part of the chapter.

As on the cylinder, we begin by switching to a map g acting on the delay co-

ordinates, gε(θi,θi+1) = (θi+1,θi+2), and a lift, Gε : Rn × Rn → Rn × Rn with

Gε(u,v) = (u′,v′). In these coordinates the derivative of the map is

DGε =


∂u′

∂u

∂u′

∂v

∂v′

∂u

∂v′

∂v

 =

 0 I

−I 2I− ∂2Vε
∂x2

(v)

 , (3.30)

where I is the n×n identity matrix and ∂2Vε
∂x2 is the matrix of second partial derivatives

of Vε. An invariant graph, p = ψ(θ), appears as a hypersurface

v = Λ(u),

= u+ ψ(u)− ∂Vε
∂x

(u).

Vε(u) and ψ(u) and are periodic extensions and Λ(u+ m) = Λ(u) + m ∀m ∈ Zn.

The geometric object corresponding to a vector tangent to an invariant circle is now

a hyperplane tangent to the graph. A vector, (δu, δv), lying in this hyperplane has

δv = Lδu where L =


∂Λ1

∂u1
∂Λ1

∂u2
· · ·

∂Λ2

∂u1
∂Λ2

∂u2
· · ·

...
...

. . .

 (3.31)

so that the tangent plane is the subspace spanned by the n vectors

(1, 0, . . . 0, ∂Λ1

∂u1
, ∂Λ2

∂u1
, . . . ∂Λn

∂u1
),

(0, 1, . . . 0, ∂Λ1

∂u2
, ∂Λ2

∂u2
, . . . ∂Λn

∂u2
),

...

76

These are conveniently represented in block form as [I,L] where I is the n×n identity

matrix and L is as in equation(3.31). The action of the map on the hyperplane is

given by

DGε ◦

 I

L

 =

 0 I

−I β


 I

L

 =

 L

βL− I

 , (3.32)

where β = 2I− ∂2Vε
∂x2 (v). The new tangent hyperplane must then have

L′ = β − L−1. (3.33)

In the two dimensional slope evolution equation, (3.9), existence of an invariant circle

meant both the slopes ` and `′ had to be positive. Here the existence of an invariant

Lagrangian graph implies that the matrices L and L′ are positive definite. On the

cylinder we were able to study equation (3.9) and obtain a narrower global Lipschitz

cone; where first we had 0 ≤ ` ≤ ∞ we eventually got `− ≤ ` ≤ `+, with `± given

by equation (3.12). There is a higher dimensional analog of this best global Lipschitz

cone, but we defer it until section 3.3.4.

3.3.3 minimalism revisited

We now turn to the higher dimensional generalization of the action criterion. The first

thing we need is a higher dimensional version of the theorem of Mather which told

us that invariant circles are composed entirely of minimizing orbits. The necessary

result, which says that every orbit on an invariant Lagrangian graph is minimizing,

has been proven by Katok, [Kat88], and by MacKay, Meiss and Stark, [MMS89].

With this result in hand we can proceed as before. We consider finite segments,

x−1,x0, . . . xn taken out of minimizing states. The action functional is still

W−1,n =
n−1∑
j=−1

Hε(xj,xj+1),

=
n−1∑
j=−1

1

2
‖ xj+1 − xj ‖2 − Vε(xj).

77

and the second variation of W−1,n is, in block form,

β(x0) −I 0 0 · · · 0

−I β(x1) −I 0 · · · 0

0 −I β(x2) −I 0
...

.
...

0 −I β(xn−2) −I

0 · · · 0 −I β(xn−1)


,

which is readily block-diagonalized to
d0 0 · · ·

0 d1 · · ·
...

...
. . .

 .
The diagonal blocks, dj, are given recursively by

d0 = β(x0),

dj+1 = β(xj+1)− d−1
j , β(xj+1) = 2I− ∂2Vε

∂x2
(xj+1). (3.34)

Our concern is that the dj be positive definite. It is here that blithe, formal, general-

ization fails us; there are no sensible formal analogs for results like equations (3.10),

(3.12) and (3.13). Instead we need to invent a way to test whether the least eigen-

value of dj is positive. We will develop a whole suite of estimates for this eigenvalue,

then use them and a plan like the one in section 3.2.1 to prove the non-existence of

Lagrangian graphs.

All the matrices we will be discussing are real and symmetric, hence, Hermitian.

For a particular matrix, M , we will need to define λ−(M), the least eigenvalue of M ,

λ+(M), the largest eigenvalue, and Tr [M] =
∑dim(M)
j=1 Mjj, the trace. The following

lemma will be our main tool.

Lemma For real, symmetric, n× n, positive definite matrices β, d, and d′ with

d′ = β − d−1 (3.35)

78

the following suite of inequalities hold:

λ−(d′) ≤ 1

n
Tr [β]− n

Tr [d]
, (3.36)

λ−(d′) ≤ λ+(β)− 1

λ−(d)
, (3.37)

λ−(d′) ≤ λ−(β)− 1

λ+(d)
. (3.38)

Proof The first inequality, which is due to Herman, comes from the observations

that for a positive definite, Hermitian matrix, M , λ−(M) ≤ 1
n
Tr [M] and Tr [M−1] ≤

n2

Tr [M]
. Both these inequalities are strict except for the degenerate case where all the

eigenvalues are the same. The other two inequalities depend on

λ+(M) = max
ν∈Rn, ‖ν‖=1

〈ν,Mν〉

and

λ−(M) = min
ν∈Rn, ‖ν‖=1

〈ν,Mν〉,

where the norm and inner product are the usual Euclidean norm in Rn and ordinary

dot product, 〈u,v〉 =
∑n
j=1 ujvj. Given these equations we can obtain inequalities

about the least eigenvalue of d′ in (3.35) by evaluating 〈ν,d′ν〉 on particular vectors.

If, for example, one takes ν to be the unit eigenvector corresponding to the smallest

eigenvalue of d one finds

λ−(d′) ≤ 〈ν,d′ν〉 = 〈ν,βν〉 − 〈ν,d−1ν〉,

= 〈ν,βν〉 − 1

λ−(d)
,

≤ λ+(β)− 1

λ−(d)
.

This is inequality (3.37) of the lemma. Inequality (3.38) comes from an identical

argument with ν the unit eigenvector corresponding to the least eigenvalue of β.

79

3.3.4 global estimates: narrowing the cones

Here we see how to use our inequalities to reduce the range of permissible λ−(dj).

On the face of it, we must allow 0 ≤ λ−(d) ≤ ∞, but inequalities (3.36) and (3.37)

have the correct form to allow an iterative refinement like the one in section 3.1.3.

Since Tr [β(v)], and λ+(β(v)) are continuous, Zn-periodic functions, they have well

defined minima and maxima, say,

t ≤ Tr [β] ≤ T,

b ≤ λ+(β) ≤ B.

Inequalities (3.36) and (3.37) then imply that the dj from a minimizing state must

satisfy

Trmin ≤ Tr [dj] ≤ Trmax, with Trmin = l.b.

{
T −
√
T 2 − 4n2

2

}
,

Trmax = u.b.

{
T +
√
T 2 − 4n2

2

}
, (3.39)

and

λ−min ≤ λ−(dj) ≤ λ−max, with λ−min = l.b.

{
B −

√
B2 − 4

2

}
,

λ−max = u.b.

{
B +

√
B2 − 4

2

}
. (3.40)

We can also get some analytic use out of inequality (3.38) by combining it with (3.40).

λ+(d) ≤ Tr [d] − (n− 1)λ−(d)

≤ Tr [d] − (n− 1)λ−min.

Hence,

λ−(d′) ≤ λ−(β) − 1

λ+(d)

≤ λ−(β) − 1

Tr [d] − (n− 1)λ−min
. (3.41)

80

This profusion of inequalities makes possible a whole host of “Mather 4
3
” arguments;

Herman, in [Herm88], gave the one based on (3.36) and (3.39). In the next section we

show how to apply his criterion, along with other, new ones, to a specific example.

3.4 A converse KAM theorem

Here we use the arguments above on a specific system, the trigonometric example

from chapter 2. We will use the same example to illustrate some16 of the issues in

proving a machine-assisted converse KAM theorem and will show the results of several

calculations.

3.4.1 analytic preliminaries

The plan for a converse KAM theorem, section 3.2.1, requires a starting point, x?,

and the constants t, T, b and B from equations (3.39) and (3.40). For the example

at hand,

β(v) = 2I− ε∂
2Vtrig
∂x2

,

= 2I− ε

Mtrig

 { sin 2πv0
2

+ sin 2π(v0 + v1)} sin 2π(v0 + v1)

sin 2π(v0 + v1) { sin 2πv1
2

+ sin 2π(v0 + v1)}


and so

Tr [β(v)] = 4− ε

Mtrig

{
1

2
{sin 2πv0 + sin 2πv1} − 2 sin 2π(v0 + v1)

}
(3.42)

λ−(β(v)) =
1

2

 Tr [β(v)] −
ε

Mtrig

√
1
4

(sin 2πv0 + sin 2πv1)2 + 4 sin2 2π(v0 + v1)

(3.43)

16Appendix B gives a detailed discussion of the algorithms used and includes a specification of
the functions and data structures. The code itself is in appendix C.

81

Both Tr [β] and λ−(β) achieve their extrema on the line v0 = v1. The symmetries of

Vε also ensure that

t− 4 = ε min Tr [
∂2Vtrig
∂x2

] = −ε max Tr [
∂2Vtrig
∂x2

] = 4− T

b− 2 = ε minλ−(
∂2Vtrig
∂x2

) = −ε maxλ−(
∂2Vtrig
∂x2

) = 2−B

We find the approximate positions of the extrema using Newton’s method, then eval-

uate the bounds t, T etc.. From these we can calculate the ranges of permissible

λ−(dj).

The choice of the starting point, x?, depends on which of the inequalities (3.36)

- (3.38) we expect to be most fruitful. Good use of inequality (3.36) would require

that x? be a place where Tr [β] attains its minimum; this choice immediately gives

εc ≤ 0.0435. Best use of inequalities (3.37) and (3.38) requires x? at a place where

λ−(β) = b. (3.44)

This turns out to be the best choice; it immediately gives εc ≤ 0.0278. Note that we

need not be particularly rigorous about finding x?. Indeed, we are free to choose it

anywhere we like; we just get much better results if (3.44) is satisfied.

3.4.2 the computations

Once x? is chosen, we can set up the extended phase space, Iε×Rn×Rn, extend Gε

to G as in (3.18), and proceed with a proof. The plan is the same as in section 3.2.1,

except that here the role of the intervals, Ij, is played by rectangles in the unit square.

That is, we first ask “Can any x ∈ [0, 1]× [0, 1] follow x? in a minimizing state?” If

the answer is “no” then we are finished, if not we cut the square in half and ask the

same question for each piece. Once the rectangle of potential successors is smaller

than the whole square we can iterate the argument for several steps, bounding image

82

prisms as in section 3.2.2. This yields a sequence of prisms in the extended phase

space, S0, S1, · · ·, with

S0 = Iε × {x?} × {successor rectangle} ≡ (xc,0, P0)

S1 = (xc,1, P1) ⊃ G(S0)

...

Beginning with

u.b. λ−(d−1) ≡ λ−max and u.b.Tr [d−1] ≡ Trmax

we proceed, at each step evaluating the whole suite

λ−(dj+1) ≤ u.b.
(ε,u,v)∈Sj+1

(
1

n
Tr [β(v)]

)
− n

u.b.(Tr [dj])
(3.45)

λ−(dj+1) ≤ u.b.
(ε,u,v)∈Sj+1

(λ+(β(v)))− 1

u.b.(λ−(dj))
(3.46)

λ−(dj+1) ≤ u.b.
(ε,u,v)∈Sj+1

(λ−(β(v)))− 1

u.b.(Tr [dj])− λ−min
(3.47)

and choosing the best upper bound. Computing (3.45) automatically gives the bound

on Tr [dj] used in (3.47). These estimates do not, of course, keep improving forever.

Eventually either one of the u.b. λ−(dj) falls below λ−min or one of the prisms Sj gets

so large that the inequalities (3.45) - (3.46) are vacuous. At that point one either

quits or cuts the initial prism in half17 and starts over.

3.4.3 results

Table (3.1) summarizes our results. We were able to show that the last few of the

minimizing states of section 2.2.2 persist beyond the point where no invariant tori

remain.

17The choice of which cut to make, whether along the ε, v0 or v1 axis, depends on the shape of
the final Sj .

83

u.b. εc ≤ longest deepest prisms time (sec.)

0.0278 3 10 39 500

0.0276 4 11 64 759

0.0274 4 13 156 2698

0.0272 6 21 933 ∼

Table 3.1: A sequence of bounds on εc and some details about the computations which

verified them. The table includes: longest, the length of the longest sequence of image

prisms considered; prisms the total number of prisms on which the algorithm suc-

ceeded; deepest, the number of refining cuts needed to make the smallest successful

prism and time the execution time in seconds. All computations were done on a Sun4.

The figures on the following pages show some of the systems of prisms used in the

proofs. The dark grey rectangles are sets which cannot contain a successor to x?, the

light grey regions may be ignored on account of symmetry, (see section 3.4.4). As one

might expect, those states which go from x? to neighborhoods near the the maximum

of Vtrig, (those which correspond to rectangles in the upper right corner), are harder

to prove non-minimizing. To succeed on such a rectangle the program must extend

the corresponding state far enough to evaluate several u.b. λ−(dj). Since the prism-

bounding algorithm always gives an Sj+1 bigger than the true image of Sj, the initial

prisms must be small.

3.4.4 using symmetry

In figures (3.16) – (3.18) we were able to ignore around half the possible successors. To

see why, notice that Vtrig is unchanged by the interchange of its v0 and v1 arguments.

Two segements, such as {· · · ,x?,x1,x2, · · ·} and {· · · ,x?,x′1,x′2, · · ·} in figure (3.19),

84

Figure 3.16: The system of prisms used to show εc ≤ 0.0276.

85

Figure 3.17: εc ≤ 0.0274

86

Figure 3.18: εc ≤ 0.0272

87

will have the same action because they are each other’s images under the interchange

xj,0 ⇀↽ xj,1. Here, the interchange is just a reflection about the line18 x0 = x1. So,

refering to figure (3.19), if we prove that no minimizing state can pass from x? through

the box around x1, we are automatically assured that none can go through the box

around x′1 either.

Figure 3.19: Two symmetrically related states have the same action.

18One must take some care here. The interchange is really a reflection through the diagonal line
containing x?. Our program always arranges that x? is in the square [0, 1] × [0, 1] and on the line
x0 = x1.

88

Appendix A

Approximate Numerical Methods

In this appendix we review the numerical methods used to obtain the results of chapter

2. The first section describes the methods used to calculate the minimizing states;

the next section discusses Kim and Ostlund’s scheme for approximating irrational

vectors by rational ones and the last section explains how we found the Lyapunov

exponents pictured in figure (2.6).

A.1 Methods of minimization

All our minimization schemes solve the Euler-Lagrange equations (2.10). For each ro-

tation vector, p/q and perturbation we produce a sequence of states {X0, X1, . . . Xk, . . .}

each of which satisfies (2.10) for a particular value of ε = εj. We usually begin with a

state whose first point, x0, lies on the minimum of the perturbation to the generating

function (that is, on a maximum of Vε(x)) and whose other points are xj = x0 + j
q
p .

Such a state is globally minimizing for the unperturbed generating function so we set

ε0 = 0. We then increase the size of the perturbation, εj, in small steps and use Xj

as a starting point to calculate Xj+1 using either a gradient-flow scheme or Newton’s

89

method.

The former involves integrating the system of differential equations

dxi
dτ

=
∂Lp,q
∂xi

,

through a long interval of the formal “time,” τ . This method is very slow; it crawls

down to the minimum with exponentially decreasing speed. On the other hand it is

extremely reliable and seems very rarely to converge to a state other than the global

minimum. Newton’s method is much faster, but somewhat prone to converge to

extrema other than the minimum. It works by producing a sequence of approximate

states Y0, Y1, . . . according to the recursive scheme :

Y0 = some initial guess, Yi+1 = Yi +Di

Di = −H−1d(Lp,q) (A.1)

where H−1 is the inverse of the Hessian of the action functional and d(Lp,q) is the

functional’s gradient. Since H has (qd)2 entries, solving (A.1) could be an O((qd)2)

process, but our Hessian,



2I− εV0 −I 0 · · · · · · −I

−I 2I− εV1 −I · · · · · · 0
...

. . .
...

...
...

0 · · · · · · −I 2I− εVq−2 −I

−I · · · · · · · · · −I 2I− εVq−1


,

where

I =

 1 0

0 1

 , Vj ≡
∂2V

∂x2
(xj) =


∂2V
∂x2

0

∂2V
∂x0∂x1

∂2V
∂x0∂x1

∂2V
∂x2

1

 (xj),

90

has only a few terms off the diagonal. We implemented two schemes to solve (A.1),

one which does Gauss-Jordan elimination [PFTV86] and another, rather more com-

plicated algorithm which generalizes the 1-d work of Percival and Metsel [MP87]. We

tried the latter because we hoped it would be more numerically stable; it was not,

and ran a bit more slowly than the Gauss-Jordan program.

A.2 Rational approximation of irrational vectors

The problem of approximating a single real number by a sequence of rationals is

completely solved by the simple continued fraction algorithm [Khin64, Rob78]. We

write

ω = a0 +
1

a1 + 1

a2 +
1

a3 +
1

a4 +
.. .

(A.2)

where the ai, called the partial quotients of ω, are positive integers. We compute

them recursively according to

r0 = ω ai = Int[ri]

ri+1 =
1

ri − ai
.

If ω is rational then all but finitely many of the ai are zero, but if ω is irrational

then the sequence never terminates. Truncating the expansion (A.2) after finitely

many ai gives a sequence of rational approximations p0
q0
, p1
q1
, . . . with many desirable

properties. Each pi
qi

is a best approximation in the sense that the only rationals closer

to ω have larger denominators. Further, the sequence contains infinitely many pi
qi

such

that |ω− pi/qi | ≤ 1/
√

5 q2. Indeed, the extremely good convergence of this sequence

can be a problem. If one wants many approximations with modest denominators one

91

level 0

level 1

level 2

Figure A.1: Several levels of the Farey tree. The solid dot shows the position of the

golden mean. Its nth approximation is always the mediant which has the largest sum

pn + qn of any appearing at at the nth level.

must either study numbers which, like the golden mean, have very slowly growing qi,

or introduce other approximation algorithms which produce more slowly converging

sequences.

One such algorithm depends on the Farey tree construction of the rationals. In

a Farey tree one represents the rational number p
q

as an ordered pair (p, q). The

endpoints of the unit interval are thus (0, 1) and (1, 1). The construction pro-

ceeds by successively splitting intervals with endpoints (pl, ql) and (pr, qr) into two

daughter intervals by inserting an interior point at ((pl + pr), (ql + qr)). The number

((pl + pr), (ql + qr)) is called the mediant of (pl, ql) and (pr, qr). A sequence of Farey

subdivisions which begins from the unit interval will eventually produce all rational

numbers, each rational appearing as a mediant exactly once and in lowest terms. We

can use the Farey tree as a tool for rational approximation by choosing pn/qn to be

the mediant of the nth level interval containing ω. Since an interval in the nth level of

the tree has length at most 1/n+ 1 the sequence of Farey approximations must even-

tually converge. Since every sequence of Farey approximation begins with p0/q0 = 1
2

and each subsequent approximation requires only a choice of either the left or right

daughter interval, we can represent the sequence of Farey approximations as a binary

address. For example, the address llllll . . . would indicate that ω lies always between

(0, 1) and (1, n).

92

Figure A.2: The mediant operation which refines Farey triangles. The parent triangle

is represented by an equilateral right triangle. The algorithm divides this into two

similar, daughter triangles by adding a new point in the middle of the hypotenuse.

The coordinates of the new point are sums of the coordinates of the end points of the

hypotenuse. [KimOst86]

Kim and Ostlund [KimOst86] provide a detailed algorithm for implementing Farey

approximation on a computer and generalize the idea to solve the problem of simulta-

neously approximating two irrationals (ω0, ω1) by rationals of the form (p0/q, p1/q)
1,

which they represent as the triple (p0, p1, q). To simplify the presentation let us re-

strict our attention to those vectors for which (ω0, ω1) is such that ω0 + ω1 ≥ 1; the

other case is not very different. The analogs of Farey intervals are Farey triangles,

see figure A.2, and the act of refinement again involves adding a point obtained by

coordinate-wise addition. Even when the vertices of the Farey triangles are viewed as

rational points in R2 the 2-d Farey mediant lies on the line connecting its parents so

that the subdivision into triangles represented in figure A.2 reflects a genuine triangu-

lar decomposition on the unit square. Successive subdivisions produce every rational

vector, though some appear twice2. As in the 1-d Farey approximation scheme, one

chooses between a right and left daughter at each level of refinement. Irrational

vectors thus have binary addresses. Kim and Ostlund assert that the analog of the

1These are just the sorts of approximations we want; q is the period of our periodic state.
2Those vertices in the interior of the triangle (0, 1, 1), (1, 0, 1), (1, 1, 1) lie on the hypotenuse of

two different Farey triangles.

93

Figure A.3: Five levels of

the Farey triangulation,

(a), and, (b), the corre-

sponding partition of the

unit square. [KimOst86]

golden mean is the vector whose address is rrrrrrrrr . . .; they call it the spiral mean.

Its components are (τ−2, τ−1), where τ satisfies τ 3 − τ − 1 = 0. One of the rotation

vectors we studied, (1432, 1897) / 2513, is a an approximation to the spiral mean,

and we used the Farey triangle algorithm to produce the approximations used in the

sequence of orbits pictured in section 2.3.

A.3 Lyapunov exponents

The Lyapunov exponents displayed in section 2.2.2 were found with the algorithm

outlined in [BGGS80]. Their method depends on two observations, the first that

one can compute the largest Lyapunov exponent by examining the growth of a vector

tangent to an orbit, the second that the Lyapunov exponents are constant on a certain

nested family of subspaces of the tangent space. To find all the exponents one selects a

family of linearly independent vectors ν0, ν1, . . . , ν2d−1 ∈ TMx0 and carries them along

the orbit with the tangent map DF . Unless one makes a fantastically improbable

choice of initial vectors, each νi will grow with an exponential rate λmax,

λmax =
1

q
log

∥∥∥DF q
x0
νi
∥∥∥

‖νi‖
, (A.3)

equal to the largest Lyapunov exponent. The νi will also become more and more

nearly parallel because their growth is dominated by that of the eigenvector with

94

the largest eigenvalue; DF q
(x0,p0) ν0 will be nearly parallel to this eigenvector. If we

examine those components of DF q
(x0,p0) ν1 which are perpendicular to DF q

(x0,p0) ν0 we

should find that they grow with a rate given by the next to largest Lyapunov exponent.

Those components of DF q
(x0,p0) ν2 which are perpendicular to both DF q

(x0,p0) ν0 and

DF q
(x0,p0) ν1 should grow with a rate given by the third to largest Lyapunov exponent,

and so on.

In practice the DF q
(x0,p0) νi are too nearly parallel to permit the direct calculation

described above. Instead one carries out the calculation of DF q
(x0,p0) νi in q stages,

using the definition of DF q
x0

, (2.17). Whenever DF q
(x0,p0) ν0 gets larger than some

modest limit, one performs a Gram-Schmidt orthogonalization on the vectors, then

normalizes each member of the resulting orthogonal collection and keeps a running

total of the logarithms of the normalization constants. The Lyapunov exponents are

just

λi =
1

q

∑
normalizations

log ni,

where ni is a normalization constant for the ith vector. We adopted the scheme of

[BGGS80] only after trying a more difficult and time consuming method based on the

rate of growth of the volumes of parallelopipeds. Although this original algorithm

had a pleasing likeness to the definitions of Oseledec’s great paper [Osc68], it gave

the same answer as the algorithm described above, but took quite a bit longer.

95

Appendix B

Converse KAM Methods

The algorithms used to prove the theorems of section 3.4.3 have been implemented

in the C programming language. This appendix descibes the program in some detail.

Section B.1 gives an overview of a typical computation and section B.2 explains how

the basic data: numbers, intervals, and prisms, are stored in the computer. Section

B.3 carefully describes the crucial algorithms and serves as an introduction to the

parts of the code appearing in appendix C.

B.1 What the program does

This section expands on the plan for a proof offered in section 3.2.1. It first discusses

the actual map used, then gves a more detailed sketch of the computation, ending

with a typical input file and the resulting output. This section also introduces a

convention of typography and one of nomenclature. Under the former, bits of text

taken directly from computer programs will be printed in the typewriter typeface.

Under the latter, closely related objects will have similar names. For efficiency’s

sake, I have written two versions of most functions. The first, quick and sloppy, is

96

used for exploration. The second, stately and rigorous, verifies any promising results

suggested by the first. The quick function usually has some descriptive name, as has

bound btrace(), which bounds the trace of the blocks β(xi). The rigorous version,

Rbound btrace(), has almost the same name, but for the prefix, R, connoting rigor.

A similar convention applies to names of variables; minLeastLam is an approximate

value for λ−min, the smallest permissible value for the least eigenvalue of a diagonal

block. The rigorous estimate of the same number is called RminLeastLam.

B.1.1 the map

The program really works with the three-parameter, four-dimensional, symplectic

map,

y′ = y + J ′,

J ′ = J − ∂Vabc
∂y

.

Where

Vabc(y) = −a sin(y0)− b sin(y1)− c sin(y0 + y1). (B.1)

If one takes a = b = 4επ2

2Mtrig
, c = 4επ2

Mtrig
this map is conjugate to the trigonometric

example via the change of coordinates,

x =
y

2π
, p =

J

2π
.

I included the extra parameters because it was easy, and left open the possibility of

further work. I used y ≡ 2πx to avoid having to multiply by 2π so often.

B.1.2 sketch of a computation

This section explains what the program does. First, it reads an input file and invoke

a host of initialization functions. These have names like init· · ·() and do such things

97

as initialize variables, allocate memory, and copy the input data to various output

files. Next, the program chooses the starting point, x? and prepares the first, all-

encompassing prism which then becomes the sole member of a linked list of untested

prisms. The rest of the computation is a struggle to get to the end of this list.

It grows shorter whenever the prism-testing algorithm succeeds; when the program

is able to show that none of the points in a particular prism could follow x? in a

minimizing state the successful prism is removed from the list and forgotten. The

list grows longer when the algorithm fails; the offending prism is divided in two by

refinePrism() and replaced by the resulting pair.

The program tests a prism in several stages; it begins by examining the values

of the parameters included in the prism and computing λ−min and Trmin; it then

invokes a series of prism-testing functions. The first of these, quick try(), tries to

show that the states with x0 = x?, x1 = {center of the prism} cannot be minimiz-

ing. If quick try() fails the prism is judged hopeless and is immediately halved;

if quick try() succeeeds the program passes the prism to try Prism(). This func-

tion does a full, orbit-following, image-bounding test, but uses only 48-bit, double-

precision numbers and does not give rigorous results. If try Prism() succeeds too,

then, finally, Rtry Prism() checks the prism rigorously. Eventually the program ei-

ther reaches the end of the list, and so proves a converse KAM theorem, or founders

on a difficult prism and quits.

B.1.3 using the program: a sample

The computation which proved εc ≤ 0.0274 began when I typed:

converse <trig274.in >&trig274.out -d30

The -d30 sets the maximum depth; it tells the program to quit if it ever fails on a

prism which has been subdivided 30 times. Other command-line options include:

98

-b filename Maintain a backup file. This is esential for long computations; the

backup file is updated frequently and contains enough information to continue

a proof that has been interrupted by some computer disaster.

-g filename Make a graphics file. The program composes a PostScript program

to draw figures like (3.16)-(3.18) and writes it on filename. If filename is the

special name, off, then the graphics parts of the program are turned off.

-p dp Fix the precision used in the rigorous parts of the computation to dp decimal

places; the example above uses the default, 35.

-s Be stubborn; keep on computing even if some prism cannot be successfully resolved

at the maximum depth. This option is good for making pictures and for getting

an idea of how hard a fully successful computation might be.

-t Change the terseness. Selecting this option makes the program more informative;

it prints a message whenever it finds a successful prism. It also makes the output

file much longer, and so I used it only during development of the program.

-r filename Restore an interrupted computation from a backup file.

The input file, trig274.in, looks like:

Parameters:
0.3085 0.00125 ac and ∆a
0.3085 0.00125 bc and ∆b
0.617 0.0025 cc and ∆c

Angles given in units of 2π.
1.0 1.0 θc,0 and ∆θ0

1.0 1.0 θc,1 and ∆θ1

0.0274 < epsilon < 0.0276

Run on kastor

May 2nd, 1989

99

The parts in the typewriter typeface are copied directly from the input file; the

parts in italics are additional comments. The first three lines give the ranges for

parameters a, b and c. For example, the first line is the pair, (ac,∆a), which establishes

that the initial prism will have ac − ∆a ≤ a ≤ ac + ∆a.. The fifth and sixth lines

specify that the prism will have 0 ≤ θj ≤ 2π, j = 1, 2. The last few lines are

comments.

The computation above would yield an output file, trig.out, looking like:

apmValidate : null APM value in map.c at line 296.

Parameters :

a : 3.08500000000000e-01 1.25000000000000e-03

b : 3.08500000000000e-01 1.25000000000000e-03

c : 6.17000000000000e-01 2.50000000000000e-03

Initial region :

v[0] : 3.14159265358979e+00 3.14159265358979e+00

v[1] : 3.14159265358979e+00 3.14159265358979e+00

Comments :

0.0274 < epsilon < 0.0276

Run on kastor

May 2, 1989

++

I find no invariant tori for the range of parameters :

0.307250 < a < 0.309750

0.307250 < b < 0.309750

0.614500 < c < 0.619500

Did 322 quick checks, 318 semi-rigorous bounding tries,

and 156 rigorous bounding tries.

The most deeply refined prism was cut 13 times.

The longest semi-rigorous orbit ran for 5 iterations,

the longest successful orbit, 4 iterations.

Of the 156 successful prisms, 0 fell to the trace criterion,

156 to the least eigenvalue test.

The best upper bound on the least eigenvalue came from

100

the maxBlam criterion 0.0% of the time,

the minBlam criterion 99.4% of the time,

and from the trace criterion 0.6% of the time.

This investigation took 2697.53 seconds.

The first line is an error message from the intialization phase of the computation,

saying that some variable was not properly allocated; the program automatically

corrects this error. The next few lines are copied directly from the input and the

lines after those give the result: no tori. The rest of the file reports details about the

program’s performance.

B.2 Representation of data

Here we explain how data are represented in the program. This section is fairly

technical; it is partly intended as an introduction to the program and assumes some

knowledge of C. Those wishing to avoid technical details should read only section

B.2.1, in which numbers and arbitraty precision arithmetic are discussed. This leads

into a description of intervals and interval arithmetic, which makes up the next sec-

tion. Last, we explain how prisms are represented.

B.2.1 numbers and arithmetic

The computations in the rigorous parts of the program use an arbitrary precision

arithmetic library written by Lloyd Zussman1. A desciption of his library and its

constituent functions appears in appendix C; for now it is enough to know that it

allows one to do arithmetic on numbers represented as finite strings of base 10000

1Mr. Zussman’s library is licensed under a variant of the Free Software Foundation’s Gnu EMACS
General Public License and so I am obliged to provide a copy of the source code to anyone who asks.
Complete source code for my program, converse, is also available on request.

101

“digits.” We will call such strings APMs. Addition, subtraction and multiplication of

two APMs, say, x and y, always yield another number representable as an APM, but

division need not. The rational number x
y

may have an infinite repeating represen-

tation in base 10000. The division function, apmDivide(), deals with this problem

by allowing the user to specify the number of decimal places (counting only those

to the right of the decimal point) to which the result should be correct. The special

functions, apmSin(), apmCos(), and apmSqrt(), which I have written, use the same

stategy.

Fixed-precision calculations return a kind of implicit interval. An answer, ã, which

is accurate to dp decimal places, can be thought of as an interval guaranteed to contain

the true answer, a;

ã− 10−dp ≤ a ≤ ã+ 10−dp

The program also uses functions which do explicit interval arithmetic. An example

is Rbd sin() which accepts as its argument an interval, [θ−, θ+] ≡ Iθ, and returns

an interval, [s−, s+], certain to contain sin θ for any θ ∈ Iθ. Most of the crucial

estimates involve some fixed-precision calculation and and so the program often uses

the variables

max error = 10−dp,

and

precision = dp+ SAFETY DP.

dp is the number of digits selected with the -p option and SAFETY DP is a margin of

safety. All the program’s intermediate results are calculated to precision decimal

places and then, for safety’s sake, regarded as only accurate to ± max error. In the

calculations summarized in table 3.1, dp = 35 and SAFETY DP = 5.

102

B.2.2 intervals and expressions

The structure representing an interval is

typedef struct { APM ub, lb ; } Bdd apm ;,

called a bounded APM. The functions Rbd sin() and Rbd cos() each take one bounded

APM as an argument and return another as the result. The only other operations

on intervals used by the program are addition, subtraction, and multiplication. This

is all handled through two other structures, the Bapm term, and the Bapm expr. The

former is short for bounded term, the latter for bounded expression. Their full decla-

rations are:

typedef struct { int nfactors ;

APM coef ;

Bdd apm **factors, bound ; } Bapm term ;

and

typedef struct { int nterms ;

APM const ;

Bdd apm bound ;

Bapm term *terms ; } Bapm term ;

To see the use of these structures, consider trying to find a bound on

2.0− a sin(θ0)− b sin(θ1),

where a, b, and the θi all belong to intervals. One would set up a bounded expression

composed of two bounded terms:

2.0︸︷︷︸
const.

− a︸︷︷︸
factors

sin θ0︸ ︷︷ ︸︸ ︷︷ ︸
Bapm term

− b︸︷︷︸
factors

sin θ1︸ ︷︷ ︸︸ ︷︷ ︸
Bapm term

,

then use Rbd sin() to set the factors and, finally, use Rbd expr() to get bounds on

the whole thing.

103

B.2.3 prisms

The prisms introduced in section 3.2.2 are the fundamental objects of the program;

they are stored in

typedef struct RPrsm { int in torus, n cuts ;

APM *matrix ;

char *cuts[7] ;

Rxtnd pt *center ;

struct Rprsm *next ; } RPrism ;

The integer in torus has one of the values NO TORI, UNTRIED, MAYBE, ACTIVE, or

SYMMTRC according to whether it definitely does not include points from a minimizing

state, has not yet been tested, has been inconclusively tested, is under active con-

sideration or may be disregarded on account of symmetry. The integer n cuts tells

how many subdivisions it took to make this prism and the character strings cuts[

] explain how to produce this prism from the initial, big prism. center and matrix

are the center point and defining matrix of the prism; center is an example of an

extended phase point; it has seven coordiates in all, three for the parameters and two

for each of the delay embedded coordinates. The pointer next gives the next Rprism

on the list.

B.3 Algorithms

Here we explain and verify the crucial algorithms. In the first part of the section

we will establish the correctness of apmSin(), apmCos() and apmSqrt(), functions

which we approximate with polynomials gotten by truncating Taylor series. Next

we check the algorithms which set the bounds λ−min and Trmin, then we turn to the

computations used to compute l.b. λ−(dj). In the last part of the section we examine

the prism-bounding algorithms.

104

B.3.1 special functions

sine and cosine

The real computational work is done by two functions, reducedSin() and reducedCos(),

which compute the sine and cosine of an angle from the interval I0 ≡ [0, π
4
]. These

functions and the relations

sin(θ ± π

2
) = ± cos(θ), sin(−θ) = − sin(θ),

cos(θ ± π

2
) = ∓ sin(θ), cos(−θ) = cos(θ),

allow us to calculate the sine and cosine of any angle. As mentioned in section

B.2.1, we must set dp, the the number of correct digits we want in the answer.

setTrigDp(dp) does this; it also chooses the order of the Taylor approximation

and picks the number of decimal places, trig dp, to which intermediate results

are calculated. To prove that all this works we will estimate the error made by

reducedSin()2, leaving undetermined trig dp and the number of terms in the poly-

nomials, trig terms. We will then show how to choose these two and how to reduce

an arbitrary angle θ to one lying in [0, π
4
].

The form of the approximation is

reducedSin(θ) ≈ PN(θ) ≡ 1

(2N + 1)!

N∑
j=0

θ2j+1 (−1)j
(2N + 1)!

(2j + 1)!

≈ 1

sinFactrl

N∑
j=0

sinCoef[j] θ2j+1 (B.2)

where the second line substitutes names used in the code. Let us consider an angle,

θ ∈ [0, π
4
], which is approximately represented by an APM, θ̃.

Proposition If θ̃ is such that |θ − θ̃| ≤ ε < 1, then

| sin θ − PN(θ̃)| ≤ ε+
θ2N+3

(2N + 3)!
. (B.3)

2The analysis of reducedCos() is much the same.

105

Proof By straightforward computation,

| sin θ − PN(θ̃)| ≤ | sin θ − sin θ̃|+ | sin θ̃ − PN(θ̃)|,

≤ |θ − θ̃|+

∣∣∣∣∣∣
N∑
j=1

(−1)j
θ2j+1

(2j + 1)!

∣∣∣∣∣∣ ,

≤ ε+
θ2N+3

(2N + 3)!
.

Evaluating long power series like (B.2) can take immense amounts of computer

time and memory; if the string of digits making up θ̃ has length ` then the one

representing θ̃n will have length ≈ n`. So, in the interest of computational speed,

reducedSin() truncates some intermediate expressions. What it really calculates is

a sequence of approximations to certain polynomials. In the equations below, [x]n is

the number given by the truncating x after n places to the right of the decimal point,

and tdp is short for trig dp.

S̄0 = (−1)N ,

S̄1 =
[
θ̃2S̄0 + (2N + 1)(2N)(−1)N−1

]
tdp
,

≈ θ̃2(−1)N + (2N + 1)(2N)(−1)N−1,

...

S̄N =
[
θ̃2S̄N−1 + (2N + 1)!

]
tdp
,

≈
N∑
j=0

θ̃2j (−1)j
(2N + 1)!

(2j + 1)!

and, finally,

reducedSin(θ̃) ≡ θ̃S̄N
(2N + 1)!

≈ PN(θ̃) (B.4)

Let us consider the additional error introduced by truncation. Use Sj to denote

the exact value of the polynomial approximated by S̄j. Then S̄0 = S0 and so S1 lies

106

in an interval,

S̄1 − δ1 < S1 < S̄1 + δ1,

with δ1 = 10−tdp. Since S2 = θ̃2S1 + C, where C is a constant, we may be sure that

S2 is in the interval

[θ̃2(S̄1 − δ1) + C, θ̃2(S̄1 + δ1) + C] ⊂
[
(θ̃2S̄1 + C)− δ1, (θ̃2S̄1 + C) + δ1

]
.

After truncation we get

S̄2 − δ2 < S2 < S̄2 + δ2

with δ2 = 2δ1 and after N such steps we are left with an error, δN = N 10−tdp.

Combining this with equations (B.3) and (B.4) we get

|reducedSin(θ̃)− sin θ| ≤ |θ̃ − θ|+ Nδ1

(2N + 1)!
+
|θ|2N+3

(2N + 3)!
(B.5)

The only unknown quantity here is the difference between θ and its APM represen-

tation θ̃. Suppose we can arrange for this to be at least as small as 10−tdp. To ensure

dp decimal places of accuracy in our answer we need only choose N large enough that

1
(2N+3)!

< 10−(dp+2) and then choose trig dp so large that Nδ1 ≤ 10−(dp+2) too.

If we want the sine or cosine of an angle which lies outside the interval I0, we must

relate it to some calculation that we can do with the reduced functions. The program

contains a very accurate representation3 of π, so it can just subtract the appropriate

number of multiples of π
2

and, perhaps, reflect about the origin. For very large angles,

the reduction process may lose so much precision as to preclude a calculation to the

specified accuracy. In that case the program writes an error message and calculates

the best answer it can.

3The current implementation has one good to 45 decimal places, but it would be easy to add
more.

107

square root

The square root function apmSqrt() is much simpler. It takes an argument, x, and

uses Newton’s method to solve the equation y2 − x = 0. Suppose we want dp dec-

imal places of accuracy in the answer; define dp+ = dp + 2. apmSqrt() recursively

calculates a sequence yj ≈
√
x with

y0 = x

yj+1 =

1

2
(yj +

[
x

yj

]
dp+

)


dp+

(B.6)

After the first few steps, the yj decrease monotonically and so we may write yj =
√
x + rj; the error term, rj, is a small, positive number. Equation (B.6) then yields

the following extremely conservative estimate:

rj+1 = yj+1 −
√
x,

=

1

2
(
√
x+ rj +

[
x√
x+ rj

]
dp+


dp+

−
√
x,

≤ (
rj
2

+
√
x+ 2εdp+)−

√
x,

≤ rj
2

+ 2εdp+ (B.7)

where εdp+ = 10−dp+ is the inevitable truncation error. If rj <
√
x, Newton’s method

actually gives rj+1 ∼
r2j√
x
, but (B.7) will be good enough for us. It tells us that we

must continue computing until the difference,

yj−1 − yj = rj−1 − rj >
rj
2
− 2εdp+,

is less than 10−(dp+1); the last yj will be the answer.

108

B.3.2 uniform cones and the starting point

This section explains how the program evaluates the constants Trmin, Trmax, λ−min

and λ−max; it also explains how to get a good value for the starting point x?. The

main technical problem is the correct evaluation of the constants

B = u.b. λ+(β) and T = u.b.Tr [β];

these, together with equations (3.39) and (3.40), determine everything else. Finding

either B or T is a matter of maximizing a function on [0, 1] × [0, 1] × {parameters},

so it is enough to explain how to find one of them, say T .

When the program seeks T it sets a, b and c to their values at the center of the

intial prism, then uses Newton’s method to find a zero of the gradient of Tr [β]. For

the computations presented in section 3.4.3, the search began at (π
2
, π

2
) and continued

until it reached a point xT such that∣∣∣∣∣∂Tr [β(xT)]

∂x

∣∣∣∣∣ < (|ac|+ |bc|+ |cc|) εnewt,

where εnewt is a small constant. In the code, the search is done with ordinary double

precision arithmetic and εnewt is called NEWT TOL and is equal to 10−9. The xT it finds

is very close to the true maximum, and so a suitable estimate is

T = Tr [β(xT)] + (ac + bc + 2cc)10−6 + (∆a+ ∆b+ 2∆c)

where the last term is included to allow for the variation in a, b and c over the prism.

The point xT found by this technique is the natural starting point for an estimate

based on Herman’s trace condition, so I call it Herman’s starting point.

The estimate for B works much the same way; a Newton’s method search gives

an approximate value for, xB, the position where maxλ+(β) is attained. B is then

calculated according to

B = λ+(β(xB)) + (ac + bc + 2cc)10−6 + (∆a+ ∆b+ 2∆c)

109

After calculating B, the program sets up the starting point, x?, also called the least-

lambda starting point. This point is essentially the same as xB, but is explicitly

guaranteed to lie on the line x0 = x1 so that the calculation can exploit symmetry,

as explained in section 3.4.4.

B.3.3 bounding traces and eigenvalues

This section explains how the program takes a prism, P , and evaluates the bounds

u.b.
(ε,u,v)∈S

λ−(β),

u.b.
(ε,u,v)∈S

λ+(β),

u.b.
(ε,u,v)∈S

Tr [β],

where ε ∈ R3 stands for the triple of parameters, (a, b, c). These are the basic

ingredients of the main suite of estimates, (3.45) – (3.47). Recall that the prism is

determined by its center, (εc,uc,vc), and by the matrix which maps the hypercube,

Q7, into the extended phase space. A point η ∈ Q7 has an image given by

a(η)

b(η)

c(η)

u0(η)

u1(η)

v0(η)

v1(η)



=



ac

bc

cc

uc,0

uc,1

vc,0

vc,1



+



∆a 0 0 · · · 0

0 ∆b 0 · · · 0

0 0 ∆c · · · 0

...
...

...
. . .

p7 1 p7 2 p7 3 · · · p7 7





η1

η2

η3

η4

η5

η6

η7



. (B.8)

From this it is easy to show that any (ε,u,v) ∈ S has

|v0 − vc,0| ≤
7∑
j=1

|p6 j| and |v1 − vc,1| ≤
7∑
j=1

|p7 j|.

Once we have found bounds on the components of v, we can invoke Rbd sin() to get

bounds on the functions sin(v0), sin(v1) and sin(v0 +v1), then combine those with ∆a,

110

∆b and ∆c to obtain bounds on the expressions appearing in the trace and eigenvalues

of β.

In the program, all this is done with the Bapm expr machinery described in sec-

tion B.2.1. The expressions a sin(v0), b sin(v1) and c sin(v0 + v1) arise so often that

they are given their own names: Ra sin, Rb sin and Rc sin; their values are set by

Rglobal bounds(priz). In terms of these, the estimates we need are:

u.b.
S

Tr [β] = 4.0 + Ra sin.bound.ub + Rb sin.bound.ub + 2 Rc sin.bound.ub

u.b.
S
λ−(β) =

1

2

{
u.b.Tr [β]− l.b.

√
discrim.lb

}
,

u.b.
S
λ+(β) =

1

2

{
u.b.Tr [β] + l.b.

√
discrim.ub

}
where discrim is a bounded APM containing estimates over S of the quantity

(a sin(v0) + b sin(v1))2 + 4c2 sin2(v0 + v1). (B.9)

Note how, in every estimate described above, we allow each of the terms a sin(v0) · · ·

to vary independently; the bounds we obtain are almost certainly too conservative.

B.3.4 bounding the images of prisms

The bulk of the computation is devoted to the kind of prism-bounding calculations

described in section 3.2.2. In this section we will see how the program takes a prism

in the extended phase space, S = (xc, P), and constructs another, S ′ = (x′c, P
′),

guaranteed to contain G(S). The computation of x′c is easy; x′c ≈ G(xc) where

G(a, b, b,u,v) ≡ (a′, b′, c′,u′,v′) = (a, b, c,u′,v′),

u′ = v,

v′ = 2v − u− ∂Vabc(v)

∂x
. (B.10)

Although only v′ involves any real computation, and so only it introduces any error,

we will find it useful to assign a somewhat larger uncertainty, δc, to both u′ and v′.

111

The computation of P ′ is much more difficult; the work falls into two parts: setting

up the matrix A and evaluating the numbers,

wj = u.b. |[A−1(G(xc)− xc′)]j|+ u.b.
x∈S

7∑
k=1

∣∣∣[A−1 ◦DGx ◦ P]jk
∣∣∣ ,

≤ [A−1]j ?δc + u.b.
x∈S

7∑
k=1

∣∣∣[A−1 ◦DGx ◦ P]jk
∣∣∣ , (B.11)

The second term, which involves bounds over x ∈ S, will be the hard part. As was

mentioned in section 3.2.3, the program uses two schemes to prepare A. The first,

the fixed-form scheme, is specially suited to prisms with zero volume. Since all the

prisms on the linked list are of the form

{parameters} × {x?} × {possible successors},

all are singular. Accordingly, the fixed-form scheme is always used on the first step

of a round of prism-bounding. Since the first image is non-singular by construction,

the second and subsequent iterates employ a different, more accurate scheme, the

column-rotor. This section describes both schemes and verifies that they are correctly

implemented.

Most of the work will come in showing that the wj are calculated properly, a task

simplified by the following definitions and proposition.

Definition For any real, m× n, matrix A, define

[A]k ? ≡
n∑
j=1

|ak j|,

the k-th row sum of A, and

[A]? ? ≡
m∑
k=1

n∑
j=1

|ak j| =
m∑
k=1

[A]k ?

Proposition For any real, m× n matrix A and real, n× l matrix B, the product

C = AB satisfies

[C]k ? ≤ [A]k ?[B]? ? and [C]? ? ≤ [A]? ?[B]? ? (B.12)

112

Proof By direct calculation:

[C]k ? =
l∑

j=1

|ck j| =
l∑

j=1

∣∣∣∣∣
n∑
i=1

ak ibi j

∣∣∣∣∣ ,
≤

l∑
j=1

n∑
i=1

|ak i| |bi j|,

≤
n∑
i=1

|ak i| [B]i ?,

≤
n∑
i=1

|ak i|[B]? ? = [A]k ?[B]? ?.

Then, using the first part of (B.12), one finds

[C]? ? =
m∑
k=1

[C]k ? ≤
m∑
k=1

[A]k ?[B]? ? = [A]? ?[B]? ?.

It also follows from the definitions that

[(A+B)]k ? ≤ [A]k ? + [B]k ?.

We will use a block-matrix representation for DG, the derivative of the map;

DG =


I 0 0

0 0 I

γ −I β

 , (B.13)

where

β(v) =

 2− a sin(v0)− c sin(v0 + v1) −c sin(v0 + v1)

−c sin(v0 + v1) 2− b sin(v1)− c sin(v0 + v1)


and

γ(v) =

 cos(v0) 0 cos(v0 + v1)

0 cos(v1) cos(v0 + v1)

 .
It will also prove convenient to have block forms for the matrix P and to build a

column vector, w, out of the wj.

P ≡


Ppp 0 0

Pup Puu Puv

Pvp Pvu Pvv

 and w ≡


wp

wu

wv

 , (B.14)

113

where Ppp is 3× 3, Pup and Pvp are 3× 2, and the rest of the blocks are 2× 2. The

elements of w are:

wp =


w1

w2

w3

 , wu =

 w4

w5

 and wv =

 w6

w7

 .

the fixed-form fattener

When using this scheme we force the matrix A to be of the form

A =


App 0 0

Aup 0 Auv

Avp Avu Avv

 . (B.15)

The explicit forms of the blocks will be chosen to simplify the calculation of the wj.

Given (B.15) one can get a formula for A−1 in terms of the blocks and their inverses:

A−1 =


A−1
pp 0 0

0 −A−1
vuAvvA

−1
uv A−1

vu

0 A−1
uv 0




I 0 0

−AupA−1
pp I 0

−AvpA−1
pp 0 I



=



A−1
pp 0 0 A−1

vuAvvA
−1
uvAupA

−1
pp

−A−1
vuAvpA

−1
pp

 −A−1
vuAvvA

−1
uv A−1

vu

−A−1
uvAupA

−1
pp A−1

uv 0


(B.16)

Taking App = Ppp and using (B.16), (B.14) and (B.13), we get A−1 ◦DG ◦ P =

I 0 0
A−1
vu (γPpp − Pup)

+A−1
vu (βPvp − Avp)

+A−1
vuAvvA

−1
uv (Avp − Pup)


 A−1

vuβPvu−

A−1
vuAvvA

−1
uv Pvu


 A−1

vu (βPvv − Puv)

−A−1
vuAvvA

−1
uv Pvv


A−1
uv (Pvp − Aup) A−1

uv Pvu A−1
uv Pvv


.

(B.17)

114

When computing the wj we must allow the matrices γ and β, which depend on a, b,

c anf v to vary over S. All the other blocks, those in A and those in S, are constant.

The form of (B.17) suggests the following choices for the blocks of A:

App = Ppp,

Aup = Pvp,

Avp = γcPpp − Pup + βcPvp,

Auv = Pvu + Pvv,

Avu = βc(Pvu + Pvv),

Avv = βcPvv − Puv, (B.18)

where βc and γc are the values of β and γ at the prism’s center. Note that the

entries in the blocks making up P are exactly represented sas APMs; so are their

sums, products, and differences. Thus Auv, Aup and App are exact; the other blocks

of A, which involve the evaluation of special functions, are uncertain to the extent

that the values of the special functions are.

The choices (B.18) immediately determine most of the wj; the row sums contribut-

ing to wp are automatically equal to one and, unless Auv is singular, wv =

 1

1

. The

program checks the invertibility of Auv by evaluating its determinant, an exact cal-

culation. If det[Auv] were to be zero the program would write an error message and

halt; this has never actually happened. The remaining row sums, those contributing

to wu, are

u.b. [A−1 ◦DGx ◦ P]k ? = u.b.

 [A−1
vu (γ − γc)Ppp + A−1

vu (β − βc)Pvp]j ? +

[A−1
vuβPvu + A−1

vu (β − βc)Pvv]j ?


≤ [A−1

vu]j ? u.b.

 [(γ − γc)Ppp + (β − βc)Pvp]? ?+

[βPvu + (β − βc)Pvv]? ?

 ,

115

≤ [A−1
vu]j ?


u.b.([γ − γc]? ?)[Ppp]? ?+

u.b.([β]? ?)[Pvu]? ?+

u.b.([β − βc]? ?)([Pvp]? ? + [Pvv]? ?)


(B.19)

where k = j + 3, j = 1, 2 and all upper bounds are taken over x ∈ S. Out of all the

numbers appearing in (B.19), only [A−1
vu]j ? and the upper bounds on [β]? ?, [β − βc]? ?

and [γ − γc]? ? cannot be calculated exactly; the first can be estimated to any desired

precision with the APM library, the rest are handled with the Bapm term, Bapm expr

machinery.

the column-rotor scheme

This technique fattens matrices A ≈ DGxc ◦ P , where DG and P are as in equations

(B.13) and (B.14). Such A’s have almost the same form as (B.15), but they have

non-vanishing Auu blocks. The method’s name comes from the way it tries to ensure

that A is non-singular; it rotates parts of columns 4-7 with respect to each other so as

to guarantee that they are not parallel. For example, the function Rsubspace rot(),

which performs the rotations, begins by finding the angle between the two, 2-d column

vectors enclosed in braces in the matrix below.

a1 1 a1 2 a1 3 0 · · ·

a2 1 a2 2 a2 3 0 · · ·

a3 1 a3 2 a3 3 0 · · ·

...
...

...

 a4 4

a5 4


 a4 5

a5 5

 a4 6

a5 6

a4 7

a5 7

a6 4

a7 4

a6 5

a7 5

a6 6

a7 6

a6 7

a7 7


If columns 4 and 5 are nearly parallel then so are these two vectors; Rsubspace rot()

would rotate the shorter of the two through some fixed angle, then go on to check and,

perhaps rotate, other pairs until the matrix had no parallel columns. As we noted

116

in section 3.2.3, this technique is not at all optimal. Indeed, it is not even certain to

produce a non-singular matrix, though, in practice, it always does. The column-rotor

scheme produces smaller, more snuggly fitting bounding prisms than the fixed-form

fattener and so improves the program’s performance.

The main computational work in this scheme is in inverting the matrix A and

in calculating the wj. Since, after column-rotation, A bears no direct relation to

DGxc ◦ P , we cannot expect any special form for A−1 ◦DGx ◦ P . Instead, we must

use the APM library to compute some Ã ≈ A−1 directly. Define4 a 4× 4 matrix B

such that

 Buu Buv

Bvu Bvv


 Auu Auv

Avu Avv

 = I.

Then

A−1 =


I 0 0

0 Buu Buv

0 Bvu Bvv




A−1
pp 0 0

−AupA−1
pp I 0

−AvpA−1
pp 0 I

 ,

=



A−1
pp 0 0 −BuuAupA

−1
pp

−BuvAvpA
−1
pp

 Buu Buv −BvuAupA
−1
pp

−BvvAvpA
−1
pp

 Bvu Bvv


≈


Ãpp 0 0

Ãup Ãuu Ãuv

Ãvp Ãvu Ãvv

 . (B.20)

Note that the lower-left, 4× 4 block of Ã is just B. Then, again taking App = Ppp,

4Some of the notation in this section, like B here, is introduced as a guide to the names of
variables used in the code.

117

the product A−1 ◦DGx ◦ P is

I 0 0 ÃupPpp + ÃuuPvp+

Ãuv(γPpp − Pup + βPvp)


 ÃuuPvu+

Ãuv(βPvu − Puu)


 ÃuuPvv+

Ãuv(βPvv − Puv)

 ÃvpPpp + ÃvuPvp+

Ãvv(γPpp − Pup + βPvp)


 ÃvuPvu+

Ãvv(βPvu − Puu)


 ÃvuPvv+

Ãvv(βPvv − Puv)




.

(B.21)

Since the fattening scheme does not alter the first three columns, the blocks Aup and

Avp have the forms dictated by A = DGxc ◦ P ; these are the same as the forms used

in equation (B.18) for the fixed-form scheme. Equation (B.21) then simplifies to

I 0 0 Ãuv(γ − γc)Ppp+

Ãuv(β − βc)Pvp


 ÃuuPvu+

Ãuv(βPvu − Puu)


 ÃuuPvv+

Ãuv(βPvv − Puv)

 Ãuv(γ − γc)Ppp+

Ãuv(β − βc)Pvp


 ÃvuPvu+

Ãvv(βPvu − Puu)


 ÃvuPvv+

Ãvv(βPvv − Puv)




and the row sums contributing to wu are

u.b.


[Ãuv(γ − γc)Ppp + Ãuv(β − βc)Pvp]j ?+

[ÃuuPvu + Ãuv(βPvu − Puu)]j ?+

[ÃuuPvv + Ãuv(βPvv − Puv)]j ?


,

≤ u.b. [Ãvu]j ? {u.b.([γ − γc]? ?)[Ppp]? ? + u.b.([β − βc]? ?)[Pvp]? ?}+

u.b. [ÃuuPvu + Ãuv(βPvu − Puu)]? ? +

u.b. [ÃuuPvv + Ãuv(βPvv − Puv)]? ?. (B.22)

All the upper bounds are taken over x ∈ S; the formulae for wv are similar. The

program calculates the entries in Ã to at least precision decimal places, then treats

them as exact in the evaluation of [Ãvu]j ? and in expressions like

u.b. [ÃuuPvv + Ãuv(βPvv − Puv)]? ?. (B.23)

118

Upper bounds like (B.23) are so important that the program includes a special

function, Rbound rows(), to evaluate them. To account for the small errors (≤

10−precision) in Ã, the program adds max error to the value of wj as computed ac-

cording to (B.22). Since the entries of β and P are all less in absolute value than 10,

and since max error is at least five orders of magnitude bigger than than the largest

error in Ã, this is a very conservative estimate.

matrix inversion

Notice that only blocks from the lower-left corner of Ã appear in equation (B.22);

it will be enough to calculate just these blocks to precision decimal places. The

function, Rgauss(), which does the calculation, takes a matrix M and uses the Gauss-

Jordan algorithm with full pivoting to produce a result M̃ ≈M−1 such that MM̃ =

I +O(ε), that is

|[MM̃]i j − δij| ≤ ε

where δij is the Kroneker delta function and ε is, as usual, 10−precision.

To apply the Gauss-Jordan algorithm to an n× n matrix M one constructs the

n× 2n matrix

G =



M1 1 M1 2 · · · M1n

M2 1 M2 2 · · · M2n

...
...

. . .

Mn 1 Mn 2 Mnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 1


made by appending a copy of the identity to the right side of M . The algorithm

transforms the left side of G into the identity through a sequence of row operations

which simultaneously transform the right side into A−1. The first step is to multiply

the top row by a constant so that the (1,1) entry is equal to one, then subtract

suitably scaled multiples of the first row from each of the others in such a way as to

119

eliminate the entries in the first column. After this step the system looks like

G′ =



1 M1 2

M1 1
· · · M1n

M1 1

0 M2 2 − M2 1M1 2

M1 1

...
. . .

0 Mn 2 − Mn 1M1 2

M1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
M1 1

0 · · · 0

−M2 1

M1 1
1

...
...

. . .

−Mn 1

M1 1
1


. (B.24)

In the second step one uses multiples of the second row to eliminate all but the (2,2)

entry form the second column . . . and so on. The true Gauss-Jordan algorithm with

full pivoting may rearrange some of the rows and columns so as to place large entries

on the diagonal of the left-hand block; also, real implementations use only a single

n× n array, gradually replacing the matrix M by its approximate inverse, M̃ . The

reader interested in the details of the algorithm should consult either the code, which

is in appendix C, or the excellent book [PFTV86]. Here, we will mostly ignore the

rearrangenents, because they do not affect the error estimates we need.

The divisions needed to calculate intermediate results like (B.24) can only be done

approximately so we must calculate bounds on the errors they introduce. Suppose all

the calculations are done to some fixed precision, inv dp and define εinv = 10inv dp.

We will need a new symbol, G̃′, to denote the approximate value of the matrix G′

and will also need to define δ1, the largest error made in calculating an entry of G̃′;

δ1 = u.b.
j,k
|[G̃′ −G′]jk|.

The second step produces

G′′ =



1 0 ? · · ·

0 1 ? · · ·

0 0 ? · · ·
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
M1 1

0 0 · · ·

? M1 1

M1 1M2 2−M2 1M1 2
0 · · ·

? ? 1 · · ·
...

...
...


. (B.25)

120

Ideally, we would use G′ to calculate G′′ according to

G′′i j =



G′i j
G′2 2

if i = 2

G′i j −
G′i 2G

′
2 j

G′2 2

if i 6= 2.

,

but instead, Rgauss() actually calculates

G̃′′i j =



 G̃′i j
G̃′2 2


inv dp

if i = 2

G̃′i j −
G̃′i 2G̃′2 j

G̃′2 2


inv dp


inv dp

if i 6= 2

(B.26)

From this we must estimate δ2, an upper bound on the difference between G̃′′ and

G′′. Rgauss() finds δ2 in stages, as follows:

(i) Compute

δpiv =
δ1

|G̃′2 2| − δ1

+ εinv

≤
[

δ1

|G̃′2 2| − δ1

]
inv dp

+ 2εinv.

This is a bound on the error made by taking

1

G′2 2

=

[
1

G̃′2 2

]
inv dp

≡ piv inv;

piv inv is the name used in the code.

(ii)

δr = δ1|piv inv|+ δp(u.b.
k 6=2
|G̃′2 k|) + δ1δp.

This is a bound on the error introduced by normalizing the second row so that

its (2,2) entry is equal to one.

121

(iii)

δm = 2δ1 + δr u.b.
l 6=2
|G̃′l 2|+ δ1δr,

≥ δ1 + δ1 u.b.
k 6=2
|piv inv G̃′2 k|+ δr u.b.

l 6=2
|G̃′l 2|+ δ1δr.

This is a matrix-wide bound on the errors made in computations like those in

(B.26). The inequality is a consequence of the pivoting part of the algorithm,

which ensures that |piv inv G̃′2 k| ≤ 1.

(iv) Finally,

δ2 = [δm]inv dp + εinv.

Similar estimates eventaully give δn, a matrix-wide estimate on the difference between

entries of M̃ and the true inverse, M−1. From this we can conclude

∣∣∣[MM̃]i j − δij
∣∣∣ ≤ nδn u.b.

l,m
|Ml m|. (B.27)

Unless M is singular, we can choose inv dp so as to make the error (B.27) as small as

we like. Rgauss() guarantees both δn and the error given by (B.27) to be less than

10−precision.

about truncation

Both the schemes described above produce matrices, P ′, whose entries are long strings

of digits, longer than those of the original matrix, P . To avoid the computational

cost of storing and manipulating long strings, the program truncates the entries in

P ′ to precision decimal places; this introduces a small, readily manageable error.

Call the truncated prism P ′trunc; its entries differ from those of P ′ by, at most,

ε = 10−precision, so that x ∈ S ′

x = x′c + P ′η for some η ∈ Q7

122

differs from

x̃ = x′c + P ′truncη

by, at most, 7ε in each coordinate. The simplest way to handle this error is to

incorporate it into δc, the upper bound on the difference |(Gabc(xc) − xc)′j|. The

coordinates of Gabc(xc) are calculated out to precision decimal places, so we must

have

δc ≥ 8ε.

Since the program uses δc = max error = 10safety dpε = 105ε, this condition is abun-

dantly satisfied.

123

Appendix C

Computer Programs

This appendix contains the most important parts of the C programs used to prove

the results described in chapter 3. In the interest of economy, we have deleted most of

the non-rigorous and semi-rigorous parts of the code, leaving only those parts which

bear on the correctness of our converse KAM results. The first section contains Lloyd

Zussman’s own description of his arbitrary precision library, the rest of the appendix

has been copied directly from the source files used to compile the program.

C.0.1 Arbitrary precision library
APM

apmInit(init, scale_factor, base)

long init;

int scale_factor;

short base;

{}

This routine initializes a new APM value. The ’init’ parameter is a long

integer that represents its initial value, the ’scale_factor’ variable

indicates how this initial value should be scaled, and ’base’ is the base of

the initial value. Note that the APM value returned by this routine is

normally a reclaimed APM value that has been previously disposed of via

apmDispose(); only if there are no previous values to be reclaimed will this

routine allocate a fresh APM value (see also the apmGarbageCollect()

routine).

Bases can be 2 - 36, 10000, or 0, where 0 defaults to base 10000.

If the call fails, it will return (APM)NULL and ’apm_errno’ will contain a

meaningful result. Otherwise, a new APM value will be initialized.

124

For example, assume that we want to initialize two APM values in base 10000,

the first to 1.23456 and the second to 1 E20 ("one times 10 to the 20th

power"):

APM apm_1 = apmInit(123456L, -5, 0);

APM apm_2 = apmInit(1L, 20, 0);

As a convenience, the following macro is defined in apm.h:

#define apmNew(BASE) apmInit(0L, 0, (BASE))

int

apmDispose(apm)

APM apm;

{}

This routine disposes of a APM value ’apm’ by returning it to the list of

unused APM values (see also the apmGarbageCollect() routine). It returns

an appropriate status which is also put into ’apm_errno’.

int

apmGarbageCollect()

{}

When APM values are disposed of, they remain allocated. Subsequent calls to

apmInit() may then return a previously allocated but disposed APM value.

This is done for speed considerations, but after a while there may be lots of

these unused APM values lying around. This routine reclaims the space taken

up by these unused APM values (it frees them). It returns an appropriate

status which is also put into ’apm_errno’.

int

apmAdd(result, apm1, apm2)

APM result;

APM apm1;

APM apm2;

{}

This routine adds ’apm1’ and ’apm2’, putting the sum into ’result’, whose

previous value is destroyed. Note that all three parameters must have been

previously initialized via apmInit().

The ’result’ parameter cannot be one of the other APM parameters.

The return code and the ’apm_error’ variable reflect the status of this

function.

int

apmSubtract(result, apm1, apm2)

APM result;

APM apm1;

APM apm2;

{}

This routine subtracts ’apm2’ from ’apm1’, putting the difference into

’result’, whose previous value is destroyed. Note that all three parameters

must have been previously initialized via apmInit().

The ’result’ parameter cannot be one of the other APM parameters.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmMultiply(result, apm1, apm2)

125

APM result;

APM apm1;

APM apm2;

{}

This routine multiplies ’apm1’ and ’apm2’, putting the product into ’result’,

whose previous value is destroyed. Note that all three parameters must have

been previously initialized via apmInit().

The ’result’ parameter cannot be one of the other APM parameters.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmDivide(quotient, radix_places, remainder, apm1, apm2)

APM quotient;

int radix_places;

APM remainder;

APM apm1;

APM apm2;

{}

This routine divides ’apm1’ by ’apm2’, producing the ’quotient’ and

’remainder’ variables. Unlike the other three basic operations,

division cannot be counted on to produce non-repeating decimals, so

the ’radix_places’ variable exists to tell this routine how many

digits to the right of the radix point are to be calculated before

stopping. If the ’remainder’ variable is set to (APM)NULL, no

remainder is calculated ... this saves quite a bit of computation time

and hence is recommended whenever possible.

All APM values must have been previously initialized via apmInit() (except,

of course the ’remainder’ value if it is to be set to NULL).

Division by zero creates a zero result and a warning.

The ’quotient’ and ’remainder’ variables can’t be one of the other APM

parameters.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmCompare(apm1, apm2)

APM apm1;

APM apm2;

{}

This routine compares ’apm1’ and ’apm2’, returning -1 if ’apm1’ is less than

’apm2’, 1 if ’apm1’ is greater than ’apm2’, and 0 if they are equal.

It is not an error if ’apm1’ and ’apm2’ are identical, and in this case the

return value is 0.

The ’apm_errno’ variable contains the error code. You must check this value:

if it is set to an error indication, the comparison failed and the return

value is therefore meaningless.

int

apmCompareLong(apm, longval, scale_factor, base)

APM apm;

long longval;

int scale_factor;

short base;

126

{}

This routine works just like apmCompare(), but it compares the ’apm’ value to

’longval’, scaled by ’scale_factor’ in ’base’. The ’apm_errno’ variable

contains the error code.

int

apmSign(apm)

APM apm;

{}

This routine returns the sign of the ’apm’ value: -1 for negative, 1 for

positive. The ’apm_errno’ variable contains the error code. You must check

’apm_errno’: if it’s non-zero, the function return value is meaningless.

int

apmAbsoluteValue(result, apm)

APM result;

APM apm;

{}

This routine puts the absolute value of ’apm’ into ’result’, whose previous

value is destroyed. Note that the two parameters must have been previously

initialized via apmInit().

The ’result’ parameter cannot be the other APM parameter.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmNegate(result, apm)

APM result;

APM num;

{}

This routine puts the additive inverse of ’apm’ into ’result’, whose previous

value is destroyed. Note that the two parameters must have been previously

initialized via apmInit().

The ’result’ parameter cannot be the other APM parameter.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmReciprocal(result, radix_places, apm)

APM result;

int radix_places;

APM num;

{}

This routine puts the multiplicative inverse of ’apm’ into ’result’, whose

previous value is destroyed. Note that the two APM parameters must have been

previously initialized via apmInit(). Since taking the reciprocal involves

doing a division, the ’radix_places’ parameter is needed here for the same

reason it’s needed in the apmDivide() routine.

Taking the reciprocal of zero yields zero with a warning status.

The ’result’ parameter cannot be the other APM parameter.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmScale(result, apm, scale_factor)

127

APM result;

APM apm;

int scale_factor;

{}

This routine assigns to ’result’ the value of ’apm’ with its radix point

shifted by ’scale_factor’ (positive ’scale_factor’ means shift left). The

’scale_factor’ represents how many places the radix is shifted in the base of

’apm’ unless ’apm’ is in base 10000 ... in this special case, ’scale_factor’

is treated as if the base were 10.

This is a very quick and accurate way to multiply or divide by a power of 10

(or the number’s base).

The ’result’ parameter cannot be the other APM parameter.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmValidate(apm)

APM apm;

{}

This routine sets ’apm_errno’ and its return status to some non-zero value if

’apm’ is not a valid APM value.

int

apmAssign(result, apm)

APM result;

APM num;

{}

This routine assigns the value of ’apm’ to ’result’, whose previous value is

destroyed. Note that the two parameters must have been previously

initialized via apmInit().

It is not considered an error if ’result’ and ’apm’ are identical; this case

is a virtual no-op.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmAssignLong(result, long_value, scale_factor, base)

APM result;

long long_value;

int scale_factor;

short base;

{}

This routine assigns a long int to ’result’. Its second through fourth

parameters correspond exactly to the parameters of apmInit(). The only

difference between the two routines is that this one requires that its result

be previously initialized. The ’long_value’ parameter is a long that

represents the value to assign to ’result’, the ’scale_factor’ variable

indicates how this value should be scaled, and ’base’ is the base of the

value.

Bases can be 2 - 36, 10000, or 0, where 0 defaults to base 10000.

For example, assume that we want to assign values to two previously

initialized APM entities, apm_1 and apm_2. The base will be base 10000, the

first value will be set to 1.23456 and the second will be set to 1 E20 ("one

times 10 to the 20th power"):

128

int ercode;

ercode = apmAssignLong(apm_1, 123456L, -5, 0);

...

ercode = apmAssignLong(apm_2, 1L, 20, 0);

...

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmAssignString(apm, string, base)

APM apm;

char *string;

short base;

{}

This routine takes a character string containing the ASCII representation of

a numeric value and converts it into a APM value in the base specified. The

’apm’ parameter must have been previously initialized, ’string’ must be

non-NULL and valid in the specified base, and ’base’ must be a valid base.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

apmConvert(string, length, decimals, round, leftjustify, apm)

char *string;

int length;

int decimals;

int round;

int leftjustify;

APM apm;

{}

This routine converts a APM value ’apm’ into its ASCII representation

’string’. The ’length’ parameter is the maximum size of the string (including

the trailing null), the ’decimals’ parameter is the number of decimal places

to display, the ’round’ parameter is a true-false value which determines

whether rounding is to take place (0 = false = no rounding), the

’leftjustify’ parameter is a true-false value which determines whether the

result is to be left justified (0 = false = right justify; non-zero = true =

left justify), and the ’apm’ paramter is the APM value to be converted.

The ’string’ parameter must point to an area that can hold at least ’length’

bytes.

If the ’decimals’ parameter is < 0, the string will contain the number of

decimal places that are inherent in the APM value passed in.

The return code and the ’apm_errno’ variable reflect the status of this

function.

int

(*apmErrorFunc(newfunc))()

int (*newfunc)();

{}

This routine registers an error handler for errors and warnings. Before any

of the other APM routines return to the caller, an optional error handler

specified in ’newfunc’ can be called to intercept the result of the

operation. With a registered error handler, the caller can dispense with the

repetitious code for checking ’apm_errno’ or the function return status after

each call to a APM routine.

129

If no error handler is registered or if ’newfunc’ is set to NULL, no action

will be taken on errors and warnings except to set the ’apm_errno’ variable.

If there is an error handler, it is called as follows when there is an error

or a warning:

retcode = (*newfunc)(ercode, message, file, line, function)

where ...

int retcode; /* returned by ’newfunc’: should be ’ercode’ */

int ercode; /* error code */

char *message; /* a short string describing the error */

char *file; /* the file in which the error occurred */

int line; /* the line on which the error occurred */

char *function; /* the name of the function in error */

Note that your error handler should normally return ’ercode’ unless it does a

longjmp, calls exit(), or in some other way interrupts the normal processing

flow. The value returned from your error handler is the value that the apm

routine in error will return to its caller.

The error handler is called after ’apm_errno’ is set.

This routine returns a pointer to the previously registered error handler or

NULL if one isn’t registered.

int

apmCalc(result, operand, ..., NULL)

APM result;

APM operand, ...;

{}

This routine performs a series of calculations in an RPN ("Reverse

Polish Notation") fashion, returning the final result in the ’result’

variable. It takes a variable number of arguments and hence the

rightmost argument must be a NULL.

Each ’operand’ is either a APM value or a special constant indicating

the operation that is to be performed (see below). This routine makes

use of a stack (16 levels deep) similar to that in many pocket

calculators. It also is able to access a set of 16 auxiliary

registers (numbered 0 through 15) for holding intermediate values.

The stack gets reinitialized at the start of this routine, so values

that have been left on the stack from a previous call will disappear.

However, the auxiliary registers are static and values remain in these

registers for the duration of your program. They may also be

retrieved outside of this routine (see the apmGetRegister() and

apmSetRegister() routines, below).

An operand that is an APM value is automatically pushed onto the stack

simply by naming it in the function call. If the stack is full when a

value is being pushed onto it, the bottommost value drops off the

stack and the push succeeds; this is similar to how many pocket

calculators work. Also, if the stack is empty, a pop will succeed,

yielding a zero value and keeping the stack empty. The topmost value

on the stack is automatically popped into the ’result’ parameter after

all the operations have been performed.

An operand that is one of the following special values will cause

an operation to be performed. These operations are described in the

following list. Note that the values "V", "V1", and "V2" are used

130

in the following list to stand for temporary values:

APM_ABS pop V, push absolute value of V

APM_NEG pop V, push -V

APM_CLEAR empty the stack

APM_DUP pop V, push V, push V

APM_SWAP pop V1, pop V2, push V1, push V2

APM_SCALE(N) pop V, push V scaled by N [as in apmScale()]

APM_PUSH(N) V = value in register N, push V

APM_POP(N) pop V, store it in register N

APM_ADD pop V1, pop V2, push (V2 + V1)

APM_SUB pop V1, pop V2, push (V2 - V1)

APM_MUL pop V1, pop V2, push (V2 * V1)

APM_DIV(N) pop V1, pop V2, push (V2 / V1) with N radix places

[as in apmDivide()], remainder goes into register 0

APM_RECIP(N) pop V, push 1/V with N radix places

[as in apmReciprocal()]

Since register 0 is used to hold the remainder in a division, it is

recommended that this register not be used to hold other values.

As an example, assume that APM values "foo", "bar", and "baz" have

been initialized via apmInit() and that "foo" and "bar" are to be used

to calculate "baz" as follows (assume that divisions stop after 16

decimal places have been calcluated):

baz = 1 / ((((foo * bar) + foo) / bar) - foo)

The function call will be:

bcdCalc(baz, foo, APM_DUP, APM_POP(1), bar, APM_DUP, APM_POP(2),

APM_MUL, APM_PUSH(1), APM_ADD, APM_PUSH(2), APM_DIV(16),

APM_PUSH(1), APM_SUB, APM_RECIP(16), NULL);

Note that the value of "foo" is stored in register 1 and the value of

"bar" is stored in register 2. After this call, these registers will

still contain those values.

int

apmGetRegister(regvalue, regnumber)

APM regvalue;

int regnumber;

{}

The value in auxiliary register number ’regnumber’ is assigned to APM

value ’regvalue’. The ’regnumber’ parameter must be between 0 and 15,

inclusive. The ’regvalue’ parameter must have been previously

initialized via apmInit().

int

apmSetRegister(regvalue, regnumber, newvalue)

APM regvalue;

int regnumber;

APM newvalue;

{}

The value in auxiliary register number ’regnumber’ is assigned to APM

value ’regvalue’, and then the APM value ’newvalue’ is stored in that

same register. The ’regnumber’ parameter must be between 0 and 15,

inclusive. The ’regvalue’ and ’newvalue’ parameters must have been

previously initialized via apmInit().

131

C.1 Source code

The listings below contain only those functions crucial to the correct execution of a

converse KAM calculation. Some references to inessential or semi-rigorous parts of

the code have been left in place because we wished to present the important functions

exactly as they appear in the original source files.

C.1.1 special functions

the header file apmSpecial.h

apmCos(), etc.

include <stdio.h>

include <math.h>

include "apm.h"

include "apmPrint.h"

include "apmSpecial.h"

APM *sinCoef, *cosCoef ;

APM zero, one, two ;

APM pi, two_pi, half_pi, threeHalf_pi, eighths_2pi[8] ;

APM Theta, scratch, xMod2pi, Theta_sq, Answer ;

APM sinFactrl, cosFactrl, apmOrder ;

APM approx[2], diff, ub_diff ;

int trig_dp, specialsInit = NO ;

int trig_terms, dp_lost ;

char pi_str[] = "3.14159265358979323846243383279502884197169399375" ;

char log_buf[BUF_SZ] ;

/* ++++++++++++++++++++++++ */

initApmSpecials()

{

int k ;

/* Initialize a bunch of APMs. Theta will be the reduced argument

of a trig function; it will be between zero and pi / 4. */

pi = apmNew(0) ;

one = apmInit(1L, 0, 0) ;

two = apmInit(2L, 0, 0) ;

zero = apmInit(0L, 0, 0) ;

diff = apmNew(0) ;

Theta = apmNew(0) ;

Answer = apmNew(0) ;

two_pi = apmNew(0) ;

half_pi = apmNew(0) ;

scratch = apmNew(0) ;

ub_diff = apmNew(0) ;

xMod2pi = apmNew(0) ;

132

apmOrder = apmNew(0) ;

Theta_sq = apmNew(0) ;

sinFactrl = apmNew(0) ;

cosFactrl = apmNew(0) ;

approx[0] = apmNew(0) ;

approx[1] = apmNew(0) ;

threeHalf_pi = apmNew(0) ;

for(k=0 ; k < 8 ; k++)

eighths_2pi[k] = apmNew(0) ;

/* Obtain some rational mutiples of pi. These will be helpful

when we go to restrict the domain of the trig functions to

between zero and pi / 4 . */

apmAssignString(pi, pi_str, 0) ;

apmMultiply(scratch, two, two) ;

apmDivide(eighths_2pi[0], (PI_DP+2), (APM)NULL, pi, scratch) ;

for(k=1 ; k < 8 ; k++)

apmAdd(eighths_2pi[k], eighths_2pi[0], eighths_2pi[k-1]) ;

apmMultiply(two_pi, pi, two) ;

apmAssign(half_pi, eighths_2pi[1]) ;

apmAssign(threeHalf_pi, eighths_2pi[5]) ;

setTrigDp(DFLT_TRIG_DP) ;

dp_lost = 0 ;

specialsInit = YES ;

return(1) ;

}

/* ++++++++++++++++++++++++++ */

setTrigDp(dp)

int dp ;

{

double j, j_fact, ten_to_dp ;

/* Check to see that the desired accuracy is compatible

with our knowledge of pi. */

if((dp+2) > PI_DP) {

fprintf(stderr,

"We don’t know pi well enough to achieve the desired accuracy. \n") ;

return(0) ;

}

else

trig_dp = dp+2 ;

/* Assume the argument is between zero and pi / 4. How many

terms from the Taylor series do we need to include ? */

trig_terms = 1 ;

ten_to_dp = pow(10.0, (double)dp) ;

for(j = 1.0, j_fact = 1.0 ; j_fact < ten_to_dp ; j += 2.0) {

j_fact *= j * (j + 1) ;

trig_terms++ ;

if(trig_terms > MAX_TRIG_TERMS) {

fprintf(stderr, "Too many terms required. \n") ;

133

return(0) ;

}

}

trig_dp += (int)(ceil(log10((double) trig_terms))) ;

setTrigCoef() ;

return(dp) ;

}

/* +++++++++++++++++++++++++++++++++++++ */

reduceArg(x)

/*

Takes x, chops off enough multiples of two_pi to get it

into the interval between zero and two_pi. Checks that we

haven’t lost an unacceptable amount of precision in doing

this stage of the reduction. Then chops off multiples

of pi/4 to get the argument into the interval between zero and

pi/4. Sets Theta equal to the reduced argument and returns

an integer indicating in which of eight equally spaced intervals

x (mod two_pi) lay. If any precision is lost, dp_lost is set

to the number of decimal places lost.

*/

APM x ;

{

int octant ;

char qtnt_str[BUF_SZ] ;

/* Note that we haven’t lost any decimal places yet. */

dp_lost = 0 ;

/* Whack out many multiples of two_pi. */

apmDivide(scratch, 3, (APM)NULL, x, two_pi) ;

apmFloorString(qtnt_str, BUF_SZ, scratch) ;

apmAssignString(scratch, qtnt_str, 0) ;

apmMultiply(Answer, scratch, two_pi) ;

apmSubtract(xMod2pi, x, Answer) ;

if(apmSign(xMod2pi) == -1)

apmCalc(xMod2pi, xMod2pi, two_pi, APM_ADD, NULL) ;

for(octant=0 ; (octant < 8) ; octant++) {

if(apmCompare(xMod2pi, eighths_2pi[octant]) < 0)

break ;

}

switch(octant) {

case 0 :

apmAssign(Theta, xMod2pi) ;

break ;

case 1 :

apmSubtract(Theta, half_pi, xMod2pi) ;

break ;

case 2 :

apmSubtract(Theta, xMod2pi, half_pi) ;

break ;

case 3 :

apmSubtract(Theta, pi, xMod2pi) ;

break ;

case 4 :

134

apmSubtract(Theta, xMod2pi, pi) ;

break ;

case 5 :

apmSubtract(Theta, threeHalf_pi, xMod2pi) ;

break ;

case 6 :

apmSubtract(Theta, xMod2pi, threeHalf_pi) ;

break ;

case 7 :

apmSubtract(Theta, two_pi, xMod2pi) ;

break ;

default :

break ;

}

/* Check for loss of precision */

if((PI_DP - strlen(qtnt_str)) < trig_dp)

dp_lost = trig_dp - PI_DP + strlen(qtnt_str) ;

else

dp_lost = 0 ;

return(octant) ;

}

/* +++++++++++++++++++++++ */

reducedSin()

/*

Takes the sine of Theta, puts the result in Answer.

*/

{

int order, dp_to_find, term_num ;

apmAssign(Answer, zero) ;

apmMultiply(Theta_sq, Theta, Theta) ;

term_num = trig_terms - 1 ;

for(order = (2 * trig_terms - 1) ; order > 0 ; order -= 2) {

/* Multiply the old partial sum by Theta squared

and add in a new coefficient */

apmMultiply(scratch, Answer, Theta_sq) ;

apmAdd(Answer, sinCoef[term_num--], scratch) ;

apmTruncate(Answer, trig_dp) ;

}

/* Multiply by the final factor of Theta,

divide by the factorial, and return */

if(dp_lost > 0)

dp_to_find = trig_dp + 1 - dp_lost ;

else

dp_to_find = trig_dp + 1 ;

apmMultiply(scratch, Answer, Theta) ;

apmDivide(Answer, dp_to_find, (APM)NULL, scratch, sinFactrl) ;

return ;

}

/* ++++++++++++++++++++++++++++++++++++ */

135

reducedCos()

/*

Takes the cosine of Theta, puts the result in Answer.

*/

{

int order, dp_to_find, term_num ;

apmAssign(Answer, zero) ;

apmMultiply(Theta_sq, Theta, Theta) ;

term_num = trig_terms - 1 ;

for(order = (2 * trig_terms - 2) ; order >= 0 ; order -= 2) {

/* Multiply the old partial sum by Theta squared

and add in a new coefficient */

apmMultiply(scratch, Answer, Theta_sq) ;

apmAdd(Answer, cosCoef[term_num--], scratch) ;

apmTruncate(Answer, trig_dp) ;

}

/* Divide by the factorial,

Put the result into Answer, and return */

if(dp_lost > 0)

dp_to_find = trig_dp + 1 - dp_lost ;

else

dp_to_find = trig_dp + 1 ;

apmDivide(scratch, dp_to_find, (APM)NULL, Answer, cosFactrl) ;

apmAssign(Answer, scratch) ;

return ;

}

/* ++++++++++++++++++++++++++++++++++++ */

apmSin(result, x)

APM result, x ;

{

int octant ;

if(specialsInit == NO) {

fprintf(stderr,

"apmSin() : Please call initApmSpecials(). \n") ;

apmAssignLong(result, 0L, 0, 0) ;

apm_errno = APM_EPARM ;

return ;

}

else

apm_errno = APM_OK ;

/* Reduce the argument, report any loss of precision, and

note in which octant x (mod two_pi) lay. */

octant = reduceArg(x) ;

if(dp_lost > 0) {

fprintf(stderr,

"apmSin : Big argument, lost %d decimal places from the answer. \n",

dp_lost) ;

apm_errno = APM_WTRUNC ;

}

136

else

apm_errno = APM_OK ;

/* Evaluate the sine. Which of the two reduced functions

one uses depends on the octant. */

switch(octant) {

case 0 :

reducedSin() ;

break ;

case 1 :

reducedCos() ;

break ;

case 2 :

reducedCos() ;

break ;

case 3 :

reducedSin() ;

break ;

case 4 :

reducedSin() ;

apmNegate(scratch, Answer) ;

apmAssign(Answer, scratch) ;

break ;

case 5 :

reducedCos() ;

apmNegate(scratch, Answer) ;

apmAssign(Answer, scratch) ;

break ;

case 6 :

reducedCos() ;

apmNegate(scratch, Answer) ;

apmAssign(Answer, scratch) ;

break ;

case 7 :

reducedSin() ;

apmNegate(scratch, Answer) ;

apmAssign(Answer, scratch) ;

break ;

default :

break ;

}

apmAssign(result, Answer) ;

return ;

}

/* +++++++++++++++++++++++++ */

apmCos(result, x)

APM result, x ;

{

137

int octant ;

if(specialsInit == NO) {

fprintf(stderr,

"apmCos() : Please call initApmSpecials() first. \n") ;

apmAssignLong(result, 0L, 0, 0) ;

apm_errno = APM_EPARM ;

return ;

}

else

apm_errno = APM_OK ;

/* Reduce the argument, report any loss of precision, and

note in which octant x (mod two_pi) lay. */

octant = reduceArg(x) ;

if(dp_lost > 0) {

fprintf(stderr,

"apmCos : Big argument, lost %d decimal places from the answer. \n",

dp_lost) ;

apm_errno = APM_WTRUNC ;

}

else

apm_errno = APM_OK ;

/* Evaluate the cosine. Which of the two reduced functions

one uses depends on the octant. */

switch(octant) {

case 0 :

reducedCos() ;

break ;

case 1 :

reducedSin() ;

break ;

case 2 :

reducedSin() ;

apmNegate(scratch, Answer) ;

apmAssign(Answer, scratch) ;

break ;

case 3 :

reducedCos() ;

apmNegate(scratch, Answer) ;

apmAssign(Answer, scratch) ;

break ;

case 4 :

reducedCos() ;

apmNegate(scratch, Answer) ;

apmAssign(Answer, scratch) ;

break ;

case 5 :

reducedSin() ;

apmNegate(scratch, Answer) ;

apmAssign(Answer, scratch) ;

break ;

138

case 6 :

reducedSin() ;

break ;

case 7 :

reducedCos() ;

break ;

default :

break ;

}

apmAssign(result, Answer) ;

return ;

}

/* +++++++++++++++++++++++++ */

apmSqrt(result, dp, x)

/*

Find square roots using Newton’s method.

*/

int dp ;

APM x, result ;

{

int comp, dp_plus ;

APM *this_approx, *next_approx, *temp ;

/*

Check that all the scratch variables are ready.

*/

if(specialsInit == NO) {

fprintf(stderr,

"apmSqrt() : Please call initApmSpecials() first. \n") ;

apmAssignLong(result, 0L, 0, 0) ;

apm_errno = APM_EPARM ;

return ;

}

else

apm_errno = APM_OK ;

/*

If the argument is zero, just return zero.

If the argument is negative, whine.

*/

if((comp = apmCompare(x, zero)) == 0) {

apmAssign(result, zero) ;

return ;

}

else if(comp == -1) {

fprintf(stderr, "apmSqrt() : Can’t handle negative arguments.\n") ;

apm_errno = APM_EPARM ;

return ;

}

else

apm_errno = APM_OK ;

/*

Do up Newton. The rule is

y[n+1] = (y[n] + x/y[n]) / 2.0

*/

139

dp_plus = dp + 2 ;

apmAssignLong(ub_diff, 1L, -dp_plus, 0) ;

this_approx = &approx[0] ;

next_approx = &approx[1] ;

apmAssign(*this_approx, x) ;

apmAssign(*next_approx, zero) ;

apmSubtract(diff, *this_approx, *next_approx) ;

while(apmCompare(diff, ub_diff) > 0) {

apmDivide(scratch, dp_plus, (APM) NULL, x, *this_approx) ;

apmCalc(scratch, scratch, *this_approx, APM_ADD, NULL) ;

apmDivide(*next_approx, dp_plus, (APM) NULL, scratch, two) ;

apmTruncate(*next_approx, dp_plus) ;

apmCalc(diff, *this_approx, *next_approx, APM_SUB, APM_ABS, NULL) ;

m_swap(this_approx, next_approx, temp) ;

}

apmAssign(result, *this_approx) ;

return ;

}

/* +++++++++++++++++++++++++++++++++++++++ */

apmFloor(result, arg, base)

int base ;

APM result, arg ;

{

char buf[BUF_SZ], *cpt ;

apmConvert(buf, BUF_SZ, 2, NO_ROUND, LEFT_JUST, arg) ;

for(cpt = buf ; *cpt != ’\0’ ; cpt++)

if(*cpt == ’.’)

*cpt = ’\0’ ;

apmAssignString(result, buf, base) ;

}

/* ++++++++++++++++++++++++++++++++ */

setTrigCoef()

{

int j, order, coef_num ;

char *malloc() ;

sinCoef = (APM *) malloc(trig_terms * sizeof(APM)) ;

cosCoef = (APM *) malloc(trig_terms * sizeof(APM)) ;

if((sinCoef == NULL) || (cosCoef == NULL)) {

fprintf(stderr, "Trouble allocating %d APMs for coefficients.\n") ;

exit(0) ;

}

for(j=0 ; j < trig_terms ; j++) {

sinCoef[j] = apmNew(0) ;

cosCoef[j] = apmNew(0) ;

}

if((trig_terms % 2) != 0) {

apmAssignLong(sinCoef[trig_terms-1], -1L, 0, 0) ;

apmAssignLong(cosCoef[trig_terms-1], -1L, 0, 0) ;

}

else {

140

apmAssignLong(sinCoef[trig_terms-1], 1L, 0, 0) ;

apmAssignLong(cosCoef[trig_terms-1], 1L, 0, 0) ;

}

coef_num = trig_terms - 2 ;

for(order = (2 * trig_terms - 1) ; order > 1 ; order -= 2) {

/* coefficients for the sine */

apmAssignLong(apmOrder, -((long) order), 0, 0) ;

apmMultiply(scratch, sinCoef[coef_num+1], apmOrder) ;

apmAssignLong(apmOrder, (long)(order-1), 0, 0) ;

apmMultiply(sinCoef[coef_num], scratch, apmOrder) ;

/* coefficients for the cosine */

apmMultiply(scratch, cosCoef[coef_num+1], apmOrder) ;

apmAssignLong(apmOrder, -(long)(order-2), 0, 0) ;

apmMultiply(cosCoef[coef_num], scratch, apmOrder) ;

coef_num-- ;

}

apmAssign(sinFactrl, sinCoef[0]) ;

apmAssign(cosFactrl, cosCoef[0]) ;

}

/* +++ */

apmFloorString(s, n, x)

APM x ;

int n ;

char *s ;

{

apmConvert(s, n, 1, NO_ROUND, LEFT_JUST, x) ;

strip_frac(s) ;

}

/* +++++++++++++++++++++ */

strip_frac(str)

char *str ;

{

char *cpt ;

for(cpt = str ; cpt != ’\0’ ; cpt++)

if(*cpt == ’.’) {

*cpt = ’\0’ ;

break ;

}

}

/* +++++++++++++++++++++++ */

apmLogBd(x)

APM x ;

/*

Returns an upper bound on the base-10 log of an apm.

*/

{

int order ;

char *bpt ;

if(apmCompare(one, x) <= 0) {

141

apmFloorString(log_buf, BUF_SZ, x) ;

return(strlen(log_buf)) ;

}

else {

apmConvert(log_buf, BUF_SZ, (BUF_SZ-4), NO_ROUND, LEFT_JUST, x) ;

/*

Skip to the digits beyond the decimal point

*/

for(bpt=log_buf ; *bpt != ’.’ ; bpt++) ;

bpt++ ;

/*

Count the number of zeroes to the right of the decimal point.

*/

for(order=0 ; (*bpt == ’0’) ; bpt++, order--) ;

return(order) ;

}

}

C.1.2 interval arithmetic

the header file bounding.h

/*

Data structures for calculating semi-rigorous bounds

on expressions.

*/

typedef struct { double ub, lb ; } Bdd_dbl ;

typedef struct { int nfactors ;

double coef ;

Bdd_dbl **factors, bound ; } Bdd_term ;

typedef struct { int nterms ;

double const ;

Bdd_dbl bound ;

Bdd_term *terms ; } Bdd_expr ;

/*

APM partners to the structures above

*/

typedef struct { APM ub, lb ; } Bdd_apm ;

typedef struct { int nfactors ;

APM coef ;

Bdd_apm **factors, bound ; } Bapm_term ;

typedef struct { int nterms ;

APM const ;

Bdd_apm bound ;

Bapm_term *terms ; } Bapm_expr ;

/* +++++++++++++++++++++++ */

apmAssign(empty->lb, full->lb))

empty->lb = full->lb)

new.lb = apmNew(base))

extern int RmaxAbs() ;

142

expressions

include <stdio.h>

include <math.h>

include "apm.h"

include "converse.h"

include "bounding.h"

APM Rextrema, Rextremb, Rub, Rlb ;

APM Rprod[4], *Rlastp = (Rprod + 4) ;

double prod[4], *lastp = (prod + 4) ;

/* ++++++++++++++++++++++++++++ */

initBounding()

{

int j ;

Rub = apmNew(BASE) ;

Rlb = apmNew(BASE) ;

Rextrema = apmNew(BASE) ;

Rextremb = apmNew(BASE) ;

for(j=0 ; j < 4 ; j++)

Rprod[j] = apmNew(BASE) ;

}

/* +++++++++++++++++++++++++++ */

Rbound_term(tpt)

/*

Take a list of bounded factors and obtain a bound on their

product.

*/

Bapm_term *tpt ;

{

APM *ppt ;

Bdd_apm *facptr, **lastf, **fpt ;

/*

If there is only one factor, deal with it directly.

*/

if(tpt->nfactors == 1) {

apmAssign(Rextrema, tpt->factors[0]->ub) ;

apmAssign(Rextremb, tpt->factors[0]->lb) ;

}

/*

Handle expressions with more than one factor.

Since some of the factors may be negative we

can’t just multiply to gether all the upper

and lower bounds.

*/

else {

apmAssign(Rextrema, tpt->factors[0]->ub) ;

apmAssign(Rextremb, tpt->factors[0]->lb) ;

fpt = &tpt->factors[1] ;

for(lastf = tpt->factors + tpt->nfactors ; fpt < lastf ; fpt++) {

facptr = *fpt ;

apmMultiply(Rprod[0], facptr->ub, Rextrema) ;

apmMultiply(Rprod[1], facptr->ub, Rextremb) ;

143

apmMultiply(Rprod[2], facptr->lb, Rextrema) ;

apmMultiply(Rprod[3], facptr->lb, Rextremb) ;

apmAssign(Rextrema, Rprod[0]) ;

apmAssign(Rextremb, Rprod[0]) ;

for(ppt = (Rprod+1) ; ppt < Rlastp ; ppt++) {

if(apmCompare(*ppt, Rextrema) == 1)

apmAssign(Rextrema, *ppt) ;

else if(apmCompare(*ppt, Rextremb) == -1)

apmAssign(Rextremb, *ppt) ;

}

}

}

apmCalc(Rextrema, Rextrema, tpt->coef, APM_MUL, NULL) ;

apmCalc(Rextremb, Rextremb, tpt->coef, APM_MUL, NULL) ;

if(apmCompare(Rextrema, Rextremb) == -1) {

apmAssign(tpt->bound.ub, Rextremb) ;

apmAssign(tpt->bound.lb, Rextrema) ;

}

else {

apmAssign(tpt->bound.ub, Rextrema) ;

apmAssign(tpt->bound.lb, Rextremb) ;

}

}

/* ++++++++++++++++++++++++++++++++++++ */

Rbound_expr(ept)

/*

Obtain bounds on the terms in a bounded expression, add them up,

and so obtain a bound on the whole.

*/

Bapm_expr *ept ;

{

Bapm_term *tpt, *last_term ;

apmAssign(Rub, ept->const) ;

apmAssign(Rlb, ept->const) ;

tpt = ept->terms ;

for(last_term = tpt + ept->nterms ; tpt < last_term ; tpt++) {

Rbound_term(tpt) ;

apmCalc(Rub, Rub, tpt->bound.ub, APM_ADD, NULL) ;

apmCalc(Rlb, Rlb, tpt->bound.lb, APM_ADD, NULL) ;

}

apmAssign(ept->bound.ub, Rub) ;

apmAssign(ept->bound.lb, Rlb) ;

}

/* +++++++++++++++++++++++++++++++++ */

RmaxAbs(result, x, y)

APM result, x, y ;

{

apmAbsoluteValue(Rub, x) ;

apmAbsoluteValue(Rlb, y) ;

if(apmCompare(Rub, Rlb) == 1)

apmAssign(result, Rub) ;

else

144

apmAssign(result, Rlb) ;

}

bounding trig. functions

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "pi.h"

APM half, three_halfs ;

APM Rdelta, Rmax_cos, Rmin_cos ;

APM Rmax_x, Rmin_x, Rfloor_x, Rlft_val, Rrght_val ;

Bdd_apm Rnew_theta ;

/* -------------------------------- */

initTrigBd()

/*

Set up the APM’s defined above.

*/

{

Rdelta = apmNew(BASE) ;

Rmin_x = apmNew(BASE) ;

Rmax_x = apmNew(BASE) ;

Rfloor_x = apmNew(BASE) ;

Rmax_cos = apmNew(BASE) ;

Rmin_cos = apmNew(BASE) ;

Rlft_val = apmNew(BASE) ;

Rrght_val = apmNew(BASE) ;

Rnew_theta.ub = apmNew(BASE) ;

Rnew_theta.lb = apmNew(BASE) ;

half = apmInit(2L, 0, BASE) ;

three_halfs = apmInit(3L, 0, BASE) ;

apmCalc(half, half, APM_RECIP(precision), NULL) ;

apmCalc(three_halfs, half, three_halfs, APM_MUL, NULL) ;

}

/* ++++++++++++++++++++++++++++++++++++++ */

Rbd_cos(bound, theta)

/*

Obtain bounds for the cosine function over

a certain given range of angles.

*/

Bdd_apm *theta, *bound ;

{

/*

An APM partner to the function above. The variables

used here are static, and are defined at the top

of the file.

*/

/*

Get some variables equal to theta / TWO_PI. These will

help decide whether the interval under consideration

145

contains any extrema.

*/

apmDivide(Rmin_x, precision, (APM)NULL, theta->lb, two_pi) ;

apmDivide(Rmax_x, precision, (APM)NULL, theta->ub, two_pi) ;

apmFloor(Rfloor_x, Rmin_x, BASE) ;

apmCalc(Rmin_x, Rmin_x, Rfloor_x, APM_SUB, NULL) ;

apmCalc(Rmax_x, Rmax_x, Rfloor_x, APM_SUB, NULL) ;

apmSubtract(Rdelta, Rmax_x, Rmin_x) ;

if(apmCompare(Rdelta, one) == 1) {

apmAssign(bound->ub, one) ;

apmNegate(bound->lb, one) ;

}

else {

apmCos(Rlft_val, theta->lb) ;

apmCos(Rrght_val, theta->ub) ;

if(apmCompare(Rlft_val, Rrght_val) == 1) {

apmAssign(Rmax_cos, Rlft_val) ;

apmAssign(Rmin_cos, Rrght_val) ;

}

else {

apmAssign(Rmax_cos, Rrght_val) ;

apmAssign(Rmin_cos, Rlft_val) ;

}

/*

Check for extrema.

*/

if(apmCompare(Rmax_x, one) == 1)

apmAssign(Rmax_cos, one) ;

if((apmCompare(Rmax_x, three_halfs) == 1) ||

((apmCompare(Rmin_x, half) == -1) &&

(apmCompare(Rmax_x, half) == 1))) apmNegate(Rmin_cos, one) ;

apmAdd(bound->ub, Rmax_cos, max_error) ;

apmSubtract(bound->lb, Rmin_cos, max_error) ;

}

return ;

}

/* +++++++++++++++++++++++++++++ */

Rbd_sin(bound, theta)

/*

Use the relation sin(x - HALF_PI) = cos(x)

and the function bd_cos() to obtain a bound on

the sines of angles lying in a given range.

*/

Bdd_apm *theta, *bound ;

{

/*

Rnew_theta is used here but is declared at the top of

the file

*/

apmSubtract(Rnew_theta.ub, theta->ub, half_pi) ;

apmSubtract(Rnew_theta.lb, theta->lb, half_pi) ;

Rbd_cos(bound, &Rnew_theta) ;

return ;

}

146

C.1.3 starting points and global bounds

include <stdio.h>

include <math.h>

include "apm.h"

include "converse.h"

include "pi.h"

APM Rstart_size ;

/* +++++++++++++++++++++ */

setHermStart(priz)

RPrism *priz ;

{

double a, b, c, two_c, x, y ;

double jump_sz, jump_scl, dx, dy ;

double gx, gy, hxx, hxy, hyy, hdet, tolerance ;

a = apmtodbl(priz->center->p[0]) ;

b = apmtodbl(priz->center->p[1]) ;

c = apmtodbl(priz->center->p[2]) ;

two_c = 2.0 * c ;

tolerance = NEWT_TOL * (fabs(a) + fabs(b) + fabs(c)) ;

/*

Use Newton’s method to try to find a minimum for the

trace of the matrix beta.

*/

x = HALF_PI ;

y = HALF_PI ;

do {

/* components of the gradient. */

gx = -a * cos(x) - two_c * cos(x + y) ;

gy = -b * cos(y) - two_c * cos(x + y) ;

/* components of the Hessian */

hxx = a * sin(x) + two_c * sin(x + y) ;

hxy = two_c * sin(x + y) ;

hyy = b * sin(y) + two_c * sin(x + y) ;

hdet = hxx * hyy - hxy * hxy ;

/* A Newton’s method step */

if(hdet != 0.0) {

dx = (gx * hyy - gy * hxy) / hdet ;

dy = (-gx * hxy + gy * hxx) / hdet ;

if((jump_sz = fabs(dx) + fabs(dy)) > MAX_JUMP) {

jump_scl = MAX_JUMP / jump_sz ;

dx *= jump_scl ;

dy *= jump_scl ;

}

x -= dx ;

y -= dy ;

147

}

else {

fprintf(stderr, "Death during Newton’s method. \n") ;

cease() ;

}

} while((fabs(gx) + fabs(gy)) > tolerance) ;

/*

Force the starting point to lie on the line x=y.

*/

dbltoapm(priz->center->z.u[0], BASE, x) ;

dbltoapm(priz->center->z.u[1], BASE, x) ;

#if DEBUG

printf("Herman’s starting point : x = %.6e, y= %.6e \n", x, x) ;

fflush(stdout) ;

endif

}

/* ++++++++++++++++++++++ */

setLLStart(priz)

RPrism *priz ;

{

/*

Beware : this function expects to be called AFTER

setHermStart(), no matter which criterion is in force.

*/

double discrim, sqrt_disc, sqrt() ;

double a_sin, a_cos, b_sin, b_cos, c_sin, c_cos ;

double a, b, c, two_c, x, y ;

double jump_sz, jump_scl, dx, dy ;

double gx, gy, hxx, hxy, hyy, hdet, tolerance ;

double dDisc_dx, dDisc_dy ;

a = apmtodbl(priz->center->p[0]) ;

b = apmtodbl(priz->center->p[1]) ;

c = apmtodbl(priz->center->p[2]) ;

two_c = 2.0 * c ;

x = apmtodbl(priz->center->z.u[0]) ;

y = apmtodbl(priz->center->z.u[1]) ;

tolerance = NEWT_TOL * (a + b + c) ;

do {

/* preliminaries */

a_sin = a * sin(x) ;

b_sin = b * sin(y) ;

c_sin = two_c * sin(x + y) ;

a_cos = a * cos(x) ;

b_cos = b * cos(y) ;

c_cos = two_c * cos(x + y) ;

discrim = (a_sin - b_sin) * (a_sin - b_sin) +

c_sin * c_sin ;

sqrt_disc = sqrt(discrim) ;

148

dDisc_dx = a_cos * (a_sin - b_sin) + c_cos * c_sin ;

dDisc_dy = b_cos * (b_sin - a_sin) + c_cos * c_sin ;

/* components of the gradient. */

gx = -a_cos - c_cos - dDisc_dx / sqrt_disc ;

gy = -b_cos - c_cos - dDisc_dy / sqrt_disc ;

/* components of the Hessian */

hxx = a_sin + c_sin +

(a_sin * (a_sin - b_sin) -

a_cos * a_cos - c_cos * c_cos +

c_sin * c_sin) / sqrt_disc

+ dDisc_dx * dDisc_dx / (discrim * sqrt_disc) ;

hxy = c_sin +

(a_cos * b_cos + c_sin * c_sin -

c_cos * c_cos) / sqrt_disc

+ dDisc_dx * dDisc_dy / (discrim * sqrt_disc) ;

hyy = b_sin + c_sin +

(b_sin * (b_sin - a_sin) -

b_cos * b_cos - c_cos * c_cos +

c_sin * c_sin) / sqrt_disc

+ dDisc_dy * dDisc_dy / (discrim * sqrt_disc) ;

hdet = hxx * hyy - hxy * hxy ;

/* A Newton’s method step */

if(hdet != 0.0) {

dx = (gx * hyy - gy * hxy) / hdet ;

dy = (-gx * hxy + gy * hxx) / hdet ;

if((jump_sz = fabs(dx) + fabs(dy)) > MAX_JUMP) {

jump_scl = MAX_JUMP / jump_sz ;

dx *= jump_scl ;

dy *= jump_scl ;

}

x -= dx ;

y -= dy ;

}

else {

fprintf(stderr, "Death during Newton’s method. \n") ;

cease() ;

}

} while((fabs(gx) + fabs(gy)) > tolerance) ;

/*

Force the starting point to lie on the line x=y.

*/

dbltoapm(priz->center->z.u[0], BASE, x) ;

dbltoapm(priz->center->z.u[1], BASE, x) ;

#if DEBUG

printf("Least eigenvalue starting point : x = %.6e, y= %.6e \n", x, x) ;

fflush(stdout) ;

endif

}

149

/* +++++++++++++++++++++ */

shiftStart(priz)

/*

Shift the starting point off the main diagonal.

*/

RPrism *priz ;

{

double x, y, a, b, amin, bmin ;

a = apmtodbl(priz->center->p[0]) ;

b = apmtodbl(priz->center->p[1]) ;

amin = a - apmtodbl(priz->matrix[0]) ;

bmin = b - apmtodbl(priz->matrix[MAT_DIM+1]) ;

x = apmtodbl(priz->center->z.u[0]) ;

y = apmtodbl(priz->center->z.u[1]) ;

if(fabs(x - y) < DELTA) {

if(amin < bmin) {

x += DELTA ;

y -= DELTA ;

}

else {

x -= DELTA ;

y += DELTA ;

}

}

dbltoapm(priz->center->z.u[0], BASE, x) ;

dbltoapm(priz->center->z.u[1], BASE, y) ;

}

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "pi.h"

APM Rdf_sq, Rdf ;

APM lip_scratch ;

APM sixteen, eight, four ;

APM Rdscrm, Rsqrt_disc ;

APM Rmax_slope, Rmin_slope, Rfirst_slope ;

double max_slope, min_slope, first_slope ;

RPrism *earliest ;

Bdd_apm Rmax_btrace, Rmin_btrace, Rfirst_btrace ;

/* +++++++++++++++++++++ */

initLip()

{

/*

This function depends in detail on the choice of map.

*/

/*

APM stuff

150

*/

four = apmInit(4L, 0, BASE) ;

eight = apmInit(8L, 0, BASE) ;

sixteen = apmInit(16L, 0, BASE) ;

Rmin_slope = apmNew(BASE) ; /* The external APMs */

Rmax_slope = apmNew(BASE) ;

Rfirst_slope = apmNew(BASE) ;

Rdf = apmInit((long)(DEG_FREE), 0, BASE) ;

Rdf_sq = apmInit((long)(DF_SQ), 0, BASE) ;

Rstart_size = apmInit(1L, -START_SZ, BASE) ;

Rdscrm = apmNew(BASE) ;

Rsqrt_disc = apmNew(BASE) ;

lip_scratch = apmNew(BASE) ;

newBapm(Rmax_btrace, BASE) ;

newBapm(Rmin_btrace, BASE) ;

newBapm(Rfirst_btrace, BASE) ;

earliest = conjureRPrism() ;

}

/* +++++++++++++++++++++++ */

setCone(priz)

RPrism *priz ;

/*

Get the minimum and maximum values for the

trace of the slope object. Note that we

exploit the symmetry of the potential; the minimum

and maximum values of the trace of (beta - 2I) have

the same absolute value.

*/

{

int j ;

APM *mat_pos ;

for(j=0 ; j < N_PARMS ; j++)

apmAssign(earliest->center->p[j], priz->center->p[j]) ;

for(j=0 ; j < DEG_FREE ; j++) {

apmAssign(earliest->center->z.v[j], priz->center->z.u[j]) ;

}

Rglobal_bounds(earliest) ;

Rbound_btrace(&Rmin_btrace, earliest) ;

/*

Account for the imprecision of the starting point

and the variation of the parameters.

*/

apmAssignLong(lip_scratch, 0L, 0, BASE) ;

mat_pos = priz->matrix ;

for(j=0 ; j < N_PARMS ; j++) {

apmCalc(lip_scratch, lip_scratch,

priz->center->p[j] , Rstart_size,

APM_MUL, APM_ADD,

*mat_pos,

APM_ABS, APM_ADD, NULL) ;

mat_pos += 1 + MAT_DIM ;

151

}

apmCalc(Rmin_btrace.lb, Rmin_btrace.lb, lip_scratch,

APM_SUB, NULL) ;

apmCalc(Rmin_btrace.ub, Rmin_btrace.ub, lip_scratch,

APM_ADD, NULL) ;

/* exploit the symmetry */

apmSubtract(Rmax_btrace.ub, eight, Rmin_btrace.lb) ;

apmSubtract(Rmax_btrace.lb, eight, Rmin_btrace.ub) ;

apmCalc(Rdscrm, Rmax_btrace.lb, APM_DUP, APM_MUL,

four, Rdf_sq, APM_MUL, APM_SUB, NULL) ;

apmSqrt(Rsqrt_disc, precision, Rdscrm) ;

apmAdd(lip_scratch, Rmax_btrace.lb, Rsqrt_disc) ;

apmDivide(Rmax_slope, precision, (APM)NULL, lip_scratch, two) ;

apmSubtract(lip_scratch, Rmax_btrace.lb, Rsqrt_disc) ;

apmDivide(Rmin_slope, precision, (APM)NULL, lip_scratch, two) ;

min_slope = apmtodbl(Rmin_slope) ;

max_slope = apmtodbl(Rmax_slope) ;

}

/* +++ */

setSlopes(priz)

RPrism *priz ;

/*

Recall that our orbit will, at the beginning of

a round of orbit-following, have just passed through a

point on the torus whose beta will diminish the

slope. This implies that the slope is already smaller

than the value of max_slope found above. Calculate

a better upper bound on what the slope could be and

store it in first_slope and Rfirst_slope.

*/

{

int j, mat_pos ;

for(j=0 ; j < N_PARMS ; j++) {

apmAssign(earliest->center->p[j], priz->center->p[j]) ;

mat_pos = j * (MAT_DIM + 1) ;

apmAssign(earliest->matrix[mat_pos], priz->matrix[mat_pos]) ;

}

for(j=0 ; j < DEG_FREE ; j++) {

apmAssign(earliest->center->z.v[j], priz->center->z.u[j]) ;

/*

Account for imprecision in the starting point.

*/

mat_pos = STAID_LEN + TWO_DF*MAT_DIM +

N_PARMS + DEG_FREE + j * (MAT_DIM + 1) ;

apmAssign(earliest->matrix[mat_pos], Rstart_size) ;

}

Rglobal_bounds(earliest) ;

Rbound_btrace(&Rfirst_btrace, earliest) ;

152

apmDivide(lip_scratch, precision, (APM)NULL, Rdf_sq, Rmax_slope) ;

apmCalc(Rfirst_slope, Rfirst_btrace.ub, lip_scratch, APM_SUB,

max_error, APM_ADD, NULL) ;

first_slope = apmtodbl(Rfirst_slope) + DBL_ERR ;

}

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "rows.h"

APM Rsqrt_disc ;

APM Ra_term, Rb_term, Rc_term ;

APM Rtrace_ll, RminBlam_ll, RmaxBlam_ll, Rdenom ;

Bdd_apm RBtrace, RminLam, RmaxLam ;

RPrism *earliest ;

Bdd_dbl discrim ;

Bdd_dbl a_sq, b_sq, c_sq ;

Bdd_dbl *lamFacts[2] ;

Bdd_term ab_term ;

APM four, lam_scratch ;

Bdd_apm Rdiscrim ;

Bdd_apm Ra_sq, Rb_sq, Rc_sq ;

Bdd_apm *RlamFacts[2] ;

Bapm_term Rab_term ;

APM RfirstLeastLam, RminLeastLam, RmaxLeastLam, RsumTinyLams ;

double firstLeastLam, minLeastLam, maxLeastLam, sumTinyLams ;

/* ++++++++++++++++++++++++++++++ */

initLambda()

{

/*

Do up the APMs

*/

Ra_term = apmNew(BASE) ;

Rb_term = apmNew(BASE) ;

Rc_term = apmNew(BASE) ;

Rdenom = apmNew(BASE) ;

Rtrace_ll = apmNew(BASE) ;

Rsqrt_disc = apmNew(BASE) ;

RminBlam_ll = apmNew(BASE) ;

RmaxBlam_ll = apmNew(BASE) ;

RminLeastLam = apmNew(BASE) ;

RmaxLeastLam = apmNew(BASE) ;

RsumTinyLams = apmNew(BASE) ;

RfirstLeastLam = apmNew(BASE) ;

newBapm(Ra_sq, BASE) ;

newBapm(Rb_sq, BASE) ;

newBapm(Rc_sq, BASE) ;

153

newBapm(RmaxLam, BASE) ;

newBapm(RminLam, BASE) ;

newBapm(RBtrace, BASE) ;

newBapm(Rdiscrim, BASE) ;

four = apmInit(4L, 0, BASE) ;

lam_scratch = apmNew(BASE) ;

earliest = conjureRPrism() ;

/*

Set up the terms.

*/

ab_term.nfactors = Rab_term.nfactors = 2 ;

ab_term.factors = lamFacts ;

Rab_term.factors = RlamFacts ;

ab_term.coef = -2.0 ;

Rab_term.coef = apmInit(-2L, 0, BASE) ;

newBapm(Rab_term.bound, BASE) ;

ab_term.factors[0] = &a_sin.bound ;

ab_term.factors[1] = &b_sin.bound ;

Rab_term.factors[0] = &Ra_sin.bound ;

Rab_term.factors[1] = &Rb_sin.bound ;

}

/* ++++++++++++++++++++++++ */

Rbd_Blams(leastBlam, bigBlam, trace)

Bdd_apm *leastBlam, *trace, *bigBlam ;

/*

An APM partner to bd_Blams ;

*/

{

/* Bound the terms for the discriminant. */

RsetSq(&Ra_sq, &Ra_sin.bound) ;

RsetSq(&Rb_sq, &Rb_sin.bound) ;

RsetSq(&Rc_sq, &Rc_sin.bound) ;

Rbound_term(&Rab_term) ;

/* Bound the discriminant itself. */

/* lower bound */

apmCalc(Rdiscrim.lb, Ra_sq.lb, Rb_sq.lb, APM_ADD,

four, Rc_sq.lb, APM_MUL, APM_ADD,

Rab_term.bound.lb, APM_ADD, NULL) ;

if(apmCompare(Rdiscrim.lb, zero) < 1)

apmAssign(Rdiscrim.lb, zero) ;

/* upper bound */

apmCalc(Rdiscrim.ub, Ra_sq.ub, Rb_sq.ub, APM_ADD,

four, Rc_sq.ub, APM_MUL, APM_ADD,

Rab_term.bound.ub, APM_ADD, NULL) ;

if(apmCompare(Rdiscrim.ub, zero) < 1)

apmAssign(Rdiscrim.ub, zero) ;

/* Do up the final bounds on the eigenvalues.

First do those requiring

sqrt(discrim.lb).

*/

apmSqrt(Rsqrt_disc, precision, Rdiscrim.lb) ;

154

apmCalc(lam_scratch, trace->ub, Rsqrt_disc, APM_SUB,

max_error, APM_ADD, NULL) ;

apmDivide(leastBlam->ub, precision, (APM)NULL, lam_scratch, two) ;

apmCalc(lam_scratch, trace->lb, Rsqrt_disc, APM_ADD,

max_error, APM_SUB, NULL) ;

apmDivide(bigBlam->lb, precision, (APM)NULL, lam_scratch, two) ;

/*

Next those requiring

sqrt(discrim.lb)

*/

apmSqrt(Rsqrt_disc, precision, Rdiscrim.ub) ;

apmCalc(lam_scratch, trace->lb, Rsqrt_disc, APM_SUB,

max_error, APM_SUB, NULL) ;

apmDivide(leastBlam->lb, precision, (APM)NULL, lam_scratch, two) ;

apmCalc(lam_scratch, trace->ub, Rsqrt_disc, APM_ADD,

max_error, APM_ADD, NULL) ;

apmDivide(bigBlam->ub, precision, (APM)NULL, lam_scratch, two) ;

}

/* ++++++++++++++++++++++++++++ */

setLLbounds(priz)

/*

Get bounds on the least eigenvalue of the variation of the action

functional. This is equivalent to the summer’s estimate of the

value of size of the perturbation for which no minimizing state

can include the maximum of the perturbation.

*/

RPrism *priz ;

{

int j, mat_pos ;

APM *pmat_pos ;

for(j=0 ; j < N_PARMS ; j++)

apmAssign(earliest->center->p[j], priz->center->p[j]) ;

mat_pos = j * (MAT_DIM + 1) ;

apmAssign(earliest->matrix[mat_pos], priz->matrix[mat_pos]) ;

for(j=0 ; j < DEG_FREE ; j++)

apmAssign(earliest->center->z.v[j], priz->center->z.u[j]) ;

/*

Rglobal_bounds(earliest) ;

Rbound_btrace(&RBtrace, earliest) ;

Rbd_Blams(&RminLam, &RmaxLam, &RBtrace) ;

/*

Account for the imprecision of the starting point

and the variation of the parameters.

*/

apmAssignLong(lam_scratch, 0L, 0, BASE) ;

pmat_pos = priz->matrix ;

for(j=0 ; j < N_PARMS ; j++) {

apmCalc(lam_scratch, lam_scratch,

155

priz->center->p[j] , Rstart_size,

APM_MUL, APM_ADD,

*pmat_pos,

APM_ABS, APM_ADD, NULL) ;

pmat_pos += 1 + MAT_DIM ;

}

apmCalc(RminLam.lb, RminLam.lb, lam_scratch, APM_SUB, NULL) ;

apmCalc(RminLam.ub, RminLam.ub, lam_scratch, APM_ADD, NULL) ;

/*

Exploit the symmetry of the example. The

largest value for an eigenvalue is

4.0 - (leastLam.lb).

The calculation above assumes that the

u part of the prism’s center contains a

starting point suitable for a least-eigenvalue

kind of test, i.e. the point where the least ev

attains its minimum. The bdd_apm RmaxLam will

contain information about the largest ev of beta

at the spot where leastLam is small. To get the

thing we really want for the calculations

below we must exploit the symmetry described

above.

*/

apmSubtract(RmaxLam.ub, four, RminLam.lb) ;

apmCalc(Rdiscrim.ub, RmaxLam.ub, APM_DUP, APM_MUL,

four, APM_SUB, NULL) ;

apmSqrt(Rsqrt_disc, precision, Rdiscrim.ub) ;

/*

A global lower bound - if the least eigenvalue of

one of the diagonal blocks (see notes, Jan 10)

slips below this value then the next block is

sure to have a negative eigenvalue.

*/

apmSubtract(lam_scratch, RmaxLam.ub, Rsqrt_disc) ;

apmDivide(RminLeastLam, precision, (APM) NULL, lam_scratch, two) ;

apmCalc(RminLeastLam, RminLeastLam, max_error, APM_SUB, NULL) ;

minLeastLam = apmtodbl(RminLeastLam) ;

/*

A lower bound on the sum of the non-maximal eigenvalues

of a diagonal block.

*/

sumTinyLams = minLeastLam ;

apmAssign(RsumTinyLams, RminLeastLam) ;

/*

A global upper bound.

*/

apmAdd(lam_scratch, RmaxLam.ub, Rsqrt_disc) ;

apmDivide(RmaxLeastLam, precision, (APM) NULL, lam_scratch, two) ;

apmCalc(RmaxLeastLam, RmaxLeastLam, max_error, APM_ADD, NULL) ;

maxLeastLam = apmtodbl(RmaxLeastLam) ;

}

/* ++++++++++++++++++++++++++++++ */

RsetSq(xsq, x)

156

Bdd_apm *x, *xsq ;

{

if(apmCompare(x->ub, zero) > 0) {

if(apmCompare(x->lb, zero) > 0) {

apmMultiply(xsq->ub, x->ub, x->ub) ;

apmMultiply(xsq->lb, x->lb, x->lb) ;

}

else {

apmAbsoluteValue(lam_scratch, x->lb) ;

if(apmCompare(x->ub, lam_scratch) > 0) {

apmMultiply(xsq->ub, x->ub, x->ub) ;

apmAssign(xsq->lb, zero) ;

}

else {

apmMultiply(xsq->ub, x->lb, x->lb) ;

apmAssign(xsq->lb, zero) ;

}

}

}

else {

apmMultiply(xsq->ub, x->lb, x->lb) ;

apmMultiply(xsq->lb, x->ub, x->ub) ;

}

}

/* ++++++++++++++++++++++++++++++++ */

setLeastLam(priz)

RPrism *priz ;

/*

Calculate an upper bound on the largest eigenvalue of beta

at the initial point, then use it and the global bound,

maxLeastLam to set firstLeastLam.

*/

{

int j, mat_pos ;

for(j=0 ; j < N_PARMS ; j++) {

earliest->center->p[j] = priz->center->p[j] ;

mat_pos = j * (MAT_DIM + 1) ;

earliest->matrix[mat_pos] = priz->matrix[mat_pos] ;

}

for(j=0 ; j < DEG_FREE ; j++)

earliest->center->z.v[j] = priz->center->z.u[j] ;

Rglobal_bounds(earliest) ;

Rbound_btrace(&RBtrace, earliest) ;

Rbd_Blams(&RminLam, &RmaxLam, &RBtrace) ;

/*

Obtain an upper bound on the least

eigenvalue of the block of the Hessian of

the action functional corresponding to the

starting point. As in the functions in follow.c,

compute a whole suite of estimates and choose

the best one.

*/

/*

157

Rdenom is a global upper bound

on the size of the largest eigevalue

of a diagonal block.

Rdenom = maximum trace - (n-1) * minimum ev.

It’s used together with the least eigenvalue

of beta (evaluated at the starting point) :

LeastLam <= RminBlam.ub - 1.0 / Rdenom

*/

apmCalc(Rdenom, Rdf, one, APM_SUB,

RminLeastLam, APM_MUL, APM_NEG,

Rmax_slope, APM_ADD, NULL) ;

apmDivide(lam_scratch, precision, (APM) NULL, one, Rdenom) ;

apmSubtract(RminBlam_ll, RminLam.ub, lam_scratch) ;

/*

Here we try to attain a small estimate by

saying :

LeastLam <= RmaxBlam.ub - 1.0 / maxLeastLam.

*/

apmDivide(lam_scratch, precision, (APM) NULL, one, RmaxLeastLam) ;

apmSubtract(RmaxBlam_ll, RmaxLam.ub, lam_scratch) ;

/*

Finally we make the estimate

LeastLam <= first_slope / DEG_FREE

*/

apmDivide(Rtrace_ll, precision, (APM)NULL, Rfirst_slope, Rdf) ;

/*

Choose the best (smallest) lower bound.

*/

apmAssign(RfirstLeastLam, RmaxBlam_ll) ;

if(apmCompare(RfirstLeastLam, RminBlam_ll) == 1)

apmAssign(RfirstLeastLam, RminBlam_ll) ;

if(apmCompare(RfirstLeastLam, Rtrace_ll) == 1)

apmAssign(RfirstLeastLam, Rtrace_ll) ;

firstLeastLam = apmtodbl(RfirstLeastLam) ;

}

include <stdio.h>

include <math.h>

include "apm.h"

include "converse.h"

include "map.h"

include "bounding.h"

include "rows.h"

Bdd_apm *Rfact_buf[NUM_FACTS] ;

Bapm_expr Rb_trc ;

Bapm_term Rtrace_terms[NUM_TERMS] ;

/* ++++++++++++++++++++++++++++++ */

initTrace()

{

int j ;

Bdd_apm **Rfpt ;

158

/*

Set up the expressions.

*/

Rb_trc.nterms = NUM_TERMS ;

Rb_trc.const = apmInit(4L, 0, BASE) ;

newBapm(Rb_trc.bound, BASE) ;

Rb_trc.terms = Rtrace_terms ;

/*

Set up their terms.

*/

Rfpt = Rfact_buf ;

for(j=0 ; j < NUM_TERMS ; j++) {

Rtrace_terms[j].nfactors = 1 ;

Rtrace_terms[j].coef = apmInit(-1L, 0, BASE) ;

Rtrace_terms[j].factors = Rfpt ;

newBapm(Rtrace_terms[j].bound, BASE) ;

Rfpt++ ;

}

/*

Fix up the constant in the third term . . . it should be

-2.0.

*/

apmAssignLong(Rtrace_terms[2].coef, -2L, 0, BASE) ;

/*

Associate the factors - which are only pointers

to bounded objects - to genuine, properly initialized objects.

*/

/* first term */

Rb_trc.terms[0].factors[0] = &Ra_sin.bound ;

/* second term */

Rb_trc.terms[1].factors[0] = &Rb_sin.bound ;

/* third term */

Rb_trc.terms[2].factors[0] = &Rc_sin.bound ;

}

/* ++++++++++++++++++++++++ */

Rbound_btrace(result, priz)

RPrism *priz ;

Bdd_apm *result ;

/*

An APM partner to bound_btrace. Some of the variables

used here are defined above.

*/

{

/* Bound the expression */

Rbound_expr(&Rb_trc) ;

apmCalc(Rb_trc.bound.ub, Rb_trc.bound.ub, max_error, APM_ADD, NULL) ;

apmCalc(Rb_trc.bound.lb, Rb_trc.bound.lb, max_error, APM_SUB, NULL) ;

apmAssign(result->ub, Rb_trc.bound.ub) ;

apmAssign(result->lb, Rb_trc.bound.lb) ;

}

159

C.1.4 control of the computation

the header file converse.h

ifndef YES

endif

ifndef WORKED

endif

been considered, is too hard to

decide, is under active

consideration, or is equivalent

to some symmetrically related,

other prism. */

/*

Data types for non-rigorous, rough calculations

*/

typedef double *Tor_pt, *Parm_pt ;

typedef struct { Tor_pt u, v ; } Embed_pt ;

typedef struct { Embed_pt z ;

Parm_pt p ; } Xtnd_pt ;

typedef struct prsm { int in_torus, n_cuts ;

char *cuts[N_PARMS+TWO_DF] ;

double *matrix ;

Xtnd_pt *center ;

struct prsm *next ; } Prism ;

/*

Data types for rigorous, arbitrary precision, calculations

*/

typedef APM *RTor_pt, *RParm_pt ;

typedef struct { RTor_pt u, v ; } REmbed_pt ;

typedef struct { REmbed_pt z ;

RParm_pt p ; } RXtnd_pt ;

typedef struct Rprsm { int in_torus, n_cuts ;

APM *matrix ;

char *cuts[MAT_DIM] ;

RXtnd_pt *center ;

struct Rprsm *next ; } RPrism ;

/* +++ */

extern Prism *conjurePrism() ;

extern RPrism *conjureRPrism() ;

/*

160

Some variables used throughout the converse KAM calculations

*/

extern int do_graph, do_backup, restoration ;

extern int precision, depth, furthest, terse, stubborn ;

extern int quick_tries, tries, Rtries, max_steps, max_NTsteps ;

extern int HermSuccess, LLSuccess, ll_used[3], most_cuts ;

extern int (* fatten)(), (* row_sums)() ;

extern int fxed_form(), Rfxed_form(), col_rotor(), Rcol_rotor() ;

extern int ff_rows(), Rff_rows(), cr_rows(), Rcr_rows() ;

extern APM Rfirst_slope, Rmin_slope, Rmax_slope, Rdf, Rdf_sq ;

extern APM RminLeastLam, RmaxLeastLam, RfirstLeastLam, RsumTinyLams ;

extern APM half, max_error, Rstart_size, RSmBlock_err, RBgBlock_err ;

extern char *graf_file, *back_name, *rest_name, *parm_names[] ;

extern double firstLeastLam, minLeastLam, maxLeastLam, sumTinyLams ;

extern double first_slope, min_slope, max_slope ;

extern double apmtodbl(), parm_roof[], parm_floor[] ;

extern double SmBlock_err, BgBlock_err ;

main()

include <stdio.h>

include <math.h>

include "apm.h"

include "converse.h"

include "tree.h"

int do_graph, do_backup, restoration ;

int precision, depth, err_hndlr, furthest ;

int stubborn, terse ;

APM max_error, RSmBlock_err, RBgBlock_err ;

double SmBlock_err = DF_SQ * DBL_ERR ;

double BgBlock_err = DEG_FREE * N_PARMS * DBL_ERR ;

/* ++++++++++++++++++++++++++++ */

main (argc, argv)

int argc ;

char *argv[] ;

{

int verdict, Rverdict, tree_verdict, nsteps ;

Prism *image_prism ;

RPrism *active_prism, *old_prism ;

handle_opts(argc, argv) ;

active_prism = conjureRPrism() ;

image_prism = conjurePrism() ;

commence(active_prism) ;

/* Study the current prism, cutting it up if need be */

while(active_prism != NULL) {

/*

Try a preliminary, non-rigorous calculation to see if

prospects are good. If they are, do a rigorous check.

If they aren’t, try to refine the prism. If it has already

been refined enough, just give up.

*/

if(do_graph == YES)

graphPrism(active_prism, ACTIVE) ;

/*

Check the tree to see if an equivalent prism

161

is already finished. If so, record the result

and press on. If not, do a detailed analysis.

*/

tree_verdict = consultTree(active_prism) ;

if FANCY_TREE

if((tree_verdict == MAYBE) || (tree_verdict == NO_TORI)) {

if(do_graph == YES)

graphPrism(active_prism, tree_verdict) ;

if(do_backup == YES)

make_backup(active_prism) ;

old_prism = active_prism ;

active_prism = old_prism->next ;

old_prism->in_torus = tree_verdict ;

if(terse == NO)

printRPrism(old_prism, 0) ;

releaseRPrism(old_prism) ;

}

else

if(tree_verdict == MAY_SKIP) {

if(do_graph == YES)

graphPrism(active_prism, SYMMTRC) ;

if(do_backup == YES)

make_backup(active_prism) ;

old_prism = active_prism ;

active_prism = old_prism->next ;

releaseRPrism(old_prism) ;

}

endif

else {

prepare_trial(active_prism) ;

verdict = try_prism(active_prism, image_prism, &nsteps) ;

Rverdict = UNTRIED ;

if(verdict == NO_TORI) {

Rverdict = Rtry_prism(active_prism, image_prism, &nsteps) ;

if(Rverdict == NO_TORI) {

active_prism->in_torus = NO_TORI ;

if FANCY_TREE

colorLeaf(active_prism) ;

endif

if(terse == NO)

printRPrism(active_prism, nsteps);

if(do_graph == YES)

graphPrism(active_prism, NO_TORI) ;

if(do_backup == YES)

make_backup(active_prism) ;

old_prism = active_prism ;

active_prism = old_prism->next ;

releaseRPrism(old_prism) ;

}

if TATTLE

else {

printf(

"Disagreement between try() and Rtry(). \n") ;

printf("disputed prism : \n\t") ;

162

printRPrism(active_prism, nsteps) ;

fflush(stdout) ;

}

endif

}

if((Rverdict == MAYBE) || (verdict == MAYBE)) {

/* Either refine the prism . . . */

if(may_refine(active_prism) == YES) {

refinePrism(active_prism, image_prism) ;

if(do_graph == YES) {

graphPrism(active_prism->next, UNTRIED) ;

graphPrism(active_prism, ACTIVE) ;

}

}

/* . . . or give up and move on. */

else {

if(do_graph == YES)

graphPrism(active_prism, MAYBE) ;

if(do_backup == YES)

make_backup(active_prism) ;

active_prism->in_torus = MAYBE ;

moveEdge_o_Chaos(active_prism, nsteps) ;

if(terse == NO)

printRPrism(active_prism, nsteps) ;

old_prism = active_prism ;

active_prism = old_prism->next ;

if FANCY_TREE

colorLeaf(old_prism) ;

endif

releaseRPrism(old_prism) ;

}

}

}

}

cease() ;

}

Rtry prism()

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "rows.h"

include "pi.h"

to be used in determining how long

quick_try should go.

*/

163

? furthest : ((n/QS_TO_RS)+3))

/*

Declarations for some external variables

mentioned in converse.h. The APMs are initialized by

initFollowing().

*/

/*

The functions in this file manipulate copies of the data

passed to them. The copies are kept in Prisms and RPrisms

gotten with the conjuring functions by initFollowing().

*/

Prism *workPriz[2] ;

double b_buf[DF_SQ], *b_ptrs[DF_SQ] ;

double parmbuf[2*N_PARMS], coordbuf[2*TWO_DF] ;

Xtnd_pt xpt_a, xpt_b ;

/*

Some APM variables needed for orbit

following and slope watching.

*/

RPrism *Rwork[2] ;

APM f_scratch, Rdenom ;

APM Rsum, Rmax_sum ;

APM Rtrace_ll, RmaxBlam_ll, RminBlam_ll ;

double trace_ll, maxBlam_ll, minBlam_ll ;

/*

The variables declared below don’t really need to

be bounded objects (they did in an earlier version of the code),

but the .ub in their uses makes the code easier to understand.

*/

Bdd_dbl b_trace, minBlam, maxBlam, leastLam, slope ;

Bdd_apm Rb_trace, RminBlam, RmaxBlam, RleastLam, Rslope ;

int is_first_trial = YES ;

int local_furth, ll_used[3] ;

int HermSuccess, LLSuccess ;

int max_steps, max_NTsteps, tries, Rtries, quick_tries, most_cuts ;

/* +++++++++++++++++++++++++++++++++ */

prepare_trial(priz)

RPrism *priz ;

{

int j ;

if(areNewParms(priz) == YES) {

/*

Unless this is the very first prism,

record the center point - it will be moved by

setHermStart() and setLLStart() and will neeed to be

restored to its correct value.

*/

if(is_first_trial == NO) {

for (j=0 ; j < DEG_FREE ; j++) {

apmAssign(xpt_a.z.u[j], priz->center->z.u[j]) ;

apmAssign(xpt_a.z.v[j], priz->center->z.v[j]) ;

164

}

}

setHermStart(priz) ;

setCone(priz) ;

if USE_LL

setLLStart(priz) ;

setLLbounds(priz) ;

endif

if USE_SHIFT

shiftStart(priz) ;

endif

/*

Unless this is the very first trial, restore the

correct value of the centerpoint before evaluating

the initial estimates for the slope and least eigenvalue.

*/

if(is_first_trial == YES)

is_first_trial = NO ;

else {

for (j=0 ; j < DEG_FREE ; j++) {

apmAssign(priz->center->z.u[j], xpt_a.z.u[j]) ;

apmAssign(priz->center->z.v[j], xpt_a.z.v[j]) ;

}

}

setSlopes(priz) ;

if USE_LL

setLeastLam(priz) ;

else

firstLeastLam = 1.0 ;

minLeastLam = 0.5 ;

dbltoapm(RfirstLeastLam, BASE, firstLeastLam) ;

dbltoapm(RminLeastLam, BASE, minLeastLam) ;

endif

}

}

/* +++++++++++++++++++++++++++++++++ */

initFollowing()

{

/*

Set up the correct connections between the various

static variables in this file.

*/

int j, all_well ;

all_well = YES ;

/*

Set up the working prisms.

*/

workPriz[0] = conjurePrism() ;

workPriz[1] = conjurePrism() ;

if((workPriz[0] == NULL) || (workPriz[1] == NULL))

all_well = NO ;

/*

Set up the APM stuff

*/

f_scratch = apmNew(BASE) ;

Rdenom = apmNew(BASE) ;

165

Rtrace_ll = apmNew(BASE) ;

RminBlam_ll = apmNew(BASE) ;

RmaxBlam_ll = apmNew(BASE) ;

newBapm(Rslope, BASE) ;

newBapm(Rb_trace, BASE) ;

newBapm(RminBlam, BASE) ;

newBapm(RmaxBlam, BASE) ;

newBapm(RleastLam, BASE) ;

if (USE_LL == NO)

apmAssignLong(RleastLam.ub, 1L, 0, BASE) ;

apmAssignLong(RleastLam.lb, 1L, 0, BASE) ;

endif

Rsum = apmNew(BASE) ;

Rmax_sum = apmNew(BASE) ;

dbltoapm(Rmax_sum, BASE, MAX_SUM) ;

Rwork[0] = conjureRPrism() ;

Rwork[1] = conjureRPrism() ;

if((Rwork[0] == NULL) || (Rwork[1] == NULL))

all_well = NO ;

/*

Set up the extended points - they’re used by

quick_test(), and are pointed to by the

"center" attributes of the working prisms.

*/

xpt_a.z.u = coordbuf ;

xpt_a.z.v = coordbuf + DEG_FREE ;

xpt_a.p = parmbuf ;

xpt_b.z.u = coordbuf + TWO_DF ;

xpt_b.z.v = coordbuf + TWO_DF + DEG_FREE ;

xpt_b.p = parmbuf + N_PARMS ;

/*

Set up pointers to the matrix which receives the

changeable parts of the jacobian; the one called

"beta" in most of my notes.

*/

for(j=0 ; j < (sizeof(b_buf) / sizeof(double)) ; j++)

b_ptrs[j] = &b_buf[j] ;

}

/* ++++++++++++++++++++++++ */

Rtry_prism(initial_priz, final_priz, nsteps)

int *nsteps ;

Prism *final_priz ;

RPrism *initial_priz ;

/*

Rigorously decides whether a prism of initial data may

contain any invariant Lagrangian tori, an APM version of

the routine tryPrism() above.

*/

{

int count ;

RPrism *priz, *priz_prime, *temp_priz ;

Rtries++ ;

166

priz = Rwork[0] ;

priz_prime = Rwork[1] ;

/*

Note that Rtry_prism() does not call setSlopes,setStart or

setCone. All that should have been done with a call to

prepare_trial().

*/

isNewPrism = YES ;

RcopyRPrism(priz, initial_priz) ;

fatten = Rfxed_form ;

row_sums = Rff_rows ;

*nsteps = count = 1 ;

apmAssign(Rslope.ub, Rfirst_slope) ;

apmAssign(RleastLam.ub, RfirstLeastLam) ;

if(apmCompare(Rslope.ub, Rmin_slope) == -1) {

HermSuccess++ ;

copyRPrism(final_priz, priz) ;

return(NO_TORI) ;

}

if(apmCompare(RleastLam.ub, RminLeastLam) == -1) {

LLSuccess++ ;

copyRPrism(final_priz, priz) ;

return(NO_TORI) ;

}

if (USE_RIGOR == NO)

copyRPrism(final_priz, priz) ;

return(NO_TORI) ;

endif

while(big_RPrism(priz) == NO) {

/*

Check the slope.

*/

count++ ;

/*

Calculate some bounds useful for both criteria.

*/

Rglobal_bounds(priz) ;

Rbound_btrace(&Rb_trace, priz) ;

if USE_LL

/* mrm’s condition */

Rbd_Blams(&RminBlam, &RmaxBlam, &Rb_trace) ;

apmDivide(f_scratch, precision, (APM)NULL, one,

RleastLam.ub) ;

apmSubtract(RmaxBlam_ll, RmaxBlam.ub, f_scratch) ;

apmSubtract(Rdenom, Rslope.ub, RsumTinyLams) ;

if(apmCompare(Rdenom, zero) > 0) {

apmDivide(f_scratch, precision, (APM) NULL, one, Rdenom) ;

apmSubtract(RminBlam_ll, RminBlam.ub, f_scratch) ;

}

else

apmAssign(RminBlam_ll, zero) ;

endif

167

/* Herman’s condition */

apmDivide(f_scratch, precision, (APM) NULL, Rdf_sq, Rslope.ub) ;

apmSubtract(Rslope.ub, Rb_trace.ub, f_scratch) ;

if USE_LL

apmDivide(Rtrace_ll, precision, (APM)NULL, Rslope.ub, Rdf) ;

Rbest_ll(RleastLam.ub, RmaxBlam_ll,

RminBlam_ll, Rtrace_ll) ;

endif

/*

Do some truncations to speed things up

*/

if USE_LL

apmTruncate(RleastLam.ub, precision) ;

endif

apmTruncate(Rslope.ub, precision) ;

if(apmCompare(Rslope.ub, Rmin_slope) == -1) {

*nsteps = count ;

if(count > max_NTsteps)

max_NTsteps = count ;

HermSuccess++ ;

copyRPrism(final_priz, priz) ;

return(NO_TORI) ;

}

else if(apmCompare(RleastLam.ub, RminLeastLam) == -1) {

*nsteps = count ;

if(count > max_NTsteps)

max_NTsteps = count ;

LLSuccess++ ;

copyRPrism(final_priz, priz) ;

return(NO_TORI) ;

}

else {

if(count == furthest)

break ;

Rprismatic_image(priz_prime, priz) ;

m_swap(priz, priz_prime, temp_priz) ;

}

if USE_CR

if(count > FF_CYCLS) {

fatten = Rcol_rotor ;

row_sums = Rcr_rows ;

}

endif

}

*nsteps = count ;

copyRPrism(final_priz, priz) ;

return(MAYBE) ;

}

/* +++++++++++++++++++++++++++++++++++++++ */

168

big_RPrism(Priz)

RPrism *Priz ;

{

APM *Rrpt, *Rend_mat, *Rend_row ;

Rend_mat = Priz->matrix + MAT_SZ ;

for(Rrpt = Priz->matrix ; Rrpt < Rend_mat ;) {

apmAssignLong(Rsum, 0L, 0, BASE) ;

for(Rend_row = Rrpt + MAT_DIM ; Rrpt < Rend_row ; Rrpt++)

apmCalc(Rsum, Rsum, *Rrpt, APM_ABS, APM_ADD, NULL) ;

if(apmCompare(Rsum, Rmax_sum) == 1)

return(YES) ;

}

return(NO) ;

}

/* ++++++++++++++++++++++ */

Rbest_ll(best, minBlam_ll, maxBlam_ll, trace_ll)

APM best, minBlam_ll, maxBlam_ll, trace_ll ;

{

apmAssign(best, maxBlam_ll) ;

if(apmCompare(best, minBlam_ll) == 1)

apmAssign(best, minBlam_ll) ;

if(apmCompare(best, trace_ll) == 1)

apmAssign(best, trace_ll) ;

}

C.1.5 the map

the header file map.h

extern APM RDeriv[], *Rbeta_ptrs[], *Rgamma_ptrs[] ;

extern double Deriv[], *beta_ptrs[], *gamma_ptrs[] ;

mapping functions

/*

Functions to perform the extended Froeschle map and to

calculate its jacobian. Each function has a rigorous

and a non-rigorous form; the former always has a name

beginning with a "R".

The functions in this file are quite specific -

they pertain to maps of the form

(p,u,v) -> (p’,u’,v’)

p’ = p

u’ = v

v’ = 2v - u -dV(v)

where u, v, u’ anf v’ are all in 2d Euclidean space,

p is an element of a space of parameters and

V(v) = -a * sin(v[0]) + -b * sin(v[1]) +

169

-c * sin(v[0] + v[1])

The parameters a, b, and c are always passed through

an array called "parms" with

a = parms[0], b = parms[1], c = parms[2].

*/

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "map.h"

APM Rmixing_term, Rv_sum, map_scratch ;

APM *Rbeta_ptrs[DF_SQ] ;

APM *Rgamma_ptrs[DF_SQ], RDeriv[MAT_SZ] ;

double *beta_ptrs[DF_SQ] ;

double *gamma_ptrs[DF_SQ], Deriv[MAT_SZ] ;

/* +++

Rimage()

+++ */

Rimage(x_prime, x)

RXtnd_pt *x, *x_prime ;

/*

Finds the image, x_prime, of a delay-embedded point, x.

The parameters of the map are in the parameter-space point

called "parms".

*/

{

APM *x_pt, *xp_pt, *last_x ;

RParm_pt parms ;

parms = x->p ;

x_pt = x->p ;

xp_pt = x_prime->p ;

for(last_x = x_pt + N_PARMS ; x_pt < last_x ; x_pt++)

apmAssign(*xp_pt++, *x_pt) ;

/* Because of the way delay embedding works,

the first member of x_prime is the same as

the second member of x .

*/

x_pt = x->z.v ;

xp_pt = x_prime->z.u ;

for(last_x = x_pt + DEG_FREE ; x_pt < last_x ; x_pt++)

apmAssign(*xp_pt++, *x_pt) ;

/* Do up the actual map. One could

write a version of image() which worked for

any standard-type symplectic map; it would

rely on another function, perturb(), to

completely define the map. Instead we

incorporate the perturbation to the

generating function right into our map -

we hope to save a little time.

*/

apmAdd(Rv_sum, x->z.v[0], x->z.v[1]) ;

apmCos(map_scratch, Rv_sum) ;

170

apmMultiply(Rmixing_term, map_scratch, parms[2]) ;

apmCos(map_scratch, x->z.v[0]) ;

apmCalc(x_prime->z.v[0], two, x->z.v[0], APM_MUL,

x->z.u[0], APM_SUB,

parms[0], map_scratch, APM_MUL,

Rmixing_term, APM_ADD,

APM_ADD, NULL) ;

apmCos(map_scratch, x->z.v[1]) ;

apmCalc(x_prime->z.v[1], two, x->z.v[1], APM_MUL,

x->z.u[1], APM_SUB,

parms[1], map_scratch, APM_MUL,

Rmixing_term, APM_ADD,

APM_ADD, NULL) ;

}

/* +++

find_Rbeta()

In the interest of speed, we provide functions which only

calculate those parts of the Jacobian that actually

depend on parms and (u,v). The other parts are

assumed to have been correctly set by a call to

initJacobian() or initRjacobian(), both of which

may be found below.

+++ */

find_Rbeta(b_block, x)

APM *b_block[] ;

RXtnd_pt *x ;

{

apmAdd(Rv_sum, x->z.v[0], x->z.v[1]) ;

apmSin(map_scratch, Rv_sum) ;

apmMultiply(Rmixing_term, x->p[2], map_scratch) ;

apmSin(map_scratch, x->z.v[0]) ;

apmCalc(*b_block[0], x->p[0], map_scratch, APM_MUL,

two, APM_SWAP, APM_SUB,

Rmixing_term, APM_SUB, NULL) ;

apmNegate(*b_block[1], Rmixing_term) ;

apmNegate(*b_block[2], Rmixing_term) ;

apmSin(map_scratch, x->z.v[1]) ;

apmCalc(*b_block[3], x->p[1], map_scratch, APM_MUL,

two, APM_SWAP, APM_SUB,

Rmixing_term, APM_SUB, NULL) ;

}

/* ++

Rgamma() : calculate the dependence of

v’ on the parameters. Even as the functions

above, gamma() and Rgamma() change only those components

pointed to by elements of a block of pointers.

+++ */

find_Rgamma(g_block, x)

APM *g_block[] ;

RXtnd_pt *x ;

{

171

apmAdd(Rv_sum, x->z.v[0], x->z.v[1]) ;

apmCos(Rmixing_term, Rv_sum) ;

apmCos(*g_block[0], x->z.v[0]) ;

apmAssign(*g_block[1], Rmixing_term) ;

apmCos(*g_block[2], x->z.v[1]) ;

apmAssign(*g_block[3], Rmixing_term) ;

}

/* ++ */

initRjacobian(jac)

/*

Set the constant parts of a jacobian matrix

*/

APM *jac ;

{

int j ;

APM *end_jac, *jpt ;

/*

If the array of APM’s called jac has not yet been

initialized, do that first.

*/

if(apmValidate(jac[0]) != APM_OK) {

end_jac = jac + MAT_SZ ;

for(jpt=jac ; jpt < end_jac ; jpt++)

*jpt = apmNew(BASE) ;

}

end_jac = jac + MAT_SZ ; /* Set all the entries */

for(jpt=jac ; jpt < end_jac ; jpt++) /* to zero. */

apmAssignLong(*jpt, 0L, 0, BASE) ;

/* Put the identity in the (p,p) position. */

jpt = jac ;

for(j=0 ; j < N_PARMS ; j++) {

apmAssignLong(*jpt, 1L, 0, BASE) ;

jpt += MAT_DIM + 1 ;

}

/* Put the identity in the (u,v) position. */

jpt = jac + STAID_LEN + N_PARMS + DEG_FREE ;

for(j=0 ; j < DEG_FREE ; j++) {

apmAssignLong(*jpt, 1L, 0, BASE) ;

jpt += MAT_DIM + 1 ;

}

/* Put -1 times the identity in the (v,u) position. */

jpt = jac + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;

for(j=0 ; j < DEG_FREE ; j++) {

apmAssignLong(*jpt, -1L, 0, BASE) ;

jpt += MAT_DIM + 1 ;

}

}

/* +++++++++++++++++++++ */

initMap()

{

/*

This function depends in detail on the choice of map.

*/

172

beta_ptrs[0] = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) +

N_PARMS + DEG_FREE ;

beta_ptrs[1] = beta_ptrs[0] + 1 ;

beta_ptrs[2] = beta_ptrs[0] + MAT_DIM ;

beta_ptrs[3] = beta_ptrs[2] + 1 ;

gamma_ptrs[0] = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) ;

gamma_ptrs[1] = gamma_ptrs[0] + 2 ;

gamma_ptrs[2] = gamma_ptrs[0] + MAT_DIM + 1 ;

gamma_ptrs[3] = gamma_ptrs[1] + MAT_DIM ;

/*

APM stuff

*/

Rbeta_ptrs[0] = RDeriv + STAID_LEN + (DEG_FREE * MAT_DIM) +

N_PARMS + DEG_FREE ;

Rbeta_ptrs[1] = Rbeta_ptrs[0] + 1 ;

Rbeta_ptrs[2] = Rbeta_ptrs[0] + MAT_DIM ;

Rbeta_ptrs[3] = Rbeta_ptrs[2] + 1 ;

Rgamma_ptrs[0] = RDeriv + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Rgamma_ptrs[1] = Rgamma_ptrs[0] + 2 ;

Rgamma_ptrs[2] = Rgamma_ptrs[0] + MAT_DIM + 1 ;

Rgamma_ptrs[3] = Rgamma_ptrs[1] + MAT_DIM ;

initJacobian(Deriv) ;

initRjacobian(RDeriv) ;

/*

Further APM stuff - constants and scratch variables.

*/

Rv_sum = apmNew(BASE) ;

map_scratch = apmNew(BASE) ;

Rmixing_term = apmNew(BASE) ;

}

/* +++++++++++++++++++++++ */

Rjacobian(xpt)

RXtnd_pt *xpt ;

{

find_Rbeta(Rbeta_ptrs, xpt) ;

find_Rgamma(Rgamma_ptrs, xpt) ;

}

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "map.h"

int (* fatten)(), (* row_sums)() ;

APM Rw[MAT_DIM] ;

double w[MAT_DIM] ;

/* ++++++++++++++++++++++++++++++++ */

Rprismatic_image(pz_prime, pz)

RPrism *pz_prime, *pz ;

{

173

int j ;

APM *mpt, *end_mat, *wpt, *end_w ;

/*

Find the image of the center of the prism.

*/

Rimage(pz_prime->center, pz->center) ;

Rjacobian(pz->center) ; /* Calculate the derivative

of the map. */

/*

Fatten the matrix Deriv * pz->matrix so that it isn’t too

singular.

*/

(* fatten) (pz_prime->matrix, RDeriv, pz->matrix) ;

/*

Get upper bounds on the rows of the fattened matrix,

and use them to get the matrix of a prism gauranteed

to enclose the image of pz.

*/

(* row_sums)(Rw, pz_prime->matrix, RDeriv, pz) ;

end_w = Rw + MAT_DIM ;

end_mat = pz_prime->matrix + MAT_SZ ;

for(mpt = pz_prime->matrix ; mpt < end_mat ;) {

for(wpt = Rw ; wpt < end_w ; wpt++, mpt++)

apmCalc(*mpt, *mpt, *wpt, max_error,

APM_ADD, APM_MUL, NULL) ;

}

truncateRPrism(pz_prime, precision) ;

}

/* +++++++++++++++++++++ */

initPrismatic()

{

int j ;

for(j=0 ; j < N_PARMS ; j++) {

Rw[j] = apmNew(BASE) ;

apmAssign(Rw[j], one) ;

w[j] = 1.0 ;

}

for(j=N_PARMS ; j < (N_PARMS + DEG_FREE) ; j++)

Rw[j] = apmNew(BASE) ;

for(j=(N_PARMS + DEG_FREE) ; j < MAT_DIM ; j++) {

w[j] = 1.0 + DBL_ERR ;

Rw[j] = apmNew(BASE) ;

apmAdd(Rw[j], one, max_error) ;

}

}

174

C.1.6 images of prisms

the header file rows.h

extern int isNewPrism ;

extern int global_bounds(), Rglobal_bounds() ;

extern int Rbeta_dif_star(), Rgamdif_star() ;

extern double beta_dif_star(), gamdif_star() ;

extern Bdd_dbl cos_zero, cos_one, cos_sum ;

extern Bdd_expr a_sin, b_sin, c_sin ;

extern Bdd_apm Rcos_zero, Rcos_one, Rcos_sum ;

extern Bapm_expr Ra_sin, Rb_sin, Rc_sin ;

extern APM neg_one, neg_two, Rrow_abs[] ;

/* +++ */

Rglobal bounds()

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "rows.h"

APM neg_one, neg_two ;

APM Rrows[DEG_FREE], Rrow_abs[DEG_FREE] ;

Bdd_dbl a, b, c, cos_zero, cos_one, cos_sum ;

Bdd_dbl sin_zero, sin_one, sin_sum, theta ;

Bdd_dbl *row_factors[NUM_FACTS] ;

Bdd_term row_terms[NUM_TERMS] ;

Bdd_expr beta_dif[3], gamma_dif[3] ;

Bdd_expr a_sin, b_sin, c_sin ;

Bdd_apm Ra, Rb, Rc, Rcos_zero, Rcos_one, Rcos_sum ;

Bdd_apm Rsin_zero, Rsin_one, Rsin_sum, Rtheta ;

Bdd_apm *Rrow_factors[NUM_FACTS] ;

Bapm_term Rrow_terms[NUM_TERMS] ;

Bapm_expr Rbeta_dif[3], Rgamma_dif[3] ;

Bapm_expr Ra_sin, Rb_sin, Rc_sin ;

/* ++++++++++++++++++++++++++++++ */

initRowSums()

/*

Set up the expressions and terms as described in my notes

from 11/14.

*/

{

int j, k ;

Bdd_dbl **dpt ;

Bdd_apm **apt ;

Bdd_term *tpt ;

Bapm_term *Rtpt ;

/*

Set up some APM’s to be used to hold intermediate

175

results.

*/

newBapm(Ra, BASE) ;

newBapm(Rb, BASE) ;

newBapm(Rc, BASE) ;

newBapm(Rtheta, BASE) ;

newBapm(Rcos_zero, BASE) ;

newBapm(Rcos_one, BASE) ;

newBapm(Rcos_sum, BASE) ;

newBapm(Rsin_zero, BASE) ;

newBapm(Rsin_one, BASE) ;

newBapm(Rsin_sum, BASE) ;

neg_one = apmInit(-1L, 0, BASE) ;

neg_two = apmInit(-2L, 0, BASE) ;

for(j=0 ; j <DEG_FREE ; j++) {

Rrows[j] = apmNew(BASE) ;

Rrow_abs[j] = apmNew(BASE) ;

}

/*

Set the number of terms in the bounded expressions

*/

a_sin.nterms = Ra_sin.nterms = 1 ;

b_sin.nterms = Rb_sin.nterms = 1 ;

c_sin.nterms = Rc_sin.nterms = 1 ;

beta_dif[0].nterms = Rbeta_dif[0].nterms = 2 ;

beta_dif[1].nterms = Rbeta_dif[1].nterms = 1 ;

beta_dif[2].nterms = Rbeta_dif[2].nterms = 2 ;

gamma_dif[0].nterms = Rgamma_dif[0].nterms = 1 ;

gamma_dif[1].nterms = Rgamma_dif[1].nterms = 1 ;

gamma_dif[2].nterms = Rgamma_dif[2].nterms = 1 ;

/*

Assign terms

*/

tpt = row_terms ;

Rtpt = Rrow_terms ;

for(j=0 ; j < 3 ; j++) {

beta_dif[j].terms = tpt ;

Rbeta_dif[j].terms = Rtpt ;

tpt += beta_dif[j].nterms ;

Rtpt += Rbeta_dif[j].nterms ;

gamma_dif[j].terms = tpt ;

Rgamma_dif[j].terms = Rtpt ;

tpt += gamma_dif[j].nterms ;

Rtpt += Rgamma_dif[j].nterms ;

}

a_sin.terms = tpt++ ;

Ra_sin.terms = Rtpt++ ;

b_sin.terms = tpt++ ;

Rb_sin.terms = Rtpt++ ;

c_sin.terms = tpt++ ;

176

Rc_sin.terms = Rtpt++ ;

/*

Set nfactors.

*/

Rbeta_dif[0].terms[0].nfactors = beta_dif[0].terms[0].nfactors = 1 ;

Rbeta_dif[0].terms[1].nfactors = beta_dif[0].terms[1].nfactors = 1 ;

Rbeta_dif[1].terms[0].nfactors = beta_dif[1].terms[0].nfactors = 1 ;

Rbeta_dif[2].terms[0].nfactors = beta_dif[2].terms[0].nfactors = 1 ;

Rbeta_dif[2].terms[1].nfactors = beta_dif[2].terms[1].nfactors = 1 ;

Rgamma_dif[0].terms->nfactors = gamma_dif[0].terms->nfactors = 1 ;

Rgamma_dif[1].terms->nfactors = gamma_dif[1].terms->nfactors = 1 ;

Rgamma_dif[2].terms->nfactors = gamma_dif[2].terms->nfactors = 1 ;

a_sin.terms->nfactors = Ra_sin.terms->nfactors = 2 ;

b_sin.terms->nfactors = Rb_sin.terms->nfactors = 2 ;

c_sin.terms->nfactors = Rc_sin.terms->nfactors = 2 ;

/*

Assign factors.

*/

dpt = row_factors ;

apt = Rrow_factors ;

for(j=0 ; j < 3 ; j++) {

/*

beta_dif

*/

for(k=0 ; k < beta_dif[j].nterms ; k++) {

beta_dif[j].terms[k].factors = dpt ;

Rbeta_dif[j].terms[k].factors = apt ;

dpt += beta_dif[j].terms[k].nfactors ;

apt += Rbeta_dif[j].terms[k].nfactors ;

}

/*

gamma_dif

*/

for(k=0 ; k < gamma_dif[j].nterms ; k++) {

gamma_dif[j].terms[k].factors = dpt ;

Rgamma_dif[j].terms[k].factors = apt ;

dpt += gamma_dif[j].terms[k].nfactors ;

apt += Rgamma_dif[j].terms[k].nfactors ;

}

}

a_sin.terms->factors = dpt ;

Ra_sin.terms->factors = apt ;

dpt += 2 ;

apt += 2 ;

b_sin.terms->factors = dpt ;

Rb_sin.terms->factors = apt ;

dpt += 2 ;

apt += 2 ;

c_sin.terms->factors = dpt ;

Rc_sin.terms->factors = apt ;

177

/*

Set up those of the "bound" attributes which are

bounded APM’s.

*/

for(j=0 ; j < NUM_TERMS ; j++) {

newBapm(Rrow_terms[j].bound, BASE) ;

}

for(j=0 ; j < 3 ; j++) {

newBapm(Rbeta_dif[j].bound, BASE) ;

newBapm(Rgamma_dif[j].bound, BASE) ;

}

newBapm(Ra_sin.bound, BASE) ;

newBapm(Rb_sin.bound, BASE) ;

newBapm(Rc_sin.bound, BASE) ;

/*

Set up the terms and expressions.

*/

/* a_sin */

a_sin.const = 0.0 ;

Ra_sin.const = apmNew(BASE) ;

a_sin.terms->coef = 1.0 ;

Ra_sin.terms->coef = apmInit(1L, 0, BASE) ;

a_sin.terms->factors[0] = &a ;

a_sin.terms->factors[1] = &sin_zero ;

Ra_sin.terms->factors[0] = &Ra ;

Ra_sin.terms->factors[1] = &Rsin_zero ;

/* b_sin */

b_sin.const = 0.0 ;

Rb_sin.const = apmNew(BASE) ;

b_sin.terms->coef = 1.0 ;

Rb_sin.terms->coef = apmInit(1L, 0, BASE) ;

b_sin.terms->factors[0] = &b ;

b_sin.terms->factors[1] = &sin_one ;

Rb_sin.terms->factors[0] = &Rb ;

Rb_sin.terms->factors[1] = &Rsin_one ;

/* c_sin */

c_sin.const = 0.0 ;

Rc_sin.const = apmNew(BASE) ;

c_sin.terms->coef = 1.0 ;

Rc_sin.terms->coef = apmInit(1L, 0, BASE) ;

c_sin.terms->factors[0] = &c ;

c_sin.terms->factors[1] = &sin_sum ;

Rc_sin.terms->factors[0] = &Rc ;

Rc_sin.terms->factors[1] = &Rsin_sum ;

/* beta_dif */

/* beta_dif[0] = (2.0 - a * sin(v[0]) - c * sin(v[0] + v[1]))

-{ 2.0 - ac * sin(vc[0]) - cc * sin(vc[0] + vc[1])

178

Where ac, cc, vc[0], and vc[1] are the values of these

numbers at the center of the prism. The whole second

term (enclosed in braces) is an entry in the jacobian

of the map

*/

Rbeta_dif[0].const = apmNew(BASE) ;

beta_dif[0].terms[0].coef = -1.0 ;

Rbeta_dif[0].terms[0].coef = neg_one ;

beta_dif[0].terms[0].factors[0] = &a_sin.bound ;

Rbeta_dif[0].terms[0].factors[0] = &Ra_sin.bound ;

beta_dif[0].terms[1].coef = -1.0 ;

Rbeta_dif[0].terms[1].coef = neg_one ;

beta_dif[0].terms[1].factors[0] = &c_sin.bound ;

Rbeta_dif[0].terms[1].factors[0] = &Rc_sin.bound ;

/* beta_dif[1] = -2.0 * c * sin.bound(v[0] + v[1])

- { -2.0 * cc * sin.bound(vc[0] + vc[1]) }

*/

Rbeta_dif[1].const = apmNew(BASE) ;

beta_dif[1].terms[0].coef = -2.0 ;

Rbeta_dif[1].terms[0].coef = neg_two ;

beta_dif[1].terms[0].factors[0] = &c_sin.bound ;

Rbeta_dif[1].terms[0].factors[0] = &Rc_sin.bound ;

/* beta_dif[2] = 2.0 - b * sin.bound(v[1]) - c * sin(v[1] + v[0])

-{ 2.0 - bc * sin.bound(vc[1]) - cc * sin(vc[1] + vc[0]) }

*/

Rbeta_dif[2].const = apmNew(BASE) ;

beta_dif[2].terms[0].coef = -1.0 ;

Rbeta_dif[2].terms[0].coef = neg_one ;

beta_dif[2].terms[0].factors[0] = &b_sin.bound ;

Rbeta_dif[2].terms[0].factors[0] = &Rb_sin.bound ;

beta_dif[2].terms[1].coef = -1.0 ;

Rbeta_dif[2].terms[1].coef = neg_one ;

beta_dif[2].terms[1].factors[0] = &c_sin.bound ;

Rbeta_dif[2].terms[1].factors[0] = &Rc_sin.bound ;

/* gamma_dif */

/* gamma_dif[0] = da * (cos(v[0]) - cos(vc[0]))

Where da is half the prism’s width as measured

along the a-axis and vc is as above. */

Rgamma_dif[0].const = apmNew(BASE) ;

Rgamma_dif[0].terms[0].coef = apmNew(BASE) ;

gamma_dif[0].terms[0].factors[0] = &cos_zero ;

Rgamma_dif[0].terms[0].factors[0] = &Rcos_zero ;

/* gamma_dif[1] = db * (cos(v[1]) - cos(vc[1])) */

Rgamma_dif[1].const = apmNew(BASE) ;

Rgamma_dif[1].terms[0].coef = apmNew(BASE) ;

179

gamma_dif[1].terms[0].factors[0] = &cos_one ;

Rgamma_dif[1].terms[0].factors[0] = &Rcos_one ;

/* gamma_dif[2] = dc * (cos(v[0] + v[1]) -

cos(vc[0] + vc[1])) */

Rgamma_dif[2].const = apmNew(BASE) ;

Rgamma_dif[2].terms[0].coef = apmNew(BASE) ;

gamma_dif[2].terms[0].factors[0] = &cos_sum ;

Rgamma_dif[2].terms[0].factors[0] = &Rcos_sum ;

}

/* +++++++++++++++++++++++++++++++++ */

Rglobal_bounds(pz)

RPrism *pz ;

{

int j ;

APM *apt, *end_row ;

apmAdd(Ra.ub, pz->center->p[0], pz->matrix[0]) ;

apmSubtract(Ra.lb, pz->center->p[0], pz->matrix[0]) ;

apmAdd(Rb.ub, pz->center->p[1], pz->matrix[MAT_DIM+1]) ;

apmSubtract(Rb.lb, pz->center->p[1], pz->matrix[MAT_DIM+1]) ;

apmAdd(Rc.ub, pz->center->p[2], pz->matrix[2*MAT_DIM+2]) ;

apmSubtract(Rc.lb, pz->center->p[2], pz->matrix[2*MAT_DIM+2]) ;

apt = pz->matrix + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(j=0 ; j < DEG_FREE ; j++) {

apmAssign(Rrows[j], zero) ;

for(end_row=apt + MAT_DIM ; apt < end_row ; apt++) {

apmCalc(Rrows[j], Rrows[j], *apt,

APM_ABS, APM_ADD, NULL) ;

}

}

apmAdd(Rtheta.ub, pz->center->z.v[0], Rrows[0]) ;

apmSubtract(Rtheta.lb, pz->center->z.v[0], Rrows[0]) ;

Rbd_sin(&Rsin_zero, &Rtheta) ;

Rbd_cos(&Rcos_zero, &Rtheta) ;

apmAdd(Rtheta.ub, pz->center->z.v[1], Rrows[1]) ;

apmSubtract(Rtheta.lb, pz->center->z.v[1], Rrows[1]) ;

Rbd_sin(&Rsin_one, &Rtheta) ;

Rbd_cos(&Rcos_one, &Rtheta) ;

apmCalc(Rtheta.ub, Rtheta.ub, pz->center->z.v[0], Rrows[0],

APM_ADD, APM_ADD, NULL) ;

apmCalc(Rtheta.lb, Rtheta.lb, pz->center->z.v[0], Rrows[0],

APM_SUB, APM_ADD, NULL) ;

Rbd_sin(&Rsin_sum, &Rtheta) ;

Rbd_cos(&Rcos_sum, &Rtheta) ;

Rbound_expr(&Ra_sin) ;

Rbound_expr(&Rb_sin) ;

Rbound_expr(&Rc_sin) ;

180

}

/* +++++++++++++++++++++++++++++++++ */

Rbeta_dif_star(answer, deriv)

APM answer, *deriv ;

{

APM *dpt ;

dpt = deriv + STAID_LEN + (MAT_DIM*DEG_FREE) + N_PARMS + DEG_FREE ;

apmSubtract(Rbeta_dif[0].const, two, *dpt++) ;

apmMultiply(Rbeta_dif[1].const, neg_two, *dpt) ;

dpt += MAT_DIM ;

apmSubtract(Rbeta_dif[2].const, two, *dpt) ;

Rbound_expr(&Rbeta_dif[0]) ;

Rbound_expr(&Rbeta_dif[1]) ;

Rbound_expr(&Rbeta_dif[2]) ;

RmaxAbs(answer, Rbeta_dif[0].bound.ub, Rbeta_dif[0].bound.lb) ;

RmaxAbs(Rrow_abs[0], Rbeta_dif[1].bound.ub, Rbeta_dif[1].bound.lb) ;

RmaxAbs(Rrow_abs[1], Rbeta_dif[2].bound.ub, Rbeta_dif[2].bound.lb) ;

/*

Add max_error to the answer to account for the uncertainties

in beta**(center).

*/

apmCalc(answer, answer, Rrow_abs[0], Rrow_abs[1], max_error,

APM_ADD, APM_ADD, APM_ADD, NULL) ;

}

/* +++++++++++++++++++++ */

Rgamdif_star(answer, deriv, pmat)

APM answer, *deriv, *pmat ;

{

APM *apt, *Rda, *Rdb, *Rdc ;

Rda = pmat ;

Rdb = pmat + MAT_DIM + 1 ;

Rdc = pmat+ (2 * MAT_DIM) + 2 ;

apmAssign(Rgamma_dif[0].terms[0].coef, *Rda) ;

apmAssign(Rgamma_dif[1].terms[0].coef, *Rdb) ;

apmMultiply(Rgamma_dif[2].terms[0].coef, two, *Rdc) ;

apt = deriv + STAID_LEN + (DEG_FREE * MAT_DIM) ;

apmCalc(Rgamma_dif[0].const, *Rda, APM_NEG, *apt, APM_MUL, NULL) ;

apt += MAT_DIM + 1 ;

apmCalc(Rgamma_dif[1].const, *Rdb, APM_NEG, *apt, APM_MUL, NULL) ;

apt++ ;

apmCalc(Rgamma_dif[2].const, two, APM_NEG, *Rdc, *apt,

APM_MUL, APM_MUL, NULL) ;

Rbound_expr(&Rgamma_dif[0]) ;

Rbound_expr(&Rgamma_dif[1]) ;

Rbound_expr(&Rgamma_dif[2]) ;

RmaxAbs(answer, Rgamma_dif[0].bound.ub, Rgamma_dif[0].bound.lb) ;

RmaxAbs(Rrow_abs[0], Rgamma_dif[1].bound.ub, Rgamma_dif[1].bound.lb) ;

RmaxAbs(Rrow_abs[1], Rgamma_dif[2].bound.ub, Rgamma_dif[2].bound.lb) ;

181

/*

Add max_error to the answer to account for the uncertainties

in beta**(center).

*/

apmCalc(answer, answer, Rrow_abs[0], Rrow_abs[1], max_error,

APM_ADD, APM_ADD, APM_ADD, NULL) ;

}

column-rotor

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "rows.h"

include "pi.h"

recorded here in units of pi. */

APM Rcthet, Rsthet, Rsmall_sinsq ;

APM Rarea, Rsin_sq, Rnorm_one, Rnorm_two, Rsign ;

APM Rnorm_prod, Rsign, Rx, Ry ;

double cthet, sthet, small_sinsq ;

/* ++ */

initRotor()

{

Rcthet = apmNew(BASE) ;

Rsthet = apmNew(BASE) ;

Rx = apmNew(BASE) ;

Ry = apmNew(BASE) ;

Rarea = apmNew(BASE) ;

Rsign = apmNew(BASE) ;

Rsin_sq = apmNew(BASE) ;

Rnorm_one = apmNew(BASE) ;

Rnorm_two = apmNew(BASE) ;

Rnorm_prod = apmNew(BASE) ;

Rsmall_sinsq = apmNew(BASE) ;

cthet = cos(PI * THETA_ROT) ;

sthet = sin(PI * THETA_ROT) ;

small_sinsq = sthet * sthet ;

dbltoapm(Rx, BASE, THETA_ROT) ;

apmMultiply(Ry, pi, Rx) ;

apmCos(Rcthet, Ry) ;

apmSin(Rsthet, Ry) ;

apmMultiply(Rsmall_sinsq, Rsthet, Rsthet) ;

}

/* ++ */

Rcol_rotor(Amat, Deriv, Prizmat)

APM *Amat, *Deriv, *Prizmat ;

/*

182

Prepares the matrix called "A" in my notes. Mostly we want to

have A = DF*Priz, but we want to ensure that A is not singular.

In the interest of speed we have coded the calculations below with

pointers. Our hope is that the resulting function will scream along

at ultrasonic speed. Unfortunately it is quite unreadable.

*/

{

int j, k ;

APM *Aend, *Dend, *Pend ;

register APM *Apt, *Dpt, *Ppt ;

/*

Copy the few terms which appear in the top rows of Amat.

*/

Aend = Amat + N_PARMS * (MAT_DIM + 1) ;

for(Apt = Amat, Ppt = Prizmat ; Apt < Aend ; Apt += (MAT_DIM + 1),

Ppt += (MAT_DIM + 1))

apmAssign(*Apt, *Ppt) ;

/*

Clear out those parts of Amat which change from iteration to

iteration.

*/

Aend = Amat + MAT_SZ ;

for(Apt = Amat + STAID_LEN ; Apt < Aend ; Apt++)

apmAssignLong(*Apt, 0L, 0, BASE) ;

/*

Set the (u,p) part of A

It’s equal to the (v,p) part of Prizmat.

*/

Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(Apt = Amat + STAID_LEN ; Apt < Aend ; Apt += TWO_DF) {

for(Pend = Ppt + N_PARMS ; Ppt < Pend ; Ppt++)

apmAssign(*Apt++, *Ppt) ;

Ppt += TWO_DF ;

}

/*

Set the (v,p) part - three terms.

*/

/* First term - equal to Deriv(v,p) * Prizmat(p,p) */

Dpt = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(Aend = Apt + (DEG_FREE*MAT_DIM) ; Apt < Aend ; Apt += TWO_DF) {

Ppt = Prizmat ;

for(Dend = Dpt + N_PARMS ; Dpt < Dend ; Dpt++) {

apmCalc(*Apt, *Apt, *Dpt, *Ppt, APM_MUL, APM_ADD, NULL) ;

Apt++ ;

Ppt += MAT_DIM + 1 ;

}

Dpt += TWO_DF ;

}

/* Second term - equal to negative Prizmat(u,p) */

183

Ppt = Prizmat + STAID_LEN ;

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(Pend = Ppt + (DEG_FREE * MAT_DIM) ; Ppt < Pend ; Ppt += TWO_DF) {

for(Aend = Apt + N_PARMS ; Apt < Aend ; Apt++)

apmCalc(*Apt, *Apt, *Ppt++, APM_SUB, NULL) ;

Apt += TWO_DF ;

}

/* Third term - equal to Deriv(v,v) * Prizmat(v,p) */

Dpt = Deriv + STAID_LEN + (DEG_FREE * (MAT_DIM + 1)) + N_PARMS ;

Dend = Deriv + MAT_SZ ;

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

while(Dpt < Dend) {

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Pend = Prizmat + MAT_SZ ;

while(Ppt < Pend) {

Aend = Apt + N_PARMS ;

while(Apt < Aend) {

apmCalc(*Apt, *Apt, *Dpt, *Ppt, APM_MUL, APM_ADD, NULL) ;

Apt++ ;

Ppt++ ;

}

Dpt++ ;

Ppt += TWO_DF ;

Apt -= N_PARMS ;

}

Dpt += N_PARMS + DEG_FREE ;

Apt += MAT_DIM ;

}

/*

(u,u) part

equals Priz(v,u)

*/

Apt = Amat + STAID_LEN + N_PARMS ;

Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;

while(Apt < Aend) {

Pend = Ppt + DEG_FREE ;

while(Ppt < Pend) {

apmAssign(*Apt++, *Ppt ++) ;

}

Apt += N_PARMS + DEG_FREE ;

Ppt += N_PARMS + DEG_FREE ;

}

/*

(u,v) part

equals Priz(v,v)

*/

Apt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;

Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

184

Ppt = Prizmat + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS + DEG_FREE ;

while(Apt < Aend) {

Pend = Ppt + DEG_FREE ;

while(Ppt < Pend)

apmAssign(*Apt++, *Ppt++) ;

Apt += N_PARMS + DEG_FREE ;

Ppt += N_PARMS + DEG_FREE ;

}

/*

The (v,u) part - equal to Deriv(v,v) * Priz(v,u) - Priz(u,u) ,

*/

/* First term */

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;

Aend = Apt + (DEG_FREE * MAT_DIM) ;

Dpt = Deriv + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS + DEG_FREE ;

while(Apt < Aend) {

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;

Pend = Ppt + DEG_FREE ;

while(Ppt < Pend) {

Dend = Dpt + DEG_FREE ;

while(Dpt < Dend) {

apmCalc(*Apt, *Apt, *Dpt++, *Ppt, APM_MUL,

APM_ADD, NULL) ;

Ppt += MAT_DIM ;

}

Apt++ ;

Dpt -= DEG_FREE ;

Ppt -= (DEG_FREE * MAT_DIM) - 1 ;

}

Dpt += MAT_DIM ;

Apt += N_PARMS + DEG_FREE ;

}

/* Second term */

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

Ppt = Prizmat + STAID_LEN + N_PARMS ;

Pend = Ppt + (MAT_DIM * DEG_FREE) ;

while(Ppt < Pend) {

Aend = Apt + DEG_FREE ;

while(Apt < Aend) {

apmCalc(*Apt, *Apt, *Ppt, APM_SUB, NULL) ;

Apt++ ;

Ppt++ ;

}

Ppt += N_PARMS + DEG_FREE ;

Apt += N_PARMS + DEG_FREE ;

}

/*

(v,v) part - equals Deriv(v,v) * Priz(v,v) - Priz(u,v)

*/

/* First term */

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

Aend = Apt + (DEG_FREE * MAT_DIM) ;

185

Dpt = Deriv + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS + DEG_FREE ;

while(Apt < Aend) {

Ppt = Prizmat + STAID_LEN + (DEG_FREE*MAT_DIM) +

N_PARMS + DEG_FREE ;

Pend = Ppt + DEG_FREE ;

while(Ppt < Pend) {

Dend = Dpt + DEG_FREE ;

while(Dpt < Dend) {

apmCalc(*Apt, *Apt, *Dpt++, *Ppt, APM_MUL,

APM_ADD, NULL) ;

Ppt += MAT_DIM ;

}

Apt++ ;

Dpt -= DEG_FREE ;

Ppt -= (DEG_FREE * MAT_DIM) - 1 ;

}

Dpt += MAT_DIM ;

Apt += N_PARMS + DEG_FREE ;

}

/* Second term */

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

Ppt = Prizmat + STAID_LEN + N_PARMS + DEG_FREE ;

Pend = Ppt + (MAT_DIM * DEG_FREE) ;

while(Ppt < Pend) {

Aend = Apt + DEG_FREE ;

while(Apt < Aend) {

apmCalc(*Apt, *Apt, *Ppt, APM_SUB, NULL) ;

Apt++ ;

Ppt++ ;

}

Ppt += N_PARMS + DEG_FREE ;

Apt += N_PARMS + DEG_FREE ;

}

if USE_ROT

/*

Do up the rotations.

*/

for(j=0 ; j < TWO_DF ; j++)

for(k=(j+1) ; k < TWO_DF ; k++)

Rsubspace_rot(Amat, j, k) ;

endif

}

/* +++++++++++++++++++++++++++++ */

Rsubspace_rot(Amat, col_one, col_two)

int col_one, col_two ;

APM *Amat ;

{

APM *Apt, *Apt2 ;

Apt = Amat + STAID_LEN + N_PARMS +

(col_two - col_one - 1) * MAT_DIM +

col_one ;

Apt2 = Apt + col_two - col_one ;

186

apmCalc(Rarea, *Apt, Apt2[MAT_DIM], APM_MUL,

Apt[MAT_DIM], *Apt2, APM_MUL,

APM_SUB, NULL) ;

apmCalc(Rnorm_one, *Apt, APM_DUP, APM_MUL,

Apt[MAT_DIM], APM_DUP, APM_MUL,

APM_ADD, NULL) ;

apmCalc(Rnorm_two, *Apt2, APM_DUP, APM_MUL,

Apt2[MAT_DIM], APM_DUP, APM_MUL,

APM_ADD, NULL) ;

apmMultiply(Rnorm_prod, Rnorm_one, Rnorm_two) ;

if(apmCompare(Rnorm_prod, zero) == 1) {

apmMultiply(Rx, Rarea, Rarea) ;

apmDivide(Rsin_sq, precision, (APM) NULL, Rx, Rnorm_prod) ;

if(apmCompare(Rsin_sq, Rsmall_sinsq) == -1) {

Rm_sign(Rsign, Rarea) ;

if(apmCompare(Rnorm_two, Rnorm_one) != 1) {

apmCalc(Rx, Rcthet, *Apt2, APM_MUL,

Rsign, Rsthet, Apt2[MAT_DIM], APM_MUL, APM_MUL,

APM_SUB, NULL) ;

apmCalc(Ry, Rsthet, *Apt2, Rsign, APM_MUL, APM_MUL,

Rcthet, Apt2[MAT_DIM], APM_MUL,

APM_ADD, NULL) ;

apmAssign(*Apt2, Rx) ;

apmAssign(Apt2[MAT_DIM], Ry) ;

}

else {

apmCalc(Rsign, Rsign, APM_NEG, NULL) ;

apmCalc(Rx, Rcthet, *Apt, APM_MUL,

Rsign, Rsthet, Apt[MAT_DIM], APM_MUL, APM_MUL,

APM_SUB, NULL) ;

apmCalc(Ry, Rsthet, *Apt, Rsign, APM_MUL, APM_MUL,

Rcthet, Apt[MAT_DIM], APM_MUL,

APM_ADD, NULL) ;

apmAssign(*Apt, Rx) ;

apmAssign(Apt[MAT_DIM], Ry) ;

}

}

}

}

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "rows.h"

int isNewPrism ;

APM cr_scratch ;

APM RBmat[MAT_SZ], Rconst_mat[DF_SQ], Rcopy[4 * DF_SQ] ;

APM *Rcopy_rows[TWO_DF] ;

APM RBu_rows[DEG_FREE], RBv_rows[DEG_FREE] ;

APM Rbd_star, Rgd_star, Rstar, RPvp_star ;

187

APM Rcenter_err[MAT_DIM] ;

APM Rup_rows[DEG_FREE], Ruu_rows[DEG_FREE], Ruv_rows[DEG_FREE] ;

APM Rvp_rows[DEG_FREE], Rvu_rows[DEG_FREE], Rvv_rows[DEG_FREE] ;

double Bmat[MAT_SZ], const_mat[DF_SQ], copy[4 * DF_SQ] ;

double *copy_rows[TWO_DF] ;

double Bu_rows[DEG_FREE], Bv_rows[DEG_FREE] ;

double bd_star, gd_star, star, Pvp_star ;

double center_err[MAT_DIM] ;

double up_rows[DEG_FREE], uu_rows[DEG_FREE], uv_rows[DEG_FREE] ;

double vp_rows[DEG_FREE], vu_rows[DEG_FREE], vv_rows[DEG_FREE] ;

Bdd_dbl *cr_factors[NUM_FACTS] ;

Bdd_term cr_terms[NUM_TERMS] ;

Bdd_expr beta_prod ;

Bdd_apm *Rcr_factors[NUM_FACTS] ;

Bapm_term Rcr_terms[NUM_TERMS] ;

Bapm_expr Rbeta_prod ;

/* ++++++++++++++++++++++++++++++ */

init_crRows()

/*

Set up the expressions and terms as described in

appendix B.

*/

{

int j, k ;

APM *Rcpt ;

double *cpt ;

Bdd_dbl **dpt ;

Bdd_apm **apt ;

/*

Initialize a batch of APM’s.

*/

for(j=0 ; j < DEG_FREE ; j++) {

Rvp_rows[j] = apmNew(BASE) ;

Rup_rows[j] = apmNew(BASE) ;

Ruu_rows[j] = apmNew(BASE) ;

Ruv_rows[j] = apmNew(BASE) ;

Rvu_rows[j] = apmNew(BASE) ;

Rvv_rows[j] = apmNew(BASE) ;

RBu_rows[j] = apmNew(BASE) ;

RBv_rows[j] = apmNew(BASE) ;

}

Rstar = apmNew(BASE) ;

Rgd_star = apmNew(BASE) ;

Rbd_star = apmNew(BASE) ;

RPvp_star = apmNew(BASE) ;

cr_scratch = apmNew(BASE) ;

for(j=0 ; j < MAT_SZ ; j++) {

Bmat[j] = 0.0 ;

RBmat[j] = apmNew(BASE) ;

}

for(j=0 ; j < DF_SQ ; j++)

Rconst_mat[j] = apmNew(BASE) ;

for(j=0 ; j < (4 * DF_SQ) ; j++)

Rcopy[j] = apmNew(BASE) ;

188

for(j=0 ; j < MAT_DIM ; j++)

Rcenter_err[j] = apmNew(BASE) ;

cpt = copy ;

Rcpt = Rcopy ;

for(j=0 ; j < TWO_DF ; j++) {

copy_rows[j] = cpt ;

Rcopy_rows[j] = Rcpt ;

cpt += TWO_DF ;

Rcpt += TWO_DF ;

}

/*

Set the number of terms in the bounded expressions

*/

beta_prod.nterms = Rbeta_prod.nterms = 3 ;

/*

Assign terms

*/

beta_prod.terms = cr_terms ;

Rbeta_prod.terms = Rcr_terms ;

/*

Set nfactors.

*/

Rbeta_prod.terms[0].nfactors = beta_prod.terms[0].nfactors = 1 ;

Rbeta_prod.terms[1].nfactors = beta_prod.terms[1].nfactors = 1 ;

Rbeta_prod.terms[2].nfactors = beta_prod.terms[2].nfactors = 1 ;

/*

Assign factors.

*/

dpt = cr_factors ;

apt = Rcr_factors ;

for(k=0 ; k < beta_prod.nterms ; k++) {

beta_prod.terms[k].factors = dpt ;

Rbeta_prod.terms[k].factors = apt ;

dpt += beta_prod.terms[k].nfactors ;

apt += Rbeta_prod.terms[k].nfactors ;

}

/*

Set up those of the "bound" attributes which are

bounded APM’s.

*/

newBapm(Rbeta_prod.bound, BASE) ;

for(j=0 ; j < NUM_TERMS ; j++) {

newBapm(Rcr_terms[j].bound, BASE) ;

}

/*

Set up the terms and expressions.

*/

189

/* beta_prod */

Rbeta_prod.const = apmNew(BASE) ;

Rbeta_prod.terms[0].coef = apmNew(BASE) ;

beta_prod.terms[0].factors[0] = &a_sin.bound ;

Rbeta_prod.terms[0].factors[0] = &Ra_sin.bound ;

Rbeta_prod.terms[1].coef = apmNew(BASE) ;

beta_prod.terms[1].factors[0] = &c_sin.bound ;

Rbeta_prod.terms[1].factors[0] = &Rc_sin.bound ;

Rbeta_prod.terms[2].coef = apmNew(BASE) ;

beta_prod.terms[2].factors[0] = &b_sin.bound ;

Rbeta_prod.terms[2].factors[0] = &Rb_sin.bound ;

}

/* +++ */

Rcr_rows(Rw, Amat, Deriv, Priz)

APM *Rw, *Amat, *Deriv ;

RPrism *Priz ;

/*

Obtain bounds on the sums of the absolute values of

the entries in the rows of

-1

[A] * Deriv * Pmat,

put the results in w.

*/

{

int j ;

APM *end_row, *end_mat, *Pmat, *inv_pt ;

APM *p1pt, *p2pt, *b1pt, *b2pt, *wu_pt, *wv_pt ;

Pmat = Priz->matrix ;

Rset_inverse(Amat) ;

/*

Do up some row sums for the inverse; these

are used to calculate center_err[].

*/

b1pt = RBmat + STAID_LEN + N_PARMS ;

b2pt = b1pt + MAT_DIM * DEG_FREE ;

for(j=0 ; j < DEG_FREE ; j++) {

apmAssign(RBu_rows[j], zero) ;

apmAssign(RBv_rows[j], zero) ;

for(end_row = b1pt + TWO_DF ; b1pt < end_row ;) {

apmCalc(RBu_rows[j], RBu_rows[j], *b1pt++,

APM_ABS, APM_ADD, NULL) ;

apmCalc(RBv_rows[j], RBv_rows[j], *b2pt++,

APM_ABS, APM_ADD, NULL) ;

}

}

/*

Call functions which calculate upper bound on the

190

sums of the elements of various matrices.

Before any bounding of matrices, one must invoke

global_bounds(Pmat) to set such global variables,

as cos_one, and sin_sum. This is done in Rtry_prism.

*/

Rbeta_dif_star(Rbd_star, Deriv) ;

Rgamdif_star(Rgd_star, Deriv, Pmat) ;

/*

Calculate bounds on the sums of the absolute values

of the elements in various blocks.

*/

/* up & vp blocks */

apmAssignLong(RPvp_star, 0L, 0, BASE) ;

p1pt = Pmat + STAID_LEN + (MAT_DIM * DEG_FREE) ;

end_mat = p1pt + (DEG_FREE * MAT_DIM) ;

for(; p1pt < end_mat ; p1pt += TWO_DF) {

for(end_row = p1pt + N_PARMS ; p1pt < end_row ; p1pt++)

apmCalc(RPvp_star, RPvp_star, *p1pt, APM_ABS,

APM_ADD, NULL) ;

}

apmCalc(Rstar, Rgd_star, Rbd_star, RPvp_star,

APM_MUL, APM_ADD, NULL) ;

b1pt = RBmat + STAID_LEN + N_PARMS + DEG_FREE ;

b2pt = RBmat + STAID_LEN + N_PARMS + DEG_FREE + (MAT_DIM * DEG_FREE) ;

for(j=0 ; j < DEG_FREE ; j++) {

apmAssignLong(Rup_rows[j], 0L, 0, BASE) ;

apmAssignLong(Rvp_rows[j], 0L, 0, BASE) ;

for(end_row = b1pt + DEG_FREE ; b1pt < end_row ;

b1pt++, b2pt++) {

apmCalc(Rup_rows[j], Rup_rows[j], *b1pt, APM_ABS,

APM_ADD, NULL) ;

apmCalc(Rvp_rows[j], Rvp_rows[j], *b2pt, APM_ABS,

APM_ADD, NULL) ;

}

apmCalc(Rup_rows[j], Rup_rows[j], Rstar, APM_MUL, NULL) ;

apmCalc(Rvp_rows[j], Rvp_rows[j], Rstar, APM_MUL, NULL) ;

b1pt += N_PARMS + DEG_FREE ;

b2pt += N_PARMS + DEG_FREE ;

}

/*

Do the remaining blocks - those that actually arise

from the derivatives of the (u,v) -> (u’,v’) part of

the map. This section uses the mighty bound_rows(),

which may be found below.

*/

/* (u,u) block :

B(u,u) * P(v,u) + B(u,v) * { beta * P(v,u) -

P(u,u) }

*/

p1pt = Pmat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;

p2pt = Pmat + STAID_LEN + N_PARMS ;

b1pt = RBmat + STAID_LEN + N_PARMS ;

191

b2pt = RBmat + STAID_LEN + N_PARMS + DEG_FREE ;

Rbound_rows(Ruu_rows, b1pt, p1pt, b2pt, p2pt) ;

/* (u,v) block :

B(u,u) * P(v,v) + B(u,v) * { beta * P(v,v) -

P(u,v) }

*/

p1pt = Pmat + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS + DEG_FREE ;

p2pt = Pmat + STAID_LEN + N_PARMS + DEG_FREE ;

/* The same parts of RBmat as used to find uu_rows. */

Rbound_rows(Ruv_rows, b1pt, p1pt, b2pt, p2pt) ;

/* (v,u) block :

B(v,u) * P(v,u) + B(v,v) * { beta * P(v,u) -

P(u,u) }

*/

p1pt = Pmat + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS ;

p2pt = Pmat + STAID_LEN + N_PARMS ;

b1pt = RBmat + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS ;

b2pt = RBmat + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS + DEG_FREE ;

Rbound_rows(Rvu_rows, b1pt, p1pt, b2pt, p2pt) ;

/* (v,v) block :

B(v,u) * P(v,v) + B(v,v) * { beta * P(v,v) -

P(u,v) }

*/

p1pt = Pmat + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS + DEG_FREE ;

p2pt = Pmat + STAID_LEN + N_PARMS + DEG_FREE ;

/* Same parts of RBmat as are used to find vu_rows. */

Rbound_rows(Rvv_rows, b1pt, p1pt, b2pt, p2pt) ;

/*

Get the contibutions to Rw[] that arise from

errors in the computation of the image of the

prism’s center.

*/

for(j=0 ; j < DEG_FREE ; j++) {

center_err[j+N_PARMS] = Bu_rows[j] * DBL_ERR ;

center_err[j+N_PARMS+DEG_FREE] = Bv_rows[j] * DBL_ERR ;

apmMultiply(Rcenter_err[j+N_PARMS], RBu_rows[j], max_error) ;

apmMultiply(Rcenter_err[j+N_PARMS+DEG_FREE], RBu_rows[j],

max_error) ;

}

/*

Compute the components of w[].

*/

wu_pt = &Rw[N_PARMS] ;

wv_pt = &Rw[N_PARMS + DEG_FREE] ;

for(j=0 ; j < DEG_FREE ; j++, wu_pt++, wv_pt++) {

apmCalc(*wu_pt, Rup_rows[j], Ruu_rows[j], Ruv_rows[j], max_error,

APM_ADD, APM_ADD, APM_ADD, NULL) ;

apmCalc(*wv_pt, Rvp_rows[j], Rvu_rows[j], Rvv_rows[j], max_error,

APM_ADD, APM_ADD, APM_ADD, NULL) ;

}

192

/*

Include errors due to miscalculation of

prism’s center.

*/

for(j= N_PARMS ; j < MAT_DIM ; j++)

apmCalc(Rw[j], Rw[j], Rcenter_err[j], APM_ADD, NULL) ;

return ;

}

/* +++++++++++++++++++++++++++++++ */

Rbound_rows(rows, first_b, first_p, second_b, second_p)

APM *rows, *first_b, *second_b, *first_p, *second_p ;

{

/*

Obtain upper bounds on the sums of the absolute

values of rows of matricies given by expressions

like:

B1 * S1 + B2 * ([beta] * S1 - S2).

Expressions like these arise in cr_rows() above.

The idea is to cast these rows as bounded expressions

and then use the usual machinery to find their limits.

*/

int j, k ;

APM *bpt_a, *bpt_b, *ppt_a, *ppt_b, *end_row, *cpt ;

/*

Evaluate the constant part of the matrix expression.

It’s :

(B1 + 2.0 * B2) * S1 - B2 * S2

*/

cpt = Rconst_mat ;

for(j=0 ; j < DEG_FREE ; j++) {

bpt_a = first_b + j * MAT_DIM ;

bpt_b = second_b + j * MAT_DIM ;

for(k=0 ; k < DEG_FREE ; k++) {

apmAssignLong(*cpt, 0L, 0, BASE) ;

ppt_a = first_p + k ;

ppt_b = second_p + k ;

for(end_row = bpt_a + DEG_FREE ; bpt_a < end_row ;) {

apmCalc(*cpt, *cpt, *bpt_a,

*bpt_b, two, APM_MUL,

APM_ADD,

*ppt_a, APM_MUL,

*bpt_b, *ppt_b,

APM_MUL, APM_SUB,

APM_ADD, NULL) ;

bpt_a++, bpt_b++ ;

ppt_a += MAT_DIM ;

ppt_b += MAT_DIM ;

}

bpt_a -= DEG_FREE ;

193

bpt_b -= DEG_FREE ;

cpt++ ;

}

}

cpt = Rconst_mat ;

for(j=0 ; j < DEG_FREE ; j++) {

apmAssignLong(rows[j], 0L, 0, BASE) ;

bpt_a = second_b + j * MAT_DIM ;

bpt_b = bpt_a + 1 ;

for(k=0 ; k < DEG_FREE ; k++) {

ppt_a = first_p + k ;

ppt_b = ppt_a + MAT_DIM ;

/* a * sin(v[0]) term */

apmMultiply(cr_scratch, *bpt_a, *ppt_a) ;

apmNegate(Rbeta_prod.terms[0].coef, cr_scratch) ;

/* c * sin(v[0] + v[1]) term */

apmCalc(cr_scratch, *bpt_a, *bpt_b, APM_ADD,

*ppt_a, *ppt_b, APM_ADD,

APM_MUL, NULL) ;

apmNegate(Rbeta_prod.terms[1].coef, cr_scratch) ;

/* b * sin(v[0] + v[1]) term */

apmMultiply(cr_scratch, *bpt_b, *ppt_b) ;

apmNegate(Rbeta_prod.terms[2].coef, cr_scratch) ;

apmAssign(Rbeta_prod.const, *cpt++) ;

Rbound_expr(&Rbeta_prod) ;

RmaxAbs(cr_scratch, Rbeta_prod.bound.ub,

Rbeta_prod.bound.lb) ;

apmCalc(rows[j], rows[j], cr_scratch, APM_ADD, NULL) ;

}

}

}

/* ++++++++++++++++++++++++++++++ */

Rset_inverse(mat)

APM *mat ;

{

APM *end_row, *end_block, *end_col ;

APM *ipt_a, *ipt_b, *ipt_c, *ipt_set, *mpt_a, *mpt_b ;

if(isNewPrism == YES) {

end_block = RBmat + N_PARMS * (MAT_DIM + 1) ;

for(ipt_a=RBmat, mpt_a=mat ; ipt_a < end_block ;) {

apmDivide(*ipt_a, precision, (APM)NULL, one, *mpt_a) ;

mpt_a += MAT_DIM + 1 ;

ipt_a += MAT_DIM + 1 ;

}

isNewPrism = NO ;

}

Rinvert_corner(mat) ;

/*

194

Set the (u,p) part of the inverse.

*/

ipt_a = RBmat + STAID_LEN + N_PARMS ;

ipt_b = RBmat + STAID_LEN + N_PARMS + DEG_FREE ;

ipt_set = RBmat + STAID_LEN ;

end_block = ipt_set + (MAT_DIM * DEG_FREE) ;

for(; ipt_set < end_block ; ipt_set += TWO_DF) {

ipt_c = RBmat ;

mpt_a = mat + STAID_LEN ;

mpt_b = mat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

end_row = ipt_set + N_PARMS ;

for(; ipt_set < end_row ; ipt_set++) {

apmAssignLong(*ipt_set, 0L, 0, BASE) ;

end_col = mpt_a + (DEG_FREE * MAT_DIM) ;

for(; mpt_a < end_col ; mpt_a += MAT_DIM) {

apmCalc(*ipt_set, *ipt_a, *mpt_a, APM_MUL,

*ipt_b, *mpt_b, APM_MUL,

APM_ADD, APM_NEG,

*ipt_set, APM_ADD, NULL) ;

ipt_a++ ;

ipt_b++ ;

mpt_b += MAT_DIM ;

}

apmCalc(*ipt_set, *ipt_set, *ipt_c, APM_MUL, NULL) ;

ipt_a -= DEG_FREE ;

ipt_b -= DEG_FREE ;

ipt_c += MAT_DIM + 1 ;

mpt_a -= (MAT_DIM * DEG_FREE) - 1 ;

mpt_b -= (MAT_DIM * DEG_FREE) - 1 ;

}

ipt_a += MAT_DIM ;

ipt_b += MAT_DIM ;

mpt_a -= DEG_FREE ;

mpt_b -= DEG_FREE ;

}

/*

Set the (v,p) part of the inverse.

*/

ipt_a = RBmat + STAID_LEN + N_PARMS + (DEG_FREE * MAT_DIM) ;

ipt_b = RBmat + STAID_LEN + N_PARMS + (DEG_FREE*MAT_DIM) + DEG_FREE ;

ipt_set = RBmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

end_block = ipt_set + (MAT_DIM * DEG_FREE) ;

for(; ipt_set < end_block ; ipt_set += TWO_DF) {

ipt_c = RBmat ;

mpt_a = mat + STAID_LEN ;

mpt_b = mat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

end_row = ipt_set + N_PARMS ;

for(; ipt_set < end_row ; ipt_set++) {

apmAssignLong(*ipt_set, 0L, 0, BASE) ;

195

end_col = mpt_a + (DEG_FREE * MAT_DIM) ;

for(; mpt_a < end_col ; mpt_a += MAT_DIM) {

apmCalc(*ipt_set, *ipt_a, *mpt_a, APM_MUL,

*ipt_b, *mpt_b, APM_MUL,

APM_ADD, APM_NEG,

*ipt_set, APM_ADD, NULL) ;

ipt_a++ ;

ipt_b++ ;

mpt_b += MAT_DIM ;

}

apmCalc(*ipt_set, *ipt_set, *ipt_c, APM_MUL, NULL) ;

ipt_a -= DEG_FREE ;

ipt_b -= DEG_FREE ;

ipt_c += MAT_DIM + 1 ;

mpt_a -= (MAT_DIM * DEG_FREE) - 1 ;

mpt_b -= (MAT_DIM * DEG_FREE) - 1 ;

}

ipt_a += MAT_DIM ;

ipt_b += MAT_DIM ;

mpt_a -= DEG_FREE ;

mpt_b -= DEG_FREE ;

}

}

/* +++++++++++++++++++++ */

Rinvert_corner(mat)

APM *mat ;

{

/*

Set up matrices to prepare ’em for use by Rgauss().

Note that we use the matirx called const_mat[].

At the times this function is called const_mat[]

doesn’t contain anything important.

*/

int j ;

APM *end_row, *mpt, *bpt, *cpt ;

/*

Copy the matrix.

*/

mpt = mat + STAID_LEN + N_PARMS ;

for(j=0 ; j < TWO_DF ; j++) {

cpt = Rcopy_rows[j] ;

end_row = mpt + TWO_DF ;

while(mpt < end_row)

apmAssign(*cpt++, *mpt++) ;

mpt += N_PARMS ;

}

/*

Do the inversion.

*/

Rgauss(Rcopy_rows) ;

196

/*

Copy the answer.

*/

bpt = RBmat + STAID_LEN + N_PARMS ;

for(j=0 ; j < TWO_DF ; j++) {

cpt = Rcopy_rows[j] ;

end_row = bpt + TWO_DF ;

while(bpt < end_row)

apmAssign(*bpt++, *cpt++) ;

bpt += N_PARMS ;

}

}

fixed-form

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

/* ++ */

Rfxed_form(Amat, Deriv, Prizmat)

APM *Amat, *Deriv, *Prizmat ;

/*

Prepares the matrix called "A" in my notes. Eventually we want to

have A = DF*Priz, but early in a calculation, when Priz is singular,

we want to fatten A up by requiring it to have a certain fixed form.

In the inerest of speed we have coded the calculations below in

terms of pointers. Our hope is that the resulting function will

scream along at ultrasonic speed. Unfortunately it is quite

unreadable.

*/

{

APM *Aend, *Aend2, *Dend, *Pend, *Pend2 ;

register APM *Apt, *Apt2, *Dpt, *Ppt, *Ppt2 ;

/*

Copy the few terms which appear in the top rows of Amat.

*/

Aend = Amat + N_PARMS * (MAT_DIM + 1) ;

for(Apt = Amat, Ppt = Prizmat ; Apt < Aend ; Apt += (MAT_DIM + 1),

Ppt += (MAT_DIM + 1))

apmAssign(*Apt, *Ppt) ;

/*

Clear out those parts of Amat which change from iteration to

iteration.

*/

Aend = Amat + MAT_SZ ;

for(Apt = Amat + STAID_LEN ; Apt < Aend ; Apt++)

apmAssignLong(*Apt, 0L, 0, 0) ;

/*

Set the (u,p) part of A

197

It’s equal to the (v,p) part of Prizmat.

*/

Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) - TWO_DF ;

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(Apt = Amat + STAID_LEN ; Apt < Aend ; Apt += TWO_DF) {

for(Pend = Ppt + N_PARMS ; Ppt < Pend ; Ppt++, Apt++)

apmCalc(*Apt, *Apt, *Ppt, APM_ADD, NULL) ;

Ppt += TWO_DF ;

}

/*

Set the (v,p) part - three terms.

*/

/* First term - equal to Deriv(v,p) * Prizmat(p,p) */

Dpt = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(Aend = Apt + (DEG_FREE*MAT_DIM) ; Apt < Aend ; Apt += TWO_DF) {

Ppt = Prizmat ;

for(Dend = Dpt + N_PARMS ; Dpt < Dend ; Dpt++) {

apmMultiply(*Apt++, *Dpt, *Ppt) ;

Ppt += MAT_DIM + 1 ;

}

Dpt += TWO_DF ;

}

/* Second term - equal to negative Prizmat(u,p) */

Ppt = Prizmat + STAID_LEN ;

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(Pend = Ppt + (DEG_FREE * MAT_DIM) ; Ppt < Pend ; Ppt += TWO_DF) {

for(Aend = Apt + N_PARMS ; Apt < Aend ; Apt++, Ppt++)

apmCalc(*Apt, *Apt, *Ppt, APM_SUB, NULL) ;

Apt += TWO_DF ;

}

/* Third term - equal to Deriv(v,v) * Prizmat(v,p) */

Dpt = Deriv + STAID_LEN + (DEG_FREE * (MAT_DIM + 1)) + N_PARMS ;

Dend = Deriv + MAT_SZ ;

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

while(Dpt < Dend) {

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Pend = Prizmat + MAT_SZ - TWO_DF ;

while(Ppt < Pend) {

Aend = Apt + N_PARMS ;

while(Apt < Aend) {

apmCalc(*Apt, *Dpt, *Ppt, APM_MUL, *Apt, APM_ADD, NULL) ;

Apt++ ;

Ppt++ ;

}

Dpt++ ;

Ppt += TWO_DF ;

Apt -= N_PARMS ;

}

Dpt += N_PARMS + DEG_FREE ;

Apt += MAT_DIM ;

198

}

/*

(u,v) part

equals Priz(v,u) + Priz(v,v)

*/

Apt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;

Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;

Ppt2 = Ppt + DEG_FREE ;

while(Apt < Aend) {

Pend = Ppt + DEG_FREE ;

while(Ppt < Pend) {

apmCalc(*Apt, *Ppt, *Ppt2, APM_ADD, *Apt, APM_ADD, NULL) ;

Apt++ ;

Ppt++ ;

Ppt2++ ;

}

Apt += N_PARMS + DEG_FREE ;

Ppt += N_PARMS + DEG_FREE ;

Ppt2 += N_PARMS + DEG_FREE ;

}

/*

The (v,u) part

equal to Deriv(v,v) * { Priz(v,u) + Priz(v,v) },

which also equals Deriv(v, v) * A(u,v)

*/

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;

Dpt = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

Dend = Deriv + MAT_SZ ;

while(Dpt < Dend) {

Apt2 = Amat + STAID_LEN + N_PARMS + DEG_FREE ;

Aend2 = Apt2 + (DEG_FREE * MAT_DIM) ;

while(Apt2 < Aend2) {

Aend = Apt + DEG_FREE ;

while(Apt < Aend) {

apmCalc(*Apt, *Apt, *Dpt, *Apt2, APM_MUL, APM_ADD, NULL) ;

Apt++ ;

Apt2++ ;

}

Dpt++ ;

Apt -= DEG_FREE ;

Apt2 += DEG_FREE + N_PARMS ;

}

Apt += MAT_DIM ;

Dpt += N_PARMS + DEG_FREE ;

}

/*

(v,v) part - equals Deriv(v,v) * Priz(v,v) - Priz(u,v)

*/

/* First term */

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

Dpt = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

Dend = Deriv + MAT_SZ ;

while(Dpt < Dend) {

199

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

Pend = Prizmat + MAT_SZ ;

while(Ppt < Pend) {

Aend = Apt + DEG_FREE ;

while(Apt < Aend) {

apmCalc(*Apt, *Apt, *Dpt, *Ppt, APM_MUL, APM_ADD, NULL) ;

Apt++ ;

Ppt++ ;

}

Dpt++ ;

Apt -= DEG_FREE ;

Ppt += DEG_FREE + N_PARMS ;

}

Apt += MAT_DIM ;

Dpt += N_PARMS + DEG_FREE ;

}

/* Second term */

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

Ppt = Prizmat + STAID_LEN + N_PARMS + DEG_FREE ;

Pend = Ppt + (MAT_DIM * DEG_FREE) ;

while(Ppt < Pend) {

Aend = Apt + DEG_FREE ;

while(Apt < Aend) {

apmCalc(*Apt, *Apt, *Ppt, APM_SUB, NULL) ;

Apt++ ;

Ppt++ ;

}

Ppt += N_PARMS + DEG_FREE ;

Apt += N_PARMS + DEG_FREE ;

}

}

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

include "bounding.h"

include "rows.h"

APM Rerr_star ;

APM ff_scratch ;

APM Rcenter_err[MAT_DIM] ;

APM Rdet_vu, Rdet_uv, Rstar ;

APM RAvv_star, RAuvInv_star ;

APM Rb_star, Rbd_star, Rgd_star ;

APM RPvv_star, RPvp_star, RPvu_star ;

double beta_star() ;

double center_err[MAT_DIM] ;

Bdd_dbl *ff_factors[NUM_FACTS] ;

Bdd_term ff_terms[NUM_TERMS] ;

Bdd_expr beta[3] ;

Bdd_apm *Rff_factors[NUM_FACTS] ;

200

Bapm_term Rff_terms[NUM_TERMS] ;

Bapm_expr Rbeta[3] ;

/* ++++++++++++++++++++++++++++++ */

init_ffRows()

/*

Set up the expressions and terms as described in my notes

from 11/14.

*/

{

int j, k ;

Bdd_dbl **dpt ;

Bdd_apm **apt ;

Bdd_term *tpt ;

Bapm_term *Rtpt ;

/*

Set up some APM’s to be used to hold intermediate

results.

*/

Rstar = apmNew(BASE) ;

Rdet_uv = apmNew(BASE) ;

Rdet_vu = apmNew(BASE) ;

Rb_star = apmNew(BASE) ;

Rbd_star = apmNew(BASE) ;

Rgd_star = apmNew(BASE) ;

Rerr_star = apmNew(BASE) ;

RAvv_star = apmNew(BASE) ;

RPvv_star = apmNew(BASE) ;

RPvp_star = apmNew(BASE) ;

RPvu_star = apmNew(BASE) ;

ff_scratch = apmNew(BASE) ;

RAuvInv_star = apmNew(BASE) ;

for(j = 0 ; j < MAT_DIM ; j++)

Rcenter_err[j] = apmNew(BASE) ;

/*

Set the number of terms in the bounded expressions

*/

beta[0].nterms = Rbeta[0].nterms = 2 ;

beta[1].nterms = Rbeta[1].nterms = 1 ;

beta[2].nterms = Rbeta[2].nterms = 2 ;

/*

Assign terms

*/

tpt = ff_terms ;

Rtpt = Rff_terms ;

for(j=0 ; j < 3 ; j++) {

beta[j].terms = tpt ;

Rbeta[j].terms = Rtpt ;

tpt += beta[j].nterms ;

Rtpt += Rbeta[j].nterms ;

}

/*

Set nfactors.

*/

201

Rbeta[0].terms[0].nfactors = beta[0].terms[0].nfactors = 1 ;

Rbeta[0].terms[1].nfactors = beta[0].terms[1].nfactors = 1 ;

Rbeta[1].terms[0].nfactors = beta[1].terms[0].nfactors = 1 ;

Rbeta[2].terms[0].nfactors = beta[2].terms[0].nfactors = 1 ;

Rbeta[2].terms[1].nfactors = beta[2].terms[1].nfactors = 1 ;

/*

Assign factors.

*/

dpt = ff_factors ;

apt = Rff_factors ;

for(j=0 ; j < 3 ; j++) {

/*

beta

*/

for(k=0 ; k < beta[j].nterms ; k++) {

beta[j].terms[k].factors = dpt ;

Rbeta[j].terms[k].factors = apt ;

dpt += beta[j].terms[k].nfactors ;

apt += Rbeta[j].terms[k].nfactors ;

}

}

/*

Set up those of the "bound" attributes which are

bounded APM’s.

*/

for(j=0 ; j < NUM_TERMS ; j++) {

newBapm(Rff_terms[j].bound, BASE) ;

}

for(j=0 ; j < 3 ; j++) {

newBapm(Rbeta[j].bound, BASE) ;

}

/*

Set up the terms and expressions.

*/

/* beta */

/* beta[0] = 2.0 - a * sin(v[0]) - c * sin(v[0] + v[1]) */

beta[0].const = 2.0, Rbeta[0].const = two ;

beta[0].terms[0].coef = -1.0 ;

Rbeta[0].terms[0].coef = neg_one ;

beta[0].terms[0].factors[0] = &a_sin.bound ;

Rbeta[0].terms[0].factors[0] = &Ra_sin.bound ;

beta[0].terms[1].coef = -1.0 ;

Rbeta[0].terms[1].coef = neg_one ;

beta[0].terms[1].factors[0] = &c_sin.bound;

Rbeta[0].terms[1].factors[0] = &Rc_sin.bound;

/* beta[1] = - 2.0 * c * sin(v[0] + v[1]) */

beta[1].const = 0.0, Rbeta[1].const = zero ;

beta[1].terms[0].coef = -2.0 ;

Rbeta[1].terms[0].coef = neg_two ;

202

beta[1].terms[0].factors[0] = &c_sin.bound;

Rbeta[1].terms[0].factors[0] = &Rc_sin.bound;

/* beta[2] = 2.0 - b * sin(v[1]) - c * sin(v[1] + v[0]) */

beta[2].const = 2.0, Rbeta[2].const = two ;

beta[2].terms[0].coef = -1.0 ;

Rbeta[2].terms[0].coef = neg_one ;

beta[2].terms[0].factors[0] = &b_sin.bound;

Rbeta[2].terms[0].factors[0] = &Rb_sin.bound;

beta[2].terms[1].coef = -1.0 ;

Rbeta[2].terms[1].coef = neg_one ;

beta[2].terms[1].factors[0] = &c_sin.bound ;

Rbeta[2].terms[1].factors[0] = &Rc_sin.bound ;

}

/* +++++++++++++++++++++++++++++++++ */

Rff_rows(w, Amat, Deriv, Priz)

APM *w, *Amat, *Deriv ;

RPrism *Priz ;

/*

Obtain bounds on the sums of the absolute values of

the entries in the rows of

-1

[A] * Deriv * Pmat,

put the results in w.

*/

{

APM *apt, *mpt, *end_row, *end_mat, *Pmat ;

/*

Check that A(u,v) is invertible. If not, die.

*/

Pmat = Priz->matrix ;

apt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;

apmMultiply(Rdet_uv, *apt, *(apt + MAT_DIM + 1)) ;

apt++ ;

apmCalc(Rdet_uv, Rdet_uv, *apt, *(apt + MAT_DIM -1),

APM_MUL, APM_SUB, NULL) ;

apmAbsoluteValue(ff_scratch, Rdet_uv) ;

if(apmCompare(ff_scratch, max_error) != 1) {

fprintf(stderr,

"The determinant of A(u,v) is too small. Died. \n") ;

fprintf(stderr, "\t %.12e \n", apmtodbl(ff_scratch)) ;

cease() ;

}

/*

Call functions which calculate upper bound on the

sums of the elements of various matrices.

Before any bounding of matrices, one must invoke

global_bounds(Pmat) to set such global variables,

as cos_one, and sin_sum. It is called in Rtry_prism().

*/

Rbeta_star(Rb_star) ;

Rbeta_dif_star(Rbd_star, Deriv) ;

203

Rgamdif_star(Rgd_star, Deriv, Pmat) ;

/*

Find sums of the absolute values of the entries

of Pmat(v,v), Pmat(v,u), and Pmat(v,p)

*/

end_mat = Pmat + MAT_SZ ;

apmAssign(RPvv_star, zero) ;

mpt = Pmat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;

for(; mpt < end_mat ; mpt += (N_PARMS + DEG_FREE)) {

for(end_row = mpt + DEG_FREE ; mpt < end_row ; mpt++) {

apmCalc(RPvv_star, RPvv_star, *mpt, APM_ABS,

APM_ADD, NULL) ;

}

}

apmAssign(RPvu_star, zero) ;

mpt = Pmat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;

for(; mpt < end_mat ; mpt += (N_PARMS + DEG_FREE)) {

for(end_row = mpt + DEG_FREE ; mpt < end_row ; mpt++) {

apmCalc(RPvu_star, RPvu_star, *mpt, APM_ABS,

APM_ADD, NULL) ;

}

}

apmAssign(RPvp_star, zero) ;

mpt = Pmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(; mpt < end_mat ; mpt += TWO_DF) {

for(end_row = mpt + N_PARMS ; mpt < end_row ; mpt++) {

apmCalc(RPvp_star, RPvp_star, *mpt, APM_ABS,

APM_ADD, NULL) ;

}

}

apmAssign(RAvv_star, RSmBlock_err) ;

mpt = Amat + STAID_LEN + DEG_FREE * MAT_DIM + DEG_FREE + N_PARMS ;

for(; mpt < end_mat ; mpt += TWO_DF) {

for(end_row = mpt + N_PARMS ; mpt < end_row ; mpt++) {

apmCalc(RAvv_star, RAvv_star, *mpt,

APM_ABS, APM_ADD, NULL) ;

}

}

apmAssign(RAuvInv_star, RSmBlock_err) ;

mpt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;

for(; mpt < end_mat ; mpt += TWO_DF) {

for(end_row = mpt + N_PARMS ; mpt < end_row ; mpt++) {

apmCalc(RAuvInv_star, RAuvInv_star, *mpt,

APM_ABS, APM_ADD, NULL) ;

}

}

apmDivide(ff_scratch, precision, (APM) NULL,

RAuvInv_star, Rdet_uv) ;

apmAssign(RAuvInv_star, ff_scratch) ;

/*

Check that A(v,u) is invertible. If not, die.

If it is, set the harder-to-compute elements of w.

*/

204

apt = Amat + STAID_LEN + N_PARMS + (DEG_FREE * MAT_DIM) ;

apmMultiply(Rdet_vu, *apt, *(apt + MAT_DIM + 1)) ;

apt++ ;

apmCalc(Rdet_vu, Rdet_vu, *apt, *(apt + MAT_DIM - 1),

APM_MUL, APM_SUB, NULL) ;

apmAbsoluteValue(ff_scratch, Rdet_vu) ;

if(apmCompare(ff_scratch, max_error) != 1) {

fprintf(stderr,

"The determinant of A(v,u) is too small. Died. \n") ;

fprintf(stderr, "\t %.12e \n", apmtodbl(ff_scratch)) ;

cease() ;

}

/*

Note that the sums below seem to contain some misplaced

elements of Amat. These are to be thought of as elements

of A(v,u) inverse.

*/

else {

apmCalc(w[3], Amat[MAT_SZ-DEG_FREE-1], APM_ABS,

Amat[STAID_LEN+(DEG_FREE*MAT_DIM)+N_PARMS+1],

APM_ABS, max_error, APM_ADD, APM_ADD, NULL) ;

apmCalc(w[4], Amat[MAT_SZ-TWO_DF], APM_ABS,

Amat[STAID_LEN+(DEG_FREE*MAT_DIM)+N_PARMS],

APM_ABS, max_error, APM_ADD, APM_ADD, NULL) ;

apmCalc(Rerr_star, RAvv_star, RAuvInv_star, APM_MUL,

one, APM_ADD, NULL);

apmCalc(Rcenter_err[3], w[3], Rerr_star, max_error,

APM_MUL, APM_MUL, NULL) ;

apmCalc(Rcenter_err[4], w[4], Rerr_star, max_error,

APM_MUL, APM_MUL, NULL) ;

apmMultiply(Rcenter_err[5], RAuvInv_star, max_error) ;

apmAssign(Rcenter_err[6], Rcenter_err[5]) ;

apmCalc(Rstar, RPvp_star, RPvv_star, APM_ADD,

Rbd_star, APM_MUL,

Rb_star, RPvu_star, APM_MUL,

Rgd_star, APM_ADD, APM_ADD, NULL) ;

apmCalc(ff_scratch, Rcenter_err[3], Rstar, w[3],

APM_MUL, APM_ADD, NULL) ;

apmDivide(w[3], precision, (APM) NULL, ff_scratch, Rdet_vu) ;

apmCalc(ff_scratch, Rcenter_err[4], Rstar, w[4],

APM_MUL, APM_ADD, NULL) ;

apmDivide(w[4], precision, (APM) NULL, ff_scratch, Rdet_vu) ;

apmAdd(w[5], one, Rcenter_err[5]) ;

apmAdd(w[6], one, Rcenter_err[6]) ;

}

return ;

}

/* +++++++++++++++++++++++++++++++ */

Rbeta_star(answer)

APM answer ;

{

Rbound_expr(&Rbeta[0]) ;

Rbound_expr(&Rbeta[1]) ;

205

Rbound_expr(&Rbeta[2]) ;

RmaxAbs(answer, Rbeta[0].bound.ub, Rbeta[0].bound.lb) ;

RmaxAbs(Rrow_abs[0], Rbeta[1].bound.ub, Rbeta[1].bound.lb) ;

RmaxAbs(Rrow_abs[1], Rbeta[2].bound.ub, Rbeta[2].bound.lb) ;

apmCalc(answer, answer, Rrow_abs[0], Rrow_abs[1],

APM_ADD, APM_ADD, NULL) ;

}

matrix inverter

include <stdio.h>

include <math.h>

include "apm.h"

include "apmSpecial.h"

include "converse.h"

apmAssign(y, t))

/*

The Numerical Recipes Gauss-Jordan matrix inverter as adaptaed

for a converse KAM code.

I have removed the dimension arguments n and m and replaced

them with TWO_DF and 1. I have also changed all the floats

into doubles and replaced some automatically allocated

arrays with arrays of fixed dimension. Finally, I have

replaced the error handling code with some of my own.

Rgauss, the rigorous version, also does a host of checks to

guarantee that the inverse it produces, when multiplied by

the original matrix, a, gives something equal to the

identity to the accuracy specified by the global variable,

"precision".

*/

int extra_dp, last_inv_dp ;

int inv_depth ; /* Used to make sure that we don’t keep trying

to invert singular matrices by using

ever increasing precision.

*/

APM a_abs, Rbig, Rdum, Rpivinv, Rtemp ;

APM Rrow_max, Rcol_max, Rmat_min, Rmat_max ;

APM *Rmat[TWO_DF], Rmat_block[4*DF_SQ] ;

APM Rdiv_err, Rrow_err, Rinv_err, Rtotal_err, Rpiv_err ;

/* ++++++++++++++++++++++++++++++++ */

initGauss()

{

int j, k ;

APM *mpt ;

inv_depth = 0 ;

extra_dp = 0 ;

Rbig = apmNew(BASE) ;

Rdum = apmNew(BASE) ;

a_abs = apmNew(BASE) ;

Rtemp = apmNew(BASE) ;

206

Rpivinv = apmNew(BASE) ;

Rinv_err = apmNew(BASE) ;

Rrow_err = apmNew(BASE) ;

Rpiv_err = apmNew(BASE) ;

Rdiv_err = apmNew(BASE) ;

Rrow_max = apmNew(BASE) ;

Rcol_max = apmNew(BASE) ;

Rmat_min = apmNew(BASE) ;

Rmat_max = apmNew(BASE) ;

Rtotal_err = apmNew(BASE) ;

mpt = Rmat_block ;

for(j=0 ; j < TWO_DF ; j++) {

Rmat[j] = mpt ;

for(k=0 ; k < TWO_DF ; k++)

*mpt++ = apmNew(BASE) ;

}

}

/* ++++++++++++++++++++++++++++ */

Rgauss(a)

APM **a ;

{

int indxc[TWO_DF],indxr[TWO_DF],ipiv[TWO_DF];

int i,icol,irow,j,k,l,ll;

int inv_dp, err_dp ;

if(++inv_depth > MAX_RECUR) {

fprintf(stderr, "Singular matrix in Rgauss. Died. \n") ;

cease() ;

}

for(j=0 ; j < TWO_DF ; j++) {

ipiv[j] = 0 ;

indxr[j] = 0 ;

indxc[j] = 0 ;

}

/*

If this is the attempt to invert a,

copy the matrix in case of a loss of precision.

Also, choose

the precision to which to do the inversion calculations.

*/

if(inv_depth == 1) {

copyRmat(Rmat, a) ;

inv_dp = choosePrecis(a) ;

}

else {

if(extra_dp == 0)

inv_dp = last_inv_dp + DFLT_XDP ;

else

inv_dp = last_inv_dp + extra_dp ;

}

last_inv_dp = inv_dp ;

/*

Initialize the error propagation stuff.

*/

apmAssignLong(Rdiv_err, 1L, -inv_dp, BASE) ;

apmAssignLong(Rinv_err, 0L, 0, BASE) ;

apmAssign(Rpiv_err, Rinv_err) ;

207

for (i=0;i<TWO_DF;i++) {

apmAssignLong(Rbig, 0L, 0, BASE) ;

for (j=0;j<TWO_DF;j++) {

if (ipiv[j] != 1) {

for (k=0;k<TWO_DF;k++) {

if (ipiv[k] == 0) {

apmAbsoluteValue(a_abs, a[j][k]) ;

if(apmCompare(a_abs, Rbig) != -1) {

apmAssign(Rbig, a_abs) ;

irow=j;

icol=k;

}

}

else if (ipiv[k] > 1) {

fprintf(stderr,

"Singular matrix in gauss. Died.\n") ;

cease() ;

}

}

}

}

++(ipiv[icol]);

if(irow != icol) {

for (l=0;l<TWO_DF;l++)

Rm_swap(a[irow][l],a[icol][l],Rtemp) ;

}

indxr[i]=irow;

indxc[i]=icol;

/*

Check that the pivot interval does not

contain zero. If it does, restart the

calculation and carry more decimal places.

*/

apmCalc(Rtemp, a[icol][icol], APM_ABS,

Rinv_err, APM_SUB, NULL) ;

if(apmCompare(Rtemp, zero) != 1) {

copyRmat(a, Rmat) ;

Rgauss(a) ;

return ;

}

/*

Get the new pivot error. It is here that we face

the possibility of catastrophic loss of precision.

*/

apmDivide(Rpiv_err, inv_dp, (APM)NULL, Rinv_err, Rtemp) ;

apmCalc(Rpiv_err, Rpiv_err, Rdiv_err, Rdiv_err,

APM_ADD, APM_ADD, NULL) ;

apmDivide(Rpivinv,inv_dp,(APM)NULL,one,a[icol][icol]) ;

apmAssignLong(a[icol][icol], 1L, 0, BASE) ;

apmAssignLong(Rrow_max, 0L, 0, BASE) ;

for (l=0;l<TWO_DF;l++) {

if(l != icol) {

apmAbsoluteValue(Rtemp, a[icol][l]) ;

if(apmCompare(Rtemp, Rrow_max) < 0)

apmAssign(Rrow_max, Rtemp) ;

}

apmCalc(a[icol][l], a[icol][l], Rpivinv,APM_MUL,NULL) ;

208

}

/*

Get a bound on the size of the errors in the elements

of the pivot row.

*/

apmCalc(Rrow_err, Rinv_err, Rpivinv, APM_MUL,

Rrow_max, Rinv_err, APM_ADD,

Rpiv_err, APM_MUL, APM_ADD, NULL) ;

apmAssignLong(Rcol_max, 0L, 0, BASE) ;

for (ll=0;ll<TWO_DF;ll++) {

if (ll != icol) {

apmAssign(Rdum, a[ll][icol]) ;

apmAbsoluteValue(Rtemp, Rdum) ;

if(apmCompare(Rtemp, Rcol_max) == 1)

apmAssign(Rcol_max, Rtemp) ;

apmAssignLong(a[ll][icol], 0L, 0, BASE) ;

for (l=0;l<TWO_DF;l++)

apmCalc(a[ll][l], a[ll][l], a[icol][l], Rdum,

APM_MUL, APM_SUB, NULL) ;

}

}

/*

Calculate the new upper bound on errors in the matrix.

*/

apmCalc(Rinv_err, Rrow_max, Rrow_err, APM_ADD,

Rinv_err, APM_MUL,

Rcol_max, Rrow_err, APM_MUL,

Rinv_err, APM_ADD,

APM_ADD, APM_ADD, NULL) ;

/*

Add an extra Rdiv_err to Rinv_err and truncate everything.

This will probably speed the calculation considerably.

*/

apmCalc(Rinv_err, Rinv_err, Rdiv_err, APM_ADD, NULL) ;

apmTruncate(Rinv_err, inv_dp) ;

for(l = 0 ; l < TWO_DF ; l++)

for(ll=0 ; ll < TWO_DF ; ll++)

apmTruncate(a[l][ll], inv_dp) ;

}

for (l=(TWO_DF-1);l>=0;l--) {

if (indxr[l] != indxc[l])

for (k=0;k<TWO_DF;k++)

Rm_swap(a[k][indxr[l]],a[k][indxc[l]],Rtemp);

}

/*

Check the overall size of the error.

If it is too big, set extra_dp and try again.

*/

err_dp = -(apmLogBd(Rinv_err) + OOM_DF) ;

if(err_dp < precision) {

extra_dp = precision - err_dp + 2 ;

copyRmat(a, Rmat) ;

Rgauss(a) ;

return ;

}

209

/*

Tidy up.

If we reach this line, all is well, the inversion is

good to the desired precision, so all we want to do is

restore the recurrsive variables to their initial state.

*/

inv_depth = 0 ;

extra_dp = 0 ;

return ;

}

/* +++++++++++++++++++++++++++++++++ */

copyRmat(copy, mat)

APM **copy, **mat ;

{

int j, k ;

for(j=0 ; j < TWO_DF ; j++)

for(k=0 ; k < TWO_DF ; k++)

apmAssign(copy[j][k], mat[j][k]) ;

}

/* ++++++++++++++++++++++++++++++++++ */

choosePrecis(mat)

APM **mat ;

{

APM *mpt, *end_mat ;

int oom_min, oom_max, oom_err, oom_twos ;

/*

Find the minimum and maximum entries of the matrix.

If none of the entries has absolute value bigger than

one, use one as the maximum; this ensures that the

resulting inverse will have entries good to at least

"precision" decimal places.

*/

mpt = mat[0] ;

apmAssignLong(Rmat_min, 0L, 0, BASE) ;

apmAssignLong(Rmat_max, 1L, 0, BASE) ;

for(end_mat = mpt + (TWO_DF*TWO_DF) ; mpt < end_mat ; mpt++) {

apmAbsoluteValue(Rtemp, *mpt) ;

if(apmCompare(Rmat_min, Rtemp) > 0)

apmAssign(Rmat_min, Rtemp) ;

else if(apmCompare(Rmat_max, Rtemp) < 0)

apmAssign(Rmat_max, Rtemp) ;

}

/*

Do a basic estimate of the number of digits one must carry

to get an answer whose precision is as good as the code

requires.

First find the orders of magnitude ("oom"’s) of various things.

*/

oom_max = apmLogBd(Rmat_max) ;

oom_twos = (TWO_DF / 3) ;

oom_err = oom_twos + OOM_DF + (2 * TWO_DF + 1) * abs(oom_max) ;

210

if(oom_err < 0)

return(precision) ;

else

return(precision + oom_err) ;

}

211

Bibliography

[Arn64] V. I. Arnold, “Instability of Dynamical Systems with Several Degrees
of Freedom,” Soviet Mathematics-Doklady 5, 581-585 (1964).

[Arn78] V. I. Arnold, Mathematical Methods of Classical Physics, (Springer-
Verlag, New York, 1978).

[Aub83a] S. Aubry, “The twist map, the extended Frenkel-Kontorova model
and the devil’s staircase,” Physica 7D, 240-258 (1983).

[Aub83b] S. Aubry, “Devil’s staircase and order without periodicity in classical
condensed matter,” J. Physique 44, 147-162 (1983).

[Bang87] V. Bangert “Minimal Geodesics,” preprint (1987).

[BGGS80] G. Benettin, L. Galgani, A. Giorgilli and J-M. Strelcyn, “Lyapunov
Characteristic Exponents for Smooth Dynamical Systems and for
Hamiltonian Systems; a Method for Computing all of Them. Part
2: Numerical Application,” Meccanica 15, 21-30 (1980).

[Birk22] G.D. Birkhoff, “Surface transformations and their dynamical appli-
cations,” Acta Mathematica 43, 1-119 (1922); reprinted in Collected
Mathematical Papers, vol. II. Amer. Math. Soc.: New York, 1950, pp.
111-229.

[Birk27] G.D. Birkhoff, “On the periodic motions of dynamical systems,” Acta
Mathematica 50, 359-379 (1927).

[Bost86] J. Bost, “Tores invariants des systèms dynamiques Hamiltoniens,”
Asterisque 133-134, 113-157 (1986).

[CC88] A. Celletti and L. Chierchia, “Construction of Analytic KAM Sur-
faces and Effective Stability Bounds,”Communications in Mathemat-
ical Physics 118, 119-161 (1988).

212

[CMP87] Q. Chen, J.D. Meiss and I.C. Percival, “Orbit extension method for
finding unstable orbits,” Physica 29D, 143-154 (1987).

[Chkv79] B. Chirikov, “A Universal Instability of Many-Dimensional Oscillator
Systems,” Physics Reports 52 #5, 263-379 (1979).

[FPU55] E. Fermi, J. Pasta and S. Ulam, “Studies of Non Linear Problems,”
Los Alamos Report LA-1940, May 1955; reprinted in E. Fermi, Col-
lected Works, University of Chicago Press, Chicago, (1965), Volume
2, pgs. 978-988.

[Fro71] C. Froeschlé, “On the number of isolating integrals in systems with
three degrees of freedom,” Astrophys. Space Sci. 14, 110-117 (1971).

[Fro72] C. Froeschlé, “Numerical Study of a Four-Dimensional Mapping,”
Astron. & Astrophys. 16, 172-189 (1972).

[Fro73] C. Froeschlé and J.P. Scheideker, “Numerical Study of a Four-
Dimensional Mapping,” Astron. & Astrophys. 22, 431-436 (1973).

[Grn79] J.M. Greene, “A method for determining a stochastic transition,”
Journal of Mathematical Physics 20 #6, 1183-1201 (1979).

[Hed32] G.A. Hedlund, “Geodesics on a two-dimensional Riemannian mani-
fold with periodic coefficients,” Annals of Mathematics 33, 719-739
(1932).

[Herm88] Michael R. Herman, “Existence et Non Existence de Tores Inavriants
par des Diffeomorphismes Symplectiques,” Preprint (1988).

[Herm83] Michael R. Herman, “Sur les courbes invariantes par les diffeomor-
phismes de l’anneau, Vol. 1,” Asterisque 103-104, (1983).

[KnBg85] K. Kaneko and R. Bagley, “Arnold Diffusion, Ergodicity and Inter-
mittency in a Coupled Standard Mapping,” Physics Letters 110A
#9, 435-440, (1985).

[Kat82] A. Katok, “Remarks on Birkhoff and Mather twist map theorems,”
Ergodic Theory and Dynamical Systems 2, 185-194 (1982).

[Kat88] A. Katok, “Minimal Orbits for Small Perturbations of Completely
Integrable Hamiltonian Systems,” Preprint (1988).

[KB87] A. Katok and D. Bernstien, “Birkhoff periodic orbits for small per-
turbations of completely integrable Hamiltonian systems with convex
Hamiltonians,” Inventiones mathematicae 88, 225-241 (1987).

213

[Khin64] A.Ya. Khinchin, Continued Fractions, (University of Chicago Press,
Chicago, 1964).

[KimOst86] S. Kim and S. Ostlund, “Simultaneous rational approximations in the
study of dynamical systems,” Physical Review A 34 #4, 3426-3434
(1986).

[KM88] Hyung-tae Kook and James D. Meiss, “Periodic Orbits for Reversible,
Symplectic Mappings,” (1988), to appear in Physica D.

[LR88] Rafael de la Llave and David Rana, “Accurate Strategies for Small
Divisor Problems,” preprint (1988).

[McK88] R.S. MacKay, “A criterion for non-existence of invariant tori for
Hamiltonian systems,” (1988), to appear in Physica D.

[MMP84] R.S. MacKay, J.D. Meiss and I.C. Percival, “Transport in Hamilto-
nian systems,” Physica 13D, 55-81 (1984).

[MMS89] R.S. MacKay, J.D. Meiss and J. Stark, “Converse KAM Theory for
Symplectic Twist Maps,” Preprint (1989).

[MP85] R.S. MacKay and I.C. Percival, “Converse KAM : Theory and Prac-
tice,” Communications in Mathematical Physics 98, 469-512 (1985).

[Ma82a] J. Mather, “Existence of quasi-periodic orbits for twist maps of the
annulus,” Topology 21 #4, 457-467 (1982).

[Ma82b] J. Mather, “Glancing billiards,” Ergodic Theory and Dynamical Sys-
tems 2, 397-403 (1982).

[Ma84] J. Mather, “Non-existence of invariant circles,” Ergodic Theory and
Dynamical Systems 4, 301-311 (1984).

[Ma86] J. Mather, “A criterion for the non-existence of invariant circles,”
Math. Publ. IHES. 63, 153-204 (1986).

[Max77] J. C. Maxwell, Matter and Motion, (1877). Reprinted by The MacMil-
lan Co., New York, 1920.

[MP87] B. Metsel and I.C. Percival, “Newton method for highly unstable
orbits,” Physica 24D, 172-178 (1987).

[Moser73] J. Moser, Stable and Random Motions in Dynamical Systems with
Special Emphasis on Celestial Mechanics, (Princeton University
Press, Princeton, New Jersey, 1973).

214

[Nekh71] N. N. Nekhoroshev “Behaviour of Hamiltonian systems close to inte-
grable,” Functional Analysis and Applications 5, 338-339 (1971).

[Osc68] V.I.Oseledec, “A Multiplicative Ergodic Theorem: Lyapunov Char-
acteristic Numbers for Dynamical Systems,” Trans. Moscow Math.
Soc. 19, 197-231 (1968).

[PFTV86] W.H. Price, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numer-
ical Recipes, (Cambridge University Press, Cambridge, 1987).

[Rana87] D. Rana, “Proof of Accurate Upper and Lower Bounds to Stability
Domains in Small Denominator Problems,” PhD thesis, Princeton
(1987).

[Rob78] J. Roberts, Elementary Number Theory, A Problem Oriented Ap-
proach, (MIT Press, Cambridge, Massachusettes, 1978).

[Smale65] S. Smale, “Diffeomorphisms with many periodic points,” in
S. S. Cairns, ed., Differential and Combinatorial Topology, (Princeton
University Press, Princeton, New Jersey, 1965).

[Smale80] S. Smale, The Mathematics of Time, (Springer-Verlag, New York,
1980).

[Strk88] J. Stark, “An Exhaustive Criterion for the Non-Existence of invariant
Circles for Area-Preserving Twist Maps,” Communications in Math-
ematical Physics 117, 177-189 (1988).

[Ttch39] E.C. Titchmarsh, The Theory of Functions, (Oxford University Press,
Oxford, 1939).

[Wig88] S. Wiggins, Global Bifurcations and Chaos, (Springer-Verlag,
NewYork, 1988).

[Wilb87] J. Wilbrink, “Erratic Behavior of Invariant Circles in Standard-like
Mappings,” Physica 26D, 358-368 (1987).

