
Matrix Condition Numbers

Higham, Nicholas J.

1983

MIMS EPrint: 2016.45

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

MATRIX CONDITION NUMBERS

N.J. HIGHAM

OCTOBER 1983

A thesis submitted to the

University of Manchester

for the degree of Master in

the Faculty of Science.

(i)

(ii)

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the advice and encouragement of my

supervisor Dr G. Hall, as well as stimulating discussions with other

members of the Numerical Analysis Department. I am grateful to

Professor G.H. Golub and Dr J.R. Cash for suggesting the work contained

in Chapter 3.

The support of a SERC Research Studentship is acknowledged.

I thank Mrs Vivien Gell for her adept typing of this thesis.

DECLARATION

No portion of the work referred to in this thesis has been submitted

in support of an application for another degree or qualification of

this or any other university or other institution of learning.

(i ii)

ABSTRACT

Several properties of matrix norms and condition numbers are

described. The sharpness of the norm bounds in the standard perturbation

results for A~ = !?_ is investigated. For perturbations in A the bounds

are sharp and quite likely to be realistic. For perturbations in b the

usual bound is not sharp and can be unduly pessimistic; a more suitable

measure of the conditioning than cond(A) is suggested.

Some important concepts relating to the problem of condition

estimation are discussed, careful consideration being given to the

reliability and computational cost of condition estimators. The LINPACK

condition estimation algorithm is described, its weaknesses, including

two counter-examples, pointed out, and some observations given.

Let A be an nxn tridiagonal matrix. We show that it is possible to

compute I IA- 1
11

00
, and hence cond

00
(A), in O(n) operations. Several

algorithms which perform this task are given. All but one of the

algorithms apply to irreducible tridiagonal matrices: those having no

zero elements on the subdiagonal and superdiagonal. It is shown how

these algorithms may be employed in the computation of I IA- 1 I !
00

when

A is reducible.

If A is, in addition, positive definite then it is possible to

compute l. IA- 1 ! !
00

as the £
00

norm of the solution to a linear system

involving A's comparison matrix, M(A), which is also positive definite

and tridiagonal. Utilising a relation between the LDLT factors of A

and M(A) we show how the LINPACK routine SPTSL, which solves Ax = b for

positive definite tridiagonal matrices A, can be modified so that it

also computes cond (A), the increase in computational cost being
00

approximately 60 percent.

CONTENTS

CHAPTER 1. Matrix Norms and Condition Numbers

1.1 Introduction

1.2 Matrix Norms

1.3 Characterisation of the Condition Number

1.4 Perturbation Results

CHAPTER 2. Estimation of Matrix Condition Numbers

2.1 Computational Costs

2.2 Random Right-Hand Sides

2.3 The LINPACK Condition Estimator

2.4 Reliability

CHAPTER 3. Efficient Algorithms for Computing the Condition

Number of a Tridiagonal Matrix

3.1 Operation Counts

3.2 The Inverse of a Bidiagonal Matrix

3.3 An Algorithm Based on the LU Factorisation

3.4 The Inverse of a Tridiagonal Matrix

3.5 Utilising Symmetry

3.6 Positive Definiteness

3.7 Dealing with Reducibility

3.8 Computational Considerations

REFERENCES

(iv)

3

8

13

22

22

25

28

35

38

38

41

46

51

56

61

77

81

84

1.

Chapter 1. Matrix Norms and Condition Numbers

1.1 Introduction

The condition number (with respect to the problem of matrix inversion)

of a nonsingular matrix A is

(1.1.1)

where I I .1 Ip denotes a given matrix norm. The importance of the condition

number stems from the prominent role played by cond(A) in results which

measure the sensitivity of the solution x of the linear system

Ax = b (1 .1 . 2)

to changes in the data A and b. Perturbations in A and~ in (1.1.2),

measured relative to A and~ respectively, may give rise to relative

changes in ~which are cond(A) times as large. For example, if A is

perturbed to A + E and if

(A + E) (~ + !!_) = b ,

then one can show that

11 !!.I I 11 E 11 ----,< cond(A)
11 ~ + !!.11 11 A11

In Chapter 1 we explore various characterisations of the condition

number. We derive several perturbation results for (1.1.2) and we in­

vestigate the likelihood that the bounds which are obtained are realistic.

2.

Computation of cond(A) for a general n x n matrix A is rather

expensive, costing O(n3) floating-point operations ("flops" - defined

more precisely in section 2.1). Hence researchers have devised methods

which compute a relatively cheap estimate of the condition number, given

some factorisation of the matrix A. We survey some of this work in

Chapter 2 and examine the reliability of these condition estimators.

We show in Chapter 3 that if A is a tridiagonal matrix then it is

possible to compute llA- 111, and hence cond(A), exactly in O(n)

operations (here and for the rest of this section the norm is the infinity­

norm or the one-norm). This is an appreciable saving on the O(n2)

operations which would be required to compute I IA- 11 I by first forming
-1 A and then taking the norm.

In section 3.2 we describe some special properties of the inverse of

a bidiagonal matrix B. In particular, we show how cond(B) can be com-

puted in 2n-1 flops. In sections 3.3, 3.4 and 3.5 we derive three

algorithms for the efficient computation of cond(A) when A is an

irreducible tridiagonal matrix (a tridiagonal matrix without any zeros

on the subdiagonal and superdiagonal). The first of these algorithms

is derived using the special form of the inverses of the bidiagonal

LU factors of A. If A is irreducible but has some small superdiagonal

or subdiagonal elements, these algorithms may suffer from numerical

stability problems. An algorithm is given in section 3.8 which, while

being more expensive, has excellent numerical stability properties.

In section 3.7 we describe an efficient method for computing cond(A)

when A is a general tridiagonal matrix; this method utilises the

algorithms for the irreducible case.

3.

If A is tridiagonal and positive definite then there is a more

efficient way of computing cond(A). This method, which only requires the

solution of one tridiagonal system of equations, is described in section

3.6. We show how the LINPACK routine SPTSL, which solves A~=~ for

positive definite tridiagonal A, can be modified so that it also computes

cond(A); only minor modifications are necessary, the computational cost

of the routine being increased by roughly 60 percent.

1.2 Matrix Norms

Let ~nxn denote the set of all nxn matrices with complex elements.

Throughout this section, A:= (aij) E~nxn.

A t . ~nxn . f t" ma r1x norm on t is a unc ion I I • 11
~nxn -+ IR satisfying,

for any A,Bstnxn~ the four conditions

ll All ~ 0 , ll All = 0 i f f a .. lJ = 0 for a 11 i , j,

I laA I I = !al I IAI I for all aE~,

I IA+ Bil ,< ll All + I !Bil

and

II AB II \< I I A II II B I I .

(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

The norm I l ·I I thus collapses the information contained in then-squared

elements of Adnxn into a single number, !! All , which measures the size

of the matrix A in an intuitively natural way, as indicated by (1.2.1) -

(1.2.4).

4.

If the function I I · I I satisfies conditions (1.2.1), (1.2.2) and

(1.2.3) (but not necessarily (1.2.4)) then, Lancaster [21, p. 198], 11 . 11

is called a generalised matrix norm. Any vector norm v on tn gives

rise to a generalised matrix norm on ~nxn (see [21, p. 203] for the

definition of vector norm). To see this, define for X := (~1 , ~2 , ..• ,

) r nxn
~ El'

str(X)

Thus str denotes the operation of "stretching out" a matrix into one long

vector, formed from the columns of the matrix. Then I I . I I , defined by

ll XJI :=v (str(X)),

is easily seen to be a generalised matrix norm. This approach yields the

following three generalised matrix norms:

II Al Is . - l I a .. 1 ,
i,j lJ

(1.2.5)

1 IAI IF (l 2 ~ .- I a. · I)
i ,j lJ

(1.2.6)

ll AI lw· := max I a. ·I ,
i,j lJ

(1.2.7)

corresponding to v being in turn the t 1, t 2 and £
00

vector norms. The norm

in (1.2.6) is called the Frobenius norm, also referred to as the

Euclidean or Schur norm. The first two of the generalised matrix norms

above satisfy (1.2.4) and so are matrix norms. I J. J lw· is not a matrix

norm since (1.2.4) is not satisfied for A = B = eeT, where e =

T (1 , 1 , ... , 1) , but

n max
i ,j

5.

(1.2.8)

is a matrix norm. More generally, if I I· I I is a generalised matrix norm

then there exists a scalar a such that al I· I I is a matrix norm [18, p. 61].

Each of the three matrix norms in most common use in numerical

analysis is a subordinate matrix norm. For any vector norm v the

subordinate matrix norm I I· I I is defined by

I IA\ I (1.2.9)

Conditions (1.2.1) - (1.2.3) are easily seen to be satisfied. From

the definition (1.2.9),

(1.2.10)

which leads to (1.2.4), so I I· I I is indeed a matrix norm.

A compactness argument can be used to show that there is a vector

x, depending on A and v, for which equality is attained in (1.2.9) [21,

p. 208]. This fact is important for the condition estimation procedures

described in Chapter 2.

Taking for v in (1.2.9) the ~1 , i2 and i
00

vector norms we obtain

the three aforementioned popular matrix norms:

l\A\11 == max l I aij I - "max column-sum", (1.2.11)
j l

I I A 11 oo == m~x l I aij I - "max row-sum 11 (1.2.12)
l J

and

l\ Al\ 2 == p (A*A) ~ - 11 spectra1 norm", (1.2.13)

6.

where p denotes the spectral radius and * the conjugate transpose. Proofs

of the equalities (1 .2.11) - (1.2.13) may be found in Froberg [12, pp.

69-72].

From (1.2.9), a subordinate matrix norm must satisfy 11 II I = 1.

I I II Ip > 1 for p = S,M,F so these three matrix norms are clearly not

subordinate to any vector norm.

If a matrix norm and vector norm are related in such a way that

(1 .2.10) is satisfied for any A and~' then the two norms are said to

be consistent. The following consistency relations hold:

matrix norm p - consistent with - vector norm v
$ i

1
, i 2 , i

00

M

F

These are obtained by using some of the Lemma 1 .2 inequalities (see below)

in (1.2.10). For example,

However, in contrast to the situation for a vector norm and its sub-

ordinate matrix norm, these consistency relations are not sharp, that

is for a given matrix A, there may not exist a vector x for which

There is a wide variety of different matrix norms. For example, if

T is a nonsingular matrix and 11 - 11 is any matrix norm, then
. p

defines a new norm. Despite this profusion of matrix norms there is a

7.

sense in which any two matrix norms are equivalent.

Theorem 1.1 (Generalised Matrix Norm Equivalence Theorem).

If 11. I Ip and 11 · I I q are any two generalised matrix norms on ~nxn

then there is a positive constant y such that for all AE ~nxn pq

I I A I I p ~ y pq I I A I I q •

Proof

See [21, p. 200]. o

The constant ypq in Theorem 1.1 will in general depend on n and

could differ significantly from 1. However, for any pair of the norms

introduced so far, 1 ~ Ypq ~ n, so these norms really do not differ

very much, at least for small n. The precise relations between the

matrix norms I I . I Ip' p = 1,2,00 ,S,F,M are specified by the next lemma.

Lemma 1.2

Let the constants y be defined by pq

q

2 00 s

vti n

2 In In

00 n In

s n n n

F In In In

M n n n n

Then for p,q = 1,2,oo ,S,F,M

F M

In

In

n

n 1.

8.

and there exists A E ~nxn A ~ 0, such that pq ' pq

Proof

The proofs are omitted - they are straightforward but tedious.

We remark that each A can be taken as the identity matrix, or in the pq
T

form ~ 'i_ where ~' 'i_ d~i , ~} . 0

1.3 Characterisation of the Condition Number

For the rest of this chapter we concentrate our attention on sub­

ordinate matrix norms and denote both the vector norm and the associated

matrix norm by I I · I I ·

An alternative formula for cond(A) is obtained from the observation

This yields

:=max _I l _A-_1~_11 =max _ l_lr_l I =(min I I A~ l l:r . (1. ;l .l)

~Q 11 ~1 I ~_g_ 11 Ari I ~_g_ I lr l 1/

I I A~ l I

11 ~ 1 I
cond(A) = ----

max
x~o

I I A~ l I
min ---
x~o 11 ~ 1 I

max 11 A~ l I
11 x11 =

= - - -----
min 11 Ax 11

11 ~ 1 I =

(1.3.2)

9.

Hence cond(A) can be interpreted as the ratio of maximum stretch to

minimum stretch when A operates on all vectors of unit length in the

11 - 11 norm. It follows that cond(A) 1- 1, a result which is true for any

matrix norm that satisfies I Ii i I = 1, since 11 I I I =I IA- 1AI I,<

11 A- 1
11 11 Al I . For the R. 2 norm, cond2(A) determines the eccentricity

of the ellipsoid into which A transforms the unit sphere of ~n. Perfect

conditioning, cond2(A) = 1, corresponds to the ellipsoid being a sphere.

If A is a singular matrix we can loosely regard cond(A) as being

infinite. The next theorem shows that if cond(A) is large, A must be

near to a singular matrix in the sense that a relatively small perturb-

ation to A, measured in the given norm, can produce singularity. In

this theorem, the matrix norm is that subordinate to the vector p-norm

11 ~ 1 Ip := (~ I xi Ip)
11

P' 1 ~ p ~ 00
•

l

Theorem 1.3

Let AE¢nxn be a nonsingular matrix. Then

--.--1 ...,..,........ = min 11 E 11 p,
condp(A) A+E I IAI Ip

singular

Proof

First note that if A+E is singular, then for some ~ ~ ..Q_, (A + E)~ =

0. Hence x = - A- 1 E~, which implies that ll ~ll p~ JJ A-
1

il p JI Ell p ll ~ll p'
We need only show that equality can occur for some

E. We prove this for p = 1,2,oo ; the proof for general p may be found

in [30, p. 169]. Professor C.F. Van Loan pointed out to us that this

result is also contained in [20].

10.

(a) i 2 nonn

Let A = UEV* be the singular value decomposition of A, where

E = diag(a i)' a 1 ~ a 2 >,. ••• >,an > 0, U .- (u 1, ••• ,u), V := (v
1

, ••• ,v) - -n - -n

and u*u = v*v = I. With E := * - a~~'

1111 ll A-1 11 -21· so A + E is singular and E 2 = an

(b) Q. norm
00

By (1. 3. 1) ,

I IAll 100 I 1 ~ 11 00 = min --- -. - --,
~Q_ I Il l 100 j j ~ l 100

where w = Az. Comparison with part (a) suggests the rank-one choice

* E :=~~,where~ is to be determi ned. The requirement I IE! 1
00

=

ll A- 1 11 ~ 1
is equivalent to 11 ~11 1 = 11 ~ 11 ~ 1 , since ll Ell 00 = 11 ~11 00 11 ~ 11 1·

Also,

= 0 iff * u z = -1.

The vector u . -
sgn(zi)
--- e., where I z,. I I z ·I _,

l

11 z 11 , satisfies both the
- 00

required conditions and this completes the definition of E.

11.

(c) i 1 norm

The result of the theorem for the i 1 norm is obtained from the

result for the .Q,
00

norm by replacing A by AT and using I IAT I 1
00

= I IAI 1 1. O

In words, Theorem 1.3 says that the reciprocal of cond (A) is the
p

relative distance from A to the nearest singular matrix, distance being

measured in the .Q,p matrix norm.

Example

The upper triangular matrix

-1 • -1

-1 .• -1

T .- 1 • e:: JR nxn (1.3.3)

-1

has an inverse with .Q, norm 2n- 1 [17, p. 14]. Wilkinson [34, p. 113]
00

2-n notes that if the (n ~l) element of T is perturbed by - 2 then the

perturbed matrix is singular, having rank n-1. This perturbation

2-n corresponds to a matrix F with norm I IFI I = 2 . However, writing

Theorem 1.3 in the form

--1-.-- = min
11 A-1 11 p A+E

singular

00

we see that there must be a matrix G with I IGI 1
00

= 21-n, such that

T + G is singular. By working through the proof of part (b) of the
1 T theorem for the matrix Tone finds that G = - ~ ~~1 , which does

2
indeed have .Q, norm 21-n.

00

12.

A lower bound for cond(A) may be obtained in terms of the eigenvalues

of A. For any mat r i x no rm 11 B I I ~ p (B) [21 , p . 2 0 l] , so

cond(A) ~ p(A) p(A-l)
rnax I >. i I

= i
min I>-· I . l

l

(1.3.4)

where {>. i } are the eigenvalues of A. This lower bound can be very poor.

For a triangular matrix R (1.3.4) becomes

cond(R)
max Ir· .1 11 i ?; ----

i
I ri i I min

for R = T defined in (l.3.3) we have cond
00

(R) = n 2n-l, yet the lower

bound is 1.

The i 2 condition number of AE~nxn can be expressed in terms of the

singular values a1 ~ a2
~ ••• ~ an of A:

For the special class of normal matrices, that is matrices satisfying

AA*= A*A, the sets {ai}i~l and {i>-i j}i~l are the same; therefore the

lower bound of (l.3.4) is exact for the i 2 norm when A is a normal matrix.

Any matrix A which is Hermitian (A* = A), skew-Hermitian (A* = -A) or

unitary (A*A = I) is normal.

Since cond(A) is a product of two matrix norms it is clear that any

two condition numbers are equivalent in the sense of Theorem 1.1. Indeed

Lemma 1.2 implies that any two of the values {condp(A), p = 1,2,00 ,S,F,M }

can differ by at most a factor n2.

13.

1.4 Perturbation Results

In this section we derive several classical perturbation results for

the linear system

Ax = b (1.4.1)

and investigate the sharpness of the bounds which are obtained.

We first note that ~ = Q_ implies

(1.4.2)

and

(1.4.3)

with equality possible in each case. Hence the range of values which the

ratio 11!1 I/ I IQ.I I can take is specified by

1 I l~I I _1
--~ ~ llA II·
llAll !IQ.II

(1.4.4)

It is clear from (l.4.4) that if cond(A) is large and either of the in­

equalities (1.4.2), (1.4.3) is approximately an equality, then the other

inequality must be very slack. Let us write a~ B if the numbers a and B

are of the same order of magnitude. We shall refer to a vector x for

which 11~11 ~ llA- 111 11.Q.ll as a large-normed solution to Ax= band a

vector~ for which Jl~ll ~ llAll-l 11.Q.ll as a small-normed solution to

Ax = b. When A is well-conditioned these two concepts coincide.

There are three types of perturbation to consider for the problem

(1 .4.1): perturbations in Q_, perturbations in A and simultaneous

perturbations in A and b.

14.

Theorem 1.4

Let A~ = .Q_, where A is a nonsingular matrix.

(i) If A(~+.!!) = .Q_ + E_ then

111:!.ll !IE.II
-- ~ cond(A) --
11~1 I 11.Q.l I

(l .4.5)

(ii) If (A+ E)(~ + l:!_) = .Q_ and I IA-lEI I < l then

111:!.l I cond(A) 11E11

- llA-
1

E11 llAll
(l .4.6) -- ~

11~11

(iii) If (A+ E)(~ + 1:!_) = .Q_ + E_ and I IA- 1EI I < l then

111:!.l I cond(A) (I !El I I IE.I I)
11~11 ~ l - llA- 1Ell llAll + 11.Q.ll .

(l .4.7)

Proof

(i): Al:!_=E_so 111:!.ll~ llA-
1

11 !IE.II· Multiplication of this inequality

by (l.4.2) yields (l.4.5).

(ii): (A+ E)l:!_ = - E~. The condition llA-1Ell < l ensures that

(l .4.8)

by a standard result [27, p. 188]. Taking norms in l:!_ = - (A+ E)-lE~

leads to (l. 4. 6) .

(iii): (A+ E)l:!_ = E_ - E~. This gives, using (l.4.8), 111:!.l I,<

(l-llA-1Ellf1 llA-lll (!IE.II+ llEll 11~11)· (l.4.7) ~s established

by dividing throughout by 11~1 I and then using (l .4.2). o

15.

Remarks

(1) One can regard~:=~+!!. as the computed solution to Ax= b.

Identifying the residual.!:.:= Q. - A ~c with - .s!_, (l.4.5) can be rewritten

I I ~ - ~ II l l.!:.ll
---- ~ cond(A) __

1 1 ~ 1 I I IQ. I I

- a bound for the relative error in the computed solution in terms of its

residual.

(2) It is possible to coalesce the three parts of Theorem 1.4 by writing

the perturbed system as A(~+!!_) = Q. +.!where.! contains all the terms

involving E and d. Rice [25] adopts this cruder, but nonetheless in­

formative approach.

Theorem 1.4 says, essentially, that perturbations of relative size

£ in A or Q_ can give rise to relative perturbations in ~of size at most

cond(A) £. The proofs, which simply use norm inequalities, offer no

immediate indication as to whether the error magnification factor cond(A)

is likely to be achieved, or even can be achieved, for a particular A

and b. We now look at these questions in some detail for (l.4.5) and

(l.4.6).

Perturbations in b

The proof of part (i) of Theorem 1.4 begins by applying a norm

inequality to the identity A!!_= .s!_ to obtain

This is equivalent to

(1.4.9)

that is

~-------

11~11

11!!1 l
~ ex

II~! I

11~11

I IE.I I

11£11

11£11

llA-1
11 11£11

where e := is the quantity which Rice [25] calls the
x 11~11

natural condition number. The bounds

l ~ ex,< cond (A)

follow from (l.4.4).

16.

(l.4.10)

(l.4.11)

There is always some vector d for which (l.4.9) is an equality and

for this d, (11!!11111~1 I)/ (I IE.I I/ 11£11) = ex. Hence ex is the condition

number for the problem A~ = £ in the sense defined by Dahlquist and

Bjorck [6, p. 54], where here,£ is the input data and A is fixed. Note

that we are measuring relative errors using the given norm here, thus

a relative error of at most E in the input data corresponds to

I IE.I I ~ E 11£11 · If, instead, the requirement Id; I {- E lb; I for all i

is imposed, a different condition number results; see Skee l [26].

If A is well-conditioned then inequalities (l .4.9) and (l.4.10)

must be sharp, by comparison with (l.4.4). Now suppose that A is badly-

conditioned. Then if d is a random vector, the theory of section 2.2

implies that there is a high probability of (l.4.9) and (l.4.10) being

sharp.

To summarise, for any A and£, equality is obtained in (l .4.10) for

some E_ and ex is a realistic estimate of the relative error magnification

factor (11!!1 I I 11~1 I)/ (I IE.I I I 11£11) ·

17.

The bound (1.4.10) is not widely seen in the literature. This is

probably because ex depends on~ and so (1.4.10) is an a posteriori

bound. It is more common to replace ex by the upper bound cond(A) thus

obtaining (1.4.5), which is an a priori bound. However, if A is ill­

conditioned, this replacement can severely weaken the inequality (1.4.10),

as is clear from (1.4.11). The weakening is more severe when xis a

large-normed solution; indeed if 11~1 I = I IA-1 11 11~1 I· that is bis a

maximising vector for A-l in the given norm, then Cx = l and (1.4.5) is

unduly pessimistic.

The inequality (1.4. 10) gives more insight into the conditioning of

(1.4.1) with respect to perturbations in~ than does (1.4.5) since it shows

that for a given ~the conditioning is better or worse according as ~is

a large-normed or small-normed solution. Hammarling and Wilkinson [16] show

the interesting result that for the linear equations arising from the

standard finite difference approximation applied to the differential

equation w~~(x) = f(x), both small-normed solutions and large-normed

solutions can be obtained by suitable choice of the forcing function f

and the boundary conditions.

Perturbations in A

When the linear system (1.4.1) is solved on a computer by some form

of Gaussian elimination, the computed solution~ satisfies

(A + E)~ = b, (1.4.12)

where bounds are available for I IEI I [27, p. 155]. Here, the second part

of Theorem 1.4 is applicable. An alternative bound to (1.4.6) is obtained

by subtracting (1.4.12) from (1.4.l) to give

18.

A(x - x) = E~ - --c --....

and hence

-1
~ - ~=A E~. (l.4.13)

Standard norm inequalities lead to

11~ - ~ II II E II
----,< cond(A) --

II& II llA II
(l .4.14)

which resembles (1.4.6) except that the error in the computed solution is

measured relative to the computed solution rather than to the exact

solution and no condition on I IA- 1EI I is required. In view of our comments

about (1.4.10), it is natural to ask whether the quality of (1.4.14) is

dependent on~ being a large-normed or small-normed solution. There

does not appear to be any reason why this should be so. In the case of

Gaussian elimination, the standard backward error analysis shows that E

depends on E._ but the major contribution to E comes from the factorisation

stage which is independent of E._.

Further insight can be gained by using the ideas of section 2.2. We

are interested in the case where A is ill-conditioned. Defining

z .- E~ we have from (1.4.13),

II~ - ~I I =llA- 1 ~11

with high probability, assuming that z is a random vector. Also, it seems

reasonable to assume that

(1.4.16)

19.

Combining (l.4.15) and (l.4.16) we obtain

which says that the upper bound in (l.4.14) is of the correct order of

magnitude.

There are special cases for which the upper bound in (l.4.14) is

a severe overestimate if A is ill-conditioned, for example when E is a

scalar multiple of A or E~ = Q. Nevertheless, the above arguments

suggest that (l.4.14) is quite realistic in general, and in particular

for the Gaussian elimination application. This view is confirmed by

Cline, Moler, Stewart and Wilkinson [5], by Stewart [27, p. 195] and by

Hammarling and Wilkinson [16] who state

"the error analysis suggests that whatever the nature of the

right-hand side Q_, the accuracy of the computed solution

will fully reflect the condition of the matrix of coefficients."

and present numerical evidence to support this statement.

We have not yet considered whether equality can be attained in

(l.4.6) and (l.4.14). Consider the derivation of (l.4.6). We have

A(I + A-lE).b_ =(A+ E).b_ = - Ex.

-1
Hence, recalling that I IA El I < l,

Taking norms yields

20.

whence

(l.4.17)

Our reason for deriving this inequality, which is very similar to (1.4.6)

and to (1.4. 14), is that there holds the following remarkable result of

Van der Sluis [32]:

Theorem 1.5

For any vector norm and its subordinate matrix norm, for any A and

~,and for any y such that 0 < y < I IA- 1 I1-l, there exists E such that

llEll = y and equality holds in (1.4.17).

To prove the theorem we need

Lemma 1.6 r t (I lf

For any~, ,t£~n and any vector norm, there exists BE~nxn such that

l = B~ and ~ is a maximising vector for B.

Proof

See Van der Sluis [31]. The proof uses the powerful Hahn-Banach

theorem. o

Proof of Theorem 1.5

We need to find a matrix E such that I IA- 1 E~l I = I IA-1 11 I IEI I 11~1 I·
Let l be a maximising vector for A- 1. Lemma 1.6 asserts the existence of

a matrix B such that l. = Bx and x is a maximising vector for B. The
y

choice E := -- B gives the sequence of equalities

21.

llA- l E~li
y

I IA-lB~l I
y

I IA- 1 ~1 I = =

11B11 11 Bl I

y
I IA- 1 11

y
llA-111 llBI I I lxll = llY 11 =

11B11 - I IBI I

= I IA- 111 11 El I 1 1~ 1 I·

Finally, I IA- 1Ei I ~ I IA-1 11 I IEI I = 1 IA- 1 11 y < 1, which is needed for

(1.4.17). D

The inequalities (1.4.6), (1.4.14) and (1.4.17) are essentially the

same, provided that I IA- 1EI I« 1 (this implies 11~111 1 1~11 "' 1). We

conclude from Theorem 1.5 that if I IA-1Ei I « 1 then the inequalities

(1.4.6) and (1.4.14) are sharp, in the sense that for any A and£. there

is a perturbation matrix F, whose norm can be chosen arbitrarily as long

as I IA- 1Fi I « l, for which these inequalities are approximate equalities.

Summarising, the inequalities (1.4.6), (1.4.14) and (l.4.17)

describing the worst possible effect on the solution~ of a perturbation

in A are quite realistic. We base this conclusion on the fact that these

inequalities are sharp and on the heuristic, discussed above, that the

bounds are quite likely to be of the correct order of magnitude. Of

course, if A is well-conditioned, none of the inequalities under con-

sideration can be very slack.

22.

Chapter 2. Estimation of Matrix Condition Numbers

2.1 Computational Costs

When solving linear systems

Ax = b (2.l.l)

on a computer it is obviously desirable to know how accurate the computed

solution is and how sensitive the true solution is to perturbations in the

data. As we saw in Chapter l, both these factors are to some extent

governed by the condition number of the coefficient matrix. Therefore

when solving (2.1.l) one would ideally like to not only have the computed

solution, but also have the condition number of A available for ' inspection.

The identification of a large condition number might in one case lead to

the reformulation of the problem which gave rise to the linear system and

in another case it might engender the realisation that the desired

accuracy in the computed solution can only be obtained by recourse to

higher precision arithmetic.

Unfortunately, computation of the condition number is rather

expensive compared to computation of the solution of one linear system.

As a measure of computational cost we use the term ..f..l.Q.p_ to denote both

a combined floating-point multiplication/addition operation, corresponding

to a FORTRAN statement of the form

S = S + A*B,

and a single floating-point multiplication, addition or division operation

(cf. [22]). The nxn system (2.1.1) is usually solved in two stages. In

the factorisation stage, Gaussian elimination with partial pivoting is

23.

used to compute the factorisation

PA = LU. (2.1.2)

In the substitution stage, the two triangular systems L,t = P!?_ and U~ = y_

are solved, yielding the solution~· (We are assuming here that all

operations are exact). For a full matrix the factorisation stage costs

O(n3!3) flops and the substitution stage costs O(n2) flops. The columns

of A-1 are the solutions of then equations A~i = _g_i, i = 1,2, ... ,n,

the computation of which, given (2.1.2), requires 0(2n3/3) flops if the

special nature of the right hand sides is taken into account and O(n3)

flops otherwise. Therefore computation of cond(A) (by the obvious route
-1 l of computing A and evaluating I !Al I I IA- 11) in addition to computation

of the solution of (2.1.1) is roughly three or four times as expensive

as computation of the solution of (2.1.1) alone.

However, once an LU factoriation has been computed for (2.1.1),

extra right-hand sides can be processed at comparatively little extra

cost. The condition estimation techniques in [4] and [5] take advantage

of this. Given the factorisation (2.1.2) they compute an estimate

of cond(A) in O(n2) flops.

One is usually only interested in the order of magnitude of the

condition number. In this circumstance a good estimate which does not

differ significantly from the true value should be acceptable. Cline,

Conn and Van Loan [4] define a condition estimator y to be reliable if

there are constants c1 and c2, independent of A and of modest size,

such that

c1 cond(A) ~ y ~ c2 cond(A) (2.1.3)

24.

For the ,Q,l and ,Q,
00

norms, I IAI I can be computed cheaply using (1.2.11)

and (l.2. 12). For the ,Q,2 norm cheap, reliable estimates of I IAI 12 are

provided by either, or a combination, of the bounds (see [17])

(2.1.4)

and

a ~ I I A I I 2 ~ I I A I I F ~ In a ' a : = m~ x I I A~ i 112 ·
1

(2.1.5)

For these popular subordinate norms, the problem of condition estimation

reduces to the problem of estimating

llA-1bll
=max ---

QfQ 11~11
(2.1.6)

The standard approach, [4], [5], is to look for a vector c such that z

is a large-normed solution to Az = c. Then

11±-11 II -1
~ 11£11 ~ A II. (2.1.7)

Speci fi ca lly, we would 1 i ke to choose £, norma 1 i sed by 11£11 = 1, say,

so that I 1±.1 I is as large as possible, there being at least one vector

£which gives the maximum value, I jA-l I I·

If A is well-conditioned, the choice of£ is not critical, for by

(1.4.4) any£ will yield a lower bound for I jA-l I I which is of the

correct order of magnitude. Hence our main concern in the rest of this

chapter is with the case where A is ill-conditioned.

25.

2.2 Random Right-Hand Sides

A condition estimation strategy discussed by Rice [25] involves

choosing p << n random vectors El'E2, ... ,Ep and taking the maximum of the

corresponding lower bounds (2.1.7). The success of this approach rests

on the validity of the heuristic that when A is ill-conditioned there is

a high probability that one of the p solutions will be large-normed. In

this section we investigate the properties of solutions which correspond

to random right-hand sides.

Let Acnfxn have the singular value decomposition

where E = diag(cri), cr1 ~ cr2 ~ ... ~an > 0, U := (~1, ... ,~), V :=

(v1, ... ,vn) and uTu = vTv =I. Any vector b can be expressed as

n
b = l ai~i = Ua

i = 1

because the columns {~i} of U span IRn. Thus A~= Q_ implies

that is

Suppose I IQ. I I 2 =

-1 -1 T -1 x = A b = VE u .ua = VE a ,
TT -

n a .
x = .l _1 v .•

1=1 cri -1

1, so that I lal 12 = 1.

(n I 1~112 = .l 1=1

We have,

a/) l
a. 2 1

-1
Thus~ will be a large-normed solution, with I l ~ I 12 ~an , unless

(2.2.1)

(2.2.2)

(2.2.3)

lanl << 1 and lai l << 1 for all i such that cri ~an - this is unlikely

26.

for random b since this condition requires that Q_ have very small com­

ponents in the direction ~ and in the orthogonal directions corresponding

to all the other "small" left singular vectors. To summarise,

Fact 2. 1

For any nonsingular matrix A, if Q_ is a random vector and Ax = b

then there is a high probability that

D

An interesting result is obtained by assuming that ai in (2.2.2)

is a random variable with E(a~) = e2, i = 1,2, ... n. Then 11~1 I~ is also

a random variable and, from (2.2.3),

E(11~1 i~)

The same result holds if

n
b = l

i = 1
a.e.

1-1

(2.2.4)

(2.2.5)

(perhaps a more natural condition), though it is here necessary to further

assume that the {ai} are independent random variables with zero mean. For
2 2 (2.2.2) and (2.2.5), E(I IE..11 2) = ne . Thus we have

Fact 2.2

nxn
Let AtlR Let the vector b be given in the form (2.2.2) in terms

of the left singular vectors of A or in the form (2.2.5) in terms of the

unit vectors, where the {ai} are independent random variables with

E(a i) = 0 and E(ai 2) = e2, i = 1,2, ... ,n. Then

E(11 ~I I ~)
E(11 ~I I ~)

or, to a rough approximation,

11 A-
111 2

= ___ F,
n

27.

D

We remark that var (11 ~ 1 I ~) contains terms 1 ike a~4 , which con­

firms the potential wide variability of I 1 ~ 11 21 11 ~ 11 2 expressed by

(1.4.4).

A more precise result came to our attention at a late stage

during the preparation of this thesis. Dixon [7] proves the following

theorem:

Theorem 2.3

Let A€IRnxn be positive definite with eigenvalues~ ~ ... ~An

and 1 et e > 1 be a constant. If X€IR n is a random vector from the
n T uniform distribution on the unit sphere {l€IR l l = 1} then the

inequality

holds with probability at least 1 - 0.8 e - ~ n ~ . 0

From this result we deduce

28.

Theorem 2.4

L t A_m nxn b . 1 t . e tJI' e a nons1ngu ar ma r1x. Let e and x be as described

in Theorem 2.3. Then the inequality

(2.2.6)

holds with probability at least 1 - 0.8 e- 1 n~.

Proof

Apply Theorem 2.3 to the positive definite matrix (AAT)- 1. 0

Vectors x from the above distribution can be generated from the

formula

xi:= Y;fil x.Ji2'

where y1, ... ,yn are independent N(0,1) distributed random variables [7].

For this particular distribution, Theorem 2.4 places Fact 2.1 on a

sound theoretical footing. For example, if n = 100 and e = 800 then,

under the assumptions of Theorem 2.4, the inequality (2.2.6) holds with

probability at least .99.

2.3 The LINPACK Condition Estimator

LINPACK is a collection of FORTRAN subroutines which perform many

of the tasks associated with linear equations, such as matrix factoris­

ation and solution of a linear system. The LINPACK project took place

at the Argonne National Laboratory and three American universities over

a period of three years beginning in 1976. During this period the

LINPACK condition estimation technique was developed. Most of the

LINPACK routines incorporate a condition estimator.

29.

The code DECOMP in [11] contains a preliminary version of the

LINPACK condition estimator. The theory behind the LINPACK condition

estimation algorithm is described in [5] and the practical details con­

cerning the implementation of the algorithm are to be found in [8].

Here we summarise the main features of the algorithm.

The LINPACK condition estimation algorithm consists of three steps:

(1) choose a vector e such that 1 1 ~ 1 I is large relative to 11 ~ 1 I '

where AT~=~;

(2)

(3)

solve Ay_ = ~;
I Il l I

estimate cond(A) ~ 11 Al I ~ cond(A).
11 ~1 I

Step (1) corresponds to the idea mentioned at the end of section 2.1.

Step (2) produces a vector l satisfying l = (ATA)- 1 ~, sol is the

result of one step of inverse iteration with matrix ATA and starting

vector e. The reason for this two-stage process becomes apparent

when the two equations are analysed in terms of the singular value

decomposition (2.2.1) of A.

Let e =: \a. Then

x = U Tr. -1a (2.3.1)

and
-2

l = Vr. a. (2.3.2)

Step (1) requires for its success that the component of ~ corresponding

to at least one "small" right singular vector v. be of reasonable size
- 1

(cf. section 2.2). If this condition is satisfied then x will have a

substantial component in at least one "small" left singular ~i and,

clearly,~ will be richer in the desired "small" singular vectors

than is e. Therefore, one would expect to find I Il l 1 2 1 1I ~\1 2 ~

30.

I 1 ~11 2 1 11 ~11 2 • The process could be continued by repeating steps (1) and

(2) in typical inverse iteration fashion. While 1 converqence 1 would be

guaranteed, the extra steps could be rather expensive and two steps are

usually sufficient to provide a good order of magnitude estimate of

11 A- 111 .

The above analysis is geared to the i 2 norm and shows that under

suitable assumptions on~' I l x. 11 21 11 ~11 2 ~ I IA- 111 2. By Lemma 1.2

and the corresponding result for vector norms it follows that
-1

I Ix.I I p/ l l ~ l Ip ~ 11 A 11 P for P = 1,00
•

From (2.3.1),

11 ~ 1 I ~
n

= I
i = 1

Also, by (2.3.2),

11 ~11 ~ = iL (~)
2

~
therefore

which can be written

I Ix. I I 2 -1
-- ~ cos(v ,e) ll A 11 2 11 ~ 11 2 --11 -

where cos(~,~)
v Te

. - --11 - is the cosine of the angle between the vectors
I \e l I

result, 2given by Cline, Conn and Van Loan [4], reinforces v and e. This
--fl -

our observation above that the two-stage algorithm is bound to generate

large growth in stage (2) if e is not too deficient in ~-

31.

We now describe step (1) of the algorithm. The algorithm assumes

that the factorisation

PA = LU

. · 1 bl Th AT . . 1 is ava1 a e. us x = e is equ1va ent to

T u ~ = ~,

Solution of (2.3.4) can be accomplishedby

For k .- 2 to n

~k : =

For . - 2 to n-1

z .. - (e. - p.)/u ..
l l l 11

For k := i + 1 to n

l pk := pk + "ik*'i

The strategy devised by Cline et al. [5] is to attempt to maximise

(2.3.3)

(2.3.4)

(2.3.5)

I ~ 111 (the UNPACK condition estimator uses the i 1 norm) by choosing

32.

ei = ± in the following way:

At the i th stage, z1,z2, ... zi_ 1 have been determined and ei is

to be chosen. The two possible choices of ei lead to, in obvious

notation, z:: = (1 - p.)/u . . , z:: = (- 1 - p.)/u . . ,
l l 11 l l 11

+ + - -
Pk : =Pk+ uik*Zi and pk : = pk+ uik*Zi' k = i+1, ... n.

e. is chosen as + 1 if
l

n n
I 1 - P· I + l I P~ I > I- 1 - P·I + l l pk l

l k=i+1 l k=i+1
and - 1 otherwise.

Once z is determined, (2.3.5) is solved and the algorithm continued from

step (2).

The original intention was that 11 ~ 11 1 1 11 ~ 11 1 be large, but the

choice of~ ostensibly makes 11 ~ 11 1 1 11 ~11 1 large. Indeed e is in­

dependent of L, so there is the possibility that any growth generated

in (2.3.4) will be · Vitiated during the solution of (2.3.5). If

partial pivoting is used in the computation of (2.3.3) then ltij l ~ 1

for all i > j. This implies [17, p. 14] that I ILi 11 ~ n and

11
-1 I I n-1 L 1 ~ 2 so

and thus the use of partial pivoting in the LU factorisation of A

places a reasonable restriction on the amount by which 11 ~ 11 1 can be

smaller than 11 ~ 11 1 •

A more serious shortcoming of the above strategy is that it is

possible for most of the information about A to be contained in L rather

than U, for example if U = I and L has a non-trivial lower triangular

33.

part. In this case there is no special reason for expecting 11 ~ 1 I / I l ~ l I

to be large when 11 A- 111 is large, since L is not taken into account

when choosing ~· We give a counter-sample to the LINPACK condition

estimator, based on this observation, below.

The quantity

is not the only estimate of 11 A- 111 1 available from the algorithm. As

noted by O'Leary [23] another estimate of I IA- 111 1 is available from

step (1), namely

11 ~ 1 loo

11 ~ 1100

-1
ll ~lloo~ ll A 11 1·

Experimental tests in [23] show that v1 is often a sharper estimate of
-1 I IA I I 1 than µ1, the quantity used inthe LINPACK estimate of cond1(A),

especially for small n.

For AEIRnxn equality in (2.1.6) is attained for the !l norm when 00

the components of~ are± 1, the signs agreeing with the corresponding

signs in the row of A- 1 with the largest row-sum. Therefore the

strategy of Cline et al. [5] can be interpreted as trying to choose the
ll x lloo -T -1

vector e so that - = ll A 11 00 = ll A 11 1. This choice of ei := ± 1
11 ~ 1100

is the natural one if it is required that v1 be a good estimate of
-1 I IA I 11• We note there is no evidence in [5] that the choice ei :=

± 1 was made for this reason. Clearly, v1 = I IA- 111 1 is quite likely

for small n - this behaviour is observed empirically by O'Leary [23].

Another observation is that the th component of x is

n
Xi = l

j =1
b .. e.

lJ J

n
= l ± biJ.'

j=1

34.

-T where B := A • Hence xi is a sum of plus or minus the elements in the
-1 i th column of A . If e is such that v1 is exact then the k th column

-1
of A has the largest 1 1 norm, where jxk j = I 1! 1 j

00
• It seems reasonable

to expect that, in general, jxk j =I 1! 1 J
00

implies that the k th column

of A- 1 has a large 11 norm. This led us to consider the possibility of

adding a fourth stage to the algorithm: (4) solve A~ = ~ where

I xk l = 11 ! 11
00

and compute y 1 : = I 1 ~ 11 1 .

We performed a small number of numerical tests using random matrices with

elements uniformly distributed on [- 1,1], and n ~ 30. The estimate

y 1 was frequently exact and was in every case better than v1 and µ1•

However, y 1 fails on the first counter-example described in the next

section. Thus in view of the generally satisfactory performance of the

LINPACK condition estimator we do not propose that it be modified by the

inclusion of y 1.

Cline, Conn and Van Loan [4] describe a generalisation of the

UNPACK algorithm which incorporates a 11 look-behind 11 technique. Whereas

the LINPACK algorithm holds each ei fixed once it has been assigned

a value, the look-behind algorithm allows for the possibility of modifying

previously chosen eis. At the i th stage the look-behind algorithm

maximises a function which includes a contribution from each equation,

not only equations i to n as does the LINPACK algorithm. We refer the

reader to [4] for further details of the 12 and 11 look-behind

a 1 gorithms.

35.

Cost

The LINPACK condition estimator requires O(n 2) flops given the

factorisation (2.3.3). Thus it satisfies the requirement of being "cheap"

relative to the LU factorisation. However, this comparison is only

valid when n is large. For small n, the constants in the order quantities

play an important role. Cline [3] states that the LINPACK condition

estimator requires up to 3n2 multiplications and 5n2 additions (the

precise number depends on thee. = ± 1 decisions), evaluation of 2n2
l

absolute values and possibly an additional 4n2 multiplications for the

scaling operations (to avoid overflow in the computation of what are

potentially very large numbers). The total number of operations can thus

be as high as 14n2,which is comparable to the 2n3/3 additions and

multiplications required for the factorisation for n ~ 21. For n < 20,

say, the overhead involved in computing the condition estimate is non­

negligible - indeed it may be cheaper to compute A- 1 than to compute the

condition estimate!

The ~2 look-behind algorithm, when applied to a triangular matrix,

requires 0(5n2) flops. Again, this is non-negligible compared to the

cost of an LU factorisation, for small n.

2.4 Reliability

The principal requirement of a condition estimator is that it

should be reliable, in the sense of (2.1.3). A reliable condition

estimator will always detect the presence of il~conditioning. To date,

neither the LINPACK condition estimator nor the look-behind estimator

has been proved reliable (in fact the former has been proved unreliable,

as indicated below). Each of these estimators produces a lower bound

for the condition number which, since it is not known to be reliable,

36.

can only signal the presence of ill-conditioning; the lower bound

cannot verify well-conditioning of the matrix.

To verify well-conditioning, an upper bound for the condition

number is required. Some techniques for computing a cheap upper bound

for cond(A) are described in [17]. As noted in [17], a pair of bounds

for the condition number, consisting of a lower bound a and an upper

bounds, carries a built-in reliability test: if S/a ~ 1 then each

bound must be a good approximation to the condition number.

We now describe two counter-examples to the LINPACK condition

estimator. The first counter-example is the matrix A:= TT diag (-1,

-1, ... ,-1,1) where Tis defined in (1.3.3). These factors of A are

the LU factors produced by Gaussian elimination with partial pivoting.

It is straightforward to show that v1 = 1 and µ1 = 1 whilst

11 A-1 11 1 -- 2n-1 . Surprisingly, this example is given in [5], yet it is

not explicitly identified as a counter-example.

The second, less trivial, counter-example is the following matrix

devised by Cline [3]:

A .-

=

1 0 0 0

0 0 0

0 1 0

0 0 0 1

1 -1 -2k 0

0 k -k

1 -1 -2k 0

0

0 0

k -k

-1

0 0 0 k

0 k+1 -(k+1)

0 0 0 k

37.

Cond1(A) = 8k2
+ 6k + 1 and the estimate produced by the LINPACK estimator

is 5.6 k + 5.56 + 0 (1/k). As k + 00 the underestimation factor becomes

arbitrarily large.

In spite of these counter-examples, the LINPACK condition estimator

performs very reliably in practice. Many thousands of tests have been

performed using random matrices of order up to 50, with elements coming

from various distributions; the condition number estimates have rarely

been more than 10 times smaller than the true condition number [3],

[5], [8], [23], [28]. It seems safe to say that the LINPACK condition

estimates can be used with a high degree of confidence. If reliability

is the overriding concern, one could always go to the trouble of

inverting A and taking the norm, or one could use a decomposition such

as the QR decomposition with column pivoting from which more reliable

condition estimates may be computed [17].

38.

Chapter 3. Efficient Algorithms for Computing the Condition Number of a

Tridiagonal Matrix

3.1 Operation Counts

Tridiagonal matrices

a1 c1 o
b2 a2 c2

A .-
b3 a3

£ lR nxn (3.l.l)

0

arise in many areas of numerical analysis such as spline analysis [6, p.

133] ~ difference methods for boundary value problems [lO] and the

numerical solution of linear second order recurrence relations [2, p.

14 ff.]. Since the nonzero elements of A occur only within a band of

width three, efficient methods are available for the solution of the

system A~ = ~-

For a tridiagonal matrix, the standard linear algebra processes and

their operation counts are as follows, where M, A and D denote one

floating-point multiplication, addition or subtraction and division

operation respectively:

(i) LU factorisation by Gaussian elimination without pivoting,

A = LU. (3.1.2)

39.

Cost: (n - l) (M + A + O).

(ii) S l . f A o ut1on o ~=~using the factorisation computed in (i).

Cost: 2(n - l) (M +A)+ nO.

(iii) Inversion of A using (3.1.2) to compute the columns of the inverse.

Cost: ~2 (M +A)+ O(n) (M +A+ 0).
2

(iv) LU factorisation by Gaussian elimination with partial pivoting,

PA = LU. (3.l.3)

Cost: (2n - 3)M + (n - l)A + (n - 1)0.

(v) Solution of A~=~ using the factorisation computed in (iv).

Cost: (3n - 4)(M +A) + nO.

(vi) Inversion of A using (3.1.3) to compute the columns of the inverse.

Cost: ~2 (M +A) + O(n) (M +A+ 0).

Since A is tridiagonal, the factors Land U in (3.1.2) are unit

lower bidiagonal and upper bidiagonal respectively.

The partial pivoting strategy in (3.1.3) has the effect of changing

the form of the triangular factors: U is upper triangular with uij = 0

for j > i + 2 and L is lower triangular with at most two nonzero elements

in each column. For n = 5, if the natural pivot is chosen at the first

two stages and the partial pivot at each subsequent stage, L and U have

the forms

40.

x x
x l x x

L = u = ,
x x x

x x
x x x l x

where X denotes a potentially nonzero element and unmarked elements are

zero. We note that the operation counts for (iv), (v) and (vi) above are

dependent on the number of row interchanges performed during the elimination.

The numbers quoted correspond to the worst case of an interchange at each

stage.

The main feature of the operation counts for a tridiagonal matrix

is that, in contrast to the situation for a full matrix, the processes

of LU factorisation and solution of A!5._ = Q_ using this factorisation are

essentially equal in cost, requiring O(n) flops, whereas computation of

the inverse is an order of magnitude more expensive. The inverse of a

tridiagonal matrix is a full matrix in general and is rarely required;

thus, for economy of both storage and floating-point operations, it is

imperative that a condition estimation or computation algorithm for tri­

diagonal matrices does not require explicit computation of the inverse.

In view of the operation counts an obvious requirement is that such an

algorithm should use only O(n) flops.

To conclude this section we derive the recurrence relations which

determine the factors Land U in (3.1.2). These are used in section 3.3.

It is easily seen that the superdiagonal of A passes unchanged into U.

Writing

0 u1 cl 0

.Q,2 u2 C2

i3 1

L .- u .- c n-1
0 .Q, 0 u n n

and equating the (i, i - 1) and (i,i) elements in (3.1.2) gives

b· = l
.Q,. u. 1 l , _

Thus the unknown elements of L and U are given by

b .
- ·- 1 .Q, • , • -- --...---, u . . -,, u. 1 l ,_ a

1
. . - .Q, . c.

1
, i = 2,-3, ... ,n . l ,_

3.2 The Inverse of a Bidiagonal Matrix

41.

(3.l.4)

(3.1.5)

In this section we find in explicit form the inverse of a general

bidiagonal matrix. By utilising the form of the elements of the inverse

we derive an efficient algorithm for computing the condition number of a

bidiagonal matrix.

The i th column, x, of the inverse of the unit lower bidiagonal

matrix Lin (3.1.4) is the solution of L~ = ~i' where ~i is the i th

unit vector. Hence the elements x1,x2, ... ,xn of x are given by

Xr = 0, r < i '

X· = 1 ' ,
Xr = - R- rxr-1' r > i .

42.

Clearly,
r

xr = II (- i s) r >i.
s=i+l

Writing

m.
1 .- - ,Q, .

1 (3.2.1)

it follows that

1 0

(3.2.2)

The nonsingular upper bidiagonal matrix

u1 c1 0

U2 c2

u
U3 IR nxn (3. 2· 3) .- €

c . n-1
0 u n

can be written U = DT where D .- diag (ui) and Tis unit upper bidiagonal.

By comparison with (3.2.2),

43.

0

where the {vi} are given by

(3.2.4)

w, w2v2 w3v3v2 WnVnVn-l···V2

w2 W3V3
u-1 = W3 (3.2.5)

wnvnvn-1

wnvn

0 wn

where

W· - 1
l --· (3.2.6)

u.
l

It is convenient at this point to introduce some notation. If

A~qnxn we define A's comparison matrix, M(A), by

M (A) : = (mij), where m .• =
lJ

I a ii I , i = j ,

(3.2.7)

44.

Al so., if

IAI = IBI iff for 1 < i,j < n.
' '

We observe that each element of U-l in (3.2.5) is of the form

z = a/b, where a and b are products of elements of U. It follows that

jzj, and hence also I ju-l I j00 , is independent of the signs of the elements

of U. In other words,

I u I = IT I imp 1 i es 11 u- 1 1100 = 11r1 11 oo· (3.2.8)

There is one particular distribution of the signs of the elements which

yields a matrix for which the t 00 norm of the inverse is easily calculated.

From (3.2.3) - (3.2.6) it is clear that M(U)-1 has nonnegative elements,

which we write as M(U}-l ~ 0. Also, IM(U)I = IU I so by (3.2.8),

llM(U)-
1

11 00 = llU-1 jj 00 . An observation which has appeared many times in

the literature is that if A- 1 ~ 0 then

-1 -1 llA ll oo = llA ~ll oo ' (3.2.9)

where e := (1,1, ... ,l)T. Thus for the matrix U in (3.2.3),

(3.2.10)

Hence, in order to calculate I IU-l 11 00 for an upper bidiagonal matrix u it

is only necessary to solve one bidiagonal linear system and then evaluate

the i norm of the solution vector. This process costs O(n) flops - a 00
significant reduction on the O(n2) flops required to compute the inverse

and then take the norm.

45.

Since the above applies equally well to a lower bidiagonal matrix

we have the following algorithm:

Algorithm B

Given a nonsingular nxn bidiagonal matrix Bthis algorithm computes

(1)

(2)

Solve M(B)~ = ~·

Compute Y := 11~11 00 •

Cost: (n - 1) (M +A)+ nD + (3n - 1) ABS,

where ABS denotes an absolute value computation.

It is possible to compute a reliable estimate of the smallest

singular value of B, an' in 0(4n) flops. For by applying Algorithm B

to the matrices Band BT, the quantity ~ := (I IB- 1 !1 1 I IB- 1 l l 00f~ may

be computed, and by (2.1.4)

~l~ a < a < an.
In n'

(3.2.11)

The Golub-Reinsch SVD algorithm [13] reduces A£1R mxn to upper

bidiagonal form B before applying an iterative process to compute the
A

singular values. The estimate a~ an(B) = an(A) can be computed cheaply

at the end of the reduction to bidiagonal form and may obviate the need

for the second stage if only a (A) is of interest and I n is an acceptable
n

uncertainty factor.

46.

3.3 An Algorithm Based on the LU Factorisation

Assume that for the nonsingular tridiagonal matrix A in (3.1.1) the

LU factorisation (3.1.2) exists, that is to say each principal mjnor

of A is nonzero. Then A-l = u- 1L-1 is the product of two matrices of the

special forms (3.2.5) and (3.2.2). As the next theorem shows, A-l

itself has a special form. The following definition is required.

Definition 3. 1

The tridiagonal matrix A in (3.1. 1) is irreducible if b2,b3, ... ,bn

and c1,c2, ... cn-l are all nonzero; otherwise A is reducible. t:J

We remark that this definition is consistent with the more usual

definition of irreducibility which states that a general square matrix

A is irreducible if there does not exist a permutation matrix P such

that

PTAP =

where A1 and A3 are square matrices. For a proof see [24, p. 104].

Theorem 3.2

Let the tridiagonal matrix A in (3.1. 1) be nonsingular and irred­

ucible and suppose that A has an LU factorisation. Then there exist

nonzero vectors~,~, Q. and .9. such that A- 1 := (a ij) is given by

x.
l Y·

J
j~i,

a · . = (3.3.1)
lJ

p.
l

q .
J

i3j.

47.

Proof

Land U are given by (3.1.4) and (3.1.5). The fact that none of

the {bi } or {ci } vanishes implies that for all i, t i I 0, mi I 0,

vi IO and wi I 0, by (3 . 1.5) , (3.2.1), (3.2 .4) and (3.2.6) .

Consider the identity A-l = u-ll-l, with u-l := (Sij) given by

(3.2.5) and L-l := (Yij) given by (3.2.2). Choosing x1 := 1 and
n

y. := l
J k . =J

Slk Ykj• j = 1,2, ... ,n, then a lj = XlYjs j = 1,2, ... ,n.

claim that the {xi } defined by

We

xi : = xi_ 1 Iv i , i = 2, ... , n (3.3.2)

satisfy the remaining conditions in (3.3.1) for j ~ i. We prove this by

induction.

Clearly, xi I 0 for all i. Suppose

a ij = xiyj for i ~ rand j ? i.

It suffices to show that

x
r+l

= vr+l a for j > r.
r+l,j

Fork > r it is clear from (3.2.5) that Srk = vr+l Sr+l,k' so for j > r

as required.

n

= l 8rk ykJ" = k=j

n

vr+l k~j 8r+l ,k Ykj = vr+l ar+l,j

48.

This establishes the first part of (3.3.1). The second part (i ~ j)

follows immediately from the first part applied to AT, which is again tri­

diagonal and satisfies all the required conditions. o

Theorem 3.2 shows that the upper half of A-l is identical to the

upper half of one rank-one matrix, ~x_T, and the lower half of A-l is

identical to the lower half of a second rank-one matrix, £..9.T· Suppose

~· z, £.and .9. have been computed. Formation of each element a;j of A-l

explicitly, using (3.3.1) , requires O(n2) multiplications. However,

I IA- 1
1 ll or 1 IA-1

1 1
00

can be evaluated without forming all the products in

(3.3.1) at a cost of only O(n) multiplications:

Algorithm Norm

Given~· l_, £.and .9. in (3 . 3.1) this algorithm computes y = I IA-l I loo ·

For i . - n - 1 to 1 step -1

L 5 i .- 5 i+l + JY; I

For i . - 2 to n

L t; . - t; -1 + I qi I

For i : = 2 to n - 1

LY := max (y , IP; l*ti'."l + Ix; l*s;).

Cost: (2n - 2)M + (3n - 4)A + (4n - 2)ABS.

49.

We now show that the vectors ~· y_, Q and .9_ can be computed in O(n)

operations given the LU factorisation of A. Taking x1 := l, (3.3.2) shows

that the remaining {xi} can be computed at a cost of n - l divisions.

Because x1 = l, the first row of A-l is y_T, by (3.3.l). Hence ~J A-l =

y_T, that is

T
A y_ = ~l.

By Solving this linear system, y_ is obtained in O(n) operations. The

vectors Q and .9_ satisfy relations similar to those satisfied by~ and

y_. It is easily verified that if q1 := 1,

i = 2, ... ,n.

Furthermore, Pis the first column of A- 1, so

A£.= ~l·

These reJations yield the following algorithm:

Algorithm Vector

Given the LU factors of A in (3.1.4) this algorithm computes the

vectors~· y_, £.and .9.. in (3.3.l).

(l)

For i .­

~i :=

2 to n

- X· l*U· l/C· l" ,_ ,_ ,_

(2)

(3)

Solve ATy_ = ~l·

ql : = l

For i .- 2 to n

L q; .- - q;-1/ti .

(4) Solve Ap = ~1 .

Cost: (5n - 5)M + (2n - 2)A + (4n - 2)0.

50.

Combining Algorithms Norm and Vector we obtain our first algorithm

for computing 11 A- 111 00 ·

Algorithm l

Given a nonsingular nxn irreducible tridiagonal matrix A of the form

(3.1.1) and possessing an LU factorisation, this algorithm computes

llA-1
1100·

(1) Compute the LU factors according to (3.1.5).

(2) Apply Algorithm Vector.

(3) Apply Algorithm Norm.

Cost: (8n - 8)M + (6n - 7)A + (5n - 3)0 + (4n - 2)ABS.

Algorithm l imposes two serious restrictions on the matrix A,

that i t be irreducible and have an LU factorisation. The latter condition

is vital to the proof of Theorem 3.2 and hence to Algorithm 1. Nevertheless,

as shown in the next section, Theorem 3.2 remains true if the LU assump­

tion is removed. Algorithms 2 and 3 below do not require the existence

of the LU factorisation. What to do if A is reducible is described in

section 3.7.

51.

3.4 The Inverse of a Tridiagonal Matrix

The next theorem generalises Theorem 3.2 and describes the form of

the inverse of a general tridiagonal matrix. The first part of the theorem

is the same as Theorem 2 of Ikebe [19] and, for the case A symmetric, is

proved by Bukhberger and Emel 'yanenko [l] and stated without proof by

Graybill [14, p. 179].

Theorem 3.3

Let the tridiagonal matrix A in (3.1.1) be nonsingular.

(1) If A is irreducible and A-l . - (aij) then there are nonzero vectors

x, y_, ..e. and .9. such that

Ix. y
j ~ i' 1 J

a·. = (3.4.1) lJ

Pi q· i ~ j. J

(2) If A is reducible then

(a) if ci = 0, so that

A1 0

A = (3.4.2)

lR i xi where A1£ and

Bl A2

A lR (n-i)x(n-i)
2£ are

A -l 0
1

x

tridiagonal, then

where XElR (n-i)xi is a rank-one matrix, and the theorem applies recursively

Proof

(b) if b. = 0, part (a) applies to AT.
1

(l) : Let A- l

cl 0

a2 C2

p.
J

.- b3 a3 c3

0 b · a. c.
J J J

52.

R
jxj

E

and let a(j) be the vector composed of the first j elements in the first

column of A. Equating the j th columns in the identity AA-l = I gives

a .
nJ

the first j-1 equations of which can be written

N • a(j-l) p 0
~ l J - + j-1 a2j = ·

a . .
JJ

The irreducibility of A implies that the lower triangular matrix P. 1 J-

is nonsingular, so

53.

= p- l a (j- l) .
- a ij j-1 (3.4.3)

a . .
JJ

Since Pj-l is lower triangular, Pj!1 is the leading principal sub­

matrix of order j-1 of P~~l. Hence Pj~ 1 a(j-1) is the same vector as that

formed by the first j -1 elements of P~~l a(n-l). It follows from (3.4.3)

()T p-1 a(n-1) . that we can take Yj := a1j for all j and Xl := l, X2' ... ,xn : = - n-1

The vectors E. and g_ are obtained by applying the above to AT.

(2): If ci = 0 then A is clearly of the form (3.4.2) and 0 ! det(A) =

det(A1) det(A2), so A1 and A2 are nonsingular. It is easily verified

that X = - A21B1A1 1 B1 has only one nonzero element, bi+l in its (l,i)

position, so B1 is of rank one. Hence X is of rank one. o

Remarks

(l) Our proof of the first part of Theorem 3.3 follows that of Ikebe 1 s

Theorem l. The latter theorem applies to Hessenberg matrices. Note that

we only need A to be lower Hessenberg with nonzero superdiagonal elements

in order to produce~ and y_ in (3.4.1).

(2) The presence of zeros on the subdiagonal or superdiagonal does not

greatly complicate the form of the inverse. The inverse simply consists

of diagonal blocks possessing the form (3.4.1) together with off-diagonal

blocks which have either rank one or rank zero. The following example

should make this clear.

54.

2 I -1 0
- - - - - - - - - -

0 I 2 -1

I -1 2 -1
8x8

A .- -1 2 -1 £~

-1 2 -1 I

-1 2 I 0
- - - - -

-1 I 2 -1
I

0 I
I

I
-1 2

1 I 5 1 1 I 0 0
2 I 12 3 4 6 12 I

- - - - - - - - - - -

I 5 2 I 0 0 0
I 6 3 2 3 6

I

0 1 2 4 2 1 0 0 -1 -

A = 3 3 3 3
I
I 3 o , 0 0

2 2 2

0 I
1 2 4 2 0 0

3 3 3 3

0 I 2 5 0 0

I 6 3 2 3 6

- - I - - - -

0 2 1 4 5 2
I

I -

9 9 3 9 9 3 3

0 1 1 1 2 5 I l 2

I 18 9 6 9 18 I
I 3 3

Ikebe [19] gives an algorithm, which we now describe, for computing

the vectors~ and y_ in (3.4.1). The algorithm requires that A be

irreducible and is based on the observations that A Yn x = e (from the - _,,
last column in AA-l =I) and x1 y_TA = ~lT (from the first row of A-1A =I).

55.

These relations are the same as

Ax = y-l - n ~ (3.4.4)

and

AT,l. = -1
xl ~1 · (3.4.5)

~and ,l'.'._ in (3.4 . 1) are unique up to a nonzero scale factor so any nonzero

element of either vector can be assigned an arbitrary nonzero value. As

in section 3.3 we choose x1 := 1 (clearly x1 f:. 0). Then the first n-1

equations in (3.4.4) become a nonsingular lower triangular system of

equations for the unknowns x2, ... ,xn· Then th equation in (3.4.4)

determines Yn and the last n-1 equations in (3.4.5) form an upper tri­

angular system of equations for the unknowns Yn_ 1, ... ,y1. The first

equation in (3.4.5) is redundant and could be used as a check. The

vectors ..e_ and g_ in (3.4.1) are obtained in a similar way, using AT in

place of A.

We thus have a second algorithm for computing I IA-l I 1
00

•

Algorithm 2

Given the nonsingular nxn irreducible tridiagonal matrix A in (3.1.1)

this algorithm computes

(1)

For i . - 3 to n

~xi := - (•i-l*Xi-1 + bi-l*Xi-2)/ci-l

Yn := l/{bn*Xn-1 + an*Xn)

Yn-1 : = - an*Yn/cn-1

56.

For i . - n-2 to 1 step -1

LY; := - (•;+1.Yi+l + b;+2.Y;+2l/c;

check).

(2) Repeat (1) with xi' yi' bi and ci replaced by qi' pi, ci-l and bi+l

respectively.

(3) Apply Algorithm Norm.

Cost: (lOn - 12)M + (7n - lO)A + (4n - 2)0 + (4n - 2)ABS.

We note that equations (3.4.4) and (3.4.5) provide another derivation

of Algorithm Vector. For if A= LU, (3.4.4) implies

-1 1 1 Ux = y L- e = y- e
- n -=n n -n· (3.4.6)

On setting x1 := 1, the first n-1 equations in (3.4.6) may be solved for

x2, ... ,xn, the required operations being precisely those of the first

loop in Algorithm Vector.

Algorithms 1 and 2 are not equivalent however, for, as confirmed by

the operation counts, they do not perform the same arithmetical operations.

3.5 Utilising Symmetry

Any irreducible tridiagonal matrix is a row scaling of a symmetrict

tridiagonal matrix. Specifically, if A in (3.1.1) is irreducible and

D .- diag(di) ... ' cl c2 cn-1) --···--
b2 b3 bn

then T .- DA is symmetric tand tridiagonal. Assuming that A is nonsingular,

tirreducible

-1 -1
we have A = T D.

-1
The vectors x and y_ such that T

x. y. j :;:. i' l J

s .. = lJ

Y· l X·
J

i ~ j'

57.

: = (8 ..) with
lJ

(3.5. l)

can be computed by forming T = DA, at a cost of 0(3n)M + O(n)D, and

applying to the matrix T a version of Algorithm 2 adapted to take

advantage of symmetry (see below). However, it is possible to calculate

~and y_ in (3.5. 1) without ever forming T explicitly.

Consider Algorithm 2 applied to T = DA. Equations (3.4.4) and

(3.4.5) become

-1
DA~= Yn ~ (3.5.2)

and

(DA)T y_ = -1
xl ~1 · (3.5.3)

We rewrite (3.5.2) as

(3.5.4)

This rearrangement restricts D to an appearance in just one of the n

equations. Choosing x1 := l as usual, x2, ... ,xn are determined from the

first n-1 equations in (3.5.4), as in Algorithm 2. The last equation in

(3.5.4) gives

(3.5.5)

D is removed completely from (3.5.3) by utilising the symmetry of T to

replace (DA)T by DA, yielding

-1 -1
Ay_ = x l d 1 ~ l = ~ l . (3.5.6)

58.

There is a simple, direct way of solving (3.5.6) which takes

advantage of the special nature of the right-hand side and the knowledge

that Yn ~ 0 (from (3.5.1). A scalar multiple of the true solution

vector is computed by setting zn := 1 and solving the last n-1 equations

in (3.5.6) for zn_ 1, ••• ,z1. By construction A!:_= e ~1 , where e : =

a1z1 + c1z2, soy_ := ~ !:.. is the solution of (3.5.6) (e ~ 0 since A is

nonsingular). Note that we have not used (3.5.5) - this could be used

as a check.

The advantage of the algorithm described here for the computation

of x and y_ is that it has no explicit dependence on the matrix D.

Since A- 1 = T- 1o it is cheaper to evaluate I IA- 111 1 than to

evaluate I IA- 1I1
00

, given~ and y_ in (3.5.1). The next algorithm computes

I IA- 1ii 1 and incorporates a modified version of Algorithm Norm.

Algorithm 3

Given the nonsingular nxn irreducible tridiagonal matrix A in (3.1. 1)

this algorithm computes y = I IA- 1I1 1.

(1)

For i . - 3 to n

~i . - - (a . 1*x · 1 + b. 1*x . 2)/c . 1· 1- 1- 1- 1- 1-

(2)

For i . - n-2 to 1 step -1

~i := - (a. 1*z . 1 + c. 1*z. 2)/b. 1 l+ l+ l+ l+ l+

(3) For .- 1 to n

x .. - Ix. J
l l

For i .- n-1 to 1 step -1

Lsi .-

For i . -.-

~i . -

d1 .-

s . 1 l+
+ z .

l

2 to n

t. 1 + x. ,_
l

y .- s1

For j := 2 to n

d. : = d . 1 *C . 1 /b ·
J J- J- J

Y := y/ Jel .

Cost: (8n - 10)M + (5n - 6)A + (3n - 2)0 + 3n ABS.

59.

Algorithm 3 is based on a representation of A- 1 which is the same

as that specified by Theorem 2 of Yamamoto and Ikebe [35]. Indeed the

recurrence relations in steps (1) and (2) of Algorithm 3 are identical

to equations (5) and (6) in [35] provided that the arbitrary parameters

60.

h
1

, a
1

and H2 therein are each chosen to be 1. (Note that our notation

(3.1.1) differs from that in [35].)

If A is symmetric then D = diag (.~ c~~ 1) = I. If this is
J=2 J

accounted for in Algorithm 3, the operation count is reduced. Com-

putational savings can also be made in Algorithms 1 and 2 if A is

symmetric since~= _g_ and _Q = y_ in (3.3.1) and (3.4.1).

In the following table we summarise the operation counts for

Algorithms 1, 2 and 3. The 0(1) terms have been omitted.

Nonsymmetric A Symmetric A

Operations M A D ABS M A D ABS

x n

Algorithm 1 8 6 5 4 5 5 3 2 (3.5.7)

Algorithm 2 10 7 4 4 6 5 2 2

Algorithm 3 8 5 3 3 6 5 2 2

For nonsymmetric tridiagonal matrices A Algorithm 3 is the most

efficient and it is the easiest of the three algorithms to "code up".

If I IA- 1
11

00
is required, Algorithm 3 should be applied to AT.

There is a potential saving with Algorithm 1; cond(A) is most

l ikely to be required in connection with solving a linear system and

in this case the LU factorisation of A (without pivoting) may already

be available. If this is so, the operation count for Algorithm 1 is

reduced by O(n)(M +A+ D). Note that it is the factorisation (3.1.2)

which is required by Algorithm 1. An algorithm which uses the partial

61.

pivoting factorisation (3.1.3) is described in section 3.8. The tri­

diagonal matrices which arise in spline analysis and difference methods

for boundary value problems are frequently diagonally dominant [29,

pp. 99-101], [24, p. 96 ff.]; for these matrices it is not recessary

to use pivoting in Gaussian elimination [33, p 288].

When the matrix A is symmetric there is little to choose between

Algorithms 1, 2 and 3. If A is positive definite, the method of the

next section is to be preferred.

3.6 Positive Definiteness

Let

a1 b2 0

b2 a2 b3

A
b3 a3 £IR nxn -

b n
0 b a n n

be a positive definite tridiagonal matrix with, necessarily,

a. > 0 for all i.
l

(3.6.1)

(3.6.2)

Such matrices occur quite frequently in, for example, spline analysis

[6, p. 134] and difference methods for boundary value problems [29,

p. 504]. In this section we derive a method for computing I IA-1
11

00
,

for A given by (3.6.1), which is more efficient than the symmetric

versions of Algorithms 1, 2 and 3.

62 .

We begin by showing that there is a matrix D . - diag(d.), d . = ± 1,
l l

such that

M (A) = W • - DAD, (3.6.3)

where M(A) is the comparison matrix defined in (3.2.7). From (3.6.3),

and

Let d1 .-

W • • = a . l l l = 1,2, ... ,n

w . . 1 = d. b. 1 d . 1
l~l+ l l+ l+ i = 1,2, ... ,n-1.

1 and d . 1 l+ .- - sgn(dibi+1), i = 1,2, .•. ,n-1, where

sgn(x) =(
1

(-1
x) 0'

x < 0.

Wis evidently tridiagonal and symmetric, w . . = a. = la1. I (using (3.6.2)), l l l

lw. · 11 = lb. 11 and w . . 1 ... < 0. Hence W = M(A). 1,1+ l+ 1,1+ ~

A is positive definite and hence has a Choleski factorisatio n

A = LLT,

where

£1

m2 £2

L
m3 £3 . -

0 mn

with £. > 0 for all i. We claim that
1

(3.6.4)

0

i n

63.

M(A) = M(L)M(L)T. (3.6.5)

2 2 This is proved by noting, first, that (3.6.4) implies ai =mi + £i

and bi+1 = £i mi+1. Then, writing H := M(L)M(L)T,

and

h ..
11

Hence H = M(A) as required.

I a· I 1

Note that M(A) is positive definite, by (3.6.5). In fact, the

positive definiteness of A is independent of the signs of the off-diagonal

elements {bi }.

-1
From section 3.2, M(L) ~ 0, therefore

M(A)- 1 M(L)-T M(L)- 1 ~ 0. (3.6.6)

The final result we require is

() - 1 I A- 1 I ' M A = (3.6.7)

which is a consequence of (3.6.3).

It follows from (3.6.6) and (3.6.7) that if A is a positive

definite tridiagonal matrix,

As in the bidiagonal matrix case, computation of the £
00

norm of the

64.

inverse reduces to solution of a linear system involving the comparison

matrix. Thus we have

Algorithm 4

Given the nonsingular nxn positive definite tridiagonal matrix A

in (3.6.1) this algorithm computes y = I IA- 111
00

•

(1)

(2)

Solve M(A)~ = ~·

Compute Y := I l ~ l 100 •

Cost: (3n - 3)(M +A) + (2n - 1)0 + (2n - 1)ABS.

Step (1) of Algorithm 4 requires solution of a linear system whose

coefficient matrix is tridiagonal and positive definite. This can be

done by computing some factorisation of the coefficient matrix (since

this is positive definite, pivoting is not necessary) and forward and

back substituting. There is a choice of factorisations. Compared to

the standard LU factorisation, the Choleski factorisation (3.6.4) offers

no advantages in this context for symmetry confers no computational

savings, the factorisation requires n square roots and the ensuing

substitution phase requires an extra n divisions. Therefore it is

preferable to use the LU factorisation, or the LDLT factorisation, where

1 0

L .- D .- diag(di).

0

The operation count given for Algorithm 4 assumes the use of one of

these factorisations in step (1). The LU and LDLT factorisations are

65.

related by U = DLT, so U and D have the same diagonal elements. It

follows from (3.1.5) that the LDLT factors of A in (3.6.1) are generated

by

b.
n •- _l_ d n b)(, .. -d ' .. -a.)(, ..

l i-1 l l l l
2,3, ..• ,n.

We recommend use of the LDLT factorisation in step (1) of Algorithm 4.

LINPACK [8] has routines SGTSL and SPTSL which solve Ax = b for

general tridiagonal and positive definite tridiagonal matrices A

respectively. Both routines reduce A to some compact form, during the

reduction carrying out the operations in parallel on the right-hand

side b. As we show below, it is possible to "nest" Algorithm 4 inside

the routine SPTSL in such a way that the composite routine computes

cond (A) in addition to solving Ax = b and is computationally more
00

efficient than separate applications of SPTSL and Algorithm 4. Because

SPTSL uses a nonstandard factorisation method which is more complicated

than the LOTT factorisation, we first derive the nesting technique for

the LDLT method.

The Nesting Technique

A key feature which Algorithm 4 does not exploit is that the LDLT

factorisations of A and M(A) are related: by comparison with (3.6.4)

and (3.6.5), if A= LDLT then M(A) = M(L) D M(L)T. Therefore, solution

of M(A)~ =~can be accomplished using the LDLT factorisation of A,

which has to be computed anyway in the course of solving A~ = ~; there

is no need to explicitly factorise M(A). The next algorithm makes use

of this observation, thereby saving 2(n-1) flops.

66.

Algorithm 4/1

Given the nxn (n > 2) positive definite tridiagonal matrix A in

(3.6.1) and the vector .f., this algorithm computes both the solution to

the linear system A~= .f. and y = cond
00

(A). The solution overwrites f.

(1)

For i := 2 to n-1

L µ:=max(µ, lbi l + lai l + lbi+1 1).

(2)

For i . - 2 to n

t . . - b. /d. 1
1 1 ,_

d. . - a. - t .*b.
1 1 1 1

f. - f. - t ·*f . 1 1 1 1
,_

z . - 1 + 1 t · I *Z . 1. 1 1 1-

(3)

For i := n-1 to 1 step -1

f . . - f ./d. .!/,,. 1*f . 1
1 1 1 l+ l+

z .. - z./d. + It . 1 l*Z· 1 1 1 1 l+ l+
A. : = max (A. , z i) .

(4)

Cost: (5n - 4)M + (7n - 7)A + (3n - 1)D + (5n - 5)ABS.

We remark that the vectors t and d have been included for clarity and

67.

are not necessary. 2n storage locations can be saved by overwriting bi

with 1 . and a. with d . •
1 1 1

Ignoring step (1) - which could be optimised (\bi \ is calculated

twice) and incorporated into the loop in step (2) - and ignoring the

absolute value computations, we note that

(1) Algorithm 4/1 uses 8n-6 flops of which only 3n-2 are attributable

to computation of the condition number.

(2) Computation of cond
00

(A) does not introduce any loops over and

above those required for the solution of the linear system. This

is an important feature, since the loop overheads could account for

a significant portion of the execution time of Algorithm 4/1 on a

typical computer [9].

We conclude that on a typical computer, the execution time for a

carefully coded version of Algorithm 4/1 should be about 60 percent

greater than that of an equivalent routine which only solves A~ = ~·

We now show how Algorithm 4 can be nested within the LINPACK

routine SPTSL. First, we describe the nonstandard reduction technique

which this routine uses. The reduction consists of a form of Gaussian

elimination without pivoting in which subdiagonal elements are

eliminated using row operations working from the top and, simultaneously,

superdiagonal elements are eliminated using row operations working from

the bottom. Thus zeros are introduced to the elements (2,1),(n-1,n), (3~2),

(n-2 ~ n-1), ... , in this order, until the two eliminations meet in the

middle. During the reduction the same row operations are applied to the

right-hand side b.

For n = 5 the process is illustrated by

x x
x x x

x x x
x x x

x x

x x
0 x x

x x x
x x 0

x x

x x

0 x x
0 x 0

x x 0

x x

68.

When n is odd, xk+l' where n = 2k + 1, is trivially obtained from the reduced

system by one division, the remaining unknowns being determined in the order

xk, xk+2' xk-1, ... ,xl, xn.

When n is even the above process can be carried out until there is

a 2x2 block left in the middle of the reduced matrix. One extra row

elimination is used to zero the subdiagonal element of this 2x2 block.

For example, for n = 4,

x x
x x x

x x x
x x

x x
0 x x

x x 0

x x

x x
0 x x

0 x 0

x x

The substitution phase is essentially the same as for the case where n is

odd.

The reduction is guarahteed to succeed when A is positive definite,

indeed all the pivots are positive (see Lenvna 3.5).

The motivation for this "two-way" algorithm is that each of its two

loops (one for the reduction phase and one for the substitution phase)

is executed only half as many times as the corresponding loop in a standard

algorithm because the two-way algorithm performs two eliminations or

69.

substitutions on each run through a loop. The LINPACK manual claims that

the two-way algorithm, which is in line with the philosophy of Dongarra

and Hinds [9], can solve positive definite tridiagonal linear systems up

to 25 percent faster than conventional algorithms.

Consider the two-way algorithm applied to the matrix A in (3.6.l).

It is easy to see that during the elimination stage those off-diagonal

elements which are not zeroed are left unchanged and each diagonal element

is affected by only one elimination, except for ap+l if n is odd and

ap+2 if n is even, where

p :: [n;l] ,

these elements being affected by two eliminations. Using a dash to denote

the new transformed element after an elimination step, the equations

describing the elimination are, with al := a1 and a~ .- an,

ai+l := ai+l ---..
a· 1 bi+l j

b .
n-i+ l .- an-i - ---=-.. -- bn-i+l

an-i+l

b

i = 1,2, ... ,p

.. P+2 b . f . . - ap+2 - - .. - . p+2' i n is even .
ap+l

(3.6.8)

The equations in (3.6.8) correspond to premultiplication of the i th

reduced matrix A(i) (A.- A(l)) by an elementary lower bidiagonal matrix

T
Li .- I - t i ~i+l ~i

and an elementary upper bidiagonal matrix

70.

T
.- I - mi ~-i ~-i+l'

for i = 1,2, ... ,p. Thus the reduction can be expressed

Lo(Un-p+l Lp) ... (Un-1 L2) (Un L1) A = B, (3.6.9)

where

:= (:p+l
n odd,

Lo
n even,

and the nonzero elements of B lie on the diagonal and in positions (1,2),

(2,3), ... , (k,k+l), (k+2,k+l), (k+3,k+2), ... , (n,n-1), where k = p if n

is odd and k = p+l if n is even.

Using the fact that Li commutes with Uj for all i and j, one obtains

from (3.6.9),

from which it follows that

A = L U B, (3.6-10)

where Lis unit lower bidiagonal and U is unit upper bidiagonal.

The nesting technique in Algorithm 4/2 below is based on a result,

applying to the factorisation (3.6 10), which is analogous to the relation

between the LDLT factorisations of A and M(A). This result is proved in

Lemma 3.5, To facilitate the statement of the next two le1M1as we introduce

some more notation . Let

71.

M(A) -. (3.6.11)

Thus

= I ai I ' di = - I bi I (3.6.12)

for all i. Since A is positive definite, M(A) is positive definite, as

noted earlier. Therefore the two-way algorithm will not fail when applied

to M(A). Let the factorisation corresponding to (3.6 10) for M(A) be

M(A) = L U B. (3.6.13)

Lemma 3.4

When the two-way algorithm is applied to M(A) in (3.6.11),

(3.6.14)

for = 1,2, ... ,p, and if n is even,

Cp+2 = ap+2. (3.6.15)

Proof

The proof is by induction. From (3.6.8) and (3.6.12),

72.

and similarly cn-l = an-l· If (3.6.14) holds for i ~ k then from (3.6.8),

and similarly c~-k-l = a~-k-l. By induction (3.6.14) is true for i = i,2,

···~P· (3.6.15) follows similarly. 0

Lemma 3. 5

Let the positive definite matrix A in (3.6.l) and its comparison

matrix M(A) be factorised according to (3.6. 10) and (3.6.13) respectively.

Then B has positive diagonal elements, L = M(L), U = M(U) and B = M(B).

Proof

From Lemma 3.4

b·· .- C· =a.=: b .. ,
11 l l 11

,,.
for all i. We show that ai > 0 for all i.

By comparing the elimination stage of the two-way algorithm on A

with standard Gaussian elimination on A, for which it is known that the

pivots are positive, one can deduce that ai > O for all but one value of i
,,.

(which depends on the parity of n). The positivity of this remaining ai
n n ,,.

is assured because 0 < det(A) = det(B) = IT b· · = IT a ..
i=l 11 i=l l

73.

The off-diagonal elements of B and B are either zero or agree with
-

the corresponding elements of the original matrix. It follows that B = M(B).

From (3.6.8), each multiplier for the elimination on M(A) is minus

the modulus of the corresponding multiplier for the elimination on A
- -(since ai > 0), therefore L = M(L) and U = M(U). o

Lemma 3.5 shows that the equation M(A)~ =~can be solved using,

solely, information gleaned during the solution of Ax = Q_ by the two-way

algorithm. Thus we have

Algorithm 4/2

Given the nxn (n > 2) positive definite tridiagonal matrix A in

(3.6.1) and the vector f_, this algorithm computes both the solution to the

linear system A~= f (this overwrites f) and y = cond
00

(A), employing the

two-way algorithm used in the LINPACK routine SPTSL.

(1)

(2)

The same as step (1) of Algorithm 4/1.

For K .- 1 to N

L ZK : = 1

p • -
N-1

2

For K .- 1 to P

t := bK+l/aK

KB : = N-1

74.

KB • - KB - 1

KP1 • - P + 1

If N mod 2 = 0 then

M • - KP1 + 1

t := b /a
M KP1

KP1 • - KP1 + 1

A. • -

K • - KP1 - 1 KE .- KP1 + P - 1

75.

For KF .- KP1 to KE

K .- K - 1

If N mod 2 0 then

Cost: the same as for Algorithm 4/1.

Algorithm 4/2 consists of the two-way algorithm given in the

LINPACK manual [8, pp. 7.4, 7.5, C.97, C.98] together with extra

statements, marked with an asterisk, which evaluate the condition number.

Clearly, only minor modifications are required to the LINPACK routine

76.

SPTSL in order for this routine to compute the condition number cond1(A)

(= cond (A) since A = AT) in addition to solving Ax = b. Two extra
00

parameters are required by the modified routine, a work vector Z of

length n and a REAL variable RCONDE in which to return the reciprocal

of the condition number, E denoting "exact" in order to avoid confusion
-1 with the estimate RCOND ~ cond 1(A) returned by some of the other

LINPACK routines. The strategy of scaling to avoid overflow, adopted

by LINPACK in all the code which performs condition estimation, is

applicable to the computation of z where M(A)~ =~and a vector w

satisfying

is easily obtained from~ by using (3.6.3). A modification to the

LINPACK scaling algorithm, which would be appropriate here, is described

in [15].

Eigenvalue Bounds

For a positive definite tridiagonal matrix A, reltable bounds

for A.min(A) = J IA- 1 J J; 1 are readily obtained using Algorithm 4 since,

from Lemma 1.2,

Also,

(3.6.17)

where a : = m~x 11 A~i 11 2. ,
Reliable bounds for cond2(A) result from combining (3.6.16) and

(3.6.17).

77.

3.7 Dealing With Reducibility

Algorithms 1, 2 and 3 each involve division by the off-diagonal

elements b2, ... , bn and c 1, ... , cn_ 1 of A in (3.1.1), either explicitly

(Algorithms 2 and 3) or implicitly (the division by i i in Algorithm

1). Therefore these algorithms break down when A is reducible. For

particular classes of matrix it is possible to verify irreducibility in

advance. Difference methods for boundary value problems can lead to

tridiagonal matrices with off-diagonal elements of the form a + O(h)

where a> 0 and h is the mesh length [24, p. 96 ff.]; here, irreducibility

is assured for sufficiently small h. The tridiagonal matrices which

arise in the numerical solution of linear second order recurrence

relations are frequently irreducible [2, pp. 14, 21]. However, there

are also important situations where it is impossible to guarantee

irreducibility. For example, a tridiagonal iteration matrix A =

I - hyJ(x,_l) in a code for stiff O.D.E.s may have zero subdiagonal or

superdiagonal elements for certain values of x and l· In this section

we extend Algorithms 1, 2 and 3 to deal with general tridiagonal matrices

A.

If A is reducible and symmetric then A has the form diag(A1, A2, ... ,

Ak) where each matrix Ai is either diagonal or irreducible and tri­

diagonal. Hence if A is nonsingular, 1 IA-1
11

00
= m~x I IA:j 111

00
, which

1
can be computed in O(n) operations by applying Algorithm 1, 2 or 3 to

each of the matrices Ai, as appropriate.

If A is reducible and nonsymmetric, the situation is more com­

plicated, though again I IA- 1
11

00
can be computed in O(n) operations. Let

AER nxn be a nonsingular reducible tridiagonal matrix. Using the

recursive .process alluded to in Theorem 3.3 A can be expressed in the form

78.

A1 C1 0

B2 A2 C2

A = B3 A3

0

where at least one of Bi+1 and Ci is a zero matrix for i = 1, ... , n-1

and the diagonal blocks Ai are square, tridiagonal and irreducible.
k

It is easily verified that det(A) = TI det(A.), from which it follows
. 1 1 l=

that the diagonal blocks are nonsingular. The technique we describe

entails computing the row sums of the inverses of the leading principal

block submatrices of A in the natural order, beginning with A[1] := A1

and finishing with A[k] := A. Consider the general r th stage. There

are three cases.

(a)

Br .- [0 Br] has the form

(3.7.1)

we have,

(3.7.2)

where, by (3.7.1),

(3.7.3)

79.

-1
In order to calculate the row sums of A[r] , the row sums of the three

nonzero blocks in (3.7.2) are required. Assume that the row sums of

A[r- 1]-
1

are available from the previous stage. Since Ar is irreducible,

the row sums of A~ 1 can be computed using Algorithm 1, 2 or 3. The

i th row sum of the matrix ~ y_T is I xi I I ly_ l 11. Therefore, for comp-

utation of the row sums of the matrix in (3.7.3), both the last row
[r 1J-1 1

sum of A - and the vector consisting of the first column of A~

are required.

(b) A[r]

c r-1

we have,

~
[r-1] C- J A[r-1] IR pxp o.i..c- IR pxq

r-1 ' £ ' r r-1 £ ·

Ar

has the form

C = c e eT
r-1 r-1 - p - 1'

-A[r-1J-1 1
cr-1 A~

0

where, by (3.7.4),

(3.7.4)

(3.7.5)

[r]-1
Computation of the row sums of A is similar to case (a) except

that here the first row sum of A- 1 and the vector consisting of the last

A
[r-1]-1 r

column of are required in order to compute the row sums of the

matrix in (3.7.5).

80.

(c) A[r] = ~[r-1]
Ll · Ar

This case is straightforward.

The key fact is that the information which needs to be carried

over from the (r-1)st stage to the r th stage consists solely of (1)
-1

the row sums of A[r- 1J and, if case (b) pertains at the r th stage,

(2) the last column of A[r- 1J-
1

.

The computational cost of the algorithm outlined above and the

storage required are dependent on the precise form of A. The maximum

possible storage heeded amounts to 6n locations: n for the row sums,
-1

n for the last column of A[r- 1J and 4n for the vectors~' y__, E. and

g_ which specify A~ 1 • By linearity of the costs of Algorithms 1, 2

and 3, the cost of computing the row sums of the { A~ 1 } is essentially

the same as the cost of applying Algorithm 1, 2 or 3 to an nxn

irreducible tridiagonal matrix. The extra costs in the above algorithm,
[r-1J-1

associated with computation of the last column of A and the row

sums in (3.7.3) and (3.7.5), do not exceed about Sn flops. One

worthwhile refinementt if A has groups of consecutive zeros on the super-

diagonal or subdiagonal is to allow the diagonal blocks {Ar} to be

bidiagonal and to use the fact that the row sums of B- 1, for bidiagonal

B, are the components of M(B)- 1 ~ (see section 3.2).

Thus, computation of cond
00

(A) for a general tridiagonal matrix

is not substantially more expensive than computation of cond (A) for
00

an irreducible tridiagonal matrix.

t ln fact, this refinement is essential in order to avoid the possib­
ility of consecutive case (b)s, which could lead to an O(n2) operation
count.

81.

3.8 Computational Considerations

While the irreducibility of A guarantees that Algorithms 1, 2

and 3 will not fail, difficulties must be expected in practice when

some or all of the superdiagonal and subdiagonal elements are small

but nonzero. The major computational hazard is overflow due to division

by a small number, but loss of accuracy is also possible. These

problems can occur even when the matrix is well-conditioned, as

illustrated by the example

r,1 E11 A.- b ~ , \s\ << 1, cond
00

(A) ~ 4 .

However, by use of the scalings described below, the difficulties caused

by "near reducibility" can be overcome.

Consider equations (3.4.4) and (3.4.5) with x1 := 1. The vector

y_ is the first row of A- 1, therefore unless A is ill-conditioned the

components of y_ will be of moderate size and overflow is very unlikely

when (3.4.5) is solved using, say, the factorisation (3.1.3) of A.

Also, Yn ~is the last column of A- 1. Therefore it is natural to

rewrite (3.4.4) as A(yn x) = e and solve for y x; the same comments - -n n -

now apply as for (3.4.5). Similarly, it is natural to solve for p q
n -

rather than .9.· Note that the presence of small superdiagonal or sub-

diagonal elements in the matrix A does not force any of the vectors

y_, Yn ~' E. and Pn g_ to have large components. The results of section

1.4 suggest that the accuracy of the computed approximations to these

four vectors will reflect the condition of A. This is the best that

can be expected since it can be shown that the condition number for the

problem of computing \\ A- 1\\ is cond(A).

82.

These considerations suggest the following algorithm.

Algorithm 5

Given the nxn nonsingular irreducible tridiagonal matrix A in

(3.1.1) this algorithm computes y = I IA- 1
11

00
•

(1) Compute the factorisation PA= LU by Gaussian elimination with

partial pivoting.

(2) Solve the equations

(3)

T
A 'i = ~1'

AZ = ~n'

A_e_ = ~1,

T
A! = ~·

using the factorisation computed in step (1).

For i .- n-1 to 1 step -1

Ls i . - s; + 1 + I Yi I

2 to n

t . 1 + I r ·I , - ,

83.

For i := 2 to n-1

L y := max(y , ([P; i •ti-1)/ [p
0

[+ ([z; l•s;)/ [y
0

[)

Cost: 16n (M +A) + 7n D + 4n ABS+ 0(1) (M +A+ D +ABS).

Remarks

(1) The operation count is obtained from (iv) and (v) in Section 3.1 and

is a worst case. The precise operation count depends on the pivots

used in step (1).

(2) Step (3) consists of a modified version of Algorithm Norm. The
-1 -1 rescaling by Yn and Pn is performed at the last possible stage.

If overflow occurs in step (3) then 1 IA- 1
11

00
itself would overflow.

(3) A particularly pleasing aspect of the algorithm is that Gaussian

elimination with partial pivoting is stable when applied to a tridiagonal

matrix, for the growth factor is bounded by two [27, p. 158].

(4) The scaling strategy utilised in Algorithm 5 could be incorporated

into Algorithm 1, producing only a modest increase in cost. Alternative-

ly, the LU factorisation without pivoting could be used in Algorithm 5.

This would result in a much more favourable operation count.

84.

REFERENCES

[1] BUKHBERGER, B. andEMEL'YANENKO, G.A. (1974) Methods of inverting

tridiagonal matrice~, U.S.S.R. Computational Math. and Math.

Phys. 13, 10-20.

[2] CASH, J.R. (1979) Stable Recursions: with Applications to the

Numerical Solution of Stiff Systems, Academic Press, London.

[3] CLINE, A.K. (1981) A set of counter-examples to the LINPACK

condition number estimator, Manuscript, Comp. Sci. Dept.,

University of Texas at Austin.

[4] CLINE, A.K., CONN, A.R. and VAN LOAN, C.F. (1982) Generalizing

the LINPACK condition estimator, in HENNART, J.P. [ed.] (1982)

Numerical Analysis, Mexico 1981, Lecture Notes in Mathematics

909, Springer-Verlag, Berlin, 73-83.

[5] CLINE, A.K., MOLER, C.B., STEWART, G.W. and WILKINSON, J.H.

(1979) An estimate for the condition number of a matrix, SIAM

J. Numer. Anal. 16, 368-375.

[6] DAHLQUIST, G. and BJORCK, A. (1974) Numerical Methods, Prentice­

Hall, Englewood Cliffs, N.J.

[7] DIXON, J.D. (1983) Estimating extremal eigenvalues and condition

numbers of matrices, SIAM J. Numer. Anal. 20, 812-814.

[8] DONGARRA, J.J., BUNCH, J.R., MOLER, C.B. and STEWART, G.W.

(1979) LINPACK Users' Guide, SIAM publications, Philadelphia.

[9] DONGARRA, J.J. and HINDS, A.R. (1979) Unrolling loops in

FORTRAN, Software-Practice and Experience 9, 216-226.

[10] FISCHER, C.F. and USMAN!, R.A. (1969) Properties of some tri­

diagonal matrices and their applications to boundary value

problems, SIAM J. Numer. Anal. 6, 127-142.

[11] FORSYTHE, G.E., MALCOLM, M.A. and MOLER, C.B. (1977) Computer

Methods for Mathematical Computations, Prentice-Hall, Englewood

Cliffs, N.J.

85.

[12] FROBERG, C.-E. (1969) Introduction to Numerical Analysis (Second

edition), Addison-Wesley, Reading, Massachusetts.

[13] GOLUB, G.H. and REINSCH, C. (1970) Singular value decomposition

and least squares solutions, Numer. Math. 14, 403-420.

[14] GRAYBILL, F.A. (1969) Introduction to Matrices with Applications

in Statistics, Wadsworth, Belmont, California.

[15] GRIMES, R.G. and LEWIS, J.G. (1981) Condition number estimation

for sparse matrices, SIAM J. Sci. Stat. Comput. 2, 384-388.

[16] HAMMARLING, S. and WILKINSON, J.H. (1980) On linear systems

arising from finite difference approximations to elliptic

differential equations, Report DNACS 34/80, National Physical

Laboratory, England.

[17] HIGHAM, N.J. (1983) Upper bounds for the condition number of a

triangular matrix, Numerical Analysis Report No. 86, University

of Manchester.

[18] HOUSEHOLDER, A.S. (1964) The Theory of Matrices in Numerical

Analysis, Blaisdell, New York.

[19] !KEBE, Y. (1979) On inverses of Hessenberg matrices, Linear

Algebra and Appl. 24, 93-97.

[20] KAHAN, W. (1966) Numerical linear algebra, Canadian Math.

Bulletin 9, 757-801.

[21] LANCASTER, P. (1969) Theory of Matrices, Academic Press, New

York.

[22] MOLER, C.B. (1982) MATLAB Users' guide, Technical Report CS81-1

(revised), Department of Computer Science, University of New

Mexico.

[23] O'LEARY, D.P. (1980) Estimating matrix condition numbers, SIAM

J. Sci. Stat. Comput. 1, 205-209.

[24] ORTEGA, J.M. (1972) Numerical Analysis: A Second Course,

Academic Press, New York.

86.

[25] RICE, J.R. (1981) Matrix Computations and Mathematical Software,

McGraw-Hill, New York.

[26] SKEEL, R.D. (1979) Scaling for numerical stability in Gaussian

elimination, J. Assoc. Comput. Mach. 26, 494-526.

[27] STEWART, G.W. (1973) Introduction to Matrix Computations,

Academic Press, New York.

[28] STEWART, G.W. (1980) The efficient generation of random

orthogonal matrices with an application to condition estimators,

SIAM J. Numer. Anal. 17, 403-409.

[29] STOER, J. and BULIRSCH, R. (1980) Introduction to Numerical

Analysis, Springer-Verlag, New York.

[30] TODD, J. (1978) Basic Numerical Mathematics Vol. 2: Numerical

Algebra, Academic Press, New York.

[31] VAN DER SLUIS, A. (1969) Condition numbers and equilibration of

matrices, Numer. Math. 14, 14-23.

[32] VAN DER SLUIS, A. (1970) Stability of solutions of linear

algebraic systems, Numer. Math. 14, 246-251.

[33] WILKINSON, J.H. (1961) Error analysis of direct methods of

matrix inversion, J. Assoc. Comput. Mach. 8, 281-330.

[34] WILKINSON, J.H. (1978) Singular-value decomposition - basic

aspects, in JACOBS, D. [ed.] (1978) Numerical Software - Needs

and Availability, Academic Press, New York, 109-135.

[35] YAMAMOTO, T. and !KEBE, Y. (1979) Inversion of band matrices,

Linear Algebra and Appl. 24, 105-111.

