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We study the existence of families of periodic orbits near a symmetric equilibrium
point in different classes of Hamiltonian systems with symmetry. We center our atten-
tion to special types of symmetry less-studied in the literature, such as systems with
(semi-)invariant Hamiltonian and reversible equivariant Hamiltonian systems, when
the linearisation has two pairs of purely imaginary eigenvalues.

In each case, we provide normal forms for the symmetries, the linear structure
map and the linearisation. Moreover, the existence of symmetric and non-symmetric
periodic orbits is proved. Another result we found is the classification of Hamiltonian
systems with dihedral symmetry, of order eight, with all different possible combinations
of time-reversing and symplectic-reversing actions.

The method used in finding periodic orbits is the Liapunov-Schmidt reduction.
The symmetry plays a vital role in determining the set of (semi-)invariants, in order
to write the reduced problem and then to distinguish the solutions according to their
symmetry type.
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Chapter 1

Introduction

Periodic and circular motions are signs of regular and natural movements that have

attracted many mathematicians for a long time. In dynamics, a periodic orbit arises

when a state of the system repeats after some fixed interval of time. Interestingly, many

physical examples are modeled by Hamiltonian systems and symmetry is a common

theme in such models.

Studying the existence of periodic orbits in Hamiltonian systems is a major area

of interest within the field of dynamical systems. In a linear Hamiltonian system,

each purely imaginary eigenvalue possesses a family of periodic orbits, with constant

period in its eigenspace. This family of solutions is called a normal mode. In a

nonlinear Hamiltonian system, families of periodic solutions near an equilibrium that

tend to the normal modes are called nonlinear normal modes. A leading figure in

the study of nonlinear normal modes is Liapunov, who proved in 1895 his celebrated

result: the Liapunov center theorem [1]. The theorem guarantees the existence of

a one-parameter family of periodic orbits near an equilibrium corresponding to each

simple non-resonant purely imaginary eigenvalue of the linearisation.

Later, there have been many extensions of this theorem by many authors. In [36, 31]

Weinstein and Moser relaxed the non-resonance condition on eigenvalues. Their main

hypothesis was that the quadratic part of the Hamiltonian is positive definite on each

resonance space of a purely imaginary eigenvalue. They proved the existence of at least

n periodic orbits, with period close to the period of the linear system on each energy

level, where n is the dimension of the resonance space. However, this estimation for

the number of solutions was not very accurate in some systems. One reason is that

11



CHAPTER 1. INTRODUCTION 12

they did not consider the effect of symmetry on the possible number of periodic orbits.

This was treated by Montaldi et al. [28] who took equivariance symmetry into account.

They proved the existence of at least 1
2

dim Fix Σ periodic orbits, where Σ is an isotropy

subgroup. This result is known as the equivariant Weinstein-Moser theorem. Other

useful results on periodic orbits in symmetric Hamiltonian systems can be found in

[29, 30].

Other versions of the Liapunov center theorem assumed the time-reversing sym-

metry, such as Devaney [11] and Vanderbauwhede [35]. In [11], Devaney studied

the existence of symmetric periodic orbits under the action of anti-symplectic time-

reversing involutions. He proved under a non-resonance condition, the existence of a

two-dimensional manifold consisting of a nested one-parameter family of symmetric

periodic orbits. In more recent studies such as Buzzi and Teixeira [10] and Buzzi and

Lamb [9], the time reversing involution is assumed to be symplectic. In particular,

Buzzi and Lamb announced a remarkable result on the existence of a three-dimensional

subset consisting of a two-parameter family of symmetric periodic orbits, with period

close to 2π as they approach the equilibrium, if the linearisation has two pairs of

eigenvalues ±i.

Another consideration is given by Fadell and Rabinowitz [12], who did not assume

the Hamiltonian to be positive definite as in the Weinstein-Moser theorem. In [12],

they showed the number of periodic orbits to be at least 1
2
|ν|, where ν is the signature

of D2Hp|Vλ i.e. the number of positive eigenvalues minus the number of negative ones

and Vλ is the resonance space.

This thesis aims to prove the existence of families of periodic orbits near equilibria

in Hamiltonian systems with presence of symmetry. In particular, we will focus on

finite symmetry groups, with semi-invariant Hamiltonian property, which act on C2.

In those cases, when the Hamiltonian is semi-invariant, and since we assume the linear

system is periodic, the equilibrium will be in 1 : −1 resonance. The methods mostly

used in finding periodic orbits have a variational structure. In this work, we adapt the

constrained Liapunov-Schmidt reduction, given in [9] and [16], to determine periodic

orbits of the candidate Hamiltonian system. Although there is a theme that runs

through each problem we investigate, different techniques are applied, in order to

prove our results.
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Most of the material presented in Chapter 2 and Chapter 3 is well-known and

introduces the foundations needed in this thesis. This includes definitions and basic

results related to the context of Hamiltonian systems with symmetry, and the theory

of periodic orbits. In addition, in Chapter 3 we discuss, in some details, the Liapunov-

Schmidt reduction, the main tool used in finding periodic orbits in our work.

In Chapter 4, we study the existence of periodic orbits in a purely reversible Hamil-

tonian system, where the reversing involution R acts symplectically. The problem was

introduced and analysed by Buzzi and Lamb [9], a study which we will use extensively

in this thesis. Motivated by their work, we looked at the problem using different co-

ordinates, and therefore, a different set of invariants. We recover their result on the

existence of symmetric periodic solutions, but obtain a different conclusion for the non-

symmetric solutions. This difference is due to a sign error in one of their calculations

in the proof of the non-symmetric solutions, which we correct in our approach.

In Chapter 5, we investigate the local dynamics of an equivariant Hamiltonian

system, with an involutory symmetry S acting anti-symplectically. Bifurcations of

equilibria in Hamiltonian systems with such symmetry have been considered recently

by Bosschaert and Hanßmann [6]. The problem was discussed by Li and Shi [25],

however, their approach has some serious errors and concerns. The main concern of

the study is the failure to write the correct expression of the Hamiltonian, which affect

their results significantly. Therefore, we decided to analyse the problem from a different

point of view, and we obtain completely different results on the existence of symmetric

and non-symmetric periodic solutions to those in [25]. We show that generically, there

are no symmetric periodic orbits in a neighbourhood of the equilibrium, and between

2 and 12 non-symmetric orbits.

Chapter 6 highlights two new problems in the reversible equivariant Hamiltonian

settings. We focus on this type of symmetry precisely because, to our knowledge,

it has not been investigated much in the literature as can be seen in [8, 24, 26, 29,

30] for results on reversible equivariant systems. In the first problem, we consider a

Hamiltonian system combined with a reversing symmetry group generated by the two

involutions R and S which are studied in Chapter 4 and Chapter 5 respectively. The

symmetry forced the Hamiltonian function to be a special case of that discussed in

Chapter 4, and therefore, implies a similar result on the existence of periodic orbits.
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The work presented in Chapter 4, Chapter 5 and Section 6.1 has been published in

Alomair and Montaldi [2].

The second problem that we discuss in Chapter 6 can be seen as a generalisation of

the result studied in Chapter 4. Here we increase the order of the cyclic group from 2

to any even number 2r, where the generator is time-reversing symplectic. We construct

the problem from the beginning, by defining the group action, writing the linearisation

and finding possible isotropy subgroups. We prove the existence of different families

of periodic orbits, depending on the choice of the number r.

Classifying Hamiltonian systems with dihedral symmetry D4 is the core of Chapter

7. We centre our attention on describing all possible D4 symmetries, using a repre-

sentation theory argument. This will be done by illustrating all possible normal forms

for the quadratic Hamiltonian, the linear structure map and therefore the linearisa-

tion of all D4 symmetry types. The remainder of this chapter is devoted to studying

the existence of families of periodic orbits in four different classes of D4 Hamiltonian

systems.

In Chapter 8, we conclude this thesis by recalling our main results which were

introduced in the earlier chapters. In addition, we suggest other considerations, which

may lead to further work in the future.



Chapter 2

Preliminaries

This chapter is devoted to introducing some definitions, concepts and well-known

properties of Hamiltonian systems with symmetry, which will be relied on throughout

the thesis. Most of the material presented in this chapter is standard, and can be found

in the literature, for example [1, 4, 14, 18, 27]. In Section 2.1, we define Hamiltonian

dynamical systems and their basic properties. In addition, we show the geometric

interpretation of Hamiltonian systems. Section 2.2 introduces an overview of symmetry

in Hamiltonian systems and its different types.

2.1 Hamiltonian systems

As the main interest of this thesis is to study the existence of periodic orbits in some

classes of symmetric Hamiltonian systems, we start by recalling some basic facts about

these systems.

2.1.1 Hamiltonian formulation

Many natural and physical systems are well modeled by Hamiltonian systems which

are considered as a special kind of dynamical systems, in which the energy is conserved.

In a sense, Hamiltonian systems are very essential in classical mechanics due to their

direct relation to the energy concept. Moreover, the symmetry of Hamilton’s equations

leads to an elegant and rich geometric structure in Hamiltonian systems.

The idea of Hamiltonian systems is due to W.R. Hamilton, who observed that by

means of a Legendre transformation, a Lagrangian system of n second order differential

15
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equations is converted to a symmetrical system of 2n first order differential equations,

which is called a Hamiltonian system [4].

Consider a mechanical system with configuration space Rn and Lagrangian L(q, q̇).

Recall that the Lagrangian function is often defined as the difference between the

kinetic and potential energies. Lagrange’s equation is given by

d

dt

(
∂L
∂q̇i

)
=
∂L
∂qi

, i = 1, . . . , n,

where the qi are configuration coordinates. One defines the conjugate momentum by

pi :=
∂L
∂q̇i

, i = 1, . . . , n.

The Hamiltonian function is defined by

H = p · q̇ − L(q, q̇).

Substituting q̇ as a function of p yields H = H(q, p). In simple mechanical systems,

the Hamiltonian is the sum of the kinetic and potential energies of the system, i.e.

presents the total energy. The equation of motion derived from the Hamiltonian and

expressed by position and momentum coordinates, is called a Hamiltonian system and

is defined as follows:

A Hamiltonian system is a system of 2n ordinary differential equations of the form

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

, i = 1, 2, . . . , n,

(2.1)

where q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn) are position and momentum coordi-

nates, and H : R2n → R is the Hamiltonian or the energy function. The integer n is

called the number of degrees of freedom of the system.

Another useful formula of Hamiltonian systems is by using complex coordinates.

This is due to the even dimensional property of such systems; the following lemma

illustrates this formula:

Lemma 2.1.1 For z = q + ip the Hamiltonian system (2.1) takes the form

ż = −2i
∂H

∂z̄
.
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Proof Using complex variables, one can write zj = (qj + ipj), for j = 1, 2, . . . , n.

Clearly,

qj =
1

2
(zj + z̄j),

pj =
−i
2

(zj − z̄j).

By partial differentiation, we have

∂

∂z̄j
=
∂qj
∂z̄j

∂

∂qj
+
∂pj
∂z̄j

∂

∂pj

=
1

2
(
∂

∂qj
+ i

∂

∂pj
).

By the Hamiltonian system (2.1) and for each j = 1, . . . , n we obtain

żj = q̇j + iṗj =

(
∂H

∂pj
− i∂H

∂qj

)
= −i

(
∂

∂qj
+ i

∂

∂pj

)
H = −2i

∂H

∂z̄j
.

Thus, for z = q + ip where q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn) one can write

the Hamiltonian system (2.1) as

ż = −2i
∂H

∂z̄
.

�

2.1.2 Geometric approach to Hamiltonian systems

The anti-symmetry property of Hamilton’s equations gave rise to the use of symplectic

geometry in the Hamiltonian context. This means that the Hamiltonian vector field

of a function H over a symplectic manifold is formed to have the same role of gra-

dient of the Hamiltonian and the symplectic structure takes care of skew-symmetry

and conservation properties. Before defining Hamiltonian systems over a symplectic

manifold, we will introduce some basic definitions.

Let V be an n-dimensional vector space over a field F, where F = R or C. A

bilinear form B is a mapping B : V × V → F which is linear in both components, i.e.

• B(u1 + u2, v) = B(u1, v) +B(u2, v),

• B(u, v1 + v2) = B(u, v1) +B(u, v2),

• B(λu, v) = B(u, λv) = λB(u, v),
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for all u, u1, u2, v, v1, v2 ∈ V and λ ∈ F. A bilinear form B is called skew-symmetric, if

B(u, v) = −B(v, u), for all u, v ∈ V . A bilinear form B is called non-degenerate, if

B(u, v) = 0,∀v ∈ V ⇒ u = 0.

Definition 2.1.2 A symplectic form ω on a vector space V is a non-degenerate, skew-

symmetric bilinear form. The pair (V, ω) is called a symplectic space.

Note that the linear space V should be even dimensional. That is because, any

skew-symmetric matrix of odd size is always singular and therefore, a non-degenerate,

skew-symmetric form is defined on an even dimensional space. For a more general

picture, we shall define a symplectic manifold to be the phase space for Hamiltonian

systems. Throughout, let M be a manifold of dimension 2n. A 2-form ω on M is

called closed, if dω = 0, where d is the exterior derivative.

Definition 2.1.3 A symplectic form ω on a manifold M is a non-degenerate, skew-

symmetric, bilinear, closed differential 2-form. A symplectic manifold (M,ω) is a

manifold M equipped with the symplectic form ω.

Now, we can define Hamiltonian vector fields with symplectic structure.

Definition 2.1.4 Let (M,ω) be a symplectic manifold, and let H : M → R be a

given Ck differentiable function where k ≥ 1. The vector field XH determined by the

condition

ω(XH , u) = dH.u

is called the Hamiltonian vector field with energy (Hamiltonian) function H. The triple

(M,ω,XH) is called a Hamiltonian system.

By using canonical coordinates for the symplectic form ω given in Darboux’s theorem

[1], the Hamiltonian vector field can be written locally in the following, elegant way.

Proposition 2.1.5 (Proposition 3.3.2, [1]) Let (q1, . . . , qn, p1, . . . , pn) be canoni-

cal coordinates for ω, so ω =
∑
dqi ∧ dpi. Then, in these coordinates,

XH = (
∂H

∂pi
,−∂H

∂qi
) = J.dH,
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where

J =

 0 In

−In 0

 .

Thus, (q(t), p(t)) is an integral curve of XH if and only if Hamilton’s equations hold:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, . . . , n.

The matrix J is called the (linear) structure map, and it is the skew-symmetric

matrix associated to the symplectic form ω i.e.

ω(u, v) = 〈u, Jv〉, ∀u, v ∈ R2n,

where 〈., .〉 is the standard inner product on R2n. Moreover, J satisfies

J2 = −I2n,

where I2n is the 2n× 2n identity matrix. For more details, one can see [5, 27].

2.2 Hamiltonian systems with symmetry

Symmetry, similarity and repeated patterns are interesting and regular features in

nature. Therefore, studying symmetric dynamical systems was of interest to many

mathematicians past and present. Symmetries help us understand and describe pat-

tern formation in such dynamical systems. Specifically, symmetries could be used to

write down typical forms and structures independently of the dynamics, which gives

a good amount of information about the system. In a sense, all systems with same

type of symmetry can share the same pattern-forms, and exhibit the same behaviour

deduced from a candidate system. We will begin this section by introducing some gen-

eral concepts of symmetry groups and their actions. After that, we will demonstrate

different symmetry types which may accrue in Hamiltonian systems.

2.2.1 Symmetry groups

Symmetries of a Hamiltonian system can be seen as a group of transformations that

preserves the structure of the system, and especially its solutions. Symmetry groups

are often assumed to be compact Lie groups that act on the phase space. However, in
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our work we focus on finite groups only. Let (M,ω) be a symplectic manifold and let

G be a compact Lie group acting on M . Note that we choose M to be a symplectic

manifold for the sake of generality, however, we often work with R2n coordinates as

our results are taken locally.

Definition 2.2.1 An action of G on M is a smooth map φ : G×M →M defined by

gx = φ(g, x) that satisfies the two following conditions

1. 1x = x, where 1 is the identity element of G,

2. (gh)x = g(hx),

for all g, h ∈ G and x ∈M .

Now, we define isotropy subgroups, which are subgroups of G that include all

symmetries of a certain point.

Definition 2.2.2 Given x ∈M , the isotropy subgroup of x is

Gx = {g ∈ G : gx = x}.

Conversely, one can ask about points that respect a certain symmetry which leads to

the definition of fixed point subspaces.

Definition 2.2.3 Let H be a subgroup of G. The fixed point space of H is defined

by

Fix (H) = {x ∈M : gx = x,∀g ∈ H}.

An important feature of group actions on symplectic manifolds is the semi-symplectic

action. A Lie group G acts semi-symplectically on a symplectic manifold (M,ω) if

ω(gx, gy) = ±ω(x, y) for g ∈ G and x, y ∈ M . In this case, the choice of sign deter-

mines a homomorphism χ : G → Z2 which is called the symplectic character, and is

defined by

ω(gx, gy) = χ(g)ω(x, y).

Moreover,
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1. If χ(g) = +1, then g is said to act symplectically.

2. If χ(g) = −1, then g acts anti-symplectically.

Similarly, we say that the Hamiltonian H is G semi-invariant, if H(gx) = ±H(x) for

g ∈ G. The Hamiltonian sign is determined by a homomorphism α : G → Z2 such

that

H(gx) = α(g)H(x).

Therefore,

1. If α(g) = +1, then H is g invariant.

2. If α(g) = −1, then H is g anti-invariant.

After considering symplectic manifolds as the general phase space for Hamiltonian

systems, we will assume from now on that our phase space will be V = R2n. That

is because, we are interested in the local dynamics near equilibria and all problems

discussed in this thesis are of this type.

As a result, it is useful to view the action of symmetry groups by group represen-

tations. In the following, we will introduce some basic definitions and results from the

theory of group representations and characters, which will be used frequently in the

following chapters.

Let V be a vector space of dimension n over the field F.

Definition 2.2.4 A linear representation of the finite group G in V is a homomor-

phism ρ : G → GL(n,F), where GL(n,F) is the group of invertible n × n matrices

with entries in the field F.

For a given representation ρ we often say that V is a representation ofG. An irreducible

representation V is a representation where the only invariant subspaces are 0 and V .

Definition 2.2.5 A character of a representation ρ is the function χρ defined by

χρ(g) = Tr(ρg), ∀g ∈ G.

The group character of a group representation is a class function, i.e. it is constant on

a conjugacy class. Moreover, the number of conjugacy classes of a finite group is equal
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to the number of irreducible characters. Thus, the values of irreducible characters can

be written as a square matrix (table), known as a character table.

Now, we consider some basic properties of characters, which will be used later,

especially in Chapter 7.

Lemma 2.2.6 If V ,V1 and V2 are (real or complex) representations, with characters

χ,χ1 and χ2, then

1. The character of the direct sum V1 ⊕ V2 is χ1 + χ2.

2. The character of the tensor product V1 ⊗ V2 is χ1χ2.

3. The character of the symmetric and anti-symmetric tensor products of a repre-

sentation V are

χs(g) =
1

2

(
χ(g)2 + χ(g2)

)
, χa(g) =

1

2

(
χ(g)2 − χ(g2)

)
.

4. The inner product of two characters χ1 and χ2 is defined to be

〈χ1, χ2〉 =
1

|G|
∑
g∈G

χ1(g)χ∗2(g),

where χ∗(g) is the complex conjugate. Consequently, the norm is defined by

‖χ‖2 = 〈χ, χ〉 =
1

|G|
∑
g∈G

|χ(g)|2.

5. If W is irreducible with character χW , and V is any representation with character

χ, then the multiplicity of W in V is equal to 〈χW , χ〉/‖χW‖2.

More information on representations and character theory can be found, for example,

in [22] and [33].

2.2.2 Symmetry types in Hamiltonian systems

Let (V, ω) be a symplectic space, e.g. V = R2n, and H : V → R a Hamiltonian

function, that generates the Hamiltonian system

ẋ = f(x). (2.2)

Suppose that G is a compact Lie group acting on V . The system (2.2) equipped with

the symmetry group G can only be one of the following types:
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• Equivariant Hamiltonian systems.

• Reversible Hamiltonian systems.

• Reversible equivariant Hamiltonian systems.

More details about each kind is given in the following.

Equivariant Hamiltonian systems

Equivariance in (Hamiltonian) dynamical systems is a classical type of symmetry,

which has been studied in many publications, such as [13, 14, 18, 19, 28]. Precisely,

the equivariance symmetry happens when a Hamiltonian vector field commutes with

a specific linear map.

Let S be a transformation from V to itself. The Hamiltonian vector field f is called

S-symmetric or S-equivariant if

f(Sx) = Sf(x),∀x ∈ V.

In many applications, the vector field can have more than one symmetry. Moreover,

these symmetries form a group and so gave rise to defining equivariant dynamical

systems under the action of a group of symmetries.

The Hamiltonian vector field (2.2) is said to be equivariant, under the action of

the group G, if

f(gx) = gf(x), for all g ∈ G, x ∈ V.

Simply said, the vector field f is G-equivariant, if it commutes with all elements in

G. A basic property of solutions of equivariant Hamiltonian systems is that, for any

solution x(t) either

1. gx(t) = x(t),∀t, or

2. gx(t) = y(t) 6= x(t),∀t.

The first solution is called a g-symmetric solution. Note that y(t) is also a solution of

the system. Thus, it is possible to determine the solutions of equivariant dynamical

systems according to their symmetry properties.

Clearly, the previous argument fits for any dynamical system, not necessarily

Hamiltonian. Now, we apply the Hamiltonian structure to specialise the definition.
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Equivariance in Hamiltonian systems can accrue in two cases:

• The symmetry S acts symplectically, and the Hamiltonian H is S invariant.

This case is classical and was discussed in many publications (for example, see

[28, 29]).

• The symmetry S acts anti-symplectically, and H is S anti-invariant. This case

is less discussed in publications, however, it has been discussed recently in [6]

and we have considered a system with this property in Chapter 5.

Now we consider a simple example, that illustrates the definition.

Example 2.2.7 Consider the Hénon-Heiles Hamiltonian

H(q1, q2, p1, p2) =
1

2
(p1

2 + p2
2 + q1

2 + q2
2) +

1

3
q1

3 − q1q22.

Accordingly, its Hamiltonian system takes the following form

q̇1 = p1,

q̇2 = p2,

ṗ1 = −(q1 + q1
2 − q22),

ṗ2 = −(q2 − 2q1q2).

This system is D3-equivariant, where D3 = 〈ρ, κ〉 acts on the q-plane and the p-plane

as follows:

ρ(q1 + iq2, p1 + ip2) = (e2πi/3(q1 + iq2), e
2πi/3(p1 + ip2)),

κ(q1 + iq2, p1 + ip2) = (q1 − iq2, p1 − ip2).

For more details about this example see [18, 28].

Reversible Hamiltonian systems

Reversing symmetry is one of most common types of symmetry that arises naturally

in physically-motivated dynamical systems. Moreover, the majority of applications of

time-reversing symmetry have been found in Hamiltonian systems. Simply put, the

idea of a time-reversing symmetry is if we cannot decide whether an object of some
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mechanical system is moving forward or reverse the direction. The time-reversing

symmetry in dynamical systems was discussed in many publications, for example, see

[11, 23, 34]. Next, we give the formal definition of reversing symmetries and some

basic properties.

Let R be a transformation on V . We say that a vector field f is R-reversible, or

that f possesses a time-reversing symmetry R if

f(Rx) = −Rf(x), ∀x ∈ V.

This implies that the reversible Hamiltonian system (2.2) has a solution x(t) if and only

if Rx(−t) is also a solution. If the vector field f does not have any other non-trivial

symmetries, then R2 = I and we say that f is a reversible Hamiltonian system, or

more precisely, a purely reversible system. Time-reversing symmetries in Hamiltonian

systems are split into two types: symplectic and anti-symplectic, as we will discuss in

more details later. A typical example of a time-reversing Hamiltonian system is the

ideal pendulum.

Figure 2.1 shows the difference between equivariance and reversing symmetries, by

plotting a planar flow, that is symmetric under a horizontal reflection. In Figure (a)

trajectories are identical after reflection, where in (b) the direction is reversed.

(a) Equivariant symmetry (b) Time-reversing symmetry

Figure 2.1: Phase portraits of planar flows that are symmetric with respect to a
horizontal reflection. In (a) the reflection is an equivariant symmetry and in (b) the
reflection is a reversing symmetry.

Reversible equivariant Hamiltonian systems

Reversible equivariant symmetry can be seen as a generalisation of the two previous

types. It is known that the set of symmetries of a given system is closed under

composition, while the set of reversing symmetries is not. But, the composition of two

reversing symmetries is a symmetry. As a result, the set of symmetries and reversing

symmetries of a vector field f forms a group G. There are only limited publications
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on this type of symmetry, especially in Hamiltonian systems, for example [8, 24, 29].

In the following, we will assume that G is a compact Lie group.

A Hamiltonian vector field f is called G-reversible equivariant if there exists a

representation ρ of G i.e. a group homomorphism ρ : G→ GL(2n,R) and a homomor-

phism (reversing sign) σ : G→ {±1} such that

fρ(g) = σ(g)ρ(g)f, ∀g ∈ G. (2.3)

Example 2.2.8 The dihedral group D4 is defined by D4 = 〈κ, κ′|κ2 = κ′2 = (κκ′)4 =

e〉. Let D4 act on C2 by

κ(q1 + ip1, q2 + ip2) = (q1 + ip1,−q2 − ip2),

κ′(q1 + ip1, q2 + ip2) = (p2 + iq2, p1 + iq1).

In matrix form these actions are equivalent to

κ =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , κ′ =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 .

Consider the Hamiltonian H(q1, p1, q2, p2) = 1
2
(q21 + p21 + q22 + p22). It is easy to

check that the Hamiltonian system generated by H is κ-equivariant and κ′-reversing

and therefore, a D4-reversible equivariant system.

It will be convenient to recall and collect together the following homomorphisms, which

play a vital role in distinguishing between the previous kinds of symmetry. For a group

of symmetries and reversing symmetries G of the Hamiltonian system (2.2), we define

the following group homomorphisms.

• The reversing sign σ

σ : G→ {±1}

σ(g) =

1, if f(gx) = gf(x),

−1, if f(gx) = −gf(x),

which is used to distinguish between symmetries and reversing symmetries.
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• The symplectic sign χ

χ : G→ {±1}

χ(g) =

1, if ω(gx, gy) = ω(x, y),

−1, if ω(gx, gy) = −ω(x, y).

In the first case, we say that g is acting symplectically, and in the second one, g

is acting anti-symplectically.

• The Hamiltonian sign α

α : G→ {±1}

α(g) =

1, if H(gx) = H(x),

−1, if H(gx) = −H(x).

In the first case, H is g invariant, and in the second one, H is g anti-invariant.

The following lemma identifies the relation between these homomorphisms.

Lemma 2.2.9 For a G-reversible equivariant Hamiltonian vector field, the Hamilto-

nian function H satisfies

H(ρ(g)u) = σ(g)χ(g)H(u), ∀g ∈ G,∀u ∈ V.

Proof Since the Hamiltonian vector field f is G-reversible equivariant, then

J∇H(ρ(g)u) = σ(g)ρ(g)J∇H(u),

where the representation ρ is chosen to be orthogonal, i.e. ρ(g)ρ(g)T = I. It is clear

that the matrix J satisfies

Jρ(g) = χ(g)ρ(g)J.

Therefore,

J∇H(ρ(g)u) = σ(g)χ(g)Jρ(g)∇H(u).

As σ(g), χ(g) are just numbers, and J is nonsingular, we get

∇H(ρ(g)u) = σ(g)χ(g)ρ(g)∇H(u).
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The chain rule yields

[ρ−1(g)]T∇uH(ρ(g)u) = σ(g)χ(g)ρ(g)∇uH(u),

⇔ ρ(g)∇uH(ρ(g)u) = σ(g)χ(g)ρ(g)∇uH(u),

⇔ ∇uH(ρ(g)u) = σ(g)χ(g)∇uH(u).

Integration with respect to u implies the result. �

The previous result can be written simply as α(g) = σ(g)χ(g), for all g ∈ G.

For a Hamiltonian system, (anti-)commuting properties of a (reversing) symmetry

g implies the following cases which will be used frequently in this thesis.

Type of symmetry Notation σ χ α

equivariant SE +1 +1 +1

equivariant AE +1 −1 −1

reversing AR −1 −1 +1

reversing SR −1 +1 −1

Table 2.1: Possible types of symmetries in Hamiltonian systems.

The symmetry type (SE) represents a symplectic equivariant symmetry. Similarly,

(AE) stands for an anti-symplectic equivariant symmetry. A similar pattern is used

for the time-reversing symmetries (AR) and (SR).



Chapter 3

Periodic orbits in Hamiltonian

systems

Studying the existence of periodic orbits is a very common theme when analysing

Hamiltonian systems, especially near equilibria. In this chapter, we will introduce some

basic concepts and techniques used in the theory of periodic solutions in symmetric

Hamiltonian systems. In Section 3.1, we will introduce some definitions related to

periodic orbits in Hamiltonian systems and their symmetries. Section 3.2 will review

the Liapunov-Schmidt reduction, which is a classical tool in proving the existence of

periodic orbits in dynamical systems. Furthermore, in Section 3.3, we will state some

well-known theorems in the context of periodic orbits in Hamiltonian systems, with

and without symmetry.

3.1 Basic concepts

Alongside equilibria, periodic solutions are considered to be another simple set of

solutions of a dynamical system. In the Hamiltonian context, finding periodic orbits

was of wide interest especially after the celebrated Liapunov center theorem described

in Chapter 1. Now, we will consider some key facts and definitions related to periodic

orbits, which will be used throughout this thesis.

Consider a symplectic space (V, ω). Let H : V → R be a Hamiltonian function

that generates the Hamiltonian system

u̇ = f(u), (3.1)

29
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with the origin as an equilibrium point of this system. The eigenvalues of the linearised

vector field L at 0 arise as quadruplets {λ,−λ, λ̄,−λ̄}. If Reλ 6= 0 for all eigenvalues

λ of L, then, by Hartman-Grobman theorem the vector field (3.1) is topologically

equivalent to its linear part u̇ = Lu in a neighbourhood of the equilibrium. An

equilibrium with this property is called a hyperbolic equilibrium. Therefore, in generic

(non-Hamiltonian) systems, this theorem is enough to describe the local dynamics, as

the eigenvalues do not generically lie on the imaginary axis. However, in Hamiltonian

system, having purely imaginary eigenvalues is a generic property, so, we need more

than a linearisation of the system to study the local dynamics [7].

Now, we introduce the symmetry settings of this chapter. Let G be a compact Lie

group acting on V , so that, the vector field f is G-reversible equivariant as described

before in Equation (2.3). This implies the existence of a representation ρ : G →

GL(2n,R) and a reversing sign σ : G→ {±1} such that

fρ(g) = σ(g)ρ(g)f, ∀g ∈ G.

Remark 3.1.1 Equivariance and time-reversing symmetries are the classical types of

symmetry mostly discussed in the literature of Hamiltonian systems. However, we

assume the group G to be reversible equivariant for the sake of generality. That is

because, it covers both cases, when g is a symmetry or a reversing symmetry.

Let u(t) be a 2π-periodic solution of the Hamiltonian system (3.1). For a (time-

reversing) symmetry g ∈ G we have that gu(σ(g)t) is also a periodic solution, and by

uniqueness of differential equations, either

{u(t)} = {gu(σ(g)t)} or {u(t)} ∩ {gu(σ(g)t)} = ∅.

So, for the first case we have

gu(t) = u(σ(g)t+ θ),

for some phase shift θ and u(t) is called a symmetric periodic solution. This gives rise

to defining the circle group S1, which can be identified with R/2πZ, and its action on

the space of periodic orbits. Accordingly, the symmetry group on the space of periodic

orbits of the system (3.1) is Gn S1. In the following, we introduce some fundamental

properties of the group Gn S1.



CHAPTER 3. PERIODIC ORBITS IN HAMILTONIAN SYSTEMS 31

Definition 3.1.2 The multiplication of elements in the group G n S1 is determined

by the homomorphism σ and is given by

(g1, θ1) · (g2, θ2) = (g1g2, σ(g2)θ1 + θ2),

for g1, g2 ∈ G and θ1, θ2 ∈ S1.

Lemma 3.1.3 The following formula defines an action of the semidirect product

Gn S1 on the space of loops:

((g, θ)u) (t) = gu(σ(g)t+ θ),

for (g, θ) ∈ Gn S1.

Proof By the definition of the group action stated in Definition 2.2.1, we need to

check the identity and compatibility conditions. Obviously, the identity condition is

satisfied. For the second condition, let (g1, θ1), (g2, θ2) ∈ Gn S1. Then

(g1, θ1) ((g2, θ2)u) (t) = (g1, θ1) (g2u(σ(g2)t+ θ2))

= ((g1, θ1)v) (t), where v(t) = g2u(σ(g2)t+ θ2)

= g1v(σ(g1)t+ θ1)

= g1g2u(σ(g2)(σ(g1)t+ θ1) + θ2)

= g1g2u(σ(g1g2)t+ σ(g2)θ1 + θ2)

= ((g1g2, σ(g2)θ1 + θ2)u) (t)

= ((g1, θ1) · (g2, θ2)u) (t).

Thus, the formula ((g, θ)u) (t) = gu(σ(g)t + θ) indeed defines an action of the semi

direct product Gn S1 on the loop space. �

Now, we define a spatio-temporal symmetry group, which is the group of symme-

tries that fixes an orbit as a set.

Definition 3.1.4 The spatio-temporal symmetry group of the periodic orbit u(t) is

Σu = {(g, θ) ∈ Gn S1, gu(t) = u(σ(g)t+ θ)} < Gn S1.

Thus, symmetries of periodic solutions are given by isotropy subgroups of Gn S1.
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The following proposition characterises isotropy subgroups of G n S1 depending

on the subgroups of G. We will follow the settings given in Golubitsky et al. [19].

However, we will apply some changes according to the semidirect product structure.

Definition 3.1.5 Consider the semidirect product Gn S1 . A mapping φ : G→ S1,

satisfying the condition

φ(g1g2) = σ(g2)φ(g1) + φ(g2),

is called a crossed homomorphism.

Definition 3.1.6 Let H be a subgroup of G and let θ : H → S1 be a crossed group

homomorphism. The set

Hθ = {(h, θ(h)) ∈ Gn S1, h ∈ H},

is called a twisted subgroup of Gn S1.

Proposition 3.1.7 Let Σ be an isotropy subgroup of GnS1 and S1 acts freely outside

the origin, with Σ 6= G n S1. Let π : G n S1 → G be the projection, and H = π(Σ).

Then,

1. π : Σ→ H is an isomorphism.

2. There is a crossed homomorphism θ : H → S1 such that Σ = Hθ.

Proof

1. By the fact that S1 is acting freely outside the origin; the projection π : Σ→ H

is an isomorphism.

2. The isomorphism π : Σ → H guarantees the existence of a map, θ : H →

S1 such that each element in Σ can be uniquely written as (h, θ(h)), h ∈ H.

It remains to prove that θ is a crossed homomorphism, for that purpose, let

(h1, θ(h1)), (h2, θ(h2)) ∈ Σ. By Definition 3.1.2, we have

(h1, θ(h1)) · (h2, θ(h2)) = (h1h2, σ(h2)θ(h1) + θ(h2))

= (h1h2, θ(h1h2)).

Therefore,

θ(h1h2) = σ(h2)θ(h1) + θ(h2),

which proves that θ is a crossed homomorphism. �
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3.2 The Liapunov-Schmidt reduction

The classical way of finding periodic orbits in Hamiltonian systems is by solving an

equation on the loop space C2π defined below. This equation is of infinite dimension

and can be reduced by a procedure called the Liapunov-Schmidt Reduction. In other

words, the problem of finding periodic orbits of a given system, with period close to

the period of the linear system, which we rescale to be 2π, is equivalent to the problem

of finding zeros of a suitable map Φ on the loop space, with a parameter τ representing

the perturbed period. The Liapunov-Schmidt procedure reduced the original problem

to finding zeros of the reduced bifurcation equation which is of finite dimension, and

inherits symmetry properties of the original map Φ. Moreover, the bifurcation equation

will be a Hamiltonian vector field. In this section, we will give an overview of that

method, and how to use it in finding periodic orbits near an equilibrium point in a

reversible equivariant Hamiltonian system . We will use the method introduced in [9]

and [16]. In addition, some useful details can be found in [15].

Now, we give the general assumptions of the Liapunov-Schmidt reduction. Let

f : V → V be the Hamiltonian vector field generated by the Hamiltonian function

H : V → R and f(0) = 0, where V is a symplectic space of dimension 2n. Let G be a

compact Lie group acting on V , and f a G-reversible equivariant Hamiltonian vector

field. For simplicity, we divide the Liapunov-Schmidt reduction into few basic steps.

3.2.1 Defining the operator Φ

Let C2π be the Banach space of R2n-valued, 2π-periodic mappings, and let C12π be

the space of C2π functions that are continuously differentiable. Let
du

ds
= f(u) be

a Hamiltonian dynamical system with 0 as an equilibrium point. By introducing a

scaling parameter τ let t = (1 + τ)s so we have
d

ds
= (1 + τ)

d

dt
. Define the map

Φ : C12π × R→ C2π,

Φ(u, τ) = (1 + τ)
du

dt
− f(u). (3.2)

It is readily seen that zeros of Φ are periodic solutions of the given Hamiltonian system

with period 2π
1+τ

. Now we can define the group action on the loop space C2π or C12π as

follows:

T : G̃× C2π → C2π,
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(Tgu)(t) = ρ(γ)(u(σ(γ)t+ θ)),

where g = (γ, θ) is an element of G̃ = Gn S1.

Lemma 3.2.1 The map Φ is G̃-reversible equivariant, that is

Φ(Tgu, τ) = σ(γ)TgΦ(u, τ),∀g = (γ, θ) ∈ G̃.

Proof By the definition of Φ and the action of Tg one can write

Φ(Tgu, τ)(t) = (1 + τ)
d

dt
((Tgu)(t))− f(Tgu)(t)

= (1 + τ)
d

dt
(ρ(γ)(u(σ(γ)t+ θ))− f(ρ(γ)(u(σ(γ)t+ θ))

= (1 + τ)σ(γ)ρ(γ)
du(s)

ds
− ρ(γ)σ(γ)f(u(s)), s = σ(γ)t+ θ

= σ(γ)

[
(1 + τ)ρ(γ)

du(s)

ds
− ρ(γ)f(u(s))

]
= σ(γ)ρ(γ)

[
(1 + τ)

du(s)

ds
− f(u(s))

]
= σ(γ)ρ(γ)Φ(u, τ)(σ(γ)t+ θ)

= σ(γ)TgΦ(u, τ). �

3.2.2 The linearisation of Φ

The linear part of Φ is defined by:

L = (dΦ)(0,0).

First, we calculate the directional derivative (dΦ(u, τ))(v) at (u, τ) ∈ C12π × R in the

direction of v,

(d(u, τ)Φ)v = lim
h→0

Φ(u+ hv, τ)− Φ(u, τ)

h

= lim
h→0

(1 + τ) d
dt

(u+ hv)− f(u+ hv)− (1 + τ)du
dt

+ f(u)

h

= (1 + τ)
dv

dt
− lim

h→0

f(u+ hv)− f(u)

h

= (1 + τ)
dv

dt
− (df(u))v.

Thus,

Lu =
du

dt
− Lu,
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where L = (df)0. Now let u ∈ kerL, this means

du

dt
= Lu. (3.3)

By solving the linear system (3.3), we get

u(t) = u(0) expLt.

Therefore, kerL corresponds to the periodic solutions of the linear system
du

dt
= Lu

with period 2π.

3.2.3 The splittings

We start by defining the Fredholm operator, as given in [17].

Definition 3.2.2 Let X and Y be two Banach spaces. A bounded linear operator

F : X → Y is called Fredholm if

1. kerF is a finite dimensional subspace of X .

2. rangeF is a closed subspace of Y of finite codimension.

Definition 3.2.3 If F is a Fredholm operator, the index of F is the integer

index F = dim kerF − codim rangeF .

The following proposition motivates the introduction of Fredholm operators.

Proposition 3.2.4 (Proposition 1.3, [17]) If F : X → Y is Fredholm, then there

exist closed subspaces Mand N of Xand Y, respectively, such that

X = kerF ⊕M, Y = N ⊕ rangeF . (3.4)

By the Liapunov-Schmidt construction L is naturally G̃-reversible equivariant i.e.

L ◦ Tg = σ(γ)Tg ◦ L.

In the following lemma we prove the invariance of kerL and rangeL.

Lemma 3.2.5 kerL and rangeL are both invariant, under the action of Tg.
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Proof First, let u ∈ kerL and g ∈ G̃ . By L reversing equivariance, we have

L(Tgu) = σ(γ)TgL(u) = 0.

Thus, (Tgu) ∈ kerL. For the second part, assume v ∈ rangeL i.e. v = L(u), u ∈ C12π.

We have

Tgv = Tg(L(u)) = σ(γ)L(Tgu),

which means that Tgv ∈ rangeL. �

For Fredholm operators of index zero, the subspaces M and N can be chosen to

be the orthogonal complements

M = (kerF)⊥, N = (rangeF)⊥.

In the Liapunov-Schmidt procedure, the operator L : C12π → C2π is a Fredholm operator

of index zero by [17]. Therefore,

dim kerL = dim(rangeL)⊥.

Accordingly, the splittings in (3.4) take the form

C12π = kerL ⊕ (kerL)⊥, C2π = (rangeL)⊥ ⊕ rangeL. (3.5)

Note that the orthogonal complements are taken with respect to the natural inner

product in C2π and C12π
[u, v] =

∫
G̃

〈Tgu, Tgv〉dµ,

where 〈u, v〉 = 1
2π

∫ 2π

0
[u(t)]tv(t)dt and µ is a normalised Haar measure for G̃. The

inner product [u, v] is Tg invariant, because for g, g′ ∈ G̃ we have

[Tg′u, Tg′v] =

∫
G̃

〈TgTg′u, TgTg′v〉dµ

=

∫
G̃

〈Tgg′u, Tgg′v〉dµ

= [u, v].

Therefore, the complements (kerL)⊥ and (rangeL)⊥ are Tg invariant, which makes

the two decompositions in (3.5) Tg invariant. Now, define the projections

E : C2π → rangeL,
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I − E : C2π → (rangeL)⊥.

Clearly, solving the equation Φ(u, τ) = 0 is equivalent to solving the pair

EΦ(u, τ) = 0, (3.6)

(I − E)Φ(u, τ) = 0. (3.7)

Commuting properties of these projections are given in [9] and we recall them in the

following lemma.

Lemma 3.2.6 The projections E and I − E commute with the action of Tg.

Proof By the decomposition (3.5), the element u ∈ C2π can be written as

u = v + w, v ∈ (rangeL)⊥ andw ∈ rangeL.

Therefore,

Tg(E(u)) = Tgw = E(Tgw) = E(Tgv + Tgw) = E(Tgu).

Using a similar argument, one can write

Tg((I − E)u) = Tgv = (I − E)(Tgv) = (I − E)(Tgv + Tgw) = (I − E)(Tgu),

and the lemma follows. �

Our aim now is to solve Equation (3.6) and substitute its solution into (3.7), which

will give the final equation for the desired periodic orbits. We shall make use of the

implicit function theorem.

By the decomposition (3.5), u ∈ C12π can be written as u = v+w with v ∈ kerL, w ∈

(kerL)⊥. Therefore,

EΦ(u, τ) = EΦ(v + w, τ) = 0. (3.8)

We define the map B : kerL × (kerL)⊥ × R→ rangeL by

B(v, w, τ) = EΦ(v + w, τ).

The differential of B with respect to w at the origin is

E(dΦ)(0,0) = EL = L,
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by the definition of E as the projection onto rangeL. Consider the restriction

L : (kerL)⊥ → rangeL.

Since L is a Fredholm operator of index zero, then it is invertible on (kerL)⊥. By the

implicit function theorem, Equation (3.6) can be uniquely solved for w = W (v, τ). It

is easily checked that W commutes with Tg.

3.2.4 Reduction

The Liapunov-Schmidt method reduces the original problem to the problem of finding

zeros of the bifurcation map ϕ defined by

ϕ : kerL × R→ (rangeL)⊥,

ϕ(v, τ) = (I − E)Φ(v +W (v, τ), τ),

where W : kerL × R → (kerL)⊥ is the unique function that solves the equation

EΦ(v + W (v, τ), τ) = 0. The following proposition describes the symmetry of the

bifurcation map.

Proposition 3.2.7 (Proposition 4.1, [9]) If f is G-reversible equivariant, then the

bifurcation map ϕ is G̃-reversible equivariant, i.e.

ϕ(Tgv, τ) = σ(γ)Tgϕ(v, τ),∀g ∈ G̃.

This proposition shows that the reduced problem inherits the same symmetry proper-

ties as the original one.

3.2.5 The Hamiltonian structure

In this section, we discuss the consequences of the Hamiltonian structure. The main

result here is that the reduced bifurcation map is also a Hamiltonian vector field, as

stated in [9] and [16]. One can prove that Φ is a Hamiltonian vector field, with respect

to the weak symplectic form

Ω(u, v) =
1

2π

∫ 2π

0

ω(u(s), v(s)) ds,
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and the Hamiltonian function

H(u, τ) =
1

2π

∫ 2π

0

(
1

2
ω

(
(1 + τ)

du

ds
, u

)
−H(u)

)
ds.

This is equivalent to

duH · v = Ω(Φ, v).

Moreover, the weak symplectic form Ω and the Hamiltonian function H have the same

(anti-)invariance properties as ω and H, respectively. That is, for g = (γ, θ) ∈ G̃ we

have

Ω(Tgu, Tgv) =χ(γ)Ω(u, v),

H(Tgu, Tgv) =σ(γ)χ(γ)H(u, v).
(3.9)

Theorem 6.2 in [16] states that if

kerL = kerL∗, (3.10)

then, the bifurcation map is a Hamiltonian vector field. Equivalently, the condition

(3.10) can be written as

J (kerL) = kerL. (3.11)

In the following lemma, we illustrate a useful way of checking the condition (3.11).

Lemma 3.2.8 If the matrix L is skew-symmetric, then kerL is J invariant.

Proof It is known from the Hamiltonian structure that L = JS, where J is skew-

symmetric, and S is symmetric. Consequently, LT = −SJ. Thus,

LT = −L⇔ SJ = JS.

Now, we study the J invariance condition on kerL.

u ∈ kerL ⇒

u̇(t) = Lu(t),∀t

= JSu(t).

Accordingly,
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d

dt
(Ju(t)) = Ju̇(t), ∀t

= J(JS)u(t)

= J(SJ)u(t)

= (JS)Ju(t)

= L(Ju(t)).

Therefore, kerL is J invariant. �

All problems discussed in this thesis are finite dimensional, and the condition (3.11)

is satisfied by the previous lemma. As a result, the bifurcation map is a Hamiltonian

vector field, and the corresponding Hamiltonian function satisfies the (anti-)invariance

properties given in (3.9), with respect to the action of G̃ restricted to kerL.

These are the general steps of the Liapunov-Schmidt reduction with Hamiltonian

symmetric structure. After applying the method, one needs to solve the bifurcation

equation in order to find the periodic solutions of the studied problem.

3.3 General existence theorems

In this section, we introduce some remarkable theorems on the existence of periodic

solutions in the Hamiltonian context. We will start with the Liapunov center theorem,

which is considered as one of the most basic and fundamental results on the existence

of periodic orbits near equilibria in Hamiltonian systems. The theorem states that

for each non-resonant purely imaginary eigenvalue, there exists a family of periodic

orbits parameterised by the energy level with period close to 2π in a neighbourhood of

an equilibrium point, see [1, 18]. One main assumption in this theorem was the non-

resonance in eigenvalues. This condition was relaxed later by Weinstein [36] and Moser

[31] and the result is known as the Weinstein- Moser theorem. The last theorem to be

considered in this section is the equivariant Weinstein-Moser theorem due to Montaldi

et al. [28] which takes symmetry into account. Theorem statements are taken from

[18].

Consider the following definition:
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Definition 3.3.1 An eigenvalue iω of L is non-resonant if it is simple, and there is

no integer multiple of iω which is also an eigenvalue. Otherwise, iω is a resonant

eigenvalue.

Now, we give assumptions of the Liapunov center theorem. Let H : V → R be a

Hamiltonian function defined on the symplectic space V , and let p be an equilibrium

point.

Theorem 3.3.2 (The Liapunov center theorem, [18]) If the linearised flow at

an equilibrium has a simple, non-resonant, purely imaginary eigenvalue iω, then there

exists a smooth two-dimensional submanifold of V , which passes through p and inter-

sects every energy level near p in a periodic orbit, such that the period of that orbit

approaches 2π
|ω| for orbits near p.

•
p

Figure 3.1: Liapunov center family of periodic orbits encircling an equilibrium p.

This simply means that for each simple non-resonant eigenvalue, there exists a one-

parameter family of periodic orbits, with period close to that of the linear system (see

Figure 3.1). Many authors tried to extend this result to more general systems; one of

the most remarkable ones is due to Weinstein and Moser [36, 31], who allowed multiple

eigenvalues. This led to defining the resonance space as follows:

Consider the linear system ẋ = Lx with an initial condition x(0) = x0. Solutions

of the system are given by x(t) = exp(tL)x0. A periodic solution with period λ must

satisfy x(λ) = x0 and thus, (exp (λL)− I)x0 = 0.

Definition 3.3.3 For λ ∈ R, the resonance space Vλ for the linear system ẋ = Lx is

defined by

Vλ = ker(exp(λL)− I).
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In other words, the resonance space Vλ is a subspace of the phase space that consists

of all periodic solutions of a period λ. Note that if iω is non-resonant eigenvalue of L,

then for λ = 2π/ω, dimVλ = 2.

Let iω be a nonzero purely imaginary eigenvalue of the linear system L. Assume

x = u+ iv to be an eigenvector associated to the eigenvalue iω. Therefore,

Lx = iωx,

Lu+ iLv = −ωv + iωu.

Taking the real and imaginary parts yield

Lu = −ωv,

Lv = ωu.

It is readily verified that the function x(t) = u cosωt − v sinωt is a periodic solution

of the linear system, with period 2π
ω

and initial condition x(0) = u. An equivalent

definition of the resonance space is given by the following.

Definition 3.3.4 Let iω be a nonzero purely imaginary eigenvalue of the linear system

L and V = TpV . The resonance space Vω ⊆ V is the unique subspace of V , maximal

with respect to all eigenvalues of L|Vω being integer multiples of iω. Equivalently,

Vω is the (real part of the) sum of the generalised eigenspaces of L for eigenvalues

kiω, k ∈ Z.

Weinstein proved in the celebrated paper [36] that even with resonance, there

exist at least 1
2

dimVω families of periodic solutions on each energy level near p. The

proof was simplified later by Moser in [31], and subsequently, became known as the

Weinstein-Moser theorem.

Theorem 3.3.5 (The Weinstein-Moser theorem, [18]) If iω is an eigenvalue of

the linear system and

(1) d2Hp is non-degenerate,

(2) d2Hp|Vω is positive definite,

then there exist at least 1
2

dimVω periodic solutions on each energy level ε2 +H(p), for

sufficiently small ε ∈ R.
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Although Weinstein-Moser was a strong result, it failed to predict the correct

number of periodic solutions in equivariant Hamiltonian systems. Consequently, it

needed to be modified to cover the symmetry settings. Montaldi et al. [28] applied

symmetry conditions to Weinstein-Moser theorem, and proved their well-known result:

the equivariant Weinstein-Moser theorem.

Let Γ be a compact Lie group acting symplectically on V , let p ∈ V be a fixed point

for Γ, and let the Hamiltonian H be Γ invariant. Furthermore, let iω be a non-zero

purely imaginary eigenvalue of the linear system L. Note that the symmetry often

forces some eigenvalues to be resonant. As before, assume that

(1) d2Hp is a non-degenerate quadratic form,

(2) d2Hp|Vω is positive definite.

Theorem 3.3.6 (The equivariant Weinstein-Moser theorem, [18]) Suppose that

the Hamiltonian H satisfies (1) and (2). Then, for every isotropy subgroup Σ of

the Γ × S1 action on Vω, and for all sufficiently small ε ∈ R, there exist at least

1
2

dim Fix (Σ) periodic orbits with periods near 2π/ω and symmetry group containing

Σ, on the energy surface H = H(p) + ε2.

In the following chapters, we will prove the existence of families of periodic orbits

near an equilibrium point in different classes of Hamiltonian systems with symmetry,

using the Liapunov-Schmidt procedure illustrated in this chapter. By changing the

symmetry groups we find that there exist different families of periodic orbits near the

origin under some generic conditions. These results suggest that we can extend our

results and analysis to more general settings e.g. a reversing equivariant Weinstein-

Moser theorem.



Chapter 4

Symplectic time-reversing

involution

In this chapter, we prove the existence of symmetric and non-symmetric periodic

solutions in Hamiltonian systems, with a reversing involutory symmetry acting sym-

plectically (type SR in Table 2.1). The problem was first studied by Buzzi and Lamb

[9], but there is a minor sign error in the calculations in Lemma 6.4, which affects

the statement in their Theorem 6.1. They (correctly) prove the existence of a three-

dimensional conical subspace of symmetric periodic solutions in a neighbourhood of

the origin if the linearisation has two pairs of purely imaginary eigenvalues rescaled

to be ±i. Also, they find that the origin is contained in two 2-dimensional manifolds,

each containing a non-symmetric family of periodic solutions, with period close to 2π.

Using our expressions for the (semi-)invariants, we first recover their result on the sym-

metric solutions, and then we correct their Theorem 6.1 to show that generically, there

may or may not be two families of non-symmetric periodic orbits in a neighbourhood

of the equilibrium point 0, depending on the coefficients of the Hamiltonian. Buzzi and

Lamb also distinguish between two cases, called elliptic and hyperbolic, distinguishing

between the possibilities of the period function on the three-dimensional family being

monotonic or not. It turns out that this distinction coincides with the two cases of

existence or non-existence of non-symmetric periodic orbits. The work presented in

this chapter is published in Alomair and Montaldi [2].

The following sections will give some background materials and our new proofs.

44
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4.1 Linear reversible Hamiltonian vector fields

Let ẋ = f(x), x ∈ R2n be a Hamiltonian system which is purely reversible under the

action of the symplectic involution R. Also, assume that L is the linear system at 0

and J is the linear structure map. In [21], Hoveijn et al. give normal forms of linear

systems in eigenspaces of (anti-)automorphisms of order two, which can be adapted

to our problem. These normal forms are based on writing minimal 〈J,R〉−invariant

subspaces. Since we are interested in generic systems with codimension zero, by [21]

we can only focus on the case when L is semi-simple on minimal invariant subspaces.

Also, we assume that L has at least one pair of purely imaginary eigenvalues ±i after

rescaling. Normal forms of R, J and L are given in the following lemma.

We use the notation

I2 =

1 0

0 1

 , J2 =

0 −1

1 0

 .

Lemma 4.1.1 (Lemma 3.1, [9]) Let L be a linear Hamiltonian vector field on R2n.

Suppose L is R-reversible, with R acting symplectically (symmetry type SR).

Let V be a minimal (L, J,R)-invariant subspace, on which L has eigenvalues ±i. Then,

dimV = 4 and R|V , J |V and L|V can take the following normal forms:

R|V =

 0 I2

I2 0

 , J |V =

 J2 0

0 J2

 , and L|V =

 J2 0

0 −J2

 .

4.2 The existence of periodic orbits

In this section, we prove the existence of symmetric and non-symmetric periodic so-

lutions in Hamiltonian systems, with a reversing symmetry acting symplectically. We

start by choosing the set of (semi-)invariants, according to the group action. After

that, we write the formula of the reduced Hamiltonian deduced from the Liapunov-

Schmidt procedure described in Chapter 3. Finally, we solve the bifurcation equation

in order to find the desired periodic solutions, and classify them according to their

symmetry.

By the normal forms given in Lemma 4.1.1, we have dim kerL = 4, so we can write



CHAPTER 4. SYMPLECTIC TIME-REVERSING INVOLUTION 46

kerL ∼= C2. Therefore, the bifurcation map is given by

ϕ : C2 × R→ C2,

ϕ = 2J∇zh,

with Hamiltonian function

h : C2 × R→ R.

Denote by ZR2 the cyclic group generated by R. Together with the circle action we

have ZR2 n S1. The reversing symmetry R acts on C2 by

R(z1, z2) = (z2, z1),

while the S1 action is defined by

θ(z1, z2) = (eiθz1, e
−iθz2).

If E is the ring of S1 invariants, then one can write

E = E+ ⊕ E−,

where E+ consists of ZR2 invariants and E− consists of ZR2 anti-invariants.

Lemma 4.2.1 If ZR2 n S1 acts on C2 as above, then

1. E is the ring generated by A,B,C,D where A = |z1|2, B = |z2|2, C + iD = 2z1z2.

2. E+ is the subring of E generated by N,C,D where N = |z1|2 + |z2|2, and E− is

the module over E+ generated by the function δ = |z1|2 − |z2|2.

3. The orbit map O : C2 → R3 defined by (z1, z2)→ (N,C,D) has image

{(N,C,D) | N2 ≥ C2 +D2}.

Note that the functions N,C,D and δ satisfy the identity δ2 = N2 − C2 −D2.

Before we prove Lemma 4.2.1 we will state the following theorem by Schwarz [32],

which is used in writing the formula of the Hamiltonian function according to its

invariance properties.
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Theorem 4.2.2 (Schwarz,[32]) Let G be a compact Lie group acting on the vector

space V . Let u1, u2, · · · , us be a Hilbert basis for the G invariant polynomials P(G).

Let f be a C∞, G invariant germ. Then there exists a smooth germ h ∈ Es such that

f(x) = h(u1(x), u2(x), · · · , us(x)).

Here Es is the ring of C∞ germs Rs → R.

Now we give the sketch of the proof of Lemma 4.2.1.

Proof We will prove this lemma by standard algebraic computations, similar to those

found for example in [19]. By the definition of the S1 action given above, we have

that the S1 invariant generators on C2 are A = |z1|2, B = |z2|2, C + iD = 2z1z2. We

select R invariant, real valued functions generated by A,B,C,D and they are N,C,D.

On the other hand there is only one R anti-invariant generator δ. By the relation

δ2 = N2−C2−D2, solutions will have meaning only when δ2 ≥ 0 which is equivalent

to N2 ≥ C2 +D2. �

Now, we can apply Lemma 4.2.1 to our Hamiltonian. The function h is S1 invariant,

R anti-invariant and real valued. This implies

h = δg(N,C,D, τ). (4.1)

In order to find the periodic solutions, we need to solve the bifurcation equation

given by

∇zh = 0.

This can be written as


∂h

∂z1
= z̄1g + δ

∂g

∂z1
= 0,

∂h

∂z2
= −z̄2g + δ

∂g

∂z2
= 0.

(4.2)

We now consider, in turn, the symmetric and non-symmetric periodic orbits.

4.2.1 Symmetric periodic orbits

In finding symmetric periodic orbits, defined in Section 3.1, we recover the result in

[9].
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Theorem 4.2.3 (Theorem 6.1, [9]) Consider a symmetric equilibrium 0 of a re-

versible Hamiltonian vector field f with the reversing involution acting symplectically.

Suppose that Df(0) has two purely imaginary pairs of eigenvalues ±i with no other

eigenvalues of the form ±ki, k ∈ Z. Then, the equilibrium is contained in a three-

dimensional flow invariant conical subset, given by the equation δ = 0, and this con-

sists of a two-parameter family of symmetric periodic solutions whose period tends to

2π as they approach the equilibrium.

Note that a subset A of Rn is conical, if x ∈ A, λ ≥ 0⇒ λx ∈ A.

Proof Since the Hamiltonian is R anti-invariant, then all symmetric solutions are

zeros of the bifurcation equation that lie in the level set h = 0. For symmetric

solutions, we have δ = 0. Therefore, the bifurcation equation calculated in FixR =

{(z, z) | z ∈ C} will take the form

z̄g(z, τ) = 0.

Non-zero solutions yield g(z, τ) = 0. By the formula of the reduced Hamiltonian (4.1),

the lowest order term of the variable τ is given by

h = (|z1|2 − |z2|2)
τ

2
+ h.o.t.

This implies that ∂g
∂τ

(0, 0) = 1
2
6= 0. By the implicit function theorem for each small

non-zero z there exists a τ such that (z, z) lies in a periodic orbit with period 2π
τ+1

. By

reversing property, each R-symmetric solution intersects FixR in two points. Since

the conical subset δ = 0 is three-dimensional, and all points in FixR are solutions of

the bifurcation equation, we conclude that the conical subspace completely consists of

these periodic solutions, with period close to 2π as they approach the origin. �

4.2.2 Non-symmetric periodic orbits

We prove the existence of two families of non-symmetric periodic solutions under

suitable conditions on the coefficients of the Hamiltonian. This result is fairly different

from the one in [9]. To prove the existence of non-symmetric solutions, one needs to

solve the bifurcation equation without any symmetry conditions. By calculating the
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partial derivatives of g the bifurcation equation will be

∂h

∂z1
= z̄1(g + δgN) + z2δ(gC − igD) = 0,

∂h

∂z2
= z̄2(−g + δgN) + z1δ(gC − igD) = 0,

where gN =
∂g

∂N
, gC =

∂g

∂C
and gD =

∂g

∂D
. Multiplying the first equation by z1 and

the second one by z2, we get

|z1|2(g + δgN) + z1z2δ(gC − igD) = 0, (4.3)

|z2|2(−g + δgN) + z1z2δ(gC − igD) = 0. (4.4)

By adding (4.3) and (4.4) we have

δ(g +NgN + (C + iD)(gC − igD)) = 0. (4.5)

Taking the imaginary part of the above equation gives

DgC − CgD = 0. (4.6)

Therefore, Equation (4.5) will be

δ(g +NgN + CgC +DgD) = 0. (4.7)

By subtracting (4.4) from (4.3) we have

Ng + δ2gN = 0,

this can also be written by the formula

g

δ2
= −gN

N
. (4.8)

Substituting (4.6) and (4.8) in (4.7) yields

gN
N

= −gC
C
. (4.9)

Thus,
g

δ2
= −gN

N
=
gC
C

=
gD
D
,

which is equivalent to
N

gN
= − C

gC
= −D

gD
. (4.10)
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Note that if C = 0, then (4.6) implies D = 0. In this case, the bifurcation equation

takes a simple form, and can be solved for τ = τ(N). A similar argument can be used

for the case D = 0.

In order to prove the existence of non-symmetric periodic solutions to the original

Hamiltonian system, we need to prove the following lemma. Let

gN(0) = n, gC(0) = c, gD(0) = d.

Lemma 4.2.4 If n, c and d are not all zero, then there exists a unique solution in

R4 ∼= (τ,N,C,D)-space for the system of equations

g +NgN + CgC +DgD = 0, (4.11)

NgC + CgN = 0, (4.12)

DgC − CgD = 0, (4.13)

NgD +DgN = 0. (4.14)

Proof It is clear that the last three equations are not linearly independent, but we

will use them all to make up for the special cases, when one of the numbers n, c or d

is equal to zero. Suppose that n 6= 0. Then, we only need to solve (4.11),(4.12) and

(4.14). In order to apply the implicit function theorem, we need to study the following

Jacobian matrix, with respect to τ, C,D and N
1
2

2c 2d 2n

0 n 0 c

0 0 n d

 =
(
X Y

)
.

Since n 6= 0, the matrix X is non-singular. Therefore, by the implicit function theorem,

there exists a unique curve S = S(N), with dS(0) = −X−1Y , that solves the system.

If n = 0 but c 6= 0 we can choose Equations (4.11), (4.12) and (4.13). Solving by the

implicit function theorem gives a unique solution S = S(C). A similar argument can

be used for the remaining case with d 6= 0 and n = c = 0. �

Now, we state and prove the main theorem about the existence of non-symmetric

periodic solutions for the given reversible Hamiltonian system.

Theorem 4.2.5 Suppose that n2 6= c2 + d2, then there exist the symmetric Liapunov

centre families of periodic solutions filling the set δ = 0 described before. Moreover,
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i) If n2 > c2 + d2 then there exist two families of non-symmetric periodic orbits for

the Hamiltonian system distinguished by the sign of δ. The period of the periodic

solutions converges to 2π as the solutions tend to the origin.

ii) If n2 < c2 + d2 then the only periodic orbits with period close to 2π in a neigh-

bourhood of the origin are the symmetric ones.

Proof To prove the existence of non-symmetric periodic orbits, we have to solve the

equations (4.11),(4.12),(4.13) and (4.14). By the condition n2 6= c2 + d2 we have that

n, c and d cannot all be zero. Applying Lemma 4.2.4, we have a unique solution for

those equations. Therefore, we can write

N

gN
= − C

gC
= −D

gD
= s,

which is equivalent to N = gNs, C = −gCs and D = −gDs. To get non-symmetric

solutions, we should have δ2 = N2 − C2 −D2 > 0. This implies

(gN
2 − gC2 − gD2)s2 > 0, for s 6= 0,

and therefore, gN
2 − gC2 − gD2 > 0. Taking the limit at the origin gives n2 ≥ c2 + d2.

We conclude that non-symmetric solutions exist when n2 > c2 + d2 and split into two

families according to δ being positive or negative. On the other hand, when n2 < c2+d2

the only periodic orbits with period close to 2π in a neighbourhood of the origin are

the symmetric ones. �

4.3 Period distribution within the family of sym-

metric periodic solutions

Following the argument given in [9], we describe the structure of period distribution

for symmetric periodic solutions. Since FixR is two-dimensional, the level sets of the

period will be given by τ = τ(x, y). If we change the coordinates in a neighbourhood

of the origin, such that τ = ε1x̃
2 + ε2ỹ

2 with εj = ±1, where the sign depends on the

details of h and H, one can give the following definition:

Definition 4.3.1 The level sets of the period τ can be of two types:
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1. Elliptic when ε1ε2 = 1. In that case, the level sets of the period form approximate

circles, and τ increases or decreases monotonically with increasing radius.

2. Hyperbolic when ε1ε2 = −1. Here, the level sets of the period form two families

of approximate hyperbolae, one family with positive increasing τ and one with

negative decreasing τ .

(a) Elliptic (b) Hyperbolic

Figure 4.1: Curves on which the period of the symmetric periodic orbits is constant.

Now we can prove the following proposition:

Proposition 4.3.2 Depending on the quartic terms of the Hamiltonian function (and

hence, quadratic terms of the function g), among the three-dimensional subspace of

symmetric periodic solutions near the equilibrium point, the level sets of τ are elliptic

when n2 > c2 + d2 or hyperbolic when n2 < c2 + d2.

Proof As discussed in the proof of the existence of symmetric periodic solutions,

τ(x, y) can be calculated using the equation g(z, τ) = 0, with z = x + iy. Using our

variables N,C and D, and depending on the quadratic terms of that equation, we have

g(N,C,D, τ) = 0 which is equivalent to nN + cC + dD + · · · = − τ
2
, or

2n(x2 + y2) + 2c(x2 − y2)− 4d(xy) = −τ
2
. (4.15)

By the Morse Lemma, the shape of τ(x, y) near the origin is given by the determi-

nant

D = 42(n2 − c2 − d2).

Therefore, the family of periodic orbits is elliptic when (n2−c2−d2) > 0 or hyperbolic

when (n2 − c2 − d2) < 0. �

Accordingly, one can easily deduce the following corollary.
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Corollary 1 The two-dimensional families of non-symmetric periodic orbits given in

Theorem 4.2.5 exist if and only if the three-dimensional family of symmetric periodic

orbits is of elliptic type.

Comparing the expressions for τ in (4.7) and (4.15) shows that in the elliptic case, the

period is increasing in the three-dimensional family if and only if it is also increasing

in the two other modes (here increasing means increasing with increasing amplitude).



Chapter 5

Anti-symplectic involution

In this chapter, we analyse the problem of existence of periodic orbits in a Hamiltonian

system, which is equivariant under the action of an anti-symplectic involution S (type

AE in Table 2.1). This was studied by Li and Shi in [25], but that paper contains

a number of errors. Firstly, the form of the Hamiltonian is not sufficiently general,

for example, the polynomial function h = DN , where N = |z1|2 + |z2|2 and D =

−i(z1z2− z̄1z̄2) satisfies the symmetry of the problem, but is not in the form assumed

in [25]. This affects the results significantly, and the general form of the Hamiltonian

makes the calculations more difficult. There is also a serious error in the proof of

their Lemma 5.3. As a result, we consider the problem anew. We use a different

basis from [25], so the invariants and anti-invariants are different, and we determine

a general formula for the reduced Hamiltonian. Firstly, we find that no symmetric

periodic orbits can occur generically (opposite to the result claimed in [25]). Secondly,

we prove the existence of at least 2 and at most 12 families of non-symmetric periodic

solutions near the equilibrium point. The work presented in this chapter is published

in [2].

5.1 Linear equivariant Hamiltonian vector fields

In this problem, we study an equivariant Hamiltonian system under the action of

an anti-symplectic involution S. In order to find periodic orbits of that system, it

is essential to choose the appropriate formulas for the involution symmetry S, the

structure map J and the linear system L, on their minimal invariant space V . In

54



CHAPTER 5. ANTI-SYMPLECTIC INVOLUTION 55

addition, we write the reduced Hamiltonian according to the symmetry properties.

As in the previous chapter, we use the notation,

I2 =

1 0

0 1

 , J2 =

0 −1

1 0

 , and S2 =

1 0

0 −1

 .

By using the normal forms given in [21], we prove the following lemma.

Lemma 5.1.1 Let L be a linear Hamiltonian vector field on R2n. Suppose L is S-

equivariant, with S acting anti-symplectically (symmetry type AE).

Let V be a minimal (L, J, S)-invariant subspace, on which L has eigenvalues ±i. Then,

dimV = 4 and S|V , J |V and L|V can take the following normal forms:

S|V =

 0 S2

S2 0

 , J |V =

 J2 0

0 J2

 , and L|V =

 J2 0

0 −J2

 .

Proof Let W be a two-dimensional symplectic subspace, on which L has the pair

of eigenvalues ±i and S(W ) = W . It is known in the Hamiltonian context that L

and J can take the same normal form on W , taking into account multiplication of

time by a scalar. Equivariance property yields SL = LS. On W , L and J take the

same form, which gives SJ = JS. The latter equation contradicts the fact that S is

acting anti-symplectically. Thus, the minimal invariant subspace is four-dimensional,

and is given by V = W ⊕ W ′, W ′ = S(W ). The anti-symplectic property implies

J |W ′ = −J |W while equivariance gives L|W ′ = L|W = J |W . Therefore, normal forms

given in [21] show

S|V =

 0 I2

I2 0

 , J |V =

 J2 0

0 −J2

 , and L|V =

 J2 0

0 J2

 .

Now, we apply the change of coordinates

z1 = w1, z2 = w̄2.

In these new coordinates S, J and L take the forms given in the lemma above. �

An immediate consequence of our assumptions is that the Hamiltonian is S anti-

invariant (as pointed in Table 2.1). By the normal forms given in Lemma 5.1.1, we

have dim kerL = 4 i.e. kerL ∼= C2. The bifurcation map is given by the formula

ϕ : C2 × R→ C2,

ϕ = 2J∇zh,
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with the Hamiltonian

h : C2 × R→ R,

where J is the structure map. Now, define the action of ZS2 × S1 on C2 by

S(z1, z2) = (z̄2, z̄1),

θ(z1, z2) = (eiθz1, e
−iθz2).

In the following, we study the set of (anti-)invariants and find the appropriate

formula for h.

Lemma 5.1.2 For ZS2 × S1 acting on C2 as above, then

1. The Z2 × S1 invariant functions are generated by N,C,D2 where

N = |z1|2 + |z2|2, C + iD = 2z1z2.

2. The S1 invariant but Z2 anti-invariant functions are generated by δ and D, where

δ = |z1|2 − |z2|2.

According to the lemma above, the Hamiltonian h will take the form

h = δg1(N,C,D2, τ) +Dg2(N,C,D2, τ).

The bifurcation equation is given by

∂h

∂z1
= z̄1g

1 + δ
∂g1

∂z1
− iz2g2 +D

∂g2

∂z1
= 0, (5.1)

∂h

∂z2
= −z̄2g1 + δ

∂g1

∂z2
− iz1g2 +D

∂g2

∂z2
= 0. (5.2)

5.2 Symmetric periodic orbits

Symmetric periodic solutions of that equivariant Hamiltonian system lie in the set

FixS = {(z, z̄), z ∈ C}. Moreover, by anti-invariance, that is h◦S = −h, all symmetric

solutions will be in the level set h = 0. In order to obtain the symmetric periodic

solutions, we need to solve the bifurcation equation calculated in FixS. Consequently,

one needs to solve (5.1) and (5.2), with conditions: δ = D = 0 and N = C. Thus,

z̄1g
1 − iz2g2 = 0, (5.3)

−z̄2g1 − iz1g2 = 0. (5.4)
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By multiplying (5.3) by z1 and (5.4) by z2 we get

|z1|2g1 − iz1z2g2 = 0,

−|z2|2g1 − iz1z2g2 = 0.

Adding and subtracting these two equations yield

δg1 − i(C + iD)g2 = 0,

Ng1 = 0.

With the conditions δ = D = 0 we have

Cg2 = 0,

Ng1 = 0.

Since we are looking for nonzero solutions, then N = C 6= 0 and therefore, solutions

are common zeros of g1 and g2 in a neighbourhood of the origin. But, g1 and g2 are

independent functions, and generically, the only common zero in a neighbourhood of

the origin is 0 itself. As a result, there are no symmetric periodic orbits for the given

Hamiltonian system near the origin.

Remark 5.2.1 Another way to see the non-existence of symmetric solutions in that

system is by using a Liapunov function. Consider the Hamiltonian given by the formula

H = δ(a1 + b1N + c1C + · · · ) +D(a2 + b2N + c2C + · · · ).

Restricting the Hamiltonian system on the the two-dimensional invariant space FixS

gives

ẋ = 2y
(
a1 + 2(b1 + c1)(x

2 + y2) + · · ·
)

+ 2x
(
a2 + 2(b2 + c2)(x

2 + y2) + · · ·
)
,

ẏ = −2x
(
a1 + 2(b1 + c1)(x

2 + y2) + · · ·
)

+ 2y
(
a2 + 2(b2 + c2)(x

2 + y2) + · · ·
)
.

Easy computations show that the eigenvalues of the linear system are λ = 2(a2± a1i).

In order to get periodic orbits, we should have a2 = 0, and the system would be written

as

ẋ = 2y
(
a1 + 2(b1 + c1)(x

2 + y2) + · · ·
)

+ 2x
(
2(b2 + c2)(x

2 + y2) + · · ·
)
,

ẏ = −2x
(
a1 + 2(b1 + c1)(x

2 + y2) + · · ·
)

+ 2y
(
2(b2 + c2)(x

2 + y2) + · · ·
)
.
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Consider as Liapunov function V = x2 + y2. Differentiating V in the direction of the

Hamiltonian vector field yields

V̇ = 2xẋ+ 2yẏ

= 8(x2 + y2)2(b2 + c2).

The number b2 + c2 is generically non-zero and therefore, V̇ is non-zero. This means

that the sign of V̇ (either positive or negative) is constant along any trajectory, so

that the trajectory cannot be closed. Thus, the system does not have any symmetric

periodic orbits.

5.3 Non-symmetric periodic orbits

For the case of non-symmetric periodic orbits, we need to solve the pair (5.1) and (5.2)

without any additional conditions. Multiplying (5.1) by z1 and (5.2) by z2 gives

|z1|2g1 + δ
(
g1N |z1|2 + g1Cz1z2 + g1D22D(−iz1z2)

)
− iz1z2g2

+D
(
g2N |z1|2 + g2Cz1z2 + g2D22D(−iz1z2)

)
= 0, (5.5)

− |z2|2g1 + δ
(
g1N |z2|2 + g1Cz1z2 + g1D22D(−iz1z2)

)
− iz1z2g2

+D
(
g2N |z2|2 + g2Cz1z2 + g2D22D(−iz1z2)

)
= 0. (5.6)

By adding theses two equations, we have

δ
(
g1 +Ng1N + (C + iD)g1C + 2(−iD)(C + iD)g1D2

)
− i(C + iD)g2

+D
(
Ng2N + (C + iD)g2C + 2(−iD)(C + iD)g2D2

)
= 0. (5.7)

The real and imaginary parts of Equation (5.7) are

δ
(
g1 +Ng1N + Cg1C + 2D2g1D2

)
+Dg2 +D

(
Ng2N + Cg2C + 2D2g2D2

)
= 0, (5.8)

δ
(
Dg1C − 2CDg1D2

)
− Cg2 +D

(
Dg2C − 2CDg2D2

)
= 0. (5.9)

The last equation to be considered comes from subtracting (5.6) from (5.5), and it will

take the following form

Ng1 + δ2g1N +Dδg2N = 0. (5.10)
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This means, finding non-symmetric periodic solutions of the Hamiltonian system will

be done by solving the triple (5.8), (5.9) and (5.10). Clearly the system is singular at

the origin, and so can be solved using a blow-up method. For that purpose, define the

new coordinates (r, u, v, w, t, x) by setting

N = rv, C = ru, D = rw,

τ = rt, δ = rx,

combined together by the relation v2 = u2 + w2 + x2 according to the relation N2 =

δ2 + C2 +D2. Substituting these new coordinates in (5.8), (5.9) and (5.10) gives

r
(
vg1 + rx2g1N + rxwg2N

)
= 0,

r
(
x(g1 + rvg1N + rug1C + 2r2w2g1D2) + w(g2 + rvg2N + rug2C + 2r2w2g2D2)

)
= 0, (5.11)

r
(
x(rwg1C − 2r2wug1D2)− ug2 + w(rwg2C − 2r2uwg2D2)

)
= 0.

We are interested in the non-zero solutions, i.e. r 6= 0. The first step is to divide

by the common power of r in these equations. For simplicity, we can write the Taylor

series for the functions g1 and g2 as

g1(τ,N,C,D2) =
τ

2
+ a1N + c1C + d1D

2 + · · · ,

g2(τ,N,C,D2) = b2τ + a2N + c2C + d2D
2 + · · · ,

which, with the new coordinates, take the forms

g1 = rḡ1(r, t, v, u, w2) = r(
t

2
+ a1v + c1u+ d1rw

2 + · · · ),

g2 = rḡ2(r, t, v, u, w2) = r(b2t+ a2v + c2u+ d2rw
2 + · · · ).

Lemma 5.3.1 For g1, g2 and ḡ1, ḡ2 defined above , we have

giN = ḡiv, g
i
C = ḡiu and rgiD2 = ḡiw2 , for i = 1, 2.

Proof Knowing that ḡi(r, v, u, w2, t) = 1
r
gi(N,C,D2, τ), for i = 1, 2, one can write

dḡi =
−1

r2
drgi +

1

r
dgi

∂ḡi

∂r
dr +

∂ḡi

∂v
dv +

∂ḡi

∂u
du+ · · · = −1

r2
gidr +

1

r
[
∂gi

∂N
dN +

∂gi

∂C
dC + · · · ]

=
−1

r2
gidr +

1

r
[
∂gi

∂N
(vdr + rdv) +

∂gi

∂C
(udr + rdu) + · · · ].
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This implies
∂ḡi

∂v
=
∂gi

∂N
,

∂ḡi

∂u
=
∂gi

∂C
and

∂ḡi

∂w2
= r

∂gi

∂D2
.

Using our previous notation giN = ∂gi

∂N
, · · · ,etc. yields the result. �

According to Lemma 5.3.1, the system (5.11) can be written as

r2
(
vḡ1 + x2ḡ1v + xwḡ2v

)
= 0,

r2
(
x(ḡ1 + vḡ1v + uḡ1u + 2w2ḡ1w2) + w(ḡ2 + vḡ2v + uḡ2u + 2w2ḡ2w2)

)
= 0, (5.12)

r2
(
x(wḡ1u − 2wuḡ1w2)− uḡ2 + w(wḡ2u − 2uwḡ2w2)

)
= 0.

Dividing (5.12) by r2 and substituting r = 0 in the rest yields

v( t
2

+ a1v + c1u) + a1x
2 + a2xw = 0,

x( t
2

+ 2a1v + 2c1u) + w(b2t+ 2a2v + 2c2u) = 0,

c1xw − u(b2t+ a2v + c2u) + c2w
2 = 0.

(5.13)

Clearly, the system cannot be solved by the implicit function theorem at this point

in the argument. As a result, we will use a different technique, as illustrated in the

next section. We will show that (5.13) has non-degenerate solutions, then apply a

continuation argument to show (5.12) has solutions, when r > 0. Adding the relation

between the variables N,C,D and δ gives us the system

v(
t

2
+ a1v + c1u) + a1x

2 + a2xw = 0,

x(
t

2
+ 2a1v + 2c1u) + w(b2t+ 2a2v + 2c2u) = 0,

c1xw − u(b2t+ a2v + c2u) + c2w
2 = 0,

u2 + w2 + x2 − v2 = 0.

(5.14)

First of all, we want to count the number of all solutions of the system (5.14). For

that purpose, we need the following theorem.

Theorem 5.3.2 (Bezout’s theorem) Suppose n homogeneous polynomials on C in

n + 1 variables, of degrees d1, d2, .., dn, that define n hypersurfaces in the projective

space of dimension n. If the number of intersection points of the hypersurfaces is

finite, then this number is d1d2 · · · dn if the points are counted with their multiplicity.
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For more details and proof, see for example [20].

The system (5.14) consists of four homogeneous equations, each of degree two with

five variables. So, the equations are naturally viewed as equations on real projective

space. According to Bezout’s Theorem, we have 16 complex solutions for that system.

Therefore, there are at most 16 real solutions, and these can be divided into two main

types: solutions when v = 0 and solutions when v 6= 0.

5.3.1 Solutions when v = 0

In this case, algebraic calculations give a total of three different solutions:

1. {t ∈ R, u = 0, w = 0, x = 0}

2. {t =
∓2c2wi

b2
, u = ±wi, w ∈ R, x = 0}.

Now, we want to study the multiplicity of each solution. Consider the Jacobian matrix

for the system (5.14), with respect to v, t, u, w, x:

J =

( 1
2
t+2a1v+c1u

1
2
v c1v a2x 2a1x+a2w

2a1x+2a2w
1
2
x+b2w 2c1x+2c2w 2a2v+b2t+2c2u

1
2
t+2a1v+2c1u

−a2u −b2u −a2v−b2t−2c2u c1x+2c2w c1w
−2v 0 2u 2w 2x

)
.

Substituting the values of the first solution, and the condition v = 0 in J yields

J |v=0,sol.1=


1
2
t 0 0 0 0

0 0 0 b2t
1
2
t

0 0 −b2t 0 0

0 0 0 0 0

 .

To get the appropriate square submatrix, we eliminate the second column as t is

non-zero, and obtain

J1 =


1
2
t 0 0 0

0 0 b2t
1
2
t

0 −b2t 0 0

0 0 0 0

 .

This matrix is of rank three, and therefore, the first solution is not simple. To study

its multiplicity, we need to study the behaviour of the system (5.14) near a solution
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point, for example, say (v, t, u, w, x) = (0, 2, 0, 0, 0). Consider the system

v(1 + a1v + c1u) + a1x
2 + a2xw = ε1,

x(1 + 2a1v + 2c1u) + w(2b2 + 2a2v + 2c2u) = ε2,

c1xw − u(2b2 + a2v + c2u) + c2w
2 = ε3,

u2 + w2 + x2 − v2 = ε4.

(5.15)

Near the point (v, t, u, w, x) = (0, 2, 0, 0, 0), the first equation can be solved by the

implicit function theorem for v, the second for x and the third equation for u. As a

result, we end up with solving the equation

w2 + f(w) = ε4,

where f(w) is a function constructed by substituting the solutions from the implicit

function theorem in the last equation of the system (5.15). Clearly, f is of degree

greater than one. So, the least order coefficient is w2 and the studied solution is of

multiplicity two.

Regarding the multiplicity of the second and third solution, we should assume that

w 6= 0 for a non-zero solution; for simplicity let w = 1. The matrix J will take the

form

J |v=0,w=1,sol.2=


∓c2i/b2 ± c1i 0 0 0 a2

2a2 b2 2c2 0 ∓c2i/b2 ± 2c1i

∓a2i ∓b2i 0 2c2 c1

0 0 ±2i 2 0

 .

Since w = 1, we can omit the w-column and get

J2 =


∓c2i/b2 ± c1i 0 0 a2

2a2 b2 2c2 ∓c2i/b2 ± 2c1i

∓a2i ∓b2i 0 c1

0 0 ±2i 0

 ,

det J2 = −2(a22b
2
2 + b22c

2
1 − 2b2c1c2 + c22)/b2.

We can assume that this result is non-zero, and therefore, the second and the third

solutions are simple. We conclude that the case v = 0 corresponds to four solutions,

where the first solution is doubled, but the others are of multiplicity one. Note that
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v = 0 implies N = |z1|2 + |z2|2 = 0. Thus, these four solutions would not be counted

as periodic solutions of the given system, but will help us find out how many non-zero

periodic solutions are there.

5.3.2 Solutions when v 6= 0

There remain 12 solutions for the case v 6= 0 according to Bezout’s theorem. The

following proposition guarantees a minimum of two real solutions for the system (5.14).

Proposition 5.3.3 For any choice of coefficients {a1, a2, b2, c1, c2} the two points

{v ∈ R∗, t = −4a1v, u = w = 0, x = ±v},

satisfy Equation (5.14).

Proof Straightforward calculations yield the result. �

In order to find out more about the maximum number of real solutions we can

find, we will use a numerical approach. We choose various values for the constants in

the system (5.14), and then solve the equations using Maple. Since we are interested

in solutions with v 6= 0, we put v = 1 for simplicity. These numerical calculations

show that the system can have a maximum of at least eight real solutions, including

the two analytic solutions given by Proposition 5.3.3. In addition, there are examples

of systems with four or six real solutions. Our aim is to prove that for each of these

cases, the solutions are non-degenerate. Then, under any perturbation of the set of

coefficients, there still exist (nearby) real solutions (i.e. periodic solutions). In the

following, we study an example of each set of coefficients that has two, four, six or

eight real solutions for the studied system (5.14). Then, we check their non-degeneracy

conditions. Note that all numbers are rounded to four decimal digits.

Example 5.3.4 (A system with two real solutions) Consider the set

R = {a1 = 1, a2 = 5, b2 = 1, c1 = 2, c2 = 2, v = 1}.

The corresponding system has only two real solutions

{t = −4, u = 0, w = 0, x = ±v = ±1},
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which are those given in Proposition 5.3.3. The remaining 10 solutions are non-real

and they are

1. {t = −4.2∓ 2.4i, u = −0.2± 0.1i, w = 0.1± 0.2i, x = 1}

2. {t = −4.2± 2.4i, u = −0.2∓ 0.1i, w = −0.1± 0.2i, x = −1}

3. {t = −4.7211 − 2.6884i, u = −0.6402 + 0.1912i, w = ±0.5228 ± 0.3977i, x =

±0.7249∓ 0.1180i}

4. {t = −7.1863, u = 1.1519, w = ±0.2152i, x = ∓0.5297i}

5. {t = −4.7211 + 2.6884i, u = −0.6402 − 0.1912i, w = ±0.5228 ∓ 0.3977i, x =

±0.7249± 0.1180i}.

In order to check the non-degeneracy condition for the real solutions, we need to

study the proper submatrix of J for each solution, and ensure that its determinant is

non-zero. Substituting the values given in R and the two solutions in J yields

J1 =


0 0.5 2 ±5 ±2

±2 ±0.5 ±4 6 0

0 0 −1 ±2 0

−2 0 0 0 ±2

 .

Since t 6= 0, we omit the t−column and we have the submatrix

J11 =


0 2 ±5 ±2

±2 ±4 6 0

0 −1 ±2 0

−2 0 0 ±2

 ,

det J11 = ±20.

Therefore, these two solutions are non-degenerate.

A similar argument is used in the remaining examples, to prove the non-degeneracy

of solutions in each case.

Example 5.3.5 (A system with four real solutions) Let the set of coefficients in

the system (5.14) be

R = {a1 = 1, a2 = 5, b2 = −2, c1 = 2, c2 = 2, v = 1}.

The associated system has four real solutions and eight non-real ones given by
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1. {t = −4, u = 0, w = 0, x = ±v = ±1}

2. {t = 1.5602, u = −0.9681, w = ±0.0855, x = ±0.2354}

3. {t = 2.0735± 0.0441i, u = −0.2132± 0.5221i, w = 0.5221± 0.2132i, x = −1}

4. {t = 2.0735∓ 0.0441i, u = −0.2132∓ 0.5221i, w = −0.5221± 0.2132i, x = 1}

5. {t = 3.6488 + 0.5231i, u = −0.1494 − 0.1945i, w = ±0.8141 ± 0.1651i, x =

∓0.6638± 0.2463i}

6. {t = 3.6488 − 0.5231i, u = −0.1494 + 0.1945i, w = ±0.8141 ∓ 0.1651i, x =

∓0.6638∓ 0.2463i}.

Clearly, the first four solutions are real-valued. Substituting R and the first two

solutions in the matrix J implies

J1 =


0 0.5 2 ±5 ±2

±2 ±0.5 ±4 18 0

0 0 −13 ±2 0

−2 0 0 0 ±2

 .

Now, we can choose the submatrix J11 by omitting the second column, because t is

non-zero, and we find its determinant to be det J11 = ±692 6= 0. In the same way, we

can study the third and fourth solutions to get

J22 =


0.8439 2 ±1.1772 ±0.8985

±1.3262 ±1.2839 3.0071 −1.0924

4.8406 1.9929 ±0.8130 ±0.1711

−2 −1.9362 ±0.1711 ±0.4709

 .

We have det J22 = ±35.6351 6= 0.

Since the determinants are non-zero, all four solutions are non-degenerate, and we

can find an open set of coefficients that give four real solutions.

Example 5.3.6 (A system with six real solutions) Let

R = {a1 = −2, a2 = −11, b2 = −5, c1 = 1, c2 = 2, v = 1}.

The system (5.14) with those coefficients has the following solutions:
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1. {t = 8, u = 0, w = 0, x = ±v = ±1}

2. {t = −2.5592, u = 0.0346, w = ±0.4980, x = ∓0.8665}

3. {t = −3.7663, u = 0.1529, w = ±0.8984, x = ∓0.4118}

4. {t = −2.1607∓ 0.1659i, u = 0.0491∓ 0.4574i, w = 0.4574± 0.0491i, x = −1}

5. {t = −2.1607± 0.1659i, u = 0.0491± 0.4574i, w = −0.4574± 0.0491i, x = 1}

6. {t = −1.4887, u = 1.8444, w = ±0.2254i, x = ∓1.5333i}.

The non-degeneracy of the 6 real-valued solutions can be studied in pairs. Firstly, we

study the determinant of the appropriate matrix J11 associated to the first and second

solutions.

J11 =


0 1 ∓11 ∓4

∓4 ±2 −62 0

0 51 ±1 0

−2 0 0 ±2

 ,

det J11 = ∓20816.

Similarly, for the rest of solutions we have

J22 =


−5.2450 1 ±9.5314 ∓2.0120

∓7.4900 ±0.2590 −9.0658 −5.2104

0.3804 −1.9342 ±1.1255 ±0.4980

−2 0.0692 ±0.9960 ∓1.7330

 ,

det J22 = ∓164.8123,

J33 =


−5.7303 1 ±4.5299 ∓8.2346

∓18.1165 ±2.7698 −2.5567 −5.5774

1.6818 −8.4433 ±3.1816 ±0.8984

−2 0.3058 ±1.7967 ∓0.8236

 ,

det J33 = ±1827.2294.

As a result, all real solutions of this case are non-degenerate.
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We end with an example of a system with eight real solutions, which is the largest

number of real solutions we found using numerical calculations.

Example 5.3.7 (A system with eight real solutions) Let

R = {a1 = 1, a2 = −4, b2 = −1, c1 = 1, c2 = 2, v = 1}.

The corresponding solutions are as follows:

1. {t = −4, u = 0, w = 0, x = ±v = ±1}

2. {t = −4.9432, u = −0.2615, w = ±0.2274, x = ∓0.9380}

3. {t = −2.8537, u = 0.8527, w = ±0.4155, x = ±0.3165}

4. {t = −6.4260, u = 0.2940, w = ±0.8063, x = ∓0.5133}

5. {t = −4.32∓ 0.76i, u = −0.08± 0.06i, w = 0.06± 0.08i, x = −1}

6. {t = −4.32± 0.76i, u = −0.08∓ 0.06i, w = −0.06± 0.08i, x = 1}.

There are eight real solutions and their non-degeneracy conditions are

J11 =


0 1 ∓4 ±2

±2 ±2 −4 0

0 0 ±1 0

−2 0 0 ±2

 ,

det J11 = ±4,

J22 =


−0.7331 1 ±3.7521 ∓2.7857

∓3.6953 ∓0.9664 −4.1029 −0.9947

−1.0461 0.1029 ∓0.0284 ±0.2274

−2 −0.5231 ±0.4548 ∓1.8760

 ,

det J22 = ∓13.8083,

J33 =


1.4259 1 ∓1.2659 ∓1.0293

∓2.6915 ±2.2951 −1.7353 2.2786

3.4110 −2.2647 ±1.9787 ±0.4155

−2 1.7055 ±0.8311 ±0.6329

 ,

det J33 = ∓43.7450,
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J44 =


−0.9190 1 ±2.0533 ∓4.2517

∓7.4767 ±2.1984 −0.3979 −0.6249

1.1761 −3.6021 ±2.7117 ±0.8063

−2 0.5881 ±1.6125 ∓1.0266

 ,

det J44 = ±111.6657.

Therefore, all eight solutions are non-degenerate.

5.4 Conclusion

Bezout’s theorem guaranteed a total of 12 solutions for the case v 6= 0, but numerical

calculations found at least two and at most eight of them to be real. The last thing to

consider is the effect of the addition of higher order terms to the system (5.14), when

solving by the implicit function theorem. We will choose one of the previous examples,

and prove the existence of periodic orbits in that system, and the rest can be done in

the same way.

We consider the solution point (t, u, w, v, x, r) = (−4, 0, 0, 1, 1, 0) as a candidate.

We want to apply the implicit function theorem on the system in a neighbourhood of

that point. Note that the functions g1, g2 are given by

g1(N,C,D2, τ) =
τ

2
+ a1N + c1C + d1D

2 + e1N
2 + f1NC + g1Nτ + · · · , (5.16)

g2(N,C,D2, τ) = b2τ + a2N + c2C + d2D
2 + e2N

2 + f2NC + g2Nτ + · · · . (5.17)

In our new coordinates (5.16) and (5.17) will take the form

g1(N,C,D2, τ) = r[
t

2
+ a1v + c1u+ d1rw

2 + e1rv
2 + f1rvu+ g1rvt+ · · · ],

g2(N,C,D2, τ) = r[b2t+ a2v + c2u+ d2rw
2 + e2rv

2 + f2rvu+ g2rvt+ · · · ],

and therefore, the matrix formula associated to the implicit function theorem calcu-

lated at the point (−4, 0, 0, 1, 1, 0) will be
0 2 5 2 3e1 − 8g1

2 4 6 0 3e1 − 8g1

0 −1 2 0 0

−2 0 0 2 0

 =
(
X Y

)
.
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The matrix X is invertible, and by the implicit function theorem, we can solve v, u, w, x

as functions of r. The linear part of the Taylor series of those solutions is determined

by the matrix

X−1Y =


7/5 −9/10 −4/5 −7/5

−2/5 2/5 −1/5 2/5

−1/5 1/5 2/5 1/5

7/5 −9/10 −4/5 −9/10




3e1 − 8g1

3e1 − 8g1

0

0

 .

Those solutions can be written as functions of r as follows

v(r) = 1− 1

2
(3e1 − 8g1)r + h.o.t.

x(r) = 1− 1

2
(3e1 − 8g1)r + h.o.t.

v = w = 0.

Converting back to our basic coordinates N,C,D, δ gives

N = rv = r − 1

2
(3e1 − 8g1)r

2 + h.o.t.

δ = rx = r − 1

2
(3e1 − 8g1)r

2 + h.o.t.

C = D = 0.

This curve of solutions gives a one-parameter family of periodic orbits for the equiv-

ariant Hamiltonian system. Similarly, one can prove the existence of a one-parameter

family of periodic solutions for each case studied before, because of their non-degeneracy

conditions.

It remains to investigate whether there are more periodic orbits associated to the

higher order terms or not. By Theorem 5.1 in [29], which states if the Hamiltonian

is written in the form H = H2 + H4 + H̃, where H4 is homogeneous of degree 4 and

the truncated Hamiltonian H2 + H4 satisfies a non-degeneracy condition, then there

is a 1-1 correspondence which maps the nonlinear normal modes of H to those of

H2 + H4. One can verify the non-degeneracy condition for our problem and then we

conclude that there is no more periodic orbits coming from the higher order terms.

We summarise the results of this chapter in the following theorem.

Theorem 5.4.1 Consider an equilibrium point 0 of a C∞ equivariant Hamiltonian

vector field f , with the the symmetry S acting anti-symplectically and S2 = I. Assume
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that the linear Hamiltonian vector field L has two pairs of purely imaginary eigenvalues

±i and no other eigenvalues of the form ±ki, k ∈ Z. The reduced Hamiltonian is in

the form h = δg1(N,C,D2, τ) +Dg2(N,C,D2, τ). Then,

1. For an open dense set of coefficients {a1, a2, b2, c1, c2} there exists a neighbour-

hood of 0 with no symmetric periodic orbits, and at least two and at most 12

one-parameter families of non-symmetric periodic solutions of the equivariant

Hamiltonian system.

2. There exist open sets of coefficients Uj (j = 1, 2, 3, 4), such that for coefficients

in Uj there are precisely 2j one-parameter families of non-symmetric periodic

orbits of period close to 2π as they tend to zero.

Remark 5.4.2 Of course, it is perfectly possible there are open regions of the space of

coefficients, for which, there are 10 or 12 real one-parameter families of periodic orbits

through the origin: our numerical search was certainly not exhaustive. Although,

by Arnold’s principle of the fragility of all good things, one would expect relatively

smaller regions with higher numbers of real solutions, see [3].



Chapter 6

Some classes of reversible

equivariant Hamiltonian systems

This chapter aims to generalise the results on the existence of periodic orbits discussed

in the previous two chapters. In particular, we study the existence of periodic orbits

in two classes of reversible equivariant Hamiltonian systems. There is only a limited

amount of published work under the reversible equivariant Hamiltonian settings, such

as [29], which motivated us to study these problems.

The first problem we consider is a natural consequence of Chapter 4 and Chapter

5, that is analysing the reversible equivariant Hamiltonian system under the action of

the group G = ZR2 × ZS2 , where the involutions R and S are as defined in Chapter 4

and 5 respectively. This problem forms a section in [2].

Another generalisation that we discuss in this chapter is proving the existence of

families of periodic orbits in a reversible equivariant Hamiltonian system with respect

to the cyclic group ZR2r, where R is a reversing symmetry acting symplectically (type

SR in Table 2.1). We will denote reversible equivariant as (RE).

6.1 Periodic orbits in ZR2 ×ZS2 - RE Hamiltonian sys-

tems

The first simple example of a RE Hamiltonian system that we investigate in this

chapter is the system possessing both involutions, R and S, studied in the two previous

71
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chapters. These two involutions commute and generate the reversing equivariant group

G = ZR2 ×ZS2 . Recall that R is of type (SR) where S is (AE). In this section, we prove

the existence of families of periodic solutions in a neighbourhood of the origin in that

system.

By Lemma 4.1.1 and Lemma 5.1.1, the linearisation L and the involutions R and

S take the following forms

L =

 J2 0

0 −J2

 , R =

 0 I2

I2 0

 , S|V =

 0 S2

S2 0

 ,

where I2, J2 and S2 are as defined in Lemma 5.1.1.

By the Liapunov-Schmidt reduction, the reduced Hamiltonian h should be R and

S anti-invariant but S1 invariant. Recall the actions

R(z1, z2) = (z2, z1),

S(z1, z2) = (z̄2, z̄1),

θ(z1, z2) = (eiθz1, e
−iθz2).

Therefore, on C2 the function h will be a special case of the Hamiltonian in Chapter

4, and it takes the form

h(z1, z2, τ) = δg(N,C,D2, τ).

Accordingly, the bifurcation equation will be
∂h

∂z1
= z̄1g + δ

∂g

∂z1
= 0,

∂h

∂z2
= −z̄2g + δ

∂g

∂z2
= 0.

(6.1)

After taking partial derivatives, we multiply the first equation of (6.1) by z1 and the

second one by z2 to get

|z1|2g + δ[|z1|2gN + z1z2gC − 2iD(z1z2)gD2 ] =0, (6.2)

−|z2|2g + δ[|z2|2gN + z1z2gC − 2iD(z1z2)gD2 ] =0. (6.3)

Adding (6.2) to (6.3) gives

δ[g +NgN + (C + iD)gC − 2iD(C + iD)gD2 ] = 0. (6.4)
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Subtracting (6.3) from (6.2) implies

Ng + δ2gN = 0.

Thus, the bifurcation equation finally takes the form

δ[g +NgN + CgC + 2D2gD2 ] = 0,

Ng + [N2 − C2 −D2]gN = 0, (6.5)

δD[gC − 2CgD2 ] = 0.

Now, we classify the solutions according to their symmetry type.

6.1.1 Periodic orbits in the conical subset δ = 0

Substituting δ = 0 in the system of equations (6.5) yields

Ng = 0. (6.6)

For R-symmetric solutions, one needs to solve (6.6) in FixR. This implies

g(z, τ) = 0,

which can be solved for τ = τ(z), z ∈ FixR by the implicit function theorem. This

means, any periodic orbit in the subspace δ = 0 has symmetry R. Solving Equation

(6.6) for z ∈ FixS gives one periodic orbit of symmetry S, and it is therefore G-

symmetric (that is, the periodic orbit is invariant under every element of G). Moreover,

solving Equation (6.6) for z ∈ Fix (S, π) gives another orbit with symmetry S. Here

(S, π) ∈ Gn S1 and (S, π)(z1, z2) = (−z̄2,−z̄1).

6.1.2 Periodic orbits in δ 6= 0

Since all R or S-symmetric solutions must lie in the cone δ = 0, it remains to study

the existence of solutions with symmetry SR lying in the open subset δ 6= 0.

Clearly FixRS = {(z1, z2) | z1, z2 ∈ R} which implies D = 0 and therefore, the

system (6.5) takes the form

g +NgN + CgC = 0,

Ng + [N2 − C2]gN = 0.
(6.7)



CHAPTER 6. SOME CLASSES OF RE HAMILTONIAN SYSTEMS 74

Eliminating g from both equations gives

C(NgC + CgN) = 0. (6.8)

If C = 0, then by the fact ∂g
∂τ

(0) = 1
2

we can solve (6.7) using the implicit function

theorem. Now, if C 6= 0, and gN(0) = n, gC(0) = c are not both zero, then the

system (6.7) can be solved by the implicit function theorem. By the argument used

in Theorem 4.2.5, we conclude that SR-periodic solutions exist when n2 − c2 > 0.

Note that generically, we do not expect any non-symmetric solutions in the subset

δ 6= 0. That is because the bifurcation equation (6.5) in this case will take the form

g +NgN + CgC + 2D2gD2 = 0,

Ng + [N2 − C2 −D2]gN = 0, (6.9)

gC − 2CgD2 = 0.

Clearly, the third equation implies gC(0) = 0, which is not a generic condition. The

following theorem describes the families of periodic solutions existing in this system.

Theorem 6.1.1 Consider a symmetric equilibrium 0 of a ZR2 ×ZS2 -reversible equivari-

ant Hamiltonian vector field f , where R is a reversing involution acting symplectically,

and S is an involution acting anti-symplectically. Suppose that Df(0) has two purely

imaginary pairs of eigenvalues ±i with no other eigenvalues of the form ±ki, k ∈ Z.

Also, denote gN(0) = n and gC(0) = c. Then,

1. The conical subspace δ = 0 consists of a two-parameter family of R-symmetric

periodic solutions, with two of the periodic orbits having extra symmetry S.

2. There exist two Liapunov centre families of SR-symmetric periodic solutions in

the open subset δ 6= 0 provided that n2 − c2 > 0: one with δ > 0 and one with

δ < 0. These two families are exchanged by both involutions R and S.

The period of all such orbits tends to 2π as they approach the equilibrium.

Finally, we illustrate the relation between fixed point spaces of the involutions R, S, SR

and (S, π) geometrically. Buzzi and Lamb [9] show that the intersection between the

cone δ = 0 and the unit sphere in C2 is a torus T parameterised by two angles (θ1, θ2)

and draw FixR on T . In addition to that, we show the intersection between FixS and
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the torus T , which is given by the line θ2 = −θ1 and the intersection between Fix (S, π)

and T , which is given by θ1 + θ2 = π. The last thing is to intersect FixG with T ,

which gives a total of two points (0, 0) and (π, π) (shown as large dots in Figure 6.1).

Figure 6.1: Fixed point spaces on the torus in the cone {δ = 0}. The flow of the linear
system (the S1-action) restricted to the torus is parallel to the line Fix(S).

6.2 Periodic orbits in ZR2r-RE Hamiltonian systems

Our goal in this section is to prove a general statement on the existence of periodic

orbits in a ZR2r-reversible equivariant Hamiltonian system, where the generator R is a

reversing symmetry acting symplectically (type SR) on C2. This comes as a natural

generalisation of our work on systems with symmetry group ZR2 in Chapter 4. To the

best of our knowledge, such generalisation does not appear in the literature, so we

have constructed the problem from the beginning. This includes defining the group

action and choosing the appropriate formulas for the Hamiltonian, the linear system,

and therefore, the S1 action. This will be done in several steps. Firstly, we will

define the action of the cyclic group ZR2r on C2 taking into account reversing and

symplectic properties of its generator. Secondly, we will deduce the S1 action from the

linear Hamiltonian vector field. The final step will be solving the bifurcation equation,

according to the possible isotropy subgroups of ZR2r n S1.
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6.2.1 The group action

The main ingredient of the group ZR2r = 〈R〉 is the generator R, which is of order

2r, symplectic and time-reversing. Note that the order of the group should be even

because of the reversing property. We will use a representation theory argument to

write the general form of this group action. On R4 ' C2 a symplectic action is an

action that commutes with the matrix J or equivalently, an action that commutes with

the complex number i. Thus, we will use complex representations to define the action.

By the definition of the cyclic group ZR2r = 〈R〉 we have R2r = 1. Consequently, there

is a one-to-one correspondence between ZR2r and the 2r-roots of unity, i.e.

R→ eiθ0 ,

R2r → e2riθ0 = 1 = e2kiπ,

θ0 =
kπ

r
, k = 0, 1, . . . , 2r − 1.

Since ZR2r is abelian, then all its irreducible representations are one-dimensional. Ac-

cordingly, C2 can be written as a direct sum of two one-dimensional irreducible complex

representations of ZR2r. Without loss of generality, we can assume that

C2 = A1 ⊕ Ak, (6.10)

where A1 is the irreducible representation of the rotation eiπ/r and Ak is the irreducible

representation of the rotation ekπ/r and we will determine the value of k according to

the properties of the action.

Another property to be considered is time reversing. The Hamiltonian function

H should be R anti-invariant i.e. H(Rx) = −H(x). Therefore, we need to choose all

quadratic terms in C2 which are R anti-invariant. By (6.10) the ZR2r action on C2 can

be written as

R(z1, z2) = (eiπ/rz1, e
ikπ/rz2).

Possible R anti-invariance properties are described in Table 6.1

We deduce from Table 6.1 that the possible four-dimensional R anti-invariant

quadratic generators must have k = r ± 1. The last step is to check the possibil-

ity of the existence of periodic solutions, by evaluating the eigenvalues of the linear

Hamiltonian system associated to each of the two cases k = r ± 1.
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f(z) Rf(z) anti-invariant

z21 e2πi/rz21 yes, if r = 2
z̄21 e−2πi/rz̄21 yes, if r = 2
z1z̄1 z1z̄1 no
z22 e2πik/rz22 yes, if k = r/2
z̄22 e−2πik/rz̄22 yes, if k = r/2
z2z̄2 z2z̄2 no
z1z2 eiπ(k+1)/rz1z2 yes, if k = r − 1
z̄1z̄2 e−iπ(k+1)/rz̄1z̄2 yes, if k = r − 1
z̄1z2 eiπ(k−1)/rz̄1z2 yes, if k = r + 1
z1z̄2 e−iπ(k−1)/rz1z̄2 yes, if k = r + 1

Table 6.1: R anti-invariant generators on C2.

Case 1. k = r + 1

In this case, R anti-invariant generators are z1z̄2 and z̄1z2. Therefore, the quadratic

part of the Hamiltonian, which is R anti-invariant can be written as

H2(q1, p1, q2, p2) = a(q1q2 + p1p2) + b(q2p1 − q1p2),

where z1 = q1 + ip1, z2 = q2 + ip2 and a, b ∈ R. The Hamiltonian system will be

q̇1 = ap2 + bq2,

ṗ1 = −(aq2 − bp2),

q̇2 = ap1 − bq1,

ṗ2 = −(aq1 + bp1).

The linear system can be presented by the matrix

L =


0 0 b a

0 0 −a b

−b a 0 0

−a −b 0 0

 , (6.11)

which has two pairs of purely imaginary eigenvalues named λ = ±
√
a2 + b2 i. Thus, the

Hamiltonian system under the action R(z1, z2) = (eiπ/rz1,−eiπ/rz2) can be considered

while studying the existence of periodic solutions.
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Case 2. k = r − 1

Here, R anti-invariant generators are z1z2 and z̄1z̄2. The quadratic part of the Hamil-

tonian function will take the form

H2(q1, p1, q2, p2) = a(q1q2 − p1p2) + b(q1p2 + q2p1),

where z1 = q1 + ip1, z2 = q2 + ip2 and a, b ∈ R. The associated Hamiltonian vector

field is

q̇1 = −ap2 + bq2,

ṗ1 = −(aq2 + bp2),

q̇2 = −ap1 + bq1,

ṗ2 = −(aq1 + bp1).

The eigenvalues of the linear system are λ = ±
√
a2 + b2 which are always real-valued.

Therefore, the case k = r − 1 cannot possess any periodic solutions.

We conclude that, in order to study the existence of periodic orbits in a ZR2r-

reversible equivariant Hamiltonian system, with R acting symplectically, we define the

action on C2 by

R(z1, z2) = (eiπ/rz1,−eiπ/rz2).

We highlight two possibilities which we will consider in the coming sections:

• If r is odd, then Rr is a symplectic reversing involution, so it falls in the scope

of Buzzi and Lamb symmetry, studied in Chapter 4.

• If r is even, then Rr is a symplectic involution (not reversing).

6.2.2 The S1 action

We found that the linear Hamiltonian system (6.11) has eigenvalues ±
√
a2 + b2 i. For

the basic case when eigenvalues are ±i we apply the following coordinate changes. Let
√
a2 + b2 = 1, this is equivalent to saying a = sin t, b = cos t. Accordingly, L will take

the form

L =


0 0 cos t sin t

0 0 − sin t cos t

− cos t sin t 0 0

− sin t − cos t 0 0

 =

 0 e−it

−eit 0

 .



CHAPTER 6. SOME CLASSES OF RE HAMILTONIAN SYSTEMS 79

If we choose a transformation T to be

T =

e−it/2 0

0 eit/2

 ,

then T is symplectic and commutes with Z2r. Moreover, T satisfies

L′ = T−1LT =

 0 I2

−I2 0

 .

Thus, the later matrix L′ can be used to represent the linear Hamiltonian vector field

with reversing equivariant group ZR2r. Clearly, L′ has eigenvalues ±i.

It is known from the Liapunov-Schmidt reduction that the S1 action can be deduced

from the basis of kerL. The kernel condition is given by

Lv = 0⇒ dv

ds
= L′v

⇒ v = exp(sL′) v0,

for an initial condition v0. According to the formula of L′, kerL is generated by the

basis

e1(s) =


cos s

0

− sin s

0

 , e2(s) =


0

cos s

0

− sin s

 , e3(s) =


sin s

0

cos s

0

 , e4(s) =


0

sin s

0

cos s

 .

Therefore, the action of θ ∈ S1 on R4 is given by the matrix
cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

 .

In complex coordinates, the S1 action is given by cos θ sin θ

− sin θ cos θ

 ,

or shortly,

θ(z1, z2) = (cos θz1 + sin θz2,− sin θz1 + cos θz2).
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6.2.3 The bifurcation equation

A fundamental step in finding the periodic solutions for the given Hamiltonian system

is writing the bifurcation equation, which is given by

∇zh = 0,

where h is the reduced Hamiltonian. In order to write the bifurcation equation, one

needs to choose the set of R (semi-)invariant generators. Recall that we defined the

ZR2r n S1 action on C2 by

R(z1, z2) = (eiπ/rz1,−eiπ/rz2),

θ(z1, z2) = (cos θz1 + sin θz2,− sin θz1 + cos θz2).

The following lemma describes the (semi-)invariant functions of this action.

Lemma 6.2.1 If ZR2r n S1 acts on C2 as above, then

1. The S1 invariants are generated by N = |z1|2 + |z2|2, F + iG = z21 + z22 and

E = −i(z̄1z2 − z1z̄2).

2. The ZR2r n S1 invariant functions are generated by N,A,B, F 2 +G2 where

A+ iB = (z21 + z22)r = (F + iG)r.

3. The S1 invariant but R anti-invariant functions are generated by

E = −i(z̄1z2 − z1z̄2).

Furthermore, these generators satisfy the relation

E2 = N2 − (F 2 +G2).

The reduced Hamiltonian h is R anti-invariant, S1 invariant and real-valued. Ac-

cording to Lemma 6.2.1, h can be written as

h(z1, z2, τ) = Eg(N,A,B, F 2 +G2, τ).

The bifurcation equation, thus, takes the form

∂h

∂z1
= iz̄2g + E[gN z̄1 + gA(∂A

∂F
− i∂A

∂G
)z1

+gB(∂B
∂F
− i∂B

∂G
)z1 + 2gF 2+G2(F − iG)z1] = 0,

(6.12)
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∂h

∂z2
= −iz̄1g + E[gN z̄2 + gA(∂A

∂F
− i∂A

∂G
)z2

+gB(∂B
∂F
− i∂B

∂G
)z2 + 2gF 2+G2(F − iG)z2] = 0,

(6.13)

where gN , gA, . . . represent the partial derivatives of g with respect to N,A, . . . . Mul-

tiplying (6.12) by z1 and (6.13) by z2 gives

iz1z̄2g + E[|z1|2gN + gA(∂A
∂F
− i∂A

∂G
)z21

+gB(∂B
∂F
− i∂B

∂G
)z21 + 2gF 2+G2(F − iG)z21 ] = 0,

(6.14)

−iz̄1z2g + E[|z2|2gN + gA(∂A
∂F
− i∂A

∂G
)z22

+gB(∂B
∂F
− i∂B

∂G
)z22 + 2gF 2+G2(F − iG)z22 ] = 0.

(6.15)

Adding (6.14) and (6.15) and taking real and imaginary parts of the result yields

E[g +NgN + (F ∂A
∂F

+G∂A
∂G

)gA

+(F ∂B
∂F

+G∂B
∂G

)gB + 2(F 2 +G2)gF 2+G2 ] = 0,
(6.16)

E[(G∂A
∂F
− F ∂A

∂G
)gA + (G∂B

∂F
− F ∂B

∂G
)gB] = 0. (6.17)

Now we multiply (6.12) by z2 and (6.13) by z1

i|z2|2g + E[z̄1z2gN + (∂A
∂F
− i∂A

∂G
)z1z2gA

+(∂B
∂F
− i∂B

∂G
)z1z2gB + 2(F − iG)z1z2gF 2+G2 ] = 0,

(6.18)

−i|z1|2g + E[z1z̄2gN + (∂A
∂F
− i∂A

∂G
)z1z2gA

+(∂B
∂F
− i∂B

∂G
)z1z2gB + 2(F − iG)z1z2gF 2+G2 ] = 0.

(6.19)

By subtracting (6.19) from (6.18) we obtain

Ng + E2gN = 0.

Substituting E2 = N2 − (F 2 +G2) in the previous equation implies

Ng + (N2 − (F 2 +G2))gN = 0. (6.20)

Thus, the bifurcation equation is equivalent to the system of equations (6.16), (6.17)

and (6.20). In order to simplify these equations, we will apply two facts. Firstly,

since A and B are homogeneous in F and G of order r then, Euler’s theorem for

homogeneous functions implies F ∂A
∂F

+ G∂A
∂G

= rA and similarly F ∂B
∂F

+ G∂B
∂G

= rB.

Substituting these two formulas in (6.16) gives

E[g +NgN + rAgA + rBgB + 2(F 2 +G2)g(F 2+G2)] = 0. (6.21)
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Secondly, for any complex number z = F + iG the partial derivative operator ∂
∂z

is

defined by ∂
∂z

= 1
2
( ∂
∂F
− i ∂

∂G
). Therefore,

(F + iG)
1

2

(
∂

∂F
− i ∂

∂G

)
(F + iG)r = r(F + iG)r = r(A+ iB), (6.22)

since ∂
∂z

(z)r = rzr−1. On the other hand, by expanding the left hand side of Equation

(6.22) we have

1

2
[(F

∂

∂F
+G

∂

∂G
) + i(G

∂

∂F
− F ∂

∂G
)](A+ iB) =

1

2
[(F

∂A

∂F
+G

∂A

∂G
−G∂B

∂F
+ F

∂B

∂G
) + i(F

∂B

∂F
+G

∂B

∂G
+G

∂A

∂F
− F ∂A

∂G
)] =

r(A+ iB).

Taking real and imaginary parts of the latter equation implies

1

2
[rA−G∂B

∂F
+ F

∂B

∂G
)] = rA,

1

2
[rB +G

∂A

∂F
− F ∂A

∂G
)] = rB,

and therefore

F
∂B

∂G
−G∂B

∂F
= rA,

G
∂A

∂F
− F ∂A

∂G
= rB.

Accordingly, (6.17) will take the form

E[BgA − AgB] = 0. (6.23)

As a result, to prove the existence of periodic solutions of the studied ZR2r-RE Hamil-

tonian system one needs to solve equations (6.20), (6.21) and (6.23).

6.2.4 Isotropy subgroups of ZR
2r n S1

Another important step in finding symmetric periodic solutions of this problem is

determining their possible symmetries. In this subsection, we seek possible isotropy

subgroups of ZR2r n S1 with two-dimensional fixed point spaces. For this purpose, let

(Rk, θ)(z1, z2) = (z1, z2), for 1 ≤ k ≤ 2r.

In matrix form, and by applying the Rk action first, we have cos θekπi/r (−1)k sin θekπi/r

− sin θekπi/r (−1)k cos θekπi/r

z1
z2

 =

z1
z2

 .
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This is equivalent to having λ = 1 as an eigenvalue of the matrix on the left hand side.

Let α = ekπi/r then, the characteristic equation for λ = 1 is given by∣∣∣∣∣∣α cos θ − 1 (−1)kα sin θ

−α sin θ (−1)kα cos θ − 1

∣∣∣∣∣∣ = 0. (6.24)

To solve Equation (6.24), we consider two cases:

1. k is an even number.

2. k is an odd number.

Isotropy subgroups when k is an even number

If k is an even number then (6.24) will take the form

(α cos θ − 1)2 + α2 sin2 θ = 0

⇔ α2 − 2 cos θ α + 1 = 0.

Solving for θ gives

cos θ =
α2 + 1

2α
= cos

kπ

r

⇔ θ = ±kπ
r
.

Now we calculate the fixed point space for (Rk, kπ
r

). Let

(Rk,
kπ

r
)(z1, z2) = (z1, z2).

This is equivalent to the pair

α cos
kπ

r
z1 + α sin

kπ

r
z2 = z1, (6.25)

−α sin
kπ

r
z1 + α cos

kπ

r
z2 = z2. (6.26)

Multiplying (6.25) by sin kπ
r

and (6.26) by cos kπ
r

and adding the results gives

(α− cos
kπ

r
)z2 = sin

kπ

r
z1

⇔ z2 = −iz1.

Thus,

Fix (Rk,
kπ

r
) = {(z,−iz) | z ∈ C},
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which is clearly two-dimensional. Similar calculations can be done for the case (Rk,−kπ
r

)

with

Fix (Rk,−kπ
r

) = {(z, iz) | z ∈ C}.

Since the fixed point spaces are independent from the choice of k, we conclude that

the isotropy subgroups have come down to one group, that is 〈R2〉 ∼= Zr. Accordingly,

the symmetry group to be considered while studying the existence of periodic solutions

in this case will be

Z̃r := 〈(R2,±2π

r
)〉.

Isotropy subgroups when k is an odd number

For k odd (6.24) can be written as

α2 − 1 = 0

⇔ α = ±1.

Since α = ekπi/r, we have k = 0, r. But k = 0 is not an odd number, therefore, we

only consider the case k = r, where r is an odd number. Now, we seek (Rr, θ) fixed

point spaces. Suppose

(Rr, θ)(z1, z2) = (z1, z2).

This equation splits into two equations as follows:

− cos θz1 + sin θz2 = z1, (6.27)

sin θz1 + cos θz2 = z2. (6.28)

By multiplying (6.27) by sin θ and (6.28) by cos θ and adding them up, we get

(1− cos θ)z2 = sin θz1.

Therefore,

Fix (Rr, θ) = {((1− cos θ) z, sin θ z) | z ∈ C}.

We conclude that for each θ ∈ S1 and r being an odd number, (Rr, θ) has a

two-dimensional fixed point space.
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6.2.5 The existence of periodic solutions

After considering all possible symmetries, we proceed to the final step in finding pe-

riodic solutions of the chosen ZR2r-reversible equivariant Hamiltonian system, which

is solving the bifurcation equation. For symmetric solutions, we solve the bifurca-

tion equation, i.e. the triple (6.20), (6.21) and (6.23), taking into account isotropy

subgroups discussed in Subsection 6.2.4. In addition, we study the existence of non-

symmetric periodic solutions of this system. The following theorem presents the main

result of this chapter, as it describes all families of periodic orbits, with period close

to 2π which we found near the origin in this RE Hamiltonian system.

Theorem 6.2.2 Consider a Z2r-reversible equivariant vector field with a symmetric

equilibrium 0, where Z2r is generated by the reversing symmetry R acting symplecti-

cally. Suppose that Df(0) has two purely imaginary pairs of eigenvalues ±i, with no

other eigenvalues of the form ±ki, k ∈ Z. Then, generically

1. If r is an odd number, there exists a three-dimensional conical subset consisting

of a two-parameter family of (Rr, θ)-symmetric periodic solutions, with θ ∈ S1,

whose period tends to 2π as they approach the equilibrium point.

2. For any choice of r, there exist two one-dimensional families of (R2,±2π
r

)-

symmetric periodic orbits, distinguished by the sign of E. These orbits are just

Liapunov modes, whose period tends to 2π as they approach the origin. Further-

more, there exist 2r one-parameter families of non-symmetric periodic orbits,

with period close to 2π in a neighbourhood of the origin.

Proof We divide the proof according to the symmetry type.

Periodic solutions with symmetry Z̃r

It is readily verified that R2 is a symmetry acting symplectically. Therefore, periodic

solutions with symmetry Z̃r will lie in Fix (R2,±2π
r

) = {(z,∓iz) | z ∈ C}. In order

to get the wanted symmetric periodic solutions, we will solve the system of equations

(6.20), (6.21) and (6.23), evaluated in Fix (R2,±2π
r

). We start with periodic solutions

with symmetry (R2, 2π
r

). In this case we have

E = −2|z|2, N = 2|z|2, F = G = A = B = 0.
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Substituting these values in (6.20), (6.21) and (6.23) result in one simple equation

|z|2(g + 2|z|2gN) = 0.

For nonzero z, we must have g + 2|z|2gN = 0. Since ∂g
∂τ

(0, 0) = 1
2
6= 0, the latter

equation can be solved uniquely for τ = τ(|z|2) by the implicit function theorem.

A similar argument can be used for orbits with symmetry (R2,−2π
r

) and will give a

similar result. This proves the existence of two families of symmetric periodic solutions

in a neighbourhood of the origin with symmetry Z̃r.

Periodic solutions with symmetry (Rr, θ), where r is an odd number

In this case, the involution Rr is a reversing symmetry acting symplectically, just as

the group generator. On Fix (Rr, θ) we have E = 0. Thus, we end up with solving

Ng(N,A,B, F 2 +G2, τ) = 0.

Since we are interested in nonzero z, we need to solve g = 0. By the implicit function

theorem, in a neighbourhood of the origin there exists a unique solution τ such that

((1 − cos θ) z, sin θ z)) lies on a periodic solution, with period 2π
τ+1

. This proves the

existence of a two-parameter family of reversing periodic solutions in a neighbourhood

of the origin. Also, by the previous section, there exist two families of periodic solutions

with symmetry (R2,±2π
r

). This result is similar to that given by Buzzi and Lamb [9],

and discussed in details in Chapter 4. This is not surprising, because Rr is a reversing

involution that acts symplectically, same as the reversing symmetry in their problem.

Non-symmetric periodic solutions

Now we would focus on studying the existence of non-symmetric periodic orbits in this

ZR2r-reversible equivariant Hamiltonian system. In this setting, the system of equations

(6.20), (6.21) and (6.23) takes the form

Ng + (N2 − (F 2 +G2))gN = 0,

g +NgN + rAgA + rBgB + 2(F 2 +G2)g(F 2+G2) = 0,

BgA − AgB = 0.

(6.29)
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Let gN(0) = n, gA(0) = a, gB(0) = b and g(F 2+G2)(0) = f . The matrix of partial

derivatives, with respect to A,B, F 2 + G2, N and τ associated to the system (6.29)

and calculated at the origin is given by


0 0 −n 0 0

(r + 1)a (r + 1)b 3f 2n 1
2

−b a 0 0 0

 =
(
X Y

)
.

Clearly, detX = −(r + 1)n(a2 + b2). Thus, the systems (6.29) can be solved uniquely

by the implicit function theorem if n 6= 0 and a, b are not both zero. Such a solution

presents a periodic orbit of the studied system. By non-symmetric property, applying

each element of the group to that orbit will produce another periodic solution of the

system. �



Chapter 7

Hamiltonian systems with D4

symmetry

In this chapter, we will give an overview of all possible D4 symmetries in Hamiltonian

systems with two degrees of freedom. This will be done by introducing a systemic

way of distinguishing these symmetries according to their symplectic and Hamiltonian

signs. Then, we will demonstrate the appropriate formulas for the quadratic Hamil-

tonian H2 and the linear structure map J on C2 in order to write the linearisation of

each type of D4 symmetry. In addition to finding these normal forms, we will study

the existence of periodic orbits in some interesting types that links to our work in the

former chapters.

7.1 D4 symmetry types

The standard definition of the dihedral group D4 on the plane is given by the sym-

metries of the square, with composition as an operation. This group includes four

rotations and four reflections, which preserve the square and are generated by the two

reflections κ and κ′, illustrated in Figure 7.1.

The dihedral group D4 is defined algebraically as follows:

D4 = 〈κ, κ′|κ2 = κ′2 = (κ′κ)4 = e〉.

We often write κ′κ = ρ, a rotation of order 4.

88



CHAPTER 7. HAMILTONIAN SYSTEMS WITH D4 SYMMETRY 89

• κ•

κ′

Figure 7.1: D4 symmetry in the plane.

A Hamiltonian system with symmetry group D4, can be either equivariant or re-

versible equivariant. However, these two main kinds can be split into various types.

We can construct these types, by allowing all possible signs of the symplectic character

χ : D4 → {±1} and the Hamiltonian sign α : D4 → {±1} for both generators κ and κ′.

The following character table summarises the possible cases for a Hamiltonian system

with D4 symmetry.

type α(κ) α(κ′) χ(κ) χ(κ′)

(1) 1 1 1 1

(2) 1 -1 1 1

(3) 1 1 1 -1

(4) 1 -1 1 -1

(5) -1 -1 1 1

(6) -1 -1 1 -1

(7) -1 1 1 -1

(8) 1 1 -1 -1

(9) -1 -1 -1 -1

(10) -1 1 -1 -1

Table 7.1: Possible types of D4 symmetries.

Remark 7.1.1 Note that there is a total of 16 cases. However, because of the auto-

morphism from D4 to itself, which maps κ to κ′, the number is decreased to 10 only.

The 6 remaining cases will be equivalent to some other cases illustrated in Table 7.1.
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7.2 The group action

For the sake of generality, we will fix a D4 action on C2 among all types in Table 7.1.

Let

κ(z1, z2) = (z1,−z2),

κ′(z1, z2) = (z2, z1).
(7.1)

It is easy to check that κ and κ′ defined in (7.1) generate a D4 action on C2.

Now, we consider the D4 real character table, which will be used throughout this

chapter. Table 7.2 shows the D4 real character table with conjugacy classes e, ρ, ρ2, κ

and κ′ and irreducible representations A0, A1, B1, B2 and E. The ] row gives the

number of elements in each conjugacy class. Note that all of these representations are

one-dimensional, except E which is two-dimensional.

D4 e ρ ρ2 κ κ′

] 1 2 1 2 2

A0 1 1 1 1 1

A1 1 1 1 -1 -1

B1 1 -1 1 1 -1

B2 1 -1 1 -1 1

E 2 0 -2 0 0

Table 7.2: The D4 real character table.

7.3 Formulas for H and J

This section aims to write the appropriate formulas for the quadratic part of the

Hamiltonian function H2 and the linear structure map J , according to all D4 symmetry

types illustrated in Table 7.1. It is known that H2 can be determined by a 4 × 4

symmetric matrix S, whereas J is a 4× 4 skew-symmetric matrix satisfying J2 = −I.

For that purpose, we will choose two bases of the space of symmetric matrices and the

space of skew-symmetric matrices in gl(4,R) that respects the action (7.1). Respecting

the action simply means that the basis elements are either invariant or anti-invariant

under the action.
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7.3.1 Basis of symmetric matrices

Let V be a representation of a group G and let Q(V ) denote the space of quadratic

forms on V . The character χQ(V ) is just the symmetric tensor product character χs

defined in Lemma 2.2.6, (3).

In our setting, we have V = R4. Using the character table 7.2, and by the definition

of our D4 action we can write

V = R4 = E ⊕ E.

Accordingly, we calculate the symmetric tensor product χs as follows:

D4 e ρ ρ2 κ κ′

χV (g) 4 0 -4 0 0

χ2
V (g) 16 0 16 0 0

χV (g2) 4 -4 4 4 4

χs(g) 10 -2 10 2 2

Table 7.3: The character table of the symmetric tensor product for V = E ⊕ E.

Note that the dimension of the space of quadratic forms is given by dim(Q(V )) =

n(n+1)
2

, where n is the dimension of V . In our case, we have dim(Q(R4)) = 10. In

order to choose the appropriate basis for Q(R4), we first write it as a decomposition

of D4 irreducible representations,

Q(R4) = a1A0 ⊕ a2A1 ⊕ a3B1 ⊕ a4B2 ⊕ a5E. (7.2)

Now, we calculate the constants a1, . . . , a5 by Lemma 2.2.6, (5) as follows:

1) a1 = 〈χs, χA0〉 =
1

8
[10− 4 + 10 + 4 + 4] = 3.

2) a2 = 〈χs, χA1〉 =
1

8
[10− 4 + 10− 4− 4] = 1.

3) a3 = 〈χs, χB1〉 =
1

8
[10 + 4 + 10 + 4− 4] = 3.

4) a4 = 〈χs, χB2〉 =
1

8
[10 + 4 + 10− 4 + 4] = 3.

5) a5 = 〈χs, χE〉 =
1

8
[20− 20] = 0.
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Thus, the decomposition (7.2) takes the following form

Q(R4) = 3A0 ⊕ A1 ⊕ 3B1 ⊕ 3B2.

The second step in finding a suitable basis forQ(R4) is writing the basis of quadratic

forms, corresponding to the standard basis of symmetric matrices in gl(4,R) using the

relation Q(x) = xTSx. By choosing the coordinates (q1, p1, q2, p2) ∈ R4, the standard

basis of quadratic forms is given by

q21, p
2
1, q

2
2, p

2
2, 2q1p1, 2q1q2,

2q1p2, 2q2p1, 2p1p2, 2q2p2.

It is readily checked that this basis is not (semi-)invariant under the D4 action given

in (7.1). Therefore, we seek another basis, that is (semi-)invariant under that action.

In the following table, we apply κ and κ′ on our proposed basis to check its invariance

properties.

notation basis element κ κ′ rep. type

s1 q21 + q22 1 1 A0

s2 p21 + p22 1 1 A0

s3 2(q1p1 + q2p2) 1 1 A0

s4 2q1q2 -1 1 B2

s5 2(q1p2 + q2p1) -1 1 B2

s6 2p1p2 -1 1 B2

s7 q21 − q22 1 -1 B1

s8 p21 − p22 1 -1 B1

s9 2(q1p1 − q2p2) 1 -1 B1

s10 2(q1p2 − q2p1) -1 -1 A1

Table 7.4: A basis for Q(R4). The numbers ±1 denote the action being invariant or

anti-invariant, respectively.

We conclude that the basis described above is (semi-)invariant under the chosen D4

action. Equivalently, we can write a basis for the 4× 4 symmetric matrices associated

to the basis of quadratic forms, described in Table 7.4. The new basis for symmetric
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matrices is given by

S1 =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 , S2 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 , S3 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,

S4 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , S5 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , S6 =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 ,

S7 =


1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

 , S8 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

 , S9 =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 ,

S10 =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 .

Clearly, each matrix Si , i = 1, . . . , 10 carries the same representation type, for example

A0, A1, . . . etc., as the corresponding quadratic form si , i = 1, . . . , 10 illustrated in

Table 7.4.

7.3.2 Basis of skew-symmetric matrices

In this subsection we apply the same analysis used in Subsection 7.3.1 in order to

write a suitable basis for skew-symmetric 4×4 real-valued matrices. This basis will be

used in writing the linear structure map J according to the properties of the chosen

D4 action. For V = R4 as before, we have R4 = E ⊕E but dimA(R4) = 16− 10 = 6.

We start by writing the decomposition of the space of skew-symmetric forms A(V ) in

terms of D4 irreducible representations. For that purpose, we calculate the character

of the anti-symmetric tensor product χa of the representation E ⊕ E. Following the

formula of χa given in Lemma 2.2.6, (3) we have
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D4 e ρ ρ2 κ κ′

χV (g) 4 0 -4 0 0

χ2
V (g) 16 0 16 0 0

χV (g2) 4 -4 4 4 4

χa(g) 6 2 6 -2 -2

Table 7.5: The character table of the anti-symmetric tensor product for V = E ⊕ E.

Now, assume the following decomposition

A(R4) = b1A0 ⊕ b2A1 ⊕ b3B1 ⊕ b4B2 ⊕ b5E. (7.3)

We calculate the constants bi as follows:

1) b1 = 〈χa, χA0〉 =
1

8
[6 + 4 + 6− 4− 4] = 1.

2) b2 = 〈χa, χA1〉 =
1

8
[6 + 4 + 6 + 4 + 4] = 3.

3) b3 = 〈χa, χB1〉 =
1

8
[6− 4 + 6− 4 + 4] = 1.

4) b4 = 〈χa, χB2〉 =
1

8
[6− 4 + 6 + 4− 4] = 1.

5) b5 = 〈χa, χE〉 =
1

8
[12− 12] = 0.

This leads to

A(R4) = A0 ⊕ 3A1 ⊕B1 ⊕B2.

We begin with a standard basis of 4× 4 real-valued skew-symmetric matrices. Let

u = (q1 p1 q2 p2)
T , v = (q′1 p′1 q′2 p′2)

T be two column vectors in R4. The

skew-symmetric form B(u, v) corresponding to a skew-symmetric matrix A is given by

the formula uTAv. Thus, we write the basis of skew-symmetric forms, corresponding

to the standard basis of skew-symmetric matrices by

q1p
′
1 − p1q′1, q1q′2 − q2q′1, q1p′2 − p2q′1,

p1q
′
2 − q2p′1, p1p′2 − p2p′1, q2p′2 − p2q′2.

This basis is not (semi-)invariant under the action (7.1). We therefore suggest the

following basis
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notation basis κ κ′ rep. type

j1 (q1p
′
1 − q′1p1) + (q2p

′
2 − q′2p2) 1 1 A0

j2 (q1p
′
1 − q′1p1)− (q2p

′
2 − q′2p2) 1 -1 B1

j3 (q1p
′
2 − q′1p2)− (q′2p1 − q2p′1) -1 1 B2

j4 (q1p
′
2 − q′1p2) + (q′2p1 − q2p′1) -1 -1 A1

j5 q1q
′
2 − q′1q2 -1 -1 A1

j6 p1p
′
2 − p′1p2 -1 -1 A1

Table 7.6: A basis for A(R4). The numbers ±1 denote the action being invariant or

anti-invariant, respectively.

Table 7.6 illustrates a basis for the skew-symmetric forms in R4 that respects our

D4 action. Consequently, the corresponding matrix basis takes the form

J1 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , J2 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , J3 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 ,

J4 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , J5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , J6 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 .

Clearly, the matrices J1, J2, . . . , J6 carry the same representation type as the skew-

symmetric forms j1, j2, . . . , j6 illustrated in Table 7.6. Another property to be con-

sidered while writing the formula of J is the condition J2 = −I. Note that all basis

elements satisfy this condition, apart from J5 and J6. This will be discussed in more

details in the following section.

7.4 The D4 linear Hamiltonian vector fields

Let ẋ = f(x) = J∇H(x) be a D4 Hamiltonian vector field, generated by the Hamil-

tonian H and the linear structure map J . It is known from the Hamiltonian context
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that the linear vector field L is given by the formula L = JS, where S is the symmet-

ric matrix associated to the quadratic Hamiltonian i.e. H2(x) = 1
2
xTSx. Therefore,

according to the bases introduced in Subsection 7.3.1 and Subsection 7.3.2, one can

write the linear Hamiltonian vector field due to its symmetry properties.

Using the D4 character table 7.2, we can summarise the symmetry cases described

in Table 7.1 by the following

type (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

S A0 B1 A0 B1 A1 A1 B2 A0 A1 B2

J A0 A0 B1 B1 A0 B1 B1 A1 A1 A1

Table 7.7: H and J irreducible representations corresponding to D4 symmetry types.

In the following, we will write the appropriate formulas for S and J and therefore,

the linearisation at the origin L of each type of symmetry displayed in Table 7.7. As we

are interested in finding periodic orbits in Hamiltonian systems, we will calculate the

eigenvalues of L in each symmetry type, and check their ability to be purely imaginary.

By being purely imaginary we mean a strictly non-zero complex number in the form

ai.

• Type 1

This is the classical type of equivariant symmetry, with an invariant Hamiltonian and

a symplectic D4 action. The symmetric matrix S lies in the A0 space and can be

written as

S =


a c 0 0

c b 0 0

0 0 a c

0 0 c b

 ,

where a, b, c ∈ R. Also, J is of A0 type and takes the form

J =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 .
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Consequently, the linear vector field will be

L = JS =


c b 0 0

−a −c 0 0

0 0 c b

0 0 −a −c

 ,

with two pairs of eigenvalues λ = ±
√
c2 − ab. Clearly, it is possible for λ to be purely

imaginary, and this agrees with the known results on the existence of periodic solutions

in equivariant Hamiltonian systems with D4 symmetry, such as [28].

• Type 2

This system is reversible equivariant, with the generator κ being (SE) but κ′ being

(SR). In this case, the matrix S is of B1 representation type, while J is of type A0.

Using the bases described in Subsection 7.3.1 and Subsection 7.3.2, we have

J =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , S =


a c 0 0

c b 0 0

0 0 −a −c

0 0 −c −b

 ,

where a, b, c ∈ R. We write the linear system L as follows

L = JS =


c b 0 0

−a −c 0 0

0 0 −c −b

0 0 a c

 .

Eigenvalues of L are a doubled pair of the form λ = ±
√
c2 − ab which can be purely

imaginary under suitable conditions on the constants a, b and c.
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• Type 3

Now, we study a RE system with κ and κ′ being (SE) and (AR), respectively. Ac-

cordingly, S and J are of types A0 and B1, respectively. We obtain

L = JS =


c b 0 0

−a −c 0 0

0 0 −c −b

0 0 a c

 ,

which is the same as the linear system in the previous case, and it has the same

eigenvalues.

• Type 4

Although this system is equivariant, we will give it some attention because κ′ is (AE)

while κ is the classical (SE) symmetry, a combination not studied before. The linear

Hamiltonian vector field takes the form

L =


c b 0 0

−a −c 0 0

0 0 c b

0 0 −a −c

 .

Similarly, the eigenvalues are λ = ±
√
c2 − ab.

• Type 5

In this case, both generators are symplectic reversing. The Hamiltonian is of repre-

sentation type A1 and the matrix J is of type A0. Thus,

L =


0 0 −a 0

0 0 0 −a

a 0 0 0

0 a 0 0

 .

This system has always purely imaginary eigenvalues of the form ±ai.
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• Type 6

We assumed κ to be (SR) and κ′ to be (AE). The linear system therefore takes the

form

L =


0 0 −a 0

0 0 0 −a

−a 0 0 0

0 −a 0 0

 .

The eigenvalues of L are λ = ±a which are always real valued. This means that

periodic orbits will not occur in this system.

• Type 7

Both generators in this case are reversing, but κ is acting symplectically, while κ′ acts

anti-symplectically. The linear vector field is written as

L =


0 0 b c

0 0 −a −b

−b −c 0 0

a b 0 0

 .

Eigenvalues of L are two pairs of the form λ = ±
√
ac− b2 for a, b, c ∈ R. Clearly,

it is possible to choose the numbers a, b and c, so that λ is purely imaginary.

• Type 8

For this D4-reversible equivariant Hamiltonian system, both generators are of (AR)

type. One issue that needs to be highlighted here is that the matrix J has repre-

sentation type A1 and therefore, it needs to be written as the linear combination

J = xJ4 + yJ5 + zJ6 provided that J2 = −I. Now, we solve these two equations in

order to find possible formulas of J . Using formulas of J4, J5 and J6 we obtain

J =


0 0 y x

0 0 x z

−y −x 0 0

−x −z 0 0

 .



CHAPTER 7. HAMILTONIAN SYSTEMS WITH D4 SYMMETRY 100

By applying the condition J2 = −I we have x2 + y2 x(y + z)

x(y + z) x2 + z2

 =

 1 0

0 1

 ,

which leads to the system of nonlinear equations

x2 + y2 = 1,

x(y + z) = 0, (7.4)

x2 + z2 = 1.

Solutions of the system (7.4) are

(x, y, z) = (0,±1,±1), (7.5)

(x, y, z) = (±
√

1− z2,−z, z), |z| < 1. (7.6)

As we are interested in finding eigenvalues of the linear system, it will be enough to

study the following expressions for J , namely J11, J12 and J13:

J11 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , J12 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 ,

J13 =


0 0 −z x

0 0 x z

z −x 0 0

−x −z 0 0

 , x2 + z2 = 1.

Now, we show that J13 can be transformed to take the same form as J12. Using

the relation x2 + z2 = 1 one can write

 −z x

x z

 =

 cos θ sin θ

sin θ − cos θ

 ,

which represents a reflection over the line with angle
θ

2
. After rotating this line by the
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angle −θ
2

, it will lie on the horizontal axis and J13 will be transformed to

J13 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 = J12.

As a result, it is enough to consider the formulas J11 and J12 in analysing systems with

matrix J of representation type A1.

Based on these two formulas, the problem of finding eigenvalues of the linear system

of type 8 splits into the following two cases.

(1) systems with J = J11

Knowing that S takes the form

S =


a c 0 0

c b 0 0

0 0 a c

0 0 c b

 ,

we obtain

L =


0 0 a c

0 0 c b

−a −c 0 0

−c −b 0 0

 .

The eigenvalues of L are given by

λ = ±1

2

√
−2a2 − 2b2 − 4c2 ± 2

√
a4 − 2a2b2 + 4a2c2 + 8abc2 + b4 + 4b2c2.

We need to simplify this formula, to check for purely imaginary eigenvalues. Let

X =
√
a4 − 2a2b2 + 4a2c2 + 8abc2 + b4 + 4b2c2. One can write

a4 − 2a2b2 + 4a2c2 + 8abc2 + b4 + 4b2c2 = (a2 − b2)2 + 4c2(a+ b)2 ≥ 0.

For purely imaginary eigenvalues, we put

a2 + b2 + 2c2 ∓X > 0.
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Clearly, a2 + b2 + 2c2 + X > 0. It remains to check the inequality a2 + b2 + 2c2 > X.

Squaring each side yields

(ab− c2)2 > 0,

which is satisfied, unless ab = c2. Thus, in this case, eigenvalues are purely imaginary

if ab 6= c2.

(2) systems with J = J12

The linear system corresponding to this case is

L =


0 0 a c

0 0 −c −b

−a −c 0 0

c b 0 0

 .

Eigenvalues of L are given by

λ = ±1

2

√
−2a2 − 2b2 + 4c2 ± 2

√
a4 − 2a2b2 − 4a2c2 + 8abc2 + b4 − 4b2c2.

The first condition for λ to be purely imaginary is

a4 − 2a2b2 − 4a2c2 + 8abc2 + b4 − 4b2c2 ≥ 0.

Simplifying this formula implies

(a2 − b2)2 − 4c2(a− b)2 ≥ 0

⇔ (a+ b)2 − 4c2 ≥ 0.
(7.7)

The second condition is given by

−2a2 − 2b2 + 4c2 ± 2X < 0,

where X =
√
a4 − 2a2b2 − 4a2c2 + 8abc2 + b4 − 4b2c2. We will discus both cases in the

following.

1. For a2 + b2 − 2c2 > X, squaring both sides, and using the formula for X yield,

(ab− c2)2 > 0,

provided that the values of a, b, c satisfy (7.7).
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2. For a2 + b2 − 2c2 > −X, we need to use the condition (7.7). Therefore,

a2 + b2 − 2c2 ≥ a2 + b2 − 1

2
(a+ b)2

=
1

2
(a− b)2 ≥ 0.

Accordingly, a2 + b2− 2c2 +X > 0 is true for a, b, c, satisfying (7.7) and ab 6= c2.

We conclude that λ can be purely imaginary if and only if |a+ b| ≥ 2|c| and ab 6= c2.

• Type 9

This system is equivariant of a special type. That is because, both involutions κ, κ′ are

symmetries that act anti-symplectically. Consequently, S and J have representation

type A1. The symmetric matrix S takes the form

S =


0 0 0 a

0 0 −a 0

0 −a 0 0

a 0 0 0

 .

Since J of type A1 has two different forms, we will treat each one separately.

(1) systems with J = J11

We start by giving the form of J as

J =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 .

The linear system L is given by

L =


0 −a 0 0

a 0 0 0

0 0 0 −a

0 0 a 0

 ,

with purely imaginary eigenvalues of the form λ = ±ai.
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(2) systems with J = J12

In this case, we have

L =


0 −a 0 0

−a 0 0 0

0 0 0 −a

0 0 −a 0

 .

In contrast with the previous case, all eigenvalues here are real-valued and have the

form λ = ±a.

These results suggest that in studying the existence of periodic orbits in a D4-

equivariant Hamiltonian system of type 9, we only need to consider the formula J11

for the linear structure map.

• Type 10

As highlighted previously, we can divide our calculations according to the form of the

matrix J .

(1) systems with J = J11

The linear system L takes the form

L =


a b 0 0

b c 0 0

0 0 −a −b

0 0 −b −c

 .

The eigenvalues of L are

λ = ±1

2
(c+ a)± 1

2

√
(a− c)2 + 4b2,

which are always real-valued as the square root cannot be negative.



CHAPTER 7. HAMILTONIAN SYSTEMS WITH D4 SYMMETRY 105

(2) systems with J = J12

The linear vector field is given by

L =


a b 0 0

−b −c 0 0

0 0 −a −b

0 0 b c

 .

The eigenvalues of L are

λ = ±1

2
(c− a)± 1

2

√
(a+ c)2 − 4b2.

These eigenvalues can be purely imaginary if and only if a = c and a2 < b2. Note, this

is not an open condition on the coefficients.

In Table 7.8, we summarise all normal forms and results that were found in this

section. The first column indicates the D4 symmetry type of the Hamiltonian system.

The second column introduces the irreducible representation of S and J associated

to the chosen symmetry type. Accordingly, normal forms of S and J are given. The

last column determines the ability of having purely imaginary eigenvalues of the linear

system L = JS.
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type (S, J) rep. type S J λ imaginary

(1) (A0, A0)


a c 0 0

c b 0 0

0 0 a c

0 0 c b




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 possible

(2) (B1, A0)


a c 0 0

c b 0 0

0 0 −a −c

0 0 −c −b




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 possible

(3) (A0, B1)


a c 0 0

c b 0 0

0 0 a c

0 0 c b




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 possible

(4) (B1, B1)


a c 0 0

c b 0 0

0 0 −a −c

0 0 −c −b




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 possible

(5) (A1, A0)


0 0 0 a

0 0 −a 0

0 −a 0 0

a 0 0 0




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 always

(6) (A1, B1)


0 0 0 a

0 0 −a 0

0 −a 0 0

a 0 0 0




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 impossible

(7) (B2, B1)


0 0 a b

0 0 b c

a b 0 0

b c 0 0




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 possible

(8) (A0, A1)


a c 0 0

c b 0 0

0 0 a c

0 0 c b




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



possible

possible

(9) (A1, A1)


0 0 0 a

0 0 −a 0

0 −a 0 0

a 0 0 0




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



always

impossible

(10) (B2, A1)


0 0 a b

0 0 b c

a b 0 0

b c 0 0




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



impossible

possible (not open)

Table 7.8: For all D4 symmetry types, formulas of S and J are given according to

their representation type described in the second column. The λ column indicates the

possibility of having purely imaginary eigenvalues of the linear system L.



CHAPTER 7. HAMILTONIAN SYSTEMS WITH D4 SYMMETRY 107

Following the main interest of this thesis, in the remaining few sections, we will

study the existence of periodic orbits in some special types illustrated in Table 7.8. We

choose these types specifically, because they were not studied before, and they extend

our work from the earlier chapters.

7.5 The existence of periodic orbits in a D4-equivariant

Hamiltonian system of type 4

In this section, we will study in details the existence of periodic orbits in a D4-

equivariant Hamiltonian system, where κ is (SE) but κ′ is (AE). Although the system

is equivariant, we cannot apply classical results like [28]. That is because of the anti-

Hamiltonian property of κ′ which wasn’t considered in [28]. The method of finding

periodic orbits, as discussed in Chapter 3, depends on solving the bifurcation equa-

tion coming from the Liapunov-Schmidt reduction. This involves writing the reduced

Hamiltonian, that inherits the symmetry properties of the original system. We will

start by determining the S1 action. Secondly, we will choose the appropriate set of

(semi-)invariants, in order to write the reduced Hamiltonian, and therefore the bifur-

cation equation. After that, we will analyse all isotropy subgroups of D4×S1. Finally,

we will prove the existence of families of symmetric periodic orbits, according to the

isotropy subgroups we found.

7.5.1 The S1 action

In order to write the appropriate set of (semi-)invariants of the studied system, we need

to determine the circle action of S1 according to the linear system L. As discussed in

the previous section, the linear vector field of this case has eigenvalues λ = ±
√
c2 − ab,

assuming that c2 − ab < 0. The quadratic part of the Hamiltonian takes the form

H2 = a(q21 − q22) + b(p21 − p22) + 2c(q1p1 − q2p2).

Now, we apply a symplectic change of coordinates to simplify this formula. We diag-

onalise the symmetric matrix S using the change of coordinates:

Q1 = q1 + c
a
p1, P1 = p1,

Q2 = q2 + c
a
p2, P2 = p2.

(7.8)
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The symplectic form ω = dq1 ∧ dp1 − dq2 ∧ dp2 is invariant under this change of

coordinates. Consequently, the quadratic part of the Hamiltonian can be transformed

to

H2 = a(Q2
1 −Q2

2) +
ab− c2

a
(P 2

1 − P 2
2 ).

Define the symplectic transformation T : C2 → C2 by

T (Q1, P1, Q2, P2) = (αQ1,
1

α
P1, αQ2,

1

α
P2), (7.9)

where α is chosen to satisfy the equality α4 =
ab− c2

a2
. By assuming β = aα2 =

ab− c2

aα2
, one can write

H2 ◦ T = β(Q2
1 + P 2

1 −Q2
2 − P 2

2 ).

After these coordinate changes, the linear vector field takes the form

L =


0 β 0 0

−β 0 0 0

0 0 0 β

0 0 −β 0

 .

By choosing β = −1 we obtain a doubled pair of eigenvalues in the form λ = ±i.

Therefore, the S1 action is given by

θ(z1, z2) = (eiθz1, e
iθz2).

7.5.2 The bifurcation equation

It is known from the Liapunov-Schmidt procedure, that the periodic orbits of a given

Hamiltonian system are the zeros of the bifurcation equation. In order to write this

equation, for this case of study, we will write the reduced Hamiltonian, which is S1

and κ invariant but κ′ anti-invariant. Using an analogous analysis to Lemma 5.1.2 we

obtain

h(z1, z2, τ) = δg(N,A2, B2, τ),

where N = |z1|2 + |z2|2, δ = |z1|2 − |z2|2 and A+ iB = 2z̄1z2. These functions satisfy

the identity δ2 = N2− (A2 +B2). By differentiating h partially with respect to z1 and

z2, the bifurcation equation takes the form
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z̄1g + δ[z̄1gN + 2A z̄2 gA2 + 2iB z̄2 gB2 ] = 0, (7.10)

−z̄2g + δ[z̄2gN + 2A z̄1 gA2 − 2iB z̄1 gB2 ] = 0. (7.11)

Multiplying (7.10) by z1 and (7.11) by z2 implies

|z1|2g + δ[|z1|2gN + 2A(z1z̄2)gA2 + 2iB(z1z̄2)gB2 ] = 0, (7.12)

−|z2|2g + δ[|z2|2gN + 2A(z̄1z2)gA2 − 2iB(z̄1z2)gB2 ] = 0. (7.13)

We first add (7.12) to (7.13)

δ[g +NgN + 2A2gA2 + 2B2gB2 ] = 0. (7.14)

Now we multiply (7.10) by z2 and (7.11) by z1

z̄1z2g + δ[z̄1z2gN + 2A|z2|2gA2 + 2iB|z2|2gB2 ] = 0, (7.15)

−z1z̄2g + δ[z1z̄2gN + 2A|z1|2gA2 − 2iB|z1|2gB2 ] = 0. (7.16)

Subtracting (7.16) from (7.15) yields

A[g − 2δ2gA2 ] = 0, (7.17)

δB[gN + 2NgB2 ] = 0. (7.18)

Thus, the bifurcation equation is given by the system of equations

δ[g +NgN + 2A2gA2 + 2B2gB2 ] = 0,

A[g − 2δ2gA2 ] = 0, (7.19)

δB[gN + 2NgB2 ] = 0.

Before solving the system (7.19), we discuss the possible isotropy subgroups of

D4 × S1 in the following subsection.

7.5.3 Isotropy subgroups of D4 × S1

In this section, we analyse all isotropy subgroups of D4 × S1 together with their fixed

point spaces. Our D4 × S1 action on C2 is defined by

κ(z1, z2) = (z1,−z2),

κ′(z1, z2) = (z2, z1), (7.20)

θ(z1, z2) = (eiθz1, e
iθz2).
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Depending on Proposition 7.2 in [19], we start seeking isotropy subgroups of D4×S1

by listing all the subgroups of D4. It is known that up to conjugacy, subgroups of D4

are

D4, Z4, Zρ
2

2 , Zκ2 , Zκ
′

2 , Zκ2 × Zρ
2

2 , Zκ
′

2 × Zρ
2

2 , {e}.

Then, we write possible homomorphisms from these subgroups to S1 and after that,

we compute isotropy subgroups of D4 × S1 up to conjugacy. Isotropy subgroups of

D4 × S1 according to the group action (7.20) are described in Table 7.9. Note that

Zκ2 ⊕ Z(ρ2,π)
2 = {(0, 0), (κ, 0), (ρ2, π), (κρ2, π)} ≤ D4 × S1 and Z̃4 = 〈ρ, 3π

2
〉.

notation isotropy subgroup fixed point space dimension

Σ1 D4 × S1 {(0, 0)} 0

Σ2 Zκ2 ⊕ Z(ρ2,π)
2 {(z, 0) | z ∈ C} 2

Σ3 Zκ′2 ⊕ Z(ρ2,π)
2 {(z, z) | z ∈ C} 2

Σ4 Z̃4 {(z,−iz) | z ∈ C} 2

Σ5 Z(ρ2,π)
2 C2 4

Table 7.9: Isotropy subgroups of D4× S1 acting on C2 and their fixed point spaces in

type 4 systems. The fourth column presents the dimension of the corresponding fixed

point space.

Table 7.9 shows that there exist three isotropy subgroups, with two-dimensional

fixed point spaces, namely Σ2,Σ3 and Σ4. Moreover, the subgroup Σ5 fixes the whole

space C2 and therefore, any periodic orbit found from the bifurcation equation will

have this type of symmetry. Note, Σ5 is called the principal symmetry subgroup, as

it is the smallest isotropy subgroup of D4 × S1.

7.5.4 The existence of periodic orbits

In the following theorem, we summarise the families of periodic orbits that exist in

the D4-equivariant Hamiltonian system of type 4.

Theorem 7.5.1 Consider a generic D4-equivariant Hamiltonian system of type 4, i.e.

κ is a symmetry acting symplectically, and κ′ is a symmetry acting anti-symplectically.

Suppose that 0 is a symmetric equilibrium, and the linearisation has two purely imag-

inary pairs of eigenvalues ±i with no other eigenvalues of the form ±ki, k ∈ Z. Then,
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in a neighbourhood of the origin, there exist precisely 8 one-parameter families of pe-

riodic solutions, with period close to 2π. These orbits have the following symmetries:

1. Two families with symmetries Σ2 and its conjugate Σ′2 = Z−κ2 ⊕ Z(ρ2,π)
2 , respec-

tively.

2. Two families with symmetries Σ3 and its conjugate Σ′3 = Z−κ′2 ⊕ Z(ρ2,π)
2 , respec-

tively.

3. Two families with symmetry Σ4 and its conjugate Σ′4 = 〈ρ, π
2
〉, respectively.

4. Two families with principal symmetry Σ5.

Proof We shall prove this theorem by solving the system (7.19) in the fixed point

spaces of Σ2,Σ3 and Σ4. A similar argument can be used for their conjugates. Fur-

thermore, we seek periodic solutions with principal symmetry only. Details are as

follows.

Periodic orbits with symmetry group Σ2 = Zκ2 ⊕ Z(ρ2,π)
2

In order to find periodic solutions of the studied D4-equivariant Hamiltonian system

with symmetry Σ2, we need to solve the system (7.19) in the fixed point space Fix Σ2.

By Table 7.9, we have

Fix Σ2 = {(z, 0) | z ∈ C}.

In this space, we have A = B = 0 and N = δ = |z|2, which simplifies (7.19) to

|z|2[g(|z|2, τ) + |z|2gN(|z|2, τ)] = 0.

For non-zero z this equation can be solved for τ = τ(|z|2) by the implicit function

theorem as ∂g
∂τ

(0, 0) = 1
2
6= 0.

Periodic orbits with symmetry group Σ3 = Zκ′2 ⊕ Z(ρ2,π)
2

In this case, we have

Fix Σ3 = {(z, z) | z ∈ C}.

Therefore, system (7.19) takes the simple form

|z|2 g(|z|2, τ) = 0. (7.21)
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Here δ = B = 0 which agrees with the fact that any periodic solution with symmetry

group Σ3 should lie in the level set H = 0 by κ′ anti-Hamiltonian property. Equation

(7.21) can be solved by the implicit function theorem for τ i.e. for each non-zero (z, z)

there exists a periodic orbit that passes this point and lies in Fix Σ3.

Periodic orbits with symmetry group Σ4 = Z̃4

In a similar way, the bifurcation equation on Fix Σ4 is given by

z̄ g(|z|2, τ) = 0,

which is solvable by the implicit function theorem for τ = τ(|z|2) as ∂g
∂τ

(0, 0) = 1
2
.

Periodic orbits with principal symmetry Σ5 = Z(ρ2,π)
2

Periodic orbits with this type of symmetry do not possess any symmetries apart from

the principal symmetry Z(ρ2,π)
2 . Therefore, the functions N,A,B and δ are not neces-

sarily zero and the system (7.19) can be written as

g +NgN + 2A2gA2 + 2B2gB2 = 0,

g − 2(N2 − A2 −B2)gA2 = 0, (7.22)

gN + 2NgB2 = 0.

Assume the following derivatives:

gN(0) = n1, gNN(0) = n2, gNτ (0) = n3,

gNA2(0) = n4, gA2(0) = a, gB2(0) = b.

The matrix of partial derivatives with respect to N, τ, A2 computed at the origin is

given by 
2n1

1
2

3a

n1
1
2

3a

(n2 + 2b) n3 n4

 .

The determinant of the above matrix is n1[
n4

2
− 3an3] which is non-zero if and only

if n1 6= 0 and n4

2
− 3an3 6= 0. Since these two quantities are generically non-zero, we

deduce that by the implicit function theorem, there exists a unique curve S = S(B2)

that solves the system (7.22). �



CHAPTER 7. HAMILTONIAN SYSTEMS WITH D4 SYMMETRY 113

7.6 The existence of periodic orbits in a D4-equivariant

Hamiltonian system of type 9

Here, we study a D4-equivariant Hamiltonian system, where both involutions κ and κ′

are of the (AE) type. Consequently, the Hamiltonian function H is both κ and κ′ anti-

invariant. Following the same organisation as in Section 7.5, we prove the existence of

families of periodic orbits in this system in the coming steps.

7.6.1 The S1 action

As we fixed the D4 action for all cases by (7.1), it remains to deduce the S1 action

from the linear vector field. By Table 7.8, the quadratic part of the Hamiltonian is

given by

H2 = 2(q1p2 − q2p1),

and the linear vector field L with eigenvalues ±i takes the form

L =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 .

Therefore, the S1 action is given by

θ(z1, z2) = (eiθz1, e
iθz2).

Clearly, the D4 × S1 action is identical to the one in Subsection 7.5.1. However, the

set of (semi-)invariants is different, due to the difference in symmetry, as we will see

in the following section.

7.6.2 The bifurcation equation

The generators of the S1 real-valued invariants on C2, as studied in Subsection 7.5.2,

are N = |z1|2 + |z2|2, δ = |z1|2− |z2|2, A = z̄1z2 + z1z̄2 and B = −i(z̄1z2− z1z̄2). These

functions are related by the identity δ2 = N2 − (A2 + B2). The reduced Hamiltonian

h should be both κ and κ′ anti-invariant and S1 invariant. Thus,

h(z1, z2, τ) = Bg(N,A2, B2, τ).
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Recall the bifurcation equation

∂h

∂z1
= 0,

∂h

∂z2
= 0.

Equivalently, this can be written as

iz̄2g +B[z̄1gN + 2Az̄2gA2 + 2iBz̄2gB2 ] = 0, (7.23)

−iz̄1g +B[z̄2gN + 2Az̄1gA2 − 2iBz̄1gB2 ] = 0. (7.24)

In the following, we will simplify these equations. Multiplying (7.23) by z1 and (7.24)

by z2 implies

iz1z̄2g +B[|z1|2gN + 2Az1z̄2gA2 + 2iBz1z̄2gB2 ] = 0, (7.25)

−iz̄1z2g +B[|z2|2gN + 2Az̄1z2gA2 − 2iBz̄1z2gB2 ] = 0. (7.26)

By Adding (7.25) and (7.26) we have

B[g +NgN + 2A2gA2 + 2B2gB2 ] = 0. (7.27)

On the other hand, we multiply (7.23) by z2 and (7.24) by z1 to obtain

i|z2|2g +B[z̄1z2gN + 2A|z2|2gA2 + 2iB|z2|2gB2 ] = 0, (7.28)

−i|z1|2g +B[z1z̄2gN + 2A|z1|2gA2 − 2iB|z1|2gB2 ] = 0. (7.29)

Subtracting (7.29) from (7.28) gives

Ng +B2gN + 2B2NgB2 = 0, (7.30)

2ABδgA2 = 0. (7.31)

Therefore, solving the bifurcation equation is equivalent to solving Equation (7.27),

(7.30) and (7.31). Before solving this system of equations, we consider the isotropy

subgroups of D4 × S1 in the following section.

7.6.3 Isotropy subgroups of D4 × S1

Since the D4 × S1 action is identical to the one in Section 7.5, it turns out that it has

the same isotropy subgroups illustrated in Table 7.9.
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7.6.4 The existence of periodic orbits

Theorem 7.6.1 Consider a generic D4-equivariant Hamiltonian system of type 9, i.e.

κ and κ′ are anti-symplectic symmetries. Suppose that 0 is a symmetric equilibrium,

and the linearisation has two purely imaginary pairs of eigenvalues ±i with no other

eigenvalues of the form ±ki, k ∈ Z. Then, in a neighbourhood of the origin, there exist

precisely 6 one-parameter families of periodic solutions, with period close to 2π. These

orbits have the following symmetries:

1. Two families with symmetries Σ2 and its conjugate Σ′2 = Z−κ2 ⊕ Z(ρ2,π)
2 , respec-

tively.

2. Two families with symmetries Σ3 and its conjugate Σ′3 = Z−κ′2 ⊕ Z(ρ2,π)
2 , respec-

tively.

3. Two families have symmetry Σ4 and its conjugate Σ′4 = 〈ρ, π
2
〉, respectively.

Proof We investigate the existence of periodic orbits with symmetries Σ2, Σ3 and

Σ4 respectively in the following sections.

Periodic orbits with symmetry group Σ2 = Zκ2 ⊕ Z(ρ2,π)
2

To find periodic orbits with symmetry Σ2, we solve the system of equations (7.27),

(7.30) and (7.31) in Fix Σ2. In this case, we have A = B = 0 and N = δ = |z|2. Thus,

we need to solve

g(|z|2, τ) = 0,

as we are interested in z 6= 0. By the implicit function theorem, there exists a unique

function τ = τ(|z|2) that solves the latter equation. Note that by κ and κ′ anti-

invariance, solutions with symmetries Σ2 and Σ3 lie in the level set h = 0.

Periodic orbits with symmetry group Σ3 = Zκ′2 ⊕ Z(ρ2,π)
2

Here, we have δ = B = 0 but N = A = 2|z|2. Similarly, we end up solving a simple

equation

|z|2g(|z|2, τ) = 0,

which can be solved for τ by the implicit function theorem near the origin.
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Periodic orbits with symmetry group Σ4 = Z̃4

On Fix Σ4 we have A = δ = 0 and N = −B = 2|z|2. Substituting these values in the

bifurcation equation yields

g +NgN + 2N2gN2 = 0,

which can be, as well, solved for τ = τ(|z|2) near the origin, by the implicit function

theorem. �

Remark 7.6.2 With regards to the existence of periodic orbits with principal sym-

metry, a quick look at Equation (7.31) shows that when there are not extra conditions

on the equation, then A,B and δ are not necessarily zero. Therefore, gA2(0) = 0, which

is not a generic condition. As a result, generically, there are no periodic solutions with

principal symmetry only.

7.7 The existence of periodic orbits in a D4-RE

Hamiltonian system of type 3

In this section, we analyse the D4-reversible equivariant Hamiltonian system of type

3. Here, the generator κ is assumed to be a symmetry that acts symplectically. Op-

positely, we assume κ′ to be a reversing symmetry that acts anti-symplectically.

7.7.1 The S1 action

As illustrated in Table 7.8, the quadratic Hamiltonian associated to this symmetry

type is given by

H2 = a(q21 + q22) + 2c(q1p1 + q2p2) + b(p21 + p22).

The function H2 can be simplified, using the coordinate changes (7.8) and then (7.9)

to take the form

H2 = β(Q2
1 +Q2

2 + P 2
1 + P 2

2 ).



CHAPTER 7. HAMILTONIAN SYSTEMS WITH D4 SYMMETRY 117

Thus, the corresponding linear vector field with eigenvalues ±i is

L =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 .

Accordingly, the S1 action on C2 is defined by

θ(z1, z2) = (eiθz1, e
−iθz2).

7.7.2 The bifurcation equation

Now, we write the formula of the reduced Hamiltonian h deduced from the Liapunov-

Schmidt reduction. According to the symmetry of the problem, h must be a real-valued

function defined on C2 × R, that is invariant under the actions of S1, κ and κ′. By a

similar argument to Lemma 4.2.1, we obtain

h(z1, z2, τ) = g(N,C2, D2, τ).

Thus, the bifurcation equation is given by

z̄1gN + 2z2CgC2 − 2iz2DgD2 = 0, (7.32)

z̄2gN + 2z1CgC2 − 2iz1DgD2 = 0. (7.33)

We simplify these equations by multiplying (7.32) by z1 and (7.33) by z2 to get

|z1|2gN + C(C + iD)gC2 − iD(C + iD)gD2 = 0, (7.34)

|z2|2gN + C(C + iD)gC2 − iD(C + iD)gD2 = 0. (7.35)

Adding (7.34) to (7.35) implies

NgN + 2C2gC2 + 2D2gD2 = 0, (7.36)

CD(gC2 − gD2) = 0. (7.37)

On the other hand, subtracting (7.35) from (7.34) yields

δgN = 0. (7.38)

As a result, in order to study the existence of periodic orbits of the D4-reversible

equivariant Hamiltonian system of type 3, one needs to solve the triple (7.36), (7.37)

and (7.38).
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7.7.3 Isotropy subgroups of D4 n S1

By Proposition 3.1.7, we can list the isotropy subgroups of D4 n S1 in the following

table:

notation isotropy subgroup fixed point space dimension

Σ1 D4 n S1 {(0, 0)} 0

Σ2 Zκ2 ⊕ Z(ρ2,π)
2 {(z, 0) | z ∈ C} 2

Σ3 Zκ′2 ⊕ Z(ρ2,π)
2 {(z, z) | z ∈ C} 2

Σ4 Z(ρ2,π)
2 C2 4

Table 7.10: Isotropy subgroups of D4 n S1 acting on C2 and their fixed point spaces

in type 3 systems.

7.7.4 The existence of periodic orbits

The following theorem describes the families of periodic orbits which arise in a D4-

reversible equivariant Hamiltonian system of type 3.

Theorem 7.7.1 Consider a generic D4-reversible equivariant Hamiltonian system of

of type 3, i.e. κ is a symmetry acting symplectically, and κ′ is a reversing symmetry

acting anti-symplectically. Suppose that 0 is a symmetric equilibrium, and the lineari-

sation has two purely imaginary pairs of eigenvalues ±i with no other eigenvalues of

the form ±ki, k ∈ Z. Then, in a neighbourhood of the origin, there exist precisely

4 one-parameter families of periodic solutions, with period close to 2π. These orbits

have the following symmetries:

1. Two families have symmetries Σ2 and its conjugate Σ′2 = Z−κ2 ⊕ Z(ρ2,π)
2 , respec-

tively.

2. Two families have symmetries Σ3 and its conjugate Σ′3 = Z−κ′2 ⊕ Z(ρ2,π)
2 , respec-

tively.

Proof In the following, we will solve the bifurcation equation given by the system

of equations (7.36), (7.37) and (7.38) with respect to the non-trivial symmetry groups

illustrated in Table 7.10.
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Periodic orbits with symmetry group Σ2 = Zκ2 ⊕ Z(ρ2,π)
2

Since the involution κ is a symmetry, then any periodic orbit with symmetry Σ2 should

lie in Fix Σ2. Clearly, in Fix Σ2 the bifurcation equation is given by

NgN(N, τ) = 0,

with N = |z|2 in this subspace. Since gN(0) is generically non-zero, then by the implicit

function theorem, for each non-zero z there is a unique solution to the bifurcation

equation. This solution corresponds to a periodic orbit of the studied system with

symmetry Σ2.

Periodic orbits with symmetry group Σ3 = Zκ′2 ⊕ Z(ρ2,π)
2

For periodic orbits of symmetry Σ3, we need to solve

NgN + 2C2gC2 + 2D2gD2 = 0,

CD(gC2 − gD2) = 0,

where N = 2|z|2, C + iD = 2z2 in Fix Σ3. If C and D are both non-zero, the latter

equation will take the form

gC2 = gD2 , (7.39)

which is not a generic condition in a neighbourhood of the origin. If C = 0, we get

NgN + 2D2gD2 = 0.

If gN(0) 6= 0, then by the implicit function theorem the previous equation can be

uniquely solved for N = N(D2, τ). Similar argument can be used if D = 0.

Note that, by Equation (7.38), we do not expect any extra orbits with principal

symmetry only. �

7.8 The existence of periodic orbits in a D4-RE

Hamiltonian system of type 5

We sum up our study on the existence of periodic orbits in D4 Hamiltonian systems by

a system of type 5. Interestingly, both generators κ and κ′ are symplectic reversing.
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We aim to extend our results in Chapter 4 and Chapter 6, from the cyclic to the

dihedral case.

7.8.1 The S1 action

The linearisation of the Hamiltonian vector field takes the form

L =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 .

Therefore, the circle action on C2 is given by

θ(z1, z2) = (cos θz1 + sin θz2,− sin θz1 + cos θz2).

7.8.2 The bifurcation equation

It is clear that the S1 action is identical to the one defined in Subsection 6.2.2. Thus,

the S1 invariants, as described in Lemma 6.2.1 (1), are

N = |z1|2 + |z2|2, F + iG = z21 + z22 , E = −i(z̄1z2 − z1z̄2).

Taking into account the κ and κ′ anti-invariance, the Hamiltonian h is defined by

h(z1, z2, τ) = Eg(N,F,G, τ).

Accordingly, the bifurcation equation takes the form

iz̄2g + E[z̄1gN + z1gF − iz1gG] = 0, (7.40)

−iz̄1g + E[z̄2gN + z2gF − iz2gG] = 0. (7.41)

Now we multiply (7.40) by z1 and (7.41) by z2

iz1z̄2g + E[|z1|2gN + z21gF − iz21gG] = 0, (7.42)

−iz̄1z2g + E[|z2|2gN + z22gF − iz22gG] = 0. (7.43)

Adding Equation (7.42) and Equation (7.43) yields

E[g +NgN + FgF +GgG] = 0, (7.44)

E[GgF − FgG] = 0. (7.45)
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On the other hand, we multiply (7.40) by z2 and (7.41) by z1 to obtain

i|z2|2g + E[z̄1z2gN + z1z2gF − iz1z2gG] = 0, (7.46)

−i|z1|2g + E[z1z̄2gN + z1z2gF − iz1z2gG] = 0. (7.47)

Subtracting (7.47) from (7.46) gives

Ng + E2gN = 0, (7.48)

which is equivalent to

Ng + (N2 − (F 2 +G2))gN = 0. (7.49)

Thus, the bifurcation equation is given by the system of equations (7.44), (7.45) and

(7.49).

7.8.3 Isotropy subgroups of D4 n S1

In the following table, we illustrate the possible isotropy subgroups in the D4-reversible

equivariant Hamiltonian system of type 5.

notation isotropy subgroup fixed point space dimension

Σ1 D4 n S1 {(0, 0)} 0

Σ2 Zκ2 ⊕ Z(ρ,π
2
)

4 {(z, 0) | z ∈ C} 2

Σ3 Zκ′2 ⊕ Z(ρ,π
2
)

4 {(z, z) | z ∈ C} 2

Σ4 Z̃4 = 〈ρ, π
2
〉 C2 4

Table 7.11: Isotropy subgroups of D4 n S1 acting on C2 and their fixed point spaces

in type 5 systems.

7.8.4 The existence of periodic orbits

It remains to solve the bifurcation equation given by the system of equations (7.44),

(7.45) and (7.49). Results are given in the following theorem.

Theorem 7.8.1 Consider a generic D4-reversible equivariant Hamiltonian system of

type 5 i.e. κ and κ′ are both reversing symplectic involutions. Suppose that 0 is a sym-

metric equilibrium, and the linearisation has two purely imaginary pairs of eigenvalues
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±i with no other eigenvalues of the form ±ki, k ∈ Z. Then, in a neighbourhood of the

origin, there exists a two-parameter family of D4-symmetric periodic solutions, with

period close to 2π in the subspace E = 0. Moreover, there exist, under a suitable con-

dition on the coefficients of the Hamiltonian, two one-parameter families of periodic

orbits with symmetry Z̃4 near the origin.

Proof We will divide the proof into two cases: periodic orbits in the subspaces E = 0

and in E 6= 0.

periodic orbits in the subset E = 0

Clearly, Fix Σ2 and Fix Σ3 lie in the subspace E = 0. Substituting E = 0 in Equation

(7.44), (7.45) and (7.49) implies

Ng(z1, z2, τ) = 0. (7.50)

This equation can be solved for τ by the implicit function theorem on both fixed point

spaces. To see this property, let us assume (z0, z0) ∈ Fix Σ3. Rotating this point by π
4

implies
π

4
(z0, z0) =

(√
2z0, 0

)
∈ Fix Σ2.

In other words, any orbit passing a point in Fix Σ3 will pass another point in Fix Σ2

and therefore will have symmetry D4.

periodic orbits in the subset E 6= 0

The bifurcation equation here takes the form

g +NgN + FgF +GgG = 0,

Ng + (N2 − (F 2 +G2))gN = 0,

GgF − FgG = 0.

(7.51)

Through a similar argument to that in Subsection 4.2.2, we found that there can be

two families of periodic orbits, with principal symmetry Σ2, in the subspace E 6= 0

distinguished by the sign of E. �



Chapter 8

Conclusions

Throughout this thesis, we have investigated different types of symmetry in Hamil-

tonian systems. Mainly, we were interested in non-classical symmetry types, which

involve a semi-invariant Hamiltonian defined on R4. We made several statements on

the existence of non-linear normal modes (periodic orbits) in such systems. We intro-

duced a full description on possible families of symmetric and non-symmetric periodic

orbits, with period close to 2π near a symmetric equilibrium point. Another consider-

ation was to build a representation theoretical argument, to classify all possible types

of dihedral symmetry (D4) in Hamiltonian systems, with two degrees of freedom.

In the following part we summarise our contributions presented in this thesis:

1. In Theorem 4.2.5 we set a generic condition in which two families of non-

symmetric solutions can arise, in addition to the symmetric family found in

[9], in a purely reversible Hamiltonian system where the reversing symmetry R

acts symplectically.

2. A general description of the families of periodic solutions in an equivariant Hamil-

tonian system, under the action of an anti-symplectic involution S is given in

Theorem 5.4.1.

3. The existence of a two-parameter family of symmetric periodic orbits and two

families of non-symmetric solutions in a ZR2 × ZS2 -reversible equivariant Hamil-

tonian system is shown in Theorem 6.1.1.

4. Theorem 6.2.2 provides all possible families of periodic solutions in a Z2r-reversible

123
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equivariant Hamiltonian system. These families are distinguished by the choice

of r being even or odd.

5. Normal forms for J and S and therefore the linearisation L of all Hamiltonian

systems with D4 symmetry are obtained in Section 7.3 and Section 7.4. These

forms are summarised in Table 7.8.

6. Existence theorems in D4 Hamiltonian systems of type 4, 9, 3 and 5 are given in

Theorem 7.5.1, Theorem 7.6.1, Theorem 7.7.1 and Theorem 7.8.1, respectively.

Notably, studying the effect of symmetry in Hamiltonian/dynamical systems is a

rich area of research. In this work, we tried to highlight and solve some of the problems

related to the context of symmetry in Hamiltonian systems. However, there are always

some open problems which can be considered in further work. For example, one can:

• Consider other reversible equivariant groups, such as the tetrahedral symmetry

group, and find possible families of periodic orbits.

• Extend our results from R4 to higher dimensions.

• Apply the analysis used in Chapter 7 to the general case D2n and even for

different groups.

• Establish more general results and normal forms for reversible equivariant Hamil-

tonian systems as the published work in this field is limited.

• Study the effect of having some bifurcation parameters on our results.
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