
An algorithm for computing the eigenvalues of a
max-plus matrix polynomial

James, Hook

2016

MIMS EPrint: 2016.44

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

An algorithm for computing the eigenvalues of a

max-plus matrix polynomial

James Hook

School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK.
james.hook@manchester.ac.uk,

Abstract

Max-plus matrix polynomial eigenvalues provide a useful approximation to
the order of magnitude of the eigenvalues of a classical (i.e. real or complex)
matrix polynomial. In this paper we review the max-plus matrix eigensolver
of Gassner and Klinz [1] and present our extension of this algorithm to the
max-plus matrix polynomial case. Our max-plus matrix polynomial algo-
rithm computes all nd max-plus eigenvalues of a n × n degree d max-plus
matrix polynomial with worst case cost O(n3d) in the dense case, which is
the best that we are aware of.

Keywords:

1. Introduction

Max-plus algebra concerns the max-plus semiring Rmax = R∪{−∞} with
binary operations max and plus

a⊕ b = max{a, b}, a⊗ b = a+ b, for all a, b ∈ Rmax.

Recently max-plus algebra has attracted interest from the numerical linear
algebra community as a useful way of approximating difficult classical nu-
merical linear algebra problems. The idea is that a classical numerical linear
algebra problem can be transformed into a max-plus one, which is easier to
solve. The solution to the max-plus problem can then be used to assist in the
solution of the original problem. For example the nd eigenvalues of an n×n
degree d complex matrix polynomial can be approximated using the d max-
plus roots of a degree d max-plus scalar polynomial. This approximation of
the eigenvalues can then be used in the deign of scaling stratergies for the

Preprint submitted to Linear Algebra and its Applications April 1, 2016

original matrix polynomial, which can dramatically improve the accuracy of
the subsequent eigenvalue computation for certain tough problems [2, 3, 4].

A possible refinement of this technique is to transform the n × n degree
d matrix polynomial into an n × n degree d max-plus matrix polynomial.
We can then approximate the eigenvalues of the standard matrix polynomial
with those of the max-plus matrix polynomial. As before these approximated
eigenvalues can be used in the design of scailngs for the original matrix poly-
nomial, only using this more sophisticated max-plus approximation could
lead to superior results over a wider range of problems [5]. Other appli-
cations of max-plus eigenvalues in linear algebra include approximation of
matrix singular values and condition numbers [6], as well as computing the
asymptotics of the eigenvalues of certain perturbed systems [7].

In order for such approximations to be useful in practice it is essential
that the cost of computing the max-plus approximations is no more than
the cost of computing the quantities of interest directly. All d max-plus
roots of a degree d max-plus scalar polynomial p can be computed with cost
O(d) using the Graham scale algorithm [8]. In [1] Gassner and Klinz present
an algorithm which computes all n max-plus eigenvalues of an n × n max-
plus matrix A ∈ Rn×n

max with worst case cost O
(
nτA + n2 log(n)

)
, where τA

is the number of finite entries in A (finite, i.e. non −∞, entries play the
role of non-zero entries in max-plus algebra). This algorithm is itself based
on a parametric shortest path algorithm of Young, Tarjan and Orlin [9]. In
[10] Burkard and Butkovic present an alternative algorithm which computes
all n max-plus eigenvalues of an n× n max-plus matrix with worst case cost
O
(
n2τA+n2 log(n)

)
. This algorithm is adapted to the matrix polynomial case

by Sharify in [11] to provide an algorithm which computes all nd eigenvalues
of an n×n degree d max-plus matrix polynomial P ∈ Rmax[x]n×n with worst
case cost O

(
n2dτP +n2d log(n)

)
, where τP is the number of entries in P which

are not identically −∞.

In this paper we review the max-plus single matrix eigenvalue algorithm of
Gassner and Klinz and present our extension of this algorithm to the matrix
polynomial case. Our algorithm has worst case cost O

(
ndτP + n2d log(n) +

τPd log(d)
)
, which is the best that we are aware of. Note that in the dense

case our algorithm has cost O(n3d), which is a factor d cheaper than than
for the classical case.

The remainder of this paper is organized as follows. In subsection 1.1
we review the Graham scan algorithm for computing the roots of a max-

2

plus scalar polynomial. In section 2 we review the max-plus single matrix
eigenvalue algorithm of Gassner and Klinz. In section 3 we present our max-
plus matrix polynomial eigenvalues algorithm.

1.1. Polynomial roots

A degree-d max-plus scalar polynomial is a function of the form

p(x) =
d⊕

k=0

pk ⊗ x⊗k =
d

max
k=0

pk + kx,

where p0, . . . , pd ∈ Rmax. Max-plus scalar polynomial are convex piecewise
affine functions. The max-plus roots of a max-plus scalar polynomial p are
the values of x at which it is non-differentiable. The multiplicity of a root r is
given by the jump in derivative at that point. The sum of the multiplicities
of the roots of a polynomial p is equal to its degree.

In this section we show how the Graham scan algorithm can be used to
compute all d roots r1, . . . , rd of a degree-d max-plus scale polynomial with
cost O(d).

LetH(N) be the upper convex hull of the Newton polytopeN = {(k, pd−k) :
k = 0, . . . , d}. The roots of p(x) are given by the slopes of the line segments
that make up H, and the multiplicity of a root r is given by the horizontal
width of the corresponding line segment.

The Graham scan algorithm can compute the convex hull of a set of d
points in the plane with cost O

(
d log(d)

)
[?]. However, we are given the

points that make up N in increasing order of their first co-ordinate and we
can exploit this extra information to speed things up slightly, see Algorithm
1.

We can think of the Graham scan algorithm as producing a sequence of
upper convex hulls for the subsets N(1), . . . , N(d) ⊂ N with

N(m) = {(k, pd−k) : k = 0, . . . ,m}.

At each stage we consider extendingH
(
N(m)

)
to contain (m+ 1, pd−m−1) by

adding a line segment connecting (m+ 1, pd−m−1) to the previously included
vertex (m, pd−m). If the resulting hull is convex then we move onto the next
stage, otherwise we remove vertices from the hull until it is convex. Thus
each vertex is added once and removed at most once and the total number
of operations performed by the algorithm is O(d).

3

Algorithm 1 Max-plus scalar polynomial root finder

1: procedure begin
2: for k = 1, . . . , d do
3: B(k) = k − 1, R(k) = pd−k − pd−k+1,
4: while R(k) > R

(
B(k)

)
do

5: B(k) = B
(
B(k)

)
, R(k) =

pd−k−pd−B(k)

k−B(k)
,

6: k = d,
7: while k > 0 do
8: R(k) a root of multiplicity k −B(k),
9: k = B(k),

y

x

1

2

-1

0
1 2 3 4

(a) N(1)

y

x

1

2

-1

0
1 2 3 4

(b) N(2)

y

x

1

2

-1

0
1 2 3 4

(c) N(3)

y

x

1

2

-1

0
1 2 3 4

(d) N(4)

Figure 1: Convex hulls produced by Graham scan algorithm

Example Consider the max-plus scalar polynomial

p(x) = x⊗4⊕1⊗x⊗3⊕1⊗x⊗2⊕2⊗x⊕−1 = max{4x, 3x+1, 2x+1, x+2,−1}.

The sequence of convex hulls produced in the course of Algorithm 1 are
displayed in Figure 1. The upper convex hull of N consists of a line segment
of slope one with width one, a line segment of slope a half with width two
and a line segment with slope minus three and width 3. The roots of p are
therefore given by x = 1, which is a simple root, x = 0.5, which is a double
root and x = −3, which is a simple root.

As in the classical case, a polynomial can be factorized according to its
roots

p(x) = (x⊕1)⊗(x⊕0.5)⊗2⊗(x⊕−3) = max{x, 1}+2 max{x, 0.5}+max{x,−3}.

4

2. Matrix eigenvalues

In this section we review the max-plus single matrix eigenvalue algorithm
of Gassner and Kilnz [1]. The max-plus eigenvalues µ1, . . . , µn of a max-plus
matrix A ∈ Rn×n

max are the max-plus roots of the max-plus scalar polynomial

χA(x) = perm(A⊕ x⊗ I) = max
π∈Πn

n∑
i=1

[A⊕ x⊗ I]iπ(i), (1)

which we call the characteristic polynomial of A, where I ∈ Rn×n
max is the max-

plus identity matrix with zeros on the diagonal and minus infinity entries
off of the diagonal and Πn is the set of all permutations on {1, . . . , n}. We
also include −∞ as an eigenvalue of multiplicity k, whenever the first k
coefficients of χA are −∞.

Computing the max-plus eigenvalues of A ∈ Rn×n
max is equivalent to com-

puting the switching points of the following parametric maximal matching
problem.

Let GA be be the bipartite graph with left vertices U = {u(1), . . . , u(n)},
right vertices V = {v(1), . . . , v(n)}, constant edges E(0) = {e(0)ij : u(i) 7→
v(j), with weight w(e(0)ij) = aij, for i, j = 1, . . . , n such that aij 6= −∞}
and parametric edges E(1) = {e(1)i : u(i) 7→ v(i), with weight w(e(1)ij) = x,
for i = 1, . . . , n}.

A matching or assignment of GA is a subset of edges M ⊂ E(0) ∪ E(1),
such that each vertex in U and V is incident to exactly one edge in M .
Therefore, the edges in a matching M can be uniquely represented as M =
M(π, s) = {(e(si)iπ(i) : i = 1, . . . , n}, for some s ∈ {0, 1}n and some π ∈ Πn.
We say that the matching M(π, s) matches the vertex u(i) to the vertex
v
(
π(i)

)
with the edge e(s1)iπ(i). The weight of a matching is simply the sum

of its edge weights

W
(
M(π, s)

)
=

n∑
k=1

w
(
e(sk)i,π(i)

)
.

Note that

χA(x) = max
π∈Πn

max
s∈{0,1}n

n∑
k=1

w
(
e(sk)i,π(i)

)
= max

M
W (M), (2)

where the rightmost maximum is taken over all matchings of GA. Since the
weights of the parametric edges depend on x, the weights of the matchings

5

will also depend on x. The values of x where the matching that attain the
maximum in (2) switches are the non-differentiability points of χA(x), which
are the finite max-plus eigenvalues of A.

Given a matching M of GA we define the residual bipartite graph RA(M)
to be the graph obtained by taking GA and reversing the direction of and
minusing the weight of all of the edges in M . We call the left to right edges
the forwards edges and the right to left edges the backwards edges. Now let
C be a cycle in RA(M), we augment M with respect to C by taking the
symmetric difference M4C = (M ∪ C)/(M ∩ C).

Lemma 2.1 Let M be a matching of GA and let C be a cycle in RA(M)
then M ′ = M4C is also a matching of GA and W (M ′) = W (M) +W (C).

Proof Each vertex in U and V is incident to exactly one edge in M . If u(i)
is a vertex not visited by C then M ′ will contain exactly one edge incident to
u(i). If u(i) is a vertex visited by C then C will contain two edges incident
to u(i), one backwards edge which is also in M and one forwards edge which
is not in M . When we augment M with respect to C we replace the former
with the later to obtain M ′ so that u(i) is incident to exactly one edge in
M ′. Likewise for the V vertices. M ′ = M4C is therefore a matching of GA.

For the second part it is important to note that the weight of the match-
ings M and M ′ are calculated using the edge weights of the graph GA but
that the weight of the cycle C is calculated using the edge weights of the
graph RA(M) in which some edges have had their weights minused. Then
from the previous argement we have W (M ′) −W (M) is equal to the sum
of the weights of the forwards edges in C minus the sum of the unadjusted
weights (i.e. their weights in GA not RA(M)) of the backwards edges in
C. However since the backwards edges in RA(M) have all had their weights
minused we have W (M ′) − W (M) is equal to the sum of the weights (in
RA(M)) of all of the edges in C, which is equal to W (C).

Lemma 2.2 Let M and M ′ be matchings of GA(M) then there exists disjoint
cycles C1, . . . , Ck in RA(M) such that

M4(C1 ∪ . . . ∪ Ck) = M ′,

and W (M ′) = W (M) +W (C1) + . . .+W (Ck).

Proof Let M = M(π, s) and M ′ = M ′($, r). Consider M4M ′. If u(i)
is incident to the same edge in M as in M ′ then M4M will contain no

6

edges incident to u(i), likewise for any V vertices. Now suppose that u(i) is
incident to the edge e(si)iπ(i) in M and e(ri)i$(i) in M ′ and that these edges
are different. Then u(i) must be incident to exactly two edges in RA(M),
the forwards edge e(ri)i$(i), which is an edge from M and has therefore been
reversed in the residual graph, and the backwards edge e(si)iπ(i), which has
not been reversed. Likewise any vertex v(i) that is matched differently by
M and M ′ will be incident to exactly two edges in RA(M), one forwards
edge and one backwards edge. The set M4M ′ is such that each vertex
in U and V is incident to either zero or two of its edges. This set must
therefore consists of a finite number k of disjoint cycles C1, . . . , Ck as any
other structure would have vertices incident to one edge or more than two
edges. Thus M4M ′ = C1 ∪ . . . ∪ Ck.

Using the fact that A4B = C if and only if A4C = B, we have M4(C1∪
. . . ∪ Ck) = M ′. Since the cycles are disjoint we have

M4(C1 ∪ . . . ∪ Ci+1) =
(
M4(C1 ∪ . . . ∪ Ci)

)
4Ci+1.

So that from Lemma 2.1 we have

W
(
M4(C1 ∪ . . . ∪ Ci+1)

)
= M4(C1 ∪ . . . ∪ Ci) +W (Ci+1),

and therefore W (M ′) = W (M) +W (C1) + . . .+W (Ck).

Corollary 2.3 Let M be a matching of GA then M attains the maximum in
(2) for x ∈ [a, b] if and only if RA(M) contains no positively weighted cycles
for x ∈ [a, b].

Proof Suppose that M attains the maximum in (2). Let C be a cycle in
RA(M), then from Lemma 2.1 M ′ = M4C is also a matching with weight
W (M ′) = W (M) + W (C). But if M attains the maximum in (2) then
W (M ′) ≤ W (M) so W (C) ≤ 0. Therefore RA(M) contains no positively
weighted cycles.

Now suppose that RA(M) contains no positively weighted cycles. Let
M ′ be a matching of GA, then from Lemma 2.2 there exists disjoint cycles
C1, . . . , Ck in RA(M) such that M4(C1 ∪ . . . ∪ Ck) = M ′ and W (M ′) =
W (M)+W (C1)+ . . .+W (Ck). But if RA(M) contains no positively wighted
cycles then W (M ′) ≤ W (M). Therefore M attains the maximum in (2).

Gassner and Klinz’s max-plus eigensolver algorithm works as follows.
Suppose that we already know the maximally weighted matching M for

7

some value x = x1. We detect the greatest value x2 ≤ x1 at which a
positively weighted cycle C in RA(M) will emerge. This will be a cycle
C with W (C) = 0 for x = x2 and W (C) > 0 for x < x2. We argument
M with respect to C to obtain M ′ = M4C. Now M ′ is the maximally
weighted matching for x = x2. We continue finding further emergent pos-
itively weighted cycles and reducing x. By maintaining the property that
RA(M) contains no positively weighted cycles we ensure that we always have
the maximally weighted matching (due to Corollary 2.3). The values of x
at which the maximally weighted matching changes are the eigenvalues of A
and the multiplicity of an eigenvalue is given by the change in the parametric
weight of the maximal matching at that eigenvalue.

Example Consider the max-plus matrix

A =

 −∞ 2 3
2 −∞ −∞
−∞ 0 −∞

 .
Expanding the characteristic polynomial of A yields

χA(x) = x⊗3 ⊕ 4⊗ x⊕ 5 = max{3x, 4 + x, 5}.

The roots of χA and therefore the eigenvalues of A are given by µ1 = 2, which
is a double root (where the derivative jumps by 2) and µ2 = 1, which is a
simple root.

The three different matchings that attain the maximum in (2) are dis-
played in Figure 2 subfigures a,b,c. Note that the intervals in which a partic-
ular matchings is maximally weighted is always bounded by a pair of max-
plus eigenvalues of A. Figure 2 subfigure d displays the graph RA(M1),
this residual bipartite graph contains two cycles u(3) 7→ v(2) 7→ u(2) 7→
v(1) 7→ u(1) 7→ v(3) 7→ u(3), which has weight −x + 0 − x + 2 − x + 3 =
5 − 3x and C1 = u(2) 7→ v(1) 7→ u(1) 7→ v(2) 7→ u(2), which has weight
−x + 2 − x + 2 = 4 − 2x. The second cycle C1 is the first to emerge
with a positive weight at x = 2. Viewed as a subset of edges C1 is given
by C1 = {e(1)11, e(0)12, e(1)22, e(0)21}. We augment M1 with respect to C1

to obtain M2 = M14C1 = {e(0)12, e(0)21, e(1)33}. Likewise C2 = u(3) 7→
v(2) 7→ u(1) 7→ v(3) 7→ u(3) is the first positive weighted cycle to emerge in
RA(M2) and M3 = M24C2.

8

u(1)

u(2)

u(3)

v(1)

v(2)

v(3)

2

2

0

3

x

x

x

(a) For x ∈ [2,∞),
M1 = {e(1)11, e(1)22, e(1)33}.

u(1)

u(2)

u(3)

v(1)

v(2)

v(3)

2

2

0

3

x

x

x

(b) For x ∈ [1, 2]
M2 = {e(0)12, e(0)21, e(1)33}.

u(1)

u(2)

u(3)

v(1)

v(2)

v(3)

2

2

0

3

x

x

x

(c) For x ∈ [−∞, 1]
M3 = {e(0)13, e(0)21, e(0)32}.

u(1)

u(2)

u(3)

v(1)

v(2)

v(3)

2

2

0

3

-x

-x

-x

(d) RA(M1).

u(1)

u(2)

u(3)

v(1)

v(2)

v(3)

-2
-2

0

3

x

x

-x

(e) RA(M2).

u(1)

u(2)

u(3)

v(1)

v(2)

v(3)

2
2

0

3

x

x

x

(f) RA(M3).

Figure 2: a,b,c) Bipartite graph GA, with maximally weighted matchings (bold edges).
d,e,f) Residual graphs with augmenting cycles (bold edges).

9

Gassner and Klinz’s algotithm detects the emergence of positively weighted
cycles by maintaining a maximally weighted spanning tree T in RA(M).
When M is the maximally weighted matching T exists, but as soon as a pos-
itively weighted cycle emerges T becomes ill defined. The algorithm starts
by initializing RA(M) and T for a very large positive value of x then succes-
sively finds the next value of x at which T changes and updates T accordingly.
When x crosses a value at which a positively wighted cycle emerges, i.e. a
max-plus eigenvalue of the problem matrix, this is detected and stored and
M is updated accordingly.

2.1. The algorithm

The following algorithm calculates all n eigenvalues of a max-plus matrix
A ∈ Rn×n

max with cost O
(
nτA + n2 log(n)

)
, where τA is the number of finite

entries in A
The algorithm we present is slightly different from the one presented by

Gassner and Klinz, their algorithm workes by increasing the parameter x,
whereas ours works by decreasing it. This reduces the cost of the initializa-
tion phase from O(nτA) to O(τA), where τA is the number of finite entries in
the matrix, so although this does not affect the overall complexity of the algo-
rithm, our version should be faster. Figure 3 is a flowchart which summarizes
the algorithm’s procedure.

1. We set M1 = E(1) and construct RA(M1). Note that since M1 con-
sists of all of the parametric edges we have W (M1) = nx and there
is no other matching with this parametric coefficient. Therefore for
sufficiently large positive x, M1 is the maximally weighted matching.
Next we adjoin a root vertex r, with constant edges E(r) = {e(r)ri :
r 7→ u(i), with weight w(e(r)ri) = 0, for i = 1, . . . , n}. This results in
the graph RA(M1) ∪ r.
We then construct a maximally weighted spanning tree T through
RA(M1) ∪ r, rooted at r. The weight of the different trees are com-
pared by assuming that x is very large and positive, so that the con-
stant part of the weight is maximised subject to the parametric part
being maximised first. Thus T consists of the edges E(r) along with
{e(0)m(j)j : j = 1, . . . , n}, where am(j)j = maxi aij, if the maximally
weighted tree is not unique, then it does not matter which maximally
weighted tree we choose.
For a vertex a ∈ U ∪ V we define the depth D(a) to be the sum of
the edge weights along the path from r to a through T . The depth of

10

a vertex has a constant coefficient D(a)0 and a parametric coefficient
D(a)1, so that D(a) = D(a)0 + xD(a)1. We will also refer to the
constant and parameter coefficients of the edge weights in the same
way so that w(e) = w(e)0 +xw(e)1 for all e ∈ E(r)∪E(0)∪E(1). Now
we compute the edge keys for each edge e : a 7→ b by

k(e) =
D(a)0 + w(e)0 −D(b)0

D(b)1 −D(a)1 − w(e)1

, (3)

if this denominator is strictly positive and k(e) = −∞ otherwise. Now
D(b), the depth of the vertex b, is the weight of the path from r to b
through T and D(a) + w(e) is the total weight of the path from r to b
consisting of the path through T from r to a then the edge e from a to
b. The edge key k(e) is therefore the value of x at which the weight of
this second path switches to being greater than the weight of the first.
We define the vertex key k(b) of a vertex b to be the maximum over
of all vertex edge keys, for edges that end at vertex b. If e is the edge
that corresponds to vertex b’s key then we say that the origin of b’s
key is e. If this maximum is not unique, then it does not matter which
maximal edge key we choose.

2. We take the maximum vertex key, k(b) with origin e say. We call b
the pivot vertex and e : a 7→ b the pivot edge. If this maximum is not
unique, then it does not matter which maximal vertex key we choose.
If there are no finite keys then we store minus infinity as an eigenvalue
with multiplicity equal to n minus the sum of the multiplicities of the
finite eigenvalues stored so far and terminate the algorithm.

3. We update T according to the pivot edge e : a 7→ b. To do this we
replace the current edge in T that edges at b with the new edge e. If
T ′ contains a cycle C and we go to step 5, otherwise, if T is still a tree
then we go to step 4.

4. We compute the keys for the new tree T ′. It is not necessary to check all
of the edge keys to do this. For every vertex c, downstream of the pivot
vertex b in T , in the sense that there exists a directed path through T
from b to c, we update the edge keys of any edges incident to c, then
update the vertex keys from these edge keys. Now we set T = T ′.

5. We define the weight W (C) of the cycle C to be the sum of its edge
weights, with constant coefficient W (C)0 and parametric coefficient
W (C)1. We store k(b), the maximum vertex key, as an eigenvalue of

11

1) initialize
RA(M), T,K

2) find
maximal
vertex

key k(b)

3) is T ′

cyclic?

5) store
eigenvalue
µ = k(b)

4) set
T = T ′,
update

keys

6) augment
RA(M),
update
T,K

yes

no

Figure 3: Flow chart for the procedure of max-plus matrix eigenvalues algorithm.

A with multiplicity −W (C)1. If the sum of the multiplicities of the
stored eigenvalues is equal to n then we terminate the algorithm.

6. We augment the current maximal matching Mk according to the cycle
C to obtain Mk+1 = Mk4C. The graph RA(Mk+1) can be obtained di-
rectly from RA(Mk) by reversing the direction and misusing the weight
of any edge that belongs to the cycle C.
Next we construct a new maximally weighted tree T in RA(Mk+1) ∪ r
rooted at r. From the previous tree we remove the first edge of the
directed path from the pivot vertex b to a (where vertex a is the start of
the pivot edge e) and replace it with the maximum pivot edge e. Then
any edges in this set which are reversed and minused as we update the
residual, we also reverse and minus to produce the new tree T .
Next we update all of the vertex keys.

Example Consider the matrix of Example 1. Figure 4 shows the different
graphs produced during the algorithm.

• Subfigure (a). Step 1. We construct the initial residual graph RA(M1)∪
r and tree T , then compute the initial vertex keys. For example the

12

vertex u(1) has two edges into it, the edge e(r)r,1 has key k(e(r)r,1) =
−∞ and the edge e(1)11 has key k(e(1)11) = 2/1 = 2, so that k

(
u(1)

)
=

max{2,−∞} = 2.

• (a)7→(b). Steps 2,3,4. The maximal key is k
(
u(3)

)
= 3, the pivot edge

is the parametric edge e(1)33. We update T according to this pivot and
do not get any cycles, so we update the vertex keys.

• (b)7→(c). Steps 2,3,4. The maximal key is k
(
u(1)

)
= 2, the pivot edge

is the parametric edge e(1)11. We update T according to this pivot and
do not get any cycles, so we update the vertex keys .

• (c) 7→(d). Steps 2,3,5,6. The maximal key is k
(
u(2)

)
= 2, the pivot edge

is the parametric edge e(1)22. We update T according to this pivot and
get a cycle C =

(
u(2), v(1), u(1), v(2)

)
. Since W (C) = 4− 2x, we save

µ = 2 as an eigenvalue of multiplicity 2. We augment M1 with respect
to C to obtain the new maximal matching M2. We compute the new
maximal tree and the new vertex keys for RA(M2) ∪ r.

• (d)7→(e). Steps 2,3,4. The maximal key is k
(
u(1)

)
= 2, the pivot edge

is the root edge e(r)r1. We update T according to this pivot and do
not get any cycles, so we update the vertex keys.

• (e)7→(f). Steps 2,3,4. The maximal key is k
(
v(2)

)
= 1.5, the pivot edge

is the constant edge e(0)32. We update T according to this pivot and
do not get any cycles, so we update the vertex keys.

• (f). Steps 2,3,5,6. The maximal key is k
(
u(1)

)
= 1, the pivot edge

is the constant edge e(0)12. We update T according to this pivot and
get a cycle C =

(
v(2), u(1), v(3), u(3)

)
. Since W (C) = 1 − x, we save

µ = 1 as an eigenvalue of multiplicity 1. The sum of the multiplicities
of the stored eigenvalues is 2 + 1 = 3 so we terminate the algorithm.

• Output. The eigenvalues of A are µ = 2, which is a double eigenvalue
and µ = 1, which is a simple eigenvalue.

2.2. Complexity

This algorithm will return all n max-plus eigenvalues of an n×n max-plus
matrix A ∈ Rn×n

max with cost O
(
nτA + n2 log(n)

)
, where τA is the number of

finite entries in A

13

(0, 2)

(0, 2)r

(0, 3)

(2,−∞)

(2,−∞)

(3,−∞)

2

2

0

3

-x

-x

-x

0

0

0

(a) x ∈ [3,∞)

(0, 2)

(0, 2)r

(3− x,−∞)

(2,−∞)

(2, 1)

(3,−∞)

2

2

0

3

-x

-x

-x

0

0

0

(b) x ∈ [2, 3]

(2− x,−∞)

(0, 2)r

(5− 2x,−∞)

(2,−∞)

(4− x, 1)

(5− x,−∞)

2

2

0

3

-x

-x

-x

0

0

0

(c) x = 2

(x− 2, 2)

(0,−∞)r

(1,−∞)

(2x,−∞)

(x, 1)

(x + 1,−∞)

-2
-2

0

3

x

x

-x

0

0

0

(d) x = 2

(0,−∞)

(0,−∞)r

(3− x,−∞)

(x,−∞)

(x, 1.5)

(3,−∞)

-2
-2

0

3

x

x

-x

0

0

0

(e) x ∈ [1.5, 2]

(0, 1)

(0,−∞)r

(3− x,−∞)

(x,−∞)

(3− x,−∞)

(3,−∞)

-2
-2

0

3

x

x

-x

0

0

0

(f) x ∈ [1, 1.5]

Figure 4: Rooted residual graphs RA(M)∪r with maximally weighted tree T (bold edges),
pivot edges (blue edges), and cycles (red and blue edges). Vertex positions marked with
(vertex depth, vertex key) pairs.

14

The vertex key values are stored in a Fibonacci heap, so that the cost
of the operation find maximum is O(log(n)), decrease key is O

(
log(n)

)
and

increase key is O(1). The tree T is stored as an array of parents with doubly
linked lists of children, so that the cost of the operation change parent is O(1)
and the cost of the operation find all decedents is O(d), where d is the number
of decendents. We will treat the cost associated with each component of the
flow diagram separately.

Each of the following items derives the complexity for the corresponding
stages of the algorithm as described at the start of Subsection 2.1. It may be
necessary for the reader to refer back to the algorithm description for some
details and notation.

1. The initialization of the residual graph, tree and keys is streightforwards
and has cost O(τ), where τ is the number of non-zeros in the matrix.

2. Find maximum key has cost O(log(n)). Consider p =
∑

a∈U∪V D1(a),
the sum of all of the parametric coefficients of the depths of all of the
vertices in RA(M) ∪ r. Initially p = 0 and at the end of the algorithm
|p| ≤ n2. Each time the algorithm progresses through stage 4 (the
left loop in the flowchart), p decreases by at least one. Each time the
algorithm stores a new eigenvalue and moves through stages 5 and 6
(the right loop), p increases by at most n times the multiplicity of the
eigenvalue. Thuerefore the total number of times that the algorithm
progresses though stage 5 is O(n2), so that the total cost of finding the
maximum keys is O(n2 log(n)).

3. To determine whether or not T ′ is cyclic we populate a list with all
of the vertices downstream of b in T . If the vertex a appears in this
list then T ′ will be cyclic, otherwise it is not. The cost of this check
is O(

∑
c≺b 1), where the sum is taken over all vertices downstream of

b in T . Therefore the total cost associated with these operation is
O(
∑

c∈U∪V l(c)), where l(c) is the total number of times that vertex c
is downstream of the pivot vertex b.
Initially D(c)1 = 0 and at the end of the algorithm |D(c)1| ≤ n. Each
time that c is downstream of a pivot vertex (the left loop) D(c)1 will
decrease by at least one. Each time that the algorithm stores a new
eigenvalue (right loop) D(c)1 will increase by at most the multiplicity
of the stored eigenvalue. Therefore l(c) is O(n) and the total cost of
checking for cyclicity is O(n2).

4. The cost of switching from T to T ′ is O(1). We must also update D(b)

15

and D(c) for all vertices c ∈ U ∪ V downstream of b in T . This has
cost O(

∑
c≺b 1), the same as checking for cyclicity, so that the total

cost of this operation is also O(n2). The cost of updating the keys

after a switching from T to T ′ is O
(∑

c≺b
(
τc + log(n)

))
, where the

sum is taken over all vertices c ∈ U ∪V downstream of the vertex with
minimal key b and τc is the degree of c in RA(M). This is because for
each downstream vertex c we have to check all of the edges incident to
c, with cost O(τc), then we may have to increase the vertex keys of c’s
neighbours, with cost O(τc), and decrease c’s own key, with cost log(n).
As we showed in 3 (above), the total number of times that a vertex
c is downstream of the pivot vertex is O(n), so that the total cost of
updating the keys is O

(
nτA + n2 log(n)

)
, where we have used the fact

that
∑

c∈U∪V τc = τA.
5. Storing the new eigenvalue has cost O(1). We do this up to n times so

the total cost is O(n).
6. Augmenting RA(M) has cost O(n), updating T has cost O(n) and

updating all of the vertex keys has cost O(τ). We update in this way
at most n times (once for each distinct eigenvalue) so that the total
cost associated with these operations is O(nτ).

3. Matrix polynomial eigenvalues

In this section we detail our extension of Gassner and Klinz’s single matrix
eigenvalue algorithm to the max-plus matrix polynomial case. Let P be a
degree-d, n× n max-plus matrix polynomial

P (x) =
d⊕

k=0

A(k)⊗ x⊗k,

where A(0), . . . , A(d) ∈ Rn×n
max are the coefficient matrices of P . The max-

plus eigenvalues µ1, . . . , µnd of P are the non-differentiability points of the
characteristic polynomial

χP (x) = perm[P (x)] = max
π∈Πn

(n∑
i=1

(d
max
k=0

(A(k)iπ(i) + kx)
))
.

We also include −∞ as an eigenvalue of multiplicity k, whenever the first
k coefficients of χP are −∞. If the sum of the multiplicities of these eigen-
values is less than nd, then we include +∞ as an eigenvalue with sufficient
multiplicity that the sum of the eigenvalues multiplicities is nd.

16

Like the max-plus matrix eigenproblem, the max-plus eigenvalues of a
max-plus matrix polynomial are the switching points of a parametric maxi-
mally weighted matching problem.

Let GP be be the bipartite graph with left vertices {u(1), . . . , u(n)}, right
vertices {v(1), . . . , v(n)}, and edge sets E(k) = {e(k)ij : u(i) 7→ v(j), with
weight w(e(k)ij) = a(k)ij +xk, for ij = 1, . . . , n such that a(k)ij 6= −∞}, for
k = 0, 1, . . . , d. So that the graph described in section 1 corresponds to the
special case of the matrix pencil A⊕ x⊗ I.

As before a matching or assignment of GP is a subset of edges M ⊂ E(0)∪
. . .∪E(d), such that each U vertex has exactly one edge out of it and each V
vertex has exactly one edge into it. Therefore the edges in an assignment M
can be uniquely represented as M = M(π, s) = {(e(si)i,π(i) : i = 1, . . . , n},
for some s ∈ {0, 1, . . . , d}n and some π ∈ Πn, a permutation on {1, . . . , n}.
The weight of an assignment is simply the sum of its edge weights

W
(
M(π, s)

)
=

n∑
k=1

w
(
e(sk)iπ(i)

)
,

so that just as in the single matrix eigenproblem we have

χP (x) = max
π∈Πn

max
s∈{0,1,...,d}n

n∑
k=1

w
(
e(sk)i,π(i)

)
= max

M
W (M), (4)

where the rightmost maximum is taken over all assignments of GP . The
switching values of x where the assignment that attain the maximum in (4)
changes are the non-differentiability points of χP (x), which are the finite
max-plus eigenvalues µ1, . . . , µnd of P .

We define the residual bipartite graph RP (M) to the graph obtained from
GP by reversing the direction of an minusing the weight of any edges that
appear in M .

Example Consider the max-plus matrix polynomial

P (x) =

[
0 −∞
0 −∞

]
⊗ x⊗2 ⊕

[
−∞ ∞

3 0

]
⊗ x⊕

[
−∞ 2

2 1

]
.

Expanding the characteristic polynomial of P yields

χP (x) = x⊗3 ⊕ 2⊗ x⊗2 ⊕ 5⊗ x⊕ 4 = max{3x, 2x+ 2, x+ 5, 4}.

17

u(1)

u(2)

v(1)

v(2)

2x

2
2x

x+3

2

x
1

(a) x ∈ [2.5,∞),
M1 = {e(2)11, e(2)22}.

u(1)

u(2)

v(1)

v(2)

2x

2
2x

x+3

2

x
1

(b) x ∈ [−1, 2.5],
M2 = {e(0)12, e(1)21}.

u(1)

u(2)

v(1)

v(2)

2x

2
2x

x+3

2

x
1

(c) x ∈ [−∞,−1],
M3 = {e(0)12, e(0)21}.

u(1)

u(2)

v(1)

v(2)

-2x

2
2x

x+3

2

-x

1

(d) RP (M1),
C1 =
{e(2)11, e(1)21, e(2)22, e(0)12}.

u(1)

u(2)

v(1)

v(2)

2x

-22x -x-3

2

x
1

(e) RP (M2),
C2 = {e(1)12, e(0)12}.

u(1)

u(2)

v(1)

v(2)

2x

-2

2x

x+3

-2

x
1

(f) RP (M3)

Figure 5: a,b,c) Bipartite graph GA, with maximally weighted matchings (bold edges).
d,e,f) Residual graphs with augmenting cycles (bold edges).

The roots of χP and therefore the finite eigenvalues of P are given by µ1 = 2.5,
which is a double root, and µ2 = −1, which is a simple root. The sum of
the multiplicity of these roots is 2 + 1 = 3, so we include µ3 +∞. as an
eigenvalue of multiplicity 1. The three different assignments Mi i = 1, 2, 3
that attain the maximum in (4) are displayed in Figure 5 subfigures a,b,c.
Note that the intervals in which a particular matching is maximally weighted
are always bounded by pairs of max-plus eigenvalues of P . Figure 5 subfigures
d,e,f displays the residual graphs RP (Mi), i = 1, 2, 3 with augmenting cycles
highlighted. Note that M2 = M14C1 and that M3 = M24C2.

18

Like the single matrix eigenvalue algorithm, our matrix polynomial al-
gorithm works by maintaining a maximally weighted spanning tree through
a residual bipartite graph and finding eigenvalues by detecting weight zero
cycles, at which point the maximally weighted trees cease to exist and the
maximally weighted matching must be updated.

There are two main differences between our max-plus matrix polynomial
algorithm and Gassner and Kilnz’s single matrix eigenvalue algorithm. The
first difference is that computing the initial maximally weighted matching
and the initial maximally weighted tree is a little more complicated. The
second difference is that we begin by computing the max-plus roots of each
entry of the matrix polynomial (recall that each entry is itself a degree-d max-
plus scalar polynomial). This enables us to work with a residual bipartite
graph with a single set of edges (rather than d sets of edges). Each time
the parameter x passes through a root of pij, we update the edge weight of
the edge e : i 7→ j accordingly. Essentially the individual entry roots form a
special set of keys, which we can treat separately to speeds things up.

3.1. The algorithm

This algorithm will return all nd max-plus eigenvalues of a degree-d, n×n
max-plus matrix polynomial P with cost O

(
ndτ + n2d log(n) + τd log(d)

)
,

where τ is the number of finite entries in P . Figure 6 is a flow chart which
summarizes the algorithm’s procedure.

1. For ij = 1, . . . , n we compute the finite max-plus roots sij(1), . . . , sij(t)
and their multiplicities mij(1), . . . ,mij(t) of the max-plus polynomial

p(x)ij = a(o)ij ⊕ a(1)ij ⊗ x⊕ . . .⊕ a(d)ij ⊗ x⊗d. (5)

For each root sij(k) we also store wij(k), the monomial which attains
the maximum in (5) for x ∈ [sij(k − 1), sij(k)]. We combine all of the
roots from each entry into one list S, which we sort according to the
value of the root in decreasing order. Note that we do not store any
infinite roots.
We compute the optimal assignment for large positive x. We define an
order 2 on affine functions of the form a + bx, with a, b ∈ Rmax, by
a + bx 2 c + dx if either a = −∞, b < d and c 6= −∞ or b = d and
a ≤ c. Thus a + bx 2 c + dx if and only if a + bx ≤ c + dx, for large
positive x.

19

Define Q(x) to be the max-plus matrix of monomials whose entires
q(x)ij are the greatest (with respect to the ordering 2) monomials
in the polynomial entries p(x)ij. Thus q(x)ij is the highest degree
monomial with a finite coefficient in p(x)ij.
We compute the optimal assignment M1 of Q(x), using the order 2 to
compare the weights of different assignments. This is carried out by the
Hungarian algorithm, which only needs to add, subtract and compare
matrix entries. We substitute the usual operations for the analogous
operations on functions of the form a+bx and also use our new ordering
2.
If the parametric component of the optimal assignments weightW (M1)1

is less than nd then we store µ = +∞ as an eigenvalue with multiplicity
nd −W (M1)1. If there is no finite weight assignment of Q, then we
terminate the algorithm and report that P is degenerate.
We construct the initial residual bipartite graph RP (M1) with left
vertices {u(1), . . . , u(n)}, right vertices {v(1), . . . , v(n)} and edge set
E = {eij : u(i) 7→ v(j), with weight w(eij) = q(x)ij, for ij = 1, . . . , n
such that q(x)ij 6= −∞}. We reverse the direction of and minus the
weight of any edges that appear in the optimal assignment M1.
We adjoin a root vertex r, with constant edge set E(r) = {e(r)ri : r 7→
u(i), with weight w(e(r)ri) = 0, for i = 1, . . . , n}. We compute the
maximally weighted spanning tree T through RP (M1) ∪ r rooted at r,
using Edmond’s algorithm with the ordering 2. As with computing
the optimal assignment , this is achieved by substituting the standard
numerical operations, for operations on affine functions of the form
a+ bx.
We define the depth D(a) of a vertex a ∈ U ∪ V , and the edge and
vertex keys exactly as in the single matrix algorithm. We compute all
of the vertex keys.

2. We take the maximum vertex key, k(b) with origin e. We call b the
pivot vertex and e : a 7→ b the pivot edge. If this maximum is not
unique, then it does not matter which maximal vertex key we choose.
We also take the maximum entry sij(k) from the list S. If this max-
imum is not unique, then it does not matter which maximal root we
choose.
If there are no finite keys or roots then we store minus infinity as an
eigenvalue with multiplicity equal to n minus the sum of the multiplic-
ities of the finite eigenvalues stored so far and terminate the algorithm.

20

3. We pick the maximum out of k(b) and sij(k). If sij(k) is the maximum
then we remove it from the list S. If this maximum is not unique then
it does not matter which of k(b) and sij(k) we choose.

4. This step is exactly the same as in the single matrix eigenvalue algo-
rithm. If b is the pivot vertex and e : a 7→ b is the pivot edge, then T ′

is cyclic if and only if a is downstream of b in T .

5. This step is exactly the same as in the single matrix eigenvalue algo-
rithm, except that there is only one set of edges that need checking.
We update the key of any edge incident to a vertex downstream of the
pivot vertex, then update the vertex keys accordingly.

6. This step is exactly the same as in the single matrix eigenvalue algo-
rithm. We store the eigenvalue µ = k(b), with multiplicity equal to the
parametric coefficient of the weight of the cycle.

7. This step is exactly the same as in the single matrix eigenvalue algo-
rithm, except that there is only one set of edges that need checking
when we update K.

8. We check weather the edge eij corresponding to the maximal matrix
entry root is currently a forwards edge eij : u(i) 7→ v(j) or if it has
been reversed to a backwards edge eij : v(j) 7→ u(i).

9. We update RP (M) by setting the weight of the edge eij to wij(k). As
in step 5 we must now update the keys of all edges incident to vertices
downstream of v(j) in T , then update the vertex keys accordingly.

10. We store the eigenvalues µ = sij(k), with multiplicity mij(k).

11. We update RP (M) by setting the weight of the backwards edge eij
to −wij(k). As in step 5 we must now update the keys of all edges
incident to vertices downstream of u(i) in T , then update the vertex
keys accordingly.

Example Consider the max-plus matrix polynomial of Example 3. Figure
7 shows the different graphs produced during the algorithm.

• Subfigure (a). Step 1. We compute the finite roots of all of the matrix
polynomial entries. The (1, 1) entry p(x)1,1 = x⊗2 has no finite roots.
The (2, 1) entry p(x)12 = x⊗2 ⊕ 3 ⊗ x ⊕ x = max{2x, x + 3, 2} has
two finite roots, s12(1) = 3, with m12(1) = 1 and w12(1) = x + 3, and
s12(2) = −1, with m12(2) = 1 and w12(1) = 2. The (1, 2) entry p(x)21 =
2 has no finite roots. The (2, 2) entry p(x)22 = x⊕ 1 = max{x, 1} has

21

1)
in

it
ia

li
ze

S
,R
,T
,K

2)
fi
n
d

m
ax

im
al

ke
y

an
d

ro
ot

3)
is

m
ax

im
u
m

F
fr

om
S

or
K

?

4)
is
T
′

cy
cl

ic
?

8)
is
e

b
ac

k
-

w
ar

d
s

ed
ge

?

5)
se

t
T

=
T
′ ,

u
p

d
at

e
ke

y
s

6)
st

or
e

ei
ge

n
va

lu
e

µ
=
k
(b

)

7)
au

gm
en

t
R

,
u
p

d
at

e
T
,K

9)
u
p
-

d
at

e
K

10
)

st
or

e
ei

ge
n
va

lu
e

µ
=
s(
e)

11
)

u
p

d
at

e
R

,K

K
S

n
o

ye
s

n
o

ye
s

F
ig
u
re

6:
F
lo
w

ch
ar
t
fo
r
th
e
p
ro
ce
d
u
re

o
f
m
a
x
-p
lu
s
m
a
tr
ix

p
o
ly
n
o
m
ia
l
ei
g
en
va
lu
es

a
lg
o
ri
th
m
.

22

one finite root, s22(1) = 1, with m22(1) = 1 and w22(1) = 1. The
ordered list of roots is given by S =

(
s12(1) = 2, s22(1) = 1, s12(2) =

−1
)
.

The matrix Q(x) is given by

Q(x) =

[
2x 2
2x x

]
.

The maximally weighted matching M1 of G with respect to the ordering
2 is therefore M1 = {e(2)11, e(1)22}, which has weight 3x, so we include
µ = +∞ as an eigenvalue with multiplicity 4− 3 = 1.

• (a)7→(b). Steps 2,3,8,9. The maximal key is k
(
u(2)

)
= 2. The maximal

root is s12(1) = 3, which corresponds to the forwards edge
(
u(2), v(1)

)
.

Since the root is the larger it corresponds to a forwards edge we set the
weight of this edge to w12(1) = x+ 3 then update K.

• (b)7→(c). Steps 2,3,4,5. The maximal key is k
(
u(1)

)
= 3, with pivot

edge
(
u(1), v(1)

)
. The maximal root is s22(1) = 1. Since the key is

larger we check T ′. Since there are no cycles in T ′ we set T = T ′ and
update K.

• (c)7→(d). Steps 2,3,4,6,7. The maximal key is k
(
u(2)

)
= 2.5, with pivot

edge
(
u(2), v(2)

)
. The maximal root is s22(1) = 1. Since the key is

larger we check T ′. We check T ′ and find a cycle C =
(
u(1), v(1), u(2), v(2)

)
.

We store µ = 2.5 as an eigenvalue of multiplicity 2. We augment G
with respect to C and update T and K.

• (d)7→(e). Steps 2,3,4,5. The maximal key is k
(
u(1)

)
= 2, with pivot

edge
(
u(1), r

)
. The maximal root is s22(1) = 1. Since the key is larger

we check T ′. Since there are no cycles in T ′ we set T = T ′ and update
K.

• (e)7→(f). Steps 2,3,8,9. There are no finite keys. The maximal root is
s22(1) = 1, which corresponds to the forwards edge

(
u(2), v(2)

)
. Since

the root corresponds to a forwards edge we set the weight of this edge
to w22(1) = 1 then update K.

• (f). Steps 2,3,8,10,11. There are no finite keys. The maximal root is
s12(2) = −1. This root corresponds to the backwards edge

(
u(2), v(1)

)
.

23

Since the root corresponds to a backwards edge we store µ = −1 as an
eigenvalue with multiplicity one. The sum of the multiplicities of the
strored eigenvalues is now 1 + 2 + 1 = 4 so we terminate the algorithm.

• Output. The eigenvalues of P are therefore µ1 = +∞, which is a simple
eigenvalue, µ2 = 2, which is a double eigenvalue and µ3 = 0, which is
a simple eigenvalue.

3.2. Complexity

This algorithm will return all nd max-plus eigenvalues of a degree-d, n×n
max-plus matrix polynomial P with cost O

(
ndτP + n2d log(n) + τPd log(d)

)
,

where τP is the number of entries in P that are not identically equal to minus
infinity. So that for d ≤ exp(n) and τP ≥ n log(n) we have

ndτP + n2d log(n) + τd log(d) = O(ndτP).

As before the vertex key values are stored in a Fibonacci heap and the tree T
is stored as an array of parents with doubly linked lists of children. We will
treat the cost associated with each component of the flow diagram separately.

The advantage to treating the matrix entry roots separately from the
other keys is that when we update vertex keys, we only need to check the
edge keys for a single set of edges, rather than d different sets. This improves
the complexity by a factor of d.

1. The roots of each matrix polynomial entry pij(x) can be computed
by applying the Graham scan algorithm to the newton polygon of pij,
with cost O(d). The total cost for computing all of the roots is therefore
O(dτP). The roots for each entry are already sorted, so the list of all
roots can be sorted using merge sort with cost O

(
τPd log(d)

)
.

Computing the initial optimal assignment with the Hungarian algo-
rithm has cost O

(
nτP + n log(n)

)
).

Computing the initial maximally weighted tree with Edmond’s algo-
rithm has cost O

(
τP + n log(n)

)
.

Computing the initial keys has cost O(τ).

2. Find maximum key has cost O(log(n)). Find maximum root has cost
O(1). Consider p =

∑
a∈U∪V D1(a), the sum of all of the parametric

coefficients of the depths of all of the vertices in RP (M). Initially
|p| ≤ n2d and at the end of the algorithm |p| ≤ n2d. Each time the

24

(0,−∞)

(0, 2)

(2x,−∞)

(2,−∞)

r

-2x

2

2x

-x

(a) x ∈ [3,∞)

(0, 3)

(0, 2)

(x + 3,−∞)

(2,−∞)

r

-2x

2

x+3

-x

(b) x = 3

(−x + 3,−∞)

(0, 2.5)

(x + 3,−∞)

(−x + 5,−∞)

r

-2x

2

x+3

-x

(c) x ∈ [2.5, 3]

(x− 2, 2)

(0,−∞)

(3x− 2,−∞)

(x,−∞)

r

2x

-x-3

-2

x

(d) x ∈ [2, 2.5]

(0,−∞)

(0,−∞)

(2x,−∞)

(x,−∞)

r

2x

-x-3

-2

x

(e) x ∈ [1, 2]

(0,−∞)

(0,−∞)

(2x,−∞)

(1,−∞)

r

2x

-x-3

-2

1

(f) x ∈ [−1, 1]

Figure 7: Residual graph R with maximally weighted tree (bold edges), pivot edges (blue
edges), cycles (red and blue edges) and updated edges (green). Vertex positions marked
with (vertex depth, vertex key) pairs.

25

algorithm progresses through stage 5 or 9 (the left or right inner loop
in the flowchart), p decreases by at least one. Each time the algorithm
stores a new eigenvalue and moves through stages 6 or 10 (the left or
right outer loop), p increases by at most n times the multiplicity of the
stored eigenvalue. Since the sum of the stored eigenvalues multiplicities
comes to nd, the total number of times that the algorithm progresses
though stage 2 is O(n2d), so that the total cost of fining the maximum
keys is O(n2d log(n)).

3. Choosing the maximum of the maximum key and the maximum root
has cost O(1), as explained in 1 (above) we do this O(n2d) times, so
the total cost is O(n2d).

4. To determine wheather or not T ′ is cyclic we populate a list with all
of the vertices downstream of b in T . If the vertex a appears in this
list then T ′ will be cyclic, otherwise it is not. The cost of this check is
O(
∑

c≺b 1), where the sum is taken over all vertices c ∈ U ∪ B down-
stream of b in T . Therefore the total cost associated with this operation
is O(

∑
c∈U∪V l(c)), where l(c) is the total number of times that vertex

c is downstream of the pivot vertex b.
Initially |D(c)1| ≤ dn and at the end of the algorithm |D(c)1| ≤ dn.
Each time that c is downstream of a pivot vertex (the left loop) D(c)1

will decrease by at least one. Each time that the algorithm stores a new
eigenvalue (right loop) D(c)1 will increase by at most the multiplicity
of the stored eigenvalue. Therefore l(c) is O(nd) and the total cost of
checking for cyclicity is O(dn2).

5. The cost of switching from T to T ′ is O(1), we must also update D(b)
and D(c) for all vertices c ∈ U ∪ V downstream of b in T . This has
cost O(

∑
c≺b 1) the same as checking for cyclicity, so that the total cost

of this operation is also O(n2d). The cost of updating the keys after

switching from T to T ′ is O
(∑

c≺b
(
τc + log(n)

))
, where the sum is

taken over all vertices c, downstream of the vertex with minimal key
b and τc is the degree of c in R. This is because we have to check all
of the edges incident to each downstream vertex c ∈ U ∪ v, with cost
O(τc), then we may have to increase the vertex keys of c’s neighbours,
with cost O(τc), and decrease c’s own key, with cost log(n).
As we showed in 4 (above), the total number of times that a vertex c
is downstream of the pivot vertex is O(dn), so that the total cost of
updating the keys is O

(
ndτP + n2d log(n)

)
.

26

6. Storing the new eigenvalue has cost O(1). We do this up to nd times
so the total cost is O(nd).

7. Augmenting RP (M) has cost O(n), updating T has cost O(n) and
updating all of the vertex keys has cost O(τ). We update in this way
at most nd times (once for each distinct eigenvalue) so that the total
cost associated with these operations is O(ndτ).

8. Checking whether the edge e is backwards has cost O(1), as explained
in 1 we do this O(nd) times so the total cost associated with these
operations is O(nd).

9. As in 5, we must update the keys for all the edges incident to vertices
downstream of the updated edge that the total cost associated with
these operations is O

(
ndτ + n2d log(n)

)
.

10. Storing the new eigenvalue has cost O(1). We do this up to nd times
so the total cost is O(nd).

11. Updating RP (M) has cost O(1), updating T has cost O(n) and up-
dating all of the vertex keys has cost O(τ). We update in this way at
most nd times (once for each distinct eigenvalue) so that the goal cost
associated with these operations is O(ndτ).

[1] Elisabeth Gassner and Bettina Klinz. A fast parametric assignment al-
gorithm with applications in max-algebra. Networks, 55(2):61–77, 2010.

[2] Stéphane Gaubert and Meisam Sharify. Tropical scaling of polynomial
matrices. In Positive systems, volume 389 of Lecture Notes in Control
and Information Sciences, pages 291–303. ,, 2009.

[3] Sven Hammarling, Christopher J. Munro, and Françoise Tisseur. An
algorithm for the complete solution of quadratic eigenvalue problems.
39(3):18:1–18:19, April 2013.

[4] D. A. Bini, V. Noferini, and M. Sharify. Locating the eigenvalues of
matrix polynomials. 34(4):1708–1727, 2013.

[5] James Hook and Françoise Tisseur. Max-plus eigenvalues and singular
values: a useful tool in numerical linear algebra, 2015. In preparation.

[6] James Hook. Max-plus singular values. 486:419–442, 2015.

[7] M. Akian, Ravindra Bapat, and S. Gaubert. Perturbation of eigenvalues
of matrix pencils and optimal assignment problem. C. R. Acad. Sci.
Paris, Série I, (339):103–108, 2004.

27

[8] R.L. Graham. An efficient algorithm for determining the convex hull of
a finite planar set. Information Processing Letters, 1:132–133, 1972.

[9] Neal E. Young, Robert E. Tarjan, and James B. Orlin. Faster parametric
shortest path and minimum balance algorithms. Networks, 1(2):205–221,
1991.

[10] Rainer E. Burkard and Peter Butkovi. Finding all essential terms
of a characteristic maxpolynomial. Discrete Applied Mathematics,
130(3):367 – 380, 2003.

[11] Meisam Sharify. Scaling Algorithms and Tropical Methods in Numer-
ical Matrix Analysis: Application to the Optimal Assignment Problem
and to the Accurate Computation of Eigenvalues. PhD thesis, Ecole
Polytechnique, Palaiseau, France, September 2011.

28

