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BOUNDS FOR THE DISTANCE TO THE
NEAREST CORRELATION MATRIX∗

NICHOLAS J. HIGHAM† AND NATAŠA STRABIĆ†

Abstract. In a wide range of practical problems correlation matrices are formed in such a way
that, while symmetry and a unit diagonal are ensured, they may lack semidefiniteness. We derive
a variety of new upper bounds for the distance from an arbitrary symmetric matrix to the nearest
correlation matrix. The bounds are of two main classes: those based on the eigensystem and those
based on a modified Cholesky factorization. Bounds from both classes have a computational cost
of O(n3) flops for a matrix of order n but are much less expensive to evaluate than the nearest
correlation matrix itself. For unit diagonal A with |aij | ≤ 1 for all i �= j the eigensystem bounds are
shown to overestimate the distance by a factor at most 1 + n

√
n. We show that for a collection of

matrices from the literature and from practical applications the eigensystem-based bounds are often
good order of magnitude estimates of the actual distance; indeed the best upper bound is never more
than a factor 5 larger than a related lower bound. The modified Cholesky bounds are less sharp
but also less expensive, and they provide an efficient way to test for definiteness of the putative
correlation matrix. Both classes of bounds enable a user to identify an invalid correlation matrix
relatively cheaply and to decide whether to revisit its construction or to compute a replacement,
such as the nearest correlation matrix.

Key words. correlation matrix, distance to the nearest correlation matrix, indefinite matrix,
positive semidefinite matrix, shrinking, modified Cholesky factorization
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1. Introduction. In many applications involving statistical modeling the first
step in the analysis is to compute the sample correlation matrix—a real symmetric
positive semidefinite matrix with unit diagonal—from empirical or experimental data
[28, p. 25]. Because of missing observations, indefinite approximations to the sample
correlation matrix frequently arise [19, sec. 2.2]. A lack of definiteness is also encoun-
tered in several other contexts. Stress testing in finance requires certain elements
of a valid correlation matrix to be replaced by new values, which may result in the
new matrix becoming indefinite [11], [23]. The sensitivity of sample correlation ma-
trices to outliers in the data has led to the development of robust estimators. Devlin,
Gnanadesikan, and Kettenring [9] propose several possibilities and note that some
methods that compute the estimator in an elementwise manner can produce matrices
with negative eigenvalues.

A further example of how indefiniteness can arise is in aggregation methods used
in large-scale resource assessment, for example in geology [5] or finance [1]. These
methods combine reliable estimates of correlation matrices for each group, say a geo-
graphical region or a market portfolio, into a global correlation matrix. The combi-
nation is achieved either by embedding small, “within group” correlation matrices as
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DISTANCE TO THE NEAREST CORRELATION MATRIX 1089

diagonal blocks into a crudely estimated global correlation matrix, or by constructing
a block-diagonal matrix from the individual group correlation matrices and filling out
the off-diagonal blocks by assigning the “between group” correlation coefficients ac-
cording to expert judgement. Again, there is no guarantee that the newly constructed
matrix is in fact positive semidefinite.

A popular approach to correcting an indefinite approximation A ∈ R
n×n to a

correlation matrix is to replace A by the nearest correlation matrix in the Frobenius
norm, that is, by

(1.1) ncm(A) = argmin{ ‖A−X‖F : X is a correlation matrix },
where ‖A‖2F =

∑
i,j a

2
ij . The first method with guaranteed convergence for solv-

ing (1.1) was the alternating projections method proposed by Higham [15, Alg. 3.3],
which iteratively projects onto the set Un of matrices with unit diagonal and onto
the convex cone Sn of symmetric positive semidefinite matrices, supplementing the
projection onto Sn with a correction due to Dykstra [10]. The rate of convergence of
this method is at best linear but we have recently shown that the convergence can
be accelerated significantly using Anderson acceleration [16]. The alternating projec-
tions method remains widely used in applications (see, for example, the references in
[16], [17]), though a faster, globally quadratically convergent Newton algorithm was
later developed by Qi and Sun [24], to which practical improvements were made by
Borsdorf and Higham [6]. The algorithm of Borsdorf and Higham requires an eigen-
decomposition of a symmetric matrix on each iteration and so it costs at least 10n3/3
flops per iteration. The Newton algorithm typically needs about 7 iterations, so the
total cost to compute ncm(A) is at least 70n3/3 flops.

While methods for computing the nearest correlation matrix to a given symmetric
matrix A are well developed, little attention has been given to estimating the distance

dcorr(A) = ‖A− ncm(A)‖F
without computing ncm(A). Importantly, the iterates produced by the alternating
projections method are not themselves correlation matrices as (with P denoting pro-
jection) the matrix PUn(PSn(X)) might be indefinite and the matrix PSn(PUn(X))
might not have an exactly unit diagonal. For the Newton method, the iterates do not
satisfy the constraint of having a unit diagonal, as discussed in [6, sec. 3.4]. Hence for
both methods the iterates do not provide upper bounds on dcorr(A). As the Newton
method solves the dual problem of (1.1) [24], on each iteration the value of the dual
function provides a lower bound for dcorr [20].

Our goal is to obtain bounds on dcorr(A) that are inexpensive to compute and are
of the correct order of magnitude. Indeed bounds correct to within a small constant
factor are entirely adequate for practical applications. In this work we summarize the
few existing bounds for dcorr(A) and derive several new upper bounds. While the best
bounds have a computational cost of O(n3) flops they are significantly less expensive
to compute than ncm(A) itself.

Bounds on dcorr(A) that can be easily evaluated using standard computational
tools will certainly be of interest to practitioners, as illustrated by the discovery by Xu
and Evers [35] that several matrices thought to be correlation matrices in the work
of Tyagi and Das [33] actually had some negative eigenvalues. While attempting
to compute the Cholesky factorization is sufficient to determine whether a matrix
is positive semidefinite, we propose using a modified Cholesky factorization instead.
The standard and modified Cholesky factorizations have the same computational
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1090 NICHOLAS J. HIGHAM AND NATAŠA STRABIĆ

cost, but for an indefinite matrix modified Cholesky factorization provides additional
information that can be used to construct an upper bound on dcorr(A); this bound
can help the user to decide whether to revisit the construction of the matrix, perhaps
by acquiring more data or by refining the statistical analysis. In our experiments,
the best modified Cholesky bound is at most two orders of magnitude larger than
dcorr(A).

Sharper bounds are available based on spectral information. We present several
bounds based only on the knowledge of the eigenvalues of A, but the best bound in
this class, which in our experiments is at most one order of magnitude larger than
dcorr(A), uses the nearest positive semidefinite matrix to A and so a knowledge of
eigenvectors is also required.

The paper is organized as follows. In section 2 we summarize existing upper and
lower bounds on the distance to the nearest correlation matrix. In section 3 we derive
our new upper bounds and give a result bounding the overestimation by a factor that
does not exceed 1+n

√
n. We analyze the computational cost of the bounds in section

4. In section 5 we illustrate the quality of the bounds on several small examples of
invalid correlation matrices found in the literature and on larger, real-life matrices
from practical applications. Conclusions are given in section 6.

2. Existing bounds. We first summarize currently available bounds for the
distance to the nearest correlation matrix. We will need the following result on the
nearest positive semidefinite matrix found in, for example, [14, Thm. 2.1], [29, Thm. 1].

Lemma 2.1. Let A ∈ R
n×n be symmetric with spectral decomposition A = QΛQT ,

where Q = [q1, . . . , qn] is orthogonal and Λ = diag(λi). Then the unique solution to
min{ ‖A−X‖F : X is symmetric positive semidefinite } is

(2.1) A+ = Q diag(max(λi, 0))Q
T .

The next result is [15, Lem. 1.1].

Lemma 2.2 (Higham). For symmetric A ∈ R
n×n with eigenvalues λi,

max{α1, α2} ≤ dcorr(A) ≤ min{β1, β2, β3},

where

α2
1 =

n∑
i=1

(aii − 1)2 +
∑

|aij |>1

i�=j

(1− |aij |)2,(2.2)

α2 = ‖A−A+‖F =

(∑
λi<0

λ2i

)1/2

,(2.3)

β1 = ‖A− I‖F ,(2.4)

β2 = min{ ‖A− zzT‖F : zi = ±1, i = 1: n },(2.5)

β3 = min
−1≤ρ≤1

‖A− T (ρ)‖F , where (T (ρ))ij = ρ|i−j|.(2.6)

The lower bound α1 follows from the fact that the elements of a correlation matrix
are bounded in modulus by 1. The equivalence of the two formulas for α2 is shown
by Lemma 2.1. The upper bounds in Lemma 2.2 are obtained as the distance to
certain classes of correlation matrices. In particular, β3 arises from the matrices with
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DISTANCE TO THE NEAREST CORRELATION MATRIX 1091

(i, j) element ρ|i−j|, known as Kac–Murdock–Szegő Toeplitz matrices [31], which are
positive semidefinite for −1 ≤ ρ ≤ 1.

Travaglia [30, Prop. 3.1] obtained a further lower bound on dcorr(A) using the
circulant mean Ac, defined as the circulant matrix with first row (c0, c1, . . . , cn−1),
where

c0 =
1

n
trace(A),

ck =
1

n

(
n−k∑
i=1

ai,i+k +

k∑
i=1

ai,i+n−k

)
, k = 1, 2, . . . , n− 1.

This lower bound and a trivial upper bound are combined in the next result.

Lemma 2.3 (Travaglia). For symmetric A ∈ R
n×n,

(2.7) dcorr(Ac) ≤ dcorr(A) ≤ dcorr(Ac) + ‖A−Ac‖F .
3. New bounds. In this section we derive new upper bounds on the distance

to the nearest correlation matrix that do not require the solution to a minimization
problem, unlike the bounds β2 and β3 from Lemma 2.2 and the upper bound in
Lemma 2.3. Our first bound is the distance to the correlation matrix obtained by
scaling A+ from (2.1) to have unit diagonal.

Theorem 3.1. Let A ∈ R
n×n be symmetric with positive diagonal elements.

Then

(3.1) ‖A−A+‖F ≤ dcorr(A) ≤ ‖A− Ã+‖F ,

where Ã+ = D−1/2A+D
−1/2, with D = diag((A+)ii).

Proof. The lower bound is α2 in (2.3). The upper bound is immediate if we can

show that Ã+ is a correlation matrix. The only question is whether it is defined,
that is, whether the positive semidefinite matrix A+ has positive diagonal elements,
so that D is nonsingular and positive definite. From Lemma 2.1 we see that A+ −A
is positive semidefinite and it follows that the diagonal elements of A+ are at least as
large as the corresponding diagonal elements of A, and hence they are positive.

In the next result we obtain an alternative upper bound that, while weaker than
that in (3.1), is less expensive to compute, as we explain in section 4. Note that the
theorem is valid for t = n, that is, for a positive semidefinite matrix A.

Theorem 3.2. Let A ∈ R
n×n be symmetric with positive diagonal elements and

eigenvalues λ1 ≥ · · · ≥ λt ≥ 0 > λt+1 ≥ · · · ≥ λn. Then

(3.2)

(
n∑

i=t+1

λ2i

)1/2

≤ dcorr(A) ≤
(

n∑
i=t+1

λ2i

)1/2

+ θ

(
t∑

i=1

λ2i

)1/2

,

where

θ = max

{∣∣∣∣1− 1

maxi aii −min(λn, 0)

∣∣∣∣ , ∣∣∣∣1− 1

mini aii

∣∣∣∣} .
Proof. The lower bound is (2.3).
By Theorem 3.1 and the triangle inequality we have

(3.3) dcorr(A) ≤ ‖A− Ỹ ‖F ≤ ‖A− Y ‖F + ‖Y − Ỹ ‖F ,

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1092 NICHOLAS J. HIGHAM AND NATAŠA STRABIĆ

where Y = A+ in (2.1) is positive semidefinite and Ỹ = D−1/2Y D−1/2 is a correlation
matrix, with D = diag(di) and di = yii > 0 for all i. We now bound |yij − ỹij |.

Let m = mini aii and M = maxi aii. With ei the ith unit vector and Λ− =
diag(min(λi, 0)), we have

di = eTi Y ei = eTi (A−QΛ−QT )ei = aii − eTi QΛ−QT ei = aii − δi,

with δi = eTi QΛ−QT ei, and so

m− δi ≤ di ≤M − δi.

With y = QT ei, we have ‖y‖2 = 1 and δi = yTΛ−y ≤ 0, and we can bound δi below
by

min(λn, 0) = min
x �=0

xTΛ−x
xTx

≤ yTΛ−y
yT y

= yTΛ−y = δi ≤ 0.

Note that we must have min(λn, 0) for the first equality in the previous line to hold,
since λn could be positive. It follows that m ≤ di ≤ M −min(λn, 0) for every i and
so (

1

M −min(λn, 0)

)1/2

≤ d
−1/2
i ≤ m−1/2.

Since ỹij = d
−1/2
i d

−1/2
j yij we have

|yij − ỹij | =
∣∣(1− d

−1/2
i d

−1/2
j )yij

∣∣ = ∣∣1− d
−1/2
i d

−1/2
j

∣∣∣∣yij∣∣.
Finally, from

1− 1

m
≤ 1− d

−1/2
i d

−1/2
j ≤ 1− 1

M −min(λn, 0)

we have |yij − ỹij | ≤ θ|yij | and therefore ‖Y − Ỹ ‖F ≤ θ‖Y ‖F . The upper bound in
(3.2) then follows from (3.3).

For t = n, Theorem 3.2 yields the following corollary, which quantifies the ef-
fect on the distance dcorr(A) of the departure of the diagonal elements of a positive
semidefinite matrix A from 1.

Corollary 3.3. Let A ∈ R
n×n be symmetric positive semidefinite with positive

diagonal elements. Then

(3.4) dcorr(A) ≤ max

{∣∣∣∣1− 1

maxi aii

∣∣∣∣ , ∣∣∣∣1− 1

mini aii

∣∣∣∣} ‖A‖F .

If all the diagonal elements of a positive semidefinite matrix A are at most 1 then
ncm(A) is easy to compute directly as it is obtained from A by replacing each diagonal
element by 1. However, (3.4) applies more generally.

In many applications the invalid approximation to a correlation matrix has unit
diagonal and at least one negative eigenvalue. In this case Theorem 3.2 simplifies as
follows.

Corollary 3.4. Let A ∈ R
n×n be symmetric with unit diagonal and eigenvalues

λ1 ≥ · · · ≥ λt ≥ 0 > λt+1 ≥ · · · ≥ λn, where λn < 0. Then

(3.5)

(
n∑

i=t+1

λ2i

)1/2

≤ dcorr(A) ≤
(

n∑
i=t+1

λ2i

)1/2

+
|λn|

1 + |λn|

(
t∑

i=1

λ2i

)1/2

.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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DISTANCE TO THE NEAREST CORRELATION MATRIX 1093

The next result gives a sharper upper bound than (3.5). The proof uses the idea
of shrinking from Higham, Strabić, and Šego [17].

Theorem 3.5. Let A ∈ R
n×n be symmetric with unit diagonal and smallest eigen-

value λn < 0. Then

(3.6) dcorr(A) ≤ |λn|
1 + |λn| ‖A− I‖F ,

and this bound is no larger than the upper bound in (3.5).

Proof. Let S(α) = αI + (1 − α)A, which has unit diagonal. We have dcorr(A) ≤
‖A − S(α∗)‖F , where α∗ = min{α ∈ [0, 1] : S(α) is positive semidefinite}. It is easy
to see that α∗ = −λn/(1− λn) and A− S(α∗) = α∗(A− I), which gives (3.6).

Now we compare the bound with (3.5). The triangle inequality gives

(3.7) ‖A− I‖F ≤ ‖A−A+‖F + ‖A+ − I‖F ,

where A+ from (2.1) is the nearest positive semidefinite matrix to A. For the second
term, we have

‖A+ − I‖2F = trace
(
(A+ − I)T (A+ − I)

)
= ‖A+‖2F − 2 trace(A+) + n.

We noted in the proof of Theorem 3.1 that A+ −A is positive semidefinite, and since
A has unit diagonal it follows that trace(A+) ≥ n. Therefore, −2 trace(A+) + n ≤
−n < 0 and so ‖A+ − I‖2F ≤ ‖A+‖2F . Then from (3.7) it follows that ‖A − I‖F ≤
‖A−A+‖F + ‖A+‖F , so, since α∗ ≤ 1,

α∗‖A− I‖F ≤ α∗‖A−A+‖F + α∗‖A+‖F ≤ ‖A−A+‖F + α∗‖A+‖F .

This completes the proof, since the right-hand side of the latter inequality is the upper
bound in (3.5).

Note that the bound (3.6) is also sharper than β1 given in (2.4).
We now have several upper bounds and a natural question is “how sharp are

they?” For the most practically important case of A with unit diagonal, the next
result gives a limit on the overestimation for the upper bound of Theorem 3.1.

Theorem 3.6. Let A ∈ R
n×n be symmetric with unit diagonal, t nonnegative

eigenvalues, largest eigenvalue λ1, and smallest eigenvalue λn < 0. Then, in the
notation of Theorem 3.1,

(3.8)
‖A− Ã+‖F
‖A−A+‖F ≤ 1 +

√
t λ1

1 + |λn| .

If, in addition, |aij | ≤ 1 for i �= j, then

(3.9)
‖A− Ã+‖F
‖A−A+‖F ≤ 1 + n

√
t.

Proof. Using the triangle inequality and the relation A = A+ +A− we have

‖A− Ã+‖F
‖A−A+‖F =

‖A− +A+ − Ã+‖F
‖A−‖F ≤ 1 +

‖A+ − Ã+‖F
‖A−‖F .

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1094 NICHOLAS J. HIGHAM AND NATAŠA STRABIĆ

As in the proof of Theorem 3.2, we have ‖A+−Ã+‖F ≤ θ‖A+‖F , where θ = |λn|/(1+
|λn|), since A has unit diagonal and λn < 0. Therefore

(3.10)
‖A− Ã+‖F
‖A−A+‖F ≤ 1 +

|λn|
1 + |λn|

‖A+‖F
‖A−‖F .

Since ‖A+‖2F =
∑t

i=1 λ
2
i ≤ tλ21 and ‖A−‖F ≥ ‖A−‖2 = |λn|, it follows that (noting

that the assumptions of the theorem imply λ1 > 0)

‖A+‖F
‖A−‖F ≤

√
t λ1
|λn| .

Substituting this bound into (3.10) yields (3.8). The bound (3.9) follows because
λ1 ≤ n for any matrix with elements bounded in modulus by 1.

It is easy to see that the upper bound (3.8) also holds for the ratio of the upper
and lower bounds from Corollary 3.4, and hence also for the ratio of the shrinking
bound (3.6) and (2.3), by Theorem 3.5. Moreover, we have ‖A−A+‖F ≤ dcorr(A) ≤
ψ‖A−A+‖F , where ψ = 1 +

√
tλ1/(1 + |λn|).

Another way to obtain an upper bound on the distance to the nearest correlation
matrix is to modify Theorem 3.1 by replacing the nearest positive semidefinite matrix
A+ by a more cheaply computable approximation to A+. To construct such an ap-
proximation we will use modified Cholesky factorizations, originally developed in the
context of nonlinear optimization as a way of dealing with indefinite Hessians. Given
a symmetric, possibly indefinite matrix A these algorithms construct a factorization

(3.11) PT (A+ E)P = LDLT ,

where P is a permutation matrix, L is unit lower triangular, and E and A + E are
positive semidefinite. The algorithms of Gill, Murray, and Wright [12, sec. 4.4.2.2]
and Schnabel and Eskow [26], [27] produce a diagonal D and a diagonal E, while the
algorithm of Cheng and Higham [8] produces a block diagonal D with diagonal blocks
of order 1 or 2 and an E that is generally full. The cost of all three algorithms is
the same as the cost of computing the Cholesky factorization to highest order terms,
which is substantially less than the cost of computing A+. Note that bounds based
on modified Cholesky factorizations provide an efficient way to determine whether the
matrix is positive semidefinite to start with, as in this case E = 0.

Theorem 3.7. Let A ∈ R
n×n be symmetric with positive diagonal elements.

Then

(3.12) dcorr(A) ≤ ‖A− Ãmc‖F ,
where Ãmc = D−1/2AmcD

−1/2 is a correlation matrix with Amc = A + E from the
modified Cholesky factorization (3.11) and D = diag(Amc).

Proof. The proof is essentially the same as that of the upper bound in Theorem 3.1
and uses the fact that the diagonal elements of Amc are at least as large as those of
A.

As a final new upper bound on dcorr(A) we make use of one of the rare explicitly
known solutions to the nearest correlation matrix problem, for the so-called one pa-
rameter model. Here, a matrix C(w) ∈ R

n×n is defined for a real parameter w as a
unit diagonal matrix with all off-diagonal elements equal to w:

C(w) = (1− w)I + weeT = I + w(eeT − I),

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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DISTANCE TO THE NEAREST CORRELATION MATRIX 1095

where e = [1, 1, . . . , 1]T . As shown in [7, Lem. 2.1] the matrix C(w) is a correlation
matrix if and only if −1/(n− 1) ≤ w ≤ 1.

Theorem 3.8. For A ∈ R
n×n symmetric with n ≥ 2,

dcorr(A) ≤ min{ ‖A− C(w)‖F : C(w) is a correlation matrix }
= ‖A− C(wopt)‖F ,(3.13)

where wopt is the projection of w =
(
eTAe− trace(A)

)
/(n2 − n) onto the interval

[−1/(n− 1), 1].

Proof. The equality (3.13) is from [7, Thm. 2.2].

4. Computing the bounds. The main criteria for judging a bound are its cost
and its accuracy. In this section we discuss the cost of the bounds presented above
and in the next section we carry out numerical experiments to test their accuracy.

Table 4.1 summarizes the bounds, their applicability, and their cost. We will
comment only on the nontrivial entries in the table.

We can evaluate the lower bound α2 in (2.3) and the upper bounds in (3.2)
and (3.5) without computing A+ explicitly, but rather by computing all the positive
eigenvalues or all the negative eigenvalues—whichever are fewer in number—and then
using

∑t
i=1 λ

2
i +
∑n

i=t+1 λ
2
i = ‖A‖2F . We can assume t ≥ n/2 without loss of generality

and therefore we compute the n− t negative eigenvalues by tridiagonalizing A at the
cost of 4n3/3 flops [13, p. 459] and then computing the n− t negative eigenvalues of
the tridiagonal matrix by the bisection method at a cost of O(n(n− t)) flops [3, p. 50],
which makes the total cost for the bounds α2, (3.2), and (3.5) at most 4n3/3 flops.
The cost of (3.6) is the same.

As noted in [15], computing the upper bound β2 from Lemma 2.2 is equivalent
to maximizing zTAz over all vectors z with elements ±1, which is an NP-hard prob-
lem [25]. For a matrix A of size n there are 2n positive semidefinite matrices zzT for
such z, which makes an exhaustive search algorithm unfeasible unless n is very small.

A formula for the distance dcorr(Ac) in Lemma 2.3 is given in [30, Thm. 4.1].
However, it requires not only all the eigenvalues but also their multiplicities, which
are not reliably computable in floating point arithmetic. We therefore have to regard
dcorr(Ac) as no more easily computable in general than dcorr(A), and so the bounds
of Lemma 2.3 are of limited interest.

Next we turn to the bound (3.1), which requires Ã+, and hence A+. Recall that
we order the eigenvalues λ1 ≥ · · · ≥ λt ≥ 0 > λt+1 ≥ · · · ≥ λn, and assume without
loss of generality that t ≥ n/2 so that the majority of eigenvalues are nonnegative.
We first compute the tridiagonalization A = QTQT and do not form Q explicitly but
keep it in factored form. By applying bisection and inverse iteration to the tridiagonal
matrix T we compute λt+1, . . . , λn and the corresponding eigenvectors, which are
placed in the columns of Z = [zt+1, . . . , zn]. We then compute the matrix W =
Z diag(|λt+1|, . . . , |λn|)1/2 ∈ R

n×(n−t) and apply Q to get B = QW . Finally, A+ =
A+BBT . The total cost is 4n3/3 flops for T , O(n2) flops to compute λt+1, . . . , λn and
form Z and W , 2n2(n− t) flops1 to form B [13, sec. 5.1.6], and n2(n− t) flops to form
A+, exploiting symmetry throughout. The total cost is therefore 4n3/3+3n2(n− t) ≤
4n3/3 + 3n3/2 = 17n3/6 flops.

Three different bounds are obtained from (3.12), corresponding to the three dif-
ferent modified Cholesky algorithms. While E in (3.11) is explicitly produced by the

1The errata web page http://www.cs.cornell.edu/cv/GVL4/Errata.htm for the fourth edition of
[13] notes that the book incorrectly omits the leading 2 on page 238 from this operation count.
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Table 4.1

Approximate cost in flops of the bounds for a symmetric A ∈ R
n×n. For the bound α1, k is

the number of elements |aij | > 1, i �= j. For the bound (3.4), m = mini aii and M = maxi aii.

Definition Cost (flops) Restrictions

Lower bounds

α1 (2.2) 3(n + k)

α2 = ‖A−A+‖F (2.3) 4n3/3

dcorr(Ac) (2.7) As dcorr(A)

Upper bounds

β1 = ‖A− I‖F (2.4) n2

β2 = min{ ‖A− zzT ‖F : zi = ±1 } (2.5) O(n22n)

β3 = min−1≤ρ≤1 ‖A− T (ρ)‖F (2.6) O(n2)

dcorr(Ac) + ‖A−Ac‖F (2.7) As dcorr(A)

‖A− ˜A+‖F (3.1) 17n3/6 aii > 0

‖A−A+‖F + θ‖A+‖F (3.2) 4n3/3 aii > 0

max{ |1− 1/M |, |1− 1/m| }‖A‖F (3.4) n2 aii > 0, λn ≥ 0

‖A−A+‖F + ‖A+‖F |λn|/(1 + |λn|) (3.5) 4n3/3 λn < 0, aii ≡ 1

‖A− I‖F |λn|/(1 + |λn|) (3.6) 4n3/3 λn < 0, aii ≡ 1

‖A− ˜Amc‖F (3.12) 2n3/3 aii > 0

‖A− C(wopt)‖F (3.13) 2n2

algorithms of Gill, Murray, and Wright, and Schnabel and Eskow, the algorithm of
Cheng and Higham does not explicitly produce E, so this algorithm requires an extra
matrix multiplication L ·DLT . The cost stated in Table 4.1 includes the latter step.
Alternatively, ‖A−PLDLTPT ‖ can be estimated in O(n2) flops, using the algorithm
of [18] for the 1-norm or the power method for the 2-norm.

In [15] an approximation for β3 from Lemma 2.2 was computed as the approximate
local minimum obtained with the MATLAB fminbnd minimizer. We propose an
alternative. Note that the function we are minimizing for the bound β3 is a polynomial
in the variable ρ:

f(ρ) = ‖A− T (ρ)‖2F = 2
∑

1≤i<j≤n

(aij − ρj−i)2 +

n∑
i=1

(aii − 1)2.

We compute the stationary points of f , that is, the zeros of the derivative

f ′(ρ) = −4
∑

1≤i<j≤n

[
(j − i)aijρ

j−i−1 − (j − i)ρ2(j−i)−1
]
,

which has degree 2n − 3. Then we obtain β3 as the minimum value of f over all
stationary points in [−1, 1] along with the endpoints ±1. The dominant cost for
this bound is computing the stationary points, which are the real eigenvalues of a
companion matrix of order 2n−3 in [−1, 1]; these can be computed in O(n2) flops [2].

To summarize, we can separate the new upper bounds into three main categories.
The most expensive bound to compute is (3.1) and it uses Ã+; the less expensive
bounds (3.2), (3.5), and (3.6) are based on the knowledge of eigenvalues only; and the
least expensive bound is the modified Cholesky bound (3.12), which has half the cost
of the eigenvalue-only based bounds. In the next section we analyze the accuracy of
the bounds on examples collected from the literature and real-life applications.
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5. Numerical experiments. Our tests were carried out in MATLAB R2014a
on a machine with an Intel Core i7-4910MQ 2.90GHz processor and 16GB RAM. As
test matrices we use the following indefinite symmetric matrices with unit diagonal.
high02 A matrix of order 3 from Higham [15, p. 334].

tec03 A matrix of order 4 from Turkay, Epperlein, and Christofides [32, Ω̂ on p. 86].
bhwi01 A matrix of order 5 from Bhansali and Wise [4, sec. 2, second matrix].
mmb13 A matrix of order 6 constructed from foreign exchange trading data supplied

by the Royal Bank of Scotland [21, p. 36].
fing97 A matrix of order 7 from Finger [11, Table 4].
tyda99R1–tyda99R3 The matrices R1, R2, and R3 of order 8 from Tyagi and

Das [33, Table 1]. Although thought by those authors to be correlation matri-
ces, as pointed out by Xu and Evers [35] they have some negative eigenvalues.

usgs13 A matrix of order 94 corresponding to carbon dioxide storage assessment
units for the Rocky Mountains region of the United States that was generated
during the national assessment of carbon dioxide storage resources [34].

RiskMetrics1–RiskMetrics6 Six matrices from the RiskMetrics database, as used
in [6] and [16]. Each matrix has dimension 387.

cor1399, cor3210 Two large matrices constructed from stock data, the first of order
1399 and the second of order 3120. The matrices were provided by investment
company Orbis.

The nearest correlation matrix required to determine the true distance dcorr(A) is
computed by the code nag_correg_corrmat_nearest (g02aa) from the NAG Tool-
box for MATLAB Mark 24 [22], which implements the preconditioned Newton algo-
rithm of [6], and we chose tolerance tol = 10−10.

In our first test we analyze the performance of the modified Cholesky algorithms
used for the bound (3.12) for all the indefinite matrices listed above. In Table 5.1 the

matrix Ãmc from (3.12) corresponding to the algorithms of Gill, Murray, and Wright
[12, sec. 4.4.2.2], Schnabel and Eskow [26] and [27], and Cheng and Higham [8] is
denoted by GMW, SE90, SE99, and CH, respectively. The results show two main
features. First, the four modified Cholesky algorithms provide bounds of similar
quality for all but the RiskMetrics matrices, and these bounds are often of the correct
order of magnitude. Second, for all the RiskMetrics matrices except RiskMetrics4,
dcorr(A) is relatively small and the revised Schnabel and Eskow [27] algorithm and
the Cheng and Higham algorithm provide bounds three or four orders of magnitude
smaller than those from the other two algorithms. Since the Cheng and Higham
algorithm gives the best bounds overall, we use it in the remaining experiments.

We next compute all our bounds. The results are given in Tables 5.2 and 5.3.
The ordering of the bounds is the same as in Table 4.1, but note that we exclude the
bound (3.5) as for our test matrices it is the same as (3.2). The bound α1 is zero for
all examples where aii ≡ 1 and |aij | ≤ 1. Moreover, the circulant mean Ac of several
of these matrices turns out to be a correlation matrix and so dcorr(Ac) = 0 in (2.7).
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1098 NICHOLAS J. HIGHAM AND NATAŠA STRABIĆ

Table 5.1

Upper bound (3.12) from the modified Cholesky algorithms.

Ex. ‖A−GMW‖F ‖A− SE90‖F ‖A− SE99‖F ‖A−CH‖F dcorr(A)

high02 8.45e-1 6.19e-1 6.19e-1 5.86e-1 5.28e-1

tec03 8.17e-2 9.47e-1 6.33e-2 5.19e-2 3.74e-2

bhwi01 6.31e-1 2.50e-1 2.50e-1 4.30e-1 1.51e-1

mmb13 3.13e1 3.14e1 3.14e1 3.04e1 3.03e1

fing97 1.50e-1 7.66e-2 7.90e-2 9.24e-2 4.91e-2

tyda99R1 2.18 2.35 2.17 2.36 1.40

tyda99R2 1.53 2.19 1.57 1.71 7.75e-1

tyda99R3 1.47 1.46 1.49 1.09 6.72e-1

usgs13 9.69e-1 8.02e-1 5.93e-1 1.92 5.51e-2

RiskMetrics1 1.11e2 1.12e1 1.72e-2 8.81e-3 3.88e-5

RiskMetrics2 1.38e2 6.21 1.90e-2 9.71e-3 4.75e-5

RiskMetrics3 9.33e1 3.14 7.10e-3 4.20e-3 1.81e-5

RiskMetrics4 1.27e2 6.66e1 6.62e1 1.22 8.40e-2

RiskMetrics5 1.32e2 1.44 2.01e-2 9.64e-3 4.46e-5

RiskMetrics6 8.53e1 1.30 5.85e-3 2.85e-3 1.59e-5

cor1399 3.59e2 3.57e2 3.57e2 4.52e1 2.10e1

cor3120 7.83e1 4.18e2 4.16e2 4.40e2 5.44

Table 5.2

Small examples.

high02 tec03 bhwi01 mmb13 fing97 tyda99R1 tyda99R2 tyda99R3

Lower bounds

(2.2) 0.00 0.00 0.00 3.01e1 0.00 0.00 0.00 0.00

(2.3) 4.14e-1 2.78e-2 1.28e-1 2.15e1 3.83e-2 1.15 6.24e-1 5.59e-1

(2.7) 0.00 0.00 0.00 1.17e1 0.00 1.60e-1 0.00 0.00

True distance

dcorr(A) 5.28e-1 3.74e-2 1.51e-1 3.03e1 4.91e-2 1.40 7.75e-1 6.72e-1

Upper bounds

(2.4) 2.00 2.35 2.43 3.29e1 3.09 4.02 4.02 3.74

(2.6) 9.15e-1 2.03 2.21 3.04e1 2.32 3.98 2.81 3.73

(2.7) 1.15 2.08 2.35 3.98e1 2.50 3.24 2.11 3.28

(3.1) 5.38e-1 3.93e-2 1.61e-1 3.04e1 5.33e-2 1.45 8.41e-1 7.02e-1

(3.2) 1.18 1.11e-1 5.00e-1 4.54e1 1.88e-1 3.55 2.39 2.11

(3.6) 5.86e-1 6.35e-2 2.75e-1 3.14e1 1.14e-1 2.02 1.46 1.25

(3.12) 5.86e-1 5.19e-2 4.30e-1 3.04e1 9.24e-2 2.36 1.71 1.09

(3.13) 1.15 2.08 2.35 3.04e1 2.60 3.71 2.20 3.70

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

08
/2

2/
16

 to
 8

6.
22

.1
74

.2
07

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



DISTANCE TO THE NEAREST CORRELATION MATRIX 1099

T
a
b
l
e
5
.
3

R
ea
l-
li
fe

ex
a
m
p
le
s.

u
sg
s1
3

R
is
k
M
et
ri
cs
1

R
is
k
M
et
ri
cs
2

R
is
k
M
et
ri
cs
3

R
is
k
M
et
ri
cs
4

R
is
k
M
et
ri
cs
5

R
is
k
M
et
ri
cs
6

co
r1
3
9
9

co
r3
1
2
0

L
o
w
e
r
b
o
u
n
d
s

(2
.2
)

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

3
.3
6
e-
1

1
.0
6
e-
1

(2
.3
)

5
.0
2
e-
2

3
.3
9
e-
5

3
.9
7
e-
5

1
.6
3
e-
5

8
.2
5
e-
2

3
.7
6
e-
5

1
.4
6
e-
5

1
.3
2
e1

2
.2
9

(2
.7
)

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

T
r
u
e
d
is
ta

n
c
e

d
c
o
rr
(A

)
5
.5
1
e-
2

3
.8
8
e-
5

4
.7
5
e-
5

1
.8
1
e-
5

8
.4
0
e-
2

4
.4
6
e-
5

1
.5
9
e-
5

2
.1
0
e1

5
.4
4

U
p
p
e
r
b
o
u
n
d
s

(2
.4
)

2
.2
9
e1

1
.2
8
e2

1
.5
4
e2

1
.4
5
e2

1
.3
0
e2

1
.4
5
e2

1
.4
1
e2

3
.5
9
e2

4
.2
8
e2

(2
.6
)

2
.0
4
e1

1
.2
0
e2

1
.4
2
e2

1
.3
3
e2

1
.1
8
e2

1
.3
3
e2

1
.2
8
e2

3
.5
8
e2

4
.2
8
e2

(2
.7
)

6
.7
5

1
.1
0
e2

1
.3
3
e2

1
.2
3
e2

1
.0
4
e2

1
.2
2
e2

1
.1
5
e2

2
.0
5
e2

2
.9
2
e2

(3
.1
)

6
.5
5
e-
2

1
.1
9
e-
4

1
.9
0
e-
4

5
.8
8
e-
5

9
.2
1
e-
2

1
.7
1
e-
4

4
.8
3
e-
5

2
.3
7
e1

1
.1
1
e1

(3
.2
)

1
.1
5

1
.0
0
e-
3

1
.2
7
e-
3

7
.3
5
e-
4

1
.0
1
e1

1
.1
6
e-
3

9
.9
8
e-
4

3
.3
6
e2

1
.8
3
e2

(3
.6
)

1
.0
1

9
.5
8
e-
4

1
.2
2
e-
3

7
.1
2
e-
4

9
.9
1

1
.1
1
e-
3

9
.7
4
e-
4

3
.2
1
e2

1
.7
9
e2

(3
.1
2
)

1
.9
2

8
.8
1
e-
3

9
.7
1
e-
3

4
.2
0
e-
3

1
.2
2

9
.6
4
e-
3

2
.8
5
e-
3

4
.5
2
e1

4
.4
0
e2

(3
.1
3
)

7
.6
4

1
.1
6
e2

1
.4
3
e2

1
.3
2
e2

1
.1
0
e2

1
.2
8
e2

1
.2
1
e2

2
.0
6
e2

2
.9
3
e2

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

08
/2

2/
16

 to
 8

6.
22

.1
74

.2
07

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



1100 NICHOLAS J. HIGHAM AND NATAŠA STRABIĆ

Several observations can be made about the results.
(a) Of the lower bounds, only (2.3) provides useful information. Moreover, in

all examples this bound is within a factor 2.4 of dcorr (the worst case being
cor3120).

(b) Of the upper bounds, (3.1)—the most expensive bound to compute—is the
most accurate and is always within a factor 4 of dcorr (the worst case being
RiskMetrics2).

(c) Over all the test matrices, the upper bound (3.1) exceeded the lower bound
(2.3) by at most a factor 4.9 (the worst case being cor3120).

(d) Of the other eigenvalue-based upper bounds, the bound from shrinking (3.6)
is better than the bound (3.2), as we already know from Theorem 3.5. The
shrinking bound (3.6) is typically an order of magnitude larger than (3.1) on
real-life examples.

(e) The upper bounds (3.6) and (3.12) based on shrinking and the modified
Cholesky factorizations, respectively, are of similar quality and they over-
estimate dcorr at most by one or two orders of magnitude. The modified
Cholesky bound has the advantage of being computable in half the number
of operations as the bound based on shrinking.

(f) The upper bounds (2.4), (2.6), and (3.13), which are computable in O(n2)
operations, are poor in these tests, the more so when the distance is small.

6. Conclusions. This is the first thorough treatment of upper and lower bounds
for the distance of a symmetric matrix A to the nearest correlation matrix. For the
most common case in practice, in which A is indefinite with unit diagonal and |aij | ≤ 1
for i �= j, we have obtained upper bounds (3.1), (3.5), and (3.6) that differ from the
lower bound (2.3) by a factor at most 1+n

√
n. For the sharpest bound (3.1) we found

the ratio to be always less than 5 in our experiments with matrices of dimension up
to 3120, so the upper bound was demonstrably of the correct order of magnitude in
every case. The cost of computing the pair (2.3) and (3.1) is 17n3/6 flops, which is
substantially less than the 70n3/3 or more flops required to compute ncm(A) by the
preconditioned Newton algorithm of [6].

The upper bound (3.6) based on shrinking has about half the cost of (3.1) and,
while less sharp than (3.1), it still performed well in our tests.

The modified Cholesky bound (3.12) has the attraction that it provides an inex-
pensive test for definiteness (n3/3 flops) along with an upper bound (costing another
n3/3 flops) that, while sometimes two orders of magnitude larger than (3.1), can still
provide useful information.

We conclude that our bounds are well suited to gauging the size of dcorr(A). The
information they provide enables a user to identify an invalid correlation matrix rela-
tively cheaply and to decide whether to revisit its construction or proceed to compute
a replacement directly from it. A natural replacement is the nearest correlation matrix
itself; an alternative is to use shrinking [17].

Our test matrices can be downloaded in MATLAB form from https://github.com/
higham/matrices-correlation-invalid, with the exception of the RiskMetrics matrices,
which we do not have permission to distribute. The MATLAB implementation of the
modified Cholesky algorithm from [8] that we used is available from https://github.
com/higham/modified-cholesky.

Acknowledgments. We are grateful to Hawren Fang for providing us with the
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