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Abstract

Let G be isomorphic to GLn(q), SLn(q), PGLn(q) or PSLn(q), where
q = 2a. If t is an involution lying in a G-conjugacy class X, then for
arbitrary n we show that as q becomes large, the proportion of elements
of X which have odd-order product with t tends to 1. Furthermore, for n
at most 4 we give formulae for the number of elements in X which have
odd-order product with t, in terms of q.

1 Introduction

It is well known that for G a classical group defined over the finite field GF (q),
where q is a power of a prime p, the proportion of elements of G with order
divisible by p tends to zero as q becomes large. Indeed, for G any finite group
of Lie-type, Guralnick and Lübeck [11] have produced upper bounds for the
number of such elements in G which demonstrate this asymptotic behaviour.
This has implications in a number of situations - in particular, when the prime
p is 2, its effects are felt in computational group theory. For example, a key
technique in the recognition of matrix groups over finite fields is the construction
of involution centralizers. A necessary step in this process is the production of
the involution in question. However, when working with a finite group of Lie-
type defined over a large field of characteristic 2, the generation of elements of
even order via a random element approach is effectively impossible. This can
be a thorny issue to deal with, although recently Kantor and Kassabov [13]
have detailed an ingeneous method of producing an involution in the groups
PGL(2, 2a), and this idea is elaborated upon by Borovik and Yalcinkaya [7].

On the other side of the coin, given an involution in a finite group of Lie-type
over GF (2a), the relative lack of even order elements can prove advantageous.
For example, when applying the method of Bray [8] to produce elements which
centralize a given involution t, it is beneficial to have a supply of conjugates of
t which have odd-order product with t, as such elements give rise to a set of
elements which are uniformly distributed within CG(t). Experimental evidence
for this benefit when looking to generate CG(t) can be found in [5], where a
variant of Bray’s method is discussed.
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In this paper we are concerned with a question closely related to the example
given immediately above - given an involution t from a linear group G defined
over GF (2a) how many involutions which are G-conjugate to t have odd order
product with t? This topic has been recently addressed in [15], where Liebeck
demonstrates lower bounds on the number of such involutions in any finite
simple group of Lie-type defined over GF (2a). In the case of classical groups,
these bounds depend on the dimension of the group in its natural representation.
Our main theorem concerns asymptotic behaviour in the case of linear groups
as the size of the field increases.

Theorem 1.1. Suppose G is isomorphic to GLn(q), SLn(q), PGLn(q) or
PSLn(q), where q = 2a, and suppose that t ∈ G is an involution. Let X
denote the G-conjugacy class of t. Then as a tends to infinity, the proportion
of elements of X which have odd-order product with t tends to 1.

Given the aforementioned work of Guralnick and Lübeck [11], Theorem 1.1
is perhaps not surprising, and indeed it confirms the expectation of Parker and
Wilson in [16] in the case of linear groups. Theorem 1.1 does not, however, follow
immediately from [11] as a priori we do not have knowledge of the distribution
in G of elements which arise as products of conjugate involutions.

The topic of this paper also touches upon so-called fusion graphs. For a
group G and a G-conjugacy class of involutions X, the fusion graph F(G,X)
has X as its vertex set with two distinct involutions x, y ∈ X joined whenever
xy has odd order. Graph theoretic properties such as the diameter of F(G,X)
and its connectivity have been investigated in [2], [3], [6], [4] and [9]. Theorem
1.1 implies for G one of the given linear groups and X any G-conjugacy class of
involutions, there is an integer a0 such that for all a > a0 F(G,X) has diameter
2.

Our second result gives a precise answer for small linear groups.

Theorem 1.2. Suppose G is isomorphic to GLn(q), SLn(q), PGLn(q) or
PSLn(q), where q = 2a, and suppose that t ∈ G is an involution. Let X
denote the G-conjugacy class of t, and denote by Xt the set of involutions in X
which have odd-order product with t. Then the following hold.

(i) If n = 2, then |Xt| = q2 − q + 1.

(ii) If n = 3, then |Xt| = q4 − q3 + 1.

(iii) Suppose n = 4. If rank(t) = 1, then |Xt| = q6 − q5 + 1, whereas if
rank(t) = 2, then |Xt| = q4(q2 − 2q + 2)(q + 1)(q − 1) + 1.

Our proof of Theorem 1.2, and to a large extent that of Theorem 1.1, relies
only on some standard results regarding linear groups and their representation
theory, and moreover is constructive in the sense that its methods may be used
to produce a set of CG(t)-orbit representatives for the set of conjugates tg of t for
which the product ttg has odd order. The aforementioned representation theory
is developed in Section 2. Underlying this segue into representation theory is
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the observation that there is a one-to-one correspondence between the elements
of the G-conjugacy class of t which have odd order product with t, and odd
order elements of G which are inverted by t. This leads to the notions, for h an
element of odd order inverted by t, of h-irreducible and h-reducible modules. In
Lemmas 2.7 and 2.8 we obtain results which will enable us to count the number
of odd order elements in G which t inverts. Just as important in our enumeration
is the profile of 〈h〉, given in Definition 2.6. Section 3 analyses low dimension
linear groups, and establishes Theorem 1.2. Our final section is devoted to
proving Theorem 1.1. Here we obtain information regarding the CG(t)-orbits
of certain elements of odd order which are inverted by t whose profiles are in
a certain sense maximal - see Section 4.1. Then, in Proposition 4.5 we prove a
combinatorial result which counts the number of these maximal profiles. Taken
together this information is sufficient to give a lower bound on the number of
odd order elements which are inverted by t.

Our group theoretic notation is standard, as given for example in [10].

2 Preliminaries

The conclusions of Theorems 1.1 and 1.2 concern subsets of conjugacy classes of
certain linear groups. We now make two observations that show it is sufficient
to only prove Theorems 1.1 and 1.2 in the case of GLn(q). Firstly, note that
since q is even, any involution in GLn(q) must have determinant equal to 1.
Consequently, any involution conjugacy class of GLn(q) is contained in SLn(q),
and is an SLn(q)-conjugacy class. Thus our conclusions regarding GLn(q) will
immediately carry over to SLn(q). Secondly, we observe that as q is even, both
GLn(q) and SLn(q) have centres of odd-order. Consequently, any conjugacy
class of involutions X in PGLn(q) or PSLn(q) has inverse image which con-
tains an involution conjugacy class X in GLn(q), respectively SLn(q). Thus a
product xy of involutions in X has odd-order if, and only if, the product of their
preimages xy in X has odd-order. Therefore our conclusions regarding GLn(q)
and SLn(q) will carry over to the factor groups PGLn(q) and PSLn(q).

Let G = GLn(q) and t be an involution of G. It is well-known that

|G| = qn(n−1)/2(q − 1)(q2 − 1) · · · (qn − 1).

We denote by V the natural n-dimensional module for G over GF (qa). The rank
of t is defined to be the dimension of the commutator space [V, t]. If rank(t) = k,
then

|CG(t)| = qk
2+2k(n−2k)|GLk(q)||GLn−2k(q)|

(see [1], for example).

Lemma 2.1. Involutions in G are G-conjugate if and only if they have equal
rank.

Following Kleidman and Liebeck [14], by a subspace decomposition of V we
mean a set of subspaces V1, . . . , Vr of V with r ≥ 2 such that

V = V1 ⊕ · · · ⊕ Vr.
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We write D = {V1, . . . , Vr}. The stabilizer in G of D is the group NG(D) =
NG({V1, . . . , Vr}), which is the subgroup of G which permutes the spaces Vi
amongst themselves. The centralizer in G of D is the group CG(D) = NG((V1, . . . , Vr)),
which is the subgroup of G leaving each Vi invariant.

Lemma 2.2. Suppose D = {V1, V2} is a decomposition of V , with dimV1 =
dimV2. Then there is a unique class of involutions in

NG(D) ∼= (GL(V1)×GL(V2)) : 2

which interchange V1 and V2.

Proof. Any involution interchanging V1 and V2 must interchange a basis of V1
with a basis of V2. Since GL(Vi), i = 1, 2, acts transitively on ordered bases of
Vi, the lemma follows.

It is straightforward to see that the involutions in G which are G-conjugate
to t and have odd-order product with t are in one-to-one correspondence with
the elements of odd-order in G which are inverted by t. We define

Ot = {g ∈ G | g has odd order and gt = g−1}.

Counting |Ot|, rather than directly counting involutions, allows us to more easily
make use of representation theory. Indeed, suppose H ≤ G is a subgroup of odd-
order which is inverted by t. Since q is even, we may apply Maschke’s Theorem
to see that

VH = V1 ⊕ V2 ⊕ · · · ⊕ Vr
where the Vi are irreducible H-modules. Note that, for each i and any h ∈ H,

(V ti )h = V h
−1t

i = V ti ,

so V ti is an irreducible H-module. Thus Vi∩V ti either equals Vi, and so V ti = Vi,

or equals 0. Moreover, since t is an involution, we must have V t
2

i = Vi. We may
therefore write

VH = W1 ⊕W2 ⊕ · · · ⊕Ws

where each Wi is an irreducible 〈H, t〉-module, and as an H-module either Wi is
irreducible or is a direct sum of two irreducible summands which are swapped
by t. In the former case we say Wi is H-irreducible, while in the latter we say
Wi is H-reducible. If it is the case that H = 〈h〉 for some element h ∈ H, we
may use the notation h-irreducible and h-reducible, respectively.

Definition 2.3. Suppose H ≤ G is a subgroup of odd-order which is inverted
by t, and suppose that

VH = W1 ⊕ · · · ⊕Wk ⊕ U1 ⊕ · · · ⊕ U`,

where the Wi are H-irreducible and the Uj are H-reducible. For each i, j write
wi, uj for dimWi and dimUj , respectively, and assume that the Wi and Uj are
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ordered so that wi ≥ wi+1 and uj ≥ uj+1. We define the profile of H, P(H), to
be

P(H) = {w1, w2, . . . , wk | u1, u2, . . . , u`}.

If there happen to be no H-irreducible, respectively H-reducible, spaces in the
decomposition of VH , we reflect this in P(H) by simply writing 0 in the relevant
part of the profile. If h is an element of odd-order which is inverted by t, we
define its profile P(h) to be P(〈h〉). We shall sometimes employ ”exponential
notation” when there are multiple copies of a certain dimension.

It follows from the uniqueness of composition series (up to reordering) that
the profile is well-defined. Notice that for a given profile P(h) the entries to
the right of the vertical line must be even, since the module is a direct sum of
two spaces of equal dimension. Indeed, if 〈h〉 acts nontrivially on a subspace
Wi then the corresponding entry on the left hand side of the profile will also be
even, as the following result shows.

Lemma 2.4. Suppose h ∈ Ot, with U a non-trivial h-irreducible module. Then
dimU = 2rank(tU ).

Proof. Clearly dimU ≥ 2rank(tU ), so suppose dimU > 2rank(tU ). Then dimU >
2(dimU − dimCU (t)), and so dimCU (t) > dimU/2. As both t and th leave U
invariant we may consider tU and (th)U as conjugate involutions in GL(U), and
hence

dimCU (th) = dimCU (t) > dimU/2.

Thus dim(CU (t) ∩ CU (th)) ≥ 1. However,

CU (t) ∩ CU (th) ⊆ CU (t(th)) = CU (h),

and since U is irreducible as a 〈h〉-module we have CU (h) = 0, a contradiction.
Therefore dimU = 2rank(tU ).

We further remark that 1 is the only possible odd entry on the left hand of
a profile: this occurs when 〈h, t〉 acts trivially on the relevant Wi.

In [12], Huppert details many facts regarding Singer cycles, that is, elements
of GLn(q) with order qn−1. Such elements act regularly on the non-zero vectors
of V . Singer cycle subgroups of GLn(q) are subgroups generated by Singer
cycles. Singer cycle subgroups of SLn(q) are defined to be those subgroups
S ∩ SLn(q), where S is a Singer cycle subgroup of GLn(q). Since elements of
SLn(q) must have determinant equal to 1, it follows that Singer cycles of SLn(q)
have order (qn−1)/(q−1). All Singer cycle subgroups are conjugate in GLn(q),
respectively SLn(q).

Theorem 2.5. Suppose G is a subgroup of GLn(q), with H an abelian normal
subgroup of G, and moreover suppose that, as a GF (q)H-module, V is the direct
sum of s isomorphic irreducible GF (q)H-submodules. Set a = n/s. Then G
is a group of s-dimensional GF (qa)-semilinear transformations. Furthermore,
CG(H) is the subgroup of G consisting of GF (qa)-linear transformations.
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Proof. See Satz 3.11 of [12].

If S is a Singer cycle subgroup of SLn(q) or GLn(q), then clearly VS is
irreducible. Thus, by Theorem 2.5, S may be considered as a subgroup of
GF (qn)∗, and is self-centralizing. Moreover

NGLn(q)(S) ∼ S : n.

Also by Theorem 2.5, if h ∈ SLn(q) has order dividing qn − 1 and V〈h〉 is
irreducible, then h lies in a Singer cycle subgroup.

For a given profile P, we choose a subgroup H ≤ G which is ‘maximal’
with this profile, in the following way. For a suitable decomposition D =
{W1, . . . ,Wk, U1, U

t
1, . . . , U`, U

t
`} of V for this profile, we note that

CG(D) ∼= GL(W1)×· · ·×GL(Wk)×GL(U1)×GL(U t1)×· · ·×GL(U`)×GL(U t` ).

For 1 ≤ i ≤ k, within each subgroup GL(Wi) we fix a Singer cycle subgroup Si
which is normalized by t. For 1 ≤ j ≤ `, within each subgroup GL(Uj)×GL(U tj )

we fix a subgroup S̃j which is generated by an element (sj , s
−1
j ), where sj is a

Singer cycle of GL(Uj). Any subgroup which takes this form we say is maximal
with respect to P

Lemma 2.6. Suppose S is a subgroup of G which is maximal with respect to
some profile P. Then any element h ∈ Ot with profile P is CG(t)-conjugate into
S.

Proof. Let D be a suitable decomposition of VS . First we claim that, without
loss of generality, we may assume that h lies in CG(D). Indeed, since G acts
transitively on ordered bases of V , there exists an element g1 ∈ G such that hg1

lies in CG(D) and tg1 lies in 〈CG(D), t〉. Using Lemmas 2.1 and 2.2 we see that
there exists g2 ∈ 〈CG(D), t〉 such that t = tg1g2 . Since hg1g2 ∈ CG(D) our claim
holds, so assume that h ∈ CG(D).

Since Singer cycle subgroups of GLn(q) are all conjugate, there exists g ∈
CG(D) such that h ∈ Sg. Thus both t and tg normalize H = 〈h〉, and so
by Theorem 2.5 there exists n ∈ NG(H) such that tn = tg, and consequently

ng−1 ∈ CG(t). Since hng
−1 ∈ S, the result holds.

Lemma 2.7. Suppose h ∈ Ot, and that V is an h-irreducible module with
dimV = 2k. Then

|CG(t) ∩ CG(h)| = qk − 1,

and
[NG(〈h〉) ∩ CG(t) : CG(h) ∩ CG(t)] = 2k.

Proof. Using Theorem 2.5 we may consider h as a linear transformation of a
1-dimensional GF (q2k)-vector space, with t acting as a field automorphism of
order 2. Moreover, CG(h) is a Singer cycle subgroup of order q2k − 1, and
CG(h)∩CG(t) is the centralizer in GF (q2k)∗ of the field automorphism t, which
is GF (qk)∗. Thus |CG(h) ∩ CG(t)| = qk − 1.
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By Theorem 2.5 once more we have that [NG(〈h〉) : CG(h)] = 2k, with
this index coming from the order of the cyclic automorphism group of GF (q2k)
over GF (q). Since these automorphisms must also commute with the field
automorphism t, we see that

[NG(〈h〉) ∩ CG(t) : CG(h) ∩ CG(t)] = 2k,

as required.

Lemma 2.8. Suppose h ∈ Ot, and that V is an h-reducible module with dimV =
2k. Then

|CG(t) ∩ CG(h)| = qk − 1,

and
[NG(〈h〉) ∩ CG(t) : CG(h) ∩ CG(t)] = 2k.

Proof. Write H = 〈h〉. Since V is h-reducible we may write VH = W ⊕W t.
Note that hW and hW t lie in Singer cycle subgroups S1 and S2 of GL(W ) and
GL(W t), respectively. As det(hW ) 6= det(hW t), W and W t are non-isomorphic
H-modules. Consequently they are the unique pair of k-dimensional irreducible
H-submodules of V , and since W g is an irreducible H-module for any g ∈
CG(h), it follows that CG(h) must leave both W and W t invariant. Hence,
using Theorem 2.5, CG(h) is the subgroup generated by S1 and S2. As t clearly
swaps W with W t, an element g ∈ CG(h) commutes with t if and only if
gW = gW t , whence |CG(h) ∩ CG(t)| = qk − 1.

Any element of NG(H) must either swap W with W t, or leave each subspace
invariant. By Theorem 2.5 we have [NGW

(HW ) : CGW
(hW )] = k, and similarly

for the restriction to W t. As above, for an element g ∈ NG(H) to commute
with t we require that gW = gW t . Thus, including t we see that

[NG(H) ∩ CG(t) : CG(h) ∩ CG(t)] = 2k.

3 Linear Groups of Small Dimension

In this section we suppose that G = GL2(q), GL3(q) or GL4(q), and derive
formulae for the total number of involutions in X which have odd-order product
with a fixed involution t. In light of the observations in Section 2, these formulae
will also be valid for the groups SLn(q), PGLn(q) and PSLn(q), where n = 2,
3 or 4. This analysis will also demonstrate how to construct a set of CG(t)-
orbit representatives for Ot, the method of which could be extended to higher
dimensions n if desired.
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3.1 GL2(q) and GL3(q)

Let G = GL2(q), with t =

(
0 1
1 0

)
. Let ω be such that 〈ω〉 = GF (q)∗ and

set h1 =

(
0 1
1 ω

)
and h2 =

(
ω 0
0 ω−1

)
. Recall that |G| = q(q− 1)(q2− 1).

Suppose h ∈ Ot. The possible profiles for h are {2 | 0} and {0 | 2} (the
latter case includes the identity element of G). In view of Lemma 2.6 either VH
is irreducible, or h is CG(t)-conjugate to a diagonal element.

First we consider the case where VH is irreducible. By Theorem 2.5, in this
case h must lie in a Singer cycle subgroup of G, so must have order dividing
q2 − 1. Since h is inverted by t it necessarily has determinant 1, and so in fact
the order of h must divide q+ 1. We may easily check that H1 = 〈h1〉 has order
q + 1, and ht1 = h−11 , so by Lemma 2.6 h is CG(t)-conjugate into H1. Thus we
may choose our CG(t)-orbit representatives from H1.

Note that since (q + 1, q − 1) = 1, all subgroups generated by non-trivial
elements of H1 must act irreducibly on V . By Theorem 2.5 we have NG(H1) ∼
H1 : 〈t〉, and hence

[NG(H1) ∩ CG(t) : CG(h) ∩ CG(t)] = 2

for all non-trivial h ∈ H1. Hence every non-trivial element of H1 is CG(t)-
conjugate to exactly one other element of H1. Also |CG(t)| = q(q − 1), and
|CG(t) ∩ CG(h)| = q − 1 for all non-trivial h ∈ H1, by Theorem 2.5. Thus, for
1 6= h ∈ H1, the CG(t)-orbit containing h consists of q elements. Therefore in
total we have q2/2 non-trivial elements of Ot whose order divides q + 1.

Now suppose that VH = W ⊕W t, where W is a 1-dimensional irreducible
H-module. Here, h is CG(t)-conjugate to a diagonal element, so its order must
divide q − 1. Clearly we may take our CG(t)-orbit representatives from H2 =
〈h2〉. In this case, we may easily check that

[CG(t) : CG(t) ∩ CG(h)] = q − 1

and
[NG(H2) ∩ CG(t) : CG(h) ∩ CG(t)] = 2

for all 1 6= h ∈ H2. Hence, in total we have (q − 2)q/2 non-trivial elements of
Ot whose order divides q − 1.

Including the identity element, together this gives

|Ot| = q2/2 + (q − 2)q/2 + 1

= q2 − q + 1

which proves part (i) of Theorem 1.2.

Now let G = GL3(q), with t =

 0 1 0
1 0 0
0 0 1

 . The possible profiles for

h ∈ Ot are {2, 1 | 0}, {1 | 2}, with representative elements h1 =

 0 1 0
1 ω 0
0 0 1


8



and h2 =

 ω 0 0
0 ω−1 0
0 0 1

, respectively. We may consider t, h1 and h2 to lie

naturally in a subgroup K×L ≤ G which is isomorphic to GL2(q)×GL1(q), and
observe that the centralizers and normalizers of 〈t〉, 〈h1〉 and 〈h2〉 will the direct
product of those in K (which have been determined above in the GL2(q) case)
with the whole of L. This leads to q4/2 elements in the CG(t)-orbit containing
h1, and (q4−2q3)/2 elements in the CG(t)-orbit containing h2. Thus, including
the identity, we have

|Ot| = q4 − q3 + 1.

3.2 GL4(q)

Let G = GL4(q). In the case where rank(t) = 1 we may proceed as in GL3(q)
with the difference that the corresponding subgroup L will be isomorphic to
GL2(q) rather than GL1(q). The corresponding counts for the CG(t)-orbits are
q6/2, (q6 − 2q5)/2 and 1.

We move on to the case where rank(t) = 2, and take

t =


0 1
1 0

0 1
1 0

 .

For h ∈ Ot the possible profiles are {4 | 0}, {0 | 4}, {2, 2 | 0}, {2 | 2} and
{0 | 2, 2}. First suppose that h has profile {4 | 0}, so VH is irreducible. Then by
Theorem 2.5 h must lie in a Singer cycle subgroup S of G, so must have order
dividing (q4−1)/(q−1) = (q+ 1)(q2 + 1), and we may consider h as an element
of GF (q4)∗, with t representing a field automorphism of GF (q4). Since t is an
involution, its fixed field is GF (q2). Therefore, for h to be inverted by t, h must
have order coprime to q2 − 1, and hence the order of h must divide q2 + 1. Let
H be the unique subgroup of S with order q2 + 1. Since (q2− 1, q2 + 1) = 1, no
non-trivial element of H may embed into a subgroup GL2(q2), and so 〈h〉 acts
irreducibly on V for all 1 6= h ∈ H.

By Lemma 2.6 we may choose our CG(t)-orbit representatives from H. Using
Theorem 2.5, for all 1 6= h ∈ H we have that NG(H)/CG(h) is isomorphic to
the automorphism group of GF (q4) over GF (q), and so

[NG(H) ∩ CG(t) : CG(h) ∩ CG(t)] = 4.

Moreover |CG(t)| = q5(q−1)(q2−1), and |CG(t)∩CG(h)| = (q−1)(q+ 1) since
elements of S are fixed by t if and only if their order divides q2 − 1. Therefore
we have

q2q5(q − 1)(q2 − 1)

4(q − 1)(q + 1)
=
q7(q − 1)

4

elements of Ot in this case.
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Next assume that h has profile {0 | 4}, so VH = W ⊕W t. Since hW and
hW t lie in subgroups GL2(q), h must have order dividing q2 − 1. To avoid
double-counting we wish only to count such elements h which do not yield a 2-
dimensional H-submodule of V which is left invariant by t. Such h are precisely
those for which det(hW ) and det(hW t) do not equal 1 (since then W and W t are
non-isomorphic as H-modules). Therefore the order of h cannot divide q + 1.
Moreover, the order of h cannot divide q − 1, since then 〈h〉 would leave a
1-dimensional subspace of V invariant. Hence there are

(q2 − 1)− (q + 1)− (q − 1) + 1 = q2 − 2q

elements of H to consider.
For all relevant h ∈ H we have [NG(H) : CG(h)] = 4. Indeed, clearly

t ∈ NG(H) \ CG(h), and within each GL2(q) block the index of the centralizer
in the normalizer is 2. The restriction on the determinant in G gives the index
as claimed. We also have [CG(t) : CG(t) ∩ CG(h)] = (q − 1)(q + 1). Indeed, the
elements of order dividing q+1 which centralize h as they lie in the same Singer
cycle subgroup also centralize t, since they embed into the centre of a GL2(q2)
subgroup which also contains t (using Theorem 2.5 here).

Hence we have

(q2 − 2q)q5(q − 1)(q2 − 1)

4(q − 1)(q + 1)
=

(q2 − 2q)q5(q − 1)

4

elements of Ot in this case.
Now suppose that h has profile {2, 2 | 0}, so VH = W ⊕ U , where W and

U are 2-dimensional irreducible H-modules which are also left invariant by t.
By Lemma 2.6 we may choose our CG(t)-orbit representatives to lie in a unique
block diagonal subgroup S generated by Singer cycle subgroups of SL(W ) and
SL(U). Thus |S| = (q + 1)2. Since h should act irreducibly on both W and U ,
neither block should equal the 2× 2 identity element, so we have q2 elements of
S to consider. There are now two subcases.

Firstly, suppose that W and U are isomorphic H-modules. This occurs if
and only if hW = h±1U as elements of GL2(q). In this case, h embeds as a central
element in a subgroup GL2(q2) of G which also contains t. By Theorem 2.5, t
acts as a field automorphism on CG(h). Hence CG(h)∩CG(t) is the centralizer
of a field automorphism in GL2(q2)∩G. There are 2q elements to consider, and
by Theorem 2.5, for any such h we have

[NG(〈h〉) ∩ CG(t) : CG(h) ∩ CG(t)] = 4.

This yields
2qq5(q − 1)(q2 − 1)

4q(q − 1)(q2 − 1)
=
q5

2

elements of Ot.
The second possibility is that W and U are non-isomorphic H-modules.

There are q2 − 2q such elements of S, and for each such h we have

|CG(h) ∩ CG(t)| = (q − 1)2,

10



given by elements of the form
λ

λ
λ−1

λ−1


where λ ∈ GF (q)∗, along with the centre of G. Each such element h is CG(t)-
conjugate to exactly seven other elements of S. Indeed, we may invert hU and
hW individually, and we may also swap the blocks hU and hW . Since hU 6= h±1W ,
swapping blocks will yield a element of S distinct from those given by inverting
hU or hW . Thus we have

(q2 − 2q)q5(q − 1)(q2 − 1)

8(q − 1)2
=

(q2 − 2q)q5(q + 1)

8

elements of Ot.
Now suppose that h has profile {2 | 2}, so VH = W ⊕ U ⊕ U t where W

is a 2-dimensional irreducible H-module which is also t-invariant, and U is
a 1-dimensional H-module. By Lemma 2.6 we may choose our CG(t)-orbit
representatives to lie in the subgroup S of G which is generated by

0 1
1 ω

1 0
0 1

 and


1 0
0 1

ω 0
0 ω−1

 ,

where 〈ω〉 = GF (q)∗. Since (q−1, q+1) = 1, S is cyclic. For the moment we do
not wish to consider those elements of S where a 2× 2 block equals the identity
block, so there are

(q + 1)(q − 1)− (q + 1)− (q − 1) + 1 = q2 − 2q

elements to consider. For each such h we have |CG(t)∩CG(h)| = (q−1)2 (given
by diagonal elements as in the previous case), and

[NG(H) ∩ CG(t) : CG(h) ∩ CG(t)] = 4

(given by inversion within each 2× 2 block). Thus we have

(q2 − 2q)q5(q − 1)(q2 − 1)

4(q − 1)2
=
q5(q2 − 2q)(q + 1)

4

elements of Ot.
Now suppose that h acts trivially on U and U t. Here we may argue as in

the GL3(q) case dealt with above, except that the corresponding subgroup L
is isomorphic to GL2(q) and t projects to an involution in L, rather than the
identity element. This results in

q5(q + 1)

2

11



elements of Ot.
The next case to consider it that where h has profile {0 | 2, 2}. By Lemma 2.6

we may assume that h lies in a subgroup S of G which is generated by
ω 0
0 ω−1

1 0
0 1

 and


1 0
0 1

ω 0
0 ω−1

 ,

where 〈ω〉 = GF (q)∗. Clearly S has order (q − 1)2 - however, we do not wish
to consider elements of S for which either 2 × 2 block equals I2, so there are
(q − 2)2 elements of S with the required profile.

Firstly suppose that h contains no 2× 2 identity block on its main diagonal.
Then there are two subcases to consider. Firstly, suppose that h ∈ S embeds as
a central element in a subgroup GL2(q2) which also contains t acting as a field
automorphism of order 2. This occurs if and only if h takes the form

λ 0
0 λ−1

λ 0
0 λ−1


or 

λ 0
0 λ−1

λ−1 0
0 λ


for some λ ∈ GF (q). In this case CG(h) ∩ CG(t) is the centralizer of a field
automorphism in GL2(q2)∩G, which is GL2(q). There are 2(q−2) such elements
h, and for each we have

[NG(〈h〉) ∩ CG(t) : CG(h) ∩ CG(t)] = 4.

This yields
2(q − 2)q5(q − 1)(q2 − 1)

4q(q − 1)(q2 − 1)
=
q4(q − 2)

2

elements of Ot.
The second subcase is that h ∈ S does not embed as a central element in a

GL2(q2) subgroup which also contains t acting as a field automorphism of order
2. There are (q− 2)2− 2(q− 2) such elements h of S, and for such an h we have
|CG(h)∩CG(t)| = (q−1)2, since CG(h)∩CG(t) is the set consisting of elements
of the form 

λ 0
0 λ

λ−1 0
0 λ−1



12



for some λ ∈ GF (q), along with the centre of G. For each such h we have

[NG(〈h〉) ∩ CG(t) : CG(h) ∩ CG(t)] = 8,

as we can easily take elements of CG(t) which invert either 2× 2 block of h we
choose, or swap the two blocks. Hence we have

((q − 2)2 − 2(q − 2))q5(q − 1)(q2 − 1)

8(q − 1)2
=

((q − 2)2 − 2(q − 2))q5(q + 1)

8

elements of Ot.
Now suppose that exactly one of the 2× 2 blocks on the main diagonal of h

equals I2. Again we may argue in a similar way to the GL3(q) case, with minor
modifications, and obtain

q4(q − 2)(q + 1)

2

elements of Ot. The final possibility to consider is that both 2 × 2 blocks on
the main diagonal of h equal I2. However, this of course just yields the identity
element, and adds 1 to the count.

Adding all these contributions together yields that

|Ot| = q4(q2 − 2q + 2)(q + 1)(q − 1) + 1,

which completes the proof of Theorem 1.2.

4 Proof of Theorem 1.1

Suppose G = GLn(q), q = 2a and t is an involution of G. Set X = tG, and let
V be the natural GF (q)G-module. Here we write X ∼ qR to mean that X is a
polynomial in q with leading term qR. We begin by considering the case where
rank(t) = n/2, and set k = n/2.

4.1 The case where rank(t) = n/2.

We wish to consider certain subgroups of G having profiles which are in some
sense maximal. We write Prof(t) for the set of all possible profiles which arise
from subgroups of odd-order which are inverted by t. We then define

MProf(t) = {P = {n1, . . . , nr|nr+1, . . . , ns} | ni ≥ 2 for 1 ≤ i ≤ r}.

Subgroups with profiles in MProf will contain elements which, when block di-
agonalized, contain no trivial Jordan blocks. Now, for a given P ∈ MProf, we
choose a subgroup H ≤ G which is maximal with respect to P. We repeat the
definition of such subgroups from Section 2. For a suitable decomposition

D = {W1, . . . ,Wr, Ur+1, U
t
r+1, . . . , Us, U

t
s}

13



of V for this profile, we recall that

CG(D) ∼= GL(W1)×· · ·×GL(Wr)×GL(Ur+1)×GL(U tr+1)×· · ·×GL(Us)×GL(U ts).

For 1 ≤ i ≤ r, within each subgroup GL(Wi) we fix a Singer cycle subgroup Si
which is normalized by t and for r+ 1 ≤ j ≤ s, within each subgroup GL(Uj)×
GL(U tj ) we fix a subgroup S̃j which is generated by an element (sj , s

−1
j ), where

sj is a Singer cycle of GL(Uj).
For each P ∈ MProf we choose an H which is maximal with respect to P,

and collect these together to form a set of representative subgroups H. The
CG(t)-orbit representatives we wish to consider will lie in these subgroups.

Definition 4.1. Let H be a subgroup of G which is maximal with respect to
some P ∈ MProf(t). Let

D = {W1, . . . ,Wr, Ur+1, U
t
r+1, . . . , Us, U

t
s}

be a suitable decomposition of V for this profile. We define the subset Ot(H) of
H to consist of all elements h ∈ H which satisfy the following three properties.

(i) h ∈ Ot,

(ii) each Wi is irreducible when considered as an 〈h〉-module,

(iii) no two spaces in {Wi, Uj ⊕ U tj |1 ≤ i ≤ r, r + 1 ≤ j ≤ s} are isomorphic
as 〈h〉-modules.

Lemma 4.2. For q sufficiently large, |Ot(H)| ∼ qk.

Proof. Since |Ot(H)| < |X| ∼ qk, it suffices to show that for sufficiently large q,
the size of the subsets consisting of elements of H which satisfy conditions (i),
(ii) and (iii), respectively, are each expressible as a polynomial in q with leading
term qk.

First we consider those elements of H which satisfy (i). Set ki = ni/2. For
1 ≤ i ≤ r, g ∈ Si is inverted by t if, and only if, g lies outside the ‘fixed field’
of t, which has order qki − 1. Thus we require that g has order coprime to
qki − 1. Since qni − 1 = (qki − 1)(qki + 1), there are qk1 + 1 such elements.
For r + 1 ≤ i ≤ m, S̃i is isomorphic to a Singer cycle subgroup of GLni(q), so
|S̃i| = qki − 1, and all elements are inverted by t. Consequently the number
of elements of H which satisfy (i) is given by a polynomial with leading term
qk1+···+ks = qk.

Now consider those elements of H which satisfy (ii). To guarantee the spaces
Vi are irreducible as 〈h〉-modules, we may take the projections of h to each Vi
to have order qki + 1 for 1 ≤ i ≤ r, and qki − 1 for r + 1 ≤ i ≤ s. Since in
a subgroup of order qki + 1, respectively qki − 1, the number of such elements
is given by a polynomial with leading term qki , the number of elements of H
which satisfy (ii) is given by a polynomial with leading term qk.

Finally, consider those elements of H which satisfy (iii). Note that Vi and
Vj are isomorphic as 〈h〉-modules if, and only if, dimVi = dimVj = ni and

14



the projections hi and hj of h to Vi and Vj , respectively, are conjugate when
considered as elements of GLni

(q). Since NGLni
(q)(Si) ∼= Si : ni, there are

ni conjugates of hi in GLni
(q). This number does not depend on q, so for q

sufficiently large there are qki choices of hj . Hence the number of elements of
H which satisfy (iii) is given by a polynomial with leading term qk.

It follows that |Ot(H)| ∼ qk for q sufficiently large.

Lemma 4.3. Suppose h ∈ Ot(H). Then |CG(h) ∩ CG(t)| ∼ qk.

Proof. Suppose h has profile

{nm1
1 , nm2

2 , . . . , nmr
r |n

mr+1

r+1 , . . . , nms
s }.

Since no two irreducible summands of VH are isomorphic as 〈h〉-modules we
have that CG(h) leaves each irreducible direct summand of VH invariant. Now
we apply Lemmas 2.7 and 2.8, setting ki = ni/2, to see that

|CG(h) ∩ CG(t)| = (qk1 − 1)m1(qk2 − 1)m2 · · · (qks − 1)ms

∼ qk1m1+k2m2+···+ksms

= qk.

Lemma 4.4. Suppose H has profile

P(H) = {nm1
1 , nm2

2 , . . . , nmr
r |n

mr+1

r+1 , . . . , nms
s }.

Then for any h ∈ Ot(H),

[NG(H) ∩ CG(t) : CG(h) ∩ CG(t)] = nm1
1 nm2

2 · · ·nms
s m1!m2! · · ·ms!.

Proof. Certainly NG(H) ≤ NG(D). First considering NG(H) ∩ CG(D), and
restricting to individual direct summands, by Lemmas 2.7 and 2.8 we have that

[NG(H) ∩ CG(D) ∩ CG(t) : CG(h) ∩ CG(D) ∩ CG(t)] = nm1
1 nm2

2 · · ·nms
s .

Additionally we have elements from (NG(H) ∩ CG(t)) \ CG(D) which permute
summands which are isomorphic as 〈H, t〉-modules. Since two summands from
D are 〈H, t〉-isomorphic precisely when they have equal dimension and are of
the same type, we find that

[NG(H) ∩ CG(t) : CG(h) ∩ CG(t)] = nm1
1 nm2

2 · · ·nms
s m1!m2! · · ·ms!

as required.

In view of Lemma 4.4, forH with profile P = {nm1
1 , nm2

2 , . . . , nmr
r |n

mr+1

r+1 , . . . , nms
s }

we define the integer n(H) to be

n(H) = nm1
1 nm2

2 · · ·nms
s m1!m2! · · ·ms!
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Now, for eachH ∈ H, we count the elements ofOt which are CG(t)-conjugate
into Ot(H). For h ∈ Ot(H), by Lemma 4.3 the length of the CG(t)-orbit

containing h is [CG(t) : CG(t)∩CG(h)] ∼ q2k2/qk. Moreover, by Lemma 4.2 the
size of Ot(H) ∼ qk. Note that no element h ∈ Ot(H) can be CG(t)-conjugate
to any h′ ∈ Ot(H ′), where H ′ ∈ H but H ′ 6= H, since h and h′ will have
different profiles. However, some elements of Ot(H) will be CG(t)-conjugate
to each other, so to compensate for this we divide the length of each orbit by
[NG(H) ∩ CG(t) : CG(h) ∩ CG(t)] = n(H), using Lemma 4.4. Putting this
together, we see that

|Ot| ≥
∑
H∈H

qkq2k
2

n(H)qk
= q2k

2 ∑
H∈H

1

n(H)
.

Since |X| ∼ q2k
2

, we complete the proof of Theorem 1.1 for the case where
rank(t) = n/2 by showing that ∑

H∈H

1

n(H)
= 1.

As this is a purely combinatorial result, we state it as such.

Proposition 4.5. Let n be even, and suppose λ = (λ1, λ2) is a partition of
n into two parts of even length. Suppose further that µ = (µm1

1 , µm2
2 , . . . , µmr

r )
and ν = (ν`11 , ν

`2
2 , . . . , ν

`s
s ) are partitions into even length parts of λ1 and λ2,

respectively. For a given n, denote by Tn the set of all possible triples (λ, µ, ν).
For t ∈ Tn, we define kt to be

kt = µm1
1 µm2

2 · · ·µmr
r ν`11 ν

`2
2 · · · ν`ss m1!m2! · · ·mr!`1!`2! · · · `s!.

Then for all even n we have ∑
t∈Tn

1

kt
= 1.

As preparation for the proof of Proposition 4.5 we give two lemmas.

Lemma 4.6. For n ≥ k,

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
= 22n.

Lemma 4.7. If n is even, then the number of elements of Sym(n) which consist
of only even length cycles is

(n− 1)2(n− 3)2 · · · 5232.

Proof. Assume that Sym(n) acts canonically on the set {1, 2, . . . , n}, and let
σ ∈ Sym(n) be an element consisting of only even length cycles. There are
n − 1 possibilities for 1σ, since 1σ = 1 would yield a 1-cycle in σ. Without
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loss of generality say 1σ = 2. There are now n − 1 possibilities for 2σ, since
2σ = 2 is impossible. If 2σ 6= 1, then without loss say 2σ = 3. There are now
n − 3 possibilities for 3σ, since we require 3σ 6∈ {1, 2, 3}. Without loss assume
3σ = 4. Now there are n− 3 possibilities for 4σ, since we require 4σ 6∈ {2, 3, 4}.
Continuing, we see that there are

(n− 1)2(n− 3)3 · · · 5232

choices for elements having only even length cycles, as in the statement of the
lemma.

Proof of Proposition 4.5. First write

kt = λ1!λ2!

(
µm1
1 · · ·µmr

r m1! · · ·mr!

λ1!

)(
ν`11 · · · ν`ss `1! · · · `s!

λ2!

)
,

and notice that
λ1!

µm1
1 · · ·µ

mr
r m1! · · ·mr!

,

for example, is the index in Sym(λ1) of the centralizer of an element with cycle
type µ = (µm1 , . . . , µmr

r ). Denote by Cµ the number of elements in Sym(λ1)
with cycle type µ, and by Cν the number of elements in Sym(λ2) with cycle
type ν. Then

kt =
λ1!λ2!

CµCν
.

Consequently, we have

∑
t∈Tn

1

kt
=

∑
λ

((∑
µ

Cµ
λ1!

)(∑
ν

Cν
λ2!

))

=
∑
λ

1

λ1!λ2!

(∑
µ

Cµ

)(∑
ν

Cν

)
.

Next, observe that
∑
µ Cµ is equal to the number of elements of Sym(λ1) which

consist of only even length cycles (similarly for the sum over all ν). We may
therefore apply Lemma 4.7 to get∑
t∈Tn

1

kt
=
∑
λ

1

λ1!λ2!

(
(λ1 − 1)2(λ1 − 3)2 · · · 5232

) (
(λ2 − 1)2(λ2 − 3)2 · · · 5232

)
.

Since both λ1 and λ2 are even we may write λ1 = 2d1 and λ2 = 2d2 for some
integers d1 and d2. Now, using the fact that

r∏
i=1

(2i− 1) =
(2r)!

2rr!
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for any integer r ≥ 1, we have∑
t∈Tn

1

kt
=

∑
λ

1

(2d1)!(2d2)!

(
(2d1)!(2d1)!

2d1d1!2d1d1!

)(
(2d2)!(2d2)!

2d2d2!2d2d2!

)
=

∑
λ

(2d1)!(2d2)!

2d1+d22d1+d2d1!d1!d2!d2!
.

Since 2(d1 + d2) = n and (2d1)!
d1!d1!

=
(
2d1
d1

)
(similarly for d2), the above becomes

∑
t∈Tn

1

kt
=

1

2n

∑
λ

(
2d1
d1

)(
2d2
d2

)
.

Writing n = 2n′, then 2d2 = 2n′ − 2d1, so we have

∑
λ

(
2d1
d1

)(
2n′ − 2d1
n′ − d1

)
=

n′∑
d1=0

(
2d1
d1

)(
2n′ − 2d1
n′ − d1

)
= 22n

′

= 2n,

where the second equality follows from Lemma 4.6. Thus∑
t∈Tn

1

kt
= 1,

as claimed.

The proof of Theorem 1.1 for the case where rank(t) = n/2 is now complete.

4.2 The case where rank(t) < n/2

Now assume that rank(t) = k < n/2. We may consider t to lie naturally in
a subgroup K × L ≤ G which is isomorphic to GL2k(q) × GLn−2k(q). Within
K, we may consider t to be an involution with maximal rank. Therefore in K
we choose a set of subgroups H in the same way as in Section 4.1 from which
to choose our CG(t)-orbit representatives. By Lemma 4.2 we again have that
Ot(H) ∼ qk for all H ∈ H. For h ∈ Ot(H) we have

[CG(t) : CG(t) ∩ CG(h)] =
qk

2+2k(n−2k)|GLk(q)||GLn−2k(q)|
qk|GLn−2k(q)|

=
qk

2+2k(n−2k)|GLk(q)|
qk

,

and
[NG(H) ∩ CG(t) : CG(h) ∩ CG(t)] = n(H)

18



(considering H as a subgroup of K when we write n(H)). Therefore, arguing
as previously we have that

|Ot| ≥ qk
2+2k(n−2k)|GLk(q)|

∑
H∈H

1

n(H)
,

and since qk
2+2k(n−2k)|GLk(q)| ∼ q2k(n−k) and |X| ∼ q2k(n−k), the result follows

by Proposition 4.5.
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