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1. Introduction

Taylor’s theorem is a standard result in elementary calculus (see e.g. [17]). If f : R → R

is k times continuously differentiable at a ∈ R, then the theorem states that there exists 
Rk : R → R such that

f(x) =
k∑

j=0

f (j)(a)
j! (x− a)j + Rk(x)

and Rk(x) = o(|x − a|k) as x → a. Depending on any additional assumptions on f , 
various precise formulae for the remainder term Rk(x) are available. For example, if f is 
k + 1 times continuously differentiable on the closed interval between a and x, then

Rk(x) = f (k+1)(c)
(k + 1)! (x− a)k+1 (1)

for some c between a and x. This is known as the Lagrange form of the remainder. 
Alternative expressions, such as the Cauchy form or the integral form for the remainder 
are well known [17].

Taylor’s theorem generalizes to analytic functions in the complex plane: the remainder 
must now be expressed in terms of a contour integral. If f(z) is complex analytic in an 
open subset D ⊂ C of the complex plane, the kth-degree Taylor polynomial of f at a ∈ D
satisfies

f(z) =
k∑

j=0

f (k)(a)
k! (z − a)j + Rk(z),

where

Rk(z) = (z − a)k+1

2πi

∫
Γ

f(w)dw
(w − a)k+1(w − z) , (2)

and Γ is a circle, centred at a, such that Γ ⊂ D. See [1, Chap. 5, Sec. 1.2] for a proof of 
this result.

The first goal of this paper is to generalize (2) to matrices, thereby providing an 
explicit expression for the remainder term for the kth-degree Taylor polynomial of a 
matrix function. Note that it will not be possible to obtain an expression similar to (1)
because its derivation relies on the mean value theorem which does not have an exact 
analogue for matrix-valued functions. Our second goal is to investigate applications of 
this result in bounding the derivatives and condition numbers of matrix functions via 
pseudospectra.

Convergence results for Taylor polynomials of matrix functions have been known since 
the work of Hensel [8], Turnbull [20], and Weyr [21] (see [11, Thm. 4.7] for a more recent 
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exposition). Mathias [15] also obtains a normwise truncation error bound for matrix 
function Taylor polynomials which form part of the Schur–Parlett algorithm [4]. There 
are also a number of remainder theorems within the operator theory literature which 
can be applied to matrix functions. However, to our knowledge, this paper represents 
the first time an explicit remainder term (as opposed to a bound) has been specifically 
obtained for the Taylor polynomial of a matrix function.

The remaining sections of this paper are organized as follows. In section 2 we state 
and prove the remainder term for the kth-degree Taylor polynomial of a matrix function. 
In section 3 we investigate some applications of this result by bounding the first order 
remainder term using pseudospectral techniques and relating it to the condition number 
of f(A). In section 4 we extend these results to the level-2 condition number of a matrix 
function, introduced in [13]. In section 5 we examine the behaviour of the pseudospectral 
bounds on some test problems and show that they can be computed efficiently. Finally in 
section 6 we present our conclusions and discuss some potential extensions of this work.

2. Remainder term for Taylor polynomials

The Taylor series theorems found in Higham’s monograph [11] primarily involve ex-
panding f(A) about a multiple of the identity matrix I:

f(A) =
∞∑
j=0

f (j)(α)
j! (A− αI)j .

Our starting point is the more general Taylor series expansion in terms of Fréchet deriva-
tives, obtained by Al-Mohy and Higham [2, Thm. 1]. Suppose that f has a power series 
expansion 

∑∞
j=0 ajx

j with radius of convergence r > 0 centered at the origin. The inte-
rior of the circle |x| < r defines a simply connected open set D. Then, given A, E ∈ C

n×n

with Λ(A), Λ(A +E) ⊂ D (where Λ(X) denotes the spectrum of the matrix X), Al-Mohy 
and Higham proved that

f(A + E) =
∞∑
j=0

1
j!D

[j]
f (A,E), (3)

where

D
[j]
f (A,E) = dj

dtj

∣∣∣∣
t=0

f(A + tE). (4)

They called the D[j]
f (A, E) terms Fréchet derivatives. More precisely, the terms D[j]

f (A, E)
are a special case of the jth order Fréchet derivatives described by Higham and Rel-
ton [13], in which the perturbations in the j directions are all E. The first of these 
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terms, D[1]
f (A, E), coincides with the “standard” Fréchet derivative Lf (A, E). Addition-

ally, if A and E commute then we have D[j]
f (A, E) = Ejf (j)(A), where f (j) denotes the 

jth derivative of the scalar function f(x).
Before writing down the remainder term obtained by truncating the Taylor series 

in (3), we first recall the standard result that, for any invertible A and B,

A−1 −B−1 = A−1(B −A)B−1. (5)

We will also need the following lemma.

Lemma 2.1. Let X(t) = A − tB, where t is a scalar. Then

dj

dtj

∣∣∣∣
t=0

X(t)−1 = j!A−1(BA−1)j .

Proof. Note that

d

dt
X−1 = −X−1X ′X−1,

where X ′ denotes the derivative of X, and that, since higher derivatives of X vanish,

dj

dtj
X−1 = (−1)jj!X−1(X ′X−1)j .

The result then follows by substituting X = A − tB and setting t = 0. �
Furthermore, we note that by the Cauchy–Hadamard theorem any power series in 

the complex plane converging to a function f must converge on a circular domain with 
radius of convergence r (which can be infinite). In the following results, for the purpose 
of maximizing generality, we say that f has a power series expansion which converges on 
a simply connected open set D. Clearly D must be a subset of this circular domain, but 
need not be circular itself. The reason for this distinction is that the ε-pseudospectra of 
A, used in section 3, give rise to sets of differing shape.

We now state and prove the main result of this paper, which gives an explicit form of 
the remainder term when truncating (3).

Theorem 2.2. Let f have a power series expansion about the origin with radius of con-
vergence r and let D ⊂ C be a simply connected open set within the circle of radius r
centered at 0. Let A, E ∈ C

n×n be such that Λ(A), Λ(A +E) ⊂ D. Then for any k ∈ N

f(A + E) = Tk(A,E) + Rk(A,E),

where
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Tk(A,E) =
k∑

j=0

1
j!D

[j]
f (A,E), (6)

Rk(A,E) = 1
2πi

∫
Γ

f(z)(zI −A− E)−1[E(zI −A)−1]k+1dz, (7)

and Γ is a closed contour in D enclosing Λ(A) and Λ(A + E).

Proof. The result is proved by induction on k. For the case k = 0 we have f(A + E) =
f(A) + R0(A, E). Then

R0(A,E) = f(A + E) − f(A)

= 1
2πi

∫
Γ

f(z)[(zI −A− E)−1 − (zI −A)−1]dz,

using the Cauchy integral definition of a matrix function. It follows from (5) that

R0(A,E) = 1
2πi

∫
Γ

f(z)(zI −A− E)−1E(zI −A)−1dz.

For the inductive step, we assume that f(A +E) = Tk(A, E) +Rk(A, E). The remainder 
for the (k + 1)st degree Taylor polynomial is given by

Rk+1(A,E) = f(A + E) − Tk+1(A,E)

= f(A + E) − Tk(A,E) − 1
(k + 1)!D

[k+1]
f (A,E)

= Rk(A,E) − 1
(k + 1)!

dk+1

dtk+1

∣∣∣∣
t=0

f(A + tE).

Substituting the inductive hypothesis for Rk(A, E) and the Cauchy integral form for 
f(A + tE), assuming that t is sufficiently small, gives

Rk+1(A,E) = 1
2πi

∫
Γ

f(z)(zI −A−E)−1[E(zI −A)−1]k+1dz

− 1
2πi(k + 1)!

dk+1

dtk+1

∫
Γ

f(z)(zI −A− tE)−1dz.

By the continuity of f we can apply the Leibniz integral rule to differentiate the integrand 
in the second term and simplify it using Lemma 2.1. We obtain
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Rk+1(A,E) = 1
2πi

∫
Γ

f(z)
[
(zI −A− E)−1[E(zI −A)−1]k+1

− (zI −A)−1[E(zI −A)−1]k+1]dz
= 1

2πi

∫
Γ

f(z)(zI −A−E)−1[E(zI −A)−1]k+2dz,

where (5) has been used once more. This completes the proof. �
We end this section by briefly describing how Theorem 2.2 also allows us to obtain a 

remainder term for Padé approximants (this was first done in the scalar case by Elliot [5]).
Suppose that we approximate f(z) using a rational function pm(z)/qn(z), where 

pm(z) and qn(z) are polynomials of degree m and n respectively. The Padé approx-
imant is the unique choice (up to scalar multiples) of pm(z) and qn(z) such that 
f(z) −pm(z)/qn(z) = O(zm+n+1). Therefore, using the same rational function to approx-
imate the corresponding matrix function, we have qn(X)f(X) −pm(X) = O(‖X‖m+n+1). 
We introduce the truncation error term Sm,n(X) to the Padé approximant such that

f(X) = qn(X)−1pm(X) + Sm,n(X).

Then, by rearranging the above,

qn(X)f(X) = pm(X) + qn(X)Sm,n(X).

The term qn(X)Sm,n(X) is then the remainder term if we consider pm(X) to be a power 
series expansion of qn(X)f(X) when we set A = 0 and E = X. The remainder has 
degree at least m + n and so, by applying (7) with k = m + n, we obtain

Sm,n(X) = qn(X)−1Xm+n+1

2πi

∫
Γ

qn(z)f(z)(zI −X)−1

zm+n+1 dz,

where the closed contour Γ encloses Λ(X) and the origin.

3. Application to condition numbers and pseudospectra

In this section we use Theorem 2.2 to study the behaviour of the condition number of 
a matrix function, which measures the sensitivity of f(A) to small perturbations in A. 
The results in this section are applicable for any induced matrix norm. Our approach 
requires borrowing a number of techniques from the analysis of pseudospectra. Recall 
that the ε-pseudospectrum of a matrix X is the set

Λε(X) =
{
z ∈ C : ‖(zI −X)−1‖ ≥ ε−1} . (8)

To begin, the following lemma provides some pseudospectral bounds on the size of the 
remainder terms.
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Lemma 3.1. Let f and D satisfy the criteria of Theorem 2.2. Furthermore let ε > 0 be 
such that Λε(A) ⊂ D and Λε(A + E) ⊂ D, and take Γ̃ε ⊂ D to be a closed contour that 
encloses both Λε(A) and Λε(A + E). Then the remainder term Rk(A, E) is bounded by

‖Rk(A,E)‖ ≤ ‖E‖k+1L̃ε

2πεk+2 max
z∈Γ̃ε

|f(z)|, (9)

where L̃ε is the length of Γ̃ε. In particular, when a circular contour centered at 0 is used,

‖Rk(A,E)‖ ≤ ‖E‖k+1ρ̃ε
εk+2 max

θ∈[0,2π]
|f(ρ̃εeiθ)|, (10)

where ρ̃ε = max{|z| : z ∈ Λε(A + E) ∩ Λε(A)} is the radius of the circle.

(Note that tildes on L̃ε, Γ̃ε, and ρ̃ε are used because, for this result only, the contour 
needs to enclose Λε(A + E) in addition to Λε(A). For subsequent results, the contour 
need only enclose Λε(A) and the tildes are dropped.)

Proof. The proof is analogous to that of the bound

‖f(A)‖ ≤ L̃ε

2πε max
z∈Γ̃ε

|f(z)|,

obtained by Trefethen and Embree [19, Ch. 14]. We bound the norm of Rk(A, E) by 
noting that

‖Rk(A,E)‖ ≤ ‖E‖k+1

2π

∫

Γ̃ε

|f(z)|‖(zI −A−E)−1‖‖(zI −A)−1‖k+1.

On Γ̃ε we have ‖(zI − A − E)−1‖ ≤ ε−1 and ‖(zI − A)−1‖ ≤ ε−1. The first part of the 
lemma follows immediately. For the second part, take Γ̃ε to be a circle with center 0 and 
radius ρ̃ε = max{|z| : z ∈ Λε(A + E) ∩ Λε(A)}. �

We can also use this result to bound the absolute condition number of a matrix 
function. Recall that the absolute condition number measures the first order sensitivity 
of f(A) to small perturbations in A and is given by [11, Chap. 3]

condabs(f,A) := lim
τ→0

sup
‖E‖≤τ

‖f(A + E) − f(A)‖
τ

= max
‖E‖≤1

‖Lf (A,E)‖. (11)

Lemma 3.1 provides us with the following bound on the absolute condition number.
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Corollary 3.2. Let f and D satisfy the criteria of Theorem 2.2. Let ε > 0 be such 
that Λε(A) ⊂ D, and let Γε ⊂ D be a closed contour of length Lε that encloses the 
ε-pseudospectrum. Then

condabs(f,A) ≤ Lε

2πε2 max
z∈Γε

|f(z)|. (12)

In particular, when a circular contour centered at 0 is used,

condabs(f,A) ≤ ρε
ε2

max
θ∈[0,2π]

|f(ρεeiθ)|, (13)

where ρε = max{|z| : z ∈ Λε(A)} is the pseudospectral radius of A.

Proof. Set k = 0 in (9). Consider ‖E‖ = α < ε so that, by an equivalent definition of 
the ε-pseudospectrum, we have Λ(A +E) ⊂ Λε(A). Then, since R0(A, E) = Lf (A, E) +
o(‖E‖), we have

‖Lf (A,E) + o(α)‖ ≤ αLε

2πε2 max
z∈Γε

|f(z)|.

We divide by α and take the supremum over all E such that ‖E‖ ≤ α to obtain

sup
‖E‖≤α

‖Lf (A,E/α) + o(α)/α‖ ≤ Lε

2πε2 max
z∈Γε

|f(z)|.

The proof of (12) is completed by taking the limit α → 0 and recalling that the absolute 
condition number of a matrix function is given by the operator norm of the Fréchet 
derivative (11).

The proof of (13) is essentially the same, except that (10) is taken as the starting 
point rather than (9).

Note that an alternative proof of the corollary can be obtained by starting with the 
integral representation of the Fréchet derivative

Lf (A,E) = 1
2πi

∫
Γε

f(z)(zI −A)−1E(zI −A)−1dz,

and bounding it above using the techniques from the proof of Lemma 3.1. �
Assuming that these bounds can be computed efficiently they are of considerable 

interest as most existing results regarding the estimation of the condition number provide 
only lower bounds [11, Chap. 3]. Indeed, this is particularly interesting when combined 
with a bound on the size of the ε-pseudospectrum given by the following result.
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Lemma 3.3 (Reddy, Schmid, and Henningson). Let W (A) be the numerical range of A
and Δδ be a closed disk of radius δ. Then for all ε > 0

Λε(A) ⊂ W (A) + Δε,

where set addition is defined componentwise; that is S1+S2 = {s1+s2 : s1 ∈ S1, s2 ∈ S2}.

Proof. See Reddy, Schmid, and Henningson [16, Thm. 2.1]. �
Since the numerical radius, r(A) := supz∈W (A) |z|, is equal to ‖A‖2 we know that 

the ε-pseudospectral radius is no larger than ‖A‖2 + ε. Thus we obtain the following 
corollary.

Corollary 3.4. Let f , D, and ε > 0 satisfy the criteria of Corollary 3.2 and suppose that 
‖A‖2 + ε < r, the radius of convergence for the power series expansion of f . Then

condabs(f,A) ≤ ‖A‖2 + ε

ε2
max

|z|=‖A‖2+ε
|f(z)|. (14)

Proof. The circle of radius ‖A‖2 + ε around the origin encloses Λε(A) and is of length 
2π(‖A‖2 + ε). Using this contour in (13) gives the desired result. �

One potential application of this result is in the design and analysis of algorithms for 
computing matrix functions. Many such algorithms work by rescaling A to be of small 
norm, applying the function to this scaled matrix (via a Padé approximant or Taylor 
series), and then undoing the effect of the scaling. This corollary may allow us to better 
understand the numerical effect of applying the matrix function to the scaled matrix, 
since such analysis is typically done only in exact arithmetic.

We end this section by briefly mentioning a related theorem due to Lui [14, Thm. 3.1], 
concerning the relationship between the pseudospectra of A and f(A). The theorem is 
restated here in our notation. Recall that Rk(A, E) was defined in Theorem 2.2 and that 
R0(A, E) = Lf (A, E) + o(‖E‖).

Lemma 3.5 (Lui). Let ε, f , and Γε satisfy the conditions of Corollary 3.2. Furthermore 
let f(Λε(A)) = {f(z) : z ∈ Λε(A)} and M = max‖E‖≤ε ‖R0(A, E)‖. Then f(Λε(A)) ⊂
ΛM (f(A)).

Proof. If z is an eigenvalue of A + E with ‖E‖ ≤ ε (so that z ∈ Λε(A)), then f(z) is an 
eigenvalue of f(A + E) = f(A) + R0(A, E) and ‖R0(A, E)‖ ≤ M . �

This result shows that, to first order in ε, the ε-pseudospectrum of A is related to the 
δ-pseudospectrum of f(A) via f(Λε(A)) ⊂ Λδ(f(A)), where δ = condabs(f, A)ε.
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4. Application to higher order condition numbers

Higham and Relton [13] introduce the level-q condition number for matrix functions, 
which is defined recursively by

cond(q)
abs(f,A) := lim

α→0
sup

‖Z‖≤α

| cond(q−1)
abs (f,A + Z) − cond(q−1)

abs (f,A)|
α

, (15)

where cond(1)
abs(f, A) := condabs(f, A). In section 3 we focused on the first order remainder 

term, R0(A, E), and results concerning the condition number condabs(f, A) but – by 
choosing k > 0 in Lemma 3.1 – we can attempt to extend results such as Corollary 3.2
to these higher order condition numbers.

Before proceeding, we must first investigate the relationship between the D[j]
f (A, E)

defined in (4) and higher order Fréchet derivatives. Recall that D[j]
f (A, E) is a special 

case of the jth order Fréchet derivative in which the perturbation in each direction is E. 
In [13] a definition of the jth order Fréchet derivative, assuming it is continuous in A, is 
given in terms of the mixed partial derivative:

L
(j)
f (A,E1, . . . , Ej) = ∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

f(A + s1E1 + · · · + sjEj). (16)

The following theorem expresses this jth order Fréchet derivative in terms of a contour 
integral.

Theorem 4.1. Let f be j times Fréchet differentiable such that the jth Fréchet derivative 
is continuous at A, and let Γ be a closed contour enclosing Λ(A) such that f is analytic 
inside and on Γ. Then, the jth order Fréchet derivative of a matrix function f(A) in the 
directions E1, . . . , Ej is given by

L
(j)
f (A,E1, . . . , Ej) = 1

2πi

∫
Γ

f(z)(zI −A)−1
∑
σ∈Sj

k∏
i=1

Eσ(i)(zI −A)−1dz, (17)

where Sj is the set of permutations of {1, 2, . . . , k}. In particular the derivative D[j]
f (A, E)

is given by

D
[j]
f (A,E) = j!

2πi

∫
Γ

f(z)(zI −A)−1[E(zI −A)−1]j+1dz. (18)

Proof. For any choice of si (in some neighbourhood of 0) and Ei, we can write f(A +
s1E1 + · · ·+ sjEj) as a Cauchy integral by using the standard Cauchy integral definition 
of a matrix function and choosing a contour Γ̃ that encloses Γ and some neighbourhood 
of Λ(A). Then (16) becomes
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L
(j)
f (A,E1, . . . , Ej) =

∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

∫

Γ̃

f(z)(zI − (A + s1E1 + · · · + sjEj))−1dz.

Using the Leibniz integral rule, the differential operator

∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

can be brought inside the integral sign. The required integrand is then obtained by using 
the identity

d

dx
U−1 = −U−1 dU

dx
U−1.

The result (17) follows by then restricting the contour to the closed curve Γ containing 
Λ(A). The second part of the theorem, (18), follows by setting E1 = · · · = Ej . �

Theorem 4.1 shows that, to first order, the kth remainder term in the Taylor series 
is simply the (k + 1)st derivative, as we might expect. Specifically, comparing (18) with 
(7) we find

Rk(A,E) = 1
(k + 1)!D

[k+1]
f (A,E) + o(‖E‖k+2).

In addition, Theorem 4.1 allows us to prove the following theorem, which uses the 
pseudospectrum of A to bound the norm of the jth order Fréchet derivative.

Theorem 4.2. Let f satisfy the criteria of Theorem 4.1 and let Γε be a closed contour 
enclosing Λε(A) such that f is analytic inside and on Γε. Then the jth order Fréchet 
derivative can be bounded by

‖L(j)
f (A,E1, . . . , Ej)‖ ≤ j!Lε

2πεj+1

(
max
z∈Γε

|f(z)|
) j∏

i=1
‖Ei‖, (19)

where Lε is the length of Γε.

Proof. In (17) use the contour Γε, take norms, and note that ‖(zI − A)−1‖ ≤ ε−1

on Γε. �
It would be desirable to obtain a bound on the level-q condition number, by first 

bounding it in terms of the norm of the qth Fréchet derivative and then applying The-
orem 4.2. However, in the general case such bounds prove to be far too weak to be of 
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any interest. Instead we restrict ourselves to the case q = 2 and the level-2 condition 
number.

Lemma 4.3. Let f satisfy the criteria of Theorem 4.1 and let Γε a closed contour enclosing 
Λε(A) such that f is analytic inside and on Γ. The level-2 condition number is bounded 
by

cond(2)
abs(f,A) ≤ Lε

πε3
max
z∈Γε

|f(z)|.

When a circular contour centered at 0 is used,

cond(2)
abs(f,A) ≤ 2ρε

ε3
max

θ∈[0,2π]
|f(ρεeiθ)|,

where ρε, the pseudospectral radius, is the radius of the circle.

Proof. Higham and Relton [13, Sec. 5] give an upper bound for the level-2 absolute 
condition number in terms of the norm of the second Fréchet derivative

cond(2)
abs(f,A) ≤ max

‖E1‖=1
max

‖E2‖=1
‖L(2)

f (A,E1, E2)‖. (20)

Substituting the bound from (19) into (20) gives the required results. �
5. Numerical experiments

In this section we show how our pseudospectral bounds on the condition number, 
(12) and (13), can be used to estimate the condition number of matrix functions in 
practice. We also find that they are cheaper than alternative approaches and, therefore, 
one might use the pseudospectral bound as a quick estimate of the condition number. 
If this estimate is unsatisfactorily large we can use existing methods to estimate it 
more accurately. The term “unsatisfactorily large” can be made precise in the following 
manner: many applications only require the first few digits of the result to be correct so 
that a relative error of, for example, 1e-4 is perfectly acceptable. When using a backward 
stable algorithm the relative error is approximately bounded above by the condition 
number multiplied by the unit roundoff (u = 2−53 in IEEE double precision arithmetic).

Throughout this section, to compute our bound on the condition number, we will be 
using (12)

condabs(f,A) ≤ Lε

2πε2 max
z∈Γε

|f(z)|,

where Γε is a closed contour of length Lε that encloses the pseudospectrum of A and lies 
within the region where f has a convergent power series. Recall also that the relative 
condition number, condrel(f, A), is given by
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condrel(f,A) = condabs(f,A) ‖A‖
‖f(A)‖ .

Combining these two results allows us to bound the relative condition number from 
above. This bound will be cheap to compute provided that the cost of computing Lε and 
maxz∈Γε

|f(z)| is sufficiently small.
In order to use this bound in practice we must choose which matrix norm to consider, 

the value of ε, and the contour Γε. We will use the Frobenius norm since, in this norm, 
there is an explicit formula for the condition number which can be computed using [11, 
Alg. 3.17]. However, the pseudospectrum is not defined in the Frobenius norm, since 
it requires the use of an induced norm. To resolve this, one can easily show that the 
absolute condition number in the Frobenius norm is bounded above by 

√
n times the 

condition number in the 2-norm, where n is the size of the matrix. Hence we have

condrel(f,A, ‖ · ‖F ) ≤
√
n condabs(f,A, ‖ · ‖2)

‖A‖F
‖f(A)‖F

.

The right-hand side of this equation is what we will compute, where the condabs(·) term 
is bounded above by (12).

It remains to choose ε and Γε. Looking at (12) we see that, heuristically, in order to 
minimize the upper bound we would like ε to be reasonably far from 0. Some of our test 
functions will have power series that are convergent in a circle of radius 1 around the 
point z = 0; for these cases we choose Γε to be a circle centered at 0 with radius 0.99
and find the largest ε such that the ε-pseudospectral radius lies inside this circle. This 
is computed using the nonlinear optimization routine fminbnd in MATLAB. When our 
function has a power series with an infinite radius of convergence we choose ε = 1 and 
take Γε to be a circle centered at the mean of the eigenvalues of A (γ = 1

n

∑
λi) with 

radius equal to the ε-pseudospectral radius of A −γI. Finally, to find max |f(z)| on these 
contours, we again use the nonlinear optimization routine fminbnd in MATLAB. We use
psapsr by Guglielmi and Overton [7] to compute the ε-pseudospectral radii throughout.

We will compare our pseudospectral method described above (hereafter referred to as
condpseudo) in the Frobenius norm against two alternative methods for computing the 
condition number: funm_condest_fro from the Matrix Function Toolbox [10] and an 
“exact” method detailed by Higham [11, Alg. 3.17], which we refer to as condold and
condexact, respectively.

The method condold uses finite difference approximations to the derivatives of the 
matrix function and has O(n3) cost. Meanwhile condexact expresses the condition num-
ber as the 2-norm of a matrix Kf (A) ∈ C

n2×n2 , called the Kronecker form of the matrix 
function, which must be computed explicitly with cost O(n5). Therefore condexact is 
impractical for all but the smallest problems.

Our first experiment compares condpseudo and condold to condexact in terms of 
accuracy and reliability on a range of matrix functions. The purpose of this experiment is 
to confirm that condpseudo does indeed return an upper bound on the condition number 
and that this upper bound is not much larger than the exact value.
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Fig. 1. Condition number estimates/bounds for the matrix function corresponding to f(x) = log(1 + x) in 
the Frobenius norm over 29 test matrices. We have condold and condexact overlapping almost entirely. Left:
The condition number estimates/bounds. Right: The ratios of condpseudo and condold to condexact.

We compare the three different algorithms on four matrix functions corresponding to 
the scalar functions log(1 +x), (1 +x)1/15, exp(x), and cos(x). The first two of these have a 
power series representation which is convergent for |x| < 1, whilst the latter have globally 
convergent power series. The matrix functions are computed using logm and expm in 
MATLAB, along with cosm from [3], and powerm_fre_new by Higham and Lin [12].

For each function we use 29 test matrices (of size n = 10) from the Matrix Com-
putation Toolbox [9] and plot both the computed condition numbers and the ratio of
condpseudo and condold to condexact. For the first two functions, where we need all 
eigenvalues to lie within the region of convergence, we transform each matrix to have 
eigenvalues centered at 0 with ‖A‖2 = 1 so that all eigenvalues lie within the unit 
disk.

In Fig. 1 we see the condition number as computed by the three methods, for each 
of the 29 test matrices, using the function f(x) = log(1 + x). The results are ordered 
by decreasing condition number as computed by condexact. We can immediately see 
that condpseudo is indeed an upper bound and is usually 2–4 orders of magnitude larger 
than the exact condition number. Meanwhile condold is generally a very good estimate 
of the condition number.

Next in Fig. 2 we compare the condition numbers when using the function f(x) =
(1 + x)1/15. In this case we see very similar behaviour to the previous function: condold
and condexact are almost identical whilst condpseudo provides an upper bound that is 
generally 2–4 orders of magnitude larger than the true condition number.

Fig. 3 shows the results when using f(x) = exp(x). In this case condpseudo performs 
slightly better than previously being only 1–3 orders of magnitude above condexact on 
most test problems.

Finally, Fig. 4 displays the results for f(x) = cos(x). In this case, as for the expo-
nential we see that condpseudo is a reliable upper bound, generally being 1–3 orders of 
magnitude above condexact except for one case on the left-hand side in which it is more 
than 10 orders of magnitude larger. This is due to the matrix in question having eigen-
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Fig. 2. Condition number estimates/bounds for the matrix function corresponding to f(x) = (1 + x)1/15 in 
the Frobenius norm over 29 test matrices. We have condold and condexact overlapping almost entirely. Left:
The condition number estimates/bounds. Right: The ratios of condpseudo and condold to condexact.

Fig. 3. Condition number estimates/bounds for the matrix function corresponding to f(x) = exp(x) in the 
Frobenius norm over 29 test matrices. We have condold and condexact overlapping almost entirely. Left:
The condition number estimates/bounds. Right: The ratios of condpseudo and condold to condexact.

Fig. 4. Condition number estimates/bounds for the matrix function corresponding to f(x) = cos(x) in the 
Frobenius norm over 29 test matrices. We have condold and condexact overlapping almost entirely. Left:
The condition number estimates/bounds. Right: The ratios of condpseudo and condold to condexact.



E. Deadman, S.D. Relton / Linear Algebra and its Applications 504 (2016) 354–371 369

values extending far into the complex plane: as the cosine function grows exponentially 
in the direction of the imaginary axis | cos(z)| is extremely large on the chosen contour.

Each of these four cases shows that condpseudo provides a reliable upper bound on 
the condition number and is generally just a few orders of magnitude above the true 
value. We also note that, since condpseudo needs only the scalar function f(x) and 
does not need to compute the derivatives of a matrix function, via finite differences or 
otherwise, it can easily be applied to very complicated matrix functions such as cos(

√
A)

(for which no specially designed algorithms exist) with no modification. In this particular 
case we would apply our algorithm to the function

f(A) =
∞∑
k=0

(−1)kAk

(2k!) ,

which is analytic and equivalent to cos(
√
A) away from the origin, regardless of which 

branch of the square root function is selected. Matrix functions such as this can arise 
in finite element semidiscretization of the wave equation. For example, the second order 
differential equation

y′′(t) + Ay(t) = g(t), y(0) = y0, y′(0) = y′0,

has the solution

y(t) = cos(
√
At)y0 + (

√
A)−1 sin(

√
At)y′0 +

t∫
0

(
√
A)−1 sin

(√
A(t− s)

)
g(s) ds,

where 
√
A denotes any square root of A [6, p. 124], [18]; see also [11, Prob. 4.1] for the 

case g(t) = 0.
Our next experiment compares the speed of estimating the condition number as 

the size of the matrix grows. Here we focus on the function f(x) = (1 + x)t for 
t = 1/5, 1/15, 1/52 and for n between 10 and 1000. For each value of n we take A
to be a matrix with elements normally distributed with zero mean and unit variance, 
scaled to have unit norm. Since condexact is an O(n5) algorithm it becomes increasing 
impractical as n grows: instead we will compare condpseudo against condold and a 
different algorithm, condhili. This latter algorithm, designed by Higham and Lin [12], 
estimates the condition number of matrix powers in a similar manner to condold but 
actually computes the derivatives of the matrix function, as opposed to using finite dif-
ference approximations. The algorithm is designed to estimate the condition number in 
the 1-norm but has similar computational complexity to condold which works in the 
Frobenius norm. This experiment was run on a laptop with an Intel dual-core i7 processor 
using MATLAB R2014b.

Fig. 5 shows the results of this experiment. On the left are the runtimes using each of 
the 3 algorithms to compute the condition number of (I + A)1/t for the various values 
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Fig. 5. Runtime in seconds and resulting speedup when computing the matrix function corresponding to 
f(x) = (1 +x)t for t = 1/5, 1/15, 1/52 using condpseudo, condold, and condhili as n varies between 10 and 
1000. The x-axis shows n, the size of the test matrix, whilst the y-axis denotes the runtime and speedup, 
respectively. Left: Runtime in seconds when running each algorithm. Right: Speedup when using condpseudo
compared to condold and condhili.

of t whilst the right-hand plot shows the speedup when using condpseudo relative to 
the other methods. The x-axis shows n, the size of the matrices, whilst the y-axis shows 
the runtime in seconds (left-hand plot) and the speedup obtained (right-hand plot). We 
see that condpseudo is much cheaper than the alternatives for fairly small matrices 
and appears to settle at around 1.5 times faster than condold and 2 times faster than
condhili, respectively, on this machine. This would suggest that using condpseudo is 
beneficial for applications where low-accuracy solutions are required and is particularly 
good in situations where lots of small matrix functions need to be computed.

6. Conclusions

The main results in this paper are as follows. We have obtained an explicit expression 
for the remainder term of a matrix function Taylor polynomial (Theorem 2.2). Combining 
this with use of the ε-pseudospectrum of A leads to upper bounds on the condition 
numbers of f(A). Our numerical experiments demonstrated that our bounds can be 
used for practical computations: they provide a cheap upper bound on the condition 
number which is often only a few orders of magnitude too large. This means that our 
bounds could be used as a quick estimate of the condition number and if this estimate 
is too large, for instance if the estimate suggests that an insufficient number of correct 
significant figures might be obtained in computing f(A), then existing methods can be 
used to obtain the condition number more accurately.

Another benefit of our approach is that it can easily be applied to bound the condition 
number of complicated matrix functions such as cos(

√
A) without modification, as there 

are currently no specialized methods for computing such quantities.
Our results may also have further useful applications in the development of ma-

trix function algorithms by allowing us to estimate the size of the remainder terms 
for Padé approximants, for example. We may also be able to glean further insight into 
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the behaviour of existing algorithms to compute matrix functions (see the discussion of 
Corollary 3.4). This will be the subject of future work.
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