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Abstract

Magnetic Induction Tomography attempts to image the electrical and magnetic characteris-
tics of a target using impedance measurement data from pairsof excitation and detection coils.
This inverse eddy current problem is nonlinear and also severely ill posed so regularization is
required for a stable solution. A regularized Gauss-Newtonalgorithm has been implemented as
a nonlinear, iterative inverse solver. In this algorithm one needs to solve the forward problem
and recalculate the Jacobian matrix for each iteration. Theforward problem has been solved
using an edge based finite element method for magnetic vectorpotentialA and electrical scalar
potentialV, a so calledA,A-V formulation. A theoretical study of the general inverse eddy
current problem and a derivation, paying special attentionto the boundary conditions, of an
adjoint field formula for the Jacobian is given. This efficient formula calculates the change in
measured induced voltage due to a small perturbation of the conductivity in a region. This has
the advantage that it involves only the inner product of the electric fields when two different
coils are excited, and these are convenient computationally. This paper also shows that the sen-
sitivity maps change significantly when the conductivity distribution changes, demonstrating
the necessity for a nonlinear reconstruction algorithm. The performance of the inverse solver
has been examined and results presented from simulated datawith added noise.

Index term- Electromagnetic tomography, inverse problems, eddy currents, conductivity measure-
ment.

1 Introduction

Magnetic induction tomography (MIT) is a potential modality for medical and industrial imaging
(see for example [11], [15], [24], [29]). MIT attempts to infer interior conductivity distribution,
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and possibly the distribution of other electromagnetic parameters, from mutual inductance mea-
surements between coils exterior to the object. The technique operates as follows. Passing an
alternating current through the excitation coil(s) produces an alternating magnetic field. The mag-
netic field induces a voltage in the sensing coils that is a nonlinear function of the electromagnetic
properties. The reconstruction problem is to recover an approximation to the spatially varying
electromagnetic properties from this data. The absence of direct electrical connections makes the
technique of interest for non-invasive and non-intrusive applications. Potential applications of MIT
for conductivity imaging in medical applications have beenidentified for example by [5] and [26].
In [5] and in [31] the possibility of using MIT for permeability imaging has also been investi-
gated. In this paper we focus on electrical conductivity as the unknown. The formulation can be
easily extended to complex conductivity reconstruction, but we will assume the permittivity and
permeability distributions are given. Various image reconstruction techniques have been used for a
similar inverse problem of medical electrical impedance tomography (EIT) [18, 25]. A mathemati-
cally similar problem (forward and inverse eddy current problem) has been studied extensively for
Non-Destructive Testing (NDT) applications. Forward problem formulations, approaches to sen-
sitivity analysis and inverse problem techniques have beendeveloped for NDT by [8], [16], [22],
[34]. Because of the differences in conductivity range and contrast in medical MIT, many of those
techniques used in NDT may not be directly applicable here.

In medical MIT to date, a ‘linear back projection’ method [15] (similar to Kotre’s method in
EIT) and a single step regularized method [3] have been used.This paper further demonstrates the
nonlinearity of MIT and show that the linear reconstructionmethods are not generally adequate. It
has been demonstrated earlier by [27] that the sensitivity map for a conductive background differs
from the one for a free space background. The results of this paper demonstrate that the sensitivity
map not only differs from that of free space but also changes significantly with the background
conductivity distribution, so that it is essential to recalculate the Jacobian matrix at the iterative
steps of the inverse solver.

Reconstruction of the conductivity requires a forward solver so that predicted data can be com-
pared with measured data. We use an eddy current approximation to Maxwell’s equations, which
involves the computation of vector and scalar fields. The edge finite element method (edge FEM)
has advantages over nodal elements for vector field computation in the eddy current problem [1].
Edge FEM has been employed for the medical and industrial MITforward problem [20],[30].
Solving the forward problem of MIT using a scalar field has been reported by [9]. An eddy current
formulation ofAr ,Ar −V presented by [20] models the electric field in the conductingregion as
sum of the scalar fieldV and primary magnetic vector potential, and a reduced magnetic vector
potentialAr .

We have implemented a flexible edge FEM eddy current program,specifically designed for
MIT, for calculating the voltages induced in sensing coils when an excitation coil is driven, as well
as the internal fields required for sensitivity computation. An efficient formulation for calculating
the Jacobian matrix has been used. Sensitivity analysis of the system shows that even some large
changes in the impedance of an object cause only small changes in the voltages induced in a coil.
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Consequently the inverse problem is ill posed.
In common with many similar inverse boundary value problemsfor partial differential equa-

tions our problem is nonlinear, and beyond the small range ofvalidity of a linear approximation
it is necessary to use a reconstruction algorithm that reflects this. The regularized Gauss-Newton
method uses repeated linearization to overcome the nonlinearity, and incorporates ana priori in-
formation about the unknown conductivity to obtain a stablesolution of the inverse problem. The
linearization, which is the Jacobian matrix or Fréchet derivative of the forward map, is an important
part of such methods. A row of the Jacobian matrix can be interpreted as a map of the sensitivity
of a given measurement to a small change in conductivity in each location. As we shall see in
this paper these sensitivity maps depend strongly on the background conductivity about which the
linearization is taken. This can be interpreted in several ways, one of which is that the second
derivative is significant. In practice, while a linear reconstruction algorithm will often success-
fully locate an isolated inclusion in a homogeneous background, a nonlinear method is needed to
reconstruct more complicated conductivity distributions, such as several nearby objects.

The forward problem is inherently three dimensional, and weshow reconstructions of three
dimensional objects. Simulated measurement data were generated using model phantoms, and
Gaussian pseudorandom noise was added to the data. To further avoid ‘inverse crimes’ a different
mesh was used in the inverse solution from the one used to create the simulated data. The soft-
ware was designed to solve the forward problem and calculatethe Jacobian for a general form of
anisotropic material distribution, but the results presented in this paper are for isotropic materials.
Our tetrahedral finite element meshes were made using a general purpose mesh generator provided
by FEMLAB (Comsol AB, Stockholm). In any practical medical application one would need an
accurate body-shaped mesh.

The paper is organized as follows. Section II studies the theoretical background of the inverse
eddy current problem, and we derive the sensitivity formulain a general form. In section III a
simple eight coil MIT system used for our simulation study isintroduced. In section IV, the nu-
merical implementation of the MIT forward problem is presented and in section V the numerical
implementation of the sensitivity formula is described anda sensitivity analysis a presented. In sec-
tion VI the formulation for the Gauss-Newton method will be reviewed and image reconstruction
results for simulated data will be shown.

2 Theoretical study

2.1 Maxwell’s Equations and MIT

Assuming time-harmonic fields with angular frequencyω Maxwell’s equations are

∇×E = −iωµH ∇ ·µH = 0 (1)

∇×H = (σ+ iωε)E + Js ∇ · εE = 0 (2)
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HereE andH are the magnetic and electric fields,σ is conductivity,µ magnetic permeability and
ε permittivity. The current sources are represented by the current densityJs. The inverse boundary
value problem for Maxwell’s equations is the recovery of thematerial parametersσ, ε andµ from
measurements of the tangential componentsn×H andn×E of the fields on some surfaceΓ (with
normaln) enclosing the regionΩ where the material parameters are unknown. Uniqueness of the
solution for this inverse boundary value problem has been proved, providedω is not a resonant
frequency [23]. For the moment we takeJs = 0 assuming the sources are included in the boundary
conditions. It is worth noticing that in the sensing coil themeasurements of induced voltage can be
expressed as line integral of the tangential component ofE along the coil. It can also be described
as surface integral of the normal component of the rate of change of magnetic flux densityB. Fig.
1 shows the general form of MIT measurement with sensing and excitation coils.

The methodology for establishing the derivative of the boundary measurements with respect to
a perturbation of a material parameter was established in the fundamental paper of Calderón [2]
for the static caseω = 0. The general case for time harmonic Maxwell’s equations was treated by
[33]. These results require some slight modification for application to MIT. In this case, we are not
measuring on an isolated boundary. Typically we have an arrangement of coils on some surfaceΓ
but boundary conditions (such as screening by a conductive or magnetic shield) are applied on some
surface containing this. We can think of an idealized excitation coil as imposing a predetermined
tangential component ofH on Γ, and our idealized measurement as an integral ofE around an
infinitesimal loop onΓ. This is no worse than the idealization in the low frequency case (EIT) that
one can apply arbitrary current patterns to the surface and measure the voltage everywhere.

In practice we measure a finite subset of the idealized data, but it is important to know at least
that if we collected ideal data then the material parametersare uniquely determined. This question,
calleduniqueness of solutionby mathematicians, is the practical question ofsufficiency of datafor
the engineer. The measurement arrangements of MIT using a system of coils does not fit exactly
in to this formalism, meaning that the measurement can not bedone at all points surrounding the
object. There is no barrier to electric and magnetic fields onthe surface containing the coils so
we must model them by a current source termJs, and impose boundary conditions on some larger
enclosing surface. We will address this in the next section.For the moment, our ideal data is the
transfer impedance on the surfaceΓ, where we have complete control of the tangential component
of H and knowledge of the transfer impedance ofE (or vice versa). There is of course a parallel
impedance due to the region exterior toΓ, which we will assume is known by calibration and has
already been subtracted.

It is convenient to recast the data onΓ in an integral of the normal component of the vector field
E×H. Taking the electric and magnetic fields from two different excitations, gives fieldsEi ,Hi,
i = 1,2. Assuming the magnetic field onΓ to be prescribed and the tangential electric field to be
measured, a perturbation in the material parameters gives rise to perturbed fields, and a perturbed
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measurement
Z

Γ

H2×δE1 ·n dx2 =
Z

Ω

−iωδµH1 ·H2+(δσ+ iωδε)E1 ·E2 dx3

+O(‖(δσ,δµ,δε)‖2)

(3)

A rigorous derivation of this formula appears in [33] and andinformal derivation for example in
[6]. Taking H2 to be the field due to the excitation of measurement coil 2 (butidealized as a flux
over the surfaceΓ) with a unit current, this reduces toδV21 the change of the induced voltage on
the measurement coil 2 when coil 1 is excited. The difficulty with this derivation is that the both
measurement and excitation coils are idealized as loops on asurfaceΓ, and the magnetic field must
be assumed zero on portions ofΓ that are not excited. This clearly does not accurately modelthe
situation in MIT.

Although one could in principle calculate the sensitivity using a numerical solver for Maxwell’s
equations by successively making small perturbations to voxels in the model, this would result in a
large number of field solutions, whereas calculation using the above formula, effectively an ‘adjoint
field method’ requires only oneE andH solution for each drive and measurement coil. In the next
section we derive the sensitivity formula for the case wherediscrete coils are used in the interior of
the domain, and the eddy current approximation to Maxwell’sequations is used.

2.2 Coil Model and Sensitivity

There are a number of ways to model the excitation and measurement coils. As in EIT where the
conductive electrodes must be modeled, the presence of the coils can affect the fields. Rather than
modeling individual turns of copper wire, we will use a simplified model of a coil as a surface,
(topologically at least) an open ended cylinder. When used as an excitation coil this surface carries
a tangential currentJs. This is equivalent to a surface that is perfectly conducting in one direction
(angular for a cylinder) and an insulator in another (axial)direction, with each loop fed by a perfect
current source.

A typical arrangement of the sensors for MIT uses fixed excitation and the measurement coils.
There might be an external screen modeled as an electrical conductor, which means that the tan-
gential component ofE vanishes. Where shielding is not possible one would nevertheless need to
apply far field boundary conditions to Maxwell’s equations.It is important to note that the electro-
magnetic fields inside the sensor area and between the coils and the shield are coupled so that we
can no longer apply the approximation that measurement is made on a surface, which decouples the
problem. Instead we apply the boundary conditionn×E = 0 on the shieldΓ, and include source
termsJs for the coils as above.

In areas (such as the air gap surrounding the coils) the same approximation, that of ignoring the
displacement current, results in the magnetostatic approximation ∇×H = 0. This does not allow
wave propagation effects and is valid provided our system issmall compared with the wavelength
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of electromagnetic waves in air. Our coils are considered aselectro-magnets not radio transmitting
antennas. Combining (1) and (2) we obtain

∇×

(

1
µ

∇×E
)

+ iωξE = −iωJs (4)

Whereξ is the complex admittivityξ = σ + iωε. We now consider the case where we excite one
coil. Suppose that the admittivity is perturbedξ → ξ + δξ with the resulting change in the field
E → E + δE while the currentJs is held constant. Our aim is to find the linearized change in
the voltage measured on some other coil, so in this derivation we will neglect second and higher
order terms. In this section we pay special attention to boundary conditions. Many authors in
NDT and medical imaging have derived, with varying degrees of rigor a similar formula where
the sensitivity of a measurement to a local change in conductivity is given by the inner product
of the electric fields from two coils. Others use an experimentally determined sensitivity [19] or
a perturbation of a finite element model. Indeed [33] provides a rigorous derivation for the the
inverse boundary value problem for Maxwell’s equations. Wefeel a more careful explanation
is required for the eddy current approximation to Maxwell’sequations with coil measurements.
Indeed there is some confusion in the literature, for example [17] quotes the sensitivity as the inner
product of magnetic fields. The result of our derivation is that as long as the domain is electrically
shielded, or we impose vanishing boundary conditions at infinity the usual sensitivity formula
holds. However the result must be used with caution when there are other boundary conditions as
this will result effectively in missing boundary data. A more detailed derivation along the lines of
Calderón [2] would prove that we have calculated the Fréchet derivative (rather than simply the
Gâteaux derivative) in suitable normed spaces. Applying (4) toE andE+δE, then subtracting and
neglecting higher order terms gives

∇×

(

1
µ

∇×δE
)

+ iω(δξE + ξδE) = 0. (5)

Taking the dot product withE yields

1
µ

E ·∇× (∇×δE)+ iωδξE ·E + iωξE ·δE = 0 (6)

from which we seek to remove the term inδE (in the interior). We use the identity

∇ · (E×∇×δE) = E ·∇×∇×δE− (∇×E) · (∇×δE) (7)

and its counterpart withE andδE reversed

∇ · (δE×∇×E) = δE ·∇×∇×E− (∇×δE) · (∇×E)

= −iωµξδE ·E− iωµδE ·Js− (∇×δE) · (∇×E)
(8)
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using (4). Subtracting (8) from (7) gives

∇ · (E×∇×δE−δE×∇×E)= E ·∇×∇×δE

+iωµξE ·δE + iωµδE ·Js
(9)

eliminating theδE terms using (6) then integrating over the domain and using Gauss’ theorem,
together with the vanishing of the tangential components ofE andδE on Γ finally gives

Z

Ω

δE ·Js dx3 =
Z

Ω

δξE ·E dx3 (10)

One can calculate the sensitivity of a voltage measured on coil 2 when coil 1 is excited. Notice that
the left hand side of (10) is a volume integral and this requires a word of explanation. If the coils
are thin they can be modelled by a current density that is a surface measure reducing the left hand
side to a surface integral. Coils with large number of turns can be modelled by a solid annulus and
Js in the direction of the turns. ClearlyJs vanishes off the coils.

Z

Ω

δE1 ·Js2 dx3 =

Z

Ω

δξE1 ·E2 dx3 (11)

The left hand side here is now the change in voltage induced onour ideal coil provided a unit
current is driven in coil 2. It must be emphasized that with non-zero (for example impedance)
boundary conditions on the shieldΓ the sensitivity would involve boundary terms that are unknown.
Alternatively one could assume that the domain of interest extends to infinity and the fields decay
to zero

3 Simulated MIT system

In this paper a simulated MIT system has been used to generatethe data for image reconstruction.
The simulated system has eight coils used for excitation andsensing. The coils have 0.04 m in-
ner and 0.05 m outer diameter and 0.02 m length and they are arranged in a horizontal circular
ring surrounding the object to be imaged. In this example thedistance between the center of two
coils on opposite sides is 0.160 m, the center of the coils ring is at(0,0,0). Fig. 2 shows the coil
arrangement of this virtual MIT system. The system could have an external magnetic shield or
electrostatic shields, but in this paper the far field boundary condition B ·n = 0 is applied on an
external surface and a shield has not been incorporated. An efficient alternative way to apply far
field conditions would be to use perfectly matched Layers [14]. All voltages are normalized with
respect to the free space induced voltage and a 1Am−2 current is applied to the excitation coil for
simplicity. The region of interest for imaging is a verticalcylinder with radius 7.6 cm, length 6 cm
centered at(0,0,0), which we will refer to as C1. Each coil is excited in turn and the induced volt-
ages are measured in the remaining coils giving 7x8/2=28 linearly independent trans-impedance
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measurements as data. The real part of the induced voltage (in phase to the excitation current) has
been used for the conductivity reconstruction. The model used in this study is simplified but it
has all essential components of an inverse eddy current problem. Of course work is underway in
several groups to design MIT systems optimized for applications in medical diagnosis, but such
work is beyond scope of this paper.

4 Forward problem

The purpose of the forward solver in MIT is to predict the measurement given the geometry, ma-
terial distribution and the excitation currents. As we shall see in the next section one needs to
calculate the interior electric and magnetic fields to be able to efficiently calculate the Jacobian
matrix. Commercial FEM packages typically provide insufficient access to data structures repre-
senting the system matrices and shape functions necessary for the efficient implementation of the
inverse solver. Also they are not optimized for repeated calculations with small variations in mate-
rial parameters. For these reasons we implemented our own forward solver tightly integrated with
the solution to the inverse problem. The electromagnetic field in the eddy current problem can be
described either in terms of a field, a potential or a combination of both. One can use various com-
binations of these quantities as state variables [1]. Although different formulations would produce
the same answers in exact arithmetic, they may differ in accuracy when implemented numerically
and the implementation will differ in complexity and computational cost. We use a formulation
based on magnetic vector potential and electric scalar potential, the so calledA,A-V [1]. We use
first order tetrahedral edge finite element for the magnetic vector and the first order nodal tetra-
hedral elements electric scalar potential. For the field quantities we haveE = −iω(A + ∇V) (the
time derivative of the electric potential is used to ensure the symmetry of Galerkin equations) and
B = ∇×A. Let us consider the quasi-static electromagnetic fields governed by

∇×
(

1
µ∇×A

)

+ iωξ(A + ∇V) = Js. (12)

iω∇ · (ξ(A + ∇V)) = 0 (13)

Far field boundary conditions are set with the normal component of magnetic flux density zero on
the surface of the whole simulation domainΓ andn · (iωξA + iωξ∇V) = 0 on Γd, the surface of
the eddy current region.
In edge FEM on a tetrahedral mesh, a vector field is represented using a basis of vector valued
functionsNi j associated with the edge between nodesi and j

Ni j = Li∇L j −L j∇Li. (14)

whereLi is a nodal shape function. We define an electric vector potential Ts in the coil region
to represent the current in the excitation coil such that∇×Ts = Js. Using this formulation guar-
antees a divergence free current source for the right hand side of equation (12) and improves the
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convergence of the linear solver. For simple coil shapes we use an analytical formulation for the
computation ofTs [1], and there is no need to mesh the coil itself. For complicated coil shapes
we can solve boundary value problem∇×

(

1
σ ∇×Ts

)

= 0 with suitable boundary conditions in the
coil region.

Galerkin’s approximation using edge element basis functions yields
Z

Ω

(∇×N
1
µ
·∇×A) dx3 +

Z

Ωd

(iωξN · (A + ∇V)) dx3

=
Z

Ωc

(∇×N ·Ts) dx3
(15)

and
Z

Ωd

(iωξ∇L · (A + ∇V)) dx3 = 0. (16)

whereN is any linear combination of edge basis functions,Ω is the entire region,Ωd the eddy
current region, andΩc the current source region. The linear system of equations can be solved
using the Incomplete Cholesky Conjugate Gradient (ICCG) method [1]. The induced voltages (Vm)
in sensing coils are calculated using

Vm = −i
Z

Ωc

(A ·J0) dx3 (17)

whereJ0 is a virtual unit current density passing through the coil.

5 Sensitivity analysis

Each row of the Jacobian is derived from the solution to two forward problems: an ordinary and an
“adjoint” problem. In contrast, a perturbation computation of the Jacobian (that is a finite differ-
ence approximation to the Fréchet derivative) requires the solution of multiple forward problems.
For each driven coil the forward problem must be solved for a perturbation in each unknown pa-
rameter used in modeling the unknown region. With theA,A-V formulation and using the edge
FEM, the sensitivity to a change in the conductivity of the conducting region can be calculated
using an adjoint field method as derived in this paper and discussed in [6], [8], [12] where the
integral becomes the inner product ofE fields and the Jacobian can be calculated by performing
this integration for a chosen basis for the conductivity perturbationδσ. Using the shape function of
edge elements{Ne} and nodal elements ofLe, the electric fieldE in each point inside each element
can be expressed as follows

E = −iω({NeAe}+ ∇LeVe) (18)
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where{Ae} are defined along the edges, andVe is the calculated electric potential (time deriva-
tive of the electric potential) for the nodes. The sensitivity of the i, j measurement to a change in
the conductivity in thekth element is then

S=
∂Vi j

∂σk
= −

ω2

IiI j





Z

Ωk

({Ai
eNe+V i

e∇Le}·

{NeA j
e+ ∇LeV

j
e }

T) dx3)

(19)

whereΩk is the interior of thek-th element,Ii and I j are the excitation currents in coilsi and j
respectively.

In the edge FEM software implemented here, one can calculateE in all elements by (18)
where{Ne} is a matrix of shape functions for all elements and{Ae},Ve are the solution of the
forward problem. Equation (19) applies also to a regionΩ f that is a union of elements. Then the
computation of the Jacobian matrix is matrix vector multiplication for each measurement.

The sensitivity calculated in (19) is a complex numberS= Sr + iSi whereSr ,Si are real and
imaginary parts of the sensitivity. These terms represent the change inVr ,Vi , i.e. real and imaginary
parts of the measured voltageV =Vr + iVi . Some medical MIT measurement systems [15] measure
the phaseφ. The sensitivity with respect to the phase is calculated as follows

Sφ =
∂φ
∂σ

=
VrSi −ViSr

|V|2
. (20)

5.1 Jacobian matrix

Linear reconstruction relies on the assumption that for small changes, the induced voltages can be
approximated in a linear fashion with the conductivity, which may be expressed using the Jacobian
matrix J as

F(σ)−Vm = J(σ−σtrue)+O(‖σ−σtrue‖
2) (21)

whereVm is the measurement data (due to the conductivity distribution σtrue) andF is the forward
operator that maps the conductivity to the measurement data. A powerful set of techniques for
exploring sets of equations or matrices that are either singular or numerically very close to singular
is Singular Value Decomposition (SVD). The SVD allows one todiagnose rank deficiency in a
given matrix, and shows how many unknowns one can expect to recover reliably with a given data
precision.

To illustrate the degree of ill conditioning in the problem we have plotted the singular values
on a logarithmic scale (Fig. 3). The roughly linear decay of the first 28 singular values shows that
the problem is severely ill posed. In a noise and error free situation it is possible to reconstruct an
image with up to 28 parameters. In real data and with measurement errors, including the image
reconstruction components of singular vectors with small singular values may not be justified. It
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is worth noticing that some of these small singular values may represent important and desirable
parts of the images which may not be reconstructed due to noise and error in the measurement.

6 Image reconstruction

The image reconstruction problem is to find the distributionof electrical conductivityσ within the
region of interest using a knowledge of all 28 measurements of induced voltage. This can be done
using iterative schemes based on optimization methods. However the inverse problem is ill posed,
and any discrete linearized approximation will be ill-conditioned as we have seen. Moreover the
voltage data will be contaminated with measurement error.

To overcome this problem we includea priori information to regularize the ill posed problem.
A natural assumption is that‖R(σ−σref)‖ is not too large whereσref is an a priori guess for
the conductivity distribution. This approach is called generalized Tikhonov regularization and
the matrix R is typically a difference operator between neighboring voxels. This corresponds
statistically to assuming a correlation between neighboring voxel values. We takeR to be a discrete
difference approximation to the Laplacian operator. Specifically Ri j = −1 for i 6= j when two
elements are neighbors (sharing at least one node) andRii = −Σ j: j 6=iRi j .

The regularized inverse problem is now a problem in optimization: to findσ that minimizes the
functiong(σ) defined by

g(σ) = ‖F(σ)−Vm‖
2 + α2‖R(σ−σref)‖

2. (22)

We apply the iterative Gauss-Newton method to solve this problem. The descent direction forσ is
given by

δσn = −(JT
n Jn + α2RTR)−1(JT

n (F(σn)−Vm)

+α2RTR(σn−σref))
(23)

wheren is the iteration step, forn = 1 this is a linear reconstruction algorithm. HereJn is the Jaco-
bian calculated with the conductivityσn. The regularization matrixR with a suitable regularization
parameterα penalizes extreme changes in conductivity, removing the instability in the reconstruc-
tion, at the cost of producing artificially smooth images. The regularization parameter should yield
a suitable balance between two terms of equation (22). Unfortunately there is no reliable method to
choose the regularization parameter for nonlinear image reconstruction. In this study we choose the
regularization parameter empirically, our chosen value isα = 10−10 = 1.6×10−4‖J‖/‖R‖ (where
J the first Jacobian) for all iteration steps.

As an iterative reconstruction algorithm the regularized Gauss-Newton method starts with an
initial conductivity distribution, by defaultσref. The forward problem is solved and the predicted
voltages compared with the calculated voltages from the forward model. The conductivity is then
updated using (23). The process is repeated until the predicted voltages from the finite element
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method agree with the calculated voltages from the finite element model to measurement precision.
The Jacobian matrix is also updated at each step. If the solution of the inverse problem is close to
the initial guess the method typically converges. To avoid local minima, especially when the initial
guess is far from the true solution, we need to define a step length λ that sufficiently reduces the
objective function and satisfies the Wolf condition [21] that g(σn+1) satisfies the inequality

g(σn+1) ≤ g(σn)−10−3λJT(σn)[F(σn)−Vm]Tδσ (24)

and we use the updateσn+1 = σn+ λδσn. To findλ we use the bisection method [7]. The iteration
is terminated using Morozov’s criterion: when the residualerror falls below the measurement
accuracy.

6.1 Results and discussion

The simulated phantom consists of a region of interest for the image with a cylinder of diameter
15.2 cm and length of 6 cm centered at (0,0,0) cm, (this is the cylinder previously named C1) with
a background conductivity of 0.2 S/m. The frequency of the excitation signal is 10 MHZ in all
examples. In all cases, 2 percent Gaussian noise (2 percent of the maximum voltage) was added
to the simulated data. Measured data were generated in a 208000 tetrahedral elements mesh (C1
includes 25670 elements). The inverse problem has been solved in a coarser mesh of total 65603
elements where the region of interest for imaging includes 2875 elements (C1 region in inverse
mesh ). It is worth noticing that to solve the forward problemthe whole region including conduc-
tive region and free space in Fig. 1 needs to be meshed. The inverse problem is only solved in
conductive region, which includes a much smaller number of tetrahedral elements. In addition the
regularization couples the values of nearby elements, smoothing the solution and further reducing
the effective number of degrees freedom in the reconstructed image.

The computer used for simulation had a 1.7 GHz Intel Pentium Mprocessor and 512 MB
of RAM. The computational time for each nonlinear iterationof the inverse problem (consisting
mainly of the forward solver, Jacobian calculation and inversion) was 53 minutes. The major part
of the computational time includes solving two linear system of equations: one is for the forward
problem involving a large but sparse matrix and the other oneinvolves solution of a smaller but full
matrix arising from the inverse problem.

In the first example (Fig. 4), a cylinder of diameter of 4 cm with conductivity of 1.4 S/m, one
linear step has been used to reconstruct the single object. Although the the absolute conductivity
values are not recovered accurately the location and the size of the object was recovered. Fig. 5
shows two inclusions with conductivity of 0.8 S/m, the linear reconstruction has been shown in Fig.
5.b, the center of the recovered inclusion is slightly shifted towards the boundary and the absolute
values are incorrect. By using 5 steps of the nonlinear reconstruction the location of inclusions and
the range of the conductivity values are recovered with reasonable accuracy. Fig. 6 exhibits higher
contrast conductivity inclusions with conductivity of 0.01 S/m. A linear reconstruction has been
shown in Fig. 6.b and after 9 steps the absolute values and thelocations are in good agreement
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with the true image. Fig 7 shows multiple inclusions that cannot be recovered in first iteration;
in the 5th iteration a satisfactory image has been produced.The last example (Fig. 8) is adding
an object at the center of the image in Fig. 7. In the first iteration step the background has a
homogenous conductivity of 0.2 S/m and the sensitivity analysis (for two opposite coils) shows
that the sensitivity valuse are larger near to the boundary and smaller at the center as previously
demonstrated in [27]. After the first iteration the Jacobianis updated, and as it can be seen in
Fig. 9 the sensitivity map now has larger values at the centercompared to the sensitivity of the
homogenous background. After 5 iteration steps all five inclusions could be reconstructed(Fig 8.c).
The reduction of 28 voltage differences can be seen in Fig. 10.a and reduction of cost function (of
equation 22) has been shown in Fig. 10.b. In order to show how the image quality is changing
during the iteration steps we define image quality with respect to the true conductivity||σn −
σtrue||/||σtrue|| (whereσn is a vector including the conductivity of all voxles in iteration number
n andσtrue is the vector including all true conductivities) and it can be seen in Fig. 10.c that the
image quality is improved by the iteration steps.

7 Conclusions

We presented an edge based finite element method for the forward problem, a sensitivity formula
to calculate the changes in induced voltages due to a small change in the conductivity of a region,
and an image reconstruction scheme for MIT. The image reconstruction method has been tested on
various examples with conductivity ranges encountered in medical applications. Although a linear
approximation may work for some simple conductivity distributions the general case requires a
nonlinear approach. This paper demonstrates the advantages of nonlinear method both in terms
of locating of inclusions and reconstruction of the absolute conductivity values. It is clear from
this work that a nonlinear algorithm including an updated forward model and recalculated Jaco-
bian offers improvements over equivalent linear reconstructions with simulated data. However the
application of this method toin vitro or in vivoexperimental biomedical data requires a sufficiently
accurate measurement system and forward model to justify the computational effort. If a linear
algorithm fits the measured data to within the precision of measurement and model a non-linear
algorithm is unlikely to offer any improvement. In an industrial setting, with fixed and simple
geometry and large conductivity contrasts, we have alreadydemonstrated that non-linear recon-
struction is worthwhile for experimental data [32]. In [32]paper we considered high conductivity
of metal objects relevant to industrial tomography problems. In the low contrasts typical of medical
problems treated in this paper better absolute reconstruction could be obtained. The application to
experimental data from biomedical problems is the subject of our continuing efforts.
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Figure 1: Overview of an eddy current problem.
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Figure 2: Excitation and sensing coils, view from top
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Figure 3: Singular values of the Jacobian matrix (J) for the real part of the measurement voltages
on a logarithmic scale.
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Figure 4: (a): One inclusion at the center, a cylinder of diameter of 4 cm with conductivity of 1.4
S/m, and (b) Reconstructed image using a single step
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Figure 5: (a): Two inclusions with diameter of 4 cm with conductivity of 0.8 S/m centered at (-
5,0,0) cm and (5,0,0) cm, (b) Reconstructed image using a single step, and (c) Reconstructed image
after 5 nonlinear iterations.
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Figure 6: (a): Two inclusions with diameter of 4 cm centered at (0,5,0) cm and (5,0,0) cm with
conductivity of 0.01 S/m, (b) Reconstructed image using a single step, and (c) Reconstructed image
after 9 nonlinear iterations.
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Figure 7: (a): Four inclusions each 4 cm in diameter with conductivity of 1.8 S/m centered at (-
5,0,0) cm and (5,0,0) cm, (0,5,0) cm and (0,-5,0) cm, (b) Reconstructed image using a single step,
and (c) Reconstructed image after 5 nonlinear iterations.
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Figure 8: (a): Four inclusions with each 4 cm in diameter withconductivity of 1.3 S/m centered at
(-5,0,0) cm and (5,0,0) cm, (0,5,0) cm, (0,-5,0) cm, and one at the center also with conductivity of
1.3 S/m (b) Reconstructed image using a single step, (c): Reconstruction after 2 iterations, and (c)
Reconstructed image after 5 nonlinear iterations.
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Figure 9: The sensitivity map for two opposite coils from thebackground conductivity distribution
of Fig. 8.b, the values are inVΩm for the electric current of 1Am−2 in coils.

26



0 5 10 15 20 25 30
−2

0

2

4

6

8

10
x 10

−3

Meaurement number

V
ol

ta
ge

 d
iff

er
en

ce
s

step 1
step 2
step 3
step 4
step 5

(a)

1 2 3 4 5
0

0.01

0.02

0.03

Iteration number

V
al

ue
 o

f c
os

t f
un

ct
io

n

(b)

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration number

Im
ag

e 
er

ro
r 

w
ith

 r
es

pe
ct

 to
 th

e 
tr

ut
h

(c)

Figure 10: (a) The differences between simulated and measured voltages over iteration steps, (b)
The reduction of the cost function over the iteration steps,and (c) The improvement of the image
quality during the iteration steps.
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