Yy
er

The Universit
of Manchest

MANCHESTER

1824

Absolute Conductivity Reconstruction in
Magnetic Induction Tomography Using a
Nonlinear Method

Soleimani, Manuchehr and Lionheart, William

2006

MIMS EPrint: 2016.31

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097


http://eprints.maths.manchester.ac.uk/

Absolute Conductivity Reconstruction in Magnetic Indoati
Tomography Using a Nonlinear Method

Manuchehr SoleimariWilliam R.B Lionheart'

July 12, 2006

Abstract

Magnetic Induction Tomography attempts to image the dtedtand magnetic characteris-
tics of a target using impedance measurement data fromgfagscitation and detection coils.
This inverse eddy current problem is nonlinear and alsorséyvél posed so regularization is
required for a stable solution. A regularized Gauss-Newtgorithm has been implemented as
a nonlinear, iterative inverse solver. In this algorithneareeds to solve the forward problem
and recalculate the Jacobian matrix for each iteration. foh&ard problem has been solved
using an edge based finite element method for magnetic veatentialA and electrical scalar
potentialV, a so calledA,A-V formulation. A theoretical study of the general inverseyedd
current problem and a derivation, paying special attentiothe boundary conditions, of an
adjoint field formula for the Jacobian is given. This effidi@@rmula calculates the change in
measured induced voltage due to a small perturbation ofdghductivity in a region. This has
the advantage that it involves only the inner product of tleeteic fields when two different
coils are excited, and these are convenient computatiordlis paper also shows that the sen-
sitivity maps change significantly when the conductivitgtdbution changes, demonstrating
the necessity for a nonlinear reconstruction algorithme plerformance of the inverse solver
has been examined and results presented from simulatewilatadded noise.

Index term Electromagnetic tomography, inverse problems, eddyeciis; conductivity measure-
ment.
1 Introduction

Magnetic induction tomography (MIT) is a potential modalior medical and industrial imaging
(see for example [11], [15], [24], [29]). MIT attempts to @nfinterior conductivity distribution,
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and possibly the distribution of other electromagneticapasters, from mutual inductance mea-
surements between coils exterior to the object. The tecienmperates as follows. Passing an
alternating current through the excitation coil(s) proelsi@n alternating magnetic field. The mag-
netic field induces a voltage in the sensing coils that is dimesr function of the electromagnetic
properties. The reconstruction problem is to recover anm@apmation to the spatially varying
electromagnetic properties from this data. The absenc&edtcelectrical connections makes the
technique of interest for non-invasive and non-intrusigplations. Potential applications of MIT
for conductivity imaging in medical applications have bé&dentified for example by [5] and [26].
In [5] and in [31] the possibility of using MIT for permeahili imaging has also been investi-
gated. In this paper we focus on electrical conductivityresunknown. The formulation can be
easily extended to complex conductivity reconstructiom, lee will assume the permittivity and
permeability distributions are given. Various image restanction techniques have been used for a
similar inverse problem of medical electrical impedanaaagraphy (EIT) [18, 25]. A mathemati-
cally similar problem (forward and inverse eddy currentligemn) has been studied extensively for
Non-Destructive Testing (NDT) applications. Forward pesb formulations, approaches to sen-
sitivity analysis and inverse problem techniques have llsseloped for NDT by [8], [16], [22],
[34]. Because of the differences in conductivity range amti@ast in medical MIT, many of those
techniques used in NDT may not be directly applicable here.

In medical MIT to date, a ‘linear back projection” method [1Similar to Kotre's method in
EIT) and a single step regularized method [3] have been ud&d.paper further demonstrates the
nonlinearity of MIT and show that the linear reconstructioethods are not generally adequate. It
has been demonstrated earlier by [27] that the sensitivép for a conductive background differs
from the one for a free space background. The results of #peipdemonstrate that the sensitivity
map not only differs from that of free space but also changgsfecantly with the background
conductivity distribution, so that it is essential to rexdate the Jacobian matrix at the iterative
steps of the inverse solver.

Reconstruction of the conductivity requires a forward solso that predicted data can be com-
pared with measured data. We use an eddy current approgim@tiMaxwell’s equations, which
involves the computation of vector and scalar fields. Theedddte element method (edge FEM)
has advantages over nodal elements for vector field comgutiat the eddy current problem [1].
Edge FEM has been employed for the medical and industrial fdifivard problem [20],[30].
Solving the forward problem of MIT using a scalar field hasrbesported by [9]. An eddy current
formulation of A;,A; —V presented by [20] models the electric field in the conductewjon as
sum of the scalar field and primary magnetic vector potential, and a reduced magwaettor
potentialA;.

We have implemented a flexible edge FEM eddy current progspecifically designed for
MIT, for calculating the voltages induced in sensing coilsaw an excitation coil is driven, as well
as the internal fields required for sensitivity computatiém efficient formulation for calculating
the Jacobian matrix has been used. Sensitivity analysiseofystem shows that even some large
changes in the impedance of an object cause only small chamgiee voltages induced in a coil.
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Consequently the inverse problem is ill posed.

In common with many similar inverse boundary value probldarspartial differential equa-
tions our problem is nonlinear, and beyond the small rangeabdlity of a linear approximation
it is necessary to use a reconstruction algorithm that rsflinés. The regularized Gauss-Newton
method uses repeated linearization to overcome the namiipeand incorporates aa priori in-
formation about the unknown conductivity to obtain a stadakition of the inverse problem. The
linearization, which is the Jacobian matrix or Fréchetdgive of the forward map, is an important
part of such methods. A row of the Jacobian matrix can bepné¢ed as a map of the sensitivity
of a given measurement to a small change in conductivity ahdacation. As we shall see in
this paper these sensitivity maps depend strongly on thiegbaend conductivity about which the
linearization is taken. This can be interpreted in severaysy one of which is that the second
derivative is significant. In practice, while a linear restmction algorithm will often success-
fully locate an isolated inclusion in a homogeneous baakgo a nonlinear method is needed to
reconstruct more complicated conductivity distributiosgch as several nearby objects.

The forward problem is inherently three dimensional, andslvew reconstructions of three
dimensional objects. Simulated measurement data weraaedeusing model phantoms, and
Gaussian pseudorandom noise was added to the data. Ta favthid ‘inverse crimes’ a different
mesh was used in the inverse solution from the one used ttecitea simulated data. The soft-
ware was designed to solve the forward problem and calcthatdacobian for a general form of
anisotropic material distribution, but the results preésdrin this paper are for isotropic materials.
Our tetrahedral finite element meshes were made using aalgnepose mesh generator provided
by FEMLAB (Comsol AB, Stockholm). In any practical medicapdication one would need an
accurate body-shaped mesh.

The paper is organized as follows. Section Il studies ther#ial background of the inverse
eddy current problem, and we derive the sensitivity formola general form. In section Il a
simple eight coil MIT system used for our simulation studynisoduced. In section IV, the nu-
merical implementation of the MIT forward problem is preshand in section V the numerical
implementation of the sensitivity formula is described arsgnsitivity analysis a presented. In sec-
tion VI the formulation for the Gauss-Newton method will leviewed and image reconstruction
results for simulated data will be shown.

2 Theoretical study

2.1 Maxwel’sEquationsand MIT

Assuming time-harmonic fields with angular frequeneaxwell’s equations are
OXE=—iwuH O-pH=0 (1)

OxH=(o+iwe)E+Js O-eE=0 (2)



HereE andH are the magnetic and electric fieldsjs conductivity, L magnetic permeability and

€ permittivity. The current sources are represented by theentidensityls. The inverse boundary
value problem for Maxwell's equations is the recovery of thaterial parameters, € andp from
measurements of the tangential componentsH andn x E of the fields on some surfade(with
normaln) enclosing the regio@ where the material parameters are unknown. Uniquenesof th
solution for this inverse boundary value problem has beewqut, providedw is not a resonant
frequency [23]. For the moment we tallg= 0 assuming the sources are included in the boundary
conditions. It is worth noticing that in the sensing coil theasurements of induced voltage can be
expressed as line integral of the tangential componeBtaibng the coil. It can also be described
as surface integral of the normal component of the rate aigh@f magnetic flux densit. Fig.

1 shows the general form of MIT measurement with sensing acida¢ion coils.

The methodology for establishing the derivative of the laarmg measurements with respect to
a perturbation of a material parameter was establishedeiriuhdamental paper of Calderon [2]
for the static caseo = 0. The general case for time harmonic Maxwell’'s equations tneated by
[33]. These results require some slight modification forliggtion to MIT. In this case, we are not
measuring on an isolated boundary. Typically we have amgement of coils on some surfate
but boundary conditions (such as screening by a conduativeagnetic shield) are applied on some
surface containing this. We can think of an idealized ekioitacoil as imposing a predetermined
tangential component dfi on I, and our idealized measurement as an integrdt @fround an
infinitesimal loop orT". This is no worse than the idealization in the low frequenayec(EIT) that
one can apply arbitrary current patterns to the surface agabsore the voltage everywhere.

In practice we measure a finite subset of the idealized datat is important to know at least
that if we collected ideal data then the material parametersiniquely determined. This question,
calleduniqueness of solutidoy mathematicians, is the practical questiorsufficiency of datdor
the engineer. The measurement arrangements of MIT usingtarsyof coils does not fit exactly
in to this formalism, meaning that the measurement can naiobe at all points surrounding the
object. There is no barrier to electric and magnetic fieldglensurface containing the coils so
we must model them by a current source telgnand impose boundary conditions on some larger
enclosing surface. We will address this in the next sectteor. the moment, our ideal data is the
transfer impedance on the surfdcewhere we have complete control of the tangential component
of H and knowledge of the transfer impedance=ofor vice versa). There is of course a parallel
impedance due to the region exteriorltpwhich we will assume is known by calibration and has
already been subtracted.

It is convenient to recast the dataloin an integral of the normal component of the vector field
E x H. Taking the electric and magnetic fields from two differertitations, gives field&;, Hi,

i =1,2. Assuming the magnetic field dnto be prescribed and the tangential electric field to be
measured, a perturbation in the material parameters gisesa perturbed fields, and a perturbed



measurement

/H2 « 8E1-n dx? = /—i(oéle Ho+ (80 + iwd€)Ey - Ep o3
r Q (€)
+0(||(30, 31, 3¢) ||%)

A rigorous derivation of this formula appears in [33] and anfibormal derivation for example in
[6]. TakingH> to be the field due to the excitation of measurement coil 2 i(bedlized as a flux
over the surfacé) with a unit current, this reduces &,; the change of the induced voltage on
the measurement coil 2 when coil 1 is excited. The difficulithwhis derivation is that the both
measurement and excitation coils are idealized as loopssarfacel”, and the magnetic field must
be assumed zero on portionsiothat are not excited. This clearly does not accurately mtuel
situation in MIT.

Although one could in principle calculate the sensitivising a numerical solver for Maxwell’'s
equations by successively making small perturbations xelgdn the model, this would result in a
large number of field solutions, whereas calculation udiegabove formula, effectively an ‘adjoint
field method’ requires only onE andH solution for each drive and measurement coil. In the next
section we derive the sensitivity formula for the case witlserete coils are used in the interior of
the domain, and the eddy current approximation to Maxweligations is used.

2.2 Coil Modd and Sensitivity

There are a number of ways to model the excitation and measuntecoils. As in EIT where the
conductive electrodes must be modeled, the presence obilsecan affect the fields. Rather than
modeling individual turns of copper wire, we will use a siifipd model of a coil as a surface,
(topologically at least) an open ended cylinder. When useghaexcitation coil this surface carries
a tangential currenls. This is equivalent to a surface that is perfectly condgctimone direction
(angular for a cylinder) and an insulator in another (axd@i@ction, with each loop fed by a perfect
current source.

A typical arrangement of the sensors for MIT uses fixed ekoiteand the measurement coils.
There might be an external screen modeled as an electrinductor, which means that the tan-
gential component dE vanishes. Where shielding is not possible one would neskask need to
apply far field boundary conditions to Maxwell’s equatiottds important to note that the electro-
magnetic fields inside the sensor area and between the odiltha shield are coupled so that we
can no longer apply the approximation that measurementderoa a surface, which decouples the
problem. Instead we apply the boundary conditior E = 0 on the shield”, and include source
termsJs for the coils as above.

In areas (such as the air gap surrounding the coils) the spptexamation, that of ignoring the
displacement current, results in the magnetostatic ajypation [0 x H = 0. This does not allow
wave propagation effects and is valid provided our systesmiall compared with the wavelength



of electromagnetic waves in air. Our coils are considereglestro-magnets not radio transmitting
antennas. Combining (1) and (2) we obtain

0 x <I11D><E>—i—i(.oEE:—i(;)JS 4)

Whereg is the complex admittivity, = o+ iwe. We now consider the case where we excite one
coil. Suppose that the admittivity is perturb&d— ¢ + &¢ with the resulting change in the field
E — E + 0E while the currentls is held constant. Our aim is to find the linearized change in
the voltage measured on some other coil, so in this derivatie will neglect second and higher
order terms. In this section we pay special attention to daonconditions. Many authors in
NDT and medical imaging have derived, with varying degreesgor a similar formula where
the sensitivity of a measurement to a local change in coidtycts given by the inner product

of the electric fields from two coils. Others use an experitalin determined sensitivity [19] or

a perturbation of a finite element model. Indeed [33] prosiderigorous derivation for the the
inverse boundary value problem for Maxwell's equations. f&&l a more careful explanation
is required for the eddy current approximation to Maxwediguations with coil measurements.
Indeed there is some confusion in the literature, for exarfipl] quotes the sensitivity as the inner
product of magnetic fields. The result of our derivation isttas long as the domain is electrically
shielded, or we impose vanishing boundary conditions aniigfithe usual sensitivity formula
holds. However the result must be used with caution wherether other boundary conditions as
this will result effectively in missing boundary data. A readetailed derivation along the lines of
Calderon [2] would prove that we have calculated the Feéclerivative (rather than simply the
Gateaux derivative) in suitable normed spaces. ApplydhddE andE + dE, then subtracting and
neglecting higher order terms gives

0 x (ﬁDxéE) +iw(SEE +EOE) = 0. (5)
Taking the dot product witl yields
IllE-Dx(D><6E)+ioo6£E-E+inE-6E:0 (6)
from which we seek to remove the termdg (in the interior). We use the identity
O-(ExOxOE)=E-Ox0Ox0E—(OxE)-(0x0dE) (7)

and its counterpart witk anddE reversed

O-BExOxE)=0E-UxOxE—(Ox0E)-(O0xE)

— —iOESE - E — ipdE - Js— (O x OE) - (I x E) ®



using (4). Subtracting (8) from (7) gives

O-(ExOxOE—-ExOxE)=E-Ox0Ox0dE

9
+IWUEE - OE + 1 WUOE - Jg ©

eliminating thedE terms using (6) then integrating over the domain and usings&aheorem,
together with the vanishing of the tangential component ahddE onT finally gives

/6E-Jsdx3:/6EE-de3 (10)
Q Q

One can calculate the sensitivity of a voltage measured ib2 edhen coil 1 is excited. Notice that
the left hand side of (10) is a volume integral and this rezgiat word of explanation. If the coils
are thin they can be modelled by a current density that isfaseimeasure reducing the left hand
side to a surface integral. Coils with large number of turas be modelled by a solid annulus and
Js in the direction of the turns. Clearlls vanishes off the coils.

/ SE1-Jep O3 = / SEE; - Ep 03 (11)
Q Q

The left hand side here is now the change in voltage induceduondeal coil provided a unit
current is driven in coil 2. It must be emphasized that witim1zero (for example impedance)
boundary conditions on the shidldhe sensitivity would involve boundary terms that are unino
Alternatively one could assume that the domain of interggrels to infinity and the fields decay
to zero

3 Simulated MIT system

In this paper a simulated MIT system has been used to gertheatiata for image reconstruction.
The simulated system has eight coils used for excitationsemding. The coils have 0.04 m in-
ner and 0.05 m outer diameter and 0.02 m length and they aaaged in a horizontal circular
ring surrounding the object to be imaged. In this exampledib&ance between the center of two
coils on opposite sides is 0.160 m, the center of the coitigrat(0,0,0). Fig. 2 shows the coll
arrangement of this virtual MIT system. The system couldeham external magnetic shield or
electrostatic shields, but in this paper the far field bompa@nditionB -n = 0 is applied on an
external surface and a shield has not been incorporated.ffisiert alternative way to apply far
field conditions would be to use perfectly matched Layerg.[Bdl voltages are normalized with
respect to the free space induced voltage and a TAeurrent is applied to the excitation coil for
simplicity. The region of interest for imaging is a verticallinder with radius 7.6 cm, length 6 cm
centered at0,0,0), which we will refer to as C1. Each coil is excited in turn ahd tnduced volt-
ages are measured in the remaining coils giving 7x8/2=2&ally independent trans-impedance
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measurements as data. The real part of the induced voltagédise to the excitation current) has
been used for the conductivity reconstruction. The modetus this study is simplified but it
has all essential components of an inverse eddy currentgmmobOf course work is underway in
several groups to design MIT systems optimized for appboatin medical diagnosis, but such
work is beyond scope of this paper.

4 Forward problem

The purpose of the forward solver in MIT is to predict the meament given the geometry, ma-
terial distribution and the excitation currents. As we klsale in the next section one needs to
calculate the interior electric and magnetic fields to bee dblefficiently calculate the Jacobian
matrix. Commercial FEM packages typically provide insuéfit access to data structures repre-
senting the system matrices and shape functions necessahgefefficient implementation of the
inverse solver. Also they are not optimized for repeatedudations with small variations in mate-
rial parameters. For these reasons we implemented our awsaifd solver tightly integrated with
the solution to the inverse problem. The electromagnetid fiethe eddy current problem can be
described either in terms of a field, a potential or a comimnadf both. One can use various com-
binations of these quantities as state variables [1]. Aitiiodifferent formulations would produce
the same answers in exact arithmetic, they may differ in @oyuwhen implemented numerically
and the implementation will differ in complexity and comatibnal cost. We use a formulation
based on magnetic vector potential and electric scalamfiatethe so calledd,A-V [1]. We use
first order tetrahedral edge finite element for the magnetictar and the first order nodal tetra-
hedral elements electric scalar potential. For the fielchtitias we haveE = —iw(A + OV) (the
time derivative of the electric potential is used to ensteedymmetry of Galerkin equations) and
B = [0 x A. Let us consider the quasi-static electromagnetic fieldeiged by

O x (ﬁDxA) FiwE(A+0V) = Js. (12)

iwd- (E(A+0V)) =0 (13)

Far field boundary conditions are set with the normal compboémagnetic flux density zero on
the surface of the whole simulation domdirandn - (iwgA +iwEV) = 0 onTl g, the surface of
the eddy current region.

In edge FEM on a tetrahedral mesh, a vector field is repredargig a basis of vector valued
functionsN;; associated with the edge between nadzsd j

Nij = LiOLj — ;0L (14)

wherelL; is a nodal shape function. We define an electric vector pedent in the coil region
to represent the current in the excitation coil such that Ts = Js. Using this formulation guar-
antees a divergence free current source for the right hateddiequation (12) and improves the
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convergence of the linear solver. For simple coil shapes seean analytical formulation for the
computation ofT ¢ [1], and there is no need to mesh the coil itself. For comgdidacoil shapes
we can solve boundary value problénnx ((—1,D X Ts) = 0 with suitable boundary conditions in the
coil region.

Galerkin’s approximation using edge element basis funstigelds

/(DxNliA) dx3+/(inN-(A+DV))dx3

. (15)
:/(D « N-Te) b3
Qc

and
/(inDL-(AJrDV)) o = 0. (16)
Qq
whereN is any linear combination of edge basis functiofsjs the entire regionQq the eddy
current region, andl. the current source region. The linear system of equationsbeasolved
using the Incomplete Cholesky Conjugate Gradient (ICCQGhote[1]. The induced voltage¥{)
in sensing coils are calculated using

Vim=—i [ (A-Jp) dx® (17)
/

whereJy is a virtual unit current density passing through the coil.

5 Sensitivity analysis

Each row of the Jacobian is derived from the solution to twavéod problems: an ordinary and an
“adjoint” problem. In contrast, a perturbation computatiof the Jacobian (that is a finite differ-
ence approximation to the Fréchet derivative) requiressibiution of multiple forward problems.
For each driven coil the forward problem must be solved foedaysbation in each unknown pa-
rameter used in modeling the unknown region. With &hé\-V formulation and using the edge
FEM, the sensitivity to a change in the conductivity of thedacting region can be calculated
using an adjoint field method as derived in this paper andudised in [6], [8], [12] where the
integral becomes the inner product Bffields and the Jacobian can be calculated by performing
this integration for a chosen basis for the conductivitytydrationdo. Using the shape function of
edge element§Ne} and nodal elements &g, the electric fielcs in each point inside each element
can be expressed as follows

E = —iw({NeAe} + ULeVe) (18)
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where{A} are defined along the edges, afds the calculated electric potential (time deriva-
tive of the electric potential) for the nodes. The sengitiaf thei, ] measurement to a change in
the conductivity in thekth element is then

g Mi_ (ﬂ/({AgNeJrVéDLe}-
I

~ do (19)

{NeAL+ 0LV dx®)

whereQy is the interior of thek-th element,l; andl; are the excitation currents in coilsand |
respectively.

In the edge FEM software implemented here, one can calcdte all elements by (18)
where {N¢} is a matrix of shape functions for all elements &f#kL},Ve are the solution of the
forward problem. Equation (19) applies also to a redibnthat is a union of elements. Then the
computation of the Jacobian matrix is matrix vector muitiglion for each measurement.

The sensitivity calculated in (19) is a complex numBet S + iS5 whereS,S are real and
imaginary parts of the sensitivity. These terms repredenthange iv,,V;, i.e. real and imaginary
parts of the measured voltage=V; +iVi. Some medical MIT measurement systems [15] measure
the phasep. The sensitivity with respect to the phase is calculatedbmis

09 VS-S

R AV )

5.1 Jacobian matrix

Linear reconstruction relies on the assumption that forlsohanges, the induced voltages can be
approximated in a linear fashion with the conductivity, elhimay be expressed using the Jacobian
matrix J as

F(0) — Vin=J(0 — Girue) + O([| 0 — Otruel|%) (21)

whereVn, is the measurement data (due to the conductivity distobudiy,e) andF is the forward
operator that maps the conductivity to the measurement datpowerful set of techniques for
exploring sets of equations or matrices that are eitherusamgr numerically very close to singular
is Singular Value Decomposition (SVD). The SVD allows onaltagnose rank deficiency in a
given matrix, and shows how many unknowns one can expecttwee reliably with a given data
precision.

To illustrate the degree of ill conditioning in the problene wave plotted the singular values
on a logarithmic scale (Fig. 3). The roughly linear decayhef first 28 singular values shows that
the problem is severely ill posed. In a noise and error freeaton it is possible to reconstruct an
image with up to 28 parameters. In real data and with measameerrors, including the image
reconstruction components of singular vectors with smafjar values may not be justified. It
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is worth noticing that some of these small singular valueg represent important and desirable
parts of the images which may not be reconstructed due te amid error in the measurement.

6 Imagereconstruction

The image reconstruction problem is to find the distributdérlectrical conductivityo within the
region of interest using a knowledge of all 28 measuremeitsdoced voltage. This can be done
using iterative schemes based on optimization methods.eMewthe inverse problem is ill posed,
and any discrete linearized approximation will be ill-cdimhed as we have seen. Moreover the
voltage data will be contaminated with measurement error.

To overcome this problem we includepriori information to regularize the ill posed problem.
A natural assumption is thafR(o — Oref)|| is not too large wheres is ana priori guess for
the conductivity distribution. This approach is called getized Tikhonov regularization and
the matrixR is typically a difference operator between neighboringalex This corresponds
statistically to assuming a correlation between neighgpvioxel values. We takie to be a discrete
difference approximation to the Laplacian operator. Speally Rj = —1 for i # j when two
elements are neighbors (sharing at least one nodeRard—Z .+ R;j.

The regularized inverse problem is now a problem in optitiorea to findo that minimizes the
functiong(o) defined by

9(0) = [IF(0) — V| + a?||R(0 — Orer)||*. (22)

We apply the iterative Gauss-Newton method to solve thiblpro. The descent direction foris
given by

80 = —(IfIn+a?RTR) (3! (F(0n) — Vim)

+0?RTR(0n — Orer)) @3)

wheren is the iteration step, fan = 1 this is a linear reconstruction algorithm. Hekgis the Jaco-
bian calculated with the conductivity,. The regularization matriR with a suitable regularization
parameten penalizes extreme changes in conductivity, removing te&bility in the reconstruc-
tion, at the cost of producing artificially smooth imageseTagularization parameter should yield
a suitable balance between two terms of equation (22). tinfately there is no reliable method to
choose the regularization parameter for nonlinear imagengtruction. In this study we choose the
regularization parameter empirically, our chosen values 10719 = 1.6 x 10~%||J||/||R|| (where

J the first Jacobian) for all iteration steps.

As an iterative reconstruction algorithm the regularizeau&s-Newton method starts with an
initial conductivity distribution, by defaulter. The forward problem is solved and the predicted
voltages compared with the calculated voltages from thedadl model. The conductivity is then
updated using (23). The process is repeated until the peedimltages from the finite element
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method agree with the calculated voltages from the finitmel® model to measurement precision.
The Jacobian matrix is also updated at each step. If thei@olaf the inverse problem is close to
the initial guess the method typically converges. To avo@hl minima, especially when the initial

guess is far from the true solution, we need to define a stagiHenthat sufficiently reduces the

objective function and satisfies the Wolf condition [21]tthéon. 1) satisfies the inequality

9(0ny1) < 9(on) — 103AJ7 (on)[F(on) _Vm]T60 (24)

and we use the updat®,, 1 = 0,+ Ada,. To find A we use the bisection method [7]. The iteration
is terminated using Morozov’s criterion: when the residaglor falls below the measurement
accuracy.

6.1 Resultsand discussion

The simulated phantom consists of a region of interest feritiage with a cylinder of diameter
15.2 cm and length of 6 cm centered at (0,0,0) cm, (this isyheder previously named C1) with
a background conductivity of 0.2 S/m. The frequency of theitakion signal is 10 MHZ in all
examples. In all cases, 2 percent Gaussian noise (2 perctdm maximum voltage) was added
to the simulated data. Measured data were generated in ®2@Q@80ahedral elements mesh (C1
includes 25670 elements). The inverse problem has beeadsoiva coarser mesh of total 65603
elements where the region of interest for imaging includ@gs2elements (C1 region in inverse
mesh ). It is worth noticing that to solve the forward problém whole region including conduc-
tive region and free space in Fig. 1 needs to be meshed. Thesawproblem is only solved in
conductive region, which includes a much smaller numbeewéhedral elements. In addition the
regularization couples the values of nearby elements, #rnmgpthe solution and further reducing
the effective number of degrees freedom in the reconstluotage.

The computer used for simulation had a 1.7 GHz Intel Pentiumprbtessor and 512 MB
of RAM. The computational time for each nonlinear iteratwinthe inverse problem (consisting
mainly of the forward solver, Jacobian calculation and isi@n) was 53 minutes. The major part
of the computational time includes solving two linear systaf equations: one is for the forward
problem involving a large but sparse matrix and the otheriovaves solution of a smaller but full
matrix arising from the inverse problem.

In the first example (Fig. 4), a cylinder of diameter of 4 cmhwgbnductivity of 1.4 S/m, one
linear step has been used to reconstruct the single objdittough the the absolute conductivity
values are not recovered accurately the location and tleeddithe object was recovered. Fig. 5
shows two inclusions with conductivity of 0.8 S/m, the linegconstruction has been shown in Fig.
5.b, the center of the recovered inclusion is slightly ghiftowards the boundary and the absolute
values are incorrect. By using 5 steps of the nonlinear r&icoction the location of inclusions and
the range of the conductivity values are recovered withaealsle accuracy. Fig. 6 exhibits higher
contrast conductivity inclusions with conductivity of @.&/m. A linear reconstruction has been
shown in Fig. 6.b and after 9 steps the absolute values anlbd¢hgons are in good agreement
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with the true image. Fig 7 shows multiple inclusions that oahbe recovered in first iteration;
in the 5th iteration a satisfactory image has been produdée last example (Fig. 8) is adding
an object at the center of the image in Fig. 7. In the first ftenastep the background has a
homogenous conductivity of 0.2 S/m and the sensitivity ysigal(for two opposite coils) shows
that the sensitivity valuse are larger near to the boundadysmaller at the center as previously
demonstrated in [27]. After the first iteration the Jacobiqmupdated, and as it can be seen in
Fig. 9 the sensitivity map now has larger values at the cestmrpared to the sensitivity of the
homogenous background. After 5 iteration steps all fiveusidns could be reconstructed(Fig 8.c).
The reduction of 28 voltage differences can be seen in Figa &0d reduction of cost function (of
equation 22) has been shown in Fig. 10.b. In order to show hewrnhage quality is changing
during the iteration steps we define image quality with respe the true conductivityj|on —
Otruel|/||Owue|| (Whereo, is a vector including the conductivity of all voxles in itéien number

n and oye is the vector including all true conductivities) and it caa ¢een in Fig. 10.c that the
image quality is improved by the iteration steps.

7 Conclusions

We presented an edge based finite element method for thertbpsablem, a sensitivity formula
to calculate the changes in induced voltages due to a snhaatlgehin the conductivity of a region,
and an image reconstruction scheme for MIT. The image réait®n method has been tested on
various examples with conductivity ranges encounterededioal applications. Although a linear
approximation may work for some simple conductivity distions the general case requires a
nonlinear approach. This paper demonstrates the advantdgeonlinear method both in terms
of locating of inclusions and reconstruction of the absmlobnductivity values. It is clear from
this work that a nonlinear algorithm including an updatedhvird model and recalculated Jaco-
bian offers improvements over equivalent linear recomsibns with simulated data. However the
application of this method tim vitro or in vivo experimental biomedical data requires a sufficiently
accurate measurement system and forward model to justficdmputational effort. If a linear
algorithm fits the measured data to within the precision oasaeement and model a non-linear
algorithm is unlikely to offer any improvement. In an induek setting, with fixed and simple
geometry and large conductivity contrasts, we have alrelyonstrated that non-linear recon-
struction is worthwhile for experimental data [32]. In [32dper we considered high conductivity
of metal objects relevant to industrial tomography protdein the low contrasts typical of medical
problems treated in this paper better absolute recongirucbuld be obtained. The application to
experimental data from biomedical problems is the subjéotiocontinuing efforts.
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Figure 1: Overview of an eddy current problem.
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Figure 4: (a): One inclusion at the center, a cylinder of diten of 4 cm with conductivity of 1.4
S/m, and (b) Reconstructed image using a single step
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Figure 5: (a): Two inclusions with diameter of 4 cm with contivty of 0.8 S/m centered at (-
5,0,0) cm and (5,0,0) cm, (b) Reconstructed image usinggesstep, and (c) Reconstructed image
after 5 nonlinear iterations.
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(@) (b) ()
Figure 6: (a): Two inclusions with diameter of 4 cm centered0s5,0) cm and (5,0,0) cm with

conductivity of 0.01 S/m, (b) Reconstructed image usingnglsistep, and (c) Reconstructed image
after 9 nonlinear iterations.
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(b)
Figure 7: (a): Four inclusions each 4 cm in diameter with cmtigity of 1.8 S/m centered at (-

5,0,0) cm and (5,0,0) cm, (0,5,0) cm and (0,-5,0) cm, (b) Rettacted image using a single step,
and (c) Reconstructed image after 5 nonlinear iterations.
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(d)
Figure 8: (a): Four inclusions with each 4 cm in diameter withductivity of 1.3 S/m centered at
(-5,0,0) cm and (5,0,0) cm, (0,5,0) cm, (0,-5,0) cm, and driteeacenter also with conductivity of

1.3 S/m (b) Reconstructed image using a single step, (c)omdteiction after 2 iterations, and (c)
Reconstructed image after 5 nonlinear iterations.
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Figure 9: The sensitivity map for two opposite coils from beekground conductivity distribution
of Fig. 8.b, the values are MQm for the electric current of LAY in coils.
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