
Implementation and Analysis of Katsevich
Reconstruction for Helical Scan CT

Tregidgo, Henry F.J.

2013

MIMS EPrint: 2016.30

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

IMPLEMENTATION AND ANALYSIS

OF KATSEVICH RECONSTRUCTION

FOR HELICAL SCAN CT

A dissertation submitted to the University of Manchester

for the degree of Master of Science

in the Faculty of Engineering and Physical Sciences

2013

Henry F.J. Tregidgo

School of Mathematics

Contents

Abstract 7

Declaration 8

Intellectual Property Statement 9

Acknowledgements 10

1 Introduction 11

2 Katsevich Setup 14

2.1 Detector Geometry . 15

2.2 Background Information . 16

3 Implementing Katsevich 19

3.1 Derivatives . 20

3.2 Length Correction Weighting . 24

3.3 Forward Height Rebinning . 24

3.4 1D Hilbert Transform . 26

3.5 Backward Height Rebinning . 26

3.6 Backprojection . 28

4 Numerical Results 29

4.1 Reduced Ball Phantom . 29

4.1.1 Intermediate Steps . 29

4.1.2 Reconstructions . 35

4.2 Planes of Spheres Phantom . 40

2

5 Real Scans 43

5.1 Differences From Simulations . 43

5.2 Platinum Dust Sample . 44

5.3 Sapphire Balls . 49

6 Additional Observations and Improvements 53

6.1 Overscan . 53

6.2 Scan Direction and Helix Type . 55

6.3 Streak Artefacts . 56

6.4 Norms . 57

6.5 Katsevich Derivative Bounds . 58

7 Conclusions and Further Work 61

A Implementation Scripts 63

A.1 katsetup.m . 63

A.2 katinit.m . 65

A.3 katdata.m . 67

A.4 altkatdiff.m . 69

A.5 altkatlength.m . 71

A.6 altkatforwardrebinn.m . 72

A.7 altkathilbert.m . 74

A.8 altkatbackrebinn.m . 75

A.9 katpiline.m . 78

A.10 altkatbackproject.m . 79

B Support Files 82

B.1 calcPitch.m . 82

B.2 calcFilterLineNo.m . 83

B.3 dependencesurf.m . 84

C Reconstruction Parameters 86

Word count 8970

3

List of Figures

2.1 Illustration of flat detector geometry. 16

2.2 Illustration of π-line on a helix. 17

2.3 Illustration points defining a κ-plane. 17

2.4 Illustration of the TD Window (shaded region) and κ-lines on a square

detector. 18

3.1 Diagram for computing s derivative of g as a function of s and u 22

3.2 Diagram showing transformation between the reference element and

interpolation domain for calculation of the values used when taking the

difference. 22

4.1 Single view of the projected scan data g for the Reduced Ball phantom. 30

4.2 Single view of derivative data g1 taken using Noo derivatives. 30

4.3 Single views of derivative data g1us on the left and g1w on the right

taken using Katsevich’s derivative formulation. 31

4.4 Single views of length corrected derivatives g2 left, g2us centre and g2w

right. 31

4.5 Single view of Noo formulation derivatives rebinned to (s, u, ψ) coordi-

nates giving g3. 32

4.6 Single view of Katsevich formulation derivatives rebinned to (s, u, ψ)

coordinates giving g3alt. 32

4.7 Single view of Hilbert transform data g4 produced using Noo formula-

tion derivatives. 33

4.8 Single view of Hilbert transform data g4alt produced using Katsevich

formulation derivatives. 33

4

4.9 Single view of filtered dataset g5 produced using Noo formulation deriva-

tives. 34

4.10 Single view of filtered dataset g5alt produced using Katsevich formula-

tion derivatives. 34

4.11 Centre slice of Reduced Ball phantom reconstructed with Noo derivatives. 35

4.12 Centre slice of Reduced Ball phantom reconstructed with Katsevich

derivatives. 36

4.13 Slices through Reduced Ball phantom reconstructed with Noo deriva-

tives, rescaled to show noise and artefacts. 36

4.14 Slices through Reduced Ball phantom reconstructed with Katsevich

derivatives, rescaled to show noise and artefacts. 37

4.15 Slice through top of Reduced Ball phantom reconstructed with Katse-

vich derivatives, rescaled to show significant artefacts. 38

4.16 Line profile though top slice of the largest ball in the Reduced Ball

phantom. Solid line refers to Noo derivative reconstruction, dashed line

refers to Katsevich derivative reconstruction and dotted is the analytic

phantom. 39

4.17 Vertical and Horizontal slices of the Planes of Spheres phantom recon-

structed using Noo derivatives. 40

4.18 Vertical and Horizontal slices of the Planes of Spheres phantom recon-

structed using Katsevich derivatives. 41

5.1 Horizontal and vertical slices of reconstructed image of platinum dust

in suspension reconstructed using Noo derivatives. 45

5.2 Horizontal and vertical slices of reconstructed image of platinum dust

in suspension reconstructed using Katsevich derivatives. 46

5.3 Horizontal and vertical slices of reconstructed image of platinum dust in

suspension reconstructed using Noo derivatives rescaled to show details

and artefacts. 47

5.4 Horizontal and vertical slices of reconstructed image of platinum dust in

suspension reconstructed using Katsevich derivatives rescaled to show

details and artefacts. 48

5

5.5 Single views of the scan data for the three Sapphire Ball reconstructions.

Original scan top left, beam hardening corrected data top right and

simulated data bottom. 50

5.6 Single views from the original scan and beam hardening corrected data

rescaled for comparison. 50

5.7 Slices from the three Sapphire Sphere reconstructions. Original scan

top left, beam hardening corrected top right and numerical simulation

bottom. 51

5.8 Scaled image of uncorrected Sapphire Ball reconstruction. 51

5.9 Scaled image of beam hardening corrected Sapphire Ball reconstruction. 52

5.10 Scaled image of numerical Sapphire Ball reconstruction. 52

6.1 Minimum reconstructable heights in FOV for data starting at a given

helical source position . 54

6.2 Diagram showing the four possible scenarios for different values of U ′s. . 59

6

Abstract

In performing X-ray Computed Tomography two major constraints are the required

acquisition time and X-ray dose for the scans. One method of reducing these is to take

the scan by moving source and detector in one continuous helix relative to the object,

rather than taking several separate circular scans. This Dissertation examines two

implementations of the derivatives required for the Katsevich reconstruction algorithm

for helical cone beam micro-CT, both the original implementation suggested by Noo

et al.[2003] and an alternate formulation proposed by Katsevich[2011]. A new bound

on a parameter used by the second formulation is suggested and methods for dealing

with practical difficulties when reconstructing real scan data are proposed.

7

Declaration

No portion of the work referred to in the dissertation has

been submitted in support of an application for another

degree or qualification of this or any other university or

other institute of learning.

8

Intellectual Property Statement

i. The author of this dissertation (including any appendices and/or schedules to this

dissertation) owns certain copyright or related rights in it (the “Copyright”) and

s/he has given The University of Manchester certain rights to use such Copyright,

including for administrative purposes.

ii. Copies of this dissertation, either in full or in extracts and whether in hard or elec-

tronic copy, may be made only in accordance with the Copyright, Designs and

Patents Act 1988 (as amended) and regulations issued under it or, where appropri-

ate, in accordance with licensing agreements which the University has entered into.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the dissertation, for example graphs and tables (“Reproductions”), which

may be described in this dissertation, may not be owned by the author and may

be owned by third parties. Such Intellectual Property and Reproductions cannot

and must not be made available for use without the prior written permission of the

owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this dissertation, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the University

IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in

any relevant Dissertation restriction declarations deposited in the University Library,

The University Library’s regulations (see http://www.manchester.ac.uk/library/ab-

outus/regulations) and in The University’s Guidance on Presentation of Disserta-

tions.

9

Acknowledgements

I would like to thank Will Thompson and my supervisor Bill Lionheart for all the

discussions and guidance they have provided during the project. I thank my Industrial

collaborators, especially TC for providing forward projections, scan data and ideas.

Finally, I want to thank my friends and family for their support.

10

Chapter 1

Introduction

Non-destructive and non-invasive testing have found uses from Medicine to Materials

science, Biological research to resource exploration. Our ability to investigate the

unseen structures of an object can give great insights into how an object or system

should work, and any flaws that could be disadvantageous.

A frequently used tool in Medical, Biological and Material settings is X-ray Com-

puted Tomography (CT). By measuring the attenuation of X-rays passing through

an object at different angles, it is possible to build up a picture of the structure it

contains. This is equivalent to taking line integrals through the domain of the object

and trying to recover the underlying attenuation function. Therefore, in Mathematical

terms, this is an Inverse Problem.

Classical CT consists of reconstructing a single slice through the region of inter-

est. This is done by modelling the X-ray transform as analogous to the 2D Radon

transform, which can be inverted using Filtered Backprojection algorithms (FBP). In

three dimensions the problem of reconstructing an object can be significantly more

difficult. One option is to take successive slices through the object and reconstruct

one row at a time. However, taking circular scans of every plane of voxels in an object

is prohibitive.

We would like to find algorithms and source curves which are equivalent to having

data for every point on the cylinder surrounding our region of interest. This can be

considered as solving Fritz John’s equation [5], an ultrahyperbolic PDE in 4 variables.

The solution to this equation can provide all the values on the convex hull of some

3 dimensional boundary surface in a similar way to solving a 2D Dirichlet problem

11

CHAPTER 1. INTRODUCTION 12

with boundary data measured along a curve. The problem is finding on which surfaces

boundary data will be sufficient to uniquely determine a solution.

One option, which appears to work surprisingly well, is to take successive cone

beam slices through the object and reconstruct one small cylinder at a time. This

is done by assuming that the X-rays coming from a source are parallel within some

angle of the central plane and reconstructing in a 2D framework using techniques such

as the Feldkamp-Davis-Kress Algorithm (FDK) [3]. However, taking multiple small

cone angle scans is again prohibitive and reconstructing planes outside a few degrees

of cone angle produces artefacts. Therefore, we look for source curves which satisfy

the Kirillov-Tuy completeness condition [10, 16]. This is a condition on the shape of

the source curve, which determines whether all points in the region of interest can be

exactly reconstructed.

One source curve which satisfies this condition is the helix. There have been several

inversion algorithms proposed for helical, or spiral [6, 7, 9], scan CT including rebinning

algorithms, FDK-like algorithms, quasi exact and exact algorithms. Each of which is

based on a different technique and inversion formula.

Rebinning algorithms estimate the 2D data which would be achieved at a slice

through the helix and then reconstruct using techniques for 2D scans. FDK algorithms

rely on a generalisation of the Feldkamp algorithm to the helical geometry [3]. These

are quite prone to artefacts which cannot easily be predicted. Quasi exact methods

build on Grangeat’s theory for cone beam reconstruction using the 3D Radon transform

[4]. Finally, there are several exact reconstruction algorithms. The one of most interest

for this project is the Katsevich inversion formula, as it is of the Filtered Backprojection

type and can, therefore, be more easily implemented with existing techniques.

In practice, only medical CT machines and the security scanners based on medical

CT machines implement Helical Scan. For most other purposes Circular Scan CT

is used. This limits the number of planes which can be reconstructed for each scan

due to artefacts at larger cone angles. As there is generally less concern about the

X-ray dosage or timescale for these scans, more detail can be gained by taking a new

scan with the required plane as the central slice. It would, however, be desirable to

implement the Katsevich reconstruction algorithm due its ability to scan accurately

at high cone angles and completely reconstruct an image from a shorter scan time.

CHAPTER 1. INTRODUCTION 13

Work has already been done of the implementation of the Katsevich reconstruction

algorithm [12, 18], however this has mostly been examined from a medical imaging

standpoint. There are several differences between medical CT machines and micro-

CT machines used for materials testing. As noted above both the X-ray dosage and

timescales of scans are largely increased for micro-CT, while the size and number of

elements on the detector are not constrained by the design needing to accommodate

a patient lying down. Therefore the available code is designed to work for a detector

with 138×16 detector pixels, while the machines I will be using have square detectors

with 512× 512 pixels.

Through the course of this project I will aim to modify the available code [18] to

accommodate the changed detector geometry used in micro-CT, while evaluating the

efficiency and accuracy of the code. I will also have to handle the inherent problems

found in taking real scan data, for example the problem of beam hardening. There are

also practical problems such as defining the reconstructable area for a given dataset,

adjusting the scan geometry to fully take advantage of the helical source trajectory

and compensating for the different helices used.

In addition to these aims I will update the code to take advantage of the new

formulation of the derivative step proposed by Katsevich [9]. This will require an

analysis of how to derive this form of the derivative, as well as its strengths and

limitations.

Chapter 2

Katsevich Setup

As the Katsevich reconstruction algorithm is of the filtered backprojection type it is

first necessary to understand backprojection. For backprojection a ray or cone is first

defined by source position and area or point on the filtered dataset. Values from this

area of the projection are given a weighting and added to the voxels intersected by the

line or cone. By doing this for a sufficient range of source positions, a reconstructed

image of the target object can be produced.

There are two separate formulations of the Katsevich reconstruction algorithm.

The first, proposed in 2002 [7], requires two separate functions to be backprojected

and has been shown to be equivalent to the formulation proposed in 2004 [8]. This

second algorithm requires only one backprojection, making it much more efficient and

easily implemented. As such, the second formulation is the focus of this dissertation.

To prove that the formula is an exact inversion of the cone beam transform, Kat-

sevich [8] shows that it is equivalent to performing the integration

1

(2π)3

∫
R3

B(x, ξ)f̃(ξ)eiξ·x dξ. (2.1)

Here f̃ is the Fourier transform

f̃ = F(f) =

∫
R3

f(x)e−iξ·x dx,

of the desired underlying function f(x). As B is a function which can be shown to be

equal to 1 almost everywhere, we obtain the Inverse Fourier transform and return our

target function f.

A full proof of this Theorem is beyond the scope of this dissertation and can be

found in the original paper. Instead, I will concentrate on the implementation of

14

CHAPTER 2. KATSEVICH SETUP 15

this scheme, both for numerical simulations and real scan data. As such I will now

introduce some concepts and notation.

2.1 Detector Geometry

For this project I will be using notation adapted from Wunderlich [18] and Noo et al.

[12] for the detector geometry. Here the position of the x-ray source along the helical

source curve is taken to be

y(s) = [R cos(s), R sin(s), P
s

2π
]T , (2.2)

where R is the radius of the helix, s is the angle through which the source has moved

from the starting position and P is the distance the source moves in the z direction

per full turn, known as the Pitch. In some places in the code this pitch has been

described per radian rather than per turn, giving the parameter h = P/(2π). It is also

important to know the perpendicular distance from the detector to the source, D.

Having defined the source positions and basic geometry, it is now important to

define local detector coordinates for storage of the detector data. Hence the coordinates

(u, v, w) are used. Here u and w are the horizontal and vertical distances from the

line passing perpendicularly through the centre of the detector plate, v is the distance

from the rotation axis perpendicular to the detector plate. The unit vectors for this

coordinate system are

eu = [− sin(s), cos(s), 0]T ,

ev = [− cos(s),− sin(s), 0]T ,

ew = [0, 0, 1]T ,

which are shown in fig. 2.1.

With this geometry, we can now define the data measured at each element of the

detector as function g To do this, first we must define the direction vector

θ(s, u, w) =
1√

u2 +D2 + w2
(ueu(s) +Dev(s) + wew(s)), (2.3)

which is the unit vector in the direction of the ray passing through y(s) and intersecting

the detector at coordinates (u,w). From this we can construct the cone beam transform

CHAPTER 2. KATSEVICH SETUP 16

Figure 2.1: Illustration of flat detector geometry.

of the object,

g(s, u, w) =

∫ +∞

0

f(y(s) + tθ) dt, (2.4)

where f(x) is the underlying attenuation function at point x.

2.2 Background Information

Before implementing the Katsevich formula it is important to understand the Tam-

Danielson window, π-lines and κ-planes.

The Tam-Danielson window (TD window) is the area on the detector plane bounded

above and below by the line inscribed by rays from the source position y(s) that inter-

sect the source helix again on their way to the detector. On a flat detector this region

is bounded above by the curve

wtop(u) =
P

2πRD
(u2 +D2)(π/2− arctan(u/D)), (2.5)

and below by the curve

wbottom(u) = − P

2πRD
(u2 +D2)(π/2 + arctan(u/D)). (2.6)

CHAPTER 2. KATSEVICH SETUP 17

This region is illustrated in fig. 2.4.

A π-line passing through a point x in the field of view is defined as a line intersecting

the source helix at two points y(sb) and y(st) separated by less than one helical turn.

For a given x in the field of view, π-lines have been shown to be unique [1]. Using

Figure 2.2: Illustration of π-line on a helix.

this concept it has been shown that for source positions y(s), s ∈ IPI(x) = (sb, st), if

the projection of x onto the detector lies within the Tam-Danielson window then f(x)

may be reconstructed exactly [15, 1].

A κ-plane, K(s, ψ), is defined as a 2D plane intersecting the helix at three points,

y(s), y(s + ψ) and y(s + 2ψ) specified by the angle ψ ∈ (−π, π). Taking the normal

Figure 2.3: Illustration points defining a κ-plane.

to this plane as

η(s, ψ) =
(y(s+ ψ)− y(s))× (y(s+ 2ψ)− y(s))

‖(y(s+ ψ)− y(s))× (y(s+ 2ψ)− y(s))‖
sgn(ψ), (2.7)

and a vector θ parallel to the plane, we can describe any direction β along the plane

CHAPTER 2. KATSEVICH SETUP 18

as

β(s, γ) = cos(γ)θ + sin(γ)(θ × η(s, ψ)). (2.8)

Combining the definition of κ-planes with π-line intervals, we find that there exists

a unique κ-plane, K(s, ψ), s ∈ IPI , with minimum value of |ψ| passing through each

point in the field of view. This plane is such that sb ≤ s+ 2ψ ≤ st and its intersection

with the detector plane, or κ-line, is used for the 1D Hilbert transform filtering step

in Katsevich’s formula. These κ-lines are also shown in fig. 2.4.

Figure 2.4: Illustration of the TD Window (shaded region) and κ-lines on a square
detector.

Chapter 3

Implementing Katsevich

Having defined the above geometrical tools we can now examine the Katsevich inver-

sion formula,

f(x) = − 1

2π

∫
IPI(x)

1

‖x− y(s)‖
gF
(
s,

x− y(s)

‖x− y(s)‖

)
ds. (3.1)

This formula involves backprojecting filtered data gF (s,θ), to reconstruct the value

of the underlying function at voxel position x in the FOV. The filtered function gF is

calculated as

gF (s,θ) =

∫ 2π

0

kH(sin γ)g′(s, cos(γ)θ + sin(γ)(θ ×m(s, ψ)) dγ. (3.2)

Here kH is the kernel of the Hilbert transform

kH(t) = −
∫ ∞
−∞

i sgn(ξ)ei2πξt dξ =
1

πt
,

g′(s,θ) is the partial derivative with respect to s of the measured g(s,θ) and m is the

normal to the κ-plane K(s, ψ), with minimum value of |ψ|, which is parallel to θ. By

considering a fixed κ-plane, this can be shown to be a convolution with the Hilbert

kernel along the κ-line associated with that plane.

In order to implement this formula, it must be split up into several filtering steps

and a backprojection as shown in the following sections.

19

CHAPTER 3. IMPLEMENTING KATSEVICH 20

3.1 Derivatives

The first step in filtering the data is to estimate the partial derivative of the data with

constant direction vector

g1(s, u, w) =
∂

∂s
g(s,θ) = lim

ε→0

g(s+ ε,θ)− g(s,θ)

ε
, (3.3)

where θ is defined as in eq. (2.3).

Taking accurate derivatives is essential for two reasons. First, errors in this early

step will be propagated through the remaining steps and may become large errors or

artefacts when the Hilbert transform is applied to the data. Second, the magnitude of

the derivatives defines the resolution achievable with this reconstruction method. High

derivatives mark edges within the FOV and help to define the objects being scanned.

Thinking about the attenuation values geometrically, as a ray is moved through

a smooth object the values will drop when the line’s intersection shortens. As the

line loses its intersection with the object, the values will tend to zero. For any smooth

object there is a lower limit to the length of the intersection and so the line will become

tangent to the edge at some point. This means that the desired derivative will become

infinite when the ray vector θ is tangential to an objects edge. However, it is not

possible to capture these infinite values in a discrete setting.

To find approximations to these derivatives I have used two methods. The first,

implemented in the original Wunderlich [18] code, uses central differences and the

chain rule

g1(s, u, w) =

(
∂g

∂s
+
∂u

∂s

∂g

∂u
+
∂w

∂s

∂g

∂w

)
, (3.4)

as recommended by Noo et al. [12]. To implement this, averaged central differences

are taken giving the value of the derivative at the mid points of the discretisation in

each dimension. So

g1(sk+1/2, ui+1/2, wj+1/2) '
i+1∑
m=i

j+1∑
n=j

g(sk+1, um, wn)− g(sk, um, wn)

4∆s

+

(
u2
i+1/2 +D2

D

)
k+1∑
p=k

j+1∑
n=j

g(sp, ui+1, wn)− g(sp, ui, wn)

4∆u

+
(ui+1/2wj+1/2

D

) k+1∑
p=k

i+1∑
m=i

g(sp, um, wj)− g(sp, um, wj+1)

4∆w
.

(3.5)

CHAPTER 3. IMPLEMENTING KATSEVICH 21

It has been stated that the formulation of the derivative in eq. (3.5) produces better

results under testing than taking a direct central difference between two views using

eq. (3.3) [12]. However, as we need the derivative along specific filtering lines for the

Hilbert transform step, we will have to interpolate in the w direction. This means that

the derivative, which has already been averaged between two detector rows is further

interpolated in this direction, reducing the resolution in w.

To combat this problem Katsevich [9] suggests splitting up the the derivative into

two parts. By treating the variables u and w as functions of s and θ we can rewrite

the derivative as

g1(s, U(s,θ),W (s,θ)) =
d

ds
g(s, U(s,θ),W (s,θ)),

=
d

ds
g(s, U(s,θ), w)|w=W (s,θ) + g′w(s, U(s,θ),W (s,θ))W ′

s(s,θ).

(3.6)

In this formulation only the second function has been averaged between detector rows.

Therefore, it is possible to calculate each part separately and recombine in the rebin-

ning step so that less resolution has been lost in w.

Now the two components of the derivative must be calculated. I will denote the

derivative keeping w constant as g1us and the partial derivative with respect to w as

g1w. To calculate g1us Katsevich [9] recommends taking a central difference using two

interpolated points corresponding to g(si−δ, U(si−δ,θ), w) and g(si+δ, U(si+δ,θ), w).

These two values can be found by interpolating over the 4 closest discretisation points

as shown in fig. 3.1.

Katsevich [9] recommends deriving the interpolation weightings for each of the sur-

rounding values from specific restrictions. However, an alternate derivation is possible

by transforming this domain onto a reference square as shown in fig. 3.2 and using

bilinear basis functions [2]. The bilinear basis functions on this reference element are

a1(ξ, η) =
(1− ξ)(1− η)

4
, a2(ξ, η) =

(1 + ξ)(1− η)

4
,

a3(ξ, η) =
(1 + ξ)(1 + η)

4
, a4(ξ, η) =

(1− ξ)(1 + η)

4
. (3.7)

In these basis functions ξ and η are coordinates for the reference element. Therefore,

before the basis functions can be evaluated the coordinates for the difference point

must be found. To do this, note that the relative position of the point in s is +δ and

CHAPTER 3. IMPLEMENTING KATSEVICH 22

Figure 3.1: Diagram for computing s derivative of g as a function of s and u

Figure 3.2: Diagram showing transformation between the reference element and inter-
polation domain for calculation of the values used when taking the difference.

CHAPTER 3. IMPLEMENTING KATSEVICH 23

linearise the u value. Taking U(si + δ,θ) ' uj+0.5 + δU ′s|s=si,U=uj+0.5
, the reference

element coordinates are

ξ =

(
2δ

∆s
− 1

)
, η =

2U ′sδ

∆u
. (3.8)

These coordinates give the weightings

a1 =
1

4

(
2δ

∆s
− 2

)(
2U ′sδ

∆u
− 1

)
, a2 = −1

4

(
2δ

∆s

)(
2U ′sδ

∆u
− 1

)
,

a3 =
1

4

(
2δ

∆s

)(
2U ′sδ

∆u
+ 1

)
, a4 = −1

4

(
2δ

∆s
− 2

)(
2U ′sδ

∆u
+ 1

)
.

(3.9)

Using the weightings in eq. (3.9) and the rotational symmetry of the two difference

points, the derivative g1us can be calculated as

g1us(si, uk+0.5, wj) =
d

ds
g(si, U(si,θ), wj)|U(si,θ)=uk+0.5

,

' g(si + δ, U(si + δ,θ), wj)− g(si − δ, U(si − δ,θ), wj)

2δ
,

' 1

2δ

[
a3(gi+1,k+1,j − gi−1,k,j) + a2(gi+1,k,j − gi−1,k+1,j)

+ (a4 − a1)(gi,k+1,j − gi,k,j)
]
. (3.10)

Taking r = a3/δ we can reformulate g1us as

g1us(si, uk+0.5, wj) '
1

2

[
r(g(si+1, uk+1, wj)− g(si−1, uk, wj))

+

(
1

∆s
− r
)

(g(si+1, uk, wj)− g(si−1, uk+1, wj))

+

(
1

∆s
+

2U ′s
∆u
− 2r

)
(g(si, uk+1, wj)− g(si, uk, wj))

]
, (3.11)

where U ′s is the partial derivative of U(s,θ) with respect to s at the point (si, uk+0.5),

which is the same formulation as suggested by Katsevich [9]. It is also suggested that

r may take any value in the range 0 ≤ r ≤ 1/∆s, so r has been taken to be one for

simplicity in my implementation of the code.

Now to find the second component of the derivative we have to take an averaged

central difference in w,

g1w(si, uk+0.5, wj+0.5) = W ′
sg
′
w(si, uk+0.5, wj+0.5)

' W ′
s

(gi,k,j+1 + gi,k+1,j+1)− (gi,k,j + gi,k+1,j)

2∆w
.

CHAPTER 3. IMPLEMENTING KATSEVICH 24

Here W ′
s is the partial derivative at the point (si, uk+0.5, wj+0.5) of W (s,θ) with respect

to s, and this derivative is stored in a separate file to be recombined in the forward

rebinning step.

These derivatives are calculated by code similar to that found in appendix A.4.

3.2 Length Correction Weighting

Correcting for the increased Euclidean distance of detector elements further from the

centre of the detector plate, the length correction

g2(s, u, w) =
D√

u2 +D2 + w2
g1(s, u, w) (3.12)

is applied when working with the derivatives directly. However, when using Katsevich’s

formulation of the derivative the same correction must be applied. Hence I have

decided to apply this same correction to both parts of the Katsevich derivative, giving

g2us(s, u, w) =
D√

u2 +D2 + w2
g1us(s, u, w),

g2w(s, u, w) =
D√

u2 +D2 + w2
g1w(s, u, w). (3.13)

3.3 Forward Height Rebinning

As the Hilbert transform filtering step is performed along Kappa lines we want to

place the data into the coordinates (s, u, ψ), where ψ labels which kappa line the data

is measured on. This is done by taking

g3(s, u, ψ) = g2(s, u, wκ(u, ψ)), (3.14)

such that

wκ(u, ψ) =
DP

2πR

(
ψ +

ψ

tanψ

u

D

)
. (3.15)

In order to approximate the required values, the code first discretises the range of

ψ such that ψ ∈ (−π/2 − αm, π/2 + αm), where αm is the half fan angle. I have

written code to ensure that the ψ domain is discretised so that the maximum κ-line

separation is no greater than the width of a detector row [12]. This is done by equating

CHAPTER 3. IMPLEMENTING KATSEVICH 25

the differential of the wk from eq. (3.15) with the detector element width dw divided

by ∆ψ in the top left corner of the detector using

dwk
dψ

(u = umin, ψ = π/2 + αm) ' dw
∆ψ

. (3.16)

Once the range of ψ has been discretised using the code in appendix B.2, the values

of wκ are calculated using eq. (3.15). These values are then used for one dimensional

interpolation to find the required values.

This interpolation is performed slightly differently for each of the two difference

schemes implemented in the code. When using the original Noo implementation, the

value of g3(s, u, ψ) is calculated by interpolating linearly on the detector plate between

g2(s, u, wj) and g2(s, u, wj+1), where wj ≤ wκ ≤ wj+1. This gives

g3(s, u, ψ) = (1− c)g2(s, u, wj) + cg2(s, u, wj+1), (3.17)

where

c =
wκ − wj

∆w
.

As noted above this is an interpolation in w using two values which have already lost

resolution due to the implicit averaging process used when taking the central difference.

This further reduces the possible resolution in the vertical direction.

This step is why the Katsevich formulation of the derivative has been suggested.

In order to reduce resolution loss Katsevich [9] recommends linearly interpolating the

function g1us and adding on a nearest neighbour contribution from g1w. This gives

g3alt = (1− c)g2us(s, u, wj) + cg2us(s, u, wj+1) + g2w(s, u, µ),

where c is as above and µ is whichever of wj and wj+1 is closer to wκ. Katsevich states

that, as the contributions from g2w are generally smaller than those from g2us and the

values in g2us have only been interpolated once in w the loss of resolution is reduced.

The code ensures there are an even number of filtering lines as ψ = 0 causes a

divide by zero error when calculating the values of wκ. An alternate option may be

to use the symmetry of the kappa lines to only explicitly calculate the lines for ψ > 0

and rotate these to find the remaining values.

CHAPTER 3. IMPLEMENTING KATSEVICH 26

3.4 1D Hilbert Transform

This step is to take a 1D Hilbert transform in u at constant ψ

g4(s, u, ψ) =

∫ ∞
−∞

kH(u− u′)g3(s, u′, ψ) du′. (3.18)

The kernel, kH of this transform is formally expressed as

kH(t) = −
∫ ∞
−∞

i sgn(ξ)ei2πξt dξ.

However, in practice we wish to have a cut off frequency and so the kernel is approxi-

mated as

kH(t) ' −
∫ b

−b
i sgn(ξ)ei2πξt dξ,

=
1

πt
[1− cos(2πbt)]. (3.19)

Now discretising the Hilbert transform so that tn = n∆t, the Nyquist condition tells

us that b ≤ bmax = 1/(2∆t) giving the discrete kernel

kH [n] = kH(n∆t) =
1

πn∆t
[1− cos(πn)],

=

 2
πn∆t

if n is odd,

0 otherwise.
(3.20)

The code also windows the Hilbert kernel in the frequency domain to reduce ringing

artefacts. This is done by convolving the inverse Fourier transform of a Hamming

window, win[n] with the kernel kH [n] to get the modified kernel kW [n]. Using this

modified kernel and discretising un = n∆u eq. (3.18) becomes the discrete convolution

formula

g4(s, un, ψ) = ∆u
lmax∑
l=lmin

kW [n− l]g3(s, ul, ψ), (3.21)

which is implemented in the code using FFTs.

3.5 Backward Height Rebinning

For each height position on the detector we only want to backproject from the kappa

line with lowest absolute value which passes through this point. Therefore we set

gF (s, u, w) = g5(s, u, w) = g4(s, u, ψ̂(u,w)), (3.22)

CHAPTER 3. IMPLEMENTING KATSEVICH 27

where ψ̂(u,w) is the angle of smallest absolute value satisfying

w =
DP

2πR

(
ψ +

ψ

tanψ

u

D

)
.

This is not an injective mapping and the value of ψ̂(u,w) will only be used to define

grid points for interpolation, so finding ψ̂(u,w) explicitly may not be the most efficient

course of action [12].

As the backprojection is only required to run on an area slightly larger than the

TD window, we can use the uniqueness of κ-lines passing through each point in the

TD window to define an interpolation scheme. By definition, inside the TD window

g5(s, u, wκ(u, ψ)) = g4(s, u, ψ),

while outside the TD window κ-lines defined by increasing values of ψ may only cross

each other in the top right hand and bottom left quarters of the detector plate.

In the top right quarter of the detector plate wκ(u, ψ) increases monotonically with

ψ until the cross over point where it becomes monotonically decreasing. Similarly in

the bottom left quarter of the detector wκ(u, ψ) decreases monotonically as ψ becomes

more negative, until the cross over point. Therefore, if we iterate through the ψ values

to find ψj and ψj+1 such that

wκ(ui, ψj) ≤ w ≤ wκ(ui, ψj+1), (3.23)

we can take the linear interpolant in w to get the correct approximation to g5.

The original code provided by Wunderlich [18] performed this step by iterating

through every κ-line to find the correct ψ interval for each individual grid point.

However, as noted above the function increases and decreases monotonically within

the regions required for backprojection. Therefore, in the right half of the detector

plane, I have redefined the starting point for the search at (ui, wj+1) to be the interval

found for (ui, wj). Similarly, in the left half of the detector plane, I have redefined the

starting point for the search at (ui, wj−1) to be the interval found for (ui, wj). This

ensures that the number of comparisons along each line u = ui is kept to O(L), where

L is the total number of κ-lines.

CHAPTER 3. IMPLEMENTING KATSEVICH 28

3.6 Backprojection

Having used the code in appendix A.9 to find the π-line intervals for the backprojection

the code completes the reconstruction of f(x) by

f(x) =
1

2π

∫ st

sb

1

v∗(s,x)
g5(s, u∗(s,x), w∗(s,x)) ds. (3.24)

Here the values of u, v and w are given by

v∗(s,x) = R− x cos(s)− y sin(s), (3.25)

u∗(s,x) =
D

v∗(s,x)
(−x sin(s) + y cos(s)), (3.26)

w∗(s,x) =
D

v∗(s,x)

(
z − P

2π
s

)
. (3.27)

In the code, this has been discretised as

f(x) '
∑
k

ρ(sk,x)∆s

2πv∗(sk,x)
g5(s, u∗(sk,x), w∗(sk,x)). (3.28)

The function ρ(s,x) has been added here to smooth the transition near the end of the

π-line interval. Due to the discrete nature of our s values, it is unlikely that the end

values can be accurately specified, so to avoid artefacts ρ has been specified as

ρ(s,x) =

0 if s ≤ sb −∆s,

(1 + db)
2/2 if sb −∆s ≤ s ≤ sb,

1
2

+ db − d2
b/2 if sb ≤ s ≤ sb + ∆s,

1 if sb + ∆s ≤ s ≤ st −∆s,

1
2

+ dt − d2
t/2 if st −∆s ≤ s ≤ st,

(1 + dt)
2/2 if st ≤ s ≤ st + ∆s,

0 if st + ∆s ≤ s,

(3.29)

where

db = s−sb(x)
∆s

dt = st(x)−s
∆s

.

It has also been necessary to interpolate the values of g5 to evaluate gF (s, u∗, w∗)

needed for the backprojection step. In the code, this has been implemented using

nearest neighbour interpolation.

Chapter 4

Numerical Results

Before using my modified code on real scan data, I first tested it on two different

numerical phantom images. The first of these is the phantom I have named Reduced

Ball. This phantom is based on the 3D Shepp Logan head phantom, which has been

modified so that the ellipsoids are replaced by spheres with a uniform attenuation

coefficient of 1. The reason for using this image was to more accurately simulate the

situations arising in materials scanning as opposed to medical imaging, while increasing

the efficiency of my forward projection function.

The second phantom, 9 Planes of Spheres, was set up to test geometry similar to

the real scan setup, and to compare against reconstructions already being done using

circular scan methods.

Parameters for all reconstructions may be found in appendix C

4.1 Reduced Ball Phantom

4.1.1 Intermediate Steps

While not generally studied, the intermediate datasets produced in completing a Kat-

sevich reconstruction can be informative when trying to understand how the algorithm

works. The differences in these images produced by using a different formulation of

the derivative, or changing specific parameters, also show the sensitivities present in

this inversion method.

The first step in modifying the view shown in fig. 4.1, as mentioned in section 3.1,

29

CHAPTER 4. NUMERICAL RESULTS 30

is to take the partial derivative of the function g with respect to s at constant ray

direction. Figure 4.2 shows the result of this derivative using the original chain rule

implementation while fig. 4.3 shows the two required derivatives in the Katsevich

formulation.

Figure 4.1: Single view of the projected scan data g for the Reduced Ball phantom.

Figure 4.2: Single view of derivative data g1 taken using Noo derivatives.

Looking at figs. 4.2 and 4.3 we can see several similarities between g1 and g1us,

such as the general position of high positive and negative values on opposite edges

of the spheres. Here sharp discontinuities are captured by both derivatives at the

spheres’ edges, indicating that singular support is being preserved. This implies that

CHAPTER 4. NUMERICAL RESULTS 31

Figure 4.3: Single views of derivative data g1us on the left and g1w on the right taken
using Katsevich’s derivative formulation.

both formulations of the discrete derivative are equivalent to some pseudo-differential

operator.

Looking more closely at the scaling, it can be noted that g1us captures gradients

which are larger in magnitude than g1, meaning the highest gradients are less spread

out and hopefully providing higher resolution reconstructions. Figure 4.3 also appears

to validate the observation that the values in g1w are generally much lower than those

in g1us [9].

Figure 4.4: Single views of length corrected derivatives g2 left, g2us centre and g2w

right.

The next step is to correct the derivative values for source to pixel length producing

the views in fig. 4.4, which are then interpolated into (s, u, ψ) coordinates to produce

figs. 4.5 and 4.6. These images appear slightly tilted due to the positioning of the

κ-lines on the detector plate effectively stretching and compressing different parts of

the image. Again the values produced using the Katsevich derivative are larger and

more concentrated towards the edge of the spheres than with Noo’s formulation.

CHAPTER 4. NUMERICAL RESULTS 32

Figure 4.5: Single view of Noo formulation derivatives rebinned to (s, u, ψ) coordinates
giving g3.

Figure 4.6: Single view of Katsevich formulation derivatives rebinned to (s, u, ψ) co-
ordinates giving g3alt.

CHAPTER 4. NUMERICAL RESULTS 33

Having rebinned to the correct coordinate system, the 1D Hilbert transform can

be applied. Other than taking the derivatives, this is the step which produces the

most noticeable change in the data as shown in figs. 4.7 and 4.8. These figures show

the filtered data required for backprojection. However, the values are given in the

wrong coordinate system and include some values from κ-lines which are not needed.

Therefore, the next step is to interpolate necessary values to a regular grid, which can

be used for backprojection.

Figure 4.7: Single view of Hilbert transform data g4 produced using Noo formulation
derivatives.

Figure 4.8: Single view of Hilbert transform data g4alt produced using Katsevich for-
mulation derivatives.

CHAPTER 4. NUMERICAL RESULTS 34

Finally, interpolating back to a regular grid gives the views shown in figs. 4.9

and 4.10. Again the values produced using the Katsevich formulation of the deriva-

tive seem to be larger making the image appear sharper. However, this method also

appears to produce a more noticeable streak of small negative numbers either side

of the spheres’ projections. These features of the filtered data may explain why the

reconstructions using Katsevich’s formulation of the derivative appear to have higher

resolution but also show much more noticeable artefacts.

Figure 4.9: Single view of filtered dataset g5 produced using Noo formulation deriva-
tives.

Figure 4.10: Single view of filtered dataset g5alt produced using Katsevich formulation
derivatives.

CHAPTER 4. NUMERICAL RESULTS 35

4.1.2 Reconstructions

Figures 4.11 and 4.12 show the central slices of reconstructions produced using the

Noo and Katsevich formulations of the derivative respectively. Comparing the two,

they appear to be quite similar at this scaling. Both reconstructions are able to show

all the spheres, however, the scaling of fig. 4.12 shows that the Katsevich derivative

produces a higher maximum value in the overlap region. As the highest value present

in the analytic phantom should be 2, this higher value implies that the Katsevich form

of the derivative does allow for greater resolution images.

Figure 4.11: Centre slice of Reduced Ball phantom reconstructed with Noo derivatives.

To compare these reconstruction methods more accurately, I have rescaled the

images to pick up the discretisation noise and artefacts. The resulting images can be

seen in figs. 4.13 and 4.14. Looking more closely at these rescaled images, we can

see similar swirling noise patterns and streak like artefacts in both reconstructions.

However, the artefacts produced using the Katsevich derivatives appear to have a

greater magnitude.

Investigating side views of the reconstructions, it becomes more obvious how the

artefacts are situated throughout the volume. Diagonal artefact lines can be seen

coming off from the tops and bottoms of the spheres. These become quite prominent

at the point where they intersect the spheres, especially when using the Katsevich

formulation of the derivative.

CHAPTER 4. NUMERICAL RESULTS 36

Figure 4.12: Centre slice of Reduced Ball phantom reconstructed with Katsevich
derivatives.

Figure 4.13: Slices through Reduced Ball phantom reconstructed with Noo derivatives,
rescaled to show noise and artefacts.

CHAPTER 4. NUMERICAL RESULTS 37

Figure 4.14: Slices through Reduced Ball phantom reconstructed with Katsevich
derivatives, rescaled to show noise and artefacts.

CHAPTER 4. NUMERICAL RESULTS 38

Figure 4.15 shows a slice through the top of the largest sphere in the image taken

from the Katsevich derivative reconstruction. This image highlights the problem posed

by the streak artefacts. As the artefact intersects the top of the sphere it makes a

large difference to the values, impacting image quality.

Figure 4.15: Slice through top of Reduced Ball phantom reconstructed with Katsevich
derivatives, rescaled to show significant artefacts.

The line profile in fig. 4.16 shows exactly how much of a difference it makes to use an

alternate formulation for the derivative. This line profile is taken from column 256 in

the image in fig. 4.15 and focuses on the region affected by the artefacts. The Katsevich

derivative gives a closer value to the analytic phantom and gives a sharper image but

the smoother image of the Noo reconstruction reduces the impact of artefacts.

CHAPTER 4. NUMERICAL RESULTS 39

Figure 4.16: Line profile though top slice of the largest ball in the Reduced Ball
phantom. Solid line refers to Noo derivative reconstruction, dashed line refers to
Katsevich derivative reconstruction and dotted is the analytic phantom.

CHAPTER 4. NUMERICAL RESULTS 40

4.2 Planes of Spheres Phantom

The second phantom I used was Planes of Spheres phantom. As with the Reduced Ball

phantom the spheres all have a uniform attenuation coefficient of 1, with overlapping

regions which have coefficient 2. Figures 4.17 and 4.18 show reconstructed slices of this

phantom using Noo and Katsevich formulations of the derivative respectively. Again

there appear to be few differences in the two reconstructions at first glance. However,

the Katsevich formulation of the derivatives does still seem to capture the overlap

regions more accurately giving values closer to 2 in these areas.

Figure 4.17: Vertical and Horizontal slices of the Planes of Spheres phantom recon-
structed using Noo derivatives.

The scaled views also show the same kind of streak artefacts present in the Reduced

Ball phantom, although there doesn’t seem to be as much difference in these two

images. This reduction in the effects of the artefacts may be due to the reduced pitch

used for this simulation. It is also worth noting that for circular scan reconstructions of

this phantom, high cone angles produce large areas of negative values between spheres.

CHAPTER 4. NUMERICAL RESULTS 41

Figure 4.18: Vertical and Horizontal slices of the Planes of Spheres phantom recon-
structed using Katsevich derivatives.

CHAPTER 4. NUMERICAL RESULTS 42

Chapter 5

Real Scans

After testing my code on the numerical phantoms shown in chapter 4, I was able to

start work reconstructing real scan data. I have reconstructed scans of two samples,

a sample of platinum dust in suspension and a sample of two sapphire balls held in

styrofoam.

5.1 Differences From Simulations

Using real scan data introduces several additional sources of error to a reconstruction

algorithm. When modelling a phantom for numerical testing there are many simplifi-

cations made and aspects of the physics involved may be overlooked. This has been

explained very well by Nuyts et al. [13] in the context of modeling for iterative recon-

struction methods. In this section I will try to summarize some of the points made in

Nuyts’ paper which can also be applied to direct inversion formulas.

Several of the problems with real scan data occur at the detector plate. For example

detector pixels can sometimes affect each other in a process known as crosstalk, which

can cause blurring between pixels in a single view. A similar blurring effect can be

seen when the energy provided to a detector pixel does not dissipate properly between

views causing afterglow. Additionally the design of the detector can impact the images

taken. The scans used for the reconstructions in this dissertation were taken using a

machine which uses scintillators to convert X-rays to other forms of light which can be

optically magnified. Converting the X-rays is essentially a random process and there

is a small possibility that the X-ray will not be absorbed but rather scatter or pass

43

CHAPTER 5. REAL SCANS 44

through the detector. Finally, there is also the possibility of electronic readout noise

being added to the output of the detector.

In addition to noise effects produced at the detector there are several which orig-

inate at the X-ray source. Other than the fact that the source itself has finite size

rather than being a point, the main difficulty with this part of the process is produc-

ing an X-ray spectrum with a constant distribution of energies. As the production of

X-rays within the source is governed by a random process the energies of the photons

produced are random variables. This is in addition to the fact that in practice the

current supplied to the source is not constant adding more variation.

Errors can also originate within the field of view itself. One problem that can occur

is scattering of X-rays. When X-rays are deflected from there original path rather than

being absorbed they may create cupping or streak artefacts. This effect can also be

joined by beam hardening, which is caused by non-uniform attenuation of X-rays at

different energies. Rather than being an entirely linear process the absorption of

photons is dependent on their energy producing cupping and shadow artefacts. This

has been partially addressed in this dissertation for one sample reconstruction.

There are also problems more specific to the Katsevich reconstruction algorithm.

This is a theoretically exact inversion formula and only uses the minimum required

data meaning that errors in parameter measurements do not create blurring but instead

can cause significant errors in the reconstruction [17].

5.2 Platinum Dust Sample

The first real scan reconstructed was of platinum dust in suspension. This sample was

chosen as it contains many elements which are at the resolution limit of the detector.

Figures 5.1 and 5.2 show reconstructions using both Noo and Katsevich formulation

derivatives respectively. As with the last numerical phantom there appears to be little

difference using either derivative for this pitch value. However, in the rescaled images

in figs. 5.3 and 5.4, there do appear to be large streak artefacts as seen before. These

are also joined by slight starburst artefacts similar to those seen in other reconstruction

methods.

CHAPTER 5. REAL SCANS 45

Figure 5.1: Horizontal and vertical slices of reconstructed image of platinum dust in
suspension reconstructed using Noo derivatives.

CHAPTER 5. REAL SCANS 46

Figure 5.2: Horizontal and vertical slices of reconstructed image of platinum dust in
suspension reconstructed using Katsevich derivatives.

CHAPTER 5. REAL SCANS 47

Figure 5.3: Horizontal and vertical slices of reconstructed image of platinum dust in
suspension reconstructed using Noo derivatives rescaled to show details and artefacts.

CHAPTER 5. REAL SCANS 48

Figure 5.4: Horizontal and vertical slices of reconstructed image of platinum dust
in suspension reconstructed using Katsevich derivatives rescaled to show details and
artefacts.

CHAPTER 5. REAL SCANS 49

5.3 Sapphire Balls

One of the problems with using the platinum sample was the difficulty in removing

artefacts not specific to the reconstruction algorithm. A new sample was chosen to

check the effect of beam hardening on the Katsevich reconstruction algorithm. The

new target object consisted of two sapphire balls held in styrofoam, more closely

resembling the original reduced ball phantom and allowing for an empirical beam

hardening correction to be calculated. This was done by examining circular scan data

of this object and noting values produced where the balls passed in front of each other

to find the correction function

gBH(s, u, w) = g(s, u, w)(1 + 0.33[g(s, u, w)]2). (5.1)

Three different reconstructions were performed based on this target sample, each

using the Noo formulation of the derivative. First the original scan data, then data

corrected using the beam hardening correction in eq. (5.1) and finally a numerical

simulation of the sample to gauge additional effects on the real scan. Views from the

scan data for each of these three reconstructions can be seen in fig. 5.5. Figure 5.6

shows a comparison of the scan data with and without beam hardening correction.

As shown in this figure, the correction increases the measured attenuation values to

compensate for the non-linear absorption of X-rays.

Figure 5.7 shows the three different reconstructions scaled to their own maximum

and minimum values. At these scalings the reconstructions look mostly very similar.

The only difference easily visible is that the beam hardening correction increases the

maximum values to be closer to those present in the simulation. In order to see the

other differences in the images it is necessary to rescale.

Figures 5.8 to 5.10 show the same slices rescaled to show noise and negative arte-

facts. Looking at fig. 5.8 streak like artefacts can be seen. These are similar to those

seen in previous reconstructions but they are made worse by a region of beam hard-

ening artefacts between the two balls. The correction used for fig. 5.9 appears to have

brought this area much closer to the image expected from the simulation shown in

fig. 5.10. However, it is worth noting that the same curved streak artefacts are present

in all three reconstructions to varying extents.

CHAPTER 5. REAL SCANS 50

Figure 5.5: Single views of the scan data for the three Sapphire Ball reconstructions.
Original scan top left, beam hardening corrected data top right and simulated data
bottom.

Figure 5.6: Single views from the original scan and beam hardening corrected data
rescaled for comparison.

CHAPTER 5. REAL SCANS 51

Figure 5.7: Slices from the three Sapphire Sphere reconstructions. Original scan top
left, beam hardening corrected top right and numerical simulation bottom.

Figure 5.8: Scaled image of uncorrected Sapphire Ball reconstruction.

CHAPTER 5. REAL SCANS 52

Figure 5.9: Scaled image of beam hardening corrected Sapphire Ball reconstruction.

Figure 5.10: Scaled image of numerical Sapphire Ball reconstruction.

Chapter 6

Additional Observations and

Improvements

Over the course of this project I have had to make several observations and write

additional support code to help reconstruct both the numerical phantoms and the real

scan samples. In this chapter I will outline some of the most interesting additional

observations and achievements.

6.1 Overscan

One of the main selling points of the Katsevich algorithm is its efficiency. When

taking circular scan images of an object, additional redundant views must be taken

to account for the approximate nature of the inversion or provide a consistent system

of equations for iterative methods. By taking a helical scan of an object and using an

exact algorithm we avoid the need for additional redundant data to be collected.

However there are still limitations on the minimum range of scans which must

be taken to reconstruct any given slice. While the reconstruction of any given voxel

requires data from at most 180◦ plus the fan angle, this domain of dependence is not

necessarily symmetrical around the voxel. So for a fan angle of 40◦, while one voxel in

a layer may require data from −110◦ to +110◦ another may require data from −120◦ to

+100◦. This makes determining the range of views required for a given reconstruction

non-trivial.

The method I have implemented to determine this range is to calculate the surface

53

CHAPTER 6. ADDITIONAL OBSERVATIONS AND IMPROVEMENTS 54

traced out by all the Pi-Lines intersecting the FOV above a given source position, as

shown in fig. 6.1. This process is equivalent to calculating the top of the TD window

Figure 6.1: Minimum reconstructable heights in FOV for data starting at a given
helical source position

when placing the detector within the radius of the FOV. As such this surface can be

given, in a similar way to eqs. (2.5) and (2.6) by the equation

wsurf (u, v) =
P

2πRD
(u2 + v2)(π/2− arctan(u/v)). (6.1)

This has been implemented in the code shown in appendix B.3. Due to the symmetry of

the helix, this surface gives the shape of both the top and bottom of the reconstructable

volume.

To determine the required overscan for a given cylindrical volume I have imple-

mented code which produces the surface shown in fig. 6.1 and takes the maximum

value. The overscan at each end of the volume can then be calculated as

Overscan = max
u,v∈FOV

(
2πwsurf (u, v)

P

)
. (6.2)

CHAPTER 6. ADDITIONAL OBSERVATIONS AND IMPROVEMENTS 55

6.2 Scan Direction and Helix Type

Unlike with circular scan CT, the direction the source moves in plays an important role

in reconstructing helical scan CT. With the addition of motion in the vertical direction

there is the problem of whether the source is moving up or down and whether it is

moving along a left or right handed helix. These details impact several steps in the

reconstruction and pose a problem for maintaining a code base.

Reconstructing data taken on the same helix type, either right handed or left

handed, is relatively simple. Due to the discrete nature of the scans, reconstructing

data taken with the source moving down is equivalent to running the reconstruction

for the source moving up with the views taken in reverse order. Therefore to move

between the two you can just reverse the order of the views and run the same code.

Moving between left and right handed helices is more difficult. Changing between

these two helices changes the geometry of both the kappa lines and TD window on the

detector plate and can cause problems to reconstruction. Ideally we would like code

to be able to reconstruct both left and right handed helices.

The easiest way to get around this problem is through taking reflections of the

data, helix and sample. When a right handed helix is reflected in a plane it becomes

a left handed helix with the same radius and pitch. All that is needed is to show

that projections taken from the reflected helical source path of the reflected object are

equivalent to a simple reflection of the scan views. With this we can reconstruct the

reflected object and transform back to obtain the required reconstruction.

Notice reflections are isomorphic up to a rotation. Therefore, reflecting in the

plane defined by the source position and the line running vertically down the centre

of the detector plate is equivalent to the same reflection for any other source position.

This means we can perform the reconstruction by reflecting our views in the vertical

central line, reconstructing on the type of helix we have code for and then reflecting

the resulting image back into place.

As the real scans were provided for the source position moving down the opposite

helix type to that used in the code, both of these transformations were used to produce

results during this project.

CHAPTER 6. ADDITIONAL OBSERVATIONS AND IMPROVEMENTS 56

6.3 Streak Artefacts

One of the most common artefacts found in my reconstructions is the curved streak

artefact, usually coming from the top and bottom of the objects in question. These

streaks tend to be negative attenuation coefficients sweeping from the top and bottom

of the objects and have reached values in the order of 10% of the attenuation coefficient

of the object.

The position and angling of these artefacts suggests that it may have something

to do with the interpolation steps to and from the filtering lines. When interpolating

along a vertical edge the linear interpolation does not cross a discontinuity and can

relatively accurately estimate the value of the derivative at these points. However, at

the top of the projection the interpolation is acting between the very high magnitude

derivatives of the objects edge and the zero values outside. This discontinuity may

cause fill in which could be spread by the Hilbert transform step.

This may explain the difference in the level of artefacts seen between the reconstruc-

tions performed with both Katsevich’s and Noo’s versions of the derivative. As the

Katsevich derivative retains greater spacial resolution by providing higher derivatives

towards the edges of objects it also produces higher values along edges not tangential

to the interpolation direction. This means that although there is a sharper picture

with less of a halo effect there is also greater fill in near edges normal to the filtering

direction.

If this interpolation is the cause of the artefacts, reducing the detector pixel size

should produce improvements as a smaller proportion of the filtering line elements

will experience fill in. A more sophisticated interpolation scheme may also produce

improvements if it can take into account the Hölder Continuity of the data being

interpolated.

Some form of basis functions may also provide improvements. In finite elements

gradients are calculated, not through finite differences as with our code, but by adding

the gradients of the basis functions at any given point. This may be an interesting

way of taking the required derivative along the filtering lines. If an appropriate basis

function can be found, combining finite elements and finite differences it could be pos-

sible to find the derivative at the required filtering points and cut out the interpolation

CHAPTER 6. ADDITIONAL OBSERVATIONS AND IMPROVEMENTS 57

step entirely.

One method to test this hypothesis may be to produce a modified forward projec-

tion. There exist forward projectors with the capability to project rays close enough

to each other to take the required derivative directly. It would also be possible to

take these derivative projections on the filtering lines themselves so as to avoid any

interpolation before the Hilbert transform step.

6.4 Norms

One thing to keep in mind when discussing the errors of reconstructions is the method

with which we quantify errors in the data. One useful method of comparing recon-

struction algorithms is to compare line profiles, taking a single line to more easily view

noise and gradients. This allows for visual comparison of specific interest areas and

gives an idea of resolution and noise effects. However, these are qualitative measures

and highly susceptible to bias when choosing both the slice and line to be profiled.

Another popular method of quantifying error is to take the L2 norm. This form of

error norm gives a more accurate and balanced accounting of the error in an image,

however, it does not provide us with data about how well the image captures edges or

specifics from the geometry of our object.

A more accurate method is recommended by Natterer [11], namely to examine the

geometry of smooth objects with defined edges and take the norm for the Sobolev

space these kinds of objects are likely to inhabit. Doing this generally involves taking

the norm of a fractional Sobolev space as the smooth discontinuities in our images

tend to lead to pictures which are Hölder Continuous to some fractional power. This

is possibly the most accurate and objective method for determining the validity of a

reconstruction method. Again there are drawbacks though, including the difficulty in

implementing a fractional Sobolev space norm as well as the fact that it may be more

than required when comparing the reconstructions to discrete approximations of the

underlying continuous image.

This last point prompts the question of what our error norm is required to evaluate.

For example, the first measure of any reconstruction is usually how good it looks to

a human observer. This is measured by how easy it is for the human eye to detect

CHAPTER 6. ADDITIONAL OBSERVATIONS AND IMPROVEMENTS 58

edges, how smooth constant regions appear and the presence of noticeable artefacts.

Therefore, if we are trying to quantify how good the reconstruction will look to a human

observer the obvious norm to use would be one which mimics the human brain’s edge

detection filtering mechanisms as closely as possible.

Another way to choose the norm may be to instead look at the purpose of the scan.

With the large number of reconstruction methods available the purpose of the scan can

often determine the type of scan done as well as the reconstruction method. For scans

of time dependent or moving phenomena helical scan is usually chosen over circular

for its acquisition time, while the ability of iterative methods to resolve anisotropic

voxel grids may recommend it for specific purposes. Within practical uses of X-ray CT

it may be more useful to quantify the accuracy of certain features within the image,

rather than evaluate how close an image is likely to be to an exact reconstruction.

6.5 Katsevich Derivative Bounds

When examining the derivation of the derivative proposed by Katsevich [9] a problem

arrises with the proposed bounds on his parameter r. In this paper the bounds given

are derived purely from the relations between the weightings used in the interpolation

step rather than the full expressions of the basis functions themselves. When looking

at these values as functions of δ as shown in eq. (3.9) it becomes apparent that

r =
a3

δ
,

=
1

2∆s

(
2U ′sδ

∆u
+ 1

)
. (6.3)

Looking at r as a function of δ we must first find the acceptable bounds on delta

for this to represent interpolation rather than extrapolation. From fig. 6.2 it can bee

seen that there are four different scenarios to consider. When |U ′s∆s| > ∆u/2 we must

restrict delta such that the interpolation point remains between ±∆u/2. This gives

0 ≤ δ < ∆u/(2|U ′s|), so by plugging these limits in to eq. (6.3), for positive U ′s, r must

be in the range
1

2∆s
≤ r <

1

∆s
. (6.4)

Similarly, for negative U ′s, r must be in the range

0 < r ≤ 1

2∆s
. (6.5)

CHAPTER 6. ADDITIONAL OBSERVATIONS AND IMPROVEMENTS 59

Figure 6.2: Diagram showing the four possible scenarios for different values of U ′s.

The other two situations are covered by the case where |U ′s∆s| ≤ ∆u/2. This gives

0 ≤ δ < ∆s, so by plugging these limits in to eq. (6.3), for positive U ′s, r must be in

the range
1

2∆s
≤ r ≤ U ′s

∆u
+

1

2∆s
. (6.6)

Similarly, for negative U ′s, r must be in the range

U ′s
∆u

+
1

2∆s
. ≤ r ≤ 1

2∆s
. (6.7)

This shows that, while the bound suggested by Katsevich [9] is technically correct, it

is not restrictive enough in all cases and some choices of r may lead to extrapolation

rather than interpolation.

It is also worth noting that the choice r = 1/2∆s always corresponds to the choice

δ = 0. Choosing this value for delta means that the value produced is the average of

the directional derivatives of the bilinear interpolations on the regions either side of the

point (si, uk+0.5). This highlights the ability of basis functions to find approximations

to derivatives at general points. Using this it may be possible to merge the difference

step with the forward rebinning step using trilinear basis functions to approximate the

gradient at a general point and find

∂

∂s
g(s,θ) ' 1√

1 + (U ′s)
2 + (W ′

s)
2

1

U ′s

W ′
s

 · ∇G, (6.8)

CHAPTER 6. ADDITIONAL OBSERVATIONS AND IMPROVEMENTS 60

where G is the trilinear interpolant of g.

Chapter 7

Conclusions and Further Work

Over the course of this project I made substantial changes to Wunderlich’s code. In

order to start working on real scan data, the efficiency of the code has had to be

increased. Moving from using a 138 × 16 pixel detector to a 512 × 512 detector has

meant making changes such as: reorganising the code for ease of editing, adding code

to save intermediate steps for analysis, restructuring for loops, removing inefficient or

redundant code and vectorising operations to take advantage of MATLAB’s implicit

parallelism.

I have also produced solutions for problems when reconstructing different datasets.

For example a method for reconstructing data taken on any helical source curve. Other

solutions have resulted in the support files in appendix B, which calculate the maxi-

mum allowable pitch, minimum number of filter lines and maximum reconstructable

volume.

Sections of this dissertation also touch on analysis of the possible causes for arte-

facts and different methods for evaluating results. These sections are only a brief

outline and should be visited again in the future along with other possible research

areas such as: implementing image processing techniques such edge aware interpola-

tion [14] to increase resolution, modifying the smoothing function for backprojection

based on whether the backprojector is voxel driven or pixel driven, looking at how to

reduce the time required for π-line calculation and implementing code to optimise the

parameters used as stated in Varslot et al. [17].

Ultimately I have also been able to perform reconstructions on three numerical

61

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 62

simulations and two real samples using two implementations of the Katsevich recon-

struction algorithm. However, the most interesting and significant finding in this

dissertation may be the implication that taking the wrong bound whilst implementing

Katsevich’s form of the derivative can cause extrapolation rather than interpolation.

Therefore I would recommend research into the effect of using these different bounds

as well as the possibility of using trilinear basis functions to calculate the derivatives

without a further interpolation step.

Appendix A

Implementation Scripts

I have included the scripts required to reconstruct an image using Katsevich’s formu-

lation of the derivative to demonstrate most of the changes I have implemented. I

have also made efficiency changes to the Noo formulation code, resulting in code that

is mostly similar to these script files.

The support functions I have written can be found in appendix B. However, for

support functions findPI.m and PIfun.m or an implementation of Noo formulation

derivatives please see Wunderlich [18].

A.1 katsetup.m

%% Parameters

%

% This section sets up user options and geometry values for

% use in reconstructing with the Katsevich formula.

%

% The user options determine which optional steps will be

% performed as well as the location and names of save files.

%

% user defined parameters for geometry currently include

% the number of detector elements as well as the shape and

% position of the detector.

%

% Pitch is currently calculated to use close to the maximum

% available area for the TD window while limiting complexity

% of Pi -line calculations and giving room for pixels either

% side of the window.

%

% The number of filter/kappa lines is calculated to ensure

% lines are never more than 1 detector element appart ,

reducing

63

APPENDIX A. IMPLEMENTATION SCRIPTS 64

% the loss of resolution from interpolating to these lines.

%

% Running this script requires funtions calcPitch.m and

% calcFilterLineNo.m

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

% clear all

% gohome

% user options

PIfile = false; % use file for PI -intervals?

calc_phantom = true; % calculate the original phantom?

show_phantom = false; % plot original phantom?

show_recon = false; % plot reconstruction?

circle = true; % only reconstruct inside circle

inscribed in ROI?

LPfiltering = false; % LP filter after Hilbert transform?

pre_interp = false; % use preinterpolation option before

backprojection?

save_steps = true; % save intermediary steps

datdirpath = strcat(pwd ,’/data’); % the directory in which all

data files will be saved

PIdirpath = strcat(datdirpath ,’/PIfiles ’); % the directory in

which all PI files will be saved

datfilename = ’FPsaphire ’; % general name of scan files

PIfilename =’PIfile_zp ’; % general name of PI files

% user defined parameters for geometry

% Z = -0.25; % which slice to reconstruct?

% M = 512; % number of detector rows -- take to be even

N = 512; % number of detector columns

% height = 40; % detector height mm

R = 80; % helical scanning radius mm

D = 112.623; % source to detector distance mm

%

% min_obj_z_value = -0.46*12; % begining of the scanned object

% max_obj_z_value = -0.04*12; % end of the scanned object

SourcesPerTurn = 720; % number of source positions per turn (

even)

% delta_w = height/M; % detector element height

delta_w = 69.337/511;

delta_u = delta_w; % detector element width

delta_s = (2*pi /360) /3; % stepsize between source positions

APPENDIX A. IMPLEMENTATION SCRIPTS 65

width = N*delta_u;

alpha_m = atan(width /(2*D)); % half fan angle for FOV

r = R*sin(alpha_m); % FOV radius

ROI = [-r r -r r]; % region of interest

% P = calcPitch(height ,R,D,N); % helical pitch (per turn)

% P = 46.527410053023878;

P = 45.708479106849403;

h = P/(2*pi); % alternate expression for pitch (per radian)

% M = minRows(R,D,P,delta_w ,width);

M = 322;

height = M*delta_w;

L = calcFilterLineNo(height ,R,D,M,P); % number kappa -lines

on detector (even)

% these are testing variables left over from the orriginal

Wunderlich code

Q = 2; % pre -interpolate to a Q-times denser grid

mexp = 0; % phantom will be mexp -1 times differentiable

delta = 0; % detector shift (usually either 0 or 1/4)

A.2 katinit.m

%% initialization and preprocessing

%

% This section sets up voxel , detector element and source

% possitions as well as arrays and coordinate systems for

% further calculations.

%

% It also determines the filepath for Piline files based on

% the current geometry for testing purposes.

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

s_range = [-128.50*pi /180 ,131.50* pi /180];

% interval of s values on helix

s = s_range (1):delta_s :(s_range (2)); % s samples

K = length(s); % total number of source positions

hx = R*delta_u/D; % stepsize for x-dim

hy = hx; % stepsize for y-dim

APPENDIX A. IMPLEMENTATION SCRIPTS 66

hz = hx;

center = [(ROI (1)+ROI (2)), (ROI (3)+ROI (4))]/2; % center of

ROI

% radius = min(ROI(2)-ROI(1),ROI(4)-ROI(3))/2; % radius of

inscribed circle

radius = R*sin(atan (144* delta_u/D));

MX = 2*ceil(radius/hx); % x-dim of reconstruction matrix

MY = MX; % y-dim of reconstruction matrix

% x = ROI(1)+hx*(0:MX -1);

x = zeros(1,MX);% range of x-values in reconstruction

x(MX /2+1:MX)=hx/2:hx:hx/2+(MX/2-1)*hx;

x(1:MX/2) = -fliplr(x(MX /2+1: MX));

y = x’; % range of y-values in reconstruction

% z_slices=min_obj_z_value+hz/2:hz:max_obj_z_value;

z_slices=zeros (1 ,51);

z_slices (27:51)=hz:hz:hz*25;

z_slices (1:25)=-fliplr(z_slices (27:51));

z_slices=z_slices+s(391)*h;

min_obj_z_value = z_slices (1) -(hz/2); % begining of the

scanned object

max_obj_z_value = -1* min_obj_z_value; % end of the scanned

object

PIfilepath = strcat(PIdirpath ,’/pitch_ ’,num2str(P) ,...

’/hradius_ ’,num2str(R),’/hstep_ ’,num2str(delta_s) ,...

’/ROI_x_ ’,num2str(x(1)),’_’,num2str(x(length(x))),’_y_’

,...

num2str(y(1)),’_’,num2str(y(length(y))) ,...

’/’,num2str(MX),’x’,num2str(MY) ,...

’/minz_’,num2str(min_obj_z_value));

u = zeros(N,1); % u samples

w = zeros(1,M); % w samples

for j=1:N,

u(j) = ((j -0.5)+delta -N/2)*delta_u;

end

for j=1:M,

w(j) = ((j -0.5)-M/2)*delta_w;

end

SourcePos = zeros(K,3); % source positions

for i=1:K,

% the source is currently moving allong an anticlockwise

helix as long

% as h is positive

APPENDIX A. IMPLEMENTATION SCRIPTS 67

SourcePos(i,1) = R*cos(s(i));

SourcePos(i,2) = R*sin(s(i));

SourcePos(i,3) = h*s(i);

end

% detector coordinate unit vectors

e_u = zeros (3,1); e_v = zeros (3,1); e_w = [0;0;1];

theta = zeros (3,1); % direction unit vector

A.3 katdata.m

%% compute/load cone beam data

%

% This section loads or calculates forward projection data

% for use in the reconstruction.

%

% Currently data is calculated for an anticlockwise helix by

% tracing one ray per detector element using the function

% redball_forward.m. This function calculates the intersection

% of a given ray with the analytic phantom and returns an

% attenuation value.

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

% check for or create a directory to store the scan data

scanfilepath = strcat(datdirpath ,’/scanfiles/z_’,num2str(

min_obj_z_value)...

,’_’,num2str(max_obj_z_value));

if ~(exist(scanfilepath ,’dir’))

mkdir(datdirpath ,strcat(’scanfiles/z_’,num2str(

min_obj_z_value)...

,’_’,num2str(max_obj_z_value)))

end

% if there exists a scan file in the designated path load the

file.

% Otherwise start to calculate a new forward projection.

if exist(strcat(scanfilepath ,’/’,datfilename ,’.mat’),’file’)

disp(’loading cone -beam data’)

load(strcat(scanfilepath ,’/’,datfilename),’g’);

% add noise

% noise = rand(K,N,M)*.01;

% g = g+noise;

else

APPENDIX A. IMPLEMENTATION SCRIPTS 68

g = zeros(K,N,M); % array of x-ray data -- variables are(s

,u,w)

disp(’computing cone -beam data’)

fprintf(’\ncalculating %d views\n’,K);

% cm is a value relating to the differentiability of the

phantom in use.

% it was evaluated inside the inner for loop which

drastically increased

% run time.

cm = (2^(2* mexp +1))*(gamma(mexp +1) ^2)/gamma (2* mexp +2);

datatime = 0;

% calculate the attenuation of a single ray hitting each

detector

% element at each step along the helix.

for m=1:K, % s-loop

fprintf(’calculating view %d of %d\n’,m,K);

tic;

% basis vectors on the detector plane

e_u = [-sin(s(m));cos(s(m));0];

e_v = [-cos(s(m));-sin(s(m));0];

for i=1:N, % u-loop

for j=1:M, % w-loop

% unit vector in direction of measured ray.

theta = (u(i)*e_u+D*e_v+w(j)*e_w)/sqrt(u(i)^2+D

^2+w(j)^2);

% calculate attenuation.

g(m,i,j) = redball_forward(SourcePos(m,:),theta

,mexp ,cm);

end

end

newtime = toc;

fprintf(’timetaken for view = %g\n’,newtime);

datatime = datatime + newtime;

fprintf(’total time taken = %g\n\n’,datatime);

end

clear cm newtime

save(strcat(scanfilepath ,’/’,datfilename),’g’);

end

% clear redundant variables.

clear a theta mexp e_u e_v e_w

APPENDIX A. IMPLEMENTATION SCRIPTS 69

A.4 altkatdiff.m

%% compute derivatives

%

% This section loads or calculates components of derivatives

% with respect to helical step at constant ray dirrection

% using the modified chain rule method given by Katsevich

2011.

%

% The array g1us gives the derivative with respect to s at

% constant height on the detector. These values are given at

% points half way between orriginal detector columns.

% (ie. (s , u+0.5 , w))

%

% The array g1w gives the derivative with respect to w at

% constant helical step. These values are given at points half

% way between detector columns and rows.

% (ie. (s , u+0.5 , w+0.5))

%

% The desired derivative will be calculated on the filtering

% lines by linear interpolation at the forward rebinning step.

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

disp(’computing derivatives ’)

% shift s,u,and w arrays to agree with derivative computation

s = s(2:K-1);

u = u(1:(length(u) -1))+delta_u /2;

% w = w+delta_w /2;

if exist(strcat(datdirpath ,’/intsteps/’,datfilename ,’/g1us’

,...

’.mat’),’file’)

load(strcat(datdirpath ,’/intsteps/’,datfilename ,’/g1us’));

else

% a=1;

b=(1/ delta_s);

g1us = zeros(K-2,N-1,M); % array of derivatives

% calculate the s derivative using the formula 2.6 in

Katsevich ’s

% note on computing the derivative at a constant

dirrection 2011.

APPENDIX A. IMPLEMENTATION SCRIPTS 70

% here the interpolation value r=a3/delta has been taken

as 1 for

% simplicity.

for i=1:(N-1)

g1us(:,i,:) =((g(3:K,i+1,:)-g(1:K-2,i,:))...

+(b - 1)*(g(3:K,i,:)-g(1:K-2,i+1,:))...

+(b + 2*(u(i)^2+D^2)/(D*delta_u) - 2)*...

(g(2:K-1,i+1,:)-g(2:K-1,i,:)));

end

g1us =0.5* g1us;

% saving the derivatives

if save_steps

if ~(exist(strcat(datdirpath ,’/intsteps/’,datfilename)

,’dir’))

mkdir(strcat(datdirpath ,’/intsteps ’),datfilename)

end

save(strcat(datdirpath ,’/intsteps/’,datfilename ,’/g1us

’),’g1us’);

end

end

if exist(strcat(datdirpath ,’/intsteps/’,datfilename ,’/g1w’ ,...

’.mat’),’file’)

load(strcat(datdirpath ,’/intsteps/’,datfilename ,’/g1w’));

else

g1w = zeros(K-2,N-1,M-1);

% calculate the w derivative using the formula 2.7 in

Katsevich ’s

% note on computing the derivative at a constant

dirrection 2011.

% essentially takes dirrect difference and linearly

interpolates in u

% to find the value at interlaced possitions.

for i=1:(N-1)

for j=1:(M-1)

g1w(:,i,j) = (u(i)*(w(j)+delta_w)/D) * (g(2:K-1,i,

j+1) + ...

g(2:K-1,i+1,j+1) - g(2:K-1,i,j) -

g(2:K-1,i+1,j));

end

end

g1w=g1w /(2* delta_w);

% saving the derivatives

if save_steps

APPENDIX A. IMPLEMENTATION SCRIPTS 71

if ~(exist(strcat(datdirpath ,’/intsteps/’,datfilename)

,’dir’))

mkdir(strcat(datdirpath ,’/intsteps ’),datfilename)

end

save(strcat(datdirpath ,’/intsteps/’,datfilename ,’/g1w’

),’g1w’);

end

end

clear g;

A.5 altkatlength.m

%% length -correction weighting

%

% This section loads or calculates the length correction step.

% Length correction performed seperately on us and w

derrivatives.

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

disp(’Length correcting ’)

if exist(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g2us’,’.mat’),’file’)

load(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g2us’));

else

% us length correction

g2us = zeros(size(g1us));

for i=1:(size(g1us ,2)), % u-loop

for j=1:(size(g1us ,3)), % w-loop

g2us(:,i,j) = g1us(:,i,j)*D/sqrt(u(i)^2+D^2+w(j)^2);

end

end

% saving the derivatives

if save_steps

if ~(exist(strcat(datdirpath ,’/intsteps/’,datfilename)

,’dir’))

mkdir(strcat(datdirpath ,’/intsteps ’),datfilename)

end

save(strcat(datdirpath ,’/intsteps/’,datfilename ,...

APPENDIX A. IMPLEMENTATION SCRIPTS 72

’/g2us’),’g2us’);

end

end

clear g1us;

if exist(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g2w’,’.mat’),’file’)

load(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g2w’));

else

% w length correction.

g2w = zeros(size(g1w));

for i=1:(size(g1w ,2)), % u-loop

for j=1:(size(g1w ,3)), % w-loop

g2w(:,i,j) = g1w(:,i,j)*D/sqrt(u(i)^2+D^2+(w(j)+0.5*

delta_w)^2);

end

end

% saving the derivatives

if save_steps

if ~(exist(strcat(datdirpath ,’/intsteps/’,datfilename)

,’dir’))

mkdir(strcat(datdirpath ,’/intsteps ’),datfilename)

end

save(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g2w’),’g2w’);

end

end

clear g1w;

A.6 altkatforwardrebinn.m

%% forward height rebinning

%

% This section loads or calculates the desired s derivative

% at heights corresponding to the intersection of detector

% columns with the filtering lines (kappa lines).

%

% This is done by combining linear interpolation along the w

% axis of the detector for the g2us derivative with nearest

% neighbour interpolation for the g2w derivative.

%

% Henry Tregidgo , July 2013

APPENDIX A. IMPLEMENTATION SCRIPTS 73

%

% Based on code by Adam Wunderlich

%

%%%

disp(’forward height rebinning ’)

psi = zeros(L,1); % psi values of L different kappa lines

w_k = zeros(N-1,L); % matrix of w values for the lth kappa

line at u=u(n)

delta_psi = (pi+2* alpha_m)/(L-1);

for j=1:L,

psi(j) = -pi/2-alpha_m +(j-1)*delta_psi;

end

for i=1:(N-1), % u-loop

w_k(i,:)=D*h/R*(psi+psi./tan(psi)*u(i)/D);

end

if exist(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g3_alt ’,’.mat’),’file’)

load(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g3_alt ’));

else

g3alt = zeros(K-2,N-1,L); %variables are (s,u,psi)

if mod(M,2) ~= 0,

disp(’error: M not even!’);

end

for n=1:(N-1) % u loop

fprintf(’rebinning column number %d\n’,n);

for l=1:L % psi loop

% position of the w_k value relative to the vector

w of node

% points

posinwvector = (w_k(n,l)-w(1))/delta_w + 1;

wf = floor(posinwvector);

% index of lower point for interpolation

j = max(1,wf);

if j >= M

g3alt(:,n,l) = g2us(:,n,M)+g2w(:,n,M-1);

else

% calculate nearest neighbour w derivative

index

wr = round(posinwvector -0.5);

k = max(1,wr);

APPENDIX A. IMPLEMENTATION SCRIPTS 74

t = posinwvector - j;

% combine nearest neighbour w derivative with

linear

% interpolant of us derivative.

g3alt(:,n,l) = g2w(:,n,k) + (1 - t)*g2us(:,n,j

) + t*g2us(:,n,j+1);

end

end

end

% saving the derivatives

if save_steps

if ~(exist(strcat(datdirpath ,’/intsteps/’,datfilename)

,’dir’))

mkdir(strcat(datdirpath ,’/intsteps ’),datfilename)

end

save(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g3_alt ’),’g3alt’);

end

end

clear g2us

clear g2w

A.7 altkathilbert.m

%% 1D hilbert transform in u at constant psi

%

% This section loads or calculates the 1D Hilbert transform

% of the derivatives. This transform is computed along the

% kappa lines defined by the angle psi. As the derivatives

% have been rebinned this is equivalent to taking the

transform

% allong the 3rd dimension of the array g3alt.

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

disp(’computing 1D hilbert transforms ’)

if exist(strcat(datdirpath ,’/intsteps/’,datfilename ,’/g4_alt ’

,...

’.mat’),’file’)

APPENDIX A. IMPLEMENTATION SCRIPTS 75

load(strcat(datdirpath ,’/intsteps/’,datfilename ,’/g4_alt ’))

;

else

g4alt = zeros(size(g3alt)); %variables are (s,u,psi)

q = N-1;

h_ideal = zeros (2*q+1,1); %truncated ideal filter response

(non -causal)

for n=(-q):q,

if mod(n,2) == 0, % n even

h_ideal(n+q+1) = 0;

else % n odd

h_ideal(n+q+1) = 2/(pi*n);

end

end

win = real(fftshift(ifft(fftshift(hanning (2*q+1)))));

kernel = conv(win ,h_ideal);

kernel = kernel(q+1:3*q+1);

for m=1:(size(g3alt ,1)), % s-loop

if mod(m,10)==0,

fprintf(’%d convolutions completed\n’,m);

end

for j=1:L, % psi -loop

g_filt = conv(kernel ,g3alt(m,:,j)); % length 3q

g4alt(m,:,j) = g_filt(q+1:2*q); % take middle q

samples

end

end

% saving the derivatives

if save_steps

if ~(exist(strcat(datdirpath ,’/intsteps/’,datfilename)

,’dir’))

mkdir(strcat(datdirpath ,’/intsteps ’),datfilename)

end

save(strcat(datdirpath ,’/intsteps/’,datfilename ,’/

g4_alt ’),’g4alt ’);

end

end

clear g3alt

A.8 altkatbackrebinn.m

%% backward height rebinning

%

APPENDIX A. IMPLEMENTATION SCRIPTS 76

% This section loads or calculates the the values of the

% filtered data on a regular grid. This is to more easily

% facilitate the process of backprojection.

%

% As the formula relating psi to w is non -linear and inverting

% may not give the data for the psi with smallest absolute

value ,

% this rebinning step is performed by iterating through psi

% and performing linear interpolation.

%

% By checking the values of w at a given u value for

successive

% kappa lines we avoid dirrectly calculating the needed psi

% values and can easily ensure we only use the value of psi

% with smallest absolute value.

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

disp(’backward height rebinning ’)

% use linear interpolation as decribed by Noo et al. rather

than

% solving the required nonlinear equation

g5alt = zeros(K-2,N-1,M); % variables are (s,u,w)

if exist(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g5_alt ’,’.mat’),’file’)

load(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g5_alt ’));

else

for i=N/2:(N-1), % (positive) u-loop

if(mod(i-N/2,10) ==0)

fprintf(’rebinned %d positive u columns\n’,i-N/2);

end

% In this half of the detector plane kappa lines

should only cross

% towards the top of the detector so we start from the

bottom and

% work upwards.

psiloopstart =1;

for j=1:M, % w-loop

for l=psiloopstart :(L-1), %psi -loop

if (w(j)>= w_k(i,l) && w(j)<= w_k(i,l+1)),

c = (w(j) - w_k(i,l))/(w_k(i,l+1) - w_k(i,

l));

g5alt(:,i,j) = (1-c)*g4alt(:,i,l) + c*

g4alt(:,i,l+1);

APPENDIX A. IMPLEMENTATION SCRIPTS 77

% As less negative values of w should have

less

% negative values of psi there is no need

to

% re-check earlier values of psi.

psiloopstart=l;

break

end

end % psi -loop

end % w-loop

end % u-loop

for i=1:(N/2-1), % (negative) u-loop

if(mod(i,10) ==0)

fprintf(’rebinned %d negative u columns\n’,i);

end

% In this half of the detector plane kappa lines

should only cross

% towards the bottom of the detector so we start from

the top and

% work downwards.

psiloopstart=L;

for j=M:-1:1, % w-loop

for l=psiloopstart :-1:2, %psi -loop

if (w(j)>= w_k(i,l-1) && w(j)<= w_k(i,l)),

c = (w(j) - w_k(i,l-1))/(w_k(i,l) - w_k(i,l-1))

;

g5alt(:,i,j) = (1-c)*g4alt(:,i,l-1) + c*g4alt

(:,i,l);

psiloopstart=l;

break;

end

end % psi -loop

end % w-loop

end % u-loop

% saving the derivatives

if save_steps

if ~(exist(strcat(datdirpath ,’/intsteps/’,datfilename)

,’dir’))

mkdir(strcat(datdirpath ,’/intsteps ’),datfilename)

end

save(strcat(datdirpath ,’/intsteps/’,datfilename ,...

’/g5_alt ’),’g5alt’);

end

end

clear g4alt

APPENDIX A. IMPLEMENTATION SCRIPTS 78

A.9 katpiline.m

%% find PI -line intervals for each x in reconstruction region

%

% looks for the pi line end points for lines intersecting the

% individual pixels. If circle = true it only looks for those

% intersecting the field of view.

%

% If there already exists a pi file for the current slice and

% geometry it will load the file instead of creating a new one

%

% This script requires the functions findPI.m and PIfun.m

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

tic

PI = zeros(MX,MY ,2); % variables: (x,y,[s_b s_t])

% the location of the slice in terms of voxel layers

planenumber=round ((Z-min_obj_z_value +(hz/2))/hz);

% identification number for filing

planeident=num2str(planenumber);

if ~exist(PIfilepath ,’dir’)

mkdir(PIfilepath)

end

if exist(strcat(PIfilepath ,’/’,PIfilename ,planeident ,’.mat’),’

file’)

load(strcat(PIfilepath ,’/’,PIfilename ,planeident));

else

disp(’finding PI -line intervals with the Champley method ’)

for i=1:MX ,

if (mod(i,10) ==0)

fprintf(’%d rows completed\n’,i);

end

parfor j=1:MY ,

if circle ,

if (x(i)^2 + y(j)^2) > radius^2,

continue;

end

end

PI(i,j,:) = findPI(P,R,delta_s ,[x(i) y(j) Z]);

end

end

APPENDIX A. IMPLEMENTATION SCRIPTS 79

save(strcat(PIfilepath ,’/’,PIfilename ,planeident),’PI’);

end

toc

A.10 altkatbackproject.m

%% backprojection step

% use trap. rule to implement eqtn (73) in Noo et. al.

%

% This section backprojects the data in g5 to build a

% reconstructed slice.

%

% As suggested in Noo et. al. smoothing is applied to the

% edges of the Tam Danielson window to avoid production of

% artefacts. However , this smoothing is done in the s

direction

% which requires the use of pi line intervals for the

% reconstruction.

%

% Smoothing can be applied to the window in other ways but

% has been found to produce worse results due to dependence

% on regularisation variables.

%

% Henry Tregidgo , July 2013

%

% Based on code by Adam Wunderlich

%

%%%

tic

if ~exist(’F’,’var’)

F = zeros(MX ,MY ,length(z_slices)); % recontruction array

(x,y,z)

end

F(:,:, planenumber)=zeros(MX,MY);

u_length=size(g5alt ,2);

w_length=size(g5alt ,3);

disp(strcat(’backprojecting slice ’,num2str(planenumber)))

disp(’completed reconstructing x column:’)

for i=1:MX , % x-loop

if mod(i,50)==0,

disp(i)

end

for j=1:MY , % y-loop

if circle ,

APPENDIX A. IMPLEMENTATION SCRIPTS 80

if (x(i)^2 + y(j)^2) > radius^2,

continue;

end

end

sb = PI(i,j,1); % bottom of PI segment

st = PI(i,j,2); % top of PI segment

% find indices of s corresponding to sb and st

k_sb = (sb -s_range (1))/delta_s +1;

k_st = (st -s_range (1))/delta_s +1;

% backproject

for k=(floor(k_sb) -2):(ceil(k_st)+2), % integrate over

PI -line

vstar = R - x(i)*cos(s(k)) - y(j)*sin(s(k));

ustar = D*(-x(i)*sin(s(k))+y(j)*cos(s(k)))/vstar;

wstar = D*(Z-h*s(k))/vstar;

% find nearest neightbor

usn = round((ustar -u(1))/delta_u +1);

usn = max(1,usn);

usn = min(u_length ,usn);

wsn = round((wstar -w(1))/delta_w +1);

wsn = max(1,wsn);

wsn = min(w_length ,wsn);

gi_near = g5alt(k,usn ,wsn);

% determine rho

% weight the endpoints of the PI-line in a smooth

fashion

d_in = (s(k)-sb)/delta_s;

d_out = (st - s(k))/delta_s;

if (s(k) <= (sb - delta_s))

rho = 0;

elseif ((sb - delta_s) < s(k)) && (s(k) <= sb)

rho = .5*(1+ d_in)^2;

elseif (sb < s(k)) && (s(k) <= (sb+delta_s))

rho = .5 + d_in - .5* d_in ^2;

elseif (sb + delta_s < s(k)) && (s(k) <= (st -

delta_s))

rho = 1;

elseif ((st - delta_s) < s(k)) && (s(k) <= st)

rho = .5 + d_out - .5* d_out ^2;

elseif (st < s(k)) && (s(k) <= (st + delta_s))

rho = .5*(1+ d_out)^2;

elseif (s(k) > (st + delta_s))

rho = 0;

end

deltaF = rho*delta_s*gi_near/vstar;

F(i,j,planenumber) = F(i,j,planenumber)+deltaF;

end % end k-loop

end % end y-loop

end % end x-loop

APPENDIX A. IMPLEMENTATION SCRIPTS 81

F(:,:, planenumber) = F(:,:, planenumber)./(2* pi);

toc

disp(’Done!’)

Appendix B

Support Files

B.1 calcPitch.m

function [P] = calcPitch(height ,R,D,N)

%CALCPITCH Calculate Pitch for helix using voxel height & TD

window on a square detector

%

% height - height dimesion of square detector panel

% R - Radius of Helix

% D - Source to detector distance

% N - Number of detector rows/columns

%

% uses formula from Noo et al.

%

% P = (height * R * D * pi) / ((u^2+D^2)*(pi/2 + alpha))

%

% where u is the minimum horizontal coordinate and alpha is

the half fan

% angle.

%

% Henry Tregidgo (27 Jun 2013)

% calculate detector element dimensions

step = height/N;

% find voxel dimensions assuming cubic and that detector

element dimensions

% are a simple magnification.

vox = step*R/D;

% we want there to be extra rows outside the TD window to

allow for taking

% derivatives and interpolating to kappa lines.

desiredTDHeight = height - 3*step;

% calculate the minimum horizontal coordinate and perform part

of the

% calculation.

82

APPENDIX B. SUPPORT FILES 83

part1 = desiredTDHeight /((height /2)^2 + D^2);

% calculate half fan angle and max psi angle for kappa lines.

maxPsi = (pi/2)+atan(height /(2*D));

% calculate the maximum Pitch given the constraints.

P = part1*R*D*pi/maxPsi;

% reduce P to be a multiple of voxel height to reduce

complexity of Pi-Line

% calculations.

temp = P/vox;

temp1 = floor(temp);

P = temp1*vox;

end

B.2 calcFilterLineNo.m

function [L] = calcFilterLineNo(height ,R,D,M,P)

%CALCFILTERLINENO calculate number of filter lines needed

%

% calculates the minimum even number of filter lines needed to

make sure

% that the vertical distance between lines is never greater

than the

% detector pixel height.

%

% height - height dimesion of detector panel

% R - Radius of Helix

% D - Source to detector distance

% N - Number of detector rows

%

% Henry Tregidgo July 2013

step = height/M;

alpha = atan(height /(2*D));

psi = ((pi/2) + alpha);

a = D*P/(2*pi*R);

b = -(height)/(2*D);

temp = tan(psi)-psi*sec(psi)*sec(psi);

temp1 = temp/(tan(psi)*tan(psi));

wdiff = a*(1+b*temp1);

APPENDIX B. SUPPORT FILES 84

L=2*psi*wdiff/step;

L=ceil(L);

if mod(L,2)

L=L+1;

else

L=L+2;

end

end

B.3 dependencesurf.m

function [wtop , depsurf] = dependencesurf(R,P,radfov)

%DEPENDENCESURF return minimum surface for given minimum angle

% code written to draw the surface describing the ends of a

% reconstructable cylinder within a given helical geometry

%

% R - radius of the helical path

% P - pitch of the helical path

% x - vector of node positions in grid within the

% mask of the field of view.

% radfov - radius of field of view.

% D - source to row distance.

% wtop - height of piline intersection

%

x=-radfov:radfov /512: radfov;

wtop = zeros (1025);

for i = 1:1025;

D = R + x(i);

r=x.^2+D^2;

wtop(i,:)=(P/(2*pi*R*D))*r.*((pi/2)-atan(x/D));

end

depsurf =zeros(size(wtop));

for i =1:1025

for j =1:1025

if ((i-513) ^2 + (j-513) ^2 < 512^2)

depsurf(i,j)=wtop(i,j);

else

depsurf(i,j)=NaN;

end

APPENDIX B. SUPPORT FILES 85

end

end

end

Appendix C

Reconstruction Parameters

Table C.1: Parameters for Reduced ball reconstructions. All lengths in mm.

Parameter Reduced Ball Value

Source to detector distance 80
Source to axis of rotation 50
Pitch per full turn 40.4297
Detector height 40
Source positions 576
Helical step (radians) 0.0123
Detector rows 512
Detector columns 512
Filter lines 742

Table C.2: Parameters for Planes of Spheres reconstructions. All lengths in mm.

Parameter Planes of Spheres Value

Source to detector distance 77.5
Source to axis of rotation 7.5
Pitch per full turn 3.3649
Detector height 27.436
Source positions 721
Helical step (radians) 0.0087
Detector rows 202
Detector columns 512
Filter lines 194

86

APPENDIX C. RECONSTRUCTION PARAMETERS 87

Table C.3: Parameters for Platinum Dust reconstructions. All lengths in mm.

Parameter Platinum Dust Values

Source to detector distance 77.5
Source to axis of rotation 7.5
Pitch per full turn 3.3649
Detector height 27.4091
Source possitions 721
Helical step (radians) 0.0087
Detector rows 202
Detector columns 512
Filter lines 194

Table C.4: Parameters for Sapphire Balls reconstructions. All lengths in mm.

Parameter Sapphire Balls Values

Source to detector distance 112.6
Source to axis of rotation 80
Pitch per full turn 45.7085
Detector height 43.6918
Source possitions 781
Helical step (radians) 0.0058
Detector rows 322
Detector columns 512
Filter lines 372

Bibliography

[1] P. E. Danielsson, P. Edholm, J. Eriksson, and M. Magnusson Seger. Towards

exact reconstruction for helical cone-beam scanning of long objects. a new detector

arrangement and a new completeness condition. In D. Townsend and P. Kinahan,

editors, Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear

Medicine, pages 141–4, Pittsburgh, PA, 1997.

[2] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative

Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University

Press, 2005.

[3] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam algorithm. J.

Opt. Soc. Am. A, 1(6):612–619, Jun 1984. doi: 10.1364/JOSAA.1.000612. URL

http://josaa.osa.org/abstract.cfm?URI=josaa-1-6-612.

[4] P. Grangeat. Mathematical Framework of Cone Beam 3D Reconstruction via

the 1st Derivative of the Radon-Transform. Lecture Notes In Mathematics, 1497:

66–97, 1991. ISSN 0075-8434.

[5] F. John. The ultrahyperbolic differential equation with four independent vari-

ables. Duke Math. J., 4(2):300–322, 1938.

[6] W. Kalender. Computed tomography: fundamentals, system technology, image

quality, applications, volume 1. Wiley-VCH, 2000.

[7] A. Katsevich. Theoretically exact filtered backprojection-type inversion algorithm

for spiral ct. SIAM Journal on Applied Mathematics, 62(6):2012–2026, 2002.

[8] A. Katsevich. An improved exact filtered backprojection algorithm for spi-

ral computed tomography. Advances in Applied Mathematics, 32(4):681 – 697,

88

http://josaa.osa.org/abstract.cfm?URI=josaa-1-6-612

BIBLIOGRAPHY 89

2004. ISSN 0196-8858. doi: 10.1016/S0196-8858(03)00099-X. URL http:

//www.sciencedirect.com/science/article/pii/S019688580300099X.

[9] A. Katsevich. A note on computing the derivative at a constant direction.

Physics in Medicine and Biology, 56(4):N53, 2011. URL http://stacks.iop.

org/0031-9155/56/i=4/a=N01.

[10] A. A. Kirillov. On a problem of im gelfrand. Soviet Math., 2:268–269, 1961.

[11] F. Natterer. A sobolev space analysis of picture reconstruction. SIAM Journal

on Applied Mathematics, 39(3):402–411, 1980.

[12] F. Noo, J. Pack, and D. Heuscher. Exact helical reconstruction using native

cone-beam geometries. Physics in Medicine and Biology, 48(23):3787, 2003. URL

http://stacks.iop.org/0031-9155/48/i=23/a=001.

[13] J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman. Modelling

the physics in the iterative reconstruction for transmission computed tomography.

Physics in Medicine and Biology, 58, 2013.

[14] Y. Shi, X. Li, B. Yin, and D. Kong. Image interpolation using reproducing kernel

filter and texture orientation. In 2006 8TH INTERNATIONAL CONFERENCE

ON SIGNAL PROCESSING, VOLS 1-4, pages 1310–1313, 2006. ISBN 978-0-

7803-9736-1.

[15] K. C. Tam, S. Samarasekera, and F. Sauer. Exact cone beam ct with a spiral

scan. Physics in Medicine and Biology, 43(4):1015, 1998. URL http://stacks.

iop.org/0031-9155/43/i=4/a=028.

[16] H. Tuy. An inversion formula for cone-beam reconstruction. SIAM Journal on

Applied Mathematics, 43(3):546–552, 1983. doi: 10.1137/0143035. URL http:

//epubs.siam.org/doi/abs/10.1137/0143035.

[17] T. Varslot, A. Kingston, G. Myers, and A. Sheppard. High-resolution helical cone-

beam micro-ct with theoretically-exact reconstruction from experimental data.

Medical Physics, 38:5459, 2011. URL http://online.medphys.org/resource/

1/mphya6/v38/i10/p5459_s1.

http://www.sciencedirect.com/science/article/pii/S019688580300099X
http://www.sciencedirect.com/science/article/pii/S019688580300099X
http://stacks.iop.org/0031-9155/56/i=4/a=N01
http://stacks.iop.org/0031-9155/56/i=4/a=N01
http://stacks.iop.org/0031-9155/48/i=23/a=001
http://stacks.iop.org/0031-9155/43/i=4/a=028
http://stacks.iop.org/0031-9155/43/i=4/a=028
http://epubs.siam.org/doi/abs/10.1137/0143035
http://epubs.siam.org/doi/abs/10.1137/0143035
http://online.medphys.org/resource/1/mphya6/v38/i10/p5459_s1
http://online.medphys.org/resource/1/mphya6/v38/i10/p5459_s1

BIBLIOGRAPHY 90

[18] A. J. Wunderlich. The Katsevich Inversion Formula for Cone-Beam Computed

Tomography. MSc. dissertation, Oregon State University, 2006.

