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COMPUTING THE WEIGHTED GEOMETRIC MEAN OF TWO LARGE-SCALE
MATRICES AND ITS INVERSE TIMES A VECTOR

MASSIMILIANO FASI∗ AND BRUNO IANNAZZO†

Abstract. We investigate different approaches for the computation of the action of the weighted geometric mean of
two large-scale positive definite matrices on a vector. We derive several algorithms, based on numerical quadrature and
the Krylov subspace, and compare them in terms of convergence speed and execution time. By exploiting an algebraic
relation between the weighted geometric mean and its inverse, we show how these methods can be used for the solution
of large linear system whose coefficient matrix is a weighted geometric mean. We derive two novel algorithms, based
on Gauss–Jacobi quadrature, and tailor an existing technique based on contour integration. On the other hand, we
adapt several existing Krylov subspace techniques to the computation of the weighted geometric mean. According to
our experiments, both classes of algorithms perform well on some problems but there is no clear winner, while some
problem-dependent recommendations are provided.

1. Introduction. The weighted geometric mean of parameter t of two positive numbers, say a
and b, is defined as a1−tbt for any t ∈ [0, 1]. This covers as a special case the standard geometric mean√
ab, arising for t = 1/2. The extension of this concept to positive definite matrices is not trivial, but

there is large agreement that the right generalization, for A,B ∈ Cn×n (Hermitian) positive definite
and t ∈ [0, 1], is

(1) A#tB = A(A−1B)t = A(B−1A)−t,

which turns out to be positive definite and is called the matrix weighted geometric mean of A and B.
The reasons behind this choice and the properties of the matrix weighted geometric are discussed by
Bhatia [9, Ch. 4] and Lawson and Lim [36]. Relevant applications of the weighted geometric mean of
two dense matrices of moderate size, along with algorithms for its computations, can be found in the
survey [30].

Here we are mostly interested in the approximation of (A#tB)v and (A#tB)−1v, where v ∈ Cn

and A,B are large and sparse. These problems arise in a preconditioning technique for some domain
decomposition methods and in methods for the biharmonic equation [2, 3, 4]. The geometric mean of
large-scale matrices appears also in image processing [19] and network analysis [43].

In particular, here we want to avoid the explicit computation of the matrix function A#tB, which
may be unduly slow or even practically unfeasible, for A and B large enough. We explore two classes
of methods to achieve this goal, namely numerical quadrature of certain integral representations of the
matrix function Z−t for t ∈ (0, 1), and Krylov subspace methods for the computation of a function of
a matrix times a vector.

It is well known that the geometric mean A#B := A#1/2B (the weighted geometric mean with
weight t = 1/2) has several nice integral representations [32]. In particular, the formula

A#B =
2

π

∫ 1

−1

(
(1 + z)B−1 + (1− z)A−1)−1√

1− z2
dz,

is well suited for Gaussian quadrature with respect to the weight function (1−z2)−1/2, and is considered
in comparison with other algorithms for A#B by Iannazzo [30]. In particular, we generalise this
approach to the matrix weighted geometric mean.

Quadrature formulae are particularly attractive in the large-scale case, since they produce an
approximation of the form

(2) (A#tB) v ≈
N∑
i=0

wiA(riA+ siB)−1Bv,
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where wi are the weights of the quadrature and ri and si are parameters obtained from the nodes of
the quadrature. By exploiting the identity (A#tB)−1 = A−1(B#tA)B−1, a similar approximation for
the inverse of the geometric mean, namely

(3) (A#tB)−1v ≈
N∑
i=0

wi(riB + siA)−1v,

can be easily derived. The problem is thus reduced to the solution of linear systems and the evaluation
of matrix-vector multiplications. Moreover, if ri, si > 0 for each i, then the matrix coefficients of these
linear systems are positive definite, being convex combinations of the positive definite matrices A and
B, and we say that the quadrature formula preserves the positivity structure of the problem.

We consider and analyse three quadrature formulae for A#tB. The first two are obtained from
integral representations of the inverse of real powers [11, 20], by exploiting the fact that A#tB =
A(B−1A)−t, we obtain a formula of the form (2). The third is based on a clever conformal mapping [26],
which achieves fast convergence speed but does not preserve the positivity structure of the problem for
t 6= 1/2.

Regarding Krylov subspace methods, we adapt standard techniques for the approximation of
f(Z−1Y )v, where Z and Y are a large-scale matrices, to our problem. In this case, the usual way
to proceed is to consider a projection of the matrix onto a small Krylov subspace and thereby reduce
the original problem to a small sized one.

Since (A#tB)v = A(B−1A)−tv, the computation of (A#tB)v reduces to that of (B−1A)−tv,
which is well suited for the aforementioned techniques. For instance, when approximating (B−1A)−tv
by means of the Arnoldi method, we get the generalized Lanczos method [37, Ch. 15], which has been
considered for (A#tB)v in previous work [3, 2], but with unsatisfactory results [3, Sect. 6.1.3]. We revise
the generalized Lanczos method and then investigate some more powerful Krylov subspace techniques
such as the extended Krylov subspace method [18] and the rational Krylov subspace methods [39,
40, 41], with poles chosen according to the adaptive strategy by Güettel and Knizhnerman [25] or
the rational Krylov fitting by Berljafa and Güettel [6]. We show that these methods, in most cases,
outperform the generalized Lanczos algorithm. Prior to our work, rational Krylov methods have been
considered for the case t = 1/2 for sparse matrices of moderate size [12].

For the sake of generality, in describing the Krylov subspace techniques, we work with the more
general problem Af(A−1B)v, where A is positive definite, B is Hermitian and f is the matrix extension
of a real positive function. Our implementations, tailored for the function f(z) = z−t, are well suited
to the computation of (A#tB)−1v, and could, in principle, be used for any choice of the function f .

The paper is organized as follows. In the next section we give some notation and preliminary results.
Quadrature methods for the weighted geometric mean are discussed in Section 3, while Section 4 is
devoted to Krylov subspace methods. The application of these techniques to the solution of the linear
system (A#tB)y = v is discussed in Section 5, and an experimental comparison is provided in Section 6.
In the final section, we draw the conclusions.

2. Notation and preliminaries. Throughout the paper we denote by In the identity matrix of
size n, omitting the size when there is no ambiguity. We denote by R+ the set of positive real numbers
and by σ(A) the spectrum of the square matrix A.

Let A ∈ Cn×n be diagonalizable with eigenvalues in Ω ⊂ C and let f : Ω → C. If M−1AM =
diag(λ1, . . . , λn), then f(A) := M diag(f(λ1), . . . , f(λn))M−1. Note that if A is Hermitian, then f(A)
is Hermitian as well. This definition can be extended to nondiagonalizable matrices [28, Def. 1.2], and
is independent of the choice of M .

We have the similarity invariance of matrix functions, that is, if f(A) is well defined, then
f(KAK−1) = Kf(A)K−1, for any invertible K. We give now a well-known property regarding an
expression commonly encountered when dealing with functions of Hermitian matrices.

Lemma 2.1. Let f : R → R+. For any A ∈ Cn×n positive definite and B ∈ Cn×n Hermitian, the
matrix Af(A−1B) is Hermitian positive definite.

Proof. Because of the similarity invariance of matrix functions, we have that Af(A−1B) =

A1/2f(A−1/2BA−1/2)A1/2. Now, A−1/2BA−1/2 is Hermitian and diagonalizable with real eigenvalues,
thus T = f(A−1/2BA−1/2) is Hermitian with positive eigenvalues and the same holds for Af(A−1B)
which is obtained from T through a congruence.
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The previous lemma shows that A#tB = A(A−1B)t is positive definite and using other properties
of matrix functions one obtains the following equivalent expressions:

A#tB = A(A−1B)t = A(B−1A)−t = B(A−1B)t−1 = B(B−1A)1−t,

= (BA−1)tA = (AB−1)−tA = (BA−1)t−1B = (AB−1)1−tB.
(4)

Another useful property of the weighted geometric mean is

(5) (A#tB)−1 = B−1(B#tA)A−1,

which follows from an algebraic manipulation of the formulae in (4)

(A#tB)−1 =
(
(AB−1)−tA

)−1
= A−1(AB−1)tBB−1 = A−1B#tAB

−1.

3. Quadrature methods. In this section, we exploit the formula A#tB = A(B−1A)−t to obtain
three quadrature formulae for A#tB from the corresponding quadrature formulae for the inverse real
power function z−t.

In the next subsection we describe and briefly analyse two integral representations for z−t and in
Sections 3.2 and 3.3 we discuss their application to the matrix weighted geometric mean. Finally, in
Section 3.4 we adapt an algorithm based on a conformal map transformation to the matrix weighted
geometric mean.

3.1. Integral representations for z−t. Since A#tB = A(B−1A)−t, useful integral representa-
tions of the matrix weighted geometric mean can be obtained from the representations of the fractional
inverse power function. The function z → z−t for t ∈ (0, 1) is a Stieltjes function [8, p. 116], which can
be written as

(6) z−t =
sin(πt)

π

∫ ∞
0

dx

xt(x+ z)
, 0 < t < 1.

To rewrite this integral in a more practical form, we exploit the Cayley transform C(x) = 1−x
1+x , which

sends the positive real numbers to the interval (−1, 1).
The variable transformation s = C(x) gives

(7) z−t =
2 sin(πt)

π

∫ 1

−1

(1− s)−t(1 + s)t−1 ds

(1− s) + (1 + s)z
.

On the other hand, by applying the transformation s = −C
(
x1−t) to the integral in (6), we obtain

(8) z−t =
2 sin(π(1− t))

π(1− t)

∫ 1

−1

(1− s)
2t−1
1−t

ds

(1 + s)
1

1−t + (1− s)
1

1−t z
,

which has been considered in a similar form in order to compute the pth roots [11].
Both (7) and (8) are in fact integrals of the form∫ 1

−1

(1− s)α(1 + s)βf(s)ds,

with (α, β) = (−t, t − 1) and (α, β) =
(

2t−1
1−t , 0

)
, respectively. These integrals, for α, β > −1, can be

approximated using Gaussian quadrature with respect to the weight

(9) ωα,β(s) = (1− s)α(1 + s)β , s ∈ [−1, 1].

These formulae are known as the Gauss–Jacobi quadrature formulae [38, Sec. 4.8].
A nice feature of the Gauss–Jacobi quadrature applied to the integral (7) is that the function to

be integrated with respect to the weighted measure, namely

(10) f1,z(s) =
1

1− s+ (1 + s)z
,
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is analytic on [−1, 1], for any z ∈ C \ (−∞, 0), and thus the convergence of the quadrature formulae is
exponential.

In particular, given a function f analytic on the interval [−1, 1], for the error of the Gaussian
quadrature with nodes si and weights wi for i = 0, . . . , N − 1, we have the estimate [21, 44]

(11) |RN (f)| =

∣∣∣∣∣
∫ 1

−1

f(x)ω(x)dx−
N−1∑
i=0

wif(si)

∣∣∣∣∣ 6 4µ0

1

ρ2N

( ρ2

ρ2 − 1

)
max
x∈Γ
|f(x)|,

where µ0 =
∫ 1

−1
ω(x)dx and the curve Γ is an ellipse with foci −1 and 1 and sum of the semiaxes ρ,

entirely enclosed (with its interior part) in the domain of analyticity of f .
When f is analytic on [−1, 1], we may assume that ρ > 1. Hence, for any ellipse contained in the

region of analyticity corresponding to ρ, the convergence of the quadrature formula is exponential with
rate γ such that 1/ρ2 < γ < 1. On the other hand, for the integral (8), the integrand function is

(12) f2,z(s) =
1

(1 + s)
1

1−t + (1− s)
1

1−t z
,

which is analytic on [−1, 1] for any z ∈ C \ (−∞, 0) only if t is of the form (p−1)/p, with p ∈ N. When
1/(1− t) is not an integer, the integrand function (12) has two branch points at −1 and 1, which makes
the use of this second quadrature method less attractive for our purposes. Nevertheless, in some case
the Gauss–Jacobi quadrature applied to (8) converges faster than the same method applied to (7).

We analyse the convergence just for z ∈ R+, because we want to apply the formulae to matrices
having positive real eigenvalues and the convergence of the quadrature formulae for matrices follows
from the convergence of the same formulae for their eigenvalues.

Convergence for the integrand function f1,z(s). Let us start by considering the quadrature formula
for f1,z(s), which has only one pole at ζ = 1/C(z) and is thus simpler to work with. The function
1/C(z) maps the half line (0,∞) to R \ [−1, 1], thus we are guaranteed that the pole lies outside the
interval [−1, 1] for any z > 0 and that the convergence result for analytic functions applies.

If z ∈ (0,+∞), then it is not difficult to identify the smallest ellipse not contained in the domain
of analyticity of f1,z(s) as the one passing through ζ. The real semiaxis of such an ellipse is long |ζ|

and its imaginary semiaxis is long
√
ζ2 − 1, thus, the sums of its semiaxes is

(13) ρ(1)(z) = |ζ|+
√
ζ2 − 1 =

1

|C(z)|
+

√
1

C(z)2 − 1 =
|1 + z|+ 2

√
z

|1− z|
=

1 +
√
z

|1−
√
z|

=
1

|C(
√
z)|
,

and hence a lower bound for the rate of convergence is |C(
√
z)|2.

Convergence for the integrand function f2,z(s). The convergence analysis for f2,z(s) is more prob-
lematic, since the function lacks analyticity at 1 and −1 when 1/(1 − t) 6∈ N. For t = (p − 1)/p, with
p ∈ N, the function f2,z(s) is rational and its poles are given by the solutions of the equation

(1 + ζ)p + (1− ζ)pz = 0,

which are the p distinct points

(14) ζ` = −C
(
z1/pe

1
p iπ(2`+1)), ` = 0, . . . , p− 1.

Since none of them lies on the interval [−1, 1], the integrand function is analytic there.
In order to get the rate of convergence of the quadrature formula, we consider the sum of the

semiaxes of the smallest ellipse not contained in the domain of analyticity of f2,z(s).
Proposition 3.1. For any positive integer p, the smallest ellipse not contained in the domain of

analyticity of f2,z(s) (defined in (12)), with t = (p− 1)/p, passes through ζ0 (defined in (14)) and the
sum of its semiaxes is

(15) ρ(2)(z) =
1 + z1/p +

√
2z1/p(1− cos(π/p))√

1 + z2/p + 2z1/p cos(π/p)

.
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Proof. We know that the poles of f2,s(z) are ζ` = −C(ξ`) with ξ` = z
1
p e

2`+1
p iπ, for ` = 0, . . . , p− 1.

We want to find the smallest sum of the semiaxes of an ellipse not including the points {ζ`} in its
interior part, and with foci 1 and −1. If we denote by x the length of the major semiaxis of such an
ellipse, then the sum of the length of the semiaxes is ρ = x+

√
x2 − 1.

We know that the sum of the distances between a point of the ellipse and the foci is twice the
major semiaxis. To find the major semiaxis of the ellipse passing through ζ` we can use the fact that

|ζ` − 1|+ |ζ` + 1| = 2x`,

which readily gives x` and thus ρ`.
Since ζ` = −C(ξ`), we have

ζ` + 1 =
2ξ`
ξ` + 1

, ζ` − 1 =
−2

ξ` + 1
, x` =

1

2
(|ζ` + 1|+ |ζ` − 1|) =

|ξ`|+ 1

|ξ` + 1|
,

from which, by using |ξ`| = z1/p and (|ξ|+ 1)2 − |ξ + 1|2 = 2|ξ| − 2Reξ, we get

ρ` = x` +

√
x2
` − 1 =

|ξ`|+ 1 +
√

2|ξ`| − 2Reξ`
|ξ` + 1|

=
1 + z1/p +

√
2z1/p(1− cos(ϑ`))√

1 + z2/p + 2z1/p cos(ϑ`)

,

where ϑ` = 2`+1
p π. Now observe that ρ` decreases as cos(ϑ`) grows, and thus that the nearer ϑ` is to

a multiple of 2π, the smaller is the value of ρ`. Noting that ϑ0 is the nearest such value concludes the
proof.

So for t = (p− 1)/p, we have a lower bound for the rate of convergence, namely
(
1/ρ(2)(z)

)2. For
t 6= (p− 1)/p, by lack of analyticity of the integrand function, we cannot use these asymptotic results
to study the convergence of the quadrature formula involving f2,z(s). Nonetheless, it appears that the
formula converges also for values of t which are not of the type (p− 1)/p.

Comparison. We can compare the bounds for the rates of convergence of the two quadrature
formulae, namely

(
1/ρ(1)(z)

)2, with ρ(1)(z) defined as in (13); and
(
1/ρ(2)(z)

)2, with ρ(2)(z) given by
(15), just for t = (p − 1)/p. Since ρ(1)(1/z) = ρ(1)(z) and ρ(2)(1/z) = ρ(2)(z), we can restrict our
attention to z > 1.

In a neighbourhood of 1, the quadrature formula using f1,z(s) works better since 1/ρ(1)(1) = 0,
while 1/ρ(2)(1) > 0.

On the other hand, as z →∞, we have

(16) 1−
( 1

ρ(1)(z)

)2

≈ 4z−
1
2 , 1−

( 1

ρ(2)(z)

)2

≈ 2
√

2
(
1− cos(π/p)

)
z−

1
2p .

and thus the second formula works better for large values of z.
Gauss–Jacobi quadrature and Padé approximation. Quadrature on Markov functions is related to

Padé approximation. In particular, applying the Gauss–Jacobi quadrature to the integral in (7) yields
the [N − 1/N ] Padé approximation of z−t as z → 1. We give a short proof of this property (see also
the one given by Frommer, Güttel and Schweitzer [20]).

Theorem 3.2. The Gauss–Jacobi quadrature of (7) with N nodes coincides with the [N − 1, N ]
Padé approximant to z−t as z → 1.

Proof. The Gaussian quadrature formula with N nodes, say JN (z), is a rational function of z
whose numerator and denominator have degree at most N − 1 and exactly N , respectively.

Let fz(s) = 1
(1−s)+(1+s)z , we have that f (k)

z (s) = (−1)kk!(z − 1)kfk+1
z (s) for k > 0. From the

latter and using standard results on the remainder of Gaussian quadrature we have that there exists
ξ = ξ(z) ∈ (−1, 1) such that

z−t − JN (z) =
2 sin (πt)

π

f (2N)
z (ξ)

(2N)!
〈P (−t,1−t)
N , P

(−t,1−t)
N 〉 = cn

(z − 1)2N

(z − 1)ξ + (z + 1)
,

where P (α,β)
N is the N -th Jacobi polynomial, 〈·, ·〉 is the scalar product with respect to the weight (9)

and cn is a constant independent of z.
As z → 1 we get that z−t − JN (z) = O((z − 1)2N ) and thus JN (z) is the [N − 1, N ] Padé

approximant to z−t.
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3.2. Integral representations of A#tB. The representations in the previous section for z−t

readily yield analogous representations for the matrix weighted geometric mean (through A#tB =
A(B−1A)−t).

From the formula (7) we obtain

A#tB =
2 sin(πt)

π
A

∫ 1

−1

(1− s)−t(1 + s)t−1((1− s)I + (1 + s)B−1A
)−1

ds(17)

=
2 sin(πt)

π
A1/2

∫ 1

−1

(1− s)−t(1 + s)t−1((1− s)I + (1 + s)A1/2B−1A1/2)−1
ds ·A1/2,

=
2 sin(πt)

π
A

∫ 1

−1

(1− s)−t(1 + s)t−1((1− s)B + (1 + s)A
)−1

Bds,

and the corresponding quadrature formula on N + 1 nodes gives

(18) A#tB ≈ S
(1)
N+1 :=

2 sin(πt)

π

N∑
i=0

wiA((1− si)B + (1 + si)A)−1B,

where wi are the weights of the Gauss–Jacobi quadrature formula with N + 1 nodes and si are the
nodes, which belong to the interval [−1, 1]. Thus, for i = 0, . . . , N , the matrix (1− si)B + (1 + si)A is
positive definite.

On the other hand, from (8) we have

A#tB =
2 sin(π(1− t))

π(1− t)
A

∫ 1

−1

(1− s)
2t−1
1−t
(
(1 + s)

1
1−t I + (1− s)

1
1−tB−1A

)−1
ds(19)

=
2 sin(π(1− t))

π(1− t)
A1/2

∫ 1

−1

(1− s)
2t−1
1−t
(
(1 + s)

1
1−t I + (1− s)

1
1−tA1/2B−1A1/2)−1

ds ·A1/2,

=
2 sin(π(1− t))

π(1− t)
A

∫ 1

−1

(1− s)
2t−1
1−t
(
(1 + s)

1
1−tB + (1− s)

1
1−tA

)−1
Bds,

and the corresponding quadrature formula with N + 1 nodes gives

(20) A#tB ≈ S
(2)
N+1 :=

2 sin(π(1− t))
π(1− t)

N∑
i=0

wiA((1 + si)
1

1−tB + (1− si)
1

1−tA)−1B.

Even in this case the matrices to be inverted, for i = 0, . . . , N , are positive definite.

3.3. Matrix convergence. In order to analyse the convergence of the quadrature formulae for
the matrix weighted geometric mean, we consider the convergence of the quadrature formulae for (7)
and (8) when applied to a matrix C with real and positive eigenvalues. In this case, the functions to
be integrated are

(21) f1,C(s) = ((1− s) + C (1 + s))
−1 and f2,C(s) = ((1 + s)

1
1−t + C (1− s)

1
1−t )−1,

whose domain of analyticity is the intersection of the domain of analyticity of the corresponding function
applied to all the eigenvalues of C.

When the function to be integrated is analytic, if K−1CK = diag(λ1, . . . , λn), then the error in
the quadrature formulae with N nodes (defined in (11)), in the spectral norm, can be bounded as

‖RN (f ;C)‖ 6 µ2(K)‖ diag(RN (f ;λi))‖ 6 µ2(K) max
i=1,...,n

{|RN (f ;λi)|},

where µ2(K) is the condition number of K in the spectral norm. If, moreover, C is Hermitian, we may
assume that µ2(K) = 1. Asymptotically, this bound is ruled by the eigenvalue whose corresponding
pole gives the smallest ellipse with foci 1 and −1, enclosed in the domain of analyticity.
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Convergence for the integrand function f1,C(s). Let the eigenvalues of C be m = λ1 6 λ2 6 . . . 6
λn−1 6 λn = M . The infimum of the acceptable values of ρ (the ellipse parameter) is now obtained by

minimizing the function |ζ|+
√
ζ2 − 1 for ζ ∈ σ(C), so that the bound for the rate of convergence, in

view of (13), is

τ (1)(C) = max
λ∈σ(C)

1

ρ(1)(λ)2
= max
λ∈σ(C)

|C(
√
λ)|2 = max{|C(

√
m)|2, |C(

√
M)|2},

since the function |C(
√
λ)| is monotonically decreasing in (0, 1) and monotonically increasing in (1,+∞).

If the matrix C is Hermitian then its condition number in the 2-norm, denoted by κ := µ2(C), is
M/m. If we further assume that Mm = 1, then κ = M2 = 1/m2 and since |C(

√
m)| = |C(

√
M)|, we

have

τ (1)(C) = |C(
√
M)|2 = C( 4

√
κ)2.

Expanding τ (1) as κ→∞, we get

(22) τ (1)(C) =
( 4
√
κ− 1

4
√
κ+ 1

)2

=
(

1− 2
4
√
κ+ 1

)2

≈ 1− 4
4
√
κ
≈ exp(−4/ 4

√
κ) = exp(−4 4

√
m/M).

Note that the condition Mm = 1 is not restrictive, since any positive definite matrix verifies it up to
scaling, but can significantly accelerate the convergence of these quadrature algorithms for matrices
such that Mm is far from 1.

Convergence for the integrand function f2,C(s) and comparison. As before, for a matrix C with
real and positive eigenvalues, a bound for the rate of convergence is given by the largest bound for the
eigenvalues of C.

Since the scalar convergence is complicated by the branch points at 1 and −1 and by the presence
of a possibly large number of poles in certain cases, also the matrix convergence is hardly predictable.

Nevertheless, if the matrix is Hermitian and Mm = 1, then for t = 1/2 we can get an asymptotic
estimate as κ→∞, which is

(23) τ (2)(C) = max
λ∈σ(C)

1

ρ(2)(λ)2
=
( √√

κ+ 1
4
√
κ+ 1 +

√
2 8
√
k

)2

≈ 1− 2
√

2
8
√
κ

= exp(−2
√

2 8
√
m/M).

For t = 1/2, it can be shown, moreover, that the Gauss–Jacobi quadrature of (8) is better than
that of (7) for

|z| ∈ R \ [
1

ξ
, ξ], ξ = 2 +

√
5 + 2

√
2 +
√

5 ≈ 8.35,

and this is confirmed by the results of Test 1 in Section 6. So, for a Hermitian matrix and for t = 1/2,
unless the matrix is very well conditioned/preconditioned (κ2(C) 6 70), the method based on (19) is
preferable.

Application to the weighted geometric mean. In the case of the weighted geometric mean, in view of
equations (17) and (19), the functions to be integrated are f1,C(s) and f2,C(s), with C = A1/2B−1A1/2,
so that the previous analysis for a Hermitian matrix C can be applied.

Let M and m be the largest and smallest eigenvalues of A1/2B−1A1/2 (or of the pencil A −
λB), respectively. A scaling of A and/or B would change the weighted geometric mean in a simple,
predictable way, since [36]

(αA)#t(βB) = α1−tβt(A#tB).

Thus, we may assume that Mm = 1 replacing the couple (A,B) with (Â, B̂), where Â = A/
√
Mm and

B̂ = B.
The quadrature formulae S(1)

N of (18) converges linearly to Â#tB̂, and we get the following estimate

(24) ‖Â#tB̂ − S
(1)
N ‖ = O

(
e−4N 4

√
m/M),

while we have that S(2)
N of (20), for t = 1/2, converges linearly to Â#1/2B̂, and we get the estimate

(25) ‖Â#1/2B̂ − S
(2)
N ‖ = O

(
e−2
√

2N 8
√
m/M).
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3.4. An alternative quadrature formula. Another powerful quadrature formula for real ma-
trix powers has been obtained in [26] by applying a few variable substitutions on the Cauchy formula
for z−t.

Without giving any further details, we report the results of interest from the original paper [26],
referring the reader to it for a complete explanation. Let f : C→ C be analytic in C \ (−∞, 0] and let
us assume that (−∞, 0) is a branch cut for f and that 0 is the only singularity, if any. Under these
assumptions, the approximation of f(Z) using a quadrature formula with N nodes is given by

(26)
−8KZ 4

√
mM

πNk
Im

(
N∑
j=1

f
(
w(tj)

2) cn(tj) dn(tj)

w(tj)
(
k−1 − sn(tj)

)2 (w(tj)
2I − Z

)−1

)
,

where m and M are the minimum and maximum of the spectrum, respectively, k = −C( 4
√
M/m),

K is the complete elliptic integrals associated with k [26], w(t) = 4
√
mM(k−1 + sn(t))/(k−1 − sn(t)),

tj = −K+ iK ′/2+2(j−2−1K)/N for 1 6 j 6 N and cn(·),dn(·) and sn(·) are Jacobi elliptic functions
in standard notation (see [1]). The theoretical aspects of these functions can be found in the book by
Driscoll and Trefethen [17].

This method can be easily adapted for computing Af(A−1B)v without forming explicitly A−1,
providing

(27)
−8K 4

√
mM

πNk
B Im

(
N∑
j=1

f
(
w(tj)

2) cn(tj) dn(tj)

w(tj)
(
k−1 − sn(tj)

)2 (w(tj)
2A−B

)−1
Av

)
,

which does not require any matrix product or inversion if evaluated from right to left.
Using the identity A#tB = A(A−1B)t, for the matrix geometric mean one gets the approximation

(28) A#tB ≈ S
(3)
N :=

8K 4
√
mM

πNk
A Im

(
N∑
j=1

w(tj)
2t cn(tj) dn(tj)

w(tj)
(
k−1 − sn

(
tj
))2 (w(tj)

2A−B
)−1

Bv

)
.

which is of the form (2) with ri = w(ti)
2 and si = −1. Unfortunately, for t 6= 1/2, the matrices

riA + siB are not positive definite, for some values of i. Moreover, they can be complex matrices, so
that we lose the positive definite structure.

The quadrature formula S(3)
N of (28) converges linearly to A#tB, in particular the following esti-

mate can be deduced from [26, Thm. 3.1]

‖A#tB − S
(3)
N ‖ = O

(
e−2π

2
N/(log(M/m)+6)),

where m and M are the smallest and largest eigenvalues of A−1B, respectively. A comparison with
the analogous formula for the two quadrature formulae of Section 3.2, namely (22) and (23), suggests
that this formula can converge much faster when M/m becomes very large and this is confirmed by
the numerical experiments in Section 6.

4. Krylov subspace methods. We consider some Krylov subspace methods for approximating
(A#tB)v = A(A−1B)tv. The algorithms are presented for the more general problem Af(A−1B)v, with
f : R+ → R+, and A positive definite, with B Hermitian, for which all methods work similarly as they
do for the matrix weighted geometric mean.

4.1. Generalized Arnoldi and Lanczos methods. Let A,M ∈ Cn×n be positive definite and
let B ∈ Cn×n be Hermitian. The generalized Arnoldi method, generates a sequence of M -orthonormal
vectors {vk}

n
k=1 and a sequence of upper Hessenberg matrices {Hk}k=1,...,n with Hk ∈ Ck×k, such that

the columns of Vk := [v1| . . . |vk] ∈ Cn×k span an M -orthonormal basis of the Krylov subspace

(29) Kk(A−1B, v) = span{v, (A−1B)v, . . . , (A−1B)k−1v},

where v1 = v/‖v‖M and the elements of Hk, which are by definition hi,j = v∗iMvj , turn out to
be the coefficients of the Gram–Schmidt orthogonalization process [23, Sect. 9.4.1], with respect to
the scalar product defined by M . The algorithm has a breakdown when, for some j 6 n, we have
vj ∈ span{v1, . . . , vj−1}.
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The matrices produced by the algorithm verify V ∗nMVn = In, BVn = AVnHn and, for k < n,

(30) BVk = AVkHk + hk+1,kAvk+1e
∗
k,

where ek is the last column of Ik ∈ Ck×k. Let us note that by left multiplying both sides of equation (30)
by V ∗kMA−1, we get the explicit expression for the reduced matrix Hk = V ∗kMA−1BVk.

It is well known [28, Chap. 13] that equation (30) can be readily exploited to compute an approx-
imation of f(A−1B)v. If QVk = VkU , where Q,U ∈ Cn×n and V ∈ Cn×k, then, it can be proved that
f(Q)Vk = Vkf(U). Thus, by imposing BVk ≈ AVkHk, we can write that

f(A−1B)Vk ≈ Vkf(Hk),

and by observing that v = v1‖b‖M = Vke1‖v‖M , we obtain the approximation

Af(A−1B)v = Af(A−1B)Vke1‖v‖M ≈ AVkf(Hk)e1‖v‖M ,

which is useful, in practice, when it is a good approximation for values of k much smaller than n.
We discuss now the options for the matrix defining the inner product used in the Arnoldi process.

Following the recommendation of Parlett [37, Ch. 15], Arioli and Loghin [3] develop an algorithm to
approximate (A#tB) v using M = A. It is immediate to see that, in this case, Hk is tridiagonal,
in being both upper Hessenberg and Hermitian, since Hk = V ∗k BVk. Thus, the generalized Arnoldi
process becomes a generalised Lanczos algorithm, and this has two principal merits. On the one hand,
the computation of the each vk requires a fixed number of arithmetic operations, which considerably
decreases the execution time of the algorithm, while on the other hand, the evaluation of f(Hk) becomes
easier and can be accurately performed by diagonalization, since Hk is normal.

If B is positive definite then the generalized method for (A,B) admits a minor variation: in fact,
we can use the Arnoldi process to construct a basis of Kk(A−1B, v) of (29) which is B-orthonormal.
In this case, we get BVn = AVnH with V ∗nBVn = In and the matrices Hk = V ∗k BA

−1BVk turn out to
be tridiagonal.

In principle, a scalar product associated to an arbitrary positive definite matrixM might be used in
the Arnoldi process to construct a basis of Kk(A−1B, v), and a sequence of upper Hessenberg matrices
Hk. However, if we want Hk to be tridiagonal, we must restrict the choice for M as in the following.

Proposition 4.1. Let A,M ∈ Cn×n be positive definite and B ∈ Cn×n be Hermitian and assume
that the Arnoldi process applied to A−1B with starting vector v and orthogonalization with respect to
the scalar product induced by M can be applied with no breakdown. The Hessenberg matrices Hk are
Hermitian (and thus tridiagonal) if and only if MA−1B = BA−1M .

Proof. From Hk = V ∗kMA−1BVk, we get that Hk = H∗k for each k, if and only if MA−1B =
BA−1M .

4.2. Generalized Extended Krylov subspace method. The standard extended Krylov meth-
ods [18, 42] can be easily generalized to build anM -orthonormal basis of the extended Krylov subspace

Ek(A−1B, v) = span
{
v,A−1Bv,B−1Av,

(
A−1B

)2
v, . . . ,

(
B−1A

) k
2−1

v,
(
A−1B

) k
2 v
}
,

if k is even and

Ek(A−1B, v) = span
{
v,A−1Bv,B−1Av,

(
A−1B

)2
v, . . . ,

(
A−1B

) k−1
2 v,

(
B−1A

) k−1
2 v
}
,

if k is odd.
As it is the case for the standard Arnoldi algorithm, the extended Krylov algorithm generates

a sequence of M -orthonormal vectors {vk}k=1,...,n and a sequence of Hessenberg matrices with an
additional subdiagonal {Tk}k=1,...,n with Tk ∈ Ck×k. We choose to use the letter T here, because we
want to stress that Tk does not contain the orthogonalization coefficients of the Gram–Schmidt process
applied to the set {v1, . . . , vk}. The interplay between orthogonalization coefficients and Tk, for the
extended Krylov subspace methods, are discussed by Simoncini [42] and Jagels and Reichel [34, 33].

If we define Vk = [v1| · · · |vk] as the M -orthonormal basis of Ek(A−1B, v), then the matrices pro-
duced by the algorithm verify BVk = AVkTk and V ∗nMVn = In, while for k even and k < n

(31) BVk = AVkTk + T̃A [vk+1|vk+2]Ek,
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where Tk ∈ Ck×k, T̃ = [vk+1|vk+2]
∗
MA−1B [vk+1|vk+2] ∈ C2×2, Ek ∈ C2×k contains the last two rows

of the identity matrix Ik and Vk ∈ Cn×k is the M -orthonormal basis of the extended Krylov space at
step k.

Considerations similar to the previous case let us conclude that Tk = V ∗kMA−1BVk and thus that
Proposition 4.1 is valid for the extended method as well. The choice M = A, seems to be again the
most natural. Moreover, for any k the function Af(A−1B)v can be approximated by means of equation

Af(A−1B)v ≈ AVkf(Tk)e1‖v‖M ,

where Vk and Tk are the matrices produced by the extended algorithm.

4.3. Generalized rational Krylov subspace methods. The rational Arnoldi algorithm [39,
41] can be adapted to our problem. Starting with a vector v, a positive definite matrix M , and poles
ξ1, . . . , ξk ∈ C ∪ {∞} such that ξi 6∈ σ

(
A−1B

)
∪ {0}, we can construct a basis of the rational Krylov

subspaces (we set 1/∞ = 0)

Qk(A−1B, v) :=

k−1∏
j=1

(
In −

1

ξj
A−1B

)−1

span
{
v,A−1Bv, . . . , (A−1B)k−1v

}
,

by considering v1 = v/‖v‖M and constructing

wj = (A−B/ξj)
−1Bvj ,

which is M -orthogonalized with respect to v1, . . . , vj , obtaining

hij = w∗jMvi, w̃j = wj −
j∑
i=1

hijvj , hj+1,j = ‖w̃j‖M , vj+1 = w̃j/hj+1,j .

In this way, we obtain the rational Arnoldi decomposition

BVk(In +HkDk) +
hk+1,k

ξk
Bvk+1e

∗
k = AVkHk + hk+1,kAvk+1e

∗
k

where Dk = diag(1/ξ1, . . . , 1/ξk), Hk is the matrix containing the entries hij and Vk = [v1| · · · |vk] is
an M -orthogonal basis of Qk(A−1B, v). Note that we do not allow 0 to be a pole just for ease of
exposition; it is possible to build a rational Arnoldi decomposition with a pole at 0, by using a slightly
different definition [6, Sect. 3].

If the last pole is at infinity, then the approximation

BVk(In +HkDk) ≈ AVkHk

might be considered and thus we get

(32) Af(A−1B)v ≈ AVkf(Hk(In +HkDk)−1)e1‖v‖M .

Notice that in this case Hk(In + HkDk)−1 = V ∗kMA−1BVk, which is Hermitian if M commutes
with A−1B. Thus the argument of the function f to be evaluated is a normal matrix and the evaluation
can be done by diagonalization.

Note that the Krylov methods described in Section 4.1 and Section 4.2 are in fact rational Krylov
methods where the poles are chosen to be∞ or 0 and∞, respectively. In order to achieve a convergence
rate faster than that of the previous two algorithms, the choice of poles is crucial, but there is no general
recipe. In Section 6 we use two black-box heuristics which are apparently well-suited to the problem
f(A)b.
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5. Computing (A#tB)−1v. The methods for computing the product of the weighted geometric
mean times a vector, described in the previous sections, can be easily adapted for reducing the linear
system

(A#tB)−1v,

to the solution of a certain number of simpler linear systems.
Since (A#tB)−1 = A−1(B#tA)B−1, the quadrature formulae of Section 3 can still be applied and

we get: from (18) the approximation

(A#tB)−1 =
2 sin(πt)

π

N∑
i=0

wi((1− si)B + (1 + si)A)−1,

from (20) the approximation

(A#tB)−1 ≈ 2 sin(πt)

π

N∑
i=0

wi((1− si)
1

1−tA+ (1 + si)
1

1−tB)−1,

and from (28) the approximation

A#tB ≈
8K 4
√
mM

πNk
Im

(
N∑
j=1

w(tj)
2(1−t) cn(tj) dn(tj)

w(tj)
(
k−1 − sn

(
tj
))2 (w(tj)

2B −A
)−1

)
.

The three quadrature formulae have exactly the same convergence properties as the respective formulae
for A#tB.

Regarding the Krylov methods of Section 4, we can exploit the identity

(A#tB)−1 = (A(A−1B)t)−1 = (A−1B)−tA−1,

reducing the computation of (A#tB)−1v to (A−1B)−tA−1v, which can be obtained by computing first
w = A−1v and then approximating (A−1B)−tw with any of the Krylov suspace methods described in
Section 4.

6. Numerical tests. By means of numerical experiments, we illustrate the behaviour of the
methods presented in the paper for the computation of (A#tB)v and (A#tB)−1v, where A and B are
medium to large-scale matrices.

The tests have been made using MATLAB R2015a (8.5.0) on a machine equipped with an Intel
i5-3570 Processor running at 3.40GHz and 8GB of dedicated RAM memory.

We compare the following methods:
1. The generalized Arnoldi algorithm [37] (Poly);
2. The extended Krylov subspace method [18] (Extended);
3. A rational Krylov subspace method, with poles chosen according to the adaptive strategy of

Güttel and Knizhnermann [24] (RatAdapt);
4. A rational Krylov subspace method, where the choice of the poles is based on the solution of

the best rational approximation of an auxiliary problem [6] (RatFit);
5. The quadrature formula (18) (Quad1);
6. The quadrature formula (20) (Quad2);
7. The quadrature formula (28) (Elliptic).

Krylov subspace methods. To make the computed basis orthonormal, in our implementations of the
Krylov subspace methods we use the modified Gram–Schmidt method with reorthogonalization [22],
to achieve better numerical stability. When computing the approximation of Af(A−1B)v, we have
the choice between using the projection of A−1B onto the Krylov subspace or the orthonormalization
coefficients. When the Krylov subspace is enlarged, the projection does not have to be computed from
scratch, but can be updated cheaply by exploiting an opportune recurrence. This choice leads to a
larger computational cost, due to one or more additional matrix-vector products and/or linear system
solve per step. However, while the matrix obtained by the orthogonalization procedure is numerically
not Hermitian, and it is not Hermitian when rational Arnoldi is used as described in Section 4.3, the
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projected matrix is guaranteed to be positive definite, which preserves the structure of the problem
and makes the evaluation of f much cheaper.

Even though it would be more natural to use projections, in our experiments we trade off main-
taining the structure of the problem for efficiency, and use the orthonormalization coefficients to build
the reduced matrix. In this case the fractional power of a nonnormal matrix can be computed using
algorithms for the real power of dense matrices [31, 29]. We stress that, in our tests, this choice did
not reduce the accuracy of the final result, and only marginally affected the convergence speed.

For the rational Krylov methods, the poles are chosen according to either the adaptive strategy by
Güttel and Knizhnerman [24] or the function rkfit from the rktoolbox [5], based on an algorithm
by Berljafa and Güttel [6, 7]. In our implementation, when the matrices are larger than 1000× 1000,
we get the poles by running rkfit on a surrogate problem of size 1000× 1000 whose setup requires a
rough estimate of the extrema of the spectrum of A−1B. In the case of rational Krylov methods, in
order to obtain an approximation of Af(A−1B)v, we use the estimate (32), even when the last pole is
not at infinity, as done by Güttel and Knizhnermann [24], with good results.

As a stopping criterion for the Krylov subspace methods, we use the estimate [35]

‖u− um‖
‖um‖

≈
δm+j

1− δm+j

,

where ‖·‖ is the spectral norm, u = (A−1B)−tv, um is the approximation at stepm and δm+j is the norm
of the relative difference between the approximation at the step m and m+ j, i.e. ‖um − um+j‖/‖um‖
where j is usually small and is set to 5 in our experiments.

Quadrature methods. For quadrature methods related to the Gauss–Jacobi quadrature, namely
(18) and (20), the nodes and the weights have been generated using the function jacpts of Chebfun
[16], which is based on an algorithm by Hale and Townsend [27]. The scaling technique described at
the end of Section 3.3 has been used to accelerate the convergence.

For Quad2 we use the quadrature formula (20) when t > 1/2, and if t < 1/2 we exploit the identity
A#tB = B#1−tA to reduce to the former case.

In view of the remark at the end of Section 3.3, the convergence in the matrix case is exactly
predicted by the scalar convergence on the extreme eigenvalues. Thus, the number of nodes needed by
Quad1 and Quad2 to get the required approximation is estimated by applying its scalar counterpart to
the extreme eigenvalues of the matrix B−1A. These scalar problems are much easier and marginally
affect the total computational cost of the algorithms for the matrices we consider.

Regarding the method described in Section 3.4 we adapt the implementation given by Hale,
Higham and Trefethen [26], which exploits the elliptic functions ellipkjc and ellipkkp from Driscoll’s
Schwarz–Christoffel Toolbox [14, 15]. In this case, the number of nodes, is estimated by applying the
same method to a 2× 2 matrix whose eigenvalues are the extreme eigenvalues of A−1B.

Linear systems and extreme eigenvalues. In both Krylov subspace methods and quadrature meth-
ods, the problem is reduced to the solution of linear systems which are solved by the MATLAB sparse
linear solver, exploiting the band and the positive definite structure. The linear systems to be solved by
the method Elliptic are not guaranteed to be positive definite for t 6= 1/2 and this may considerably
increase the overall time required by the algorithm.

Finally, the extreme eigenvalues of A−1B (or B−1A), when needed, are approximated with two
significant digits by calling the function eigs of MATLAB to the couple (B,A) (or (A,B)). In Table
1 we give a synoptic comparison of the key features of the methods.

Test 1. In Section 3, we have considered two Gauss–Jacobi quadrature formulae for z−t, based
on different integral representations, where we have denoted by Quad1 the one based on (7) and by
Quad2 the one based on (8). We have derived a bound for the rate of convergence of the quadrature
formulae, which for Quad1 is |C(

√
z)|2, with C(x) = 1−x

1+x , while for Quad2 is (1/ρ(2)(z))2, where ρ(2) is
defined in (15). The latter is valid just for t = 1/2.

We compare the experimental rate of convergence, which is the median of the error reduction over
a certain number of steps, with the predicted rate of convergence. The results, for t = 1/2, are drawn
in Figure 1. As one can see, the first quadrature formula is more accurate for values of |z| close, in
magnitude, to 1, while the second gives better results for values of |z| far from 1.

If we consider a positive definite matrix A, whose largest and smallest eigenvalues in modulus are
m andM , respectively, and scaled so thatMm = 1, then the first formula seems to be more convenient
for well conditioned matrices, say with M/m < 70.
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Table 1: Comparison of the methods used in the numerical experiments in terms of knowledge of the
spectrum of A−1B or B−1A (spectrum), type of linear systems to be solved (shifted systems, positive
definite or not, or systems with the same left hand side), and possibility to increase the number of
nodes/enlarge the Krylov subspace (update) exploiting the previous computation without starting
from scratch.

Legend Method Spectrum Systems Update

Poly no same lhs yes
Extended no same lhs yes
RatAdapt yes shifted pd yes
RatFit yes shifted pd yes

Quad1 yes shifted pd no
Quad2 yes shifted pd no

Elliptic yes shifted no

10−8 10−4 100 104 108
0

0.2

0.4

0.6

0.8

1

Quad1 predicted
Quad1 geometric
Quad2 predicted
Quad2 geometric

Fig. 1: Comparison of the parameters of convergence (on the y-axis) of the two Gaussian quadrature
formulae for z−1/2 (on the semilogarithmic x-axis).

For t 6= 1/2 the bound for Quad1 is still valid, as confirmed by numerical experiments not reported
here, while the bound for Quad2 is less predictive, and does not give information for t 6= 1/2. Never-
theless, the asymptotic expansion (16) suggests a better convergence for Quad2 for t = (p − 1)/p and
the quadrature formula shows an acceptable convergence rate even for values of t so that the integrand
function is not analytic, provided that t > 1/2. By using the formula A#tB = B#1−tA we can achieve
similar convergence properties also for t < 1/2.

Test 2. Since the convergence of the quadrature methods considered so far depends on the
conditioning of the matrix A1/2B−1A1/2 we generate two matrices A and B such that A−1B (and thus
A1/2B−1A1/2) has prescribed eigenvalues. The eigenvalues belong to a fixed interval and are clustered
near the boundaries of the spectrum, to get a fair comparison between quadrature and Krylov subspace
methods.

We consider matrices of size 1000 × 1000, so that the reference value for w = (A#tB)v can be
computed by means of a reliable algorithm for the dense case, namely the Cholesky–Schur algorithm de-
scribed in [30, Sec. 3], which is implemented by the sharp function of the Matrix Means Toolbox [10].

For each method, the relative forward error of the computed value w̃ with respect to the reference
13
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Fig. 2: Convergence of the methods in Table 1 for computing (A#tB)v for t ∈ {1/2, 3/4, 1/10} and
M/m ∈ {10, 100, 1000}, where M and m are the extreme eigenvalues of A−1B. We consider on the
x-axis the number of nodes for quadrature methods and the dimension of the subspace for Krylov
methods; and on the y-axis the relative error with respect to a reference solution.

value, namely

ε =
‖w̃ − w‖
‖w‖

,

is measured in the spectral norm for a variable number of nodes of the quadrature methods and for a
variable size of the Krylov subspace.

The results are drawn in Figure 2. The tests confirm the dependence of the convergence on the
conditioning of A1/2B−1A1/2 also for the Krylov subspace methods.

The final accuracy of all methods is comparable, while we observe a different convergence behaviour
for t = 1/2 and for t 6= 1/2.

For t = 1/2, Elliptic generates the best rational relative minimax approximation of the function
z−1/2 on the interval [m,M ], where m and M are the extreme eigenvalues of A−1B [6, 26]. This is the
reason why it converges faster than the other methods, which produce a different rational approximation
to z−1/2. We note that RatFit converges in a similar number of steps for t = 1/2 and is usually the
one which achieves the fastest convergence in all the other cases.

We observe that Quad2 converges much faster than Quad1 as M/m grows, as predicted in (24).
Regarding the Krylov subspace methods, we observe linear convergence which is very slow for the
Arnoldi method and it is quite fast when the adaptive strategy is used in the rational Krylov method.

For t 6= 1/2, Krylov methods and Quad1 have the same behaviour they have for t = 1/2. The
Elliptic method does not produce the best rational approximation anymore, and thus is not the
fastest method, but nevertheless shows a remarkably fast convergence. Finally, the behaviour of Quad2
degrades fasts as t gets far from t = 1/2, this has been partly explained in Section 3.

Test 3. To illustrate the behaviour of the methods when dealing with large-scale matrices, we
consider pairs of positive definite matrices from the University of Florida Sparse Matrix Collection [13].

The four choices considered in our experiments are described in Table 2. In the case of Dataset 3,
due to the extreme ill-conditioning of A and B, we were not able to get any result. Since this dataset

14



Table 2: ID in the University of Florida Sparse Matrix Collection, size and sparsity pattern of the
matrices used in the experiments on large-scale matrices. In Dataset 3, the asterisk means that the
identity has been added to the two matrices.

Dataset M/m IDs in UFsmc Size Pattern

1 71.1 1312 & 1314 40 000

2 7.5 1275 & 1276 90 449

3 299.5 2257* & 2258* 102 158

4 1.2 942 & 946 504 855

is interesting being the only with non-banded matrices, we have tamed the conditioning of the dataset,
adding the identity to both matrices.

First, we study the convergence of the methods as in Test 2. In Figure 3 we show the history of
convergence of the methods for t = 1/2, t = 3/4 and t = 1/10 for the four datasets. As a reference for
the forward error, we consider the solution computed by using RatFit to build a larger space (of size
between 25 and 30 in this example).

Then, we compare the CPU time required to fulfill the stopping criterion or to reach the largest
number of nodes of quadrature/dimension of the Krylov subspace.

The results, given in Table 3, show that even if the rational Krylov methods need fewer steps, they
require the solution of a sequence of shifted linear systems and an estimate of the extreme eigenvalues of
A−λB, while the Arnoldi and the extended Krylov subspace methods require no spectral information
and the solution of linear systems with the same left hand side. In our code, we exploit this fact and
begin by finding the Cholesky factorisation of A and B and use it to solve efficiently all subsequent
linear systems. To cope with sparse non-banded matrices and avoid excessive fill-in, we reorder the
matrix by applying an approximate symmetric minimum degree permutation, which we compute by
means of MATLAB symamd function. For this reason, in our implementation, among Krylov methods,
Poly is the fastest choice when the problem is extremely well-conditioned, and Extended is the fastest
in all the other cases.

It is worth pointing out that our results are just indicative and do not represent exactly what
would happen if high performance implementations were used. In particular, orthogonalisation is, in
our implementation, unduly costly, since the control flow is managed at MATLAB level, and this in
particular penalises RatFit, which heavily relies on orthogonalisation to solve the surrogate problem
and find the poles.

On the other hand, the methods based on quadrature do not seem to be competitive for t 6= 1/2.
While Quad1 converges too slowly, and this results in a large computational cost, the convergence of
Quad2 is fast for t = 1/2, but its performance degrades rapidly as t approaches 0 or 1. Finally, the
method based on the conformal transformation (Elliptic) requires a very small number of linear
system to be solved, but these systems, for t 6= 1/2, are not positive definite and this results in a
generally larger computational cost.

Test 4. As a final test we use the techniques of Section 5 to solve a linear system whose coefficient
matrix is a weighted geometric mean. This problem arises in a domain decomposition method for
PDEs [4].

In [4], the authors consider as a preconditioner the matrix

Hα = hxMn

(
1

h2
x

M−1
n Tn

)1−α

=
1

hx
(h2
xMn)#1−αTn = h2α−1

x (Tn#αMn),
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Fig. 3: Convergence of the methods in Table 1 for computing (A#tB)v for the datasets of Table 2 and
for t ∈ {1/2, 3/4, 1/10}. We consider on the x-axis the number of nodes for quadrature methods and
the dimension of the subspace for Krylov methods; and on the y-axis the relative error with respect to
a reference solution.

where α ∈ [0, 1], hx > 0 is a discretization parameter and the matrices Mn, Tn ∈ Rn
2×n2

are

Mn =
1

6


4 1
1 4 1

. . . . . . . . .
1 4 1

1 4

 , Tn =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 .
In Table 5 we report the performance of the algorithms on the test problem considered in [4, Sect. 5.1],
which we instantiate with the same data as in the original paper, corresponding to four levels of
refinement of the mesh, and thus the matrices described in Table 4. We keep the notation of the
original paper, so that the matrices are of size n2 × n2 rather n× n.

We compute the solution of the linear system

(33) Hα̂y = v,

with a random right hand side v ∈ Rn
2

. For each dataset, we consider three different values of α̂,
defined by

α̂ := α̂(ϑ) =
1 + ϑ

2
, ϑ =

a

log hx
,
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Table 3: Comparison of the algorithms presented in the paper, when applied to large-scale matrices,
in terms of CPU time (in seconds) and number of linear systems to be solved (between parentheses).

t Poly Ext RatAdapt RatFit Quad1 Quad2 Elliptic

1 0.50 2.4 (45) 1.1 (24) 1.8 (16) 2.8 (10) 2.6 (20) 2.4 (20) 1.8 (11)
1 0.75 2.1 (39) 1.1 (24) 1.8 (17) 2.5 (10) 2.4 (20) 3.3 (33) 4.8 (15)
1 0.10 2.7 (48) 1.1 (24) 1.8 (16) 2.6 (10) 2.3 (19) 7.3 (82) 4.3 (13)

2 0.50 7.9 (08) 7.8 (08) 12.3 (08) 20.9 (07) 22.5 (11) 28.7 (17) 19.6 (07)
2 0.75 7.7 (08) 7.5 (08) 14.7 (10) 20.8 (07) 21.6 (10) 42.9 (34) 68.9 (10)
2 0.10 7.9 (08) 7.5 (08) 9.4 (06) 20.6 (07) 21.6 (10) 88.9 (83) 62.5 (09)

3 0.50 32.9 (89) 4.8 (28) 9.2 (18) 10.5 (13) 13.2 (29) 11.9 (23) 7.8 (12)
3 0.75 28.7 (83) 4.9 (30) 10.0 (19) 9.8 (12) 13.3 (29) 15.2 (33) 18.4 (15)
3 0.10 29.9 (86) 4.0 (24) 6.4 (13) 9.0 (12) 13.5 (28) 34.9 (82) 17.6 (14)

4 0.50 26.3 (03) 37.4 (04) 28.6 (04) 77.8 (03) 78.8 (04) 127.7 (16) 81.4 (04)
4 0.75 20.6 (03) 36.7 (04) 33.9 (05) 75.3 (03) 77.5 (04) 173.5 (29) 206.0 (06)
4 0.10 16.9 (02) 28.5 (02) 23.3 (03) 74.9 (03) 77.2 (04) 384.4 (83) 205.9 (06)

Table 4: The datasets for Test 4.

n n2 M/m hx

1 129 16641 3.36× 108 1.54× 102

2 257 66049 5.30× 109 7.75× 103

3 513 263169 8.41× 1010 3.89× 103

4 1025 1050625 1.34× 1012 1.95× 103

corresponding to a = 0, 2, 4.

7. Conclusions. We have considered several numerical algorithms to approximate (A#tB)v and
(A#tB)−1v for t ∈ (0, 1). These methods exploit rational approximation of the function z−t by
either performing numerical quadrature or building a Krylov subspace. In both cases the problem is
reduced to the solution of a certain number of linear systems, and thus assessing the performance of
any of the algorithms discussed throughout the paper boils down to an estimation of the number and
considerations on the nature of linear systems to be solved.

The number of linear systems depends on the degree of the quadrature formula, for quadrature
methods, and on the dimension of the built subspace, for Krylov methods. Note that this number can
be efficiently estimated a priori in the former case, by applying the method to the scalar case.

On the other hand, the performance is influenced by the kind of linear system to be solved. For
instance, when t 6= 1/2 the method Elliptic is quasi-optimal with respect to the convergence, being
not far from the rational minimax approximation, but it requires the solution of complex linear systems
with non-positive definite coefficient, which results in a sensible increase in terms of computational cost.
Another example is represented by the extended Krylov subspace method, which despite requiring more
linear systems than RatAdapt and RatFit, is faster than them when the space need to be large. The
reason behind this is that since Extended solves linear systems all having the same coefficient matrices,
it is usually worth computing a factorisation, at the price of a usually negligible overhead, in order
to make the solution of the successive linear systems faster. The larger the space is, the more this
approach pays off.

According to the experimental results in Section 6, the choice of the method should be dictated
by the spread of the eigenvalues of the matrix A−1B. In extremely well-conditioned cases, we expect
all the methods to converge in very few iterations, and the best choice is simply to build a polynomial
Krylov space to approximate the solution. For mildly ill-conditioned matrices, Extended generates a
Krylov space which is not too large, and the overhead introduced by the factorisations is balanced by
the reduction in execution time of the single iterations.

For severely ill-conditioned matrices, the most efficient algorithms are to be found among quadra-
ture methods. In particular, when t = 1/2 or close to 0 and 1, Elliptic seems to be the best choice,
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Table 5: Comparison of the algorithms presented in the paper, when applied to (33), in terms of CPU
time (in seconds) and number of linear systems to be solved (between parentheses).

a Poly Ext RatAdapt RatFit Quad1 Quad2 Elliptic

1 0 47.7 (0326) 3.8 (132) 1.6 (049) 0.6 (020) 2.0 (648) 0.8 (064) 0.6 (023)
1 2 181.7 (0549) 5.3 (180) 1.8 (055) 0.6 (022) 15.9 (636) 0.3 (043) 0.3 (021)
1 4 180.4 (0566) 6.2 (172) 1.0 (043) 0.8 (021) 14.0 (554) 8.3 (201) 0.3 (025)

2 0 129.8 (0335) 16.6 (156) 8.3 (070) 2.0 (019) 7.0 (1134) 1.2 (090) 1.1 (021)
2 2 1076.2 (0888) 40.1 (250) 10.1 (079) 2.0 (022) 36.4 (1118) 1.1 (049) 1.4 (023)
2 4 1568.4 (1032) 44.5 (260) 8.4 (070) 2.5 (022) 34.7 (1045) 1.2 (056) 0.9 (024)

3 0 104.1 (0152) 65.1 (150) 174.5 (163) 6.7 (017) 50.9 (1954) 4.3 (077) 3.9 (022)
3 2 7244.0 (1239) 265.8 (322) 234.4 (183) 5.1 (020) 111.3 (1928) 4.2 (047) 4.3 (020)
3 4 15372.0 (1731) 349.2 (366) 197.5 (168) 5.4 (021) 116.7 (1834) 4.3 (042) 4.7 (022)

4 0 33.6 (0036) 56.5 (062) 425.0 (131) 17.4 (014) 250.1 (2000) 20.9 (109) 9.1 (001)
4 2 16610.9 (1106) 1730.7 (374) 1659.3 (268) 18.3 (017) 265.5 (2000) 16.4 (059) 14.0 (019)
4 4 59405.2 (2000) 2840.6 (494) 1752.3 (268) 17.5 (019) 272.0 (2000) 14.9 (033) 15.6 (020)

whereas for intermediate values of t Quad2 appears to be preferable. The convergence of Quad1 is con-
siderably slowed down and this method is totally impractical in this case. Krylov methods loose their
supremacy because of the growth of the space, which implies a massive overhead due to the Graham–
Schmidt orthogonalisation of the basis. In principle, this problem could be alleviated by making use
of opportune restarting techniques during the construction of the Krylov space. This optimisation is
currently under investigation and is the topic of some future work.
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