
Theory and Algorithms for Periodic Functions of
Matrices, with Applications

Aprahamian, Mary

2016

MIMS EPrint: 2016.28

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Theory and Algorithms

for Periodic Functions of Matrices,

with Applications

2016

Mary Aprahamian

School of Mathematics

The University of Manchester

Contents

Abstract 11

Declaration 13

Publications 15

Acknowledgements 17

1 Introduction 19

1.1 Definitions and properties of matrix functions 22

1.2 Fréchet derivatives and condition numbers 25

1.3 Floating point computation . 27

2 Matching Centrality Measures in Complex Networks 29

2.1 Introduction . 29

2.2 Katz parameter . 32

2.2.1 A new Katz parameter . 32

2.2.2 Other Katz parameters . 35

2.3 Conditioning . 36

2.4 Experiments with ranking . 38

2.5 Computational considerations . 53

3 The Matrix Unwinding Function 57

3.1 Introduction . 57

3.2 The unwinding number . 58

3.3 The matrix unwinding function . 61

3.3.1 Properties of the unwinding function 63

3

3.3.2 Norm and conditioning . 66

3.3.3 Identities involving the logarithm and powers 69

3.3.4 Relation with the matrix sign function 72

3.4 Algorithm . 74

3.5 Numerical experiments . 77

4 Matrix Inverse Trigonometric and Inverse Hyperbolic Functions 81

4.1 Introduction . 81

4.2 The inverse functions . 82

4.2.1 Existence and characterization 83

4.2.2 Branch points, branch cuts, and principal values 85

4.3 Identities . 88

4.4 Conditioning . 99

4.5 Algorithms . 101

4.5.1 Schur–Padé algorithm . 101

4.5.2 Algorithms based on logarithmic formulas 107

4.6 Numerical experiments . 108

5 Argument Reduction for Periodic Functions of Matrices 113

5.1 Introduction . 113

5.2 Argument reduction for elementary periodic functions 115

5.2.1 Algorithm for the matrix exponential 115

5.2.2 Algorithms for the matrix sine and cosine 117

5.3 Method for general functions . 121

5.3.1 Norm and conditioning of Uf 124

5.3.2 Algorithm . 125

5.4 Numerical experiments . 128

5.4.1 Matrix exponential . 128

5.4.2 Matrix sine and cosine . 133

6 Conclusions 141

Bibliography 145

4

List of Tables

2.1 Basic characteristics of test networks. 40

2.2 Correlation coefficients between node rankings (all nodes and top 20%)

obtained from exponential-based centrality and resolvent centralities

applied to Zachary’s Karate Club network. 44

2.3 Correlation coefficients between node rankings (all nodes and top 10%)

obtained from exponential-based centrality and resolvent centralities

applied to the p53 network. 45

2.4 Correlation coefficients between node rankings (all nodes and top 1%)

obtained from exponential-based centrality and resolvent centralities

applied to the Minnesota network. 46

2.5 Correlation coefficients between node rankings (all nodes and top 1%)

obtained from exponential-based centrality and resolvent centralities

applied to the ca-CondMat network. 48

2.6 Correlation coefficients between node rankings (all nodes and top 1%)

obtained from exponential-based centrality and resolvent centralities

applied to the ca-AstroPh network. 49

2.7 Correlation coefficients between node rankings (all nodes and top 1%)

obtained from exponential-based broadcaster centrality and resol-

vent broadcaster centralities applied to the Strathclyde MUFC net-

work. 51

2.8 Correlation coefficients between node rankings (all nodes and top 1%)

obtained from exponential-based receiver centrality and resolvent re-

ceiver centralities applied to the transpose of the Strathclyde MUFC

network. 52

5

2.9 Time required to compute the centrality vectors ce(A) and cα(A) us-

ing αmin for the networks ca-CondMat, ca-AstroPh and Strathclyde

MUFC. 55

4.1 Values of βm, values of p to be considered, and number of matrix

multiplications πm required to evaluate rm. 104

5.1 Examples 1–3. Scaling parameter s in scaling and squaring method

for evaluating eAt, with (Ar) and without (A) argument reduction. . 130

5.2 Example 6. Scaling parameter s and number of matrix multipli-

cations required to compute cos(At) and sin(At), with (Ar) and

without (A) argument reduction. 134

5.3 Example 6. Relative errors in the computation of cos(At) and sin(At),

with (Ar) and without (A) argument reduction. 134

6

List of Figures

1.1 Research contributions of the thesis and the connections between

them. 22

2.1 Sparsity and eigenvalue distribution plots for Zachary’s Karate Club

network. 41

2.2 Sparsity and eigenvalue distribution plots for the p53 network. . . . 41

2.3 Sparsity and eigenvalue distribution plots for the Minnesota network. 41

2.4 Eigenvalue distribution (100 largest positive) plots for the ca-CondMat

and ca-AstroPh networks. 42

2.5 Sparsity and eigenvalue distribution (100 with largest real part) plots

for the Strathclyde MUFC network. 42

2.6 Kendall correlation coefficients between node rankings obtained from

ce(A) and cα(A) for different α for Zachary’s karate network, with

all nodes and top 20% of nodes. 43

2.7 Kendall correlation coefficients between node rankings obtained from

ce(A) and cα(A) for different α for network p53, with all nodes and

top 10% of nodes. 45

2.8 Kendall correlation coefficients between node rankings obtained from

ce(A) and cα(A) for different α for the Minnesota network, with all

nodes and top 1% of nodes. 47

2.9 Kendall correlation coefficients between node rankings obtained from

ce(A) and cα(A) for different α for network ca-CondMat, with all

nodes and top 1% of nodes. 48

7

2.10 Kendall correlation coefficients between node rankings obtained from

ce(A) and cα(A) for different α for network ca-AstroPh, with all

nodes and top 1% of nodes. 49

2.11 Kendall correlation coefficients between node rankings obtained from

ce(A) and cα(A) for different α for network Strathclyde MUFC, with

all nodes and top 1% of nodes. 51

2.12 Kendall correlation coefficients between node rankings obtained from

ce(A
T) and cα(AT) for different α for the transpose of network

Strathclyde MUFC, with all nodes and top 1% of nodes. 52

3.1 Relative errors for using Algorithm 3.26 to compute the matrix un-

winding function of a collection of 40 matrices whose eigenvalues

have imaginary parts near odd integer multiples of π (Set 1). 79

3.2 Relative errors for using Algorithm 3.26 to compute the matrix un-

winding function of a benchmark collection of 24 matrices (Set 2). . 80

4.1 Domains and ranges of the principal branches of the complex func-

tions acos (a), asin (b), acosh (c), and asinh (d). 88

4.2 Relative error in computing acosA using Algorithms 4.23 and 4.24.

The solid line is condacos(A)u. 111

4.3 Relative error in computing asinA using Algorithm 4.23 (with (4.29))

and via log formula (variant of Algorithm 4.24). The solid line is

condasin(A)u. 111

4.4 Relative error in computing acoshA using Algorithm 4.23 (with

(4.31)) and via log formula (variant of Algorithm 4.24). The solid

line is condacosh(A)u. 112

4.5 Relative error in computing asinhA using Algorithm 4.23 (with (4.30))

and via log formula (variant of Algorithm 4.24). The solid line is

condasinh(A)u. 112

5.1 Example 2. Spectrum of Tolosa matrix of dimension 1090. 129

5.2 Example 4. (a) relative error for using Algorithm 5.1 to compute

eL, and (b) scaling parameters s. 131

8

5.3 Example 5. (a) relative error for using Algorithm 5.1 to compute

eA, and (b) scaling parameters s. 132

5.4 Example 7. (a) Relative error for using Algorithm 5.3 to compute

sinA, (b) scaling parameters s, and (c) total number of matrix mul-

tiplications. 137

5.5 Example 7. (a) Relative error for using Algorithm 5.4 to compute

cosA, (b) scaling parameters s, and (c) total number of matrix mul-

tiplications. 138

5.6 Example 8. (a) Relative error for using Algorithm 5.4 to compute

cosAt, t = 10, 20, . . . , 100, (b) scaling parameters s, and (c) total

number of matrix multiplications. 139

5.7 Example 9. (a) Relative error for using Algorithm 5.5 to compute

cosAt, t = 10, 20, . . . , 100, (b) relative error for using Algorithm 5.5

to compute sinAt, t = 10, 20, . . . , 100, (c) scaling parameters s, and

(d) total number of matrix multiplications required to form both

approximations of sine and cosine. 140

9

Abstract

Mary Aprahamian
Doctor of Philosophy
Theory and Algorithms for Periodic Functions of Matrices, with
Applications

Theoretical aspects of periodic functions of matrices and issues arising from the
multivalued nature of their inverse functions are studied. Several algorithms for
computing periodic and multivalued functions of matrices are developed.

We illustrate the use of matrix functions in the analysis of complex networks—
an application that has recently been of very high interest. The relative importance
of nodes in the whole network can be expressed via functions of the adjacency ma-
trix. There are two functions which have proven popular in practice. The first one
is the exponential, which has the advantage of being parameter-free. The second
one is the resolvent function, which can be the more computationally efficient, but
it depends on a parameter. We give a prescription for selecting this parameter
aiming to match the rankings of the exponential counterpart.

We define a new matrix function, the matrix unwinding function, corresponding
to the scalar unwinding number of Corless, Hare, and Jeffrey introduced in 1996.
The matrix unwinding function is shown to be an important tool for deriving iden-
tities involving the matrix logarithm and fractional matrix powers. We propose an
algorithm for computing the matrix unwinding function based on the Schur–Parlett
method with a special reordering. The matrix unwinding function is shown to be
useful for computing the matrix exponential using an idea of argument reduction.

We study theoretical and computational aspects of matrix inverse trigonometric
and inverse hyperbolic functions. Conditions for existence are given and principal
values are defined and shown to be unique primary matrix functions. We de-
rive various functional identities, with care taken to specify choices of signs and
branches. An important tool for the derivations is the matrix unwinding function.
We derive a new algorithm employing a Schur decomposition and variable-degree
Padé approximation for computing the principal inverse cosine (acos). It is shown
how it can also be used to compute the matrix asin, acosh, and asinh. In numerical
experiments the algorithm is found to behave in a forward stable fashion.

Finally, we consider argument reduction in computing the sine and cosine, and
their hyperbolic counterparts. New algorithms for these functions are given, which
use the matrix unwinding function with multiple angle algorithms for the sine and
cosine. An argument reduction algorithm for computing general periodic functions
of matrices is presented. Numerical experiments illustrate the computational saving
that can accrue from applying argument reduction.

Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

13

Publications

• The material in Chapter 2 is based on the paper

[13] Mary Aprahamian, Desmond J. Higham, and Nicholas J. Higham. Match-

ing exponential-based and resolvent-based centrality measures. Journal of

Complex Networks. Advance Access Published June 29, 2015.

• The material in Chapter 3 is based on the paper

[14] Mary Aprahamian and Nicholas J. Higham. The matrix unwinding func-

tion, with an application to computing the matrix exponential. SIAM J.

Matrix Anal. Appl. 35 (1): 88–109, 2014.

• The material in Chapter 4 is based on the paper

[15] Mary Aprahamian and Nicholas J. Higham. Matrix inverse trigonometric

and inverse hyperbolic functions: Theory and algorithms. MIMS EPrint

2016.4, January 2016.

• The material in Chapter 5 is partially based on the paper [14].

15

Acknowledgements

I would like to extend my most sincere gratitude to my supervisor, Prof. Nicholas

J. Higham, without whose expert guidance and support this thesis would not have

been possible. In the future, I can only hope to adhere to the standard of writing he

has guided me to and the meticulous attention to detail he has always encouraged.

I would also like to thank Prof. Françoise Tisseur for nurturing a supportive

and engaging research environment in the Manchester Numerical Linear Algebra

group; it has been my privilege to be a part of it. I am extremely grateful to Dr

Stefan Güttel, for sharing his knowledge and enthusiasm for the field in the many

discussions we have had. I thank my colleagues and office mates Bahar, Nataša,

Sam, Leo and Ramaseshan, for many interesting discussions and distractions.

I thank Prof. Desmond J. Higham for the useful discussions and collaboration,

which has lead to the publication associated with Chapter 2 of this thesis. I thank

Prof. Bruno Iannazzo for his insightful comments on an earlier version of the pub-

lication associated with Chapter 3.

Finally, I thank my family for all their support and encouragement.

17

CHAPTER 1

Introduction

The interest in matrix functions as an object of research began in 1858 with a

study of the square roots of 2 × 2 and 3 × 3 matrices in Cayley’s “A Memoir on

the Theory of Matrices” [38]. The following hundred years were very fruitful in the

development of the theory of matrix functions. Some noteworthy results include the

definition of the matrix exponential using power series by Laguerre [101] in 1867

and in 1888 by Peano [126]. A definition of functions of matrices with distinct

eigenvalues using interpolating polynomials was given by Sylvester [139] in 1883,

and later refined and generalized by Buchheim [32], [33]. An early appearance

of transcendental functions of matrices was in 1892 in Metzeler’s work [111]. He

defined the exponential, logarithm, sine and inverse sine functions via their power

series. Since then periodic functions of matrices and their multivalued inverses

have been subjects of extensive research, both from theoretical and computational

points of view. An informative survey of the history of these and other matrix

functions can be found in Higham’s book [80, Sec. 1.10].

Nowadays matrix functions are an integral part of the solutions of many prob-

lems in applied mathematics. Some examples include the matrix exponential, sine

and cosine, which arise naturally in linear matrix differential equations [71]. The

matrix sign function [80, Chap. 5] arises in control theory [102, Chap. 22], [105]

through its relations with Sylvester equations and has recently found application

in lattice quantum chromodynamics [67]. Matrix roots, exponential and logarithm

of matrices with particular structure, such as stochastic matrices, arise in Markov

19

20 1. Introduction

models. We direct the reader to [80, Chap. 2] for many more applications of matrix

functions.

One application area we consider in particular in this thesis is network sci-

ence [56], [116], where matrix functions are a valuable tool for analysing the proper-

ties of complex networks from a range of areas—biochemical networks [50], protein–

protein interaction networks [149], social and economic networks [65], [145], to name

a few. Other problems we refer to include convection–diffusion equations [91], open

quantum systems [30] and wave equations [19, Chap. 10], [69, Sec. 5.5], [71].

The thesis is organized as follows.

In the remaining sections of Chapter 1 we give some useful background material

on matrix functions.

In Chapter 2 we consider a particular complex networks problem which illus-

trates the use of matrix functions in this area. The relative importance of nodes in

the network can be expressed via functions of the adjacency matrix. Two functions

have been particularly popular in practice. The first one is the exponential, which

has the advantage of being parameter free. The second is the resolvent function,

which can be the more computationally efficient, especially for large directed net-

works, and has the benefit of generalizing naturally to time-dependent network

sequences, but it depends on a parameter. We give a prescription for selecting this

parameter aiming to match the rankings of the exponential counterpart. For our

new choice of parameter the resolvent can be very ill conditioned, but we demon-

strate that it can nevertheless reliably be used for ranking.

In Chapter 3 we introduce a new matrix function corresponding to the scalar un-

winding number of Corless, Hare, and Jeffrey [94]. This matrix unwinding function,

U , is shown to be an important tool for deriving identities involving the matrix log-

arithm and fractional matrix powers. We use it to reveal, for example, the precise

relation between logAα and α logA. Results showing the close connection between

the unwinding function and the matrix sign function are given. We propose an al-

gorithm for computing the unwinding function based on the Schur–Parlett method

with a special reordering.

In Chapter 4 we study theoretical and computational aspects of matrix inverse

21

trigonometric and inverse hyperbolic functions. Conditions for existence are given

and principal values are defined and shown to be unique primary matrix func-

tions. We derive various functional identities, with care taken to specify choices

of signs and branches. While some scalar identities, such as cos(−z) = cos(z),

sin(−z) = − sin(z), and the sine and cosine addition and subtraction formulas

translate directly to the matrix case, the derivation of identities for complex matri-

ces are generally not straightforward. Some of the new results we present include

explicit relations between the functions and their inverses, i.e., we give formulas

describing f−1(f(A)) for f−1 the principal inverse cosine (acos), inverse sine (asin),

inverse hyperbolic cosine (acosh), and inverse hyperbolic sine (asinh). Important

tools we use are the matrix unwinding function and the matrix sign function. We

derive a new inverse scaling and squaring type algorithm, which employs a Schur

decomposition and variable-degree Padé approximation for computing acos. We

also show how it can be used to compute asin, acosh, and asinh. In numerical

experiments the algorithm is demonstrated to behave in a forward stable way and

to be preferable to computing these functions via the logarithm.

In Chapter 5 we consider argument reduction in computing the exponential,

sine and cosine, and their hyperbolic counterparts. Weshow that matrix argu-

ment reduction using the function mod(A) = A − 2πiU(A), which has spectrum

with imaginary parts in the interval (−π, π] and for which eA = emod(A), can offer

significant savings in the computation of the exponential by scaling and squaring

algorithms. New algorithms are given, which use the matrix unwinding function

with multiple angle algorithms for computing sine and cosine. A generalized argu-

ment reduction algorithm for computing periodic functions of matrices is presented.

It uses the relation f(A) = f(A − pUf (A)) for a complex period p and the gener-

alized matrix unwinding function Uf (A) all of whose eigenvalues are integers. The

algorithm computes f at its reduced argument A − pUf (A), which may be more

economical. An algorithm for Uf (A) based on the Schur–Parlett method with a

special reordering and blocking is presented. Numerical experiments illustrate the

computational saving that can accrue from applying argument reduction.

Conclusions and remarks on future work are given in Chapter 6.

22 1. Introduction

Figure 1.1 illustrates the main contributions of the thesis and the connections

between them. A variant of this thesis, organised in Alternative thesis format was

submitted to The University of Manchester for the degree of Doctor of Philosophy.

Matrix unwinding function

Algorithm
Theory: Properties,
and identities with

logs and roots

Identities with
acos, asin, acosh, asinh

Definitions and properties of
acos, asin, acosh, asinh

Algorithms

Argument reduction
Matrix exponential

Matrix sine and cosine
General periodic

functions

Network analysis

Figure 1.1: Research contributions of the thesis and the connections between them.

We now introduce the most important concepts and give some preliminary results.

1.1 Definitions and properties of matrix func-

tions

The concept of matrix functions offers a straightforward generalization of a map-

ping f : C→ C to the domain of complex square matrices Cn×n, so that a matrix

A ∈ Cn×n is mapped to a complex matrix of the same dimension as A. There are

different rigorous definitions which formalize this intuitive interpretation of matrix

functions. We focus on three definitions, which have been discussed in more detail

in [80, Sec. 1.2].

1.1 Definitions and properties of matrix functions 23

Any A ∈ Cn×n can be expressed in the Jordan canonical form

Z−1AZ = J = diag(J1, J2, . . . , Jp), (1.1a)

Jk = Jk(λk) =

λk 1

λk
. . .

. . . 1

λk

 ∈ Cmk×mk , (1.1b)

where Z is nonsingular and m1 + m2 + · · · + mp = n. Denote by λ1, λ2, . . . , λs

the distinct eigenvalues of A and let ni be the order of the largest Jordan block

containing λi (also referred to as the index of λi). Suppose the function f is defined

on the spectrum of A, i.e., all the derivatives f (j)(λi), j = 0 : ni− 1, i = 1 : s exist.

The matrix function f(A) is defined as [80, Def. 1.2]

f(A) = Zf(J)Z−1 = Z diag(f(Jk))Z
−1, (1.2)

where

f(Jk) :=

f(λk) f ′(λk) . . .

f (mk−1)(λk)

(mk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

 . (1.3)

This definition of f(A) calls for a few important remarks to be made. The Jordan

matrix J is unique up to the ordering of the blocks Ji, however, the transformation

matrix is not unique. The above definition of f(A) is in fact independent of the

particular Jordan canonical form used.

If A is diagonalizable, the Jordan canonical form reduces to the eigendecompo-

sition A = ZDZ−1, where D = diag(λi) and the columns of Z are the eigenvectors

of A. We can write f(A) as

f(A) = Zf(D)Z−1 = Z diag(f(λi))Z
−1.

If f is a multivalued function defined via multiple branches in its natural

domain, it is necessary that the same branch of f is taken for all eigenvalues which

appear in the same Jordan block of A. Moreover, the same branch of f must be

chosen for all equal eigenvalues of A even if they appear in different Jordan blocks.

This requirement yields primary matrix functions, otherwise nonprimary matrix

24 1. Introduction

functions are obtained. Although nonprimary matrix functions may be of interest

in some applications, we restrict our studies to the much more popular class of

primary matrix functions; additional detail on nonprimary matrix functions can be

found in [80, Sec. 1.4].

To illustrate the distinction between primary and nonprimary matrix functions

we give the following example. Let

J =

−1 1 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

and f be the square root function f(x) = x1/2 , with its principal branch charac-

terized by (−1)1/2 = i. One of the primary square roots of J is

J1/2 =

i −i/2 0 0

0 i 0 0

0 0 i 0

0 0 0 i

 .
In addition, taking different branches of the square roots functions in each block

of the Jordan form gives rise to nonprimary square roots, e.g.,
i −i/2 0 0

0 i 0 0

0 0 −i 0

0 0 0 −i

 ,

i −i/2 0 0

0 i 0 0

0 0 −i 0

0 0 0 i

 ,

−i i/2 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i

 .
The second definition of matrix functions we consider involves interpolating

polynomials. Let ψ denote the minimal polynomial of A ∈ Cn×n, i.e., the unique

monic polynomial of lowest degree such that ψ(A) = 0. Assuming again that f is

defined on the spectrum of A, the function f(A) can be defined as f(A) := p(A),

where p is the polynomial of degree less than
∑s

i=1 ni = degψ that satisfies the

interpolation conditions

p(j)(λi) = f (j)(λi), j = 0 : ni − 1, i = 1 : s. (1.4)

As before, λ1, . . . , λs are the distinct eigenvalues of A and ni is the size of the

largest Jordan block in which λi appears. The polynomial p is unique and it is

1.2 Fréchet derivatives and condition numbers 25

known as the Hermite interpolating polynomial [80, Def. 1.4]. It is important to

note that p is a polynomial whose coefficients depend on A.

The third and last definition of a matrix function we consider is a generalization

of the Cauchy integral formula [80, Def. 1.11]. For A ∈ Cn×n and a function f

analytic on and inside a closed contour Γ that encloses the spectrum of A,

f(A) :=
1

2πi

∫
Γ

f(z)(zI − A)−1 dz. (1.5)

This definition leads to elegant proofs of some theoretical results.

It can be shown that the three definitions (1.2), (1.4) and (1.5) are equivalent,

modulo the analyticity requirement of the Cauchy integral formula, for a proof

see [80, Thm. 1.12].

The following fundamental properties of matrix functions will be used repeat-

edly throughout this thesis. They can be found in [80, Thm. 1.13].

Theorem 1.1. Let A ∈ Cn×n and let f be defined on the spectrum of A. Then

(i) f(A) commutes with A.

(ii) f(AT) = f(A)T .

(iii) f(XAX−1) = Xf(A)X−1 for any nonsingular X ∈ Cn×n.

(iv) the eigenvalues of f(A) are f(λi), where λi are the eigenvalues of A.

(v) if X ∈ Cn×n commutes with A then X commutes with f(A).

(vi) if A = (Aij) is a block triangular matrix, then F = f(A) is block triangular

with the same block structure as A, and Fii = f(Aii).

1.2 Fréchet derivatives and condition numbers

It is important to understand the sensitivity of matrix functions to perturbations

in the data. Often the input matrices, especially those arising from applications,

are inexact or have embedded uncertainties. Even if the data is exact, computa-

tions are subject to rounding errors, which may also be viewed as perturbations.

Sensitivity is measured by condition numbers, therefore for each matrix function it

26 1. Introduction

is instructive to consider the magnitude of the condition numbers and provide al-

gorithms for computing them. Condition numbers can be expressed via the norms

of the Fréchet derivatives, so we consider their properties too.

Let C be an open subset of Cn×n. The Fréchet derivative of a matrix function

f : C → Cn×n at a point X ∈ C is a linear mapping L such that for all E ∈ Cn×n

f(X + E)− f(X)− L(X,E) = o(‖E‖). (1.6)

The matrix E is referred to as the direction of the derivative. The absolute and

relative condition numbers are defined as

condabs(f,X) := lim
ε→0

sup
‖E‖≤ε

‖f(X + E)− f(X)‖
ε

, (1.7)

condrel(f,X) := lim
ε→0

sup
‖E‖≤ε‖X‖

‖f(X + E)− f(X)‖
ε‖f(X)‖

. (1.8)

Note that condabs and condrel differ only by a constant factor,

condrel(f,X) = condabs(f,X)
‖X‖
‖f(X)‖

. (1.9)

Usually only the relative condition number is of interest, however the absolute one

is easier to work with.

If we set

‖L(X)‖ := max
Z 6=0

‖L(X,Z)‖
‖Z‖

, (1.10)

the absolute and relative condition numbers can be expressed as

condabs(f,X) = ‖L(X)‖, (1.11)

condrel(f,X) =
‖L(X)‖‖X‖
‖f(X)‖

. (1.12)

For the proofs of (1.11) and (1.12) see [80, Thm. 3.1]. The definitions of the

absolute and relative condition numbers (1.7) and (1.8), respectively, are special

cases of results by Rice [133].

The Fréchet derivative does not always exist. The following result, the proof

of which can be found in [80, Thm. 3.8], gives a necessary condition for existence.

If we let f be 2n − 1 times continuously differentiable on its domain D, for X

with spectrum in D, the Fréchet derivative L(X,E) exists and is continuous in X

1.3 Floating point computation 27

and E. This, together with a result by Mathias [108] allows us to obtain the Fréchet

derivative L(X,E) explicitly as the (1, 2) block of the following matrix function

f

([
X E

0 X

])
=

[
f(X) L(X,E)

0 f(X)

]
. (1.13)

This is a very useful formula both in theory and in practice as it reduces the com-

putation of the Fréchet derivative to the computation of a single matrix function.

Note that the size of the matrix function is twice that of the original matrix X,

so an obvious computational drawback of using this formula may appear if the

dimension n is large.

1.3 Floating point computation

A floating point number system F ⊂ R is a subset of the real numbers whose

elements can be written as

y = ±m× βe−t, (1.14)

where all four parameters m,β, e and t are integers, known as significand (also

mantissa), base, exponent and precision, respectively. The exponent is in the range

emin ≤ e ≤ emax and the significand satisfies 0 ≤ m ≤ βt − 1. To ensure that the

representation of each nonzero y ∈ F is unique it is assumed that the significand

satisfies m ≥ βt−1. The range of nonzero floating point numbers in F is βemin−1 ≤

|y| ≤ βemax(1− β−t).

Denoting by G ⊂ R all real numbers of the form (1.14) with no restrictions

on the exponent e and letting x be a real number, then fl(x) denotes the element

of G closest to x and the mapping x → fl(x) is known as rounding. Although

fl is defined as a mapping onto G, here we are only interested in cases for which

fl(x) ∈ F .

The most useful quantity associated with F is the unit roundoff u = 1
2
β1−t. The

following result, which appears in [78, Thm. 2.2], shows that every real number x

in the range of F can be approximated by an element of F with relative error not

larger than the unit roundoff.

28 1. Introduction

Theorem 1.2. If x ∈ R lies in the range of F , then

fl(x) = x(1 + δ), |δ| < u.

Floating point arithmetic is a calculation which involves the elementary opera-

tions of addition, subtraction, multiplication and division of floating point numbers.

These operations are known as floating point operations (flops). We will use the

total number of flops required by an algorithm as a measure of its complexity. The

standard model of floating point arithmetic with x, y ∈ F is [78, Sec. 2.2, (2.4)]

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /.

It is assumed that the standard model also holds for the square root operation.

Unless stated otherwise, all computation in this thesis has been carried out

in IEEE double precision arithmetic, as specified by the 2008 modification of the

754 standard [1]. The IEEE double arithmetic system is characterized by a base

β = 2, precision t = 53 and range [emin, emax] = [−1021, 1024]. The unit roundoff

is u = 2−53 ≈ 1.11× 10−16.

CHAPTER 2

Matching Exponential-Based and

Resolvent-Based Centrality

2.1 Introduction

The term centrality refers to a real number associated with a node of a network that

conveys information about its relative “importance.” Centrality measures came to

prominence in social network analysis [145], but have proved to be extremely useful

tools across network science [56], [116]. A discussion of the intuitive interpretation

of centrality measures in social networks in presented by Freeman [64]. A number

of measures derived from the degree of the nodes have since emerged, the simplest

and most popular one of them is using the total degree of a vertex as an index of

importance. It was first introduced in 1974 in a paper by Nieminen [118]. This

measure is considered most appropriate for scale-free networks for which only the

immediate connection between any two nodes is significant, see for example [10]

and [146]. Betweenness and closeness centrality measures are based on the num-

ber of shortest paths between two nodes and passing through a given node [63].

An important class of centrality measures is based on eigenvectors of the adjacency

matrix. These measures are based on the idea that a node adjacent to an influential

one must also be important. A variant of this idea is used by the Google’s PageR-

ank algorithm [120]. An important predecessor of PageRank is Kleinberg’s HITS

algorithm [100], based on the hubs and authorities scores in a network. The most

29

30 2. Matching Centrality Measures

appropriate centrality measure for a given network is usually embedded in the for-

mulation and characteristics of the particular model, the books [28], [54], [56], and

[116] contain overviews of the most widely used models.

A popular way to define centrality is to quantify the ability of a node to initiate

walks around the network, a concept that leads naturally to the use of matrix

functions. Using standard notation, we let A = (aij) denote the adjacency matrix

for an unweighted network of n nodes, so that aij = 1 if there is an edge from i

to j and aij = 0 otherwise. It follows that the number of walks of length k from

node i to node j is given by (Ak)ij; see, for example, [23]. It is interesting to note

that the use of matrix powers to count the number of walks between any two nodes

of a network was considered as early as 1949 in a work by Festinger [60]. Soon

after and first suggested by Katz [96] in 1953, resolvent-based centrality measures

emerged. They penalize long walks through multiplication by a fixed factor α ≥ 0

for each edge used. This leads to a power series of the form
∑∞

k=0 α
kAk, where

for i 6= j the (i, j) element gives a weighted count of the number of walks of all

lengths from i to j. This series converges to the resolvent (I − αA)−1 for any

α ∈ [0, 1/ρ(A)), where ρ(A) denotes the spectral radius of A. The ith row sum

of the resolvent therefore summarizes the ability of node i to initiate walks to all

nodes in the network. Similarly, the (i, i) element of the resolvent gives a weighted

count of closed walks, that is, walks that start and finish at node i, with a uniform

unit shift. Since we are concerned with the comparative performance across nodes,

this shift is not important.

A related centrality concept arises from the suggestion by Estrada and Rodŕıgues-

Velázquez [58] to weight walks of length k by the factor 1/k!, so that the resol-

vent is replaced by
∑∞

k=0A
k/k!, which is the matrix exponential function, eA [80,

Chap. 10]. The authors define the subgraph centrality of a node to be the weighted

sum of all closed walks originating from it, which can be computed as the diagonal

entry (i, i) of eA. Some justification for this definition is given by Estrada, Hatano,

and Benzi [57, Sec. III] using the metaphor of a network as a system of oscillators.

In this work we measure the importance of a node via a weighted sum of both

the open and closed walks starting from it; that is, we use the total subgraph

2.1 Introduction 31

communicability of a node, introduced by Benzi and Klymko [20], as its measure of

centrality. The associated exponential-based centrality measure of node i is thus

given by the ith element of the vector

ce(A) = eA 1, (2.1)

where 1 = [1, 1, . . . , 1]T . Similarly, the resolvent-based centrality of node i is the

ith element of the vector

cα(A) = (I − αA)−1 1 . (2.2)

We note that the combinatorial “weighted walk count” interpretation of the ma-

trix resolvent and matrix exponential extends naturally to the case of nonnegative

integer weights if we interpret aij as recording the number of distinct connections

between node i to j. For example, in a road network, if there are two distinct

roads connecting town A and town B and three distinct roads connecting town B

and town C, then there are 2 × 3 = 6 distinct ways to get from town A to town

C in two hops via town B. The adjacency matrix power Ak therefore continues to

count walks in this generalized sense, and the centrality vectors ce in (2.1) and cα

in (2.2) have a clear meaning. We also point out that in the case where A is non-

symmetric, computing these centrality measures on the transpose, AT , quantifies

the propensity of nodes to receive, rather than broadcast, information.

The motivation for our work is that there currently seems to be no agreed

mechanism for selecting the Katz parameter α, and, as we will show in Section 2.4,

centrality rankings can be strongly dependent on this value. In order to derive

and judge an approach for choosing α, we make the assumption that exponential-

based total communicability is the “gold standard” and thereby seek to match this

measure as closely as possible. Therefore we select α in (2.2) to match closely the

centralities in (2.1).

This chapter is organized as follows. In Section 2.2 we pursue this approach

for selecting a Katz parameter α, both for directed and undirected networks, and

propose a new choice of the parameter. In Section 2.2.2 we give an overview of

some particular choices of α that have appeared in the literature. In Section 2.3

we show that our new choice of Katz parameter can lead to a very ill conditioned

32 2. Matching Centrality Measures

resolvent and explain why the ill conditioning is innocuous. Numerical experiments

that test the performance of the proposed new value of the Katz parameter for

ranking nodes in real networks are presented in Section 2.4. In Section 2.5 we

briefly explain why computing resolvent-based centrality measures may be more

favorable than the exponential versions for very large and sparse networks and also

for time-dependent networks.

2.2 Katz parameter

The exponential-based centrality measure penalizes longer walks more heavily than

the resolvent-based one; for a walk of length k the coefficient in the exponential

series is 1/k!, compared with αk in the resolvent series. The exponential-based cen-

trality has been found to yield meaningful results for some particular problems, for

example those arising from biochemical applications [55]. Furthermore, in social

networks and in other human interactions direct acquaintanceship is typically more

important, which can be successfully exploited via the exponential-based central-

ity analysis [56, Chap. 19]. As we explain in Section 2.5, resolvent-based centrality

has the advantage of extending naturally to the case of time-dependent network

sequences. The resolvent measure is also more flexible, since α can be tuned ac-

cording to the requirements of the specific problem. This, however, requires good

knowledge of the network, which may not always be readily available to the person

constructing the model. It is therefore desirable to have a prescription for a Katz

parameter that closely matches the node rankings produced by the exponential

measure. This will provide a computational alternative to the matrix exponential

function for obtaining reliable node rankings.

2.2.1 A new Katz parameter

We propose a new method for selecting the Katz parameter that aims to minimize

the norm of the difference between the centrality vectors ce in (2.1) and cα in (2.2).

This approach naturally ensures that the centralities of the nodes with the highest

scores are closely matched. Indeed, in many applications it is only the best ranked

2.2 Katz parameter 33

nodes that are of practical interest. We would therefore like to find α that solves

min
α

err(α) := min
α
‖ce(A)− cα(A)‖2 subject to 0 ≤ α < 1/ρ(A), (2.3)

where the 2-norm is defined by ‖x‖2 = (xTx)1/2. Initially we will make no as-

sumptions about the network except that A is a diagonalizable matrix, so that A =

V DV −1, where D = diag(λi) contains the eigenvalues of A and V is nonsingular.

(In fact, our derivation can be modified to use the Jordan canonical form when A

is not diagonalizable, and the same value of α is obtained.) Since the matrix A is

nonnegative, the Perron–Frobenius theory [90, Thm. 8.4.4] applied to AT tells us

that ρ(A) is an eigenvalue of A with an associated nonnegative left eigenvector y:

yTA = ρ(A)yT . Without loss of generality we can take λ1 = ρ(A) and the first

row of V −1 to be yT . We have

err(α)2 = ‖V
(
eD − (I − αD)−1

)
V −1 1 ‖22

≤ ‖V ‖22‖
(
eD − (I − αD)−1

)
V −1 1 ‖22 (2.4)

= ‖V ‖22
n∑
i=1

∣∣∣∣eλi − 1

1− αλi

∣∣∣∣2 |wi|2, (2.5)

where w = V −1 1. Then

min
α

err(α)2 ≤ err(αmin)2 ≤ ‖V ‖22
n∑
i=2

∣∣∣∣eλi − 1

1− αminλi

∣∣∣∣2 |wi|2, (2.6)

where αmin is such that
(
eλ1 − 1/(1− αminλ1)

)2
w2

1 = 0. But w1 = yT 1 6= 0 as y is

a nonzero vector with nonnegative entries, so

αmin =
1− e−λ1

λ1
. (2.7)

The value of the upper bound (2.6) on the minimum is governed both by the

distribution of the eigenvalues of A and the sums wi of the elements of the left

eigenvectors of A.

Clearly, we need λ1 = ρ(A) > 0 for αmin to be defined. For an undirected

network, ρ(A) = 0 implies A = 0, so ρ(A) > 0 can be assumed. For a directed

network, if λ1 = 0 then all the eigenvalues of A are zero and eA and (1−αA)−1 have

the same eigenvalues for all α. It is therefore not possible to choose α based purely

on considerations of the spectrum and so some other approach must be used.

34 2. Matching Centrality Measures

For the special case of normal adjacency matrices, i.e., ones that satisfy ATA =

AAT , and hence are diagonalizable by orthogonal matrices—in particular, symmet-

ric matrices, corresponding to undirected networks—we can take V orthogonal, and

(2.4) and the second inequality in (2.6) are then equalities. Some classes of directed

networks are known to have normal adjacency matrices. For example, (unweighted)

“ring” networks are such that for i = 1 : n − 1 there is an edge from node i to

node i+ 1 and an edge from node n to node 1, and for these it is always true that

ATA = AAT = I.

The upper bound (2.6) on minα err(α) is attained for certain types of graphs.

For example, for unweighted and undirected k-regular graphs, where each node has

degree k, it is easy to see that 1 is always an eigenvector of the adjacency matrix [23,

Chap. 3] and then from the orthogonality of the eigenvectors it follows that wi = 0

for all i ≥ 2 [49]. In general the upper bound (2.6) provides a good estimate for

minα err(α) either if A is such that there is a relatively big separation |λ1−Re(λ2)|

between its two eigenvalues with largest real part, or if |w1| is significantly larger

than |wi| for all i > 1. These cases are common in practice, as we see from the

examples in Section 2.4.

Benzi and Klymko [21, Sec. 9] observe experimentally that for both undirected

and directed networks the exponential and resolvent measures differ the most for

values of the Katz parameter that satisfy 0 ≤ α ≤ 0.9/λ1. Provided λ1 > log 10 ≈

2.3026, αmin avoids this interval. We note that by [90, Thm. 8.1.22] λ1 lies between

the smallest and largest row sums of the adjacency matrix of the network, so in

practice such a small value for λ1 will rarely be observed.

Finally, we note that αmin can be readily adapted to match the rankings ob-

tained from the more general parametrized exponential centrality eβA [56, Chap. 5.2].

The parameter β > 0 can be interpreted as an artificial inverse temperature and

reflects the influence of stress factors external to the system. This corresponds to

a homogeneous scalar weighting of all the edges in a network, so the largest eigen-

value of the scaled system becomes βλ1. For the corresponding Katz parameter we

have αmin = (1− e−βλ1)/(βλ1).

2.2 Katz parameter 35

2.2.2 Other Katz parameters

Many different choices for the Katz parameter in the resolvent-based centrality

measure have appeared in the literature, some of them proving more popular than

others. In his original paper Katz suggests that a value for α in the interval

[1/(2λ1), 1/λ1) should be suitable [96]. Some authors have in particular chosen the

value

α0.5 =
1

2λ1

to study similarity in texts [11, p. 4411]. This Katz parameter has also successfully

been used in the context of supply chain management [25]. We will use this value

in our comparison studies in Section 2.4.

Another favored choice for the Katz parameter is [20]

α0.85 =
0.85

λ1
.

It arises by analogy with the damping factor of Google’s PageRank algorithm,

usually set to 0.85 [103].

In many applications the induced node rankings have been found to be very

strongly dependent on the choice of the Katz parameter, so either an α particular

to the model has been computed [121] or rankings have been reported for many

values of α [31]. In some cases, the Katz parameter has a particularly meaningful

interpretation, such as in protein–protein interaction networks [150], where it is

indicative of the balance between the influence of the neighbors and the difference

in activity levels.

Since λ1 is bounded by any subordinate norm of the adjacency matrix, it is

natural to propose a value for α that depends on such a norm. Foster et al. [61]

suggest

αdeg =
1

‖A‖∞ + 1
,

where the subscript relates to the fact that for networks with undirected and

unweighted edges the ∞-norm is the largest node degree. The upper bound

λ1 ≤ ‖A‖∞ is known to be attained for several classes of networks. For k-regular

36 2. Matching Centrality Measures

(undirected and unweighted) graphs it is always true that λ1 = ‖A‖∞ = k. This

includes complete graphs and rings.

In Section 2.4 we present a comparison between the node rankings obtained

using the exponential-based centrality measure and its resolvent-based counterpart,

computed with the Katz parameter taken as αmin and the other options discussed

in this section. But first we look more closely at the properties of αmin.

2.3 Conditioning

The resolvent-based centralities are the solution of a linear system, so it is of in-

terest to know the conditioning of the coefficient matrix I − αA of that linear

system, since this will influence the accuracy of the solution obtained in float-

ing point arithmetic. Upper and lower bounds on the 2-norm condition number

κ2(I − αminA) = ‖I − αminA‖2‖(I − αminA)−1‖2 are given in the next result.

Lemma 2.1. Let A be a nonnegative matrix and let λ1 be an eigenvalue such that

λ1 = ρ(A). Let αmin = (1− e−λ1)/λ1.

(a) If A is diagonalizable, so that A = V DV −1 with D = diag(λi) and V non-

singular, then

κ2(I − αminA) ≤ κ2(V)2(2eλ1 − 1). (2.8)

(b) If A has an eigenvalue with nonpositive real part then κ2(I − αminA) ≥ eλ1.

Proof. We have

κ2(I − αminA) = ‖V (I − αminD)V −1‖2‖V (I − αminD)−1V −1‖2

≤ κ2(V)2κ2(I − αminD).

Now

max
i
|1− αminλi| ≤ max

i
(1 + αmin|λi|)

= 1 + αminλ1

= 1 +

(
1− e−λ1

λ1

)
λ1

= 2− e−λ1 .

2.3 Conditioning 37

Also, mini |1− αminλi| = |1− αminλ1| = e−λ1 . Hence

κ2(I − αminD) ≤ 2− e−λ1

e−λ1
= 2eλ1 − 1.

Finally, if λk has nonpositive real part then ‖I − αminA‖2 ≥ |1− αminλk| ≥ 1, and

‖(I − αminA)−1‖2 ≥ |1− αminλ1|−1 = eλ1 , which gives the lower bound.

The condition in part (b) of the lemma is often satisfied in practice; indeed it

is satisfied for the adjacency matrices of all the networks used in the experiments

of Section 2.4, and more generally it is satisfied for any nonnegative A with zero

diagonal.

The bounds in Lemma 2.1 are a cause for concern because they suggest that

I − αminA is potentially very ill conditioned when either λ1 � 1 or V is ill condi-

tioned, the latter case corresponding to A being highly nonnormal. It is certainly

possible that λ1 � 1; indeed λ1 is as large as 94 in our test problems in Section 2.4.

Therefore I − αminA can be extremely ill conditioned, and in floating point arith-

metic we can expect the computed centrality vector to have a large relative error.

However, the ill conditioning is innocuous, as we now explain.

When we solve the linear system (I − αminA)x = 1, we are effectively carrying

out an inverse iteration according to (A − α−1minI)x = −α−1min 1, and for large λ1,

α−1min = λ1/(1 − e−λ1) is a very good approximation to the eigenvalue λ1 of A.

Standard theory of inverse iteration [93, Sec. 6.3], [122, Sec. 4.3], [129, Sec. 2] shows

that the error in the computed x will be almost parallel to x, that is, the inaccuracy

is concentrated in its length and not its direction. Inverse iteration theory therefore

tells us that while the computed centrality vector may be inaccurate, the relative

sizes of the elements will be accurately determined. Since our interest in centralities

is to assess the relative importance of nodes, we conclude that we can safely use

αmin in practice. We also observe that when α−1min is a good approximation to λ1, the

vector of centrality scores x will be almost parallel to the nonnegative eigenvector

corresponding to λ1. In such cases the entries of this eigenvector give the relative

importance of each node, and if only the relative importance of the nodes is required

it is then not necessary to compute the centralities.

It is interesting to note that I − αminA is an M -matrix, since αmin < 1/λ1 [22],

but the above argument does not depend on any special properties of A.

38 2. Matching Centrality Measures

2.4 Experiments with ranking

In our experiments we compare node rankings obtained from centrality vectors

computed using the exponential-based and resolvent-based measures. Our com-

putations are done in IEEE double precision arithmetic, which has unit roundoff

u ≈ 1.1× 10−16.

For the resolvent measure we use each of the four choices for the Katz parameter

suggested in Section 2.2: αmin, α0.5, α0.85, and αdeg. The first three depend on

the largest eigenvalue λ1 of the adjacency matrix A, which we compute using the

MATLAB sparse eigensolver eigs with the vector of all ones as starting vector.

Although we state the value of the relative error

errrel(α) := ‖ce(A)− cα(A)‖/‖ce(A)‖

for every choice of α, the conclusions of our tests are based on correlation coeffi-

cients between the rankings arising from ce and cα. We compute three types of

correlation coefficients: Kendall’s τ [97], Spearman’s ρ [138], and Pearson’s r [127];

see [131, Chap. 14] for a summary of them. The first is a popular statistic used to

measure the association between rankings of objects by counting the numbers of

concordant and discordant pairs of elements. Similarly Spearman’s ρ is a nonpara-

metric statistic indicative of whether the relation between two sets of elements can

be expressed as a monotonic function. Spearman’s ρ is better suited to lists with

repeated values, and hence equal ranks. We also report the values of Pearson’s

r statistic. It serves as a test for linear dependence which, while not of imme-

diate interest when comparing rankings, can still provide some indication as to

how the different centrality measures relate. All three statistics take real values in

the interval [−1, 1], where 1 indicates perfect agreement and −1 indicates perfect

disagreement between the objects.

In practice, only the top ranked nodes may need to be identified and there are

several ways of reflecting this in the reported correlation coefficients. One of them

is to apply a weighting to the test statistics, so that a disagreement of the best

ranked nodes results in a lower than usual correlation coefficient. For example,

Langville and Meyer suggest a weighted version of Spearman’s ρ [104]. Another

2.4 Experiments with ranking 39

alternative, also described in [104], is to tune the statistics to take into account

that the compared lists are only partial. We will use the standard forms of the

statistics to compute the correlation coefficients between the rankings obtained

from full centrality vectors, and also from the top ranked k% of the nodes.

As a representative notation, we will use τ0.05(ce(A), cαmin
(A)) to mean Kendall’s

correlation coefficient between the exponential- and resolvent-based rankings of the

top 5% of the nodes of network A, obtained using the Katz parameter αmin.

To check the reliability of the centralities computed in floating point arithmetic

we compute the quantity

errdir =

(
1− x̂Txq
‖x̂‖2‖xq‖2

)1/2

≡ (1− cos θ)1/2 ,

where θ is the angle between the computed x̂ and a reference vector xq computed in

quadruple precision. We compute xq using the Advanpix Multiprecision Comput-

ing Toolbox for MATLAB [3], which has very efficient IEEE 754-2008-compliant

quadruple precision arithmetic. We actually compute errdir from the alternative

formula

errdir =
1√
2

∥∥∥∥ x̂

‖x̂‖2
− xq
‖xq‖2

∥∥∥∥
2

,

which is more accurately evaluated in floating point arithmetic. A value errdir of

order u indicates that the computed and reference solutions are parallel to work-

ing precision. For each network we also compute the 1-norm condition number

κ1(I − αA) for each α, or, for the three largest networks, an estimate of the condi-

tion number computed using the MATLAB function condest, which implements

the algorithm of [87].

We will use five examples of real networks available in the literature and one

which is new and consists of recorded communication on the social networking plat-

form Twitter. Table 2.1 summarizes the basic features for each network, including

the spectral radius λ1 and the eigenvalue with next largest real part, λ2. We also

give the condition number κ2(V) of the eigenvector matrix of A. For the undirected

networks κ2(V) = 1. For the largest network Strathclyde MUFC we compute the

condition number of the rectangular matrix of eigenvectors corresponding to the

100 eigenvalues with largest real parts. Figures 2.1–2.5 show the sparsity patterns

40 2. Matching Centrality Measures

Table 2.1: Basic characteristics of test networks. “Sparsity” denotes the proportion
of nonzeros.

Name Nodes Edges Sparsity Directed Weighted

Karate 34 78 1.3e-2 No No

p53 133 558 3.2e-2 Yes No

Minnesota 2642 3303 9.4e-4 No Yes

ca-CondMat 23133 93497 3.5e-4 No No

ca-AstroPh 18772 198110 1.1e-3 No No

Strathclyde MUFC 148918 193032 8.7e-6 Yes Yes

Name λ1 λ2 κ2(V)

Karate 6.7257 4.9771 1

p53 5.4032 2.0696 + 0.2998i ≥ 1e16

Minnesota 3.2324 3.2319 1

ca-CondMat 37.9541 30.6438 1

ca-AstroPh 94.4415 75.5007 1

Strathclyde MUFC 41.1511 34.2307 5.7e2

and/or eigenvalue distributions, as appropriate. Sparsity plots for networks ca-

CondMat and ca-AstroPh are omitted as they lack a distinctive visual pattern, at

least in the node orderings provided.

The correlation coefficients penalize heavily variations in the rankings, even

though the centrality scores of some nodes may be very close together, and in this

case the rankings may change greatly with small variations in α. Such sensitivity of

the ordering can arise for networks whose adjacency matrices have a very clustered

spectrum or very ill conditioned eigenvectors. We give two such examples, the

networks p53 and Minnesota.

2.4 Experiments with ranking 41

nz = 156
0 10 20 30

0

5

10

15

20

25

30

35

Eigenvalue index
0 10 20 30 40

-6

-4

-2

0

2

4

6

8

Figure 2.1: Sparsity and eigenvalue distribution plots for Zachary’s Karate Club
network.

nz = 558
0 50 100

0

20

40

60

80

100

120

Real part of the eigenvalues
-5 0 5 10

Im
ag

in
ar

y
pa

rt
 o

f t
he

 e
ig

en
va

lu
es

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 2.2: Sparsity and eigenvalue distribution plots for the p53 network.

nz = 6606
0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

Eigenvalue index
0 1000 2000 3000

-4

-3

-2

-1

0

1

2

3

4

Figure 2.3: Sparsity and eigenvalue distribution plots for the Minnesota network.

42 2. Matching Centrality Measures

Eigenvalue index
0 20 40 60 80 100

10

15

20

25

30

35

40

Eigenvalue index
0 20 40 60 80 100

20

30

40

50

60

70

80

90

100

Figure 2.4: Eigenvalue distribution (100 largest positive) plots for the ca-CondMat
(left) and ca-AstroPh (right) networks.

Figure 2.5: Sparsity and eigenvalue distribution (100 with largest real part) plots
for the Strathclyde MUFC network.

2.4 Experiments with ranking 43

Katz parameter ,
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

0.2

0.4

0.6

0.8

1

Katz parameter ,
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

0.2

0.4

0.6

0.8

1,
min

,
0.5

,
0.85

,
deg

,
min

,
0.5

,
0.85

,
deg

Figure 2.6: Kendall correlation coefficients between node rankings obtained from
ce(A) and cα(A) for different α for Zachary’s karate network with all nodes (left)
and top 20% of nodes (right).

First we consider a rather well studied example, Zachary’s Karate Club [148].

The network is of dimension 34 and the value of its largest eigenvalue λ1 is 6.7257.

The values of the different Katz parameters and the respective correlation co-

efficients between the rankings arising from cα(A) and ce(A) are summarized in

Table 2.2. We observed that all the choices for the Katz parameter agree on the best

ranked 5% of the nodes. However this is not very indicative since the network has

only 34 elements, so we have shown instead how the parameters perform on the top

20% (7 out of the 34) of the nodes and all the nodes. All four choices for the Katz

parameter yield node rankings that are positively correlated with the exponential

result. For αmin, α0.5 and αdeg the correlation between the top ranked 20% of the

nodes is stronger than between the full rankings. On the contrary α0.85 matches

the full rankings better than the partial ones for Kendall’s τ and Pearson’s r.

This observation emphasizes the sensitivity of node rankings to the exact choice of

Katz parameter. For the Karate Club network the resolvent-based measure evalu-

ated with αmin yields node rankings identical to its exponential-based counterpart.

Figure 2.6 shows the dependence of both τ1(ce(A), cα(A)) and τ0.20(ce(A), cα(A))

on different values of the Katz parameter α.

44 2. Matching Centrality Measures

Table 2.2: Correlation coefficients between node rankings (all nodes and top 20%)
obtained from exponential-based centrality and resolvent centralities computed us-
ing αmin, α0.5, α0.85, and αdeg applied to Zachary’s Karate Club network.

Katz parameter τ0.20 τ1 ρ0.20 ρ1 r0.20 r1

αmin = 0.1485 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

α0.5 = 0.0743 0.4286 0.1052 0.6429 0.1419 0.1546 0.1474

α0.85 = 0.1264 0.5238 0.5579 0.6786 0.5866 0.2619 0.5866

αdeg = 0.0556 0.4286 0.0624 0.6429 0.0845 0.1489 0.0845

Katz parameter errrel κ1(I − αA) errdir

αmin = 0.1485 0.0059 5.5e3 1.3e-16

α0.5 = 0.0743 0.9976 7.1e0 1.9e-16

α0.85 = 0.1264 0.9920 3.8e1 1.8e-16

αdeg = 0.0556 0.9981 4.5e0 1.5e-16

Next we consider a network consisting of 133 nodes arising from recorded levels

of the oncogene p53 [144]. The network has 558 directed unweighted edges and

an edge from node i to node j exists if i expresses above its usual level while j

expresses below its usual level. The p53 network is part of the NESSIE collection

of networks [141]. Correlation coefficients between the resolvent- and exponential-

based measures are summarized in Table 2.3 and their variation with α can be

seen in Figure 2.7. For both the best 10% of the nodes (top 14 out of the total 133

nodes) and all nodes, αmin performs better than the other available options for the

Katz parameter. The resolvent-based measure with αmin and the exponential-based

measure yield identical rankings for the top-ranked 8 nodes of this network. The

parameter based on maximum node degree, αdeg, produces partial ranking nega-

tively correlated to the exponential-based one. We note that the eigenvector matrix

of A for this network is extremely ill conditioned, but nevertheless err(αmin) is close

to being minimal: |minα err(α)− err(αmin)|/minα err(α) ≈ 9e-5. For this network,

then, our strategy of minimizing the distance between the exponential-based and

resolvent-based centrality vectors does not result in the best correlation possible.

2.4 Experiments with ranking 45

Table 2.3: Correlation coefficients between node rankings (all nodes and top 10%)
obtained from exponential-based centrality and resolvent centralities computed us-
ing αmin, α0.5, α0.85, and αdeg applied to the p53 network.

Katz parameter τ0.10 τ1 ρ0.10 ρ1 r0.10 r1

αmin = 0.1842 0.4066 0.3830 0.3978 0.4353 0.4225 0.3665

α0.5 = 0.0925 0.0769 0.0980 0.1033 0.1608 0.1188 0.1462

α0.85 = 0.1573 0.2088 0.2796 0.2044 0.3645 0.2131 0.3645

αdeg = 0.0435 0.0110 0.1107 −0.0110 0.1333 −0.0606 0.1333

Katz parameter errrel κ1(I − αA) errdir

αmin = 0.1842 0.0215 4.2e3 1.8e-16

α0.5 = 0.0925 0.9924 1.4e1 1.4e-16

α0.85 = 0.1573 0.9713 9.8e1 1.9e-16

αdeg = 0.0435 0.9955 4.3e0 9.5e-17

Katz parameter ,
0 0.03 0.06 0.09 0.12 0.15 0.18

-0.2

0

0.2

0.4

0.6

0.8

1

Katz parameter ,
0 0.03 0.06 0.09 0.12 0.15 0.18

-0.2

0

0.2

0.4

0.6

0.8

1

,
min

,
0.5

,
0.85,

deg

,
min

,
0.5

,
0.85

,
deg

Figure 2.7: Kendall correlation coefficients between node rankings obtained from
ce(A) and cα(A) for different α, for network p53 with all nodes (left) and top 10%
of nodes (right).

46 2. Matching Centrality Measures

Table 2.4: Correlation coefficients between node rankings (all nodes and top 1%)
obtained from exponential-based centrality and resolvent centralities computed us-
ing αmin, α0.5, α0.85, and αdeg applied to the Minnesota network.

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1

αmin = 0.2972 −0.0313 0.0089 −0.0885 0.0134 −0.1510 0.0134

α0.5 = 0.1547 0.0199 0.0656 0.0208 0.0976 −0.1306 0.0976

α0.85 = 0.2630 −0.0199 0.0429 −0.0440 0.0646 −0.0748 0.0646

αdeg = 0.1667 −0.0370 0.0486 −0.0556 0.0712 −0.1548 0.0712

Katz parameter errrel κ1(I − αA) errdir

αmin = 0.2972 0.5748 1.2e2 3.3e-16

α0.5 = 0.1547 0.8926 4.3e0 4.0e-16

α0.85 = 0.2630 0.7600 2.3e0 1.6e-16

αdeg = 0.1667 0.8858 4.9e0 5.3e-16

The third network we consider, Minnesota, reflects the road connections of

Minnesota and is available from the University of Florida Sparse Matrix Collection

(http://www.cise.ufl.edu/research/sparse/matrices/Gleich/minnesota.html).

The network consists of 2642 nodes and 3303 undirected weighted edges. Correla-

tion coefficients between the resolvent- and exponential-based measures are sum-

marized in Table 2.4 and their variation with α can be seen in Figure 2.8. The

exponential-based centrality scores for this network are very close together, and

the correlation results show that in this case minimizing the distance between

the exponential-based and resolvent-based centrality vectors may not yield highly

correlated rankings. The ranking of the resolvent-based centrality scores changes

significantly with very small variations in α due to the clustering of the eigenvalues

of the adjacency matrix.

http://www.cise.ufl.edu/research/sparse/matrices/Gleich/minnesota.html

2.4 Experiments with ranking 47

Katz parameter ,
0 0.05 0.1 0.15 0.2 0.25 0.3

-0.05

0

0.05

0.1

0.15

Katz parameter ,
0 0.05 0.1 0.15 0.2 0.25 0.3

-0.05

0

0.05

0.1

0.15

,
min

,
0.5

,
0.85

,
deg

,
min

,
0.5
,

0.85

,
deg

Figure 2.8: Kendall correlation coefficients between node rankings obtained from
ce(A) and cα(A) for different α for the Minnesota network with all nodes (left)
and top 1% of nodes (right).

We next consider two undirected and unweighted networks, ca-AstroPh and ca-

CondMat, which record research collaborations in the areas of condensed matter

and astrophysics, respectively. Both networks are such that aij = 1 if and only if

scholars i and j co-authored at least one publication. They are available from the

Stanford Network Analysis Project (SNAP) [106] and are described by Leskovec

et al. [107]. Correlation coefficients between the node rankings are presented in

Tables 2.5 and 2.6. The dominance of αmin is most appreciable when we compare

only the top ranked 1% of the nodes. The alternative choices for the Katz parameter

produce rankings which are weakly or even negatively correlated to the exponential

ones. This is also true for other choices of the Katz parameter, as can be seen from

Figures 2.9 and 2.10. We observed that the resolvent-based measure with αmin

and the exponential-based measure yield identical rankings for the top-ranked 113

nodes of ca-CondMat and top-ranked 161 nodes of ca-AstroPh.

48 2. Matching Centrality Measures

Table 2.5: Correlation coefficients between node rankings (all nodes and top 1%)
obtained from exponential-based centrality and resolvent centralities computed us-
ing αmin, α0.5, α0.85, and αdeg applied to the ca-CondMat network.

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1

αmin = 0.0263 0.8848 0.4158 0.9422 0.5020 0.9335 0.5020

α0.5 = 0.0132 −0.0340 0.0171 −0.0476 0.0252 −0.0536 0.0252

α0.85 = 0.0224 0.0358 0.0022 0.0615 0.0030 0.0344 0.0030

αdeg = 0.0036 −0.0299 0.0168 −0.0044 0.0248 −0.0427 0.0248

Katz parameter errrel κ1(I − αA) errdir

αmin = 0.0263 0.8015 4.6e16 1.3e-15

α0.5 = 0.0132 1.0000 3.5e1 7.9e-13

α0.85 = 0.0224 1.0000 2.6e2 5.3e-14

αdeg = 0.0036 1.0000 4.2e0 6.5e-13

Katz parameter ,
0 0.005 0.01 0.015 0.02 0.025

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Katz parameter ,
0 0.005 0.01 0.015 0.02 0.025

-0.2

0

0.2

0.4

0.6

0.8

,
min

,
0.5 ,

0.85
,

deg

,
min

,
0.5 ,

0.85

,
deg

Figure 2.9: Kendall correlation coefficients between node rankings obtained from
ce(A) and cα(A) for different α, for network ca-CondMat with all nodes (left) and
top 1% of nodes (right).

2.4 Experiments with ranking 49

Table 2.6: Correlation coefficients between node rankings (all nodes and top 1%)
obtained from exponential-based centrality and resolvent centralities computed us-
ing αmin, α0.5, α0.85, and αdeg applied to the ca-AstroPh network.

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1

αmin = 0.0106 0.9573 0.8283 0.9551 0.9826 0.9548 0.8728

α0.5 = 0.0053 0.0686 −0.0012 0.1042 −0.025 0.1087 −0.0248

α0.85 = 0.0090 0.0282 0.0198 0.0427 0.0289 0.0372 0.0244

αdeg = 0.0020 0.0162 0.0139 0.0216 0.0207 0.0300 0.0263

Katz parameter errrel κ1(I − αA) errdir

αmin = 0.0106 1.0000 2.8e16 1.3e-15

α0.5 = 0.0053 1.0000 2.3e1 8.6e-13

α0.85 = 0.0090 1.0000 1.8e2 2.7e-13

αdeg = 0.0020 1.0000 4.4e0 7.6e-13

Katz parameter ,
0 0.002 0.004 0.006 0.008 0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Katz parameter ,
0 0.002 0.004 0.006 0.008 0.01

0

0.2

0.4

0.6

0.8

1

,
min

,
0.5 ,

0.85,
deg

,
min

,
0.5

,
0.85,

deg

Figure 2.10: Kendall correlation coefficients between node rankings obtained from
ce(A) and cα(A) for different α, for network ca-AstroPh with all nodes (left) and
top 1% of nodes (right).

50 2. Matching Centrality Measures

The final real-world network example arises from the online social networking

service Twitter. It consists of 148918 nodes and 193032 directed edges. Unlike the

previous examples, this network has edges with nonnegative integer weights. The

weight of an edge from node i to node j specifies how many times Twitter account

i sent a (meaningful) communication to Twitter account j on the newsworthy

topic of Sir Alex Ferguson’s retirement from his position as manager of Manchester

United Football Club in May 2013. The individual time-stamped interactions are

available via the Strathclyde MUFC Twitter Data Set at http://www.mathstat.

strath.ac.uk/outreach/twitter/mufc, and have also been studied in [75]. Our

network was built by aggregating the tweets over the 12 hour period.

We consider ranking the nodes of the network and its transpose, where the top

ranked nodes of Strathclyde MUFC and its transpose represent the best broadcast-

ers and receivers, respectively, of information.

Correlation coefficients between the rankings of the nodes of Strathclyde MUFC

and its transpose obtained using resolvent- and exponential-based measures are pre-

sented in Tables 2.7 and 2.8, respectively. For the correlations obtained using all

the values of the Katz parameter, except αmin, we observe that the full rankings

are matched significantly better than the partial ones. So α0.5, α0.85, and αdeg

more successfully retrieve the position of the lower ranked nodes. This is usually

of less practical interest, especially for the case of very large networks. Only αmin

is able to successfully match a greater part of the highly ranked nodes, both in

their broadcaster and receiver capacities. To be precise, the resolvent-based mea-

sure with αmin and the exponential-based measure yield identical rankings for the

top-ranked 91 broadcasters and top-ranked 128 receivers. Figures 2.11 and 2.12

illustrate the variation of the node ranking with respect to parameter α.

Finally, we note that for every network the values of errdir are all less than 10−12.

Even though by its definition αmin tends to lead to more ill conditioned systems

than the other choices of α, it produced values of errdir that were sometimes the

smallest over all choice of α and never the largest. Our experiments therefore

support the conclusions drawn from the analysis of inverse iteration in Section 2.3

that ill conditioning does not vitiate the rankings obtained.

http://www.mathstat.strath.ac.uk/outreach/twitter/mufc
http://www.mathstat.strath.ac.uk/outreach/twitter/mufc

2.4 Experiments with ranking 51

Table 2.7: Correlation coefficients between node rankings (all nodes and top 1%)
obtained from exponential-based broadcaster centrality and resolvent broadcaster
centralities computed using αmin, α0.5, α0.85, and αdeg applied to the Strathclyde
MUFC network.

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1

αmin = 0.0242 0.7850 0.6939 0.8959 0.7558 0.8893 0.7558

α0.5 = 0.0121 0.0257 0.4524 0.0287 0.5419 0.0150 0.5419

α0.85 = 0.0205 0.0512 0.4523 0.0620 0.5423 0.0393 0.5423

αdeg = 0.0003 0.0317 0.4467 0.0210 0.5401 0.0023 0.5401

Katz parameter errrel κ1(I − αA) errdir

αmin = 0.0242 0.9997 6.9e17 1.1e-14

α0.5 = 0.0121 1.0000 1.5e3 1.5e-13

α0.85 = 0.0205 1.0000 1.2e4 8.9e-13

αdeg = 0.0003 1.0000 1.8e0 1.4e-13

Katz parameter ,
0 0.005 0.01 0.015 0.02

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Katz parameter ,
0 0.005 0.01 0.015 0.02

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7,
min

,
0.5

,
0.85

,
deg

,
min

,
0.5

,
0.85

,
deg

Figure 2.11: Kendall correlation coefficients between node rankings obtained from
ce(A) and cα(A) for different α for network Strathclyde MUFC, with all nodes
(left) and top 1% of nodes (right).

52 2. Matching Centrality Measures

Table 2.8: Correlation coefficients between node rankings (all nodes and top 1%)
obtained from exponential-based receiver centrality and resolvent receiver central-
ities computed using αmin, α0.5, α0.85, and αdeg applied to the transpose of the
Strathclyde MUFC network.

Katz parameter τ0.01 τ1 ρ0.01 ρ1 r0.01 r1

αmin = 0.0242 0.7188 0.7015 0.7735 0.7529 0.7714 0.7529

α0.5 = 0.0121 0.0237 0.5263 0.0340 0.6287 0.0253 0.6287

α0.85 = 0.0205 0.0409 0.5405 0.0617 0.6336 0.0563 0.6336

αdeg = 0.0001 0.0741 0.5365 0.1407 0.6328 0.0991 0.6328

Katz parameter errrel κ1(I − αA) errdir

αmin = 0.0242 0.9985 6.5e18 2.6e-14

α0.5 = 0.0121 1.0000 1.5e4 1.9e-13

α0.85 = 0.0205 1.0000 1.1e5 5.8e-13

αdeg = 0.0001 1.0000 1.6e1 2.6e-14

Katz parameter ,
0 0.005 0.01 0.015 0.02

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Katz parameter ,
0 0.005 0.01 0.015 0.02

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7,
min

,
0.5

,
0.85

,
deg

,
min

,
0.5

,
0.85

,
deg

Figure 2.12: Kendall correlation coefficients between node rankings obtained from
ce(A

T) and cα(AT) for different α for transpose of network Strathclyde MUFC,
with all nodes (left) and top 1% of nodes (right).

2.5 Computational considerations 53

2.5 Computational considerations

We now discuss some aspects of the computation of the exponential- and resolvent-

based measures, and consider potential advantages and challenges associated with

a few different methods.

First, note that to compute the exponential-based centrality scores ce(A) = eA 1

we do not require the full matrix exponential: just the action of this matrix function

on a vector. This opens up the possibility of using algorithms based on matrix–

vector products involving A (and optionally AT). For our numerical examples in

Section 2.4 we used Al-Mohy and Higham’s expmv algorithm for computing the

action of the matrix exponential [6], which takes advantage of the nonnegativity

of A in its norm estimation phase. It is based on scaling the matrix and apply-

ing truncated Taylor series approximations. There is a wide range of alternative

algorithms based on Krylov subspace projection techniques [4], [88], [137]. A com-

parison of available algorithms for computing the action of the matrix exponential

on a vector, along with a new implementation of a method based on Leja interpo-

lation, is presented by Caliari et al. [34]. Available software is surveyed by Higham

and Deadman [82].

For the resolvent-based measure the computation of αmin requires the compu-

tation of λ1. This can be done, for example, with the power method or the Arnoldi

method. These and other methods (see [17] for a broad overview) are able to exploit

one or more of the properties of sparsity, nonnegativity, and symmetry associated

with adjacency matrices. There has also been interest in approximating λ1 for

directed or undirected, unweighted networks [132].

The resolvent-based centrality vector satisfies the linear system (I−αA)x = 1,

which can be solved using direct solvers [52]. Iterative methods are not likely to

be successful due to the potential ill conditioning of the coefficient matrix. For

undirected networks the linear system is symmetric, which can of course be ex-

ploited. For directed networks usually both the receiver and broadcaster scores of

the nodes are of interest. A matrix decomposition can be re-used to compute both

cα(A) and cα(AT).

54 2. Matching Centrality Measures

There are also established resolvent-based methods for computing centrality

scores for the nodes of temporally evolving networks [73], [72]. To see how resolvent-

based centrality extends naturally to the case of a time-ordered network sequence,

let A[0], A[1], A[2], . . . , A[M] represent nonnegative integer-valued adjacency matrices

for a fixed set of nodes. So, over a discrete time sequence, t0 < t1 < · · · < tM , the

matrix A[k] records interactions at time tk. For example, in the social interaction

context, we may have (A[k])ij = 1 if individual i contacted individual j at least

once in the time period (tk−1, tk] and (A[k])ij = 0 otherwise. In this setting, there

is a natural concept of dynamic walks through the network—such traversals may

use whatever edges are available at one time and then continue at the next time

point using the new edge list. The time-ordered product of resolvents

(I − αA[0])−1(I − αA[1])−1(I − αA[2])−1 · · · (I − αA[M])−1

collects together weighted counts of such dynamic walks, where a walk using k

edges is downweighted by αk. This combinatorial interpretation relies on the index

law αm × αn = αm+n, which allows walks to be correctly pieced together across

time points. By contrast, the product of matrix exponentials

eA
[0]

eA
[1]

eA
[2] · · · eA[M]

does not allow this simple combinatorial interpretation, since 1/(m!) × 1/(n!) 6=

1/((m+n)!) in general. Hence, from this dynamic walk perspective, the resolvent-

based centrality is a more natural choice than the exponential alternative when we

wish to extend to time-dependent interactions.

Finally, we present in Table 2.9 the time required to compute the node rankings

of the larger real-world networks introduced in Section 2.4, using the exponential-

based measure ce(A) and the resolvent-based measure cα(A) with the value of the

Katz parameter αmin. The tests were performed in MATLAB 2014b under Windows

7 on a machine with an Intel Xeon X5650 2.67Ghz 6-core processor and are averaged

over ten runs. The total communicability ce(A) was computed using both the func-

tion expmv from http://eprints.ma.man.ac.uk/1591/, which implements the al-

gorithm of [6], and the function funm_quad from http://guettel.com/funm_quad,

which implements the algorithm of [66], with a stopping accuracy 2−53. The Katz

http://eprints.ma.man.ac.uk/1591/
http://guettel.com/funm_quad

2.5 Computational considerations 55

Table 2.9: Time (seconds) required to compute the centrality vectors ce(A) and
cα(A) using αmin for the networks ca-CondMat, ca-AstroPh and Strathclyde MUFC
from Sec. 2.4.

ca-CondMat ca-AstroPh Strathclyde MUFC

ce: expmv 0.2882 0.7741 1.2812

ce: funm_quad 0.0838 0.1067 2.1942

cα: backslash 0.6143 1.7607 0.8967

centrality cα(A) was computed using the MATLAB backslash function for sparse

matrices; the time for computing the Katz centrality includes the time required

to compute the parameter αmin (which is done using eigs, as before). The Katz

centrality is computed faster than the exponential-based centrality for the directed

network Strathclyde MUFC, while for the two less sparse, undirected networks the

exponential-based centrality is obtained more quickly. Table 2.9 shows that there

is no ordering between the three methods. A more thorough investigation would

be required to draw any general conclusions about the relative costs of computing

ce and cα.

CHAPTER 3

The Matrix Unwinding Function

3.1 Introduction

Previous work on the matrix logarithm [80, Chap. 11] made use of a scalar function

called the unwinding number. In this work we define and investigate the corre-

sponding primary matrix function. We show that the matrix unwinding function is

just as useful as its scalar counterpart. First, it is a valuable tool for stating matrix

identities involving the matrix logarithm and fractional matrix powers, because it

elegantly prescribes the correction needed when identities that are generalized from

the real case break down. For example, the unwinding function neatly captures

the difference between logAα and α logA. In addition to this role as a theoretical

tool, the unwinding function is also useful computationally. It enables us to prepro-

cess a matrix so that its eigenvalues all have imaginary parts lying in the interval

(−π, π], while not changing the exponential of the matrix. We show that this ma-

trix argument reduction can provide a large decrease in norm and can thereby lead

to significant computational savings when the scaling and squaring method is used

to evaluate the matrix exponential. We pursue argument reduction for the matrix

exponential in Section 5.2.1.

We define the scalar unwinding number in the next section and recap some of

its key properties. The matrix unwinding function U(A) is defined in Section 3.3,

where we deal carefully with a subtlety concerning the meaning of the derivative at

points with imaginary parts, which are odd integer multiples of π. Basic properties

57

58 3. The Matrix Unwinding Function

of U(A) are derived in Section 3.3.1. Bounds for the norm and the condition

number of U(A) are given in Section 3.3.2, where we also discuss the estimation

of the condition number. In Section 3.3.3 we derive a number of matrix identities

involving the functions log z and zα. Connections with the matrix sign function

are explored in Section 3.3.4. In Section 3.4 we give a Schur–Parlett algorithm for

computing U(A) based on a certain reordering of the Schur form specific to the

unwinding function. We also give some analysis connecting the conditioning of the

Sylvester equations underlying the Parlett recurrence to the conditioning of U . In

Section 3.5 we show via numerical experiments that the algorithm performs well

in practice.

3.2 The unwinding number

We first state our conventions for three key functions of a complex variable:

(i) arg is the principal argument: −π < arg z ≤ π.

(ii) log is the principal logarithm: −π < Im log z ≤ π.

(iii) For α, z ∈ C we define zα = eα log z. In particular, z1/2 is the principal square

root: Re z1/2 ≥ 0 and (−1)1/2 = i.

Motivation for these particular choices for the values of the functions on their

branch cuts is given by Kahan [95]. We will use repeatedly the key properties

elog z = z and ez1+z2 = ez1ez2 . The negative real axis will be denoted by R−.

The unwinding number of z ∈ C is defined by

U(z) =
z − log ez

2πi
. (3.1)

The definition can be rewritten as

z = log ez + 2πiU(z), (3.2)

so that 2πiU(z) is the discrepancy between log ez and z.

The term “unwinding number,” with a definition differing from ours only in

sign, first appeared in Corless and Jeffrey [45] and Jeffrey, Hare, and Corless [94].

3.2 The unwinding number 59

A definition with the same sign as (3.1), and an explanation of why this sign is

preferred, is given by Bradford, Corless, Davenport, Jeffrey, and Watt [27]. Related

definitions can be found in Apostol [12, Thm. 1.48], Aslaksen [16], Bradford [26],

and Patton [125]. With the exception of [12], in all these references the interest in

the unwinding number stems from its suitability for use in computer algebra.

The following lemma from [45], [94] gives a formula for the unwinding number

that is easier to evaluate than (3.1).

Lemma 3.1. The unwinding number of z ∈ C can be expressed using the ceiling

function as

U(z) =

⌈
Im z − π

2π

⌉
. (3.3)

Proof. Exponentiating both sides of (3.2) we have

ez = elog e
z+2πiU(z) = eze2πiU(z),

so e2πiU(z) = 1, and hence U(z) ∈ Z. Taking imaginary parts in (3.2) gives −π <

Im z − 2π U(z) ≤ π, which can be written

Im z − π
2π

≤ U(z) <
Im z + π

2π
.

The result follows since U(z) ∈ Z.

Thus U takes integer values and is constant for Im z on the intervals ((2k −

1)π, (2k+1)π] for all integers k. It is therefore easy to characterize when U(z) = 0,

or equivalently, log ez = z.

Corollary 3.2. For z ∈ C, U(z) = 0 if and only if Im z ∈ (−π, π].

We now consider some of the most useful properties of the unwinding number.

In the formulas below it is implicitly understood that z = 0 is excluded from

formulas involving log z. We define D to be the open set comprising C with the

lines on which U is discontinuous removed:

D = { z ∈ C : Im z 6= (2j + 1)π for all j ∈ Z }. (3.4)

Lemma 3.3. For z ∈ C,

U(z) = U(−z) =

−U(z), z ∈ D,

−U(z)− 1, otherwise.

60 3. The Matrix Unwinding Function

Proof. We have

U(z) = U(−z) =

⌈
Im(−z)− π

2π

⌉
=

⌈
− Im(z)− π

2π

⌉
=

⌈
−
(

Im(z)− π
2π

)
− 1

⌉
.

The result follows by noting that d−w − 1e = −dwe or −dwe − 1.

Lemma 3.4. For z ∈ C and α ∈ [−1, 1],

U(α log z) =

0, z ∈ C, α ∈ (−1, 1] or z 6∈ R−, α = −1,

−1, z ∈ R−, α = −1.

Proof. Since Im log z ∈ (−π, π], U(α log z) = 0 for α ∈ (−1, 1] by Corollary 3.2.

For α = −1, U(− log z) = 0 unless Im(− log z) = −π, that is, z ∈ R−, in which

case U(− log z) = U(−πi) = −1.

The next three results are some of the “useful theorems” that motivated the

introduction of the unwinding number in [45]. They show that U provides the

appropriate correction term in three important formulas involving the logarithm.

Lemma 3.5. For z1, z2 ∈ C, log(z1z2) = log z1 + log z2 − 2πiU(log z1 + log z2).

Proof. From (3.2) we have

log z1 + log z2 = log(elog z1+log z2) + 2πiU(log z1 + log z2)

= log(elog z1elog z2) + 2πiU(log z1 + log z2)

= log(z1z2) + 2πiU(log z1 + log z2),

as required.

Lemma 3.6. For α, z ∈ C, log(zα) = α log z − 2πiU(α log z).

Proof. Using (3.2), we have

log(zα) = log(eα log z) = α log z − 2πiU(α log z).

3.3 The matrix unwinding function 61

Lemmas 3.4 and 3.6 together give that for α ∈ (−1, 1] the identity log(zα) =

α log z holds. Note that α = 1/2 yields the important special case log(z1/2) =

1
2

log z. Lemmas 3.4 and 3.6 also give log(z−1) = − log z for z 6∈ R−.

Lemma 3.7. For z1, z2 ∈ C, (z1z2)
1/2 = z

1/2
1 z

1/2
2 (−1)U(log z1+log z2).

Proof. Using Lemma 3.5 we have

(z1z2)
1/2 = exp

(
1
2

log(z1z2)
)

= exp
(
1
2

(log z1 + log z2 − 2πiU(log z1 + log z2))
)

= z
1/2
1 z

1/2
2 exp(−πiU(log z1 + log z2))

= z
1/2
1 z

1/2
2 (−1)U(log z1+log z2).

An important application of the unwinding number is in the accurate evaluation

of elements of functions of triangular matrices. It is well known that for λ1 6= λ2 [80,

Sec. 4.6],

f

([
λ1 t12

0 λ2

])
=

[
f(λ1) t12

f(λ2)− f(λ1)

λ2 − λ1
0 f(λ2)

]
,

but in floating point arithmetic evaluation of the (1, 2) element from this formula

can incur subtractive cancellation when λ1 is close to λ2. Consider the case where

f = log. Let z = (λ2 − λ1)/(λ2 + λ1) and assume that a means for accurate

evaluation of atanh is available. The following formula suggested by Higham [80,

Sec. 11.6.2] allows accurate evaluation when λ1 and λ2 are close, but not equal:

f12 = t12
2 atanh(z) + 2πi U(log λ2 − log λ1)

λ2 − λ1
.

This formula is used in logm in MATLAB. A similar formula is obtained by Higham

and Lin [84, (5.6)] for f(t) = tp, p ∈ R and is used in [84] and [85].

3.3 The matrix unwinding function

We define the matrix unwinding function to be the matrix function corresponding

to the unwinding number:

U(A) =
A− log eA

2πi
, A ∈ Cn×n. (3.5)

62 3. The Matrix Unwinding Function

To make this definition precise we need to clarify which matrix logarithm is being

used. We cannot use the usual principal matrix logarithm, for which logX is de-

fined only for X with no eigenvalues on R− [80, Thm. 1.31]. Instead we take log to

be the matrix function corresponding to the principal scalar logarithm defined at

the start of Section 3.2. However, this is not sufficient to define logA for any non-

singular matrix. To see why, consider the Jordan canonical form (1.1) of A ∈ Cn×n.

The principal logarithm log is discontinuous on its branch cut R− and so does not

have any derivatives there. As explained in more generality in Section 5.3, we will

define the first derivative for z ∈ R− as the one-sided limit

log′(z) = lim
h→0, Imh≥0

[log(z + h)− log z]/h,

and so on for higher derivatives, which are simply the usual derivatives evaluated

on R−. Hence logA is now well defined.

Another way to define U(A) that is equivalent to (3.5) is by applying the Jordan

form definition directly to the scalar unwinding number U(z), where the derivatives

U ′(z), U ′′(z), . . . , are necessarily zero for Im z 6= (2j + 1)π, j ∈ Z, and we define

them to be zero for Im z = (2j + 1)π. That this definition is equivalent to (3.5)

follows from the fact that the underlying scalar functions have the same values on

the spectrum of A [80, Sec. 1.2.2]. It is immediate from (1.3) that U(Jk(λk)) =

U(λk)I for any Jordan block Jk(λk). Hence, in terms of the Jordan form (1.1),

U(A) = Z diag(U(λk)Imk)Z
−1, (3.6)

so that U(A) is diagonalizable and has integer eigenvalues. In particular, if all the

eigenvalues of A have the same unwinding number u, then U(A) = uI.

Note that U(z) is continuously differentiable as many times as we like in the

open subsetD of C in (3.4). This implies, for example, that U is a continuous matrix

function on the set of matrices A ∈ Cn×n with spectrum in D [80, Thm. 1.19] and

that U is Fréchet differentiable on this set [80, Thm. 3.8]. However, for most of the

results in this chapter we need just the following standard properties we discussed

3.3 The matrix unwinding function 63

in Section 1.1, and which hold for general matrix functions f :

U(A) is a polynomial in A, (3.7a)

A,B ∈ Cn×n, AB = BA ⇒

U(A)U(B) = U(B)U(A),

U(A+B) commutes with A and B.

(3.7b)

3.3.1 Properties of the unwinding function

We now derive some properties of the matrix unwinding function, and in particular

generalize some of the properties of the unwinding number given in Section 3.2.

Theorem 3.8. For A ∈ Cn×n, U(A) = 0 if and only if the imaginary parts of all

the eigenvalues of A lie in the interval (−π, π].

Proof. The result is immediate from (3.6) and Corollary 3.2.

Note that U(A) = 0 is equivalent to log eA = A, and essentially the same con-

ditions as in Theorem 3.8 for this equation to hold are proved in [80, Prob. 1.39]

for the usual principal matrix logarithm without explicitly referring to the ma-

trix unwinding function. The theorem implies that the spectral radius condition

ρ(A) < π, or the stronger condition ‖A‖ < π for some consistent matrix norm, are

sufficient for log eA = A to hold. For several important classes of matrices the

conditions of Theorem 3.8 are always satisfied: matrices with real eigenvalues (in

particular, Hermitian matrices), and unitary, idempotent, or stochastic matrices

(for all of which |λ| ≤ 1 for every eigenvalueλ).

The next result, which gives a characterization of a class of matrix functions

of which the matrix unwinding function is a special case, enables us to determine

the behavior of U under conjugation and the form of U for real matrices and pure

imaginary matrices. We denote by Λ(A) the spectrum of A.

Theorem 3.9. Let f be analytic on an open subset Ω ⊆ C such that for each con-

nected component Ω̃ of Ω, z ∈ Ω̃ if and only if −z ∈ Ω̃. Consider the corresponding

matrix function f on its natural domain in Cn×n, and the set S = {A ∈ Cn×n : Λ(A) ⊆ Ω }.

Then the following are equivalent:

(a) f(A∗) = f(−A)∗ for all A ∈ S.

64 3. The Matrix Unwinding Function

(b) f(A) = f(−A) for all A ∈ S.

(c) f(iRn×n ∩ S) ⊆ Rn×n.

(d) f(iR ∩Ω) ⊆ R.

Proof. Rewrite the characterization of [80, Thm. 1.18] or [86, Thm. 3.2] by replacing

the function f(z) therein by f(iz).

Applying Theorem 3.9 to the matrix unwinding function we obtain the next

result.

Corollary 3.10. For A ∈ Cn×n with spectrum in D,

(a) U(A∗) = U(−A)∗ = −U(A)∗.

(b) U(A) = U(−A) = −U(A).

(c) U(A) is real if A is pure imaginary.

(d) U(A) is pure imaginary if A is real.

Proof. Note first that the second equalities in (a) and (b) follow from Lemma 3.3

and (3.6). U is analytic on the open subset D of C, which satisfies z ∈ D̃ if

and only if −z ∈ D̃ for each connected component D̃. Hence to prove the first

equalities in (a) and (b), and (c), it suffices to show that any one of the statements

in Theorem 3.9 holds. Indeed, for any z ∈ iR∩D, U(z) ∈ R, which is condition (d)

of Theorem 3.9. To show (d), we note that if A is real then A = A, so U(A) = U(A)

and so from (b), U(A) = −U(A) and U(A) is pure imaginary.

We give two examples to illustrate the corollary. First,

A =

[
4 16

−4 4

]
, Λ(A) = {4± 8i}, U(A) =

[
0 −2i

0.5i 0

]
, Λ(U(A)) = {±1}.

Second, a matrix due to Rutishauser, which is gallery(’toeppen’,3) in MATLAB

(non-integers are shown here to three significant figures):

A =

0 10 1

−10 0 10

1 −10 0

 , Λ(A) = {1,−0.500± 1.41i},

U(A) = i

0.0354 −1.42 −0.0354

1.42 −0.0708 −1.42

−0.0354 1.42 0.0354

 , Λ(U(A)) = {−2, 0, 2}.

3.3 The matrix unwinding function 65

In both cases, U(A) is pure imaginary and a further computation shows that

U(A∗) = U(−A)∗.

We can give an explicit formula for the unwinding function of real 2 × 2 ma-

trices of the form that appear as diagonal blocks in the real Schur decomposition

computed by LAPACK.

Lemma 3.11. For A =
[
a b
c a

]
∈ R2×2 with bc < 0,

U(A) =

−iU(iµ)

µ
(A− aI), µ 6= (2k + 1)π, k ∈ Z,

− i
µ

[
(U(iµ) + 1

2
)(A− aI)− 1

2
iµI
]
, otherwise,

(3.8)

where µ = (−bc)1/2.

Proof. The eigenvalues of A are λ = a + iµ and λ. Let Z−1AZ = diag(λ, λ) =

aI + iµK, where K =
[
1 0
0 −1

]
. Thus A = aI + µW , where W = iZKZ−1 ∈ R2×2.

Hence, for µ 6= (2k + 1)π with k ∈ Z,

U(A) = Z diag(U(λ),U(λ))Z−1

= U(λ)Z diag(1,−1)Z−1 = U(λ)ZKZ−1

=
U(λ)

i
W = −iU(λ)W

= −iU(λ)(A− aI)/µ.

If µ = (2k + 1)π for some k ∈ Z, then U(λ) = −U(λ) − 1, by Lemma 3.3.

Hence we need to add a correction term −Z diag(0, 1)Z−1 to the formula above.

This correction term can be written

−1

2
Z(I−K)Z−1 =

1

2
(ZKZ−1−I) =

1

2

(
A− aI
iµ

− I
)

= − i

2µ
(A−aI−iµI).

The 2× 2 example above illustrates the theorem.

Lemma 3.12. For A ∈ Cn×n, e2πiU(A) = I.

Proof. Multiplying (3.5) by 2πi and exponentiating, and using the fact that log eA

and U(A) commute, as they are both polynomials in A, we have

eA = elog e
A+2πiU(A) = elog e

A

e2πiU(A) = eAe2πiU(A),

hence e2πiU(A) = I.

66 3. The Matrix Unwinding Function

3.3.2 Norm and conditioning

We now obtain an upper bound for the norm of U(A) and a lower bound for

its condition number. These will be useful in Section 3.4 for understanding the

behavior of an algorithm for computing U(A). The norm is any consistent norm

for which ‖ diag(di)‖ = maxi |di|, ρ(A) denotes the spectral radius, and κ(A) =

‖A‖‖A−1‖ is the condition number with respect to inversion.

The following result is a special case of Lemma 5.8 on noting that the period of

the exponential function is p = 2πi. Observe that we can use the definition of the

unwinding number to give a sharper bound than the general one in Lemma 5.8.

Lemma 3.13. For A ∈ Cn×n with Jordan canonical form A = ZJZ−1,

‖U(A)‖ ≤ κ(Z)(ρ(A) + π)

2π
.

Proof. Using (3.6) we have ‖U(A)‖ ≤ κ(Z) maxk |U(λk)|. But

max
k
| U(λk)| = max

k

∣∣∣∣⌈Imλk − π
2π

⌉∣∣∣∣ ≤ ρ(A) + π

2π
.

Recall from Section 1.2 that the (relative) condition number of the matrix

unwinding function is defined by

condU(A) = lim
ε→0

sup
‖E‖≤ε‖A‖

‖U(A+ E)− U(A)‖
ε‖U(A)‖

.

Note that because of the discontinuity of U(z) at points z whose imaginary part is

an odd integer multiple of π, condU(A) = ∞ for any A with an eigenvalue of this

form. The next result gives a lower bound for condU(A). Recall that D is defined

in (3.4).

Lemma 3.14. For A ∈ Cn×n with Jordan canonical form A = ZJZ−1 and spec-

trum in D,

condU(A) ≥ π

κ(Z)
max

λ,µ∈Λ(A)
U [λ, µ], (3.9)

where

U [λ, µ] =

U(λ)− U(µ)

λ− µ
, λ 6= µ,

U ′(λ) = 0, λ = µ

is a divided difference.

3.3 The matrix unwinding function 67

Proof. Apply Lemma 5.9 with p = 2πi.

When Imλ and Imµ lie close to, but on opposite sides of (2k + 1)π, for some

k, then U [λ, µ] = (λ − µ)−1, and hence U [λ, µ] is necessarily large if Reλ ≈ Reµ;

in this case the lower bound for condU(A) is large unless κ(Z) is large.

We now turn to estimation of the condition number. In the rest of this section

we assume that the spectrum of A lies in D. Denote the Fréchet derivative of a

function f at A by Lf (A, ·). By (1.12),

condU(A) =
‖LU(A)‖‖A‖
‖U(A)‖

,

where

‖LU(A)‖ := max
Z 6=0

‖LU(A,Z)‖
‖Z‖

.

Moreover, since LU is a linear operator,

vec(LU(A,E)) = KU(A) vec(E), (3.10)

where KU(A) ∈ Cn2×n2
is the Kronecker form of the Fréchet derivative and vec is

the operator that stacks the columns of a matrix on top of each other [80, Chap. 3].

Following [80, Alg. 3.22] we will approximate ‖LU(A)‖1 by ‖KU(A)‖1 and estimate

the latter quantity using the block 1-norm estimation algorithm of Higham and

Tisseur [87]. This algorithm requires the ability to evaluate matrix–vector products

involving KU(A) and KU(A)∗. A product KU(A)y can be evaluated as the left-hand

side of (3.10) with vec(E) = y. This can be done using the formula

LU(A,E) =
E − Llog(e

A, Lexp(A,E))

2πi

obtained by applying the chain rule [80, Thm. 3.4] to (3.5), or by evaluating the

unwinding function of a 2n× 2n matrix [80, (3.13)] and then extracting the upper

right n× n block, as explained in (1.13):

U

([
A E

0 A

])
=

[
U(A) LU(A,E)

0 U(A)

]
. (3.11)

How to evaluate a product KU(A)∗y is not immediately obvious. We need to

introduce the adjoint L?f of the Fréchet derivative Lf , which is defined by the

condition

〈Lf (A,G), H〉 = 〈G,L?f (A,H)〉 (3.12)

68 3. The Matrix Unwinding Function

for all G,H ∈ Cn×n, where 〈X, Y 〉 = trace(Y ∗X) = vec(Y)∗ vec(X).

Lemma 3.15. Let f be 2n− 1 times continuously differentiable on an open subset

Ω of R or C such that for each connected component Ω̃ of Ω, z ∈ Ω̃ if and only

if −z̄ ∈ Ω̃. Suppose that f̄(A)∗ = −f̄(A∗) for all A ∈ Cn×n with spectrum in Ω,

where f̄(z) := f(z̄). Then

L?f (A,E) = Lf (A
∗, E) = −Lf (A,E∗)∗. (3.13)

Proof. The proof of the first equality is exactly the same as that of the corre-

sponding equality in the analogous result [85, Lem. 6.2]. We reproduce it here, for

convenience. Suppose, first, that f has the form f(x) = αxk, so that Lf (A,G) =

α
∑k

i=1A
i−1GAk−i. Then

〈Lf (A,G), H〉 = trace
(
H∗α

k∑
i=1

Ai−1GAk−i
)

= trace
(
α

k∑
i=1

Ak−iH∗Ai−1G
)

=
〈
G,α

k∑
i=1

(A∗)i−1H(A∗)k−i
〉

= 〈G,Lf (A∗, H)〉,

and so L?f (A,H) = Lf (A
∗, H), which is the first equality in (3.13). By the linearity

of Lf it follows that this equality holds for any polynomial. Finally, the equality

holds for all f satisfying the conditions of the theorem because the Fréchet deriva-

tive of f is the same as that of the polynomial that interpolates f and its deriva-

tives at the zeros of the characteristic polynomial of the block diagonal matrix

diag(A,A) [80, Thm. 3.7], [89, Thm. 6.6.14].

To prove the second equality we consider g = f̄ . By the definition of the Fréchet

derivative, Lg(A,E) = g(A+E)− g(A) + o(‖E‖). Taking the conjugate transpose,

Lg(A,E)∗ = g(A + E)∗ − g(A)∗ + o(‖E‖) = −g(A∗ + E∗) + g(A∗) + o(‖E‖) =

−Lg(A∗, E∗) + o(‖E‖). By the linearity of the Fréchet derivative we then have

Lg(A,E)∗ = −Lg(A∗, E∗), which gives the second equality in (3.13).

It is shown by Higham and Lin [85, Lem. 6.1] thatKf (A)∗ vec(E) = vec(L?f (A,E))

for any f . Combined with (3.13) this yields Kf (A)∗ vec(E) = − vec(Lf (A,E
∗)∗).

3.3 The matrix unwinding function 69

For the unwinding function we have f = −f by Lemma 3.3, so Lf = −Lf and

KU(A)∗ vec(E) = vec(LU(A,E∗)∗), and hence products with KU(A)∗ can be com-

puted in exactly the same way as products with KU(A).

3.3.3 Identities involving the logarithm and powers

We now use the matrix unwinding function to derive mathematical identities in-

volving the matrix logarithm and fractional matrix powers.

For any nonsingular A ∈ Cn×n and any α ∈ C we define the principal matrix

power

Aα = eα logA, (3.14)

where we recall that log denotes the principal matrix logarithm defined at the

start of Section 3.3. The following result is immediate from the definitions of U(A)

and Aα.

Lemma 3.16. For nonsingular A ∈ Cn×n and α ∈ C,

logAα = α logA− 2πiU(α logA).

To establish when logAα = α logA, we need to determine when U(α logA) = 0.

The following result describes a particularly useful context in which the latter

condition holds.

Corollary 3.17. For nonsingular A ∈ Cn×n, logAα = α logA for α ∈ (−1, 1] and

for α = −1 if A has no eigenvalues on R−.

Proof. It is immediate from (3.6) and Lemma 3.4 that U(α logA) = 0 under the

given conditions, so the result follows by Lemma 3.16.

Note the special cases α = −1 and α = 1/2. We have logA−1 = − logA if A

has no eigenvalues on R− and logA1/2 = 1
2

logA for all A. The latter identity can

be used to write 2k logA1/2k = logA, for any k ∈ Z, which underlies the inverse

scaling and squaring algorithm for computing the matrix logarithm [7], [8], [39].

We next describe the result of powering successively by α and 1/α.

Lemma 3.18. For nonsingular A ∈ Cn×n and α ∈ C,

(Aα)1/α = Ae−
2
α
πiU(α logA).

70 3. The Matrix Unwinding Function

Proof. Using (3.14) and Lemma 3.16 we have

(Aα)1/α = e
1
α
logAα = e

1
α
(α logA−2πiU(α logA))

= Ae−
2
α
πiU(α logA).

We note the special case of Lemma 3.18 with α = 2, which will be needed in

the next subsection:

(A2)1/2 = Ae−πiU(2 logA). (3.15)

We proceed to study the relation between a logarithm of a matrix product and

the logarithms of the matrices involved.

Lemma 3.19. Let A,B ∈ Cn×n be nonsingular matrices such that AB = BA.

Then

log(AB) = logA+ logB − 2πiU(logA+ logB).

Proof. Recall that e(A+B)t = eAteBt for all t if and only if A and B commute, [80,

Thm. 10.2]. Since A and B commute, so do logA and logB. We therefore have

log(AB) = log(elogAelogB) = log(elogA+logB)

= logA+ logB − 2πiU(logA+ logB),

where we have used the definition (3.5) of the matrix unwinding function.

Recall from [80, Cor. 1.41] that if A and B commute, then for each eigenvalue

µj of A there is an eigenvalue νj of B such that µj + νj is an eigenvalue of A+B.

We will call νj the eigenvalue corresponding to µj.

Corollary 3.20. Let A,B ∈ Cn×n be nonsingular matrices such that AB = BA.

Then

log(AB) = logA+ logB

if and only if arg µj + arg νj ∈ (−π, π] for every eigenvalue µj of A and the corre-

sponding eigenvalue νj of B.

3.3 The matrix unwinding function 71

Proof. Using Lemma 3.19, we write log(AB) = logA+logB if and only if U(logA+

logB) = 0. From Theorem 3.8 the latter equality holds if and only if the imaginary

parts of the eigenvalues of logA+logB lie in the interval (−π, π], which is equivalent

to arg µj + arg νj ∈ (−π, π] for all j.

Corollary 3.20 was proved by Higham [80, Thm. 11.3] directly from the defi-

nition of principal logarithm, and a variant of the result was obtained by Cheng,

Higham, Kenney, and Laub [39, Lem. 2.1]; in both cases the additional assumption

that A and B have no real negative eigenvalues was in force. The benefit of the

matrix unwinding function is that it provides the correction term for the general

case in Lemma 3.19.

The next result gives a relation between the power of a matrix product and the

product of the powers.

Theorem 3.21. Let A,B ∈ Cn×n be nonsingular matrices such that AB = BA.

Then, for any α ∈ C,

(AB)α = AαBαe−2παiU(logA+logB).

Proof. Applying (3.14), Lemma 3.19, and (3.7b) we have

(AB)α = eα log(AB)

= eα(logA+logB−2πiU(logA+logB))

= AαBαe−2απiU(logA+logB).

The next corollary characterizes when (AB)α = AαBα holds in terms of the

eigenvalues of A and B rather than logA and logB.

Corollary 3.22. Let A,B ∈ Cn×n be nonsingular matrices such that AB = BA.

Then (AB)α = AαBα if and only if αU(log µj + log νj) ∈ Z for every eigenvalue

µj of A and the corresponding eigenvalue νj of B.

Proof. It follows from [80, Thm. 1.27] that all solutions of eX = I are of the

form X = V diag(2πik1, . . . , 2πikn)V −1, where V is an arbitrary nonsingular ma-

trix and kj ∈ Z for all j. Hence, given that U(logA + logB) is diagonalizable,

72 3. The Matrix Unwinding Function

exp(−2απiU(logA + logB)) = I if and only if the eigenvalues of 2απiU(logA +

logB) are of the form 2πikj, kj ∈ Z, which yields the result.

We note that αU(log µj + log νj) ∈ Z holds when either α ∈ Z or U(log µj +

log νj) = 0, since U(log µj + log νj) ∈ {−1, 0, 1}.

An important case in which the condition of Corollary 3.22 holds for all α

is when the eigenvalues of A and B have arguments in (−π/2, π/2], for then

Im(log µj + log νj) ∈ (−π, π] and so U(log µj + log νj) = 0. As a special case we

recover the result of [80, Prob. 1.35], which states that (AB)1/2 = A1/2B1/2 when

A and B commute and both have eigenvalues lying in the open right half-plane.

The following result clarifies the relation between (eA)α and eαA, for α ∈ C.

Theorem 3.23. For A ∈ Cn×n and α ∈ C, (eA)α = eαAe−2πiαU(A). Hence (eA)α =

eαA if and only if αU(λ) ∈ Z for every eigenvalue λ of A.

Proof. From the definitions (3.14) of matrix power and (3.5) of matrix unwinding

function we have

(eA)α = eα log eA = eα(A−2πiU(A)) = eαAe−2πiαU(A).

The last part follows as in the proof of Corollary 3.22.

When α is an integer, the correction term in Theorem 3.23 is the identity matrix,

and after rescaling A← α−1A and setting α = 2s we obtain the basis of the scaling

and squaring method for computing the matrix exponential: (eA/2
s
)2
s

= A.

Note that Theorem 3.23 shows that it is not the case that eA = (eA/α)α holds

for all α ∈ C, as is incorrectly stated in [80, p. 241]!

3.3.4 Relation with the matrix sign function

We now explore some interesting connections between the matrix unwinding func-

tion and the matrix sign function. The scalar variants of some of these are given

in [41, Table A.1].

Recall that the matrix sign function is defined only for A ∈ Cn×n with no purely

imaginary eigenvalues and is given by sign(A) = A(A2)−1/2, as well as by various

other equivalent formulas [80, Chap. 5], [99].

3.3 The matrix unwinding function 73

Taking the inverse of equation (3.15) we can write

sign(A) = A(A2)−1/2 = AA−1eπiU(2 logA) = eπiU(2 logA). (3.16)

If the eigenvalues of A lie in the open right half-plane then the eigenvalues of

logA have imaginary parts in the interval (−π/2, π/2), hence U(2 logA) = 0 and

sign(A) = I. Conversely, if the eigenvalues of A lie in the open left half-plane then

the imaginary part of every eigenvalue λ of logA lies in (−π,−π/2) or (π/2, π],

and hence U(2λ) = −1 or 1, respectively, yielding sign(A) = −I.

We note that the right-hand side of our formula (3.16) is defined for any non-

singular A. The formula gives a meaning to the sign function on the imaginary

axis: for y > 0, sign(iy) = 1 and sign(−iy) = −1. Indeed, this conforms with

the counter-clockwise continuity principle introduced by Kahan [95]. We will call

sign(A) := eπiU(2 logA) the extended matrix sign function and we note that it is

different to other extensions in the literature of the sign function to arbitrary non-

singular matrices [99, Sec. I.D].

This result can be generalized for the matrix sector function [80, Sec. 2.14.3], [136],

which for a given integer p and A ∈ Cn×n with no eigenvalues with argument

(2k + 1)π/p, k = 0 : p− 1, is defined as sectp(A) = A(Ap)−1/p. From Lemma 3.18

we have

sectp(A) = e
2
p
πiU(p logA).

Analogously to the relation sign(A) = A(A2)−1/2, we have the following result

involving the extended matrix sign function. Recall that D is defined in (3.4).

Lemma 3.24. For a nonsingular A ∈ Cn×n with spectrum in D,

U(A) = sign(A)U
(
(A2)1/2

)
. (3.17)

Proof. It suffices to prove the result for diagonalizable A, by [80, Thm. 1.20] (or

simply because U(·) and sign(·) are diagonalizable), so the result reduces to the

scalar case, U(z) = sign(z)U((z2)1/2). If we now suppose z lies in the open left

half-plane, or on iR−, sign(z) = −1 and (z2)1/2 = −z. Since for any z ∈ D,

U(−z) = −U(z) by Lemma 3.3, the desired result follows. A similar argument

applies for z in the open right half-plane or on iR+.

74 3. The Matrix Unwinding Function

We can use (3.17) to derive a formula for the matrix unwinding function of a

particular block matrix.

Theorem 3.25. For nonsingular A,B ∈ Cn×n such that (AB)1/2 has spectrum in

D,

U

([
0 A

B 0

])
=

[
0 A(BA)−1/2 U((BA)1/2)

B(AB)−1/2 U((AB)1/2) 0

]
.

Proof. The result is obtained by applying (3.17) to the matrix C =
[

0 A
B 0

]
and then

using

U
(
(C2)1/2

)
= U

(
diag((AB)1/2, (BA)1/2)

)
= diag

(
U((AB)1/2),U((BA)1/2)

)
and the following result of Higham, Mackey, Mackey, and Tisseur [86, Lem. 4.3],

[80, Thm. 5.2] (which holds even when AB has eigenvalues on R−, given that we

are using the extended matrix sign function):

sign

([
0 A

B 0

])
=

[
0 A(BA)−1/2

B(AB)−1/2 0

]
.

3.4 Algorithm

The matrix unwinding function can be computed directly via the definition (3.5),

but this requires a matrix exponential and a matrix logarithm. Instead we will

compute a Schur decomposition A = QTQ∗ ∈ Cn×n, where Q is unitary and T

is upper triangular, after which U(A) = QU(T)Q∗. The problem is reduced to

computing U(T), which we will do directly rather than via the exponential and

logarithm.

The Parlett recurrence for computing a function of a triangular matrix T is not

appropriate because it breaks down when T has repeated diagonal elements. The

Schur–Parlett method [51], which is implemented in the MATLAB function funm,

reorders and blocks T so that the eigenvalues within a diagonal block are close

while distinct diagonal blocks have well separated eigenvalues. We do not have a

3.4 Algorithm 75

special way of evaluating the unwinding function of a triangular matrix with close

eigenvalues, so we cannot use this general method.

Instead we adapt the Schur–Parlett method by putting eigenvalues having the

same unwinding number in the same block. We use the algorithm of Bai and

Demmel [18] (implemented in the MATLAB function ordschur) to compute a

unitary V such that T̃ = V ∗TV = (T̃ij) is upper triangular with all the diagonal

elements of T̃ii having imaginary parts in the same interval ((2ki− 1)π, (2ki + 1)π],

for some ki ∈ Z. The diagonal blocks of F = U(T̃) are therefore given by Fii = uiI

for all i, by (3.6). The off-diagonal blocks are obtained from the block Parlett

recurrence, which is obtained by equating blocks in FT̃ = T̃F :

T̃iiFij − FijT̃jj = (ui − uj)T̃ij +

j−1∑
k=i+1

(FikT̃kj − T̃ikFkj), i < j. (3.18)

These Sylvester equations are nonsingular, since T̃ii and T̃jj have no eigenvalue in

common, and they can be solved a block column or a block superdiagonal at a

time.

For notational simplicity, we express our algorithm at the scalar level, but it is

mathematically equivalent to carrying out the blocking described above and using

the block Parlett recurrence; blocking is preferred in practice as it allows the use

of higher level BLAS.

Algorithm 3.26. Given A ∈ Cn×n this algorithm computes the unwinding function

U = U(A) using the Schur–Parlett method with a particular reordering and blocking.

1 Compute the Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).

2 If Im tii ∈ (−π, π] for all i, U = 0, quit, end

3 Assign tii to set SU(tii), i = 1:n, and use a unitary similarity transformation

to reorder T so that all elements belonging to each set SU(tii) are contiguous,

and update Q.

4 fii = U(tii), i = 1:n

5 for j = 2:n

6 for i = j − 1:−1: 1

7 if fii = fjj

76 3. The Matrix Unwinding Function

8 fij = 0

9 else

10 fij =

(
tij(fii − fjj) +

j−1∑
k=i+1

(
fiktkj − tikfkj

)) /
(tii − tjj)

11 end

12 end

13 end

14 U = QFQ∗

Cost: 25n3 flops for the Schur decomposition plus the cost of the reordering,

n3/3 flops for F , and 3n3 flops to form U .

The cost of the reordering is at most 10n3 − 20n2 flops. We look for the mini-

mum number of swaps of adjacent elements in an index array to obtain a confluent

permutation. This will be used to re-order the eigenvalues appearing on the diag-

onal of the Schur form. Suppose we want to rearrange an array of total length n

containing k different groups/blocks of size greater than 1. Each one of them has

size si, i = 1 : k. Note that for our purposes we can ignore the groups of size 1.

For the first group we choose to rearrange, we need at most n − s1 swaps for

each element, i.e., s1(n− s1)/2 in total.

We can apply the same logic to the second group we chose to rearrange, with

the difference that our starting array is of length n − s1 since we have already

arranged the first s1 positions in the permutation. The total number of swaps for

the second group is then (s2(n− s1 − s2))/2.

The total number of swaps we require then is at most

k∑
i=1

si(n− s1 − s2 − · · · − si)
2

. (3.19)

This bound is attainable and at its maximum for k = n/2, i.e., each group has

size 2. Then we need n2/4−n/2 swaps. The total number of operations required to

rearrange the Schur decomposition is 40n×total number of swaps [18], so at most

10n3− 20n2. This figure will usually be much smaller, because this bound assumes

a worst case distribution of diagonal entries of the Schur factor and block sizes.

Note that an alternative in Algorithm 3.26 is to reorder T in such way that

Im t11 ≤ · · · ≤ Im tnn. However, this requires more swaps in general, so it is more

3.5 Numerical experiments 77

expensive and introduces more rounding errors.

The condition number of the Sylvester equations (3.18) is proportional to the

reciprocal of the separation of T̃ii and T̃jj [78, Sec. 16.3], which is bounded below

by the reciprocal of min{ |λ − µ| : λ ∈ Λ(T̃ii), µ ∈ Λ(T̃jj) }. Hence (3.18) can be

ill conditioned, as there is no lower bound on the absolute value of the differences

between eigenvalues of T̃ii and T̃jj. A small eigenvalue difference occurs precisely

when two consecutive blocks have eigenvalues λi and λj such that Re(λi− λj) < ε,

and Imλi = (2k + 1)π − δ1, Imλj = (2k + 1)π + δ2, for some k ∈ Z and some

small ε ∈ R, δ1, δ2 ∈ R+, which is equivalent to U [λi, λj] being large. The latter

condition implies that condU(A) is large if A is close to normal, by (3.9). Hence

one particular cause of ill conditioning in the Sylvester equations is linked to ill

conditioning of U(A).

When A is real, U(A) is pure imaginary if A has no eigenvalues with imaginary

parts an odd integer multiple of π, by Corollary 3.10. In this case we would like

our algorithm to guarantee a pure imaginary result. We can compute a real Schur

decomposition A = QTQT , where T is real and upper quasitriangular. The matrix

unwinding function of any 2 × 2 diagonal blocks can be computed using (3.8).

However, the block Parlett recurrence may break down due to two different diagonal

blocks having the same eigenvalues, so this approach is not reliable and we will not

consider it further. This inability to split complex conjugate eigenvalues affects the

standard Schur–Parlett algorithm in the same way, preventing the derivation of a

version tailored to real matrices [51], [80, Sec. 9.4].

3.5 Numerical experiments

We investigate experimentally two algorithms for computing U(A):

• Algorithm 3.26.

• log-exp: evaluation of (3.5) using the scaling and squaring algorithm of Al-

Mohy and Higham [5] for the exponential and the inverse scaling and squaring

algorithm of Al-Mohy, Higham, and Relton [8] for the logarithm; the matrix

78 3. The Matrix Unwinding Function

A is reduced to Schur form (the real Schur form if A is real) before applying

these algorithms.

MATLAB implementation of Algorithm 3.26 is available at https://github.

com/aprahamian/matrix-unwinding. All tests were done in MATLAB R2015a,

for which the unit roundoff u ≈ 1.1× 10−16.

While log-exp is useful as a means for comparison, we note that it has two flaws

that make it unsuitable as a general way to compute U(A). First, it is prone to

overflow, since eA can overflow when U(A) does not, as is clear from the scalar

case; indeed, U(A) is very unlikely to overflow, in view of Lemma 3.13. Second, eA

can be singular, making the log computation fail. For example, for

A =

[
1 1

0 −103

]
, f l(eA) =

[
e fl(e/(103 + 1))

0 0

]
,

since fl(e−10
3
) = 0. Evaluation with log-exp fails since fl(eA) is singular, yet

U(A) = 0, as is correctly computed by Algorithm 3.26.

To test the performance, we first constructed a set of 10× 10 random matrices,

Set 1, with eigenvalues λi that are odd integer (between 1 and 11) multiples of

πi perturbed by 10−6 times complex numbers with N(0, 1) distributed real and

imaginary parts. The matrices, 40 in total, are the upper triangular Schur factors

of A = XDX−1, where D = diag(λi) and X is random with 2-norm condition

number 2, 10, 100, or 1000, obtained in MATLAB as gallery(’randsvd’,...).

Figure 3.1 shows the relative error ‖U(A) − Û‖F/‖U(A)‖F , where Û is the com-

puted unwinding function and U(A) is the correctly rounded one; U(A) is obtained

by evaluating (3.6) at 100 digit precision using the Symbolic Math Toolbox then

rounding to double precision. The matrices are arranged according to decreasing

value of κ2(X), with 10 matrices for each value. An estimate of condU(A)u is

shown in the figure, where condU(A) is estimated as indicated in Section 3.3.2,

using Algorithm 3.26 with (3.11) to obtain the Fréchet derivatives. We see that

both algorithms produce errors smaller than condU(A) in every case, showing that

they are performing in a forward stable fashion. Algorithm 3.26 produces errors

substantially smaller than log-exp in many cases.

https://github.com/aprahamian/matrix-unwinding
https://github.com/aprahamian/matrix-unwinding

3.5 Numerical experiments 79

Our second test uses a set of 24 matrices, Set 2, drawn from gallery, the

Matrix Computation Toolbox [76] and test problems provided with EigTool [147].

These matrices have been scaled to make them have nonzero unwinding functions

or otherwise make them useful for test purposes. Figure 3.2 shows the relative

errors for both algorithms, with the matrices arranged by decreasing estimated

condition number condU(A). For matrix 24, the relative error for Algorithm 3.26 is

0 and so is not plotted in the figure. Algorithm 3.26 performs in a forward stable

way in every case, but log-exp is unstable on five matrices.

The conclusion from these tests is that Algorithm 3.26 is usually more accurate

than log-exp and performs in a forward stable manner in the test sets. In fact,

in further experiments we have not been able to generate an example where the

computed result from Algorithm 3.26 has a relative error substantially larger than

condU(A)u.

5 10 15 20 25 30 35 40

10-15

10-10

10-5

100
log-exp
Alg 3.26

Figure 3.1: Relative errors for Set 1. The solid line is an estimate of condU(A)u.

80 3. The Matrix Unwinding Function

5 10 15 20
10-25

10-20

10-15

10-10

10-5

100

log-exp
Alg 3.26

Figure 3.2: Relative errors for Set 2. The solid line is an estimate of condU(A)u.

CHAPTER 4

Matrix Inverse Trigonometric and

Inverse Hyperbolic Functions

4.1 Introduction

Trigonometric functions of matrices play an important role in the solution of second

order differential equations; see, for example, [9], [135], and the references therein.

The inverses of such functions, and of their hyperbolic counterparts, also have

practical applications, but have been less well studied. An early appearance of the

matrix inverse cosine was in a 1954 paper on the energy equation of a free-electron

model [134]. The matrix inverse hyperbolic sine arises in a model of the motion

of rigid bodies, expressed via Moser–Veselov matrix equations [35]. The matrix

inverse sine and inverse cosine were used by Al-Mohy, Higham, and Relton [9]

to define the backward error in approximating the matrix sine and cosine. In

Chapter 5 of this thesis we use matrix inverse trigonometric and inverse hyperbolic

functions to study argument reduction for use in computing the matrix sine, cosine,

and hyperbolic sine and cosine.

This work has two aims. The first is to develop the theory of matrix inverse

trigonometric functions and inverse hyperbolic functions. Most importantly, we

define the principal values acos, asin, acosh, and asinh, prove their existence and

uniqueness, and develop various useful identities involving them. In particular, we

determine the precise relationship between acos(cosA) and A, and similarly for the

81

82 4. Matrix Inverse Trigonometric Functions

other functions. The second aim is to develop algorithms and software for comput-

ing acos, asin, acosh, and asinh of a matrix, for which we employ variable-degree

Padé approximation together with appropriate initial transformations. Very little

has been published on computation of these matrix functions and the only publicly

available software we are aware of that is designed specifically for computing these

functions is in GNU Octave [70], [83].

Corless et al. [43] note that in the elementary function literature definitions and

identities are often imprecise or inconsistent and need careful interpretation. While

it is arguably reasonable to ask a reader to determine the correct sign or choice of

branch in a scalar formula, in a formula in n×nmatrices, whose information content

is at least n scalar identities involving the (unknown) eigenvalues, imprecision is

a recipe for confusion and controversy. We are therefore scrupulous in this work

to give precise definitions and derive formulas that are valid under clearly stated

conditions.

The rest of this chapter is organized as follows. In the next section we give

necessary and sufficient conditions for the existence of matrix inverse cosine and

sine functions and their hyperbolic counterparts and characterize all their possible

values. Then we define the branch points, branch cuts, and principal values, and

prove the uniqueness of the principal values. In Section 4.3 we develop a variety

of identities involving the matrix inverse functions, some of which are new even in

the scalar case. In Section 4.4 we discuss the conditioning of the inverse functions.

An algorithm for computing acos that combines a Schur decomposition and Padé

approximation with a square root recurrence is given in Section 4.5; the algorithm

yields algorithms for asin, acosh, and sinh. In Section 4.6 we give numerical ex-

periments that compare the new algorithms with the use of formulas based on the

matrix logarithm and square root.

4.2 The inverse functions

We first define and characterize the matrix inverse trigonometric and inverse hy-

perbolic functions and then treat their principal values. We will repeatedly use the

4.2 The inverse functions 83

principal matrix logarithm, principal matrix square root, and matrix sign function,

with extensions on their respective branch cuts. These are defined as follows.

A logarithm of a nonsingular A ∈ Cn×n, written X = LogA, is a solution of

eX = A. The principal logarithm of a nonsingular A ∈ Cn×n, denoted logA, is the

logarithm all of whose eigenvalues have imaginary parts in the interval (−π, π]. We

take the branch cut to be the negative real axis R−. Note that the principal matrix

logarithm is usually not defined for matrices with eigenvalues on the negative real

axis [80, Chap. 11], but for the purposes of this work it is convenient to allow the

extension of the logarithm on the branch cut and to adopt the convention that

log(−y) = log y + πi for y > 0.

A square root of A ∈ Cn×n, written X =
√
A, is a solution of X2 = A. We take

the branch cut to be R− and define the the principal square root to be the one all

of whose eigenvalues have nonnegative real parts and such that (−y)1/2 = y1/2i for

y > 0. Consistent with the principal logarithm defined above, we can write the

principal square root of any nonsingular complex matrix A as A1/2 = e
1
2
logA.

We also need the matrix sign function signA [80, Chap. 5], which maps each

eigenvalue of A to the sign (±1) of its real part. To include the case where A has

an eigenvalue on the imaginary axis we define sign(0) = 1 and sign(yi) = sign(y)

for nonzero y ∈ R.

These particular choices for the values of the sign function and the logarithm

and square root on their branch cuts, which we previously used in Chapter 3, adhere

to the counter-clockwise continuity principle introduced by Kahan [95, Sec. 5].

We recall that for a multivalued function f a nonprimary matrix function f(A)

is obtained if, in the definition of matrix function via the Jordan canonical form,

some eigenvalue λ appears in more than one Jordan block and is assigned different

values f(λ) on at least two of the blocks [80, sec. 1.2]. This means that f(A) is not

expressible as a polynomial in A.

4.2.1 Existence and characterization

An inverse cosine of A ∈ Cn×n is any solution of the equation cosX = A. Inverse

sines, and inverse hyperbolic sines and cosines, are defined in an analogous way.

84 4. Matrix Inverse Trigonometric Functions

Using Euler’s formula, for X ∈ Cn×n,

eiX = cosX + i sinX, (4.1)

we can write the matrix cosine and sine functions in their exponential forms

cosX =
eiX + e−iX

2
, sinX =

eiX − e−iX

2i
. (4.2)

To establish whether solutions to the equation A = cosX exist we use the expo-

nential form to write A = (eiX + e−iX)/2. This equation implies that A commutes

with the nonsingular matrix eiX , and after multiplying through by eiX the equation

can be written as

(eiX − A)2 = A2 − I.

Taking square roots gives

eiX = A+
√
A2 − I, (4.3)

provided that A2 − I has a square root. The matrix A +
√
A2 − I is always non-

singular and so we can take logarithms to obtain X = −iLog(A+
√
A2 − I). Any

inverse matrix cosine must have this form. In order to reverse the steps of this

argument we need to show that eiX commutes with A, which can be guaranteed

when
√
A2 − I can be expressed as a polynomial in A, which in turn is true if the

square root is a primary matrix function [80, Sec. 1.2], that is, if each occurrence

of any repeated eigenvalue is mapped to the same square root. If a nonprimary

square root is taken it may or may not yield an inverse cosine.

Similar analysis can be done for the matrix inverse sine. Results for the inverse

hyperbolic functions can be obtained using the relations

coshX = cos iX, sinhX = −i sin iX, (4.4)

which hold for any X ∈ Cn×n and can be taken as the definitions of cosh and sinh.

Theorem 4.1. Let A ∈ Cn×n.

1. The equation cosX = A has a solution if and only if A2 − I has a square

root. Every solution has the form X = −iLog(A+
√
A2 − I) for some square

root and logarithm.

4.2 The inverse functions 85

2. The equation sinX = A has a solution if and only if I−A2 has a square root.

Every solution has the form X = −iLog(iA+
√
I − A2) for some square root

and logarithm.

3. The equation coshX = A has a solution if and only if A2 − I has a square

root. Every solution has the form X = Log(A +
√
A2 − I) for some square

root and logarithm.

4. The equation sinhX = A has a solution if and only if A2 + I has a square

root. Every solution has the form X = Log(A +
√
A2 + I) for some square

root and logarithm.

In 1–4 the given expression for X is guaranteed to be a solution when the square

root is a primary square root.

We emphasize that the square roots and logarithms in the statement of the

theorem need not be primary. Note also that the existence of a square root of a

matrix is in question only when the matrix is singular. Necessary and sufficient

conditions for the existence of a square root of a singular matrix are given in [48],

[80, Thm. 1.22].

To illustrate the use of these results, we consider the existence of an inverse

sine of the 2× 2 matrix A =
[
1 1996
0 1

]
[80, Prob. 1.50] (Putnam Problem 1996–B4).

It is easy to see that I −A2 =
[
0 −3992
0 0

]
does not have a square root and hence the

equation A = sinX has no solutions. Two very similar 2 × 2 examples are given

by Pólya and Szegö [130, p. 35, Prob. 210].

4.2.2 Branch points, branch cuts, and principal values

The inverse cosine and inverse sine functions, and their hyperbolic counterparts,

are multivalued. We now specify their branch points and branch cuts. The branch

points of acos and asin are at 1 and −1 and, in accordance with popular conven-

tion [119, secs. 4.23(ii), 4.23(vii)], we consider their branch cuts to be on the two

segments of the real line

Ω = Ω1 ∪Ω2 = (−∞,−1] ∪ [1,∞). (4.5)

86 4. Matrix Inverse Trigonometric Functions

The branch points of asinh are at i and −i and the branch cuts are the segments of

the imaginary line iΩ; the branch points of acosh are at 1 and −1 and the branch

cut is the segment of the real line [119, Sec. 4.37(ii)]

Ω̃ = Ω1 ∪Ω3 ≡ (−∞,−1] ∪ [−1, 1] = (−∞, 1]. (4.6)

In the following definition we specify the principal values of the functions, in

a way consistent with the scalar case [119, Secs 4.23(ii), 4.37(ii)] and with the

counter-clockwise continuity principle [95]. We refer to Figure 4.1 for plots of the

domains and ranges of the principal branches of the scalar functions (the plots

extend ones in [128]). The figure also shows where the branch cuts are and what

values the principal functions take on these branch cuts. The hashes placed on the

sides of the branch cuts indicate that if a sequence {zk} tends to a point w on the

branch cut from the side with the hashes then limk→∞ f(zk) 6= f(w).

Definition 4.2 (Principal values). Let A ∈ Cn×n.

1. The principal inverse cosine of A, denoted acosA, is the inverse cosine for

which every eigenvalue

(a) has real part lying in (0, π), or

(b) has zero real part and nonnegative imaginary part (corresponding to A

having an eigenvalue in Ω2), or

(c) has real part π and nonpositive imaginary part (corresponding to A hav-

ing an eigenvalue in Ω1).

2. The principal inverse sine of A, denoted asinA, is the inverse sine for which

every eigenvalue

(a) has real part lying in (−π/2, π/2), or

(b) has real part −π/2 and nonnegative imaginary part (corresponding to A

having an eigenvalue in Ω1), or

(c) has real part π/2 and nonpositive imaginary part (corresponding to A

having an eigenvalue in Ω2).

4.2 The inverse functions 87

3. The principal inverse hyperbolic cosine of A, denoted acoshA, is the inverse

hyperbolic cosine for which every eigenvalue

(a) has imaginary part lying in (−π, π) and positive real part, or

(b) has imaginary part in [0, π) and zero real part (corresponding to A having

an eigenvalue in Ω3), or

(c) has imaginary part π and nonnegative real part (corresponding to A

having an eigenvalue in Ω1).

4. The principal inverse hyperbolic sine of A, denoted asinhA, is the inverse

hyperbolic sine for which every eigenvalue

(a) has imaginary part lying in (−π/2, π/2), or

(b) has imaginary part −π/2 and nonpositive real part (corresponding to A

having an eigenvalue in iΩ1), or

(c) has imaginary part π/2 and nonnegative real part (corresponding to A

having an eigenvalue in iΩ2).

Note that if A has no eigenvalues on the respective branch cuts then part (i)

of each of (a)–(d) in Definition 4.2 is in operation. Moreover, under this condition

the principal inverse function exists, is unique, and is a primary matrix function of

A, as shown by the next result.

Theorem 4.3. Let A ∈ Cn×n.

1. If A has no eigenvalues equal to 1 or −1 then there is a unique principal

inverse cosine acosA, a unique inverse sine asinA, and a unique inverse

hyperbolic cosine acoshA, and all are primary matrix functions of A.

2. If A has no eigenvalues equal to i or −i then there is a unique principle

inverse hyperbolic sine asinhA and it is a primary matrix function of A.

Proof. Consider asin, which by Definition 4.2 must have eigenvalues with real parts

in the interval (−π/2, π/2), or real parts −π/2 and nonnegative imaginary parts, or

real parts π/2 and nonpositive imaginary parts. Note first that inverse sines exist

88 4. Matrix Inverse Trigonometric Functions

acos

−1 1 0 π

Ω1 Ω2

acosΩ1

acosΩ2

(a)

asin

−1 1 −π/2 π/2

Ω1 Ω2

asinΩ2

asinΩ1

(b)

acosh

−1 1 0

iπ

Ω1 Ω3

acoshΩ1

acoshΩ3

−iπ

(c)

asinh

−i

i
iπ/2

−iπ/2
iΩ1

iΩ2

asinh iΩ1

asinh iΩ2

(d)

Figure 4.1: Domains and ranges of the principal branches of the complex functions
acos (a), asin (b), acosh (c), and asinh (d).

by Theorem 4.1 2, since I−A2 is nonsingular under the assumptions on A. Observe

that a nonprimary inverse sine of A (if one exists) must have two eigenvalues µi and

µj with µj = (−1)kµi + kπ for some nonzero integer k. Since A has no eigenvalues

equal to 1 or −1 such an inverse sine cannot satisfy Definition 4.2 (b). Therefore

no nonprimary inverse sine can be a principal inverse sine. Finally, there exists a

way, and hence precisely one way, to map the eigenvalues with the inverse sine in

such a way that all eigenvalues have the characterization given in Definition 4.2,

and that is with asin.

The proofs for acos, acosh, and asinh are completely analogous.

4.3 Identities

Now we derive identities involving the principal matrix inverse trigonometric and

inverse hyperbolic functions. Some of the results generalize existing scalar results,

but others are new even in the scalar case.

4.3 Identities 89

The first result provides explicit formulas for the principal inverse functions

in terms of the principal logarithm and the principal square root. Note that the

exclusion of the branch points as eigenvalues of A in the next result, and later

results, is necessary in order to ensure the existence of the inverse functions.

Theorem 4.4. For A ∈ Cn×n, assuming that A has no eigenvalues at the branch

points of the respective inverse functions,

acosA = −i log(A+ i(I − A2)1/2) (4.7)

= −2i log

((
I + A

2

)1/2

+ i

(
I − A

2

)1/2
)
,

asinA = −i log(iA+ (I − A2)1/2), (4.8)

acoshA = log(A+ (A− I)1/2(A+ I)1/2) (4.9)

= 2 log

((
A+ I

2

)1/2

+

(
A− I

2

)1/2
)
,

asinhA = log(A+ (A2 + I)1/2). (4.10)

Proof. These identities are known to hold for complex scalars [42], [95], [119,

Secs 4.23(iv), 4.37(iv)]. If we were to exclude the eigenvalues of A from the branch

cuts, which are the only points of non-differentiability of the inverse functions, it

would follow from [80, Thm. 1.20], [89, Thm. 6.2.27 (2)] that the identities hold in

the matrix case. In fact, they hold even if A has eigenvalues on the branch cuts.

We show only that the first equality in (4.7) holds, as the proofs of the remaining

identities are analogous. From the given conditions, the matrix −i log(A + i(I −

A2)1/2) exists and by Theorem 4.1 (a) it is an inverse cosine of A. It is readily

verified that the eigenvalues of −i log(A + i(I − A2)1/2) satisfy the conditions of

Definition 4.2 (a) and therefore −i log(A + i(I − A2)1/2) must be the principal

inverse cosine of A.

The next result completely describes the relation between the acos and asin

functions. It is the matrix counterpart of [119, eq. (4.23.16)].

Lemma 4.5. If A ∈ Cn×nhas no eigenvalues ±1 then

acosA+ asinA =
π

2
I. (4.11)

90 4. Matrix Inverse Trigonometric Functions

Proof. Using the addition formula for the cosine we find that cos(π
2
I−asinA) = A,

so π
2
I − asinA is some inverse cosine of A. That it is the principal inverse cosine is

easily seen from Definition 4.2 (a) and (b).

A known identity for scalars is acoshz = ±iacosz [2, eq. (4.6.15)]. The correct

choice of sign depends on the complex argument of 1 − z (see Corless et al. [43,

Sec. 6.2]). In the next result we show that the ±1 term can be explicitly expressed

in terms of the sign function and generalize the identity to matrices. We also

generalize a corresponding identity for asinh.

Theorem 4.6. If A ∈ Cn×n has no eigenvalues ±1 then

acoshA = i sign(−iA) acosA if A has no eigenvalues in (0, 1], (4.12)

asinh(iA) = iasinA. (4.13)

Proof. From (4.4) along with the fact that cosh is an even function, we see that

if X is an inverse cosine of A then ±iX is an inverse hyperbolic cosine of A. By

passing to the Jordan canonical form and applying the argument to each Jordan

block it follows that i sign(−iA) acosA is some hyperbolic inverse cosine of A, and

we need to show that it is the principal hyperbolic inverse cosine. We therefore

need to show that the eigenvalues of i sign(−iA) acosA satisfy the conditions in

Definition 4.2 (c), which is equivalent to showing that i sign(−iz) acosz satisfies

these conditions for all z ∈ C \ (0, 1].

Write acosz = x + iy, where z ∈ C and x, y ∈ R. We can also write z =

cos(x + iy), which, using the addition formula for cosine, we can expand to z =

cosx cos(iy)−sinx sin(iy). Assuming that y 6= 0 and x ∈ (0, π), we have sign(−iz) =

sign(i sinx sin(iy)), because cosx, sin x, and cos(iy) are all real, and sin(iy) is pure

imaginary. Since x ∈ (0, π), sinx > 0 and sin(iy) = i sinh y, we have sign(−iz) =

sign(− sinh y) = − sign y. Finally, i sign(−iz)acosz = −i sign(y)(x+ iy), which has

real part y sign y > 0 and imaginary part −x sign y ∈ (−π, π), satisfying Defini-

tion 4.2 (c) (i). If y = 0, then z ∈ (−1, 1), and now we consider in turn z ∈ (−1, 0]

and z ∈ (0, 1). In the former case, x ∈ [π/2, π) and so i sign(−iz)acosz ∈ i[π/2, π).

In the other case, x ∈ (0, π/2) and so i sign(−iz)acosz ∈ i(−π/2, 0), which is not in

the range of the principal branch of acosh. This means that Definition 4.2 (c) (ii)

4.3 Identities 91

is satisfied for z ∈ (−1, 0], but it is not satisfied for z ∈ (0, 1). If x = 0, by

Definition 4.2 (a) (ii) we have y > 0, and so z > 1 and i sign(−iz)acosz = y,

which satisfies Definition 4.2 (c) (i). Similarly, if x = π, then y < 0 by Defini-

tion 4.2 (a) (iii) and so z < −1 and i sign(−iz)acosz = −y + πi, which satisfies

Definition 4.2 (c) (iii).

Turning to (4.13), from (4.4) we see that if X is an inverse sine of A then iX

is some inverse hyperbolic sine of iA. We therefore just need to check that iasinA

is the principal inverse hyperbolic sine of iA, and this reduces to the scalar case,

which is a known identity [2, eq. (4.6.14)].

The following result will be needed to prove the next set of identities.

Lemma 4.7. For A ∈ Cn×n with no eigenvalues ±1,

(I − A)1/2(I + A)1/2 = (I − A2)1/2. (4.14)

Moreover, if all the eigenvalues of A have arguments in the interval (−π/2, π/2]

then

(A− I)1/2(A+ I)1/2 = (A2 − I)1/2. (4.15)

Proof. The result is given for scalars in [27, Lem. 2]. It follows for matrices by [80,

Thm. 1.20], [89, Thm. 6.2.27 (2)].

Note that, unlike (4.14), the identity (4.15) does not hold for all A!

The formulas in the next result will be useful in the construction of algorithms

for computing acos, asin, acosh, and asinh in Section 4.5. These formulas do not

follow directly from the scalar addition formulas in [119, Secs 4.24(iii), 4.38(iii)]

because the latter formulas do not specify the branches of the constituent terms.

Theorem 4.8. For A ∈ Cn×n, assuming that A has no eigenvalues at the branch

92 4. Matrix Inverse Trigonometric Functions

points of the respective functions,

acosA = 2acos

((
I + A

2

)1/2
)
, (4.16)

asinA = 2asin

(
(I + A)1/2 − (I − A)1/2

2

)
, (4.17)

acoshA = 2acosh

((
I + A

2

)1/2
)
, (4.18)

asinhA = 2asinh

(
i(I − iA)1/2 − i(I + iA)1/2

2

)
. (4.19)

Proof. To prove (4.16) we use the first and second logarithmic representations (4.7)

of acos, in that order:

2acos

((
I + A

2

)1/2
)

= −2i log

((
I + A

2

)1/2

+ i

(
I − I + A

2

)1/2
)

= −2i log

((
I + A

2

)1/2

+ i

(
I − A

2

)1/2
)

= acosA.

The proof of (4.18) is analogous to that of (4.16) but requires the use of((
I + A

2

)1/2

− I

)1/2((
I + A

2

)1/2

+ I

)1/2

=

(
I + A

2
− I
)1/2

.

The latter equality is valid by Lemma 4.7, since ((I+A)/2)1/2 has eigenvalues with

arguments in the interval (−π/2, π/2] by the definition of the principal square root.

For the proof of (4.17) we use the logarithmic representation (4.8) of asin.

Denoting B = ((I + A)1/2 − (I − A)1/2)/2, after some manipulations we have

iA+ (I − A2)1/2 = (iB + (I − B2)1/2)2. It is straightforward to show that for any

z ∈ C, Re(iz + (1 − z2)1/2) ≥ 0, from which we can conclude that (iA + (I −

A2)1/2)1/2 = iB + (I −B2)1/2. Taking logarithms, and using Corollary 3.17,

1

2
asinA = −1

2
i log(iA+ (I − A2)1/2)

= −i log(iB + (I −B2)1/2)

= asinB,

which is (4.17). To show that (4.19) holds, we use (4.17) and the relation (4.13)

between asin and asinh.

4.3 Identities 93

We will also use the formulas in the next result, which relate the trigonometric

functions cos and sin and their inverses acos and asin, and generalize formulas for

scalars in [119, Table 4.16.3].

Lemma 4.9. If A ∈ Cn×n has no eigenvalues ±1 then

sin (acosA) = cos (asinA) = (I − A2)1/2.

Proof. Using the exponential form (4.2) of the sine and the logarithmic represen-

tation of acos given in Theorem 4.4, we write

sin(acosA) =
eiacosA − (eiacosA)−1

2i

=
A+ i(I − A2)1/2 −

(
A+ i(I − A2)1/2

)−1
2i

.

But (A+ i(I − A2)1/2)−1 = A− i(I − A2)1/2, so

sin(acosA) =
A+ i(I − A2)1/2 −

(
A− i(I − A2)1/2

)
2i

= (I − A2)1/2.

In a similar way, it can be shown that cos(asinA) = (I − A2)1/2.

For the next results we need to use the matrix unwinding function, which was

defined in (3.5) as

U(A) =
A− log eA

2πi
.

We now give summation formulas for the principal inverse sine and cosine func-

tions. These identities are known to hold for real scalars, but by using the matrix

unwinding function we can generalize them to complex square matrices.

In the remaining results of this section we make assumptions that are stronger

than A having no eigenvalues at the branch points of the respective inverse func-

tions. This is done so that we can obtain necessary and sufficient conditions for

identities to hold.

The first result is given for scalars in [119, eq. (4.24.13)] for the multivalued

inverse sine, with the branch for each occurrence of an inverse sine not specified.

Theorem 4.10. For all A,B ∈ Cn×n with no eigenvalues in Ω and such that

AB = BA,

asinA+ asinB = asin
(
A(I −B2)1/2 +B(I − A2)1/2

)

94 4. Matrix Inverse Trigonometric Functions

if and only if all the eigenvalues of −AB + (I −A2)1/2(I −B2)1/2 have arguments

in the interval (−π/2, π/2].

Proof. Applying the logarithmic representation (4.8) and the formula describing

the logarithm of a matrix product via the unwinding function Lemma 3.19, we

have

asinA+ asinB =− i log
(
iA+ (I − A2)1/2

)
− i log

(
iB + (I −B2)1/2

)
=− i log

((
iA+ (I − A2)1/2

)(
iB + (I −B2)1/2

))
+ 2π U

(
log
(
iA+ (I − A2)1/2

)
+ log

(
iB + (I −B2)1/2

))
=− i log

((
iA+ (I − A2)1/2

)(
iB + (I −B2)1/2

))
+ 2π U

(
iasinA+ iasinB).

Expanding the product and rearranging, using the fact that A and B commute,

gives

(
iA+ (I − A2)1/2

)(
iB + (I −B2)1/2

)
= iC − AB + (I − A2)1/2(I −B2)1/2,

where C = A(I −B2)1/2 +B(I − A2)1/2. We also note that

(
−AB + (I − A2)1/2(I −B2)1/2

)2
= I − C2,

and using Lemma 3.18 we have

(
I − C2

)1/2
=
(
−AB + (I − A2)1/2(I −B2)1/2

)
e−πiU

(
2 log
(
−AB+(I−A2)1/2(I−B2)1/2

))
.

Since A and B have no eigenvalues in Ω, asinA and asinB both have eigenvalues

with real parts in the interval (−π
2
, π
2
). Using the commutativity of A and B and

Lemma 3.8 we then have U(iasinA+ iasinB) = 0. We can finally write

asinA+ asinB = −i log
(
iC +

(
I − C2

)1/2
eπiU

(
2 log
(
−AB+(I−A2)1/2(I−B2)1/2

)))
.

By Lemma 3.8 the unwinding term vanishes if and only if the arguments of all the

eigenvalues of −AB + (I −A2)1/2(I −B2)1/2 lie in the interval (−π/2, π/2].

Now we give an analogous result for the inverse cosine.

4.3 Identities 95

Theorem 4.11. For all A,B ∈ Cn×n with no eigenvalues in Ω and such that

AB = BA,

acosA+ acosB = acos
(
AB − (I − A2)1/2(I −B2)1/2

)
(4.20)

if and only if the arguments of all the eigenvalues of iA(I−B2)1/2+iB(I−A2)1/2 lie

in the interval (−π/2, π/2] and the real parts of the eigenvalues of acosA+ acosB

lie in [0, π].

Proof. We omit the proof because it follows the same framework as the proof of

Theorem 4.10.

By definition, cos(acosA) = A, but the inverse relation acos(cosA) = A does

not always hold. In the next few theorems we give explicit formulas for acos(cosA)

and the counterparts for the sine and the inverse hyperbolic cosine and sine, and

identify when these formulas reduce to A. These “round trip” formulas are new

even in the scalar case. We note that scalar functional identities relating all four

functions and their respective inverses are given in [42, App. B], but they have the

unattractive feature that the identity for acos(cos z) involves sin z and similarly for

the other identities.

Theorem 4.12. If A ∈ Cn×n has no eigenvalue with real part of the form kπ,

k ∈ Z, then

acos(cosA) =
(
A− 2π U(iA)

)
sign

(
A− 2π U(iA)

)
.

Proof. Let B = A − 2π U(iA). We first show that cos(B signB) = cosA. With

G = signB we have cosB = cos(BG), which can be seen using the Jordan canonical

form definitions of cos and sign along with the fact that cos(−X) = cosX for any

matrix X. Using the exponential representation (4.2) of the cosine function,

cosB =
eiB + e−iB

2

=
ei(A−2π U(iA)) + e−i(A−2π U(iA))

2

=
eiAe−2πiU(iA) + e−iAe2πiU(iA)

2
.

96 4. Matrix Inverse Trigonometric Functions

Now e2πiU(iA) = e−2πiU(iA) = I, since U(iA) is diagonalizable and has integer eigen-

values, so

cos(BG) = cosB =
eiA + e−iA

2
= cosA.

Finally, since iB = iA − 2πiU(iA) = log eiA by the definition (3.5) of the

unwinding function, iB has eigenvalues with imaginary parts in the interval (−π, π],

hence B has eigenvalues with real parts in the interval (−π, π]. Therefore B signB

has eigenvalues with real parts in the interval [0, π]. We note that the end points of

this interval are excluded because of the conditions in the statement of the theorem.

Therefore the eigenvalues of B satisfy the condition in Definition 4.2 (a)(i).

The following corollary of Theorem 4.12 gives necessary and sufficient conditions

under which A = acos(cosA) holds.

Corollary 4.13. For A ∈ Cn×n with no eigenvalue with real part of the form kπ,

k ∈ Z, acos(cosA) = A if and only if every eigenvalue of A has real part in the

interval (0, π).

Proof. If all the eigenvalues of A satisfy the condition of this corollary, then, by

Lemma 3.8, we have U(iA) = 0. Then, since signA = I, by Theorem 4.12 we have

acos(cosA) = A. Conversely, if acos(cosA) = A, then, since the condition of the

corollary rules out A having an eigenvalue with real part 0 or π, the eigenvalues of

A have real parts in the interval (0, π), by Definition 4.2 (a).

Theorem 4.14. If A ∈ Cn×n has no eigenvalue with real part of the form (2k +

1)π/2, k ∈ Z, then

asin(sinA) = eπiU(2iA)
(
A− π U(2iA)

)
.

Proof. Let C = A−π U(2iA) andH = eπiU(2iA). We will first prove that sin(HC) =

sinA.

The matrix unwinding function U(2iA) is diagonalizable with integer eigenval-

ues, so the matrix H is diagonalizable with eigenvalues equal to ±1. It is not hard

to show that sin(HC) = H sinC. Now

sinC = sin
(
A− π U(2iA)

)
= sinA cos

(
π U(2iA)

)
− cosA sin

(
π U(2iA)

)
.

4.3 Identities 97

Since U(2iA) is diagonalizable and has integer eigenvalues, sin(π U(2iA)) = 0.

From the properties of H described above, H = eπiU(2iA) = e−πiU(2iA) and so

cos(π U(2iA)) =
eπiU(2iA) + e−πiU(2iA)

2
= H.

Therefore sin(HC) = H sinC = H2 sinA = sinA, which completes the first part of

the proof.

Finally, we show that every eigenvalue of HC satisfies the condition in Defini-

tion 4.2 (b). We note that the real parts of the eigenvalues of HC lie in [−π, 2/π/2]

and the conditions in the statement of the theorem exclude the endpoints of this

interval, so conditions (ii) and (iii) in Definition 4.2 (b) need not be checked. Using

the definition (3.5) of the unwinding function we have

iC = iA− πiU(2iA) = iA− πi
(

2iA− log e2iA

2πi

)
=

log e2iA

2
.

Here log is the principal matrix logarithm, so C has eigenvalues with real parts

in the interval (−π/2, π/2] and therefore HC has eigenvalues with real parts in

the interval [−π/2, π/2]. But, as already noted, the end points of this interval are

excluded because of the assumptions in the statement of the theorem.

Corollary 4.15. For A ∈ Cn×n with no eigenvalue with real part of the form

(2k + 1)/2π, k ∈ Z, asin(sinA) = A if and only if every eigenvalue of A has real

part in the interval (−π/2, π/2).

Proof. If the eigenvalues of A have real parts in the interval (−π/2, π/2) then

by Lemma 3.8 we have U(2iA) = 0. Applying Theorem 4.14 we then have

asin(sinA)) = A.

Conversely, if asin(sinA) = A then, since the condition of the corollary rules

out A having an eigenvalue with real part ±π/2, the eigenvalues of A have real

parts in the interval (−π/2, π/2), by Definition 4.2 (b).

Similar results hold for the inverse hyperbolic cosine and sine functions.

Theorem 4.16. For A ∈ Cn×n with no eigenvalue with imaginary part of the form

kπ, with odd k ∈ Z, and no pure imaginary eigenvalue,

acosh(coshA) =
(
A− 2πiU(A)

)
sign

(
A− 2πiU(A)

)
.

98 4. Matrix Inverse Trigonometric Functions

Proof. Let B = A − 2πiU(A). We follow the same framework as in the proofs of

the previous two results. First, we note that cosh(B signB) = coshB. Expressing

cosh in terms of exponentials we have

coshB =
1

2

(
eA−2πiU(A) + e−A+2πiU(A))

=
1

2

(
eA + e−A

)
= coshA,

where we used e±2πiU(A) = I by Lemma 3.12.

Finally, we have to show that the eigenvalues of B signB satisfy the require-

ments of Definition 4.2 (c). Using the definition of the unwinding function, B =

A− 2πiU(A) = log eA, we see that the imaginary parts of the eigenvalues of B lie

in (−π, π]. Therefore each eigenvalue of B signB has eigenvalues with nonnegative

real part and imaginary part in the interval [−π, π]. The end points of this interval

and the case when the eigenvalues of B signB are pure imaginary are excluded be-

cause of the assumptions in the statement of the theorem. Therefore the conditions

of Definition 4.2(c) are satisfied.

Corollary 4.17. For A ∈ Cn×n with no eigenvalue with imaginary part of the

form kπ, for odd k ∈ Z, and no pure imaginary eigenvalue, acosh(coshA) = A if

and only if every eigenvalue of A has imaginary part in the interval (−π, π) and

positive real part.

Proof. If the eigenvalues of A all have imaginary parts in the interval (−π, π) then

U(A) = 0 and if they all have positive real parts then signA = I. Therefore

Theorem 4.16 gives acosh(coshA) = A. Conversely, if acosh(coshA) = A and if A

satisfies the conditions of the corollary then the eigenvalues of A have imaginary

parts in the interval (−π, π) and positive real parts, by Definition 4.2 (c)(i).

Theorem 4.18. If A ∈ Cn×n has no eigenvalue with imaginary part of the form

(2k + 1)πi/2, k ∈ Z, then

asinh(sinhA) = eπiU(2A)
(
A− πiU(2A)

)
.

Proof. Suppose first that A does not have any eigenvalues whose imaginary parts

are of the form (2k + 1)π/2, k ∈ Z. This implies that sin(−iA) has no eigenvalues

4.4 Conditioning 99

±1, so we can use the identity sinhA = i sin(−iA) from (4.4) and Theorem 4.6 and

Theorem 4.14 to write

asinh(sinhA) = asinh
(
i sin(−iA)

)
= iasin

(
sin(−iA)

)
= ieπiU(2A)

(
−iA− π U(2A)

)
= eπiU(2A)

(
A− πiU(2A)

)
.

Corollary 4.19. For A ∈ Cn×n with no eigenvalue with imaginary part of the form

(2k + 1)πi/2, k ∈ Z, asinh(sinhA) = A if and only if every eigenvalue of A has

imaginary part in the interval (−π/2, π/2).

Proof. If every eigenvalue ofA has imaginary part in (−π/2, π/2), then by Lemma 3.8

we have U(2A) = 0 and Theorem 4.18 gives asinh(sinhA) = A.

Conversely, if asinh(sinhA) = A, by Definition 4.2 (d), since d(ii) and d(iii) are

excluded by the assumptions on A, the eigenvalues of A must have imaginary parts

in the interval (−π/2, π/2).

4.4 Conditioning

We introduced the absolute condition number of a function f at the matrix A in

(1.11) as

condabs(f, A) = max
E 6=0

‖Lf (A,E)‖
‖E‖

.

Here, Lf is the Fréchet derivative of f , which is a linear operator, which we defined

in Section 1.2.

To study the conditioning of the inverse sine and cosine we need only study

one of them, in view of the relation given in the next result between the respective

Fréchet derivatives.

Lemma 4.20. For A ∈ Cn×n with no eigenvalues in Ω in (4.5),

Lacos(A,E) + Lasin(A,E) = 0.

100 4. Matrix Inverse Trigonometric Functions

Proof. Fréchet differentiate (4.11).

A simple relation also exists between the Fréchet derivatives of asin and asinh.

Lemma 4.21. For A ∈ Cn×n with no eigenvalues in Ω in (4.5),

Lasin(A,E) = Lasinh(iA,E).

Proof. Fréchet differentiate (4.13) using the chain rule [80, Thm. 3.4].

We now study further the Fréchet derivative of acos. Assume that A has no

eigenvalues in Ω. By [80, Thm. 3.5] we have

Lcos (acosA,Lacos(A,E)) = E. (4.21)

Recall the integral representation of the Fréchet derivative of the matrix cosine

function [80, Sec. 12.2]

Lcos(A,E) = −
∫ 1

0

[
cos (A(1− t))E sin(At) + sin (A(1− t))E cos(At)

]
dt. (4.22)

Substituting into the relation (4.21) we find that the Fréchet derivative of acos

satisfies

E = −
∫ 1

0

[
cos ((1− t)acosA)Lacos(A,E) sin (tacosA)

+ sin ((1− t)acosA)Lacos(A,E) cos (tacosA)
]
dt.

(4.23)

If A and E commute the relation (4.23) simplifies to E = −Lacos(A,E) sin (acosA).

Now we can apply Lemma 4.9 to obtain the more useful expression

Lacos(A,E) = −E(I − A2)−1/2 (AE = EA). (4.24)

Setting E = I in (4.24) gives Lacos(A, I) = −(I −A2)−1/2 and for any subordinate

norm we obtain the bound

condabs(acos, A) ≥ ‖(I − A2)−1/2‖.

The condition number is necessarily large when A has an eigenvalue close to 1 or

−1, which are the branch points of acos.

4.5 Algorithms 101

One would also expect acos to be ill conditioned when a pair of eigenvalues

lie close to, but on either side of, the branch cut. This is revealed by applying a

general lower bound from [80, Thm. 3.14], which gives

condabs(acos, A) ≥ max
λ,µ∈Λ(A)

|acos[µ, λ]|,

where Λ(A) is the spectrum of A and the lower bound contains the divided dif-

ference acos[λ, µ] = (acosλ − acosµ)/(λ − µ). For example, if λ = −2 + εi and

µ = −2 − εi, with 0 < ε � 1, then acosλ = π − acos2 + O(ε) and acosµ =

π + acos2 +O(ε), so acos[λ, µ] = O(1/ε).

4.5 Algorithms

Lemma 4.5 and Theorem 4.6 show that if we have an algorithm for computing any

one of the four functions acosA, asinA, acoshA, and asinhA then the others can

be obtained from it, although this may necessitate using complex arithmetic for

a real problem. In the next subsection we propose an algorithm for computing

the principal matrix inverse cosine based on Padé approximation. In Section 4.5.2

we consider an alternative algorithm for computing the inverse trigonometric and

inverse hyperbolic functions via their logarithmic representations given in Theo-

rem 4.4.

We exploit a Schur factorization A = QTQ∗, where Q is a unitary matrix and

T is upper triangular with the eigenvalues of A on its diagonal, along with the

property f(A) = Qf(T)Q∗. The problems of computing acosA, asinA, acoshA,

and asinhA are thus reduced to computing the same functions of the triangular

matrix T . We will explain how Schur-free variants of the algorithms can also be

constructed; these are of interest for situations in which a highly efficient implemen-

tation of the Schur decomposition is not available (for example, in certain parallel

computing environments).

4.5.1 Schur–Padé algorithm

We develop an algorithm analogous to the inverse scaling and squaring method for

computing the matrix logarithm.

102 4. Matrix Inverse Trigonometric Functions

For ρ(A) < 1, where ρ is the spectral radius, we can write acosA as the power

series [119, eq. (4.24.1)]

acosA =
π

2
I −

∞∑
k=0

(
2k
k

)
4k(2k + 1)

A2k+1, ρ(A) < 1.

Alternatively, we can expand as a series in I − A [119, eq. (4.24.2)]:

acosA = 21/2(I − A)1/2
∞∑
k=0

(
2k
k

)
8k(2k + 1)

(I − A)k, ρ(I − A) < 2.

Here, to ensure the existence of (I − A)1/2, we require that A has no eigenvalues

equal to 1. Replacing A by I − A gives, for nonsingular A,

acos(I − A) = (2A)1/2
∞∑
k=0

(
2k
k

)
8k(2k + 1)

Ak, ρ(A) < 2. (4.25)

We will compute acos using Padé approximants of the function f(x) = (2x)−1/2acos(1−

x), which (4.25) shows is represented by a power series in x that converges for

|x| ≤ 2 and so should be well approximated by Padé approximants near the origin.

Let rm(x) = pm(x)/qm(x) denote the diagonal [m/m] Padé approximant of f(x),

so that pm(x) and qm(x) are polynomials of degrees at most m.

We now consider the backward error of approximating acos. For A ∈ Cn×n we

define hm : Cn×n → Cn×n by

(2A)1/2rm(A) = acos
(
I − A+ hm(A)

)
,

assuming that all of the eigenvalues of (2A)1/2rm(A) have real parts in the interval

(0, π). We can rewrite this equation as

hm(A) = cos
(
(2A)1/2rm(A)

)
− (I − A).

The relative backward error in approximating acos(I−A) by (2A)1/2rm(A) is given

by ‖hm(A)‖/‖A‖ and we wish to bound it by the unit roundoff for IEEE double

precision arithmetic, u = 2−53 ≈ 1.11× 10−16, that is, we would like to ensure that

‖hm(A)‖
‖A‖

=
‖ cos

(
(2A)1/2rm(A)

)
− (I − A)‖

‖A‖
≤ u. (4.26)

We now follow the same framework as for backward error analysis of the exponen-

tial [5] and the cosine and sine [9, Sec. 2]. We have rm(x) = (2x)−1/2acos(1− x) +

4.5 Algorithms 103

O(x2m+1) and so hm(x) = cos((2x)1/2rm(x))− (1− x) = O(x2m+2), where the last

equality is obtained after some manipulations.

We can write

hm(A) =
∞∑
`=0

c`A
2m+`+2 = A

∞∑
`=0

c`A
2m+`+1,

for some coefficients c`. We now use [5, Thm. 4.2(a)] to obtain the bound on the

relative backward error

‖hm(A)‖
‖A‖

≤
∞∑
`=0

|c`|αp(A)2m+`+1,

where

αp(A) = max
(
‖Ap‖1/p, ‖Ap+1‖1/(p+1)

)
and p is an integer such that 2m + 1 ≥ p(p − 1). It can be shown that α1(A) ≥

α2(A) ≥ α3(A), but for p ≥ 4 the relation between αp−1(A) and αp(A) depends on

the matrix A. We need to find the smallest value of αp(A) subject to the constraint

2m+ 1 ≥ p(p− 1).

With the definition

βm = max

{
β :

∞∑
`=0

|c`|β2m+`+1 ≤ u

}
,

the inequality αp(A) ≤ βm implies that the relative backward error is bounded

by u. Table 4.5.1 gives the values of βm for a range of values of m, determined

experimentally using a combination of high precision arithmetic and symbolic cal-

culations.

Table 4.5.1 also gives the number of matrix multiplications πm required to eval-

uate the Padé approximant rm(A) of order [m/m] using the Paterson–Stockmeyer

scheme [80, Sec. 4.2 and Table 4.2], [124] for both pm and qm.

To ensure that αp(A) ≤ βm for a suitable value of m we use repeatedly the

identity acosX = 2 acos
(
((I+X)/2)1/2

)
in (4.16), which brings the argument close

to the identity, as shown by the next result.

Lemma 4.22. For any X0 ∈ Cn×n, the sequence defined by

Xk+1 =

(
I +Xk

2

)1/2

(4.27)

satisfies limk→∞Xk = I.

104 4. Matrix Inverse Trigonometric Functions

Table 4.1: Values of βm, values of p to be considered, and number of matrix
multiplications πm required to evaluate rm.

m 1 2 3 4 5 6

βm 3.44e-5 4.81e-3 3.97e-2 1.26e-1 2.59e-1 4.17e-1

p ≤ 2 2 3 3 3 4

πm 0 1 2 3 4 4

m 7 8 9 10 11 12

βm 5.81e-1 7.39e-1 8.84e-1 1.01 1.13 1.22

p ≤ 4 4 4 5 5 5

πm 5 5 6 6 7 7

Proof. First, consider the scalar iteration xk+1 = ((1 + xk)/2)1/2 . It is easy to see

that

xk+1 − 1 =
xk − 1

2
((

1+xk
2

)1/2
+ 1
)

and hence that |xk+1 − 1| ≤ |xk − 1|/2, since Re ((1 + xk)/2])1/2 ≥ 0. Therefore

limk→∞ xk = 1. The function ((1 + x)/2)1/2 is holomorphic for Rex ≥ 0 and

furthermore its derivative at x = 1 satisfies | d
dx

(1
2
(x + 1)1/2|x=1 = 1

4
< 1. The

convergence of the matrix iteration follows from a general result of Iannazzo [92,

Thm. 3.20].

We apply the recurrence (4.27) with X0 = T , selecting the scaling parameter

s so that αp(I − Xs) ≤ βm. To compute the square roots required to obtain Xs

we use the Björck–Hammarling method [24], [80, Alg. 6.3]. Increasing the scaling

parameter s by one has a cost of n3/3 flops, so it is worth doing if it decreases the

number π of (triangular) matrix multiplications, which also cost n3/3 flops each,

by more than 1. From the relation

(I −Xs+1)(I +Xs+1) = I −X2
s+1 = I − I +Xs

2
=
I −Xs

2
, (4.28)

it is clear that for large s (so that ‖Xs‖ is of order 1) ‖I −Xs+1‖ ≈ ‖I −Xs‖/4.

From the values of βm in Table 4.5.1 we see that for m ≥ 9 it is more efficient

to continue the recursion and consequently use an approximant of a lower degree.

Indeed for m = 9, β9/4 = 2.21e-1 < 2.59e-1 = β5, so the effect of taking an extra

4.5 Algorithms 105

step in the recursion would be that we could use an approximant of type [5/5] and

so the number of matrix multiplications required would be reduced from 6 to 4.

In computing αp(A) we avoid explicit computation of powers of A by estimating

‖Ap‖1/p1 and ‖Ap+1‖1/(p+1)
1 using the block 1-norm estimator of Higham and Tisseur

[87].

A further computational saving can be provided by computing a lower bound on

the scaling parameter s. Denote byD = diag(T) the diagonal matrix containing the

eigenvalues of A on its diagonal and observe that ρ(I−D) = ρ(I−T) ≤ αp(I−T).

The largest β we consider is β8, and the inequality αp(I − T) ≤ β8 also requires

that ρ(I − D) ≤ β8, so we can apply the recurrence (4.27) to the matrix D to

obtain a lower bound s0 on s at negligible cost.

We are now ready to state the algorithm for computing acos. In the pseudocode

the statement “break” denotes that execution jumps to the first statement after

the while loop.

Algorithm 4.23 (Schur–Padé algorithm). Given A ∈ Cn×n with no eigenvalues

equal to ±1, this algorithm computes X = acosA. The algorithm is intended for

use with IEEE double precision arithmetic.

1 Compute the Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).

2 Find s0, the smallest s such that ρ(I −Xs) ≤ β8, where the Xs are the

iterates from (4.27) with X0 = diag(T).

3 for i = 1: s0

4 T =
(
1
2
(I + T)

)1/2
5 end

6 s = s0, m = 0

7 while m = 0

8 Z = I − T

9 Estimate d2(Z) = ‖Z2‖1/21 .

10 Estimate d3(Z) = ‖Z3‖1/31 .

11 α2(Z) = max(d2, d3)

12 if α2(Z) ≤ β1, m = 1, break, end

13 if α2(Z) ≤ β2, m = 2, break, end

106 4. Matrix Inverse Trigonometric Functions

14 Estimate d4(Z) = ‖Z4‖1/41 .

15 α3(Z) = max(d3, d4)

16 if α3(Z) ≤ β3, m = 3, break, end

17 if α3(Z) ≤ β4, m = 4, break, end

18 if α3(Z) ≤ β5, m = 5, break, end

19 Estimate d5(Z) = ‖Z5‖1/51 .

20 α4(Z) = max(d4, d5)

21 γ(Z) = min(α3(Z), α4(Z))

22 if γ(Z) ≤ β6, m = 6, break, end

23 if γ(Z) ≤ β7, m = 7, break, end

24 if γ(Z) ≤ β8, m = 8, break, end

25 T =
(
1
2
(I + T)

)1/2
26 s = s+ 1

27 end

28 Compute U = rm(Z) by using the Paterson–Stockmeyer scheme

to evaluate pm(Z) and qm(Z) and then solving qm(Z)U = pm(Z).

29 Y = Z1/2

30 V = 21/2UY

31 W = 2sV

32 X = QWQ∗

Cost: 25n3 flops for the Schur decomposition, sn3/3 flops to compute the square

roots for the scaling stage, (πm + 1)n3/3 flops to compute the Padé approximation

of order [m/m], n3/3 flops for the final square root, and 3n3 flops to form X: about

(282
3

+ πm+s
3

)n3 flops in total.

A Schur-free variant of Algorithm 4.23 can be obtained by removing lines 1–

5 and 32, setting s = 0 on line 6, and computing the square roots using (for

example) a scaled Denman–Beavers iteration [80, Sec. 6.3]. For real A, a variant of

the algorithm that uses only real arithmetic can be derived by using a real Schur

decomposition on line 1 and using ideas from [8].

The other functions of interest can be computed by using Algorithm 4.23 in

4.5 Algorithms 107

conjunction with the formulas, from Lemma 4.5 and Theorem 4.6,

asinA = (π/2)I − acosA, (4.29)

asinhA = iasin(−iA) = i
(
(π/2)I − acos(−iA)

)
, (4.30)

acoshA = i sign(−iA)acosA if A has no eigenvalues in (0, 1]. (4.31)

The last relation requires computation of the matrix sign function of a triangular

matrix (exploiting the Schur form), which can be done by [80, Alg. 5.5] at a cost

of up to 2n3/3 flops, with a further n3/3 flops for the final (triangular) matrix

multiplication. A fast, blocked implementation of [80, Alg. 5.5] has recently been

developed by Toledo [142]. For a Schur-free algorithm, the matrix sign function

can be computed using a Newton algorithm or some other rational iteration [80,

Chap. 5], [115]. Equation (4.31) is applicable only when A has no eigenvalue in the

interval (0, 1]. When this condition is not satisfied acosh can be computed using

the logarithmic representations of acosh given in (4.9), as described in the next

subsection. Alternatively, a special purpose algorithm could be designed, using

analysis similar to that in Section 4.5.1.

4.5.2 Algorithms based on logarithmic formulas

Another way to compute the matrix inverse trigonometric and inverse hyperbolic

functions is via their logarithmic representations given in Theorem 4.4. The most

popular method for computing the matrix logarithm is the inverse scaling and

squaring method. It was introduced by Kenney and Laub [98] and has undergone

extensive development [7], [37], [39], [80, sect. 11.5], with special attention to com-

putation in real arithmetic [8], [53]. The inverse scaling and squaring method is

based on the relation logX = 2s log(X1/2s) for s ∈ Z, with s taken sufficiently large

that X1/2s is close to the identity matrix and a Padé approximant to log(1 + x)

used to approximate log(X1/2s). In the most recent algorithms the degree of the

Padé approximant is variable.

Using the first formula in (4.7) we obtain the following algorithm.

Algorithm 4.24. Given A ∈ Cn×n with no eigenvalues equal to ±1, this algorithm

computes C = acosA via the matrix logarithm.

108 4. Matrix Inverse Trigonometric Functions

1 Compute the Schur decomposition A = QTQ∗.

2 R = (I − T 2)1/2

3 Compute X = −i log(T + iR) using [7, Alg. 4.1].

4 C = QXQ∗

Cost: 25n3 flops for the Schur decomposition, 2n3/3 flops to compute R, (ŝ +

m̂)n3/3 flops to compute X (where ŝ is the scaling parameter in the inverse scaling

and squaring method and m̂ is the degree of the Padé approximation used), plus

3n3 flops to form C: about (282
3

+ ŝ+m̂
3

)n3 flops in total.

A Schur-free algorithm can be obtained by omitting the first and last lines of

the algorithm, replacing T by A on lines 2–3, and computing the logarithm using

[7, Alg. 5.2].

Corresponding algorithms for asin, acosh, and asinh are obtained by using (4.8),

the first formula in (4.9), and (4.10).

In the linear-algebra package of GNU Octave (version 4.0.0) [70], the func-

tion thfm.m (“trigonometric/hyperbolic functions of square matrix”) implements

logarithmic formulas for acos, asin, acosh, and asinh. This function has two weak-

nesses. First, the formula used for acosh is acoshA = log(A + (A2 − I)1/2), which

differs from (4.9) (cf. Lemma 4.7) and does not produce the principal branch as we

have defined it. Second, the formulas are implemented as calls to logm and sqrtm

and so two Schur decompositions are computed rather than one.

4.6 Numerical experiments

We present numerical experiments with the following algorithms.

• Algorithm 4.23, which computes acos by the Schur–Padé algorithm. In the

case of asin, acosh, and asinh, the algorithm is used together with (4.29)–

(4.31). In (4.31) the sign function of a triangular matrix is computed with

the function signm from [77]. When (4.31) is not applicable we use the first

logarithmic formula for acosh in (4.9).

• Algorithm 4.24 and its counterparts for asin, acosh, and asinh based on the

logarithmic representations.

4.6 Numerical experiments 109

We note that an algorithm for computing the matrix inverse hyperbolic sine

has been proposed by Cardoso and Silva Leite [36, Alg. 1]. They compute asinhA

using its logarithmic representation (4.10). In computing the logarithm they use

the relation log((1 + x)/(1 − x)) = 2 atanhx, where atanh is the inverse hyper-

bolic tangent, along with Padé approximations of atanh. The degree of the Padé

approximant is fixed at 8 and is not chosen optimally. For this reason we will not

consider this algorithm further.

All computations are performed in MATLAB 2015b, for which the unit roundoff

is u ≈ 1.11× 10−16.

We consider a set of 20 test matrices, which are mostly 10×10 and are based on

matrices from the MATLAB gallery function, the Matrix Computation Toolbox

[76], test problems provided with EigTool [147], and matrix exponential test prob-

lems [5]. Figure 4.2 gives the the relative errors ‖acosA− Ĉ‖1/‖acosA‖1. Here, an

accurate acosA was obtained using 100-digit arithmetic with the Advanpix Multi-

precision Computing Toolbox for MATLAB [3], exploiting the eigendecomposition

A = V DV −1 and the property f(A) = V f(D)V −1. For each matrix we also esti-

mated the relative condition number

condrel(f, A) =
condabs(f, A)‖A‖

‖f(A)‖
,

where condabs is defined in (4.4), using the algorithm funm_condest1 from the

Matrix Function Toolbox [77], which implements [80, Alg. 3.22]. The latter algo-

rithm requires the Fréchet derivatives Lacos(A,E), which are obtained using the

identity (1.13)

acos

([
A E

0 A

])
=

[
acosA Lacos(A,E)

0 acosA

]
, (4.32)

and we use Algorithm 4.23 for this computation. We use Lemmas 4.20 and 4.21 to

obtain the Fréchet derivatives of asin and asinh, and the analog of (4.32) for acosh,

along with (4.31), to obtain the Fréchet derivative of acosh.

Figures 4.3–4.5 give the 1-norm relative errors for asin, acosh, and sinh com-

puted using the variants of Algorithm 4.24, based on the matrix logarithm.

For all four functions it can be seen that Algorithm 4.23 gives the best results

overall and behaves in a forward stable fashion, that is, the relative error is not much

110 4. Matrix Inverse Trigonometric Functions

larger than condrel(f, A)u. The algorithms based on the logarithmic representations

have a major disadvantage. The branch point of the logarithm is at zero, and

so when the argument of the logarithm has an eigenvalue close to this branch

point there may be large relative errors in computing the logarithm. However, the

argument of the logarithm can have eigenvalues close to zero when the argument of

asin, acos, asinh, or acosh is not close to a branch point of that function. Consider,

for example, a matrix A with some eigenvalues with large negative imaginary parts.

The corresponding eigenvalues of A+ i(I −A2)1/2 are close to zero, which may be

detrimental for the computation of the logarithm in Algorithm 4.24. We observed

this for the matrix indexed 19 in Figure 4.2. The matrix is

A =

[
0 b

−b 0

]
, b = 1000,

with eigenvalues ±1000i. The eigenvalues of A + i(I − A2)1/2 are approximately

5 × 10−4i and 2000i, so one of them is very close to zero and this is reflected

in the relative error for Algorithm 4.24 for computing acos, which is ‖acosA −

Ĉ‖1/‖acosA‖1 ≈ 1.98 × 10−9 versus 3.68 × 10−16 for Algorithm 4.23. This is not

surprising in view of the large difference between the (estimated) relative 1-norm

condition numbers, which are 0.83 for acosA and 2.1×107 for log(A+ i(I−A2)1/2).

Finally, we reiterate that acoshA can be computed using Algorithm 4.23 and

equation (4.31) only if A has no eigenvalue in the interval (0, 1]. This restriction

was satisfied for all but two of the matrices—those indexed 3 and 7 in Figure 4.4.

However, as we see from the figure, the acosh variant of Algorithm 4.24 provides a

good alternative for such cases.

4.6 Numerical experiments 111

2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100

Alg. 4.23
Alg. 4.24

Figure 4.2: Relative error in computing acosA using Algorithms 4.23 and 4.24.
The solid line is condacos(A)u.

2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100

Via Alg. 4.23
Via log formula

Figure 4.3: Relative error in computing asinA using Algorithm 4.23 (with (4.29))
and via log formula (variant of Algorithm 4.24). The solid line is condasin(A)u.

112 4. Matrix Inverse Trigonometric Functions

2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100

Via Alg. 4.23
Via log formula

Figure 4.4: Relative error in computing acoshA using Algorithm 4.23 (with (4.31))
and via log formula (variant of Algorithm 4.24). The solid line is condacosh(A)u.

2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100

Via Alg. 4.23
Via log formula

Figure 4.5: Relative error in computing asinhA using Algorithm 4.23 (with (4.30))
and via log formula (variant of Algorithm 4.24). The solid line is condasinh(A)u.

CHAPTER 5

Argument Reduction for Periodic

Functions of Matrices

5.1 Introduction

Argument reduction, or range reduction, is a fundamental tool in the construction

of algorithms for evaluating functions of real and complex variables. Its goal is

to reduce the argument to an interval or region where the function is easier to

evaluate. Argument reduction for computing f(x) consists of three main steps [29,

Sec. 4.3], [114, Sec. 9.1]:

1. Transform x into x̃ so that the next step can be performed efficiently.

2. Compute f(x̃).

3. Reconstruct f(x) from f(x̃) using appropriate functional identities.

Typically, the identities on which argument reduction is based are addition formu-

las, such as those for the exponential and related functions.

Our interest here is in argument reduction for matrix functions. Just as in

the scalar case we can distinguish between additive reduction and multiplicative

reduction. The latter aims to find complex constants c and k such that f(A)

is simply related to f(A/ck) and f(A/ck) is easier to compute than f(A). For

example, for the matrix exponential function, the scaling and squaring method [80,

Sec. 10.3] sets c = 2 and uses the relation eA = (eA/2
k
)2
k

for positive integers k.

113

114 5. Argument Reduction

Similarly, double and triple angle formulas underlie recent algorithms for computing

the matrix cosine and sine functions [9].

Additive reduction aims to find a matrix C ∈ Cn×n and a scalar µ such that f(A)

and f(A− µC) are simply related and f(A− µC) is easier to compute than f(A).

Additive reduction is natural for periodic functions, but does not necessarily rely

on periodicity. For example, the relation eA = eµeA−µI holds for any µ. The latter

relation is used on the first step of a recent algorithm of Güttel and Nakatsukasa [74]

for computing the matrix exponential, in order to shift the eigenvalues to the left

half-plane.

In this work we focus on additive argument reduction for periodic functions.

In the scalar case it is straightforward to exploit periodicity. For example, sinx =

sin(x − 2kπ) for all integers k and we can choose k so that x − 2kπ has real part

in the interval (−π, π]. In the matrix case we have the complication that replacing

A by A− 2kπI is not in general effective because each eigenvalue of A may need a

different shift.

We introduce the generalized matrix unwinding function Uf corresponding to

a given periodic function f and use it to reduce the matrix argument so that

its eigenvalues are lying in a bounded region of the complex plane. When f is the

exponential, Uf is the matrix unwinding function that we introduced in Section 3.3.

Here we use the matrix unwinding function to give an additive argument reduction

for the matrix exponential and for the matrix sine and cosine. We also derive

an algorithm to compute Uf based on a reordered Schur decomposition and the

Parlett recurrence and explain how Uf can be used in argument reduction for

general functions.

A similar additive matrix argument reduction technique was proposed by Ng

in his PhD thesis [117]. Ng did not identify the function Uf and required the

reduced eigenvalues to lie on an interval symmetric about the origin. Here we

exploit properties of the generalized matrix unwinding function and show that for

sine and cosine it relates to the standard matrix unwinding function. Our results

allow for additional speedups in the computation; see the end of Section 5.3.2.

This chapter is organized as follows. An argument reduction algorithm for the

5.2 Argument reduction for elementary periodic functions 115

exponential is discussed in Section 5.2.1, and algorithms for the sine and cosine are

discussed in Section 5.2.2. These algorithms use the matrix unwinding function

as a tool for deriving an expression for the reduced argument. In Section 5.3

we discuss more generally argument reduction for computing periodic functions of

matrices by introducing a generalized matrix unwinding function. In Section 5.3.1

we briefly consider the norm and conditioning of the generalized matrix unwinding

function. The complete argument reduction algorithm is given in Section 5.3.2.

Numerical experiments that illustrate the computational savings from applying

argument reduction are given in Section 5.4.

5.2 Argument reduction for elementary periodic

functions

The computation of some of the most widely used elementary periodic functions of

matrices, including the exponential, trigonometric, and hyperbolic functions, can

potentially benefit from matrix argument reduction. We discuss in more detail

argument reduction algorithms tailored to the exponential, and the sine and cosine

functions.

We will make use of the matrix unwinding function, which we defined in (3.5),

as a tool to deal with the periodic nature of the exponential, the sine and the cosine

functions.

5.2.1 Algorithm for the matrix exponential

A notion of matrix argument reduction for the matrix exponential was introduced

by Ng in his PhD thesis [117] and pursued with a particular choice of “modulus”

(2πi) by McCurdy, Ng, and Parlett [110, Sec. 5.3]. In the latter paper, a matrix

function mod is defined that is related to the matrix unwinding function by

mod(A) = A− 2πiU(A). (5.1)

The motivation for the use of mod was that for A ∈ Cn×n,

eA = eA−2πiU(A), (5.2)

116 5. Argument Reduction

by Lemma 3.12 and, because mod(A) has eigenvalues with bounded imaginary

parts, indeed, in (−π, π], the computation of emod(A) may be easier than the com-

putation of eA. In [110] and [117] the authors do not explicitly identify the matrix

unwinding function.

Many techniques are available for computing the matrix exponential, as ex-

plained in the classic paper by Moler and Van Loan [112], [113]. The MATLAB

function expm uses the scaling and squaring algorithm of Higham [79], [81]. The

algorithm is based on the relation eA = (e2
−sA)2

s
and the use of [m/m] Padé ap-

proximants rm to the exponential; it approximates e2
−sA ≈ rm(2−sA) with a choice

of s and m that depends on ‖A‖. Opting for a larger than necessary value for s

may lead to overscaling and possibly inaccurate results [80, Sec. 10.3]. Overscaling

can be avoided by using the sequence {‖Ak‖1/k} instead of ‖A‖ when choosing the

value of s, as shown by Al-Mohy and Higham [5], who derive an improved scaling

and squaring algorithm, which we denote by expm new. The cost of both algorithms

is roughly 6 + s matrix multiplications and one solution of a multiple right-hand

side system.

We combine expm new with the matrix unwinding function in the following

algorithm.

Algorithm 5.1. Given A ∈ Cn×n, this algorithm computes eA using the scaling

and squaring method in conjunction with the matrix unwinding function.

1 Compute the Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).

2 Compute U = U(T) using Algorithm 3.26.

3 Tr = T − 2πiU

4 if ‖Tr‖F > ‖T‖F , Tr = T ; end.

5 Compute V = eTr using expm new from [5].

6 X = QV Q∗.

Cost: (302
3

+ θ + s
3
)n3, where θn3 flops is the cost of the reordering in Algo-

rithm 3.26 and s is the scaling parameter used by expm new.

Note that in line 4 we test whether the transformation from T to Tr has increased

the norm, and if it has we work with T . The reason is that if Tr exceeds T in norm

5.2 Argument reduction for elementary periodic functions 117

then there is likely to be no benefit to the scaling and squaring method from using

Tr in place of T and, moreover, this is only likely to happen when U(T) is very ill

conditioned, in which case the computed Tr may be rather inaccurate.

It is instructive to compare the costs of computing eA from Algorithm 5.1 and

directly from expm new. We note that the scaling and squaring algorithm usually

sets the degree of the Padé approximation to 13 and the overall differences between

applying the algorithm with and without argument reduction are predominantly

determined by the scaling factors. For expm new applied directly to A the cost

is (14 + 2s1)n
3 flops, and if a Schur decomposition is computed and expm new

applied to the triangular factor the cost is (301
3

+ s2
3

)n3; here, s1 and s2 are the

respective scaling parameters chosen by expm new. We see from these figures that

for large scaling factors it is more efficient to use the Schur decomposition in the eA

computation, in which case denoting the cost of the reordering in Algorithm 3.26

by θn3 flops, Algorithm 5.1 will be cheaper if its scaling parameter s satisfies

s < s2−1−3θ. This inequality is unlikely to be satisfied if θ achieves its maximum

value of 20, but in the more typical case of θ = 1 (say), the inequality is

s < s2 − 4, (5.3)

which is readily satisfied.

5.2.2 Algorithms for the matrix sine and cosine

We consider argument reduction in computing the matrix sine and cosine functions.

Analogous algorithms for the hyperbolic sine and cosine can be obtained since for

any A ∈ Cn×n the trigonometric functions and their hyperbolic counterparts are

related by the identities

sinhA = −i sin(iA),

coshA = cos(iA).

The following lemma gives the main results required for the argument reduction

algorithms for the cosine and sine.

118 5. Argument Reduction

Lemma 5.2. For all A ∈ Cn×n,

sinA = sin(A− 2π U(iA)),

cosA = cos(A− 2π U(iA)).

Proof. Replacing A by iA in (5.2) gives

eiA = ei(A−2π U(iA)).

The result then follows by writing the sine and cosine in their exponential forms,

sinA = (eiA−e−iA)/(2i) and cosA = (eiA+e−iA)/2 and on noting that e±2πiU(iA) =

I from Lemma 3.12 applied to iA.

So, we compute sine and cosine at the reduced argument Ar = A − 2π U(iA).

Observe that we can use the definition of the unwinding function (3.5) to write

Ar := A− 2π U(iA) = log eiA.

Recall that the principal matrix logarithm is the one all of whose eigenvalues have

imaginary parts in the interval (−π, π], and so the spectrum of Ar lies in the

horizontal strip of the complex plane between −iπ and iπ.

The algorithm for computing the matrix unwinding function requires an initial

Schur decomposition A = QTQ∗ ∈ Cn×n, where Q is unitary and T is upper

triangular. Then, since for all functions f , f(A) = Qf(T)Q∗, the problem has

been reduced to computing f(T), or in our case f(A) = Qf(T − 2π U(iT))Q∗,

where the function f is the sine or the cosine.

We can now give the algorithms for computing sine and cosine using argument

reduction. For completeness we state both algorithms separately.

Algorithm 5.3. Given A ∈ Cn×n this algorithm computes S = sinA using argu-

ment reduction.

1 Compute a Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).

2 Compute R = U(iT) using Algorithm 3.26.

3 Tr = T − 2πR

4 If ‖Tr‖F > ‖T‖F , Tr = T , end

5 Y = sinTr

6 S = QY Q∗

5.2 Argument reduction for elementary periodic functions 119

To compute sinTr in line 5 of Algorithm 5.3 we use the algorithm of Al-Mohy,

Higham and Relton [9, Alg. 5.2] based on the triple angle formula sin 3A = 3 sinA−

4 sin3A along with rational approximants to the sine function. Invoking the triple

angle formula s times translates to performing a multiplicative argument reduction

so that ‖3−sA‖F is within some pre-computed tolerance level and sin(3−sA) can

be computed using rational approximation. Note that since all eigenvalues of the

reduced argument Tr have real parts in the interval (−π, π], ρ(Tr) ≤ ρ(T). However,

‖Tr‖F is not necessarily smaller than ‖T‖F , as we noted for the exponential and

we discuss further in Section 5.3.2, which is why we have introduced line 4 in

Algorithm 5.3. The cost of the general algorithm for sine applied to a triangular

matrix T is ((m + 2s + 1)/3)n3, where s is the number of times the triple angle

formula is invoked and mn3/3 is the number of floating point operations required

for the approximation of sin(3−sT). The cost of applying Algorithm 5.3 to compute

sinTr is ((m1+2s1+2)/3+θ)n3, where m1 and s1 are the corresponding parameters

for Algorithm 5.3 and θn3 is the cost of reordering the Schur form required in

Algorithm 3.26. Using argument reduction is therefore more efficient than the

existing algorithm for computing sinT if 2s + m > 2s1 + m1 + 3θ + 1. In the

typical case of θ = 1 (say), this inequality is simplified to

2s1 +m1 < 2s+m− 4. (5.4)

In Section 5.4 we give examples for which the inequality (5.4) is satisfied.

Here is the corresponding algorithm for computing cosine using argument re-

duction.

Algorithm 5.4. Given A ∈ Cn×n, this algorithm computes C = cosA using argu-

ment reduction.

1 Compute a Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).

2 Compute R = U(iT) using Algorithm 3.26.

3 Tr = T − 2πR

4 If ‖Tr‖F > ‖T‖F , Tr = T , end

5 Y = cosTr

6 C = QY Q∗

120 5. Argument Reduction

To compute cosTr in line 5 of Algorithm 5.4 we use an algorithm of Al-Mohy,

Higham and Relton [9, Alg. 4.2] based on the double-angle formula for the cosine

and rational approximants.

We let s̃ be the number of times the scaling formula is invoked and m̃n3/3 be

the number of floating point operations required for the approximation of cosine at

the scaled argument. We find that Algorithm 5.4 is more efficient than the same

algorithm without argument reduction if (again assuming a typical cost for the

argument reduction algorithm)

s̃1 + m̃1 < s̃+ m̃− 4. (5.5)

In Section 5.4 we give examples for which the inequality (5.5) is satisfied.

In some applications both the sine and the cosine are required [9]. Since in

Algorithms 5.3 and 5.4 the argument is reduced to A − 2π U(iA) for both sine

and cosine, we can execute the argument reduction step once and then compute

sine and cosine at the reduced argument simultaneously, using [9, Alg. 6.2]. For

consistency we state the full algorithm below.

Algorithm 5.5. Given A ∈ Cn×n, this algorithm computes C = cosA and S =

sinA using argument reduction.

1 Compute a Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).

2 Compute R = U(iT) using Algorithm 3.26.

3 Tr = T − 2πR

4 If ‖Tr‖F > ‖T‖F , Tr = T , end

5 Y = cosTr, Z = sinTr

6 C = QY Q∗

7 S = QZQ∗

From the operation counts it is easily checked that applying argument reduction

in Algorithm 5.5 brings a computational saving if

2ŝ1 + m̂1 < 2ŝ+ m̂− 4 (5.6)

holds. As before, ŝ is the number of times a scaling formula is invoked and m̂n3/3

is the number of floating point operations required for the approximation of cosine

and sine at the scaled argument.

5.3 Method for general functions 121

5.3 Method for general functions

We consider a variant of additive argument reduction that can be used to compute

general periodic functions of matrices. Throughout this work we will assume that

f satisfies the conditions of the following assumption.

Assumption 5.6. The function f is analytic and for some period p ∈ C satisfies

f−1(f(x0)) = x0 + pk for every x ∈ C and all integers k.

The inverse function f−1 is multivalued: f−1(f(x0)) = x0+pk for all integers k.

The conventional way of dealing with multivalued complex functions is to set a

principal branch. From this point on f−1 will always denote the principal branch.

We note that there is no agreed convention on the values the inverse function

attains on its branch cut, however the chosen values must be used consistently;

more detail on this is given in [95].

We note that all our results apply also for doubly periodic functions, such as

Jacobian elliptic functions [119, Chap. 22], for example. For functions with multiple

periods argument reduction must be applied separately for each period.

For all the examples we consider, there is exactly one finite branch point asso-

ciated with each branch cut. The values the inverse function attains on its branch

cut are set to the values of f−1 on the side of the cut that is approached when the

finite branch-point is circled counter-clockwise.

For any x ∈ C we define the integer-valued function

Uf (x) =
x− f−1(f(x))

p
.

Uf counts how many periods x is away from the range of f−1.

We will call Uf the generalized unwinding number, because in the particular

case f(x) = ex it reduces to

Uexp(x) =
x− log ex

2πi
, (5.7)

which is the unwinding number we discussed in Section 3.2.

In additive argument reduction we take x̃ = x − pUf (x) and use the fact that

f(x̃) = f(f−1(f(x))) = f(x), so that the problem reduces to computing f(x̃). This

122 5. Argument Reduction

is the procedure commonly used for evaluating elementary functions [29, Sec. 4.3],

[114, Sec. 9.1].

We note that “reduction” of the argument should not be interpreted literally,

as it is possible that |x̃| > |x|. The relation between |x| and |x̃| = |f−1(f(x))| is

determined by the way we define the principal branch f−1 of the inverse function

of f .

To generalize argument reduction to matrix functions we first define the function

Uf (A) =
A− f−1(f(A))

p
, A ∈ Cn×n, (5.8)

where f(A) denotes the matrix function defined in terms of the underlying scalar

function f . Then Ã = A − pUf (A) is the argument-reduced matrix that satisfies

f(Ã) = f(A). We call Uf (A) the generalized matrix unwinding function.

Since f−1 is a single branch of the multivalued inverse of f , it is discontinuous

at its branch cuts, so we need to provide more information to clarify the meaning

of (5.8). Let A have the Jordan canonical form (1.1) and consider the definition of

Uf (A) via (1.2), so that Uf (A) = ZUf (J)Z−1 = Z diag(Uf (Jk))Z−1, where

Uf (Jk) :=

Uf (λk) U ′f (λk) . . .

U (mk−1)
f (λk)

(mk − 1)!

Uf (λk)
. . .

...
. . . U ′f (λk)

Uf (λk)

 . (5.9)

The derivatives U ′f (z),U ′′f (z), . . . are necessarily zero for values of z where f(z)

is not on a branch cut of f−1, since Uf is locally constant at such values. On the

branch cuts we define the derivatives to be zero. Alternatively, we can define the

first derivative of f−1 at z on a branch cut as the one-sided limit df−1(z)/dz =

limh→0[f
−1(z + h)− f−1(z)]/h and so on for higher derivatives, where z + h tends

along a continuous path to z from the counter-clockwise direction, consistent with

the counter-clockwise continuity principle used to define the value of f−1 on its

branch cut [95]. These two approaches yield the same Uf (A) because the underlying

scalar functions take the same values on the spectrum of A [80, Sec. 1.2.2]. We

used this argument for the definition of the unwinding function in Section 3.3.

5.3 Method for general functions 123

We note that Uf (A) has integer eigenvalues; it is easy to see from (1.3) that

Uf (Jk(λk)) = Uf (λk)Imk for any Jordan block Jk(λk). In terms of the Jordan

canonical form (1.1) we have

Uf (A) = Z diag(Uf (λk)Imk)Z−1. (5.10)

If f is the exponential and f−1 the principal logarithm, then U exp is the matrix

unwinding function. Defining U sin and U cos is less straightforward. The principal

branch of the complex arcsine function [119, Table 4.23.1] is defined as the one

whose real parts are in the interval (−π/2, π/2), or whose real parts are −π/2 and

imaginary parts are nonnegative, or whose real parts are π/2 and imaginary parts

are nonpositive. We denote the principal inverse sine by asin. Since we have the

identity sinx = sin(π − x), the principal branch asin is defined by convention on

an interval of length only π, despite the period of the sine function being 2π. The

function Usin is defined under the assumption that asin(sin x) = x− 2πk for some

k ∈ Z. It is easy to verify that there exist x ∈ C such that the above relation does

not hold. For example, letting x = 3π/4, we have (x − asin(sinx))/(2π) = 1/4,

which is clearly not an integer. So, the general definition (5.8) is not applicable to

sin. This is remedied by defining

U sin(A) := U(iA), (5.11)

which we used in Algorithm 5.3. Similarly,

U cos(A) := U(iA), (5.12)

which corresponds to the argument reduction scheme in Algorithm 5.4. For both

functions the spectrum of the reduced argument is contained in the horizontal strip

of the complex plane between −iπ and iπ.

Another popular periodic function is the tangent. The principal branch of

the inverse tangent function [119, Sec. 4.23(ii)] is defined as the one all of whose

eigenvalues have real parts in the interval (−π/2, π/2), or have real parts −π/2

and positive imaginary parts, or have real parts π/2 and negative imaginary parts.

The tangent function satisfies tan(x + πk) = tanx for all x ∈ C and k ∈ Z, so it

124 5. Argument Reduction

has a period π. We have

Utan(A) =
A− atan(tanA)

π
(5.13)

and so tanA can be computed as tan(A−π U tan(A)), provided a reliable algorithm

for the tangent exists.

Some applications require the computation of f(At) for many values of t ∈ R.

The next result shows that when t takes integer values we can perform just one

argument reduction and then re-use it for each t.

Lemma 5.7. For A ∈ Cn×n and t ∈ Z, f(At) = f((A− pUf (A))t).

Proof. Since t is an integer, the matrix tUf (A) has only integer eigenvalues and

therefore f(At− ptUf (A)) = f(At).

We will make use of this result in Examples 8 and 9 of our numerical experi-

ments.

5.3.1 Norm and conditioning of Uf

We give an upper bound on the norm and a lower bound on the condition number

of Uf (A), generalizing the results for the matrix unwinding function in Section 3.3.

The results hold for any consistent matrix norm for which ‖ diag(di)‖ = maxi |di|.

We denote by ρ(A) the spectral radius of A and by κ(A) = ‖A‖‖A−1‖ the condition

number with respect to inversion.

Lemma 5.8. Let A ∈ Cn×n have the Jordan canonical form A = ZJZ−1 and

assume that |f−1(f(λk))| ≤ |λk| for all eigenvalues λk of A. Then

‖Uf (A)‖ ≤ 2κ(Z)ρ(A)

|p|
.

Proof. Using (5.10), ‖Uf (A)‖ ≤ κ(Z) maxk |Uf (λk)| and

max
k
|Uf (λk)| = max

k

|λk − f−1(f(λk))|
|p|

≤ max
k

2|λk|
|p|

=
2ρ(A)

|p|
.

We note that for the elementary periodic functions with standard choices for

the principal branches of the inverse functions the condition |f−1(f(λk))| ≤ |λk|

5.3 Method for general functions 125

is satisfied. The bound can be made sharper by exploiting properties of specific

functions f and f−1, and simplifying further f−1(f(λk)); see Lemma 3.13 in the

case of the unwinding function.

We now turn to the conditioning of Uf . When f has an eigenvalue on a branch

cut of f−1, where f−1 is discontinuous, condUf (A) = ∞. We next give a lower

bound on the condition number of Uf (A).

Lemma 5.9. For A ∈ Cn×n with Jordan canonical form A = ZJZ−1,

condUf (A) ≥ |p|
2κ(Z)

max
λ,µ∈Λ(A)

Uf [λ, µ], (5.14)

where Uf [λ, µ] denotes the divided difference

Uf [λ, µ] =

Uf (λ)− Uf (µ)

λ− µ
, λ 6= µ,

U ′f (λ) = 0, λ = µ.

Proof. By Lemma 5.8, ‖Uf (A)‖ ≤ 2κ(Z)ρ(A)/|p| ≤ 2κ(Z)‖A‖/|p| and then by [80,

Thm. 3.14] we have

condUf (A) ≥ ‖A‖
‖Uf (A)‖

max
λ,µ∈Λ(A)

Uf [λ, µ] ≥ |p|
2κ(Z)

max
λ,µ∈Λ(A)

Uf [λ, µ].

We note that Lemma 3.14 gives a special case of the above result for the matrix

unwinding function.

5.3.2 Algorithm

Having defined Uf we can state the three-step scheme that carries out argument

reduction for a general function f satisfying Assumption 5.6.

1. Compute Uf (A).

2. Compute the reduced argument Ar = A− pUf (A).

3. Compute f(Ar) using an appropriate algorithm.

If the computation of f(A) is carried out by an (inverse) scaling and squaring-

type algorithm whose cost depends on some norm-based function of A then we

replace step 3 by

126 5. Argument Reduction

3. If ‖Ar‖F < ‖A‖F , compute f(Ar) using an appropriate algorithm, else com-

pute f(A).

Recall that the reason for this test is that even though ρ(Ar) ≤ ρ(A) for the

elementary periodic functions with the standard choice for the principal branches,

a decrease in the spectral radius does not imply a decrease in the norm. We used

this test in all of our argument reduction algorithms for the elementary functions.

On the first step we need to compute Uf (A), and it is clearly not suitable to

use the definition (5.8) directly. Instead, we first compute a Schur decomposition

A = QTQ∗ ∈ Cn×n, where Q is unitary and T is upper triangular. Then, since

Uf (A) = QUf (T)Q∗, the problem has been reduced to computing Uf (T). Similarly

to the matrix unwinding function, we compute the generalized matrix unwinding

function using the block variant of the Schur–Parlett method [51], implemented

in the MATLAB routine funm. However, we will use a non-standard reordering

and blocking of T , so that all eigenvalues λi which yield identical values of ki =

Uf (λi) are placed in the same block. We previously used the same reordering

in Algorithm 3.26 to compute the matrix unwinding function. The reordering

can be achieved using an algorithm of Bai and Demmel [18], implemented in the

MATLAB routine ordschur. It computes a unitary V such that T̃ = V ∗TV and

the eigenvalues of T̃ appear in the desired order. The diagonal blocks of Uf (T̃) are

diagonal and given by Uf (T̃ii) = kiI for all i. The off-diagonal blocks are obtained

from the block Parlett recurrence

T̃iiFij − FijT̃jj = (ki − kj)T̃ij +

j−1∑
`=i+1

(Fi`T̃`j − T̃i`F`j), i < j, (5.15)

where F = Uf (T̃) and the recurrence is derived using FT̃ = T̃F . The equations in

(5.15) are nonsingular because the diagonal elements of T̃ii are distinct from those

of T̃jj.

Algorithm 5.10. Let T be a triangular matrix from a Schur decomposition A =

QTQ∗ ∈ Cn×n and let f be a periodic function satisfying Assumption 5.6. This

algorithm computes U = Uf (T) using the Schur–Parlett method with a particular

reordering.

5.3 Method for general functions 127

1 Assign tii to set SUf (tii), i = 1:n, and use unitary similarity transformations to

reorder T so that all elements belonging to each set SUf (tii) are contiguous.

Update Q.

2 uii = Uf (tii), i = 1:n

3 for j = 2:n

4 for i = j − 1:−1: 1

5 if uii = rjj

6 uij = 0

7 else

8 uij =

(
tij(uii − ujj) +

j−1∑
`=i+1

(
ui`t`j − ti`u`j

)) /
(tii − tjj)

9 end

10 end

11 end

The computational cost of this algorithm is n3/3 flops for U plus the cost of

the reordering. This algorithm follows the framework of Algorithm 3.26, where the

cost of reordering T was estimated as at most 10n3 flops and usually much less.

The complete algorithm for computing a general periodic function of a matrix

is as follows.

Algorithm 5.11. Given A ∈ Cn×n, and a periodic function f satisfying Assump-

tion 5.6, this algorithm computes X = f(A) using matrix argument reduction.

1 Compute a Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).

2 Compute U = Uf (T), and update Q, using Algorithm 5.10.

3 Tr = T − pU

4 Compute Y = f(Tr) using an appropriate algorithm.

5 X = QY Q∗

The computational cost of this algorithm is 25n3 for the Schur decomposition plus

the cost of computing U and f(Tr).

Algorithm 5.11 is similar to an algorithm of Ng [117] for matrix argument

reduction. Ng does not use the function Uf in (5.8) or make any reference to f−1.

128 5. Argument Reduction

In his algorithm, each eigenvalue λi of A is reduced to λi− kp, where the integer k

is chosen so that |λi − kp| is minimized, where we recall that p denotes the period

of the function.

5.4 Numerical experiments

We demonstrate numerically the computational savings that can result from using

argument reduction for computing the matrix exponential and matrix trigonometric

functions. We give five example problems for the matrix exponential in Section 5.4.1

and four example problems for the sine and cosine in Section 5.4.2.

Many applications require the computation of f(At), so in some of our examples

we will consider different values of the parameter t. In our examples we use the stan-

dard argument reduction and compute f(At) = f(At − pUf (At)) and we also use

Lemma 5.7 to speed up the computation by evaluating f(At) = f((A− pUf (A))t)

for several integers t.

All numerical experiments were done using MATLAB 2015a, for which the unit

roundoff is u ≈ 1.1×10−16. Relative errors ‖f(A)−X‖F/‖f(A)‖F , for the computed

matrix functions X are measured in the Frobenius norm and for the exact solution

f(A) we use a reference result computed at 100-digit precision using the Advanpix

Multiprecision Computing Toolbox for MATLAB [3], using the eigendecomposition

A = V DV −1 and the fact that f(A) = V f(D)V −1.

5.4.1 Matrix exponential

Before describing two particular problems from applications we consider three ma-

trices that demonstrate the reduction in computational cost that can be obtained

by using argument reduction for the matrix exponential.

Example 1. The first matrix is a 2× 2 matrix with real entries and eigenvalues

1± 500i:

A =

[
1 −500

500 1

]
, U(A) =

[
0 80i

−80i 0

]
. (5.16)

Matrices like this often appear as diagonal blocks in a quasitriangular Schur form.

5.4 Numerical experiments 129

Real parts
-400 -300 -200 -100 0

im
ag

in
ar

y
pa

rt
s

-1500

-1000

-500

0

500

1000

1500

Figure 5.1: Example 2: spectrum of Tolosa matrix of dimension 1090.

Example 2. The second matrix is the Tolosa matrix of dimension 1090 from

Matrix Market [109]. It is a sparse matrix arising in the stability analysis of a

model of an airplane in flight; it has many eigenvalues with large imaginary part,

as shown in Figure 5.1.

Example 3. Our third matrix is the block upper triangular matrix

0 30 1 1 1 1

−100 0 1 1 1 1

0 0 0 −6 1 1

0 0 500 0 1 1

0 0 0 0 0 200

0 0 0 0 −15 0

(5.17)

from [123, p. 7, Ex I], which has two triple eigenvalues ±10
√

30i.

We compute the exponential eAt of each of the three matrices for t = 1 and

t = 100, first using the MATLAB function expm and expm new from [5], and then

by Algorithm 5.1 using expm and expm new on line 5. Table 5.1 shows the value

of s used in the scaling and squaring method in each case. We see reductions in

the value of s for Ar in every case, the amount of reduction varying with A and t,

but being as much as 9, and with (5.3) being satisfied in over half of the cases.

For expm new the values of s are smaller than for expm, since expm new gathers

and exploits information about the nonnormality of the matrices, but argument

130 5. Argument Reduction

Table 5.1: Examples 1–3. Scaling parameter s in scaling and squaring method for
evaluating eAt, with (Ar) and without (A) argument reduction.

expm expm new

A Ar A Ar

Matrix (5.16), t = 1 7 0 7 0

Matrix (5.16), t = 100 14 5 14 5

Tolosa matrix, t = 1 16 10 8 6

Tolosa matrix, t = 100 22 14 15 12

Matrix (5.17), t = 1 7 3 4 0

Matrix (5.17), t = 100 14 9 11 2

reduction still leads to a decrease in s, which is especially notable for (5.16) and

(5.17), for which no scaling is needed when t = 1. The number of swaps required

by the Tolosa matrix is about 250, which yields a value of θ about 0.0084. Recall

that θn3 are the floating point operations required for the swaps in the Schur form.

Example 4. Our fourth example is from Physics. Problems in open quantum

systems arise from the interaction of a closed quantum system with elements ex-

ternal to it, that is, the environment. The Markovian quantum master equation

can be written as
d

dt
ρ(t) = Lρ(t), ρ(0) = ρ0. (5.18)

Here, L denotes the Lindbladian super-operator, which is an n×n skew-Hermitian

matrix, perturbed by terms induced from interaction of the system with the envi-

ronment, for example, from damping. These matrices are characterized by having

eigenvalues with large imaginary parts and relatively small real parts [30].

The exact solution to equation (5.18) is ρ(t) = eLtρ0, and hence we consider

computing the exponential of the Lindbladian. For the example of the quantum

damped harmonic oscillator, L has three nonzero diagonals and bandwidth 2n1/2 +

3. The perturbations induced from damping have a similar sparsity structure, with

norms depending on the damping parameters. An explicit form of L can be found

in [68, eqs (3.3), (3.7), (3.12)]. Figure 5.2 shows the relative errors in computing

5.4 Numerical experiments 131

eL using expm new and eLr = eL−2πiU(L) using Algorithm 5.1 and a comparison of

the scaling parameters s the two approaches require. Twenty 100 × 100 matrices

with different parameters are used; their eigenvalues have real parts of order 1 or

less and imaginary parts up to order 103. We observe that eLr is computed with

very similar levels of accuracy to eL, but requires a much smaller scaling parameter

and in many cases no scaling at all. The replacement of Tr by T in line 4 of

Algorithm 5.1 was not carried out for any of these matrices.

0 5 10 15 20

10-13

10-12

expm-new
Alg. 5.1

(a)

0 5 10 15 20
0

2

4

6

8

10

12

expm-new
Alg. 5.1

(b)

Figure 5.2: Example 4. (a) relative error for using Algorithm 5.1 to compute eL,
and (b) scaling parameters s.

Example 5. We consider the convection–diffusion equation

ut + cux = duxx, (5.19)

where c and d > 0 are constants [91, Sec. 3.4]. Assuming homogeneous boundary

conditions, spatial discretization using second order central differences yields ut =

Au with a tridiagonal A, so again the solution is given in terms of the matrix

exponential.

When the system is dominated by the convection term, i.e., d� |c|, the matrix

A has eigenvalues with small real and large imaginary parts.

132 5. Argument Reduction

We constructed a set of 20 discretization matrices of dimension 100, arranged

such that the convection coefficient is increasing and the diffusion coefficient is

decreasing: c = (1.6)k and d = 0.2(0.5)k for k = 1: 20. Figure 5.3 shows the

relative errors in computing eA by expm new and eAr by Algorithm 5.1, and a

comparison of the scaling factors the two methods employ. We see that eAr is

computed with the same accuracy as eA. For the first five matrices the eigenvalues

have imaginary parts smaller or not much larger than the real parts and about the

same amount of scaling is required to compute eA and eAr ; thereafter the imaginary

parts of the eigenvalues dominate and the use of the matrix unwinding function

results in smaller scaling parameters. No scaling is required for matrices indexed

12–20. The replacement of Tr by T in line 4 of Algorithm 5.1 was used for matrices

indexed 4 and 5.

Finally, we note that for both of these examples inequality (5.3) is satisfied in

most cases (and the underlying quantity θ is less than 1).

0 5 10 15 20
10-13

10-12

10-11

10-10

10-9

10-8

expm-new
Alg. 5.1

(a)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
expm-new
Alg. 5.1

(b)

Figure 5.3: Example 5. (a) relative error for using Algorithm 5.1 to compute eA,
and (b) scaling parameters s.

5.4 Numerical experiments 133

5.4.2 Matrix sine and cosine

We give four example problems—the first one is a 2×2 matrix and aims to illustrate

explicitly how argument reduction works, the second example uses a benchmark

collection of matrices, and the third and fourth examples arise from wave equations.

For all examples we report the relative errors in computing the functions and for

Examples 6 and 7 we also report the relative condition numbers condcosA and

condsinA multiplied by the unit roundoff. The condition numbers were estimated

using the algorithm funm_condest_fro from the Matrix Function Toolbox [77],

which implements [80, Alg. 3.20]. How to obtain the Fréchet derivatives is explained

in Section 1.2.

Example 6. The first matrix we consider is 2× 2 and has eigenvalues 500± i:

A =

[
500 −1

1 500

]
, U sin(A) = U cos(A) =

[
80 0

0 80

]
. (5.20)

Matrices with such structure may arise as diagonal blocks in a quasi-triangular

Schur form. We consider both t = 1 and t = 100.

Table 5.2 gives the scaling parameters s and the total number of matrix multi-

plications matmults required for both the approximation stage of Algorithm 5.11

and the algorithms cosm for the matrix cosine [9, Alg. 4.2] and sinm for the matrix

sine [9, Alg. 5.2], with and without argument reduction. Recall that the scaling pa-

rameter indicates the number of times a multiplicative reduction formula has been

invoked. For both t = 1 and t = 100 inequalities (5.4) and (5.5) are satisfied (for

t = 1 reading 7 < 15 and 8 < 17, respectively and for t = 100 reading 13 < 22 and

15 < 25, respectively) and it is more efficient to use argument reduction. Table 5.3

gives the relative errors for cosm and sinm with and without argument reduction.

The algorithm using argument reduction performs in a forward-stable manner,

though yielding errors larger than those without argument reduction. We also

note that reducing the argument resulted in a significant reduction in norm. We

observed that ‖T‖F ≈ 707, ‖T − 2π U(iT)‖F ≈ 4, and ‖100T‖F ≈ 70711, ‖100T −

2π U(i100T)‖F ≈ 141.

134 5. Argument Reduction

Table 5.2: Example 6. Scaling parameter s and number of matrix multiplications
required to compute cos(At) and sin(At), with (Ar) and without (A) argument
reduction.

s matmults

cosm sinm cosm sinm

A Ar A Ar A Ar A Ar

t = 1 7 1 6 2 15 7 17 8

t = 100 13 4 10 3 22 13 25 15

Table 5.3: Example 6. Relative errors in the computation of cos(At) and sin(At),
with (Ar) and without (A) argument reduction.

cosm sinm

A Ar u condcosA A Ar u condsinA

t = 1 1.51e-16 8.09e-14 4.51e-14 6.61e-14 1.09e-14 5.10e-14

t = 100 1.84e-16 3.78e-12 6.43e-12 1.84e-16 3.78e-12 4.27e-12

Example 7. We constructed a set of 30 test matrices, collected from gallery,

the Matrix Computation Toolbox [76], and test problems provided with EigTool [147].

Most of the test matrices are small, of size 10 × 10, and we have scaled them by

factors ranging from 100 to 10000 to have nonzero generalized unwinding term.

Figures 5.4 and 5.5 show the relative errors and the scaling parameters s. The

matrices are arranged by decreasing condition numbers condsinA and condcosA.

We also give the number of matrix multiplications required to form the rational

approximation. For one of the matrices, reducing the argument increased its norm,

so it was more efficient to compute the functions of the original matrix.

In this example argument reduction brings a reduction in cost (inequalities (5.4)

and (5.5) were satisfied for all but four of the matrices), with forward stability at

least as good as without argument reduction.

Example 8. Our next example arises from the wave equation [62, Prob. 4]

utt − a(x)uxx + 92u = f(t, x, u), 0 < x < 1, t > 0, (5.21)

u(t, 0) = 0, u(t, 1) = 0, u(0, x) = a(x), ut(0, x) = 0,

5.4 Numerical experiments 135

with f(t, x, u) = u5−a(x)−a(x)2u3 + a(x)5

4
sin2(20t) cos(10t) and a(x) = 4x(1−x).

Performing a second-order symmetric semidiscretization of the spatial variable, we

obtain the matrix

A = n2

2a(x1) −a(x1)

−a(x2) 2a(x2) −a(x2)
.

−a(xn−2) 2a(xn−2) −a(xn−2)

−a(xn−1) 2a(xn−1)

+ 92I, (5.22)

where xi = i/n, i = 1 : n − 1 and we have taken n = 101. This problem has

been identified as difficult for the cosine algorithm [9, Sec. 7.5]. The eigenvalues

of A are real and range between 100 and 40492. Figure 5.6 shows the results for

using Algorithm 5.4 to compute cosAt, for t = 10, 20, . . . , 100. Inequality (5.5) is

satisfied for all values of t. Observe that for all values of t, Algorithm 5.4 required

no scaling of the argument at all and computing cosine at the original argument

required a scaling parameter as high as 20.

Computing cosTt, with t = 1, 2, . . . , 100, using cosm required 5.57 seconds and

computing first Tr = T − 2π U cos(T) and then cos(Trt) required 2.20 seconds in

total—a speedup by a factor of about 2. The computation was averaged over

ten runs, and performed under Mac OS X Yosemite on a machine with an Intel

Core i7 2.6 Ghz 4-core processor. These timings do not include the initial Schur

decomposition.

Example 9. Our final example is the wave equation

utt = uxx (5.23)

with Dirichlet boundary conditions on [−1, 1], u(t,−1) = u(t, 1) = 0, and initial

conditions u(0, x) =: u0 and ut(0, x) =: v0. After spatial semi-discretization the

solution of (5.23) is

u(t) = cos((−A)1/2t)u0 − (−A)−1/2 sin((−A)1/2t)v0. (5.24)

More on spectral discretization matrices can be found in [143]. We take A to

be the 20× 20 Chebyshev spectral discretization of uxx and compute the sine and

136 5. Argument Reduction

cosine required in the solution (5.24) for t = 10, 20, . . . , 100. For this problem it is

most appropriate to use Algorithm 5.5 in conjunction with algorithm cosmsinm [9,

Alg. 6.2], which computes sine and cosine simultaneously. Figure 5.7 shows the

results. Inequality (5.6) is satisfied for all values of t, and hence for this problem

it is more economical to perform argument reduction. We note that Algorithm 5.5

required only one scaling for computing sine and cosine at the reduced arguments

and as many as 12 at the original arguments. We further speed up the computation

by using Lemma 5.7 and reducing the argument only once. The total time taken

by cosmsinm to compute cosTt and sinTt for t = 1, 2, . . . , 100 was 0.85 seconds.

The time taken to compute Tr = T − 2π U cos(T) = T − 2π U sin(T), and cosTrt and

sinTrt for t = 1 : 1 : 100 was 0.41 seconds, and so we achieve speedup by a factor

of about 2. These timings do not include the initial Schur decomposition, or the

square root term required for the solution (5.24) of the wave equation. As before

the timings were averaged over ten runs.

5.4 Numerical experiments 137

5 10 15 20 25 30

10-15

10-10

10-5

100 sinm
Alg. 5.3

(a)

0 10 20 30
0

2

4

6

8

10

12

14

16
sinm
Alg. 5.3

(b)

0 10 20 30
5

10

15

20

25

30

35

40
sinm
Alg. 5.3

(c)

Figure 5.4: Example 7: (a) relative error for using Algorithm 5.3 to compute sinA;
the solid line is u condsinA, (b) scaling parameters s, and (c) total number of matrix
multiplications.

138 5. Argument Reduction

5 10 15 20 25 30

10-15

10-10

10-5

100

cosm
Alg. 5.4

(a)

0 10 20 30
0

5

10

15

20

25
cosm
Alg. 5.4

(b)

0 10 20 30
5

10

15

20

25

30

35
cosm
Alg. 5.4

(c)

Figure 5.5: Example 7: (a) relative error for using Algorithm 5.4 to compute cosA;
the solid line is u condcosA, (b) scaling parameters s, and (c) total number of matrix
multiplications.

5.4 Numerical experiments 139

20 40 60 80 100
10-10

10-9

10-8

cosm
Alg. 5.4

(a)

0 50 100
0

2

4

6

8

10

12

14

16

18

20

cosm
Alg. 5.4

(b)

0 50 100
8

10

12

14

16

18

20

22

24

26

28

cosm
Alg. 5.4

(c)

Figure 5.6: Example 8. (a) Relative error for using Algorithm 5.4 to compute
cosAt, t = 10, 20, . . . , 100, (b) scaling parameters s, and (c) total number of matrix
multiplications.

140 5. Argument Reduction

20 40 60 80 100
10-13

10-12

10-11

cosmsinm
Alg. 5.5

(a)

20 40 60 80 100
10-13

10-12

10-11

cosmsinm
Alg. 5.5

(b)

0 50 100
0

2

4

6

8

10

12

cosmsinm
Alg. 5.5

(c)

0 50 100
5

10

15

20

25

30

35

cosmsinm
Alg. 5.5

(d)

Figure 5.7: Example 9. (a) Relative error for using Algorithm 5.5 to compute
cosAt, t = 10, 20, . . . , 100, (b) relative error for using Algorithm 5.5 to compute
sinAt, t = 10, 20, . . . , 100, (c) scaling parameters s, and (d) total number of matrix
multiplications required to form both approximations of sine and cosine.

CHAPTER 6

Conclusions

We summarize the material from the previous chapters, give some remarks and

identify directions for future research.

In Chapter 2 we considered an application of matrix functions in network

analysis. Our aim in this work was to find a value for the damping parameter α such

that the centrality scores obtained from the Katz centrality vector (I − αA)−1 1

and the action of the exponential of the adjacency matrix eA 1 are similar. By

considering an upper bound on the distance between the two vectors we obtained a

value for the Katz parameter α = (1− e−λ1)/λ1 that performs substantially better

in our tests than alternatives that have been previously proposed. The new Katz

parameter leads to linear systems that are potentially much more ill conditioned

than those corresponding to existing choices, but ill conditioning has essentially

no effect on the suitability of the computed centralities for ranking. A natural

extension of this idea, which is the subject of ongoing research, is to automate the

choice of Katz parameter in the case of temporally evolving networks [72].

In Chapter 3 we introduced a new primary matrix function, the matrix un-

winding function, and showed that it is an elegant theoretical tool for working

with multivalued matrix functions. We derived identities involving the matrix log-

arithm and the matrix roots and fractional powers.

The scalar unwinding number provides means for the Wright ω function [46] to

be defined in terms of the Lambert W function [40], [47]. With recent developments

in the theory and algorithms for the matrix Lambert W function [44], [59], in future

141

142 6. Conclusions

it is natural to consider using the matrix unwinding function to define and study

the matrix counterpart of the Wright ω function.

In this chapter we also gave an algorithm for computing the matrix unwinding

function using a block variant of the Schur–Parlett method with a non-standard

reordering of the Schur form.

The goal of Chapter 4 was to study matrix inverse trigonometric and inverse

hyperbolic functions and derive algorithms for their computation. We defined the

principal branches of the four most common functions asin, acos, asinh, and acosh,

paying special attention to the values these functions attain on their respective

branch cuts. We showed that many identities known to hold for real scalars can

be extended to complex matrices with appropriate use of the matrix unwinding

function and the matrix sign function. We also derived some new identities that are

not already known in the scalar case. Our new Schur–Padé algorithm performs in a

forward stable fashion in our experiments and is superior in accuracy to algorithms

based on the logarithm, which have the disadvantage of being susceptible to the

sensitivity of the logarithm near the origin. Together with variants of the Schur–

Padé algorithm for asin, acosh, and asinh, these are the first numerically reliable

algorithms for computing these functions.

The new algorithm for the inverse cosine can be optimized further to perform

all computation entirely in real arithmetic. We also remark that using ideas from

Chapter 4 it may be possible to derive an algorithm specifically for the inverse

hyperbolic cosine function, which would avoid computing the matrix sign function.

Similarly to the derivation of the Schur–Padé algorithm, we could scale the argu-

ment using (4.18) and then use Padé approximants of a carefully selected function,

related to acosh. The study of this algorithm is postponed until demand arises.

In Chapter 5 we introduced argument reduction algorithms for computing the

matrix sine and the matrix cosine. We showed that using argument reduction

is more economical for some problems. We showed how the matrix unwinding

function can be used in conjunction with the inverse scaling and squaring algorithm

to compute the matrix exponential using argument reduction. We also showed how

it can be used for sine and cosine. But it is not applicable to all periodic functions

143

and so we introduced the generalized matrix unwinding function and showed how it

can be used in argument reduction for periodic functions. Testing the performance

of the new argument reduction algorithm in computing periodic functions, other

than the exponential, trigonometric and hyperbolic functions, remains the subject

of future work. A manuscript on the topic of matrix argument reduction is currently

in preparation.

Bibliography

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages x +

58, 2008.

[2] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical

Functions with Formulas, Graphs and Mathematical Tables, volume 55 of

Applied Mathematics Series. National Bureau of Standards, Washington,

D.C., 1964. Reprinted by Dover, New York.

[3] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.

advanpix.com.

[4] M. Afanasjew, M. Eiermann, O. G. Ernst, and Stefan Güttel. Implementation

of a restarted Krylov subspace method for the evaluation of matrix functions.

Linear Algebra Appl., 429:2293–2314, 2008.

[5] Awad H. Al-Mohy and Nicholas J. Higham. A new scaling and squaring

algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl., 31(3):

970–989, 2009.

[6] Awad H. Al-Mohy and Nicholas J. Higham. Computing the action of the

matrix exponential, with an application to exponential integrators. SIAM J.

Sci. Comput., 33(2):488–511, 2011.

[7] Awad H. Al-Mohy and Nicholas J. Higham. Improved inverse scaling and

squaring algorithms for the matrix logarithm. SIAM J. Sci. Comput., 34(4):

C153–C169, 2012.

[8] Awad H. Al-Mohy, Nicholas J. Higham, and Samuel D. Relton. Computing

145

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://books.google.co.uk/books?id=KiPCAgAAQBAJ&dq=Handbook+of+Mathematical+Functions+with+Formulas,+++++++++++Graphs+and+Mathematical+Tables&lr=
https://books.google.co.uk/books?id=KiPCAgAAQBAJ&dq=Handbook+of+Mathematical+Functions+with+Formulas,+++++++++++Graphs+and+Mathematical+Tables&lr=
http://www.advanpix.com
http://www.advanpix.com
http://dx.doi.org/10.1016/j.laa.2008.06.029
http://dx.doi.org/10.1016/j.laa.2008.06.029
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/http://dx.doi.org/10.1137/100788860
http://dx.doi.org/http://dx.doi.org/10.1137/100788860
http://dx.doi.org/http://dx.doi.org/10.1137/110852553
http://dx.doi.org/http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/120885991
http://dx.doi.org/10.1137/120885991

146 BIBLIOGRAPHY

the Fréchet derivative of the matrix logarithm and estimating the condition

number. SIAM J. Sci. Comput., 35(4):C394–C410, 2013.

[9] Awad H. Al-Mohy, Nicholas J. Higham, and Samuel D. Relton. New algo-

rithms for computing the matrix sine and cosine separately or simultaneously.

SIAM J. Sci. Comput., 37(1):A456–A487, 2015.

[10] R. Albert, H. Jeong, and A.-L. Barabási. Internet: Diameter of the world-

wide web. Nature, 401:130–131, 1999.

[11] Diego R. Amancio, Osvaldo N. Oliveira, Jr., and Luciano da F. Costa.

Structure-semantics interplay in complex networks and its effects on the pre-

dictability of similarity in texts. Physica A, 391:4406–4419, 2012.

[12] Tom M. Apostol. Mathematical Analysis. Second edition, Addison-Wesley,

Reading, MA, USA, 1974. xvii+492 pp.

[13] Mary Aprahamian, Desmond J. Higham, and Nicholas J. Higham. Match-

ing exponential-based and resolvent-based centrality measures. Journal of

Complex Networks, 2015. Advance Access published June 29, 2015.

[14] Mary Aprahamian and Nicholas J. Higham. The matrix unwinding function,

with an application to computing the matrix exponential. SIAM J. Matrix

Anal. Appl., 35(1):88–109, 2014.

[15] Mary Aprahamian and Nicholas J. Higham. Matrix inverse trigonometric

and inverse hyperbolic functions: Theory and algorithms. MIMS EPrint

2016.4, Manchester Institute for Mathematical Sciences, The University of

Manchester, UK, January 2016. 25 pp.

[16] Helmer Aslaksen. Multiple-valued complex functions and computer algebra.

SIGSAM Bulletin, 30(2):12–20, 1996.

[17] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der

Vorst. Templates for the Solution of Algebraic Eigenvalue Problems: A Prac-

tical Guide. Society for Industrial and Applied Mathematics, 2000.

http://dx.doi.org/10.1137/120885991
http://dx.doi.org/10.1137/120885991
http://dx.doi.org/10.1137/120885991
http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1038/43601
http://dx.doi.org/http://dx.doi.org/10.1016/j.physa.2012.04.011
http://dx.doi.org/http://dx.doi.org/10.1016/j.physa.2012.04.011
http://dx.doi.org/10.1093/comnet/cnv016
http://dx.doi.org/10.1093/comnet/cnv016
http://dx.doi.org/10.1137/130920137
http://dx.doi.org/10.1137/130920137
http://eprints.ma.man.ac.uk/2432/
http://eprints.ma.man.ac.uk/2432/
http://dx.doi.org/10.1145/235699.235702
http://dx.doi.org/http://dx.doi.org/10.1137/1.9780898719581
http://dx.doi.org/http://dx.doi.org/10.1137/1.9780898719581

BIBLIOGRAPHY 147

[18] Zhaojun Bai and James W. Demmel. On swapping diagonal blocks in real

Schur form. Linear Algebra Appl., 186:73–95, 1993.

[19] Richard Bellman. Introduction to Matrix Analysis. Second edition, McGraw-

Hill, New York, 1970. xxiii+403 pp. Reprinted by Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 1997. ISBN 0-89871-399-4.

[20] Michele Benzi and Christine Klymko. Total communicability as a centrality

measure. Journal of Complex Networks, 1(2):124–149, 2013.

[21] Michele Benzi and Christine Klymko. On the limiting behavior of parameter-

dependent network centrality measures. SIAM J. Matrix Anal. Appl., 36(2):

686–706, 2015.

[22] Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the

Mathematical Sciences. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1994. xx+340 pp. Corrected republication, with

supplement, of work first published in 1979 by Academic Press. ISBN 0-

89871-321-8.

[23] Norman Biggs. Algebraic Graph Theory. Second edition, Cambridge Univer-

sity Press, 1993.

[24] Åke Björck and Sven Hammarling. A Schur method for the square root of a

matrix. Linear Algebra Appl., 52/53:127–140, 1983.

[25] Stephen P. Borgatti and Xun Li. On social network analysis in a supply chain

context. Journal of Supply Chain Management, 45(2):5–22, 2009.

[26] Russell Bradford. Algebraic simplification of multiple-valued functions. In

Design and Implementation of Symbolic Computation Systems, John Fitch,

editor, volume 721 of Lecture Notes in Computer Science, Springer-Verlag,

Berlin, 1993, pages 13–21.

[27] Russell Bradford, Robert M. Corless, James H. Davenport, David J. Jeffrey,

and Stephen M. Watt. Reasoning about the elementary functions of complex

analysis. Annals of Mathematics and Artificial Intelligence, 36:303–318, 2002.

http://dx.doi.org/10.1016/0024-3795(93)90286-W
http://dx.doi.org/10.1016/0024-3795(93)90286-W
http://dx.doi.org/10.1137/1.9781611971170
http://dx.doi.org/10.1093/comnet/cnt007
http://dx.doi.org/10.1093/comnet/cnt007
http://dx.doi.org/10.1137/130950550
http://dx.doi.org/10.1137/130950550
http://dx.doi.org/10.1137/1.9781611971262
http://dx.doi.org/10.1137/1.9781611971262
http://dx.doi.org/10.1017/CBO9780511608704
http://dx.doi.org/10.1016/0024-3795(83)80010-X
http://dx.doi.org/10.1016/0024-3795(83)80010-X
http://dx.doi.org/10.1111/j.1745-493X.2009.03166.x
http://dx.doi.org/10.1111/j.1745-493X.2009.03166.x
http://dx.doi.org/10.1007/3-540-57272-4_20
http://dx.doi.org/10.1023/A:1016007415899
http://dx.doi.org/10.1023/A:1016007415899

148 BIBLIOGRAPHY

[28] Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Method-

ological Foundation. Springer-Verlag, 2005.

[29] Richard P. Brent and Paul Zimmermann. Modern Computer Arithmetic.

Cambridge University Press, Cambridge, UK, 2010. ISBN 9780521194693.

[30] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quan-

tum Systems. 2002. xxi+625 pp. ISBN 0-19-852063-8.

[31] Nicholas J. Bryan and Gen Wang. Musical influence network analysis and

rank of sampled-based music. In Proceedings of the 12th International Society

for Music Information Retrieval Conference (ISMIR), 2011, pages 329–334.

[32] A. Buchheim. On the theory of matrices. Proc. London Math. Soc., 16:63–82,

1884.

[33] A. Buchheim. An extension of a theorem of Professor Sylvester’s relating to

matrices. Phil. Mag., 22(135):173–174, 1886. Fifth series.

[34] Marco Caliari, Peter Kandolf, Alexander Ostermann, and Stefan Rainer.

Comparison of software for computing the action of the matrix exponential.

BIT, 54:113–128, 2014.

[35] João R. Cardoso and F. Silva Leite. The Moser–Veselov equation. Linear

Algebra Appl., 360:237–248, 2003.

[36] João R. Cardoso and F. Silva Leite. Computing the inverse matrix hyper-

bolic sine. In Numerical Analysis and Its Applications, Lubin Vulkov, Jerzy

Waśniewski, and Plamen Yalamov, editors, volume 1988 of Lecture Notes in

Computer Science, Springer-Verlag, Berlin, 2001, pages 160–169.

[37] J.R. Cardoso and F. Silva Leite. Computing the inverse matrix hyperbolic

sine. In Numerical Analysis and Its Applications, Lubin Vulkov, Plamen

Yalamov, and Jerzy Waśniewski, editors, volume 1988 of Lecture Notes in

Computer Science, Springer Berlin Heidelberg, 2001, pages 160–169.

[38] Arthur Cayley. A memoir on the theory of matrices. Philos. Trans. Roy. Soc.

London, 148:17–37, 1858.

http://dx.doi.org/10.1007/b106453
http://dx.doi.org/10.1007/b106453
http://dx.doi.org/doi=10.1.1.232.1926
http://dx.doi.org/doi=10.1.1.232.1926
http://dx.doi.org/10.1080/14786448608627914
http://dx.doi.org/10.1080/14786448608627914
http://dx.doi.org/10.1007/s10543-013-0446-0
http://dx.doi.org/10.1016/S0024-3795(02)00450-0
http://dx.doi.org/10.1007/3-540-45262-1_20
http://dx.doi.org/10.1007/3-540-45262-1_20
http://dx.doi.org/10.1007/3-540-45262-1_20
http://dx.doi.org/10.1007/3-540-45262-1_20
http://dx.doi.org/10.1017/CBO9780511703683.053

BIBLIOGRAPHY 149

[39] Sheung Hun Cheng, Nicholas J. Higham, Charles S. Kenney, and Alan J.

Laub. Approximating the logarithm of a matrix to specified accuracy. SIAM

J. Matrix Anal. Appl., 22(4):1112–1125, 2001.

[40] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth. On

the Lambert W function. Adv. in Comput. Math., 5(1):329–359, 1996.

[41] Robert M. Corless. Essential Maple 7: An Introduction for Scientific Pro-

grammers. Springer-Verlag, New York, 2002. xv+282 pp. ISBN 0-387-95352-

3.

[42] Robert M. Corless, James H. Davenport, David J. Jeffrey, Gurjeet Litt, and

Stephen M. Watt. Reasoning about the Elementary Functions of Complex

Analysis, volume 1930 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2001. 115-126 pp. ISBN 978-3-540-42071-2.

[43] Robert M. Corless, James H. Davenport, David J. Jeffrey, and Stephen M.

Watt. “According to Abramowitz and Stegun” or arccoth needn’t be uncouth.

ACM SIGSAM Bulletin, 34(2):58–65, 2000.

[44] Robert M. Corless, Hui Ding, Nicholas J. Higham, and David J. Jeffrey. The

solution of S exp(S) = A is not always the Lambert W function of A. In

ISSAC ’07: Proceedings of the 2007 International Symposium on Symbolic

and Algebraic Computation, New York, 2007, pages 116–121. ACM Press.

[45] Robert M. Corless and David J. Jeffrey. The unwinding number. ACM

SIGSAM Bulletin, 30(2):28–35, 1996.

[46] Robert M Corless and David J Jeffrey. The Wright ω function. In Artificial

intelligence, automated reasoning, and symbolic computation, Springer, 2002,

pages 76–89.

[47] Robert M. Corless and David J. Jeffrey. The Lambert W function. In The

Princeton Companion to Applied Mathematics, Nicholas J. Higham, Mark R.

Dennis, Paul Glendinning, Paul A. Martin, Fadil Santosa, and Jared Tanner,

http://dx.doi.org/10.1137/S0895479899364015
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1007/3-540-44990-6_9
http://dx.doi.org/10.1007/3-540-44990-6_9
http://dx.doi.org/10.1145/362001.362023
http://dx.doi.org/10.1145/1277548.1277565
http://dx.doi.org/10.1145/1277548.1277565
http://dx.doi.org/10.1145/235699.235705

150 BIBLIOGRAPHY

editors, Princeton University Press, Princeton, NJ, USA, 2015, pages 151–

155.

[48] G. W. Cross and P. Lancaster. Square roots of complex matrices. Linear and

Multilinear Algebra, 1:289–293, 1974.

[49] Dragoş M. Cvetković, Michael Doob, and Horst Sachs. Spectra of Graphs—

Theory and Applications. Third edition, Johann Ambrosius Barth Verlag,

Heidelberg - Leipzig, 1995.

[50] Michel Daune. Molecular Biophysics. Structures in Motion. Oxford Univer-

sity Press, 1999.

[51] Philip I. Davies and Nicholas J. Higham. A Schur–Parlett algorithm for

computing matrix functions. SIAM J. Matrix Anal. Appl., 25(2):464–485,

2003.

[52] Timothy A. Davis. Direct Methods for Sparse Linear Systems. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2006.

[53] L. Dieci, B. Morini, and A. Papini. Computational techniques for real loga-

rithms of matrices. SIAM J. Matrix Anal. Appl., 17(3):570–593, 1996.

[54] E. Estrada, M. Fox, D. J. Higham, and G.-L. Oppo, editors. Network Science:

Complexity in Nature and Technology. Springer-Verlag, 2010. 245 pp.

[55] Ernesto Estrada. Virtual identification of essential proteins within the protein

interaction network of yeast. Proteomics, 6(1):35–40, 2006.

[56] Ernesto Estrada. The Structure of Complex Networks. Oxford University

Press, 2011. 480 pp.

[57] Ernesto Estrada, Naomichi Hatano, and Michele Benzi. The physics of com-

municability in complex networks. Physics Reports, 514 (3):89–119, 2012.

[58] Ernesto Estrada and Juan Alberto Rodŕıgues-Velázquez. Subgraph centrality

in complex networks. Phys. Rev. E, 71(5), 056103, 2005.

http://dx.doi.org/10.1080/03081087408817029
http://dx.doi.org/10.1137/S0895479802410815
http://dx.doi.org/10.1137/S0895479802410815
http://dx.doi.org/10.1137/1.9780898718881
http://dx.doi.org/10.1137/S0895479894273614
http://dx.doi.org/10.1137/S0895479894273614
http://dx.doi.org/10.1007/978-1-84996-396-1
http://dx.doi.org/10.1007/978-1-84996-396-1
http://dx.doi.org/0.1002/pmic.200500209
http://dx.doi.org/0.1002/pmic.200500209
http://dx.doi.org/10.1016/j.physrep.2012.01.006
http://dx.doi.org/10.1016/j.physrep.2012.01.006
http://dx.doi.org/10.1103/PhysRevE.71.056103
http://dx.doi.org/10.1103/PhysRevE.71.056103

BIBLIOGRAPHY 151

[59] Massimiliano Fasi, Nicholas J. Higham, and Bruno Iannazzo. An algorithm

for the matrix Lambert W function. SIAM J. Matrix Anal. Appl., 36(2):

669–685, 2015.

[60] Leon Festinger. The analysis of sociograms using matrix algebra. Human

Relations, 2(2):153–158, 1949.

[61] Kurt C. Foster, Stephen Q. Muth, John J. Potterat, and Richard B. Rothen-

berg. A faster Katz status score algorithm. Computational & Mathematical

Organization Theory, 7(4):275–285, 2001.

[62] J. M. Franco. New methods for oscillatory systems based on ARKN methods.

Appl. Numer. Math., 56(8):1040–1053, 2006.

[63] Linton C. Freeman. A set of measures of centrality based on betweenness.

Sociometry, 40 (1):35–41, 1977.

[64] Linton C. Freeman. Centrality in social networks conceptual clarification.

Social Networks, 1:215 – 239, 1978/79.

[65] Linton C. Freeman. The development of social network analysis. Empirical

Press, Vancouver, 2004.

[66] Andreas Frommer, Stefan Güttel, and Marcel Schweitzer. Efficient and stable

Arnoldi restarts for matrix functions based on quadrature. SIAM J. Matrix

Anal. Appl., 35:661–683, 2014.

[67] Andreas Frommer, Thomas Lippert, Björn Medeke, and Klaus Schilling, edi-

tors. Numerical Challenges in Lattice Quantum Chromodynamics, volume 15

of Lecture Notes in Computational Science and Engineering. Springer-Verlag,

Berlin, 2000. viii+184 pp. ISBN 3-540-67732-1.

[68] Kazuyuki Fujii. Quantum damped harmonic oscillator. In Advances in Quan-

tum Mechanics, Paul Bracken, editor, InTech, Rijeka, Croatia, 2013, pages

133–156.

[69] F. R. Gantmacher. The Theory of Matrices, volume one. Chelsea, New York,

1959. x+374 pp. ISBN 0-8284-0131-4.

http://dx.doi.org/10.1137/140997610
http://dx.doi.org/10.1137/140997610
http://dx.doi.org/10.1177/001872674900200205
http://dx.doi.org/10.1023/A:1013470632383
http://dx.doi.org/10.1016/j.apnum.2005.09.005
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.1.1.227.9549
http://dx.doi.org/10.1137/13093491X
http://dx.doi.org/10.1137/13093491X
http://dx.doi.org/10.5772/52671

152 BIBLIOGRAPHY

[70] GNU Octave. http://www.octave.org.

[71] S. K. Godunov. Ordinary Differential Equations with Constant Coefficient,

volume 169 of Translations of Mathematical Monographs. American Mathe-

matical Society, Providence, RI, USA, 1997. ix+282 pp. ISBN 0-8218-0656-4.

[72] P. Grindrod, D. J. Higham, M. C. Parsons, and E. Estrada. Communicability

across evolving networks. Physical Review E, 83:046120, 2011.

[73] Peter Grindrod and Desmond J. Higham. A matrix iteration for dynamic

network summaries. SIAM Rev., 55:118–128, 2013.

[74] Stefan Güttel and Yuji Nakatsukasa. Scaled and squared subdiagonal Padé

approximation for the matrix exponential. MIMS EPrint 2015.46, Manchester

Institute for Mathematical Sciences, The University of Manchester, UK, June

2015. 25 pp.

[75] D. J. Higham, P. Grindrod, A. V. Mantzaris, A. Otley, and P. Laflin. Antici-

pating activity in social media spikes. In Proceedings of Modelling and Mining

Temporal Interactions, Workshop of the 9th International AAAI Conference

on Web and Social Media, 2015.

[76] Nicholas J. Higham. The Matrix Computation Toolbox. http://www.maths.

manchester.ac.uk/~higham/mctoolbox.

[77] Nicholas J. Higham. The Matrix Function Toolbox. http://www.maths.

manchester.ac.uk/~higham/mftoolbox.

[78] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second

edition, Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2002. xxx+680 pp. ISBN 0-89871-521-0.

[79] Nicholas J. Higham. The scaling and squaring method for the matrix expo-

nential revisited. SIAM J. Matrix Anal. Appl., 26(4):1179–1193, 2005.

[80] Nicholas J. Higham. Functions of Matrices: Theory and Computation. So-

ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

xx+425 pp. ISBN 978-0-898716-46-7.

http://www.octave.org
http://dx.doi.org/10.1103/PhysRevE.83.046120
http://dx.doi.org/10.1103/PhysRevE.83.046120
http://eprints.ma.man.ac.uk/2322
http://eprints.ma.man.ac.uk/2322
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10658/10546
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10658/10546
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1137/090768539
http://dx.doi.org/10.1137/090768539
http://dx.doi.org/10.1137/1.9780898717778

BIBLIOGRAPHY 153

[81] Nicholas J. Higham. The scaling and squaring method for the matrix expo-

nential revisited. SIAM Rev., 51(4):747–764, 2009.

[82] Nicholas J. Higham and Edvin Deadman. A catalogue of software for ma-

trix functions. Version 1.0. MIMS EPrint 2014.8, Manchester Institute for

Mathematical Sciences, The University of Manchester, UK, February 2014.

19 pp.

[83] Nicholas J. Higham and Edvin Deadman. A catalogue of software for matrix

functions. Version 2.0. MIMS EPrint 2016.3, Manchester Institute for Math-

ematical Sciences, The University of Manchester, UK, January 2016. 22 pp.

Updated March 2016.

[84] Nicholas J. Higham and Lijing Lin. A Schur–Padé algorithm for fractional

powers of a matrix. SIAM J. Matrix Anal. Appl., 32(3):1056–1078, 2011.

[85] Nicholas J. Higham and Lijing Lin. An improved Schur–Padé algorithm for

fractional powers of a matrix and their Fréchet derivatives. SIAM J. Matrix

Anal. Appl., 34(3):1341–1360, 2013.

[86] Nicholas J. Higham, D. Steven Mackey, Niloufer Mackey, and Françoise Tis-

seur. Functions preserving matrix groups and iterations for the matrix square

root. SIAM J. Matrix Anal. Appl., 26(3):849–877, 2005.

[87] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix

1-norm estimation, with an application to 1-norm pseudospectra. SIAM J.

Matrix Anal. Appl., 21(4):1185–1201, 2000.

[88] Marlis Hochbruck and Christian Lubich. On Krylov subspace approximations

to the matrix exponential operator. SIAM J. Numer. Anal., 34(5):1911–1925,

2006.

[89] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cam-

bridge University Press, Cambridge, UK, 1991. viii+607 pp. ISBN 0-521-

30587-X.

http://dx.doi.org/http://dx.doi.org/10.1137/090768539
http://dx.doi.org/http://dx.doi.org/10.1137/090768539
http://eprints.ma.man.ac.uk/2431
http://eprints.ma.man.ac.uk/2431
http://dx.doi.org/10.1137/10081232X
http://dx.doi.org/10.1137/10081232X
http://dx.doi.org/http://dx.doi.org/10.1137/130906118
http://dx.doi.org/http://dx.doi.org/10.1137/130906118
http://dx.doi.org/http://dx.doi.org/10.1137/S0895479804442218
http://dx.doi.org/http://dx.doi.org/10.1137/S0895479804442218
http://dx.doi.org/http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/10.1137/S0036142995280572
http://dx.doi.org/10.1137/S0036142995280572

154 BIBLIOGRAPHY

[90] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Second edition,

Cambridge University Press, Cambridge, UK, 2013. xviii+643 pp. ISBN

978-0-521-83940-2.

[91] Willem Hundsdorfer and Jan Verwer. Numerical Solution of Time-Dependent

Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin, 2003.

x+471 pp. ISBN 3-540-03440-4.

[92] Bruno Iannazzo. Numerical Solution of Certain Nonlinear Matrix Equations.

PhD thesis, Università degli studi di Pisa, Pisa, Italy, 2007. 180 pp.

[93] Ilse C. F. Ipsen. Computing an eigenvector with inverse iteration. SIAM

Rev., 39(2):254–291, 1997.

[94] David J. Jeffrey, D. E. G. Hare, and Robert M. Corless. Unwinding the

branches of the Lambert W function. Math. Scientist, 21:1–7, 1996.

[95] W. Kahan. Branch cuts for complex elementary functions or much ado about

nothing’s sign bit. In The State of the Art in Numerical Analysis, A. Iserles

and M. J. D. Powell, editors, Oxford University Press, 1987, pages 165–211.

[96] Leo Katz. A new status index derived from sociometric data analysis. Psy-

chometrika, 18:39–43, 1953.

[97] Maurice G. Kendall. A new measure of rank correlation. Biometrika, 30

(1–2):81–93, 1938.

[98] Charles S. Kenney and Alan J. Laub. Condition estimates for matrix func-

tions. SIAM J. Matrix Anal. Appl., 10(2):191–209, 1989.

[99] Charles S. Kenney and Alan J. Laub. The matrix sign function. IEEE Trans.

Automat. Control, 40(8):1330–1348, 1995.

[100] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J.

Assoc. Comput. Mach., 46 (5):604–632, 1999.

[101] Edmond Nicolas Laguerre. Le calcul des systèmes linéaires, extrait d’une let-

tre adressé à M. Hermite. In Oeuvres de Laguerre, Ch. Hermite, H. Poincaré,

http://dx.doi.org/10.1017/CBO9780511810817
http://dx.doi.org/10.1137/S0036144596300773
http://dx.doi.org/10.1007/BF02289026
http://dx.doi.org/10.1093/biomet/30.1-2.81
http://dx.doi.org/10.1137/0610014
http://dx.doi.org/10.1137/0610014
http://dx.doi.org/10.1145/324133.324140

BIBLIOGRAPHY 155

and E. Rouché, editors, volume 1, Gauthier–Villars, Paris, 1898, pages 221–

267. The article is dated 1867 and is “Extrait du Journal de l’École Poly-

technique, LXIIe Cahier”.

[102] Peter Lancaster and Leiba Rodman. Algebraic Riccati Equations. Oxford

University Press, 1995. xvii+480 pp. ISBN 0-19-853795-6.

[103] Amy N. Langville and Carl D. Meyer. Google’s PageRank and Beyond: The

Science of Search Engine Rankings. Princeton University Press, Princeton,

NJ, USA, 2006. x+224 pp. ISBN 0-691-12202-4.

[104] Amy N. Langville and Carl D. Meyer. Who’s #1?: The Science of Rating

and Ranking. Princeton University Press, 2012.

[105] Alan J. Laub. Invariant subspace methods for the numerical solution of

Riccati equations. In The Riccati Equation, Sergio Bittanti, Alan J. Laub,

and Jan C. Willems, editors, Springer-Verlag, Berlin, 1991, pages 163–196.

[106] Jure Leskovec. Stanford network analysis project. http://snap.stanford.

edu.

[107] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Den-

sification and shrinking diameters. ACM Transactions on Knowledge Discov-

ery from Data, 1(1):2:1–2:41, 2007.

[108] Roy Mathias. A chain rule for matrix functions and applications. SIAM J.

Matrix Anal. Appl., 17(3):610–620, 1996.

[109] Matrix Market. http://math.nist.gov/MatrixMarket/.

[110] A. McCurdy, K. C. Ng, and B. N. Parlett. Accurate computation of divided

differences of the exponential function. Math. Comp., 43(168):501–528, 1984.

[111] W. H. Metzler. On the roots of matrices. Amer. J. Math., 14(4):326–377,

1892.

[112] Cleve B. Moler and Charles F. Van Loan. Nineteen dubious ways to compute

the exponential of a matrix. SIAM Rev., 20(4):801–836, 1978.

http://dx.doi.org/10.1007/978-3-642-58223-3_7
http://dx.doi.org/10.1007/978-3-642-58223-3_7
http://snap.stanford.edu
http://snap.stanford.edu
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1137/S0895479895283409
http://math.nist.gov/MatrixMarket/
http://dx.doi.org/0.1090/S0025-5718-1984-0758198-0
http://dx.doi.org/0.1090/S0025-5718-1984-0758198-0
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180

156 BIBLIOGRAPHY

[113] Cleve B. Moler and Charles F. Van Loan. Nineteen dubious ways to compute

the exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49,

2003.

[114] Jean-Michel Muller. Elementary Functions: Algorithms and Implementation.

Second edition, Birkhäuser, Boston, MA, USA, 2006. xxii+265 pp. ISBN

978-0-8176-4372-0.

[115] Yuji Nakatsukasa and Roland Freund. Using Zolotarev’s rational approxi-

mation for computing the polar, symmetric eigenvalue, and singular value

decompositions. SIAM Rev. To appear.

[116] M. E. J. Newman. Networks: An Introduction. Cambridge University Press,

2010. 784 pp.

[117] Kwok Choi Ng. Contributions to the computation of the matrix exponen-

tial. Technical Report PAM-212, Center for Pure and Applied Mathematics,

University of California, Berkeley, February 1984. 72 pp. PhD thesis.

[118] Juhani Nieminen. On the centrality in a graph. Scand. J. Psychol., 15:332 –

336, 1974.

[119] Frank W. J. Olver, Daniel W. Lozier, Ronald. F. Boisvert, and Charles W.

Clark, editors. NIST Handbook of Mathematical Functions. Cambridge Uni-

versity Press, Cambridge, UK, 2010. xv+951 pp. http://dlmf.nist.gov.

ISBN 978-0-521-14063-8.

[120] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation

ranking: Bringing order to the web. Technical report, Standford Digital

Libraries Technology Project, 1998.

[121] Juyong Park and M. E. J. Newman. A network-based ranking system for US

college football. (2005) P10014, 2005.

[122] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Society for In-

dustrial and Applied Mathematics, Philadelphia, PA, USA, 1998. xxiv+398

http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1007/b137928
http://dx.doi.org/10.1093/acprof:oso/9780199206650.001.0001
http://dx.doi.org/10.1111/j.1467-9450.1974.tb00598.x
http://dlmf.nist.gov
http://dx.doi.org/10.1.1.31.1768
http://dx.doi.org/10.1.1.31.1768
http://dx.doi.org/10.1088/1742-5468/2005/10/P10014
http://dx.doi.org/10.1088/1742-5468/2005/10/P10014
http://dx.doi.org/10.1137/1.9781611971163

BIBLIOGRAPHY 157

pp. Unabridged, amended version of book first published by Prentice-Hall in

1980. ISBN 0-89871-402-8.

[123] Beresford N. Parlett and Kwok Choi Ng. Development of an accurate algo-

rithm for exp(Bt). Technical Report PAM-294, Center for Pure and Applied

Mathematics, University of California, Berkeley, August 1985. 23 pp.

[124] Michael S. Paterson and Larry J. Stockmeyer. On the number of nonscalar

multiplications necessary to evaluate polynomials. SIAM J. Comput., 2(1):

60–66, 1973.

[125] Charles M. Patton. A representation of branch-cut information. SIGSAM

Bulletin, 30(2):21–24, 1996.

[126] G. Peano. Intégration par Séries des équations différentielles linéaires. Math.

Annalen, 32:450–456, 1888.

[127] Karl Pearson. LIII. On lines and planes of closest fit to systems of points

in space. The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, 2(11):559–572, 1901.

[128] Paul Penfield, Jr. Principal values and branch cuts in complex APL. SIGAPL

APL Quote Quad, 12(1):248–256, 1981.

[129] G. Peters and J. H. Wilkinson. Inverse iteration, ill-conditioned equations

and Newton’s method. SIAM Rev., 21(3):339–360, 1979.

[130] George Pólya and Gabor Szegö. Problems and Theorems in Analysis II.

Theory of Functions. Zeros. Polynomials. Determinants. Number Theory.

Geometry. Springer-Verlag, New York, 1998. xi+392 pp. Reprint of the

1976 edition. ISBN 3-540-63686-2.

[131] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes: The Art of Scientific Computing. Third edition,

Cambridge University Press, Cambridge, UK, 2007. xxi+1235 pp. ISBN 978-

0-521-88068-8.

http://dx.doi.org/http://dx.doi.org/10.1137/0202007
http://dx.doi.org/http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1145/235699.235703
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1145/390007.805368
http://dx.doi.org/10.1137/1021052
http://dx.doi.org/10.1137/1021052
http://dx.doi.org/10.1007/978-3-642-61905-2
http://dx.doi.org/10.1007/978-3-642-61905-2
http://dx.doi.org/10.1007/978-3-642-61905-2

158 BIBLIOGRAPHY

[132] Juan G. Restrepo, Edward Ott, and Brian R. Hunt. Approximating the

largest eigenvalue of network adjacency matrices. Phys. Rev. E, 76:056119,

2007.

[133] John R. Rice. A theory of condition. SIAM J. Numer. Anal., 3(2):287–310,

1966.

[134] Klaus Ruedenberg. Free-electron network model for conjugated systems. V.

Energies and electron distributions in the FE MO model and in the LCAO

MO model. The Journal of Chemical Physics, 22(11):1878–1894, 1954.

[135] Steven M. Serbin. Rational approximations of trigonometric matrices with

application to second-order systems of differential equations. Appl. Math.

Comput., 5(1):75–92, 1979.

[136] L. S. Shieh, Y. T. Tsay, and C. T. Wang. Matrix sector functions and their

applications to system theory. IEE Proc., 131(5):171–181, 1984.

[137] Roger B. Sidje. Expokit: a software package for computing matrix exponen-

tials. ACM Trans. Math. Software, 24:130–156, 1998.

[138] Charles Spearman. The proof and measurement of association between two

things. Amer. J. Psychol., 15(1):72–101, 1904.

[139] J. J. Sylvester. On the equation to the secular inequalities in the planetary

theory. Philosophical Magazine, 16:267–269, 1883. Reprinted in [140, pp. 110–

111].

[140] The Collected Mathematical Papers of James Joseph Sylvester, volume IV

(1882–1897). Chelsea, New York, 1973. xxxvii+756 pp. ISBN 0-8284-0253-1.

[141] Alan Taylor and Desmond J. Higham. NESSIE: Network example source

supporting innovative experimentation. In Network Science: Complexity in

Nature and Technology, Ernesto Estrada, Maria Fox, Desmond J. Higham,

and Gian-Luca Oppo, editors, Springer-Verlag, 2010, pages 85–106.

http://dx.doi.org/10.1103/PhysRevE.76.056119
http://dx.doi.org/10.1103/PhysRevE.76.056119
http://dx.doi.org/10.1137/0703023
http://dx.doi.org/http://dx.doi.org/10.1063/1.1739935
http://dx.doi.org/http://dx.doi.org/10.1063/1.1739935
http://dx.doi.org/http://dx.doi.org/10.1063/1.1739935
http://dx.doi.org/10.1016/0096-3003(79)90011-0
http://dx.doi.org/10.1016/0096-3003(79)90011-0
http://dx.doi.org/10.1049/ip-d.1984.0029
http://dx.doi.org/10.1049/ip-d.1984.0029
http://dx.doi.org/0.1145/285861.285868
http://dx.doi.org/0.1145/285861.285868
http://dx.doi.org/10.1093/ije/dyq191
http://dx.doi.org/10.1093/ije/dyq191
http://dx.doi.org/10.1080/14786448308627430
http://dx.doi.org/10.1080/14786448308627430
http://dx.doi.org/10.1007/978-1-84996-396-1_5
http://dx.doi.org/10.1007/978-1-84996-396-1_5

BIBLIOGRAPHY 159

[142] Sivan Toledo. A high performance algorithm for the matrix sign function,

2015. Talk given at at SIAM Conference on Applied Linear Algebra, Atlanta,

USA.

[143] Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2000. xvii + 163 pp. ISBN

978-0-89871-465-4.

[144] J. Keith Vass, Desmond J. Higham, Manikhandan A. V. Mudaliar, Xuerong

Mao, and Daniel J. Crowther. Discretization provides a conceptually simple

tool to build expression networks. PLoS ONE, 6(4):e18634, 2011.

[145] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods

and Applications, volume 8. Cambridge University Press, 1994.

[146] Duncan J. Watts. Small Worlds: The Dynamics of Networks Between Order

and Randomness. Princeton University Press, 1999.

[147] Thomas G. Wright. Eigtool, 2002. http://www.comlab.ox.ac.uk/

pseudospectra/eigtool/.

[148] W. W. Zachary. An information flow model for conflict and fission in small

groups. J. Anthropol. Res., 33:452–473, 1977.

[149] Aidong Zhang. Protein interaction networks. Computational analysis. Cam-

bridge University Press, 2009. 278 pp.

[150] Jing Zhao, Ting-Hong Yang, Yongxu Huang, and Petter Holme. Ranking

candidate disease genes from gene expression and protein interaction: A

Katz-centrality based approach. PLoS ONE, 6(9), 2011.

http://meetings.siam.org/sess/dsp_talk.cfm?p=71944
http://dx.doi.org/http://dx.doi.org/10.1137/1.9780898719598
http://dx.doi.org/10.1371/journal.pone.0018634
http://dx.doi.org/10.1371/journal.pone.0018634
http://dx.doi.org/http://dx.doi.org/10.1017/CBO9780511815478.002
http://dx.doi.org/http://dx.doi.org/10.1017/CBO9780511815478.002
http://dx.doi.org/10.2307/2589138
http://dx.doi.org/10.2307/2589138
http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
http://dx.doi.org/10.1.1.336.9454
http://dx.doi.org/10.1.1.336.9454
http://dx.doi.org/10.1371/journal.pone.0024306
http://dx.doi.org/10.1371/journal.pone.0024306
http://dx.doi.org/10.1371/journal.pone.0024306

