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INTRODUCTION

This is the final part of the saga, begun in [RW1] and [RW2], to understand certain aspects
of I', the maximal 2-local geometry for the sporadic simple grdaupWe continue the section
numbering of the earlier papers. The main object of our attentiogistise point-line collinearity
graph ofl". Here we shall be concentrating almost exclusively ufsgi@), the third disc ofa —

ais a fixed point ofG. For further details, background and notation, not to mention statements
of the main theorems we are endeavouring to prove, see Sections 1 and 2.

We start Section 9 with a preliminary result on non-sparse triangles followed by two results
which will be used for orbit matching. Orbit matching comes to the fore in our later arguments
when we have assembled certain information alipuThe remainder of Section 9 investigates
lines incident with a point id3(a). In Section 10 we plunge inthz(a) and look at the setl(a),
defined earlier in Definition 6.1. This lengthy campaign begins with an analys{s,di}L
and Gyq for d € Al(a) andc € Al(a) NAs(a), the main results being stated in Theorem 10.3.
After examining theGag-orbits uponr1(d) for d € Al(a) we work through these line orbits
determining their point distributions. Section 11, the final section, deals witBfebit A3(a).

Here we prove that

Mo = {a} Unj(a) UA(a) UA3(a) UAY(a) ULS(),

which completes our study @f as well as enabling us to deduce Theorems A and B.
In view of the length of this work and the many results proved along the way, we include an
appendix detailing where point distributions for particular lines are determined.

9. SOME MISCELLANEOUS RESULTS

Lemma 9.1 Let X,Y € IM'x(x) for some xe Ng. Supposdy, |z, l3,14,15 € T1(X,X) form a non-
sparse triangle.
() IfY €yo(X), thenl; € B3(x,Y) for onei € {1,...,5} andl; € B1(x,Y) for fouri € {1,...,5}.
(i) IfY ey (X), thenl; € Ba2(x,Y) foronei € {1,...,5} andl; € B1(x,Y) for fouri € {1,...,5}.
(iii) If Y € y3(X), then eithel; € Bo(x,Y) for one i€ {1,...,5} andl; € B3(x,Y) for four
i€{1,...,5},orli € B2(x,Y) for three i€ {1,...,5} andl; € Bz(x,Y) fortwoi € {1,...,5}.

Proof This follows from the intersection matrices given in (2.6) and the fact that every octad
formed from a union of tetrads in X lies in exactly one of the tiigs.., s.

Lemma 9.2 Let A and® be distinctG;-orbits of G and letx € A, y € © be such thatl(x,y) = 1.
If A1(X) N O is aGayx-orbit, thenA; (y) N is aGay-orbit and
A

|81(y) "A| = [Gay : Gayy = 6’ |1A1(X)N O .



Proof So we have/A| = [Ga : Gax] and|O] =[G4 : Ggy|. Also, sinceA;(x) N O is aGay-orbit,
|A1(x) NO| = [Gax : Gaxy]. By counting edges off betweem\ and® we deduce that

[Ga: Gayl|A1(y) NA[ = [B]]A1(y) NA] = [A][A1(X) N O
[Ga : Gax|[Gax : Gaxyl = [Ga : Gaxy]
= [Ga: Gayl[Gay: Gayy -

Hence|A1(y) N"A| = [Gay : Gayy, Which yields the lemma.

Lemma 9.3 Suppose thah and© are distinciG,-orbits of G and letx € A, y € © be such that
d(x,y) = 1. Assume thatlo(x+Yy) Al =1or 3 and|l'o(x+Yy) NG| = 2 and that there exists
t € Gz such that interchanges the two pointsiip(x+y) NO. Let Ox andOy be, respectively, the
Gax (respectivelyGay)-orbit of I'1(x) (respectivelyl 1(y)) containingx +y (respectivelyy + X).
SetL = J{0%| g€ Ga} andM = U{ 0§ | g € Ga}. Thenl1(y)NL = Oy, F1(X) "M = Ox and
thereforeL = M. Moreover,

2|Ox[|A\| = Oyl[O[[To(x+y) NA].

Proof First, we verify thatf"1(y) "L = Oy. Clearly we haveOy C I'1(y)NL. Letke '1(y)NL.
Thenk = (y+x)9 for someg € G, (sincelL is aGa-orbit of I'1), withy, y9 € To(k)NO. If y =8,
theng € Gay. whencek = (y+x)9 € Oy. If y # 9, then sincek is in the saméS,-orbit asx+y,
there exists € G, which interchangeg andy?. Soy = y¥° andk® = k. Consequentlgse Gay
and hence we also hake= k® = (y+x)9 € Oy. Thereforel 1(y) "L = Oy. Now arguing as in
Lemma 9.2 we may complete the proof of the lemma.

Lemma 9.4 Letd € A3(a) andl € I'1(d).
(i) If I € (Bo,*), then|To(1) NA1(a)| = 1 and|Fo(l) NAS(a)| = 4.
(ii) If 1 € (Bo,*x), then|To(1)NA3(a)| = 3and|o(l) NA3(a)| =
thenl = c+d € (B2B2Bs,01).
(iii) If 1 € (Bs,2%1%221%,18), then|Io(1) NA3(a)| = 1 and|Fo(l) NA3(a)| = 4.

2andifc e Mo(l)NA3(a),

Proof (i) If | € (Bo,*), thenl is one of the five lines incident with a point ira,di . For any
b € I'o(l) N {a,d}* we have b+ac ag(b,b+d) becausad3(a) # Al(a) for i = 1,2. Hence
b-+a € ag(b,b+x) for allx € Mo(1)\{b} andx € A3(a) by definition.

(ii) Let | € (Bo,**). Sol € I'1(Xq) where X4 is the unique plane i z(d) fixed by GJ.

Then there exists k (Bo,*) with k € az(d,l). Let b € Fo(k) N {a,d}*+ and me 1(b) be
such thatlo(m) C {a,d}*. Without loss of generality we may take b+a to be the standard

+ +|+ +/0 O + o|+ o|lo0o -—
+ +|+ +|0 o0 o +|+ o|— o0 :

sextet, m = and k = . Sincel € az(d,k),
- —|o0 o|— - - —|o0 o|+ -
— —1lo ol - - + + |- — |+ =




the five lines in{b+ x| x € I'o(l)} form a full triangle. None of these lines is m and so they

+ + |+ + |0 — + ol|+ o|+ O o +|o0 +|— —
mustbek, ~ |t T T 00 FIF 0p0 At 0p0 F T ond
o o|o o|— of|l—- —|+ +|— —|]"lo o|— —|+ o0
- —|- —-|—- o||—- —]O0 O|— —||+ +|— —|+ o0
+ ol|+ o|— +
g ; i S i ; . Three of these lines lie iny(b,b+ a) and two lie inag(b,b+a).
— — |+ +|— o0
So|Fo(l)NA3(a)| = 3and|Fo(l) NA3(a)| = 2 as required.
+ o|+ o|0 —
n _ 0O +|+ o|— o0
For part (iii) let be{a,d} - and k = b+d. We may suppose thatb+a= o ol+ —
+ o+ |- — |+
and k is the standard trio. Let Y be the standard sextet. Theny¥(Xq,b) NT3(k). Let
+ o[+ —|— o0 + 0o|— +|0 -— + 0|0 — |+ -—

+ o[+ —|— o0 + o|— +|0 — + o|0 — |+ -—
I1:+O+__0,I2:+0_+0_,I3:+00_+_and
+ o]+ —|— o0 + o|— +|0 -— + 0|0 — |+ -—

+ o]—- o] - +
+ 0o|— o — + i i

la=| | ol - ol - + . Sok,lg,l2,13,14 form a full triangle inl1(b,Y). Letl € [1(d)\{k}
+ o|— o] — +

with Fo()N Fo(li) = ralli=1,..,4. Thenl € f33(d,Xy) by Lemma 9.1. By considering

the orbits of Gg on I'1(d) we see that € (Bs; 22142214, 18) because lines irBs; 18;18;18)

U(Bs; 2214, 2214, 221%) cannot lie inas(d, k). Sincels € ai(b,b+a) andk, 1 l2,14 € ag(b,b+
a)we have|Fo()NA3(a)| = 1and|Fo(1) NA3(a)| = 4 as required.

Lemma 9.5Let d € A3(a) andG;d be the centralizer of the involution Then

(i) if | € (B2;2%18;18), thenl® =1; and
(i) if 1 € (Bz;2%221%,221%), thenlT #£1.

Proof This is a consequence of Lemma 7.10.

Lemma 9.6Let d € A3(a) andl € I'1(d).

(i) If I € (B2; 2% 2714, 221%), then|o(1) NA3(a) \ = 3and\ro lNaj(a)| =2

(ii) If 1 € (B2;2%18;18) then|ro mAZ (a)| =1, [Fo(l)NA3(a)| = 2and|o(l) NAZ(a)| =
2



Proof Fix b € {a,d}*. In ', we may suppose thdt+ a is the standard sextet arod =

+ + + |+ + o o|l+ +|0 o0

o) , o o]+ +]0 o
o _lo _ becausd+d € ap(b,b+a). Thenb+b' = =~/ |~ °
o + o+

+ + |0 O

+ + |0 O
andY =

|

|

o
* ¥ O +
¥ ¥ O O

0
S , where b e {a,d}*+\{b}, X
*

|
OO0+ o
*

andYe Fz(a b,b’). By Theorem 7.2(iv)T =T
+ O + + |+ +
o +|— —]o0 o
By Lemma 3.8 we may suppoge < Az (d) with {b,d,y1} a sparse triangle. We haye € Ag(a)
+ o+ + |+ +
+/0 —|0 —

— +|— o0]o0
o +|—-— —]o o
and soy, € A3(a) becauséd + Yy, € ag(b,b+a). The unique element ifiz(b,d,y1,Y») is Xg =

O o|lO D[+ O

+| x — |0

— + . % (0] —

* o+ | — . 0O *
implies thatd +y; € B2(d, X). Furthermore/} # y; becausd+y; € B1(b,Y). Hence @ +y1)" #
X+ y1 and we must have +y; € (Bp; 2% 221 4 ;221%) by Lemma 9.5. Iz € ro(x+y1)\{x y1,Y2},
thenz € A}(b) by definition, and sinc®+a € Ba(b,X1) we have ac A}(z). Now Lemma 6.5
implies that zc A}(a) and so part (i) is proved becauds; 2%; 2214, 2214) is aGyg-orbit.
+ o+ + [+ +
o /0 0|0 O
o+ - —|- -
o+ - —|- -

a) Naz(b,b+d) and we may suppose that € A;(d). We havex; € A3(a) and ifxp € (To(d +

€y(d,b,b’ Y)*? is the involution fixed by Cf}.

~—
—

Letys € Aj(b) with b+y; = . Sob+vy; € ag(b,b+a) Uay(b,b+a).

by definition. Ify, € Aj(b) NTo(d+Yy1) with yo # d,y1, thenb+y, =

as a sextet if,. Sinced +y; € ax(d,d + b)\Bo(d,X), Lemma 9.4

For part (i) letxy € A1(b) with b+x; = . Thenb+x; € a1(b,b+

+ — |+ + |+ +
x)\{d,xa})\Ba(b), thenb+x, = . 8 © o _ | with x € A3(a) by definition. As
0} +| — O o —

in part (i), Lemma 9.4 implies that+x; € B2(d, X). Howeverx; = x; becaus®+x; € B2(b,Y)
and sod +x; € (B2;2*%18;18) by Lemma 9.5. Again, as in part (i), we can show that &
Fo(d+y1)\{d,x1, %2}, thenz € Al(a) becauseéb+ a € B1(b,X2) for X, the unique element in
2(b,d,x1,%2). This completes the proof.



10. Al(a) REVISITED

Lemma 10.1 Letd € Al(a) andc € Al(a) NA1(d). SetS:= Al(a) NA1(c)NAL(d). Then|S =
5, [lF1(c,X(c,a)) Nai(c,c+d)| = 3 and there exists a unique set of three polntd,, bz in
{a,c}*+ NAZ(d) such that

(i) a+ b #£a+b;fori,je{1,2,3},i#|;

(i) each point inSis collinear withb; fori = 1,2, 3;

(iii) for eachi = 1,2,3, S=Io(Z) N {bj,d}* for someZ € $(d,b;);and

(iv) for eachi = 1,2, 3, bj +a € (B2B2B2,02).

Proof Let X = X(c,a). Sinced € Az(a), we havec+d € B1(c, X) by Theorem C and so, without
+ 0/0 0|0 O
O +|+ + |+ +

loss of generality, we may suppose tias the standard sextet and-d =

o +|— —|—- -
o +|— —|—- -
in ['c. By inspection there exist exactly three triodif(X) Na1(c,c+d), namely
+ +|0 o] — — + +/0 — |0 — + +/0 —|— o0
|_++oo——|_++o—o—d|_++o——o
L7+ /0 o|— —|"27 |+ +lo —]o = %9874 4]0 — |- of
+ +|0 o] — — + +/0 — |0 — + +/0 —|— O
We now view the situation in the residue geomeliry. Without loss we may assume that
c= % andl; = xox o = and
X X X X
X X
I3 = using Lemma 3.7. Sinad(a, ¢) = 2, as a hexad iff x, ais disjoint
X X
X X | X
from c. By (2.12) we may suppose that= i . Let
X
X X X X X X
X X X X
b1— ,b2— % x| x x andbg_
X X | X X
X X
Thenb; € {a,c}*- NTo(li) anda+b; = for eachi € {1,2,3}, and there

are no other points which satisfy these conditions. This gives (i).

6



By Theorem 5.8(ii) ifx € Al(a) NAs(c), thenc+x € Ba(c,X). The only lines inBy(c, X)

+ +/0 0|0 O + +/0 0|0 O
. + + |- —| = = + o+ -
which lieinaz(c,c+d)Uasz(c,c+d) arel = P S R L Sl I o olo o
+ +/0 0|0 O + + |- == =
+ +/0 0|0 O
+ +/0 0|0 O . . .
andm= P I N By inspection,|,k,m € ax(c,l;) for eachi = 1,2,3. Let
+ + |- —| - —

A(@)NTo(l) = {c,y1,z1} andAl(a) NTo(k) = {c,y2,2}. Sincel € az(c,l), there existd €
Fo(l1)N{a,c}+ with b e A1 (y1). InTp, b+y1 € az(b,b+a)Naz(b,b+c) and since ¢ Mo(X),
this forces the triod+ a,b+y; andb+ c to contain the same octad. Xfe A1(b) No(l) with

X # ¢,y1, thenb+x contains this octad and soc Al(a). Hencex = z Similarly there exist
b € Fo(lz) N {a,c}+ andb” € Fo(l3) N {a,c}+ with z1,y; € Ay () NA(D”). We know that
X(a,y1),X(a,y2) € y3(a,X) by Lemma 5.1, whencé 1(X(a,y1),X)| = [F1(X(a,z1),X)| = 1.
This forcesb,b’ andb” to be incident with the same line in;(a, X) and by uniqueness we
have{b,b/, b”} = {by, by, bs}. Using a similar argument it can be shown thatz, and the two
points in A(a)NTo(m))\{c} are collinear with each df;, b, andbs. Sincel,k € az(c,c+d),
Y1,¥2,21,22 € A1(d). By Theorem 4.7d is collinear with a unique point ity (b) N Fo(m))\{c}

* x|0 0|0 O
. . . . X * - = | = - .
and this point lies imA\}(a). Let Z = < *|g olg ol Thenl,k,me M'1(Z). Since
X *

I,k € az(c,c+bj) nasz(c,c+d) andl, k € az(c,c+ bi) Naz(c,c+d) for eachi = 1,2,3, Theo-
rem 4.7 implies thaZ € §(d,bj). Thus we have shown (ii) and (iii).

For (iv), notice thab; +a < az(b;,bj+¢) (i=1,2,3) and so ifY € $(d,b;) N2(c), thenb; +
ac Bz(bi,Y) by (2.11). Theorem D implies thaf+a € (B2B2B2,02) U (B1B1B2,01) becausa
A}(d). Appealing to Theorem 4.7 agaip, € Mo(Y’) for someY’ € §(d, b)\{Y}. Thereforeb; +
a¢ B1(by,Y) by (2.11)(ii) becausbk; +y; € az (b, bj+a) by part (ii). Hence; +a < (B2B2B2,02)
and we have part (iv).

Lemma 10.2 Letd € Al(a) . Then

(i) Al(a) NA1(d) consists of six pairwise collinear points incident with the same sextet in
M2(d); and

(ii) there exists a unique linkee '1(a) such that{X(a,x) |x € A3(a) NA1(d)} C Ma(1) with
IFo(l)NAS(d)| = 3and|Mo(l) NAY(d)| = 2.

Proof By Lemma 10.1, for part (i) it is enough to prove thatxify € Al(a) N Ay(d), then
y € A1(X) U {x}. We suppose there exigty € Al(a) NA1(d) with y € Ap(x) and argue for a
contradiction. LeX = X(a,x) andY =Y(a,y). Notice thatx+ d € 1(x,X) by Theorem 5.8.

(10.2.1)(i) There exists oné € '1(a,X) such thailo(1) NA3(d)| = 3and|[o(1) NAZ(d)| = 2.
(ii) There exist sixk € I'1(a, X) such thafFo(k) NA3(d)| = 1,|Fo(k) NA3(d)| = 2 and



IFo(k)Nad(d)| = 2.
(iii) There exist eightn € ['1(a, X) such tha{lo(m) NA3(d)| = 3and|Mo(m) NAZ(d)| = 2.
Sincex+d € B1(x, X), of the 15 lines im 1(x, X), 3 lie ina1(x,x+d) and 12 lie inop(X, X+

d). Letag(x,x+d)NT1(x,X) = {ki, ko, ks}. Solo(ki)\{x} C A2(d) fori = 1,2 3. As trios inTy,

ki, ko, ks contain the same octad. By (2.13) and Lemma 3.7 we may assume that, as duads in

X X
ki = , ko = ‘ andkz =
X X
wherex is the hexad i i . There are 16 hexads Iy(X) which are disjoint
X X

from x and each one contains a unique duad lying in a hexadikitr eachi = 1,2, 3. Sincea €
Al(x), ais a hexad i x disjoint fromx. So there exists a uniques I'1(a, X) with Fo(1) (ki)

# 0 for i = 1,2,3. Hence|lo(I)NA3(d)| = 3 and sincea € A}(d), Theorem D implies that
IFo(l)NA3(d)| = 2. In T there are exactly 6 duads containedaiwvhich lie in a hexad with
precisely one of the duads (i = 1,2,3), becausea andx are disjoint hexads. Moreover the
remaining eight duads iado not lie in any hexad ifg(k;) for everyi = 1,2, 3. Therefore there
are 6 linesk € ' (a, X) with |Fo(k) NA3(d)| = 1 and 8 linesm € ['1(a,X) with Mo(m) NAZ(d) =

0. Let k € T'1(a,X) with |Fo(k)NA3(d)| = 1. Sincex is collinear with precisely three points
in To(k) andAJ(d) N {a,x}* = 0 we conclude thaflo(k) NA3(d)| > 2. Howevera € A}(d),
whence|lo(k) NA3(d)| = 2and|lo(k) NA(d)| = 2 by Theorem D. Suppose € '1(a, X) with
Mo(K) NA3(d) = 0. Then the three points ifig(m) which are collinear withx must lie inA3(d)
with the other two points of o(m) lying in A(d) by Theorem D again. This proves (10.2.1).

Combining (2.8) and Lemma 3.3 we deduce that) fixeslo(l) pointwise for at least three
| € T1(a,X). Sett =1(Y). By (10.2.1) we may finc € € A3(d) N {a,x}+ such thate' = e,
€' = ¢ anda+e# a+ €. Since|g(a+€)NA3(d)| > 2 by (10.2.1) and two collinear points
determine a unique line, we may assume further thae # x+ €. Let z< {e,d}+\{x}. Then
e+zec az(e e+x) by Theorem 4.8(i), whenae+z € Bo(e, X) UBz(e X) using (2.11). Ife+z¢
Bo(e,X), thenz € To(X) which forcesz € Al(a) becausel(a,d) = 3. This contradicts Lemma
10.1 because e Aj(x)and soe+z € B3(e X).

(10.2.2)x* = x.

Assumex' £ x and argue for a contradiction. Singe-d € B1(y,Y), d' # d. Howevere' =g,
whenced" € I'o(d+y) NA3(e) anda+e ¢ B1(y,Y) using (2.8). Therefore € Ay(y) by Theorem
5.8 becausa € A(y). By Theorem 5.2 ¢ Al(y) becaused € A3(e) NA1(y) ande ¢ AS(y)
because € Al(y) N Az(e). Hencee € A3(y) and there existg € {e,y}* N {e d}* by Lemma
8.4. Furthermore € A;(d"), whenceZ" € {e d}*. Thus if £ # z then{e d}* = {e,d'}* by
Theorem 4.8(j) and & € {e,d}*. Howeverx' € A3(a) NA1(X)NMo(X) because € Q(a) which
contradicts Lemma 10.1. Therefore= z and soe+ x,e+ X' € az(e,e+2z) Nl(e X). Since



e+ze Bs(eX), e+ze az(el) for a unique € (e X) by (2.11). This forceg+x = e+Xx".
Using exactly the same argument wihieplaced bye we havee + x = € + x'. However this
implies thate-+x = x+ X' = € +x contrary to our choice af and€. Therefore we have (10.2.2).

Sinced' # d we have

Thusx € A}(y) because ¢ Ay (y)
(10.2.3)X e y3(a,Y).

If X ¢ y3(a,Y), then there existd € {a,x}+ with a+b € B1(a,Y) by (2.8). Howeverx
is collinear with exactly three points ifip(a+ b) and 1 interchanges two pairs of points in
MNo(a+b)\{a}, which is impossible becausé& = x by (10.2.2).

By (10.2.3) we can finth € {a,x} N {a,y}*. Sinceb € A3(d) UA3(d) andx € A(y), Lemma
4.6(ii) yields the required contradiction. This proves part (i).
Part (ii) follows from (10.2.2)(i).

Theorem 10.3 Letd € Al(a).

(i) |A3(a)] =211.35.7.11.23

(i) G4 = 25(55 x ) with Q(a) = 1; G4 is the stabilizer inG8 of a unique lindg4 and a
unique plane{y incident withlg in Ig.

Proof By Lemma 10.2|A3(a) NA1(d)| = 6. Therefore sincé\}(a) andAj(a) are Gg-orbits by
Theorem 4.3(v) and Lemma 6.3, we have

_ 1 |85 Ba(c X (c.@)|-4 _ 2.7.112320.325.22
' 6 B 6

for c € AX(a) NA1(d) with c+d € Bi(c, X(c,a)).

For part (ii) letly be the unique line described in Lemma 10.2(ii) afacbe the unique plane
in g incident with every point im\}(a) N Ax(d). ThenXy € (1) by Lemma 10.2(ii) and:4
is a subgroup of the stabilizer (Egd of I andXy.

By definition there exists € A}(a) NA1(d) with c+d € Ba(c,X(c,a)). From Theorem 4.3
Gt~ 25:3 S andQ(c)a = 2’. AlsoQ(c)a/ < T(X(d,a)) > is isomorphic to a 6-dimensional ir-
reducibleGF(2)3 S-module. Furthe6:S 2 Sy x 2andQ(c)ag 2 2° with Q(c)agN < T(X(d,a)) >=
1. We show that

A5(a))| _ 2113571123,



(10.3.1)T(c+d)NGa = 0.

X X X 0 —
. . X 0] 0 O] *
In ' we may suppose thatd is the standard trio and(c,a) = . e
o -1 - =0 -
It is easy to check that for eadhe INx(c+d), there exists 1(X(c,a)) with ke B1(c,Y). Sot(Y)

acts regularly orfo(k)\{c} which consists of three points ify;(a) and one point inA}(a).
Thereforet(Y) ¢ G, and we have (10.3.1).

Since< T(c+d) >= Q(c)NQ(d), (10.3.1) implies that
(10.3.2)Q(c)NQ(d) NGz = 1.
Suppose € Gacq\Q(c) and thatg € Q(d). Then, using (10.3.2),

[9,Q(C)ad] < Q(C)NQ(d) NGy = 1.

Henceg centralizes a subgroup @(c)a/ < 1(X(d,a)) > of order 2, which is impossible
for a 6-dimensional irreducibl&F(2)3 Ss-module. So, together with (10.3.2), we must have
GacdNQ(d) = 1. Sincelo(d +c¢) NAl(a) = {c},GagNQ(d) < Gacg WhenceGagNQ(d) = 1 and
thereforeGag = G:4 = 25(S5 x Sy).

Lemma 10.4Letd € Al(a). Then theG:d-orbits onl1(d) are as described in Theorem F.

Proof Let Xy andly be, respectively, the sextet and trio fixed (B;@. Then we may tak&y to
be the standard sextet ahdo be the standard trio. Clearly each of the sets listed in Theorem F
is a union ofG:4-orbits only(d). Let H = G:4(= 283(Sy x 2)) andQ = Oz 3(H) (=2 283) with
H =H_ Q. We look at several cases.

Case 1Clearly {l} is a G:4—orbit. Consider the set of lines Bo(Xq)\{la}. SinceH is
transitive on the columns ofy and the three octads &f, H has two orbits on this set, namely
(Bo,02) of length 6 and 8o, a3) of length 8.

+ — |+ +]+ +
o +|— o|— o :

Case 2Let | = o +lo —|— ol Sol € (B1,00p). Every element ofQ fixes the
— + 0 0 — —

columns of the standard sextet. Each 3-element cycles three entries in each column and each
2-element acts like an element of a fours group on each column and fixes the entries in 2 or O of
the columns. Therefor®, = 1. As a subroup ofg acting on the columns of the standard sextet

H is generated by (2,5)(1,6) and (3,4). {6 |4 and 2304|I"|. Since|l"1(d)| = 3795we must
have|IH| = 2304and so B1,ao) is aGag-orbit of length 2304 as required.

+ o+ + |+ +
o +/0 0|0 O
o +|— —|—- -
o +| - —|—- -

Q = 1. Since any element dfj must fix O1,H; contains no 3-elements. Henid| < 2* and

Case 3Next supposé = , sol € (B1,01). As in the previous case
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|I"| > 576 However we already have 2304 linesi(Xq) and so by (2.5) we must hayg!| <
576. Hence|l"| = 576and B1,00) is aGag-orbit.

+ + |+ — | - +

+ —|o o|— — . .
Case 4Let | 5 o +lo —lo —|° sol € (Bs,ap). By observation (see Appendix 2

o —|+ o|0 +

in [RW2]) and the action of 3-elements on the column entii@g, = 22. If Sc Syb(H)), then
every non-trivial element of acts on the columns of the standard sextet and fixes one of the
octads of. Each element offixes the same octad bfotherwise the product of a certain pair of
elements irBwould be a 3-element. Without loss of generality we may supfdses the octad

"+” of |. Then there is only one possibility for a non-trivial elemenBphamely (1,2)(3,6)(4,5)

as an element of the grou acting on the columns. Henc#||23.3 and 384]IH | . However

we already have 2304 lines @m(d,lg) and so|I™| < 528by (2.3). So B3, 0p) is aGag-orbit of
length 384.

—lo o
0 olo —
+ 0 o|— o
using the Appendix and the action of 3-elementQirAlso, as a subroup of th&; acting on the
columns H is generated by (1,2)(3,4) and (5,6). | < 2° and|I"| > 144 Using Cases 2
and 4 and the size afp(l(d,a)) given in (2.3) we have thaff, ao) is aG;g-orbit of length 144.
+ +|+ o|lo +
Case 6Let| = :; ?r | |, andsd € (Bs,a1). By inspectionQ| = 22. Also
0O o/+ o]0 +
Hi has no 3-elements becaudefixes O1. Hence|H;| < 2° and |I"| > 288 Since we already
have 576 lines ir1(lq), (2.3) implies that|i"| = 288 Therefore 3,a1) is a G;3-orbit as

required.

+ + +

Case 5Now supposd = , whencel € (Bz,00). Then|Q| = 2*

+ + + +

+ +/ 0 0|0 O
+ +/ 0 0|0 O
+ +

Case 7Let | = € (B2,02). As in Cases 3 and 5l has no 3-

+ +| - —| = =
elements. Using the Appendix we see th@t| = 2*. So |H|| < 28 and |I"| > 36. Together
with Case 5 and (2.5) this yields thiy, o) is aG;ﬂ-orbit of length 36.

+ +]/0 olo o

+ +]0 OO0 O
- |+ +| = =

- — |+ 4+ | = =
thereforeH;| < 2°.3and|I"| > 48. Since we already have considered 672 lineBgifd, Xy) we
must havd" = (B3, a3), aG;‘é'| -orbit of length 48. This completes the proof.

Case 8Lastly letl = . Sol € (Bs,03). By inspection|Q,| = 22 and

Lemma 10.5Letd € Al(a) and Letlq be the unique line iff1(d) fixed by G:94. Suppose
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I e Fl(d).

(i) [Fo(la)NA3(a)| = 3 and |Fo(lg) NAZ(a)| = 2 and for anyc € To(lq) NAS(a), c+d €
(B2B2B2,02).

(i) If I € (Bo,a2), then|Fo(l)NAJ(a)| = 1 and|Fo(l) NAJ(a)| = 4 and for anyc € Ay(d) N
Al(a), c+d € Ba(c,X(c,a)).

(i) 1f | € (Bo,s). then|Fo(1) NA3(a)| = 1 and|lo(1) NA%(a)| = 4 and for anyc € Mo(1) N
A5(a), c+d € (BaPaPs, 03).

(iv) If I € (B2,02), then|[o(1)NA3(a)| = 1, |Fo(l) NA3(a)| = 2and|Mo(l) NAd(a)| = 2. Also
for anyc € Fo(l) NA3(a), and anyc’ € Mo(l)NA3(a), c+d € (B1PB1P2,01) andc +d €
(B2; 2%,18;18).

(v) If I € (Bs,03), then|Fo(1)NA3(a)| = 3 and [Fo(1) NAY(a)| = 2 and for anyc € [o(1) N
A3(a), c+d € (Bz; 242214, 221%).

(vi) If | € (Bs,a1), then|Fo()NA3(a)| = 1 and |Fo(l) NAS(a)| = 4 and for anyc € Fo(1) N
A3(a), c+d € (B1B1Bs, do).

(vii) If Fo(l)NAL(a) £ 0 fori = 1,2, thenl € {l4} U (Bj,ax), for (j,k) € {(0,2),(0,3),(2,2),
(3,1)}.

Proof Part (i) is a consequence of Theorem D and Lemmas 6.5, 10.1 and 10.2 together with
the definition ofly given in Theorem 10.3(ii). For ang € A1(d) NAL(a) we havec+d €
B1(c,X(c,a)) by Theorem C and so

_ |A3(a)].28804
83 (a)]
by Theorems 4.7(vi) and 4.8(ii) and Lemma 9.2.
Since{d +x|x € A1 (d) NA}(a) }is aG:g-orbit of lines we must have + ¢ € (Bo, a2) and so
part (ii) follows from Theorem C.
Setly and Xy to be the standard trio and standard sextet respectivelyc, ket A;(d) with

A1 (d) NAS(a))|

+ +|/o —|o — + — |+ olo —
+ +|o0 —|o — + — |+ olo —
d+c= _ | o —lo — andd+x= | olo — |- Sod+c € (Bo,02) and
+ +|o — |0 — + — |+ o|lo0 —
d+x € (Bo,03). By part (i) we may suppose thatc Al(a). Also there exist’ € A;(d) N
+ o|lo +|— -—
1 . + o|lo +|— — N
As(a) withd+c' = t olo +— | By Lemma 3.8(ii) we may suppose thak, ¢’ are
+ o|lo +|— -—

incident with the same line becaude- c,d + x,d + ¢’ are three lines of a non-sparse triangle at
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d. Sinced(a,d) = 3, x ¢ A;(a) and so Theorem C implies that A3(a). By Theorem Dx+ ¢
is the unique line i 1(x) fixed by G£X. Also x+d € az(x,x+ ), whencex+d € (B3B3pB3,03)
and|o(d+x)NA%(a)| = 1 and|Fo(d+X) NA3(a)| = 4 by Theorem D. This proves part (i)
becausépo,as) is aG:J -orbit.

For part (iv) letx € A1(d) ﬂA%(a) with x+d € (B1B1B2,a1). Without loss of generality we

+ +]o +|o0 +
may takex+d = i : 8 : g : wheresy is the standard sextet line. Let
_ + O —| o -—

+ +]o —[o —

+ +/0 — |0 -— 1
XtC=, 41lo —lo —|€ (BoB2B2,02) Nz (x,x+d). Then we may supposec Ay(a)

+ +/0 — |0 —
by Theorem D. Sincé;(c) NA3(a) = 0 by Theorem 5.2 and

IFo(x+d)NA3(@)| = [Fo(x+d)NAj(a)| =2,

we must have € A;(d). By part(ii), d + ¢ € (Bo,a2) and sod + x € B2(d, Xg) becauseal + x €
02(d,d+c) andd+x ¢ Bo(d, Xq) by (ii) and (iii). Furthermorel +x ¢ ao(d,lq) becaus@ +c €
02(d,d+x) Naz(d,lg). Examining the possibl&:d -orbits onl"1 (d) yieldsd +x € (B2, a2) and
(iv) follows from Lemma 9.2(iii) becaus@,,a>) is aG;g-orbit.

Turning to part (v), lek € Mo(lq) NA3(a). Thenlg = x+d € (B2B2B2,a2) by part (i) and we
+ +| - —| =
+ +/0 0|0 O
+ +/0 0|0 O
+ +| - —| = =
If Ix is the unique line fixed b5, thend is collinear with three points ifig(lx) one of which
lies inAl(a) by Theorem D. Taking this with part (ii) we get thé§ € M'x(x+d,lx) and soXq =

may suppose that+d = in 'y whereSy is the standard sextet line.

+ +| . .| = O + |+ + |+ + o +| - — |- =
* |0 ol O + 0/0 O|O0 O + 0 —
*x x|0 ol O + o|— —|— - + 0|0 O|O O
+ + - - + o|— —|— -— + o+ + |+ +
o +|— —| - - o +|o0o Oo|0 O
+ o|+ + |+ + + o|— —|— —
3= + ol- |- _ andly = + ol +l+ . Thenly,lo,l3,14,x+d are the
+ 0|0 O|O0 O + o|— —|— —

lines of a full triangle. Alsd, |5 € (B1B1B2,01) andls, |4 € (B1P1Bs, 01) and sqMo(li) NA3(a)| =
IFo(li)nad(a)| =2fori=1,2and|[o(lj) NA3(a)| = 4for j =3,4by Theorem D. Leky, ko, k3, ks
be the distinct lines i 1(d)\{d + x} with ['o(lj) NTo(kj) # O for eachi, j € {1,2,3,4}. Then
lq(= d +x),ki, ko, ks, kg are the lines of a non-sparse triangle andkse as(d,lq) for each
i =1,2,3,4. Moreoverk; ¢ I'1(Xq) becausd; ¢ I'1(Xq) for eachi. Thereforek; € (B3,a3) for
i =1,2,3,4and theno(ki) NA3(a)| = 3and|[o(k) NAL(a)| = 2. So we have proved part (v).
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Let ¢ € A1(d) NA3(a). By Theorem D|As(c) NAY(a)| = 2.288+4.1152+ 2.24+ 4.32 =
536Q So

A3(a)| 5360 27.3.5.7.11.23.5360
Al(a)| — 211357.1123

by Theorems 4.7(vi) and 10.3(i). Using parts (i),(ii) and (iv) we have 288 poirtsh;(d) N
A3(a) with d+x¢ {lq}U (Bo, 03) U (B2, 02) andx+d € (B1B1Bs, do). Also |Fo(d +X) NA3(a)| =
1 for each of these points Looking at the possible orbit sizes listed in Theorem F we must have
d+x € (Bs,a1) for eachx and so we have shown part (vi).
Finally part (vii) follows from parts (i),(ii),(iii),(iv) and (vi) together with Theorems C and

=335

|A1(d) NA5(a)| = |

D.

Lemma 10.6 Letd € A}(a) andl € (B3, 00). Then|o(l) NA3(a)| = 4.

+ +|/0 O — -—
, . . + +|0 o — -—
Proof Without loss of generality we may suppose that['i |4 = + +lo ol —
+ +|0 o| - -—
+ o |x — + + |+ —| - +
+ o O|x — + —|0o o -
Xa= . oD*—andl_o+o—o—'Set
+ o O|* — 0 + 0|0 +
+ ol+ — |- o
+ o|+ —|— O
d+x=| ol - o . Thend+x € (Bo,a3) Naz(d,l)Nnaz(d,lg). By Lemma 10.4
+ o|+ —|— o0
+ +|/o0 — |0 —
5 . + +|/0 — |0 —
we may suppose thate A5(a) with x+d € (BzBafs, a3). If kg = + +lo —lo — ko =
+ +|o0 —|o —
+ o|lo +|— -— + —|0 o|— + + 0|— O+ -—
+ o|lo +|— -— + —|o0 o] — + + 0o|— o+ -—
+Oo+__,k3:+_O(J_Jrandk4:+0_O+_,then
+ olo +|— -— + —|o0 o|— + + o|— o+ -—

ki, ko, ks, ks,d + x form a non-sparse triangle dtwith ki, ko, k3 € (Bo,02) andks € (Bo,a3).
By Lemma 10.4 there existse Mo(k1) with y € A}(a). By Theorem CJo(x+Y) C Ay(a) and
using the point distributions described in Lemma 10.4 we must kawec (Bofofo,{!}). Since
| € ap(d,d+x), for anyz € I'g(1)\{d}, z€ A1(X) andx+ z € az(x,x+d) Nag(X,X+Y). SO

X+ 2z € (B1B1P1,00) U (B1B1B3,00). By Lemma 10.4z ¢ A%(a) and sox+z ¢ (B1B1Ps,00) by
Lemma 8.7. Therefore+z € (B1B1B1,00) andz € A3(a) by definition.

We next uncover the point distribution of certain line orbits for pointajta).
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Lemma 10.7Letd € A3(a) andl € I'1(d).

() Ifl (53;2214;2?214; 221%), then|Mo(l) NAg(a)| = 4.

(i) If | € (B3;18;18;18), then|To(1) NA3(a)| =2, [Fo(1) NAY(a)| = 3and for anye € To(1) N
A(a), e+d € (Bz,00).

+ 0|+ o|0 O
5 . + o|+ o|— -—
Proof Letce A5(a) NAg(d) withe+d=| = | | o € (B2B3PB3,01) (WhereSe
+ — |+ —|o0o -—
+ o]+ o] - -—
. . 1o + o[+ o] — —
is the standard sextet line). Xy,z € {a,c}, with c+x = t ol+ ol - _|rCty=
+ o|+ o] — -—
O 0|0 O|— — + o|+ o|— -
O 0|0 O|— — + o+ o|— -
P I andc+z:0 ilo |- — , thenc+x € az(c,c+d) andc+
+ + |+ +| - — o +|o0 +|— -—
y,c+z¢c az(c,c+d) andx,y,ze€ {a,d}+ by Lemma 5.6. We define linds,I5,13,14 € T'1(c) in
two cases.
+ o]+ —|0 — o +/0 — |+ -—
— - - + + + |+ — -
Case 1 Letly = 0 © o= 0 ,
+ o|— +|0 — o o|l+ —|0 —
— 0|+ + |0 + + olo — |+ —
+ + [+ -+ = + — [+ +]- +
o +|o —|— o O —|0 +|0 -
I3 = + o ol— - andly = + olo o0 + . Thenc+d,l4,l2,13,14 are the
o — |+ o|+ 0O o o+ —|— —
lines of a non-sparse triangle@with 11, 1> € (B1B1PB2,01) andls,l4 € (B1B1B3,00). We have

whereky, ko, ks, ks are distinct lines i 1(d) with ki € az(d,d+c) andl (ki) NTo(lj) # O for
eachi, j =1,2 3,4. By inspection]; € ay(c,c+x) Nap(c,c+Yy)Nao(c,c+2z). By Lemma 9.2(ii),
d-+c € (Bo,**). Sinced + ¢, kg, ko, k3, ks form a non-sparse triangle @t Lemma 9.1(iii) implies
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thatk; € B3(d,Xq). Also using the point distribution fdk,i = 1,2,3,4 given in Theorem D we
have that (k) N A3(a) # 0 for eachi.

o + |+ + |+ + o — |+ —|— -—
+ —|0 —|— o + +|0 +|0 -—
Case 2 Now letl; = o= ,
+ —]o —| o0 - + o|lo0o o|— +
+ o|0 Oo|— - + —|o — |+ 0O
o — |+ — |- - O o|+ 0|0 O
+ o|0 Oo|— + + —|o — |+ —
l3= + 1o _l+ o andl, = f +lo +|- — . Thenc+d,lq,l2,13,14 are
+ +]0 +] 0 -— + -0 —|— +

the lines of a non-sparse trianglecawith I1,12,13,14 € (B1B1B1, o). If we defineks, ko, ks, ks as
in Case 1, then Lemma 9.1(iii) again implies that B3(d,Xq). Moreover|o(k)) NA%(a)| = 4
using the point distribution df given in Theorem D, for=1,2,3,4.

We now shift our attention ta. By Lemma 9.2(v)k ¢ (Bs; 221%4221%;18) and sok; €
(Bs; 18,18, 18) U (B3; 221%; 2214, 221%4). Supposek; € (Bs; 18;18;18). Then there exists a unique
line in as(d, ki) N (Bo, **) and this must be + c. Thenky, k3, ks are uniquely determined and lie
in (B3;18;18;18). Similarly if k; € (Bs; 2214 2214,221%),d + c is the unique line irz(d, k;) N
(Bo,**) andko, k3, ks are uniquely determined and lie {B83; 221%; 2214, 221%). Taking this with
the information in Cases 1 and 2 and the point distributiorg ibf 1,2, 3,4 we get
(10.7.1)()) [Fo(ka) NA3(a)| = 2 and|Fo(k1) NAF(a)| = 3 for ky in exactly one of
(Bs; 221%,221%,221%) or (Bs; 15,15, 18).

(ii) |Fo(ke) NA3(a)| = Land|o(ke) NA%(a)| = 4for ki in exactly one of Bs; 221%; 221%; 2214)
or (Bs; 18;18;18).

Suppose thalty € (Bs; 22142214, 221%) U (B3; 13;18; 18) with |Mo(ky) NA3(a)| = 2 and
IFo(k1) NA3(a)| = 3. So we are in Case 1. Léte (ki) NA3(a) . Thenf € [o(l;) for some
i=1,....,4and by Lemma 10.5 + c € B(f,Xs) UB3(f,Xs). Leto(c+d) = {c,c1,C2,d1,d}.
By Lemma 8.4(ii) we may suppose that c, € A%(a) andd; € Ag(a). Using Lemma 10.5(vii)
we havef +c1, f +c2 € Bi(f,X¢) fori =0,2 or 3. Thus ifY € 'y(c,d, f), thenY € y3(Xs)
by Lemma 9.1. Using Lemma 9.1 again and the fact thatc € Ba(f,Xs) UBs(f,Xs) we
have f +d € Ba(f,Xs) UBa(f,Xs) becausef +d € Bo(f,Xs) by Lemma 10.5. Considering
the possibIeGZ‘;-orbits and the known point distributions given in Lemmas 10.5 and 10.6 we
conclude thaf +d € (B2,a0). So we have proved

(10.7.2) If | e F1(f) with | € (B2, 00) then|Fo(l) NA3(a)| = 2and|Fo(l) NAL(a)| =3.

For a contradiction suppose thate (Bs; 221%;2214;221%). Using the orbit sizes in Theorem
E and the point distributions described in Lemma 9.2 we have

|A1(d) NAY(a)| = 9600+ 1920n+ 2.60+ 2.120+ 3.320= 9607+ 1320
for somen,m,q € Z. So

(9609+1320).211.32.7.11.23
211357.11.23

A (F)NA3(a)| = = 57604 792
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using the orbit sizes in Theorems 4.7(vi) and 10.3(i). By Lemma 10.5 and (10.7.2) we have
already accounted f&.36+ 3.48+ 2.144= 504 of these points. Therefore there &&q+ 288

points inAy(f)NA3(a) which lie in (B1,a0) U (B1,01). We now have the required contradiction
becaus&76||(B1,00) U (B1,a1)| . Henceky = f +d € (Bs;18;18;18). The lemma now follows

from (10.7.1).

Lemma 10.8Letd € Ai(a) andl € ['1(d).

(i) If | € (B1,00), then|To(l) NA3(a)| = 1and|Fo(l)NAZ(a)| = [Fo(l) NAS(a)| = 2 and for
anyx € Mo(1)NA3(a), x+d =1 € (B1;215,215;,221%).

(ii) I | € (B, 01), then|Fo(1) NAY(a)| = 3and|Fo(l) NAS(a)| = 2.

Proof We first show

(10.8.1).()) There exist lines € 'y with [To(1) NA3(a)| = 1and|To(1) NAY(a)| = [Fo(l) NAS(a)| =
2.
(ii) There exist lined € 'y with |Fo(1) NA3(a)| =3 and|o(l) NAS(a)| = 2.

Letce A%(a). Then there exist linelg, I, 13,14,15 € I'1(c) forming the lines of a full triangle
atcwith l,12 € (B1B1B1,00) , 13,12 € (B1B1B3, o) andls € (B1P1P2,01) . For example, withs ¢

+ — |+ ++ + + — |+ +|o0 +
. o +|— o|— o — o+ o] - =
the standard sextet line |lpt= o= ,
o +jo —|— O O o|l— +|— o0
- +/0 O|—- — + o|lo0 —|— +
+ — |+ +]lo0o + + +]+ +]o0o +
+ ojo —|— ¢ O o|— —|+ o
I3 = a = and
- 0|+ O0|— — — o|0 — |+ —
0 o|— +|— 0 — 0|l — o |+ -—
+ o|l+ +|0 +
ls=| — 217 19 T solro()nad(@)| =4fori =12, |[Fo(l)NAk(a)| = 4. for i =
ST 4 ol— —1lo +|° O‘ 0(|)ﬂ 3(3)}— ori=1,z O(I)m 3<a)‘— , 10rl =
— o|l+ —|o0 -

3,4and|lo(ls) NA3(a)| = |Fo(ls) NA3(a)| = 2. Since the line$ form a non-sparse triangle at
there exist line$ ¢ '1(c) with To(l;) NTo(1) # O for eachi = 1,...,5andlo(Is) NTo(l) C A3(a).
For such lines we have[o(1)NA3(a)| = 1and|Mo(1) NAY(a)| = [Fo(l) NAg(a)| = 2. Similarly
there exist line$ ¢ 1(c) with To(l;) NTo(l) # O for eachi = 1,...,5andMo(Is) NTo(1) C Ad(a).
For such lined we have|[o(1)NA}(a)| = 3 and |Io(l)NA%(a)| = 2 and so we have proved
(10.8.1).

Letl € M1(d) with [Fo(l) NA3(a)| = 1and|To(1) NAL(a)| = |Fo(l) NA3(a)| = 2 and suppose
x € To(1)NA3(a). The only line orbits ofG:d whose point distributions are still unknown are
(B1,00) and(B1,01) by Lemmas 10.5,10.6 and 10.7. So

(10.8.2)1 lies in one of the orbitsf{;,00) or (B1,01) and the other orbit contains lind&swith
IFo(k)NA3(a)| = 3and|Fo(k) NA3(a)| = 2.

Supposé € (B1,01). Then
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|0 (d) NA3(a)| = 576+ 2.144+ 2.36+ 3.48 = 1080

by Lemmas 10.4,10.5 and 10.6. Therefore, using the orbit sizes in Theorems 4.8 and 10.3(i) we
get

108021135.7.11.23
Ma()N85@)| = =g 71755 = 1800

Using Lemmas 9.2 and 10.7 we must have d € (By;215;21%;18) U (B1;215;215;221%). We

now have a contradiction to the orbit sizes given in Theorem E. TheréfaréB;,ap) and
by a calculation similar to that above we Qéil(x)mAé(aﬂ = 4680 Using the point distri-
butions given in Lemmas 9.2 and 10.7 yields tRat d lies in a GX-orbit of I'1(x) of size
4680-2.60-2.120-3.160 _ 1920 Thereforex+d € (By;21°;21;221%) and part (i) is proved.

Part (ii) now follows from (10.8.2).

We have now proved Theorem F.
We conclude this section by completing the proof of Theorem E.

Lemma 10.9Letd € A3(a) andl € I'1(d) with | € (B1;21%21%;18). Then|o(I)NA3(a)| =3
and|lo(1)NA3(a)| =2

o + |+ + |+ +
. . + 0|0 0|0 O
Proof Without loss of generality we may suppose that + ol |- _ . Letk=
+ o| - —|— —
+ + |- —| - - o +|— —| - -
+ +|0 0|0 O | + o]+ + |+ +
+ +|— —|— "+ o0|lo olo ol
+ +/ 0 0|0 O + o] - —|— —
o +|— — |- - o +/0 o|0 O
+ o|l— —|— — + o|l— —|— —
lo = + ol+ +1+ + andlz = + ol |- _ . Then
+ 0| 0 0 0 0 + O| + + + +

(10.9.1)k € (Bp; 2% 2214, 221%) andly, ly, I3 € (B1;215;21%;221%) with I,k, 11, 15,13 forming the
lines of a non-sparse trianglect

Sincel € B1(x,X(d,a)), 1(X(d,a)) interchanges two pairs of points ip(l) by Lemma 3.3.
Also we know thaf o(l) C A3(a) UA%(a) by Theorems C,D and F. Therefore either

(1) [Fo(l)yNAg(a)| = 4; or

(2) [Fo(l)NA3(a)| =5; 0r

(3) [Fo(l)NA3(a)| =3and|Mo(l) NAg(a)| = 2.
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Lety € Mo(k) NAL(a). Suppose we have case (1). Thes(y+2) C Al(a) uAi(a) for
all ze I'o()\{d} and soy+ z € (B1,01) U (B3,a0) by Theorem F. Alsoy+d € (B3,a3) by
Lemma 10.4(v). Appealing to Lemma 9.1 we must hgvez € (1,a1) for all z€ I'o(l)\{d}
and so|lo(y+2)NAj(a)| = 3 and [Fo(y+2)NAS(a)| = 2 for all z€ Mo(1)\{d}. So the set
{Fo(y+2)|z€ o(l)} contains exactly 8 points if3(a), 10 points inAi(a) and 3 points if\3(a).
However{lo(y+2)|z€ To(l)} = To(l) UTo(k) UTo(l1) UTo(l2) UTo(l3) becausely+ z)|z €
Mo(1)} are the lines of a non-sparse triangleyaHowever (10.9.1) together with Lemmas 9.2
and 10.8 implies thdto(l) UTo(K) U o(l1) UTo(l2) UTo(l3) contains exactly 10 points i8(a),

8 points inAl(a) and 3 points im3(a). This contradiction excludes case (1).

Next assume case (2) holds. The(y+2) NA3(a)| = 1andlo(y+2) C A3(a)UAi(a)U
AZ(a) whencey+z € (Bp,a2) for all ze [o(1)\{d}. Howevery +x € (Bs,a3) and so we have a
contradiction to Lemma 9.1. So case (3) holds and the lemma is proved.

811 THE LAST LAP

Lg(m;na 11.1 Letd € A%(a). Then for alll € I'1(d), o(l) contains a point i\3(a) UAl(a) U
Asz(a).

Proof LetL = {I € F1(d)|To(1) N (A2(a) UAL(a)) # 0}. We suppose the result is false and argue
for a contradiction. Let € M1(d) with To(1) C A%(a) UA4(a) (we already know o(1) N4z (a) =
Mo(l) mA%(a) = 0). Either there exist& € L with k € az(l) or we can findk = ky,kp, ...,k =
| € M'1(x) with ki € az(ki+1) (i =1,...,r — 1) for somer > 2. In the latter case we can find
je{1,...,r—1} withkj_1 € L andk; ¢ L. So in either case, possibly with a new choicé,afie
may suppose there exidts L with k € az(l).

SinceAx(y) NA4(a) = 0 for all y € Ap(a) UAL(a) by Theorems C,D,E and F, we must have
Fo(l) NAs(a) = 0. Therefore we have reduced the problem to the case Whgh C A3(a).

Letx € Mo(k) N (A3(a) UA3(a) uAL(a)). Sox € Aq(y) for ally € To(l) and we have

X

We consider three cases separately.
Case 1x € A3(a).

19



By Theorem Dx+y € (B1B1B1,00) for eachy € I'g(l). However{x+y|y € I'o(l)} form the
lines of a non-sparse trianglexaand so we have a contradiction to Lemma 9.1.

Case 2x € Al(a).

Let Ix be the unique line i 1(X) fixed by G5X. By Theorem Fx+y € (B1,00) U (B1,01) U
(Bs,0p) for eachy € I'g(l). By definition, if X is unique plane il 2(x) fixed by G}, then
X4y € B1(X, Xx) UBs(X,Xx) for ally € I'g(I). Now Lemma 9.1 implies that+y € B1(x, Xx) for
foury € Mo(l) andx+y € Ba(x, Xx) foroney € g(l). LetY € Ia(d,x,k,1). ThenY € yo(x, Xx) by
Lemma 9.1 again. Appealing to (2.8) there are three ling{Xx) and one of these lines must

X X | x o |
. . o X 0|0 O|— =«
lie in ay(lx). For instance ifXy is the standard sextet aiYd= ~ 1o «lo - , then
* O] - =%
+ + |+ +| - — + +|+ oo +
. . + +|+ +|0 o0 + o|0 O|— -—
the three lines if83(Xy) aremy = o ol - o M= o -lo — and
o —|— o]0 — - o|+ —-|—- +
+ +|4+ O]+ o0
+ o|lo0o O|— — . . .
mg= ols — |+ — . Itis easy to check that all trios iy (Xy) lie in a1(my) for some
— +|/0 —|—- o0

i = 1,2 3. So there existsn € '1(d,Y) N (Bs,01) and a pointc € Mo(m) NA3(a) (see Lemma
10.5(vi)). Sincem e IM'1(Y), we havec € A1(2) for three or five pointz € I'yg(l). By case (1),
c € A1(2) for exactly three pointse INo(1) and we have a sparse triangleaBincel o(1) C A3(a)
we must have+ z € (B1p1B1, o) for eachz € Ip(l) NAz(c). This contradicts the fact that three
lines of a sparse triangle atannot each lie ing(c,|c) and so case (2) cannot occur.
Case 3x € A3(a).

By cases (1) and (2) for everyi € I'1(x) with To(m) NTo(l) # 0, we havel o(m) N (A3(a) U
Al(a)) = 0. So each of these lines lies iBy21%;215; 18) U (B3; 2214, 221%; 221%) by Theorem
E. Using Lemma 9.1 we have one line 3(x, X(x,a)) and four lines inB1(x, X(x,a)) with
Y € yo(x,X(X,a)). Lett be the unique involution in centralized B}}. Thent defines a partition
of Qy into 12 pairs of elements. There are 15 octads which can be formed by taking unions of
tetrads inY. Of these 15 octads, 4 cut this partition ify 8 cut it in 218 and 3 hit it in Z1%. By
(2.8) there are three trios iy (x,Y) N PB3(x,Xx) and each one contains the same octad formed
from tetrads irlY. Exactly one of these triasihasl o(m)NIo(l) # 0 and the octads oheach cut
the partition defined biin 2214 by the above. Putting all this togethemif € I'1(x,Y) N Ba(X, Xx)
with m’ # m, then exactly one of the octads i cuts the partition in 21* (namely the octad
which m andm’ have in common). However looking at the possibilities for linegi(x, Xy),
described in Theorem E we see that there exists no suchntrio

Therefore we have obtained a contradiction in all three cases and so the lemma is proved.

Theorem 11.2Letd € A3(a). Then
(i) |A5(a)| = 218.325.7;
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(i) G4 = Lo(23) andQ(d)a = 1; and
(iii) The Ggq-orbits onl"1(d) and their sizes are as described in Theorem G.

Proof Let n = |A3(a)|. Combining Lemmas 10.6, 10.7, 10.8, 10.9, 11.1 and the definition of
A?(a), we have

1 2.960 2.576
- {4.1536|A§(a)] - (T +2.1920+ 4.320) 83(a)| + (T +4.384) A5(a)] } = 3795

This gives part (i).
For part (ii) we first show tha(d), = 1.

(11.2.1)For alll e I'1(d) andg € Q(d) eitherg fixesIo(l) pointwise org interchanges two pairs
of points inlg(1).

Since{t1(X)|X € '2(d)} has 1771 elements it clearly generaf@sl). Now (11.2.1) follows
from Lemma 3.3.

By Lemmas 10.5, 10.6, 10.7, 10.8, 11.1 and the definitioh2¢4), for every linel € I'1(d),
Mo(l) contains either one or three points exactly lying in the s&ge orbit of points. Now
(11.2.1) implies that every element@(d), fixeso(l) pointwise for alll € I'1(d). SoQ(d)a =
1 by Lemma 3.2(iv). Therefore by part (()‘:;g is isomorphic to a subgroup dflo4 and has
order 2.3.11.23. Perusing the maximal subgroupsMp4 andMyz in [A] reveals that the only
possibility isG:9 = L,(23). So we have part (ii).

We now prove part (iii). First we exhibit threB,4-orbits of size 253 and one orbit of size
1518 ofl"1(d). Letc € AZ(a) N A1 (d); so by Theorem & +d € (B1f1p1,00). Applying Lemma
9.2 with the orbit sizes given in Theorem 4.7(vi) and part (i) we have

_ |85(8)|[(B1B1B1,a0)| 4  27.35.7.1123.15364
a |85(a)] a 2183257
and{l € T1(d)|To(I) NA3(a) # 0} is aGag-orbit. Now letc’ € A3(a)NA(d) . First suppose
thatc’ +d € (B1;215;215;18). Sinced +d € B1(c, X(c,a)), Lemma 3.3 implies that(X (¢, a))
interchanges the two points Ifp(c' +d) NAZ(a). Let O be theGyg-orbit of I';1(d) containing
d+c. Then we may appeal to Lemma 9.3 to show that

=253

|85(a) NA1(d)]

|83(a)] |(B1;21%21518)|.2  211.32.7.11.23.9602
|85(a)| .3 - 21832573

by Theorem 4.8(ii) and part (i). Next suppose that-d € (By;21°;215;2214). By a similar
argument to the previous case, using Lemma 9.3 yieldstthat’ lies in aGyg-orbit of '1(d)

of size 1518. Finally lee € A}(a) NA1(d) with e+d € (B1,a1). SoT(Xe) interchanges the two
points inMo(e+d) NA3(a) by Lemma 3.3. Therefore we can again use Lemma 9.3, together
with the orbit sizes given in Theorem 10.3(i) and part (i) to show that lies in aG4g4-orbit of

1(d) of size 253.

=253

0] =
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Consulting theMy4 page of A\] gives the permutation character(ég‘fI onTl1(x) and classes
under restriction t@;X = L»(23). A straightforward calculation shows th@g} has 6 orbits upon
1(d). Similar calculations reveal that

(11.2.2)f ge G;g has order, respectively 4, 6, 12, thgfixes, respectively 7, 3, 1 lines b (d).

In view of an element of order 12 fixing a unique line, one of the orbits (and only one) must
be permutation isomorphic t,(23) on aDih(24) subgroup. Since, in the representation of
L2(23) on anS; subgroup, an element of order 4 fixes 3 linkeg,23) must have two orbits like
this. The only way to produce two more fixed points for an element of order 6 is to have an orbit
of L»(23) on aDih(12) subgroup. Now the two remaining orbits must not have any fixed lines
for elements of order 4 or 6. Hence the 1518 orbit must have stabilizer isomorphicd@.o
and the last orbit of size 1012 must have stabilizer isomorphss.to

Finally we uncover the point distribution for the 506 and 1012 orbits.cleA3(a) N A1 (d)
with c+d € (B3; 22142214, 221%). We have|A3(a) N A1 (c)| = 9602+ 19202+ 3204 by Theo-
rem E and so

3
183(8) M A ()] — 1A3(a)| .(960.2: 19202+ 3204) _ 9783
\A3(a)|
Since we have already accounted 8533+ 1518= 2277 of these points, we have a set of
506 lines inl1(d) containingd + ¢ which is therefore &,q-orbit. If e € Al(a) NA1(d) with
e+d € (B3,ap), thend + e must lie in the last remaining orbit &f; (d) of size 1012. Hence we
have part (iii) and so the theorem is proved.

Sinceg is a connected graph, Lemma 11.1 and Theorems F and G imply that
Mo = {a} UAJ(a) UA3(a) UAS(a) UAL(a) UAS(a).
This, together with Theorems 3.6(i), 4.3(iv), 4.7(vi), 4.8(ii), 10.3(i) and 11.2(i), then yields The-
orem A.
The last item on the agenda is Theorem B.

Proof of Theorem B
By Theorem A(i)|[o| = 112.29.31.37.43 and hence

G| = |Gq| [To| = 221.3%.5.7.113.2329.31.37.43.

Combining Theorems 3.6(ii), 4.3(v), 7.1(v), 7.2(iii) 10.3(ii) and 11.2(ii) yields thatxgr €
Mo, X# Y, we haveQ(x)y < Q(x). This implies thalNg(Q(a)) = G5, and saCg(Q(a)) = Q(a). Let
T € SybGa. SinceQ(a) is not anFF—module forG,/Q(a) = M24 (see [Theorem 1;A] )Q(a)
is the unique elementary abelian subgrouf aff order 2. ThusNg(T) < Ng(Q(a)) = Ga.
Let N be a non-trivial normal subgroup @. Suppose thall NGy = 1. ThenN is soluble
and therefore contains a characteristic subgrblgf order a prime or 14 Since AutN is
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either abelian oGLy(11), this forcesG; < Cg(Np), contrary toCs(Q(a)) = Q(a). Therefore
NN G; # 1 and hence eithel NG, = Q(a) or Gz < N. If the former holds, thelN NG, =
NN(NNGy) =Cn(NNGy) with NN G, € SybGa. By Burnsides’ normal p-complement theorem,
N = (NNGz)Ox(N) . SinceOy(N) < GandOx(N) NG, = 1, we must hav®, (N) = 1 and so

N < G4 which is not possible a& < Autl'. ThereforeG; < N which by the Frattini argument,
asNg(T) < Gg, implies thatG = NNg(T) = NG5 = N. ThusG must be a simple group.

Let X € M'x(a). ThenGyx < Cg(1(X)) andt(X) is central in a Sylow 2-subgroup @&. As-
sumeM = Ox(Cg(1(X))) # 1. By the structure 0fGx, MNGx = 1. SinceM is soluble, it
contains a characteristic subgroly of order a prime or 14 ConsequentlyMg centralizes
G = 21+123M5,. Now, by Lemma 3.2(i),(ii)Q(a) < G and this contradict€(Q(a)) = Q(a).
Thus Oy (Cgs(T1(X))) = 1 and we may now appeal to [Theorem B;R] to conclude at J;.
Knowing thatG = J, it is straightforward to see thdt is isomorphic to the relevant rank 3
subgeometry of thd; maximal 2-local geometry.

This completes the proof of Theorem B.
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APPENDIX

A3(a)
ORBIT  LOCATION

Bo Lemma 6.4

B1 Lemma 6.4

B2 Lemma 6.4

Bs Lemma 6.4

A3(a)

ORBIT LOCATION
(BoBoBo. {1}) Definition 4.1
(BoB2PB2; 012) Lemma 8.1
(BoBasBs,03) Lemma 8.3
(B1B1B1,00)  Definition of A3(a)
(B1B1B2,01) Lemma 8.4()
(B1B1Bs, 00) Lemma 8.7
(B1B1PBs3,01) Lemma 8.4(iii)
(B2B2B2,02) Lemma 8.5
(B2B3P3, a1) Lemma 8.4(ii)
(BaBaPs, a3) Lemma 8.6
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A3(a)
ORBIT
(Bo, *)
(Bo, )
(B1;21%;215;18)
(By;215;215;2214)
(B2; 2% 15,18)
(B; 242214, 2214
(Bs; 15;18;18)
(Bs; 2214, 2214, 18)

([33; 2214; 2214; 2214>

LOCATION
Lemma 9.4(i)
Lemma 9.4(ii)

Lemma 10.9
Lemma 10.8(i)
Lemma 9.6(ii)
Lemma 9.6(i)
Lemma 10.7(ii)
Lemma 9.4(iii)

Lemma 10.7(i)
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LOCATION
Lemma 10.5(i)
Lemma 10.5(ii)
Lemma 10.5(iii)
Lemma 10.8(i)
Lemma 10.8(ii)
Lemma 10.7(ii)
Lemma 10.5(iv)

Lemma 10.6
Lemma 10.5(vi)

Lemma 10.5(v)

LOCATION
Theorem 11.2(iii)
Theorem 11.2(iii)
Theorem 11.2(iii)
Theorem 11.2(iii)
Theorem 11.2(iii)

Theorem 11.2(iii)
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