
The Right Way to Search Evolving Graphs

Chen, Jiahao and Zhang, Weijian

2016

MIMS EPrint: 2016.7

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

The Right Way to Search Evolving Graphs

Jiahao Chen
Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology,
Cambridge, Massachusetts, 02139-4307, USA

jiahao@mit.edu

Weijian Zhang
School of Mathematics,

University of Manchester,
Manchester, M13 9PL, England, UK

weijian.zhang@manchester.ac.uk

Abstract—Evolving graphs arise in problems where interre-
lations between data change over time. We present a breadth
first search (BFS) algorithm for evolving graphs that computes
the most direct influences between nodes at two different
times. Using simple examples, we show that naı̈ve unfoldings
of adjacency matrices miscount the number of temporal paths.
By mapping an evolving graph to an adjacency matrix of an
equivalent static graph, we prove that our generalization of the
BFS algorithm correctly accounts for paths that traverse both
space and time. Finally, we demonstrate how the BFS over
evolving graphs can be applied to mine citation networks.

Keywords- Evolving graph; complex network; breadth first
search; data mining.

I. INTRODUCTION

Let’s imagine a game played by three people, numbered
1, 2, and 3, each of whom has a message, labeled a, b, and
c respectively. At each turn, one particular player is allowed
to talk to one other player, who must in turn convey all the
messages in his or her possession. The goal of the game is
to collect all the messages. Suppose 1 talks to 2 first, and 2
in turn talks to 3. Then, 3 can collect all the messages even
without talking to 1 directly. However, if 2 talks to 3 before
1 talks to 2, then 3 can never get a.

We can analyze the spread of information between the
players using graph theory. In this process, the time order-
ing of events matters, and hence its graph representation
G(t) = (V (t), E(t)) must be time dependent. Such a graph
is called an “evolving graph” [1], [2], “evolving network” [3]
or “temporal graph” [4].

Treatments of evolving graphs vary in their generality and
focus. Kivelä et al. [5] treat time dependence as a special
case of families of graphs with multiple interrelationships.
Others like Flajolet et al. [1] use time to index the fam-
ily of related graphs, but are not concerned with explicit
time-dependent processes. Yet others focus on incremental
updates to large graphs [2]. Here, we describe evolving
graphs as a time-ordered sequence of graphs, similar to the
study of metrized graphs by Tang and coworkers [4], [6]–
[8] and of community dynamics by Grindrod, Higham and
coworkers [9], [10].

The game described above can be encoded in an evolving
graph. The spread of information to the winner can be

described in terms of traversing this graph using discrete
paths that step in both space and time. Traversals of an
ordinary (static) graph may be computed using well known
methods such as the breadth-first search (BFS). An informal
description of BFS generalized to evolving graphs can be
found in [4]. However, it turns out that naı̈ve extensions
can lead to incorrect descriptions of the resulting graph
traversals by accounting for traversals of edges in space,
but not necessarily in time. A proper treatment requires the
notions of node activeness to describe the set of paths that
can only traverse time or edges, which we call temporal
paths, as well as causal edges which connect active nodes
with the same identity across different times. As a result,
our treatment can be applied to any evolving graph, even
those that are highly dynamic with arbitrary changes to the
nodes and edges.

It is well known that sparse matrix-vector product is
equivalent to a one-step BFS on the corresponding (static)
graph [11, Sec. 1.1]. In this paper, we demonstrate a correct
corresponding result for an evolving graph by constructing
a block triangular matrix representation of the graph that
takes into account both static and causal connections be-
tween active nodes. In Section II, we explain how the BFS
algorithm can be applied to an evolving graph to enumerate
paths that traverse edges across time and space. Section II-A
provides an example showing that considering only products
of the time-dependent adjacency matrices fails to enumerate
certain temporal paths. We present and demonstrate the BFS
algorithm over evolving graphs in Section II-B, showing its
formal equivalence to BFS over a particular static graph gen-
erated by adding causal edges that connect active nodes. This
static graph generates an algebraic representation of the BFS
as power iteration of its adjacency matrix to a starting search
node, as shown in Section III-D. The algebraic formulation
also demonstrates interesting connections between properties
of the BFS algorithm and the adjacency matrix. We describe
in Section IV an implementation of the algorithm in Julia.
Finally in Section V, we explain how BFS on evolving
graphs may be applied to study dynamical processes over
citation networks.

II. BREADTH-FIRST SEARCH OVER EVOLVING GRAPHS

A. Temporal Paths over Active Nodes

2

3

1

2

3

1

2

3

1

t2t1 t3

Figure 1. An evolving directed graph with 3 time stamps t1, t2 and t3. At
each time stamp, the evolving graph is represented as a graph. The green
filled circles represent active nodes while the red circles represent inactive
nodes. Directed edges are shown as black arrows.

The key new idea in generalizing BFS to evolving graphs
is to be able to compute paths that evolve forward in time
and can only traverse the node space along existing edges.
We call these paths temporal paths.

Figure 1 shows a small example of an evolving directed
graph, G3 = 〈G[1], G[2], G[3]〉, consisting of a sequence of
three graphs G[i], each bearing a time stamp ti. There are
directed edges 1→ 2 at time t1, 1→ 3 at time t2, and 2→ 3
at time t3. Each edge exists only at a particular discrete time
and the nodes connected by edges are considered active at
that time.

Temporal paths connect only active nodes in
ways that respect time ordering. Thus the sequences
〈(1, t1), (1, t2), (3, t2), (3, t3)〉 and 〈(1, t1), (2, t1),
(2, t3), (3, t3)〉 are both examples of temporal
paths from (1, t1) to (3, t3), which are drawn as
dotted lines with arrowheads in Figure 2. However,
〈(1, t1), (1, t2), (2, t2), (3, t2), (3, t3)〉 is not a temporal path
because node 2 is inactive at time t2.

The restriction that temporal paths may only traverse
active nodes reflects underlying causal structure in many
real world applications, such as analyzing the influence of
nodes over social networks. We will also show later in Sec-
tion III-A that the resulting structure of allowable temporal
paths leads to nontrivial subtleties in the generalization of
algorithms and concepts from ordinary (static) graphs.

B. Breadth-First Traversal Over Temporal Paths

The example presented above in Section II-A demon-
strates how active nodes restrict the set of temporal paths that
need to be considered when traversing an evolving graph.

We now give a general description of the BFS algorithm
over evolving graphs, both directed and undirected, which
correctly takes into account the structure of temporal paths.
Our notation generalizes that for static graphs presented in
[11], [12].

2

3

1

2

3

1

2

3

1

t2t1 t3

2

3

1

2

3

1

2

3

1

t2t1 t3

Figure 2. The two temporal paths of length 4 from (1, t1) to (3, t3) on
the evolving graph shown in Figure 1, shown in black dashed lines. The
paths traverse only active nodes along edges, and are allowed to advance
between the same node if it is active at different times.

Definition 1. An evolving graph Gn is a sequence of (static)
graphs Gn = 〈G[1], G[2], . . . , G[n]〉 with associated time
labels t1, t2, . . . , tn respectively. Each G[t] = (V [t], E[t])
represents a (static) graph labeled by a time t.

Intuitively, an evolving graph is some discretization of the
continuous-time family G(t):

1 2

G[2]

3 5 6

G[6]

n

We assume no particular relation between the node and
edge sets for each static graph G[t] = (V [t], E[t]). In
particular, we allow the node sets to change over time, so
that each V [t] may be different. Changing node sets happen
naturally in citation networks, where nodes may appear or
disappear from the citation network over time. The addition,
removal, or relabeling of nodes can be expressed in terms
of a map Π[t,t′] : V [t] → V [t′] that expresses the appropriate
permutations and/or projections.

Definition 2. A temporal node is a pair (v, t), where v ∈
V [t] is a node at a time t.

Definition 3. A temporal node (v, t) is an active node if
there exists at least one edge e ∈ E[t] that connects v ∈ V [t]

to another node w ∈ V [t], w 6= v.
An inactive node is a temporal node that is not an active

node.

In Figure 1, the temporal nodes (1, t1) and (2, t2) are
active nodes, whereas the temporal node (3, t1) is an inactive
node.

Definition 4. A temporal path of length m on an evolv-
ing graph Gn from temporal node (v1, t1) to temporal
node (vm, tm) is a time-ordered sequence of active nodes,
〈(v1, t1), (v2, t2), . . . , (vm, tm)〉. Here, time ordering means
that t1 ≤ t2 ≤ · · · ≤ tm and vi = vj iff ti 6= tj .

This definition of a temporal path differs from that of the
dynamic walk in [9], [10] in that causal edges, i.e. sequences
of the form 〈(v, t), (v, t′)〉 are included explicitly in temporal
paths but are only implicitly included in dynamic walks
and are not counted toward the length of dynamic walks.
Our definition implies that if either or both end points of
a temporal path are inactive, then the entire temporal path
must be the empty sequence 〈〉. Keeping track explicitly
of the time labels of each temporal node allows greater
generality to cases where the node sets change over time.
Furthermore, we shall show later in Sec. III-A that the
explicit bookkeeping of the time labels is essential for
correctly generalizing the BFS to evolving graphs.

The following definition of forward neighbors general-
izes the notion of neighbors and reachability in static graphs.

Definition 5. The k-forward neighbors of a temporal node
(v, t) are the temporal nodes that are the (k+1)st temporal
node in every temporal path of length k + 1 starting from
(v, t). The forward neighbors of a temporal node (v, t) are
its 1-forward neighbors.

In Figure 1, the forward neighbors of (1, t1) are (2, t1)
and (1, t2) and the only forward neighbor of (2, t1) is (2, t3).
The 2-forward neighbors of (1, t1) are (2, t1), (1, t2), (2, t2)
and (3, t2). By construction, time stamp of every forward
neighbor of an active node (v, t) must be no earlier than t.

Definition 6. The distance from a temporal node (v, t) to a
temporal node (w, s) is the k for which (w, s) is a k-forward
neighbor of (v, t).

Our definition of distance, again, differs from the defini-
tion of distance in the formulation of [9], [10] in that we
explicitly count causal edges toward the distance. It also
differs from the notion of temporal distance in the work of
Tang and coworkers [8], which is the number of time steps
between t and s (inclusive). In this respect, our formulation
of the BFS on evolving graphs differs from these other works
by minimizing a different notion of distance over an evolving
graph.

Note that this notion of distance is not a metric, since the
distance from (v, t) to (w, s) will in general differ from the
distance of (v, t) from (w, s) owing to time ordering.

Definition 7. A temporal node (w, s) is reachable from a
temporal node (v, t) if the distance to (w, s) from a temporal

node (v, t) there exists some finite integer k for which (w, s)
is a k-forward neighbor of (v, t).

C. Description of the BFS algorithm

The BFS on evolving graphs is described in Algorithm 1.
Algorithm 1 is identical to the BFS on static graphs except
for line 8, where we visit the forward neighbors of a
given temporal node in both space and time. Given an
evolving graph Gn and a root (v1, t1), Algorithm 1 returns
all temporal notes reachable from the root and their distances
from the root. reached is a dictionary from temporal nodes
to integers whose key set represents all visited temporal
nodes and whose value set are the corresponding distances
from the root.

The BFS constructs a tree inductively by discovering all
k-forward neighbors of the root before proceeding to all (k+
1)-forward neighbors of the root. Within the outermost loop,
the algorithm iterates over frontier, a list of all temporal
nodes of distance k from the root. The nextfrontier list is
populated with all temporal nodes that are forward neighbors
of any temporal node in the frontier list which have not
yet been reached by the algorithm.

As a simple example, consider the BFS on the example
graph in Figure 1 starting from the root (1, t2). The pro-
cedure is shown in Figure 3. The frontier list is first
initialized to {(1, t2)}. Since the only forward neighbor of
(1, t2) is (3, t2), iteration k = 1 produces reached[(3, t2)] =
1 and nextfrontier = {(3, t2)}. In the next iteration
k = 2, the only forward neighbor of (3, t2) is (3, t3), so
reached[(3, t3)] = 2 and nextfrontier = {(3, t3)}. The
algorithm terminates after k = 3 after verifying that (3, t3)
has no forward neighbors.

The preceding example illustrates the fact that G[1] plays
no part in the BFS traversal of Gn starting from (1, t2). In
general, all G[t] with time stamps t < t′ for a starting node
(v, t′) are irrelevant to the BFS traversal. Hence without loss
of generality we may assume that BFS is always computed
with a root at time t1, the earliest time stamp in Gn.

Theorem 1 (Correctness of the evolving graph BFS). Let
Gn be an evolving graph and (v1, t1) be an active node of
Gn. Then Algorithm 1 discovers every active node that is
reachable from the root (v1, t1), and reached[(v, t)] is the
distance from (v1, t1) to (v, t).

Proof: Let’s first consider the case when Gn is directed.
Define the set of temporal nodes Ṽ

[t]
L = {(v1, t)|(v1, v2) ∈

E[t]}, which consists of the active nodes at time t which
participate on the left side of an edge. Similarly, Ṽ

[t]
R =

{(v2, t)|(v1, v2) ∈ E[t]} contains the corresponding active
nodes on the right side of an edge. Then Ṽ [t] = Ṽ

[t]
L ∪ Ṽ

[t]
R

is the set of active nodes at time t, and V =
⋃

t Ṽ
[t] is the

set of all active nodes in Gn.

k = 1 2

3

1

2

3

1

2

3

1

t2t1 t3

k = 2 2

3

1

2

3

1

2

3

1

t2t1 t3

k = 3 2

3

1

2

3

1

2

3

1

t2t1 t3

Figure 3. Breadth-first search (BFS) on the evolving graph shown in
Figure 1 starting from the root (1, t2) at iteration k = 1, 2, 3. Note that
the time t1 does not participate in the BFS. Black circles indicate the
active nodes forming the frontier and nextfrontier sets in Algorithm 1,
connected by the dotted black lines.

Similarly, define the set of causal edges E′ =
{(us, vt)|us = (u, s) ∈ V, vt = (v, t) ∈ V, v = u, s < t},
which consists of temporal nodes that connect active nodes
sharing the same node at different times. Each edge in E′ is
then in 1-1 correspondence with a temporal path of length
2, 〈(v, s), (v, t)〉. Define also the set of static edges at time
t, Ẽ[t] = {(e, t)|e ∈ E[t]}, which are simply the edge sets
in Gn with time labels, and the set of static edges Ẽ, being
simply the union over all times,

⋃
t Ẽ

[t]. Then E = Ẽ∪E′ is
the set of all edges representing all allowed temporal paths
of length 2.

The node set V and edge set E now define a static
directed graph G = (V,E) that is in 1-1 correspondence
with the evolving graph Gn. The node set V of G is in 1-1
correspondence with active nodes of Gn while the edge set
E is in 1-1 correspondence with all temporal paths of length
2 on Gn.

We now establish a similar 1-1 correspondence of forward
neighbors of an active node with a subset of G. By induction,

Algorithm 1: Breadth-first search (BFS) on an evolving
graph Gn starting from a root (v1, t1). The return value,
reached, is a dictionary mapping all reachable temporal
notes from the root to their distances from the root. At
the end of each iteration k, the frontier set contains all
temporal nodes of distance k from the root.

1 function BFS(Gn, (v1, t1))
2 reached[(v1, t1)] = 0
3 frontier = {(v1, t1)}
4 k = 1
5 while frontier 6= ∅
6 nextfrontier = ∅
7 for (v, t) ∈ frontier
8 for (v′, t′) ∈forwardneighbors((v, t))
9 if (v′, t′) /∈ reached

10 reached[(v′, t′)] = k
11 nextfrontier =

nextfrontier ∪ {(v′, t′)}
12 end
13 end
14 end
15 frontier = nextfrontier
16 k = k + 1
17 end
18 return reached
19 end

all new nodes populated into the key set of reached at
iteration k are of distance k from the root. By definition,
the forward neighbors of some active node (v, t) ∈ Gn are
active nodes of either the form (v, t′) for some t′ > t or
(u, t) for some u 6= v. In other words, they are connected
either by a causal edge or a static edge. Clearly, the former
are elements of E′ ⊆ E while the latter are elements of
Ẽ ⊆ E. Thus each forward neighbor of an active node
(v, t) ∈ Gn is in 1-1 correspondence with a node in V
that is a neighbor of vt ∈ V .

When Gn is undirected, every edge in Ẽ[t] can be
represented by two edges in G: from an active node in Ṽ

[t]
L

to an active node in Ṽ
[t]
R and the reverse. Every edge in E′

is in 1-1 correspondence with an edge in G by causality.
Therefore, the forward neighbors of an active node is in 1-1
correspondence with a subset of G and the analysis above
follows.

The correctness of BFS on the evolving graph Gn now
follows from the correctness of BFS on the static graph
G, since we have also established a 1-1 correspondence for
every intermediate quantity in Algorithm 1.

As presented, the BFS over evolving graphs makes no as-
sumptions about how the evolving graph Gn is represented.
Suppose it is represented by a collection of adjacency lists,
one for each active node in Gn. Then we have that the
asymptotic complexity of BFS on Gn is the same as that

for BFS on G, using the 1-1 construction of G from Gn.

Theorem 2 (Computational complexity of the evolving
graph BFS). Let Gn be an evolving graph represented
using adjacency lists, (v1, t1) be an active node of Gn,
and G = (V,E) be the static graph constructed from
Gn using the 1-1 correspondences defined in the proof of
Theorem 1. Then the asymptotic computational complexity
of Algorithm 1 is O(|E|+ |V |).

Proof: Any edge in any edge set of Gn can be accessed
in constant time in random access memory. By construction,
BFS on Gn is in 1-1 correspondence with BFS on the static
graph G. The number of operations of BFS on G is O(|E|+
|V |), and so the result follows.

Note that in the theorems in this section construct an
equivalent static graph G corresponding to the evolving
graph Gn. However, G contains more edges than the union
of all the static parts of Gn, as we also add causal edges E′.
To our knowledge, our formulation of the BFS represents the
first attempt to include these edges explicitly in the treatment
of evolving graphs.

III. FORMULATING THE EVOLVING GRAPH BFS WITH
LINEAR ALGEBRA

A. The importance of causal edges

For each static graph G[t] = (V [t], E[t]) that constitutes
the evolving graph Gn, define its corresponding

∣∣V [t]
∣∣ ×∣∣V [t]

∣∣ one-sided adjacency matrix with elements

A
[t]
ij =

{
1 if (i, j) ∈ E[t],
0 otherwise.

(1)

We can then represent Gn using a sequence of adjacency
matrices An = 〈A[1], A[2], . . . , An]〉. The example in Fig-
ure 1 can be represented as〈0 1 0

0 0 0
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

〉 .

For a static graph G with adjacency matrix A, (Ak)ij
counts the number of paths of length k between node i and
node j. Naı̈vely, one might want to generalize this result to
evolving graphs by postulating that the (i, j)th entry of the
discrete path sum

S[tn] = A[t1]A[tn] +
∑

t1≤t≤tn

A[t1]A[t]A[tn] + · · ·

+
∑

t1≤t≤t′≤···≤tn

A[t1]A[t]A[t′] · · ·A[tn] (2)

counts the number of temporal paths from (i, t1) to (j, tn).
However, this postulate is incorrect. In the example of
Figure 1,

(S[t3])13 =
(
A[t1]A[t2]A[t3] + A[t1]A[t3]

)
13

= 1

even though there are clearly two temporal paths from (1, t1)
to (3, t3) as shown in Figure 2.

The first term in the sum S[t3] vanishes since A[t1]A[t2] =
0. Furthermore, the vanishing of S[t2] = A[t1]A[t2] itself
reflects the absence of any temporal path from t1 to t2 that
goes through at least one edge at t1. However,

〈(1, t1), (1, t2), (3, t2)〉 (3)

is a clearly a valid temporal path as shown in Figure 2 which
cannot be expressed by a product of adjacency matrices.

Sums S[t] of the form (2) produce an incorrect count of
temporal paths because they do not capture temporal paths
with causal edges, i.e. subpaths of the form 〈(v, s), (v, t)〉,
s < t. One might attempt to amend the sums S[t] in (2)
by redefining the adjacency matrices to include ones along
the diagonal, hence allowing paths containing the sequence
〈(i, t1), (i, t2)〉. However, the resulting sum is still incorrect,
as it counts paths with subsequences 〈(3, t1), (3, t2)〉 and are
hence not temporal paths. Instead, the temporal path (3) is
counted by the matrix product M [t1,t2]A[t2], where

M [t1,t2] =

1 0 0
0 0 0
0 0 0

 . (4)

M [t1,t2] describes the forward time propagation of temporal
nodes that are active at both times t1 and t2, i.e. it counts
temporal paths that contain subsequences 〈(i, t1), (i, t2)〉,
and both (i, t1) and (i, t2) are active nodes.

The simple example of Figure 1 demonstrates why sums
over products of adjacency matrices of the form (2) do not
count temporal paths correctly: they neglect the combina-
torics associated with the causal edge set E′. In the next
section, we show how to account for these causal edges by
introducing a new matrix–vector product �.

B. Defining forward neighbors algebraically

The algebraic representation of evolving graphs presented
in Section III-A allows us to exploit a graphical interpre-
tation of matrix–vector products involving the adjacency
matrix [11]. If A is the adjacency matrix of a (static) graph
G and ek is the kth elementary unit vector, then the nonzero
entries of AT ek have indices that are neighbors of k. The
algebraic formulation of BFS on evolving graphs follows
similarly, but requires a new kind of matrix–vector product,
�, defined by

AT� b =

{
b if AT b 6= 0 or Ab 6= 0,
0 otherwise.

The condition AT b 6= 0 ensures that the product is nonzero
in components involving left active nodes ∪tṼ [t]

L , and the
condition Ab 6= 0 is the analogue for right active nodes
∪tṼ [t]

R . The forward neighbors of a temporal node (k, t1)

in An can then be determined from the indices and time
stamps of the nonzero elements in the sequence〈

(A[1])T ek, (A[2])T� ek, . . . (A[n])T� ek
〉
. (5)

The nonzero entries of the first vector represent forward
neighbors that are on the same time stamp t1, whereas
nonzero entries of the other vectors represent forward neigh-
bors that are advanced in time but remain on the same node
k. The quantity (5) therefore encodes a BFS tree of depth
2, as its nonzero entries are labeled by all temporal nodes
of distance 1 from (k, t1).

Referring back to the example of Figure 1, the forward
neighbors of node (1, t1) can be computed by〈0 0 0

1 0 0
0 0 0

1
0
0

,
0 0 0

0 0 0
1 0 0

�
1

0
0

,
0 0 0

0 0 0
0 1 0

�
1

0
0

〉

=

〈0
1
0

 ,

1
0
0

 ,

0
0
0

〉
From this computation, we can deduce that (2, t1) and (1, t2)
are the forward neighbors of (1, t1).

C. Evolving graphs as a blocked adjacency matrix

The proof of Theorem 1 provides a construction for
representing an evolving graph Gn by a static graph G
with nodes corresponding to active nodes of Gn. It turns
out that the block structure of G is useful for understanding
the nature of the � operation.

Consider the second iteration of BFS on Gn with root
(k, t1), which requires computing the sequences

〈
(A[1])T c1, (A

[2])T � c1, . . . , (A
[n])T � c1

〉
(6a)〈

(A[2])T c2, . . . , (A
[n])T � c2

〉
(6b)

. . . (6c)〈
(A[n])T cn

〉
(6d)

where c1 = (A[1])T ek and ci = (A[i])T � ek for i > 1.
Summing resultant vectors that share the same time stamp,
we obtain vectors whose nonzero elements have indexes
labeled by the forward neighbors of the nodes computed
at step 1.

Compare this with the matrix

Mn =

A[t1] M [t1,t2] ... M [t1,tn]

0 A[t2] ... M [t2,tn]

...
0 0 ... A[tn]

where M [ti,tj] is the matrix whose rows are labeled by V [ti]

and columns are labeled by V [tj], and whose entries are

M [ti,tj]
uv =

{
1 if (u, v) ∈ E′,
0 otherwise.

The adjacency matrix blocks A[t] encode the static edge
set Ẽ, whereas the off-diagonal blocks M [ti,tj] together
encode the causal edge set E′, which capture temporal paths
with subsequences of the form 〈(v, ti), (v, tj)〉. Then Mn

is the adjacency matrix of the graph (∪tV [t], E), which is
the graph G together with all the inactive nodes. From the
definition, Mn has nonzero entries only in rows and columns
that correspond to active nodes V , and so retaining only
these rows and columns corresponding to V produces the
adjacency matrix An of G = (V,E).

The off-diagonal blocks M [ti,tj] provide an explicit matrix
representation for the � product in that (M [ti,tj])T b =
(A[ti])T � b. An example of such an off-diagonal block was
already provided in (4). These off-diagonal blocks represent
traversal between active notes with the same node space
labels but are still separated by time, and are essential for the
correct enumeration of temporal paths. The upper triangular
structure of Mn (and hence An) reflects the causal nature
of temporal paths in that they cannot go backward in time.

The BFS algorithm presented above can therefore be
interpreted as computing the sequence of matrix–vector
products b, AT

nb, (AT
n)2b, ..., formed by applying successive

monomials of AT
n to the block vector bT = [bT , 0, · · · , 0]

where bT encodes the root in the space of active nodes Ṽ [t1].

(2, t1)

(3, t1)

(1, t1)

(2, t2)

(3, t2)

(1, t2)

(2, t3)

(3, t3)

(1, t3)

Figure 4. Static graphs corresponding to the evolving graph example
of Figure 1. The green nodes are active nodes while the red nodes are
inactive nodes. The black lines are edges in the static edge set Ẽ and are
encoded algebraically in the diagonal blocks A[t] of the adjacency matrix
A3 or M3. The dotted lines are edges in the causal edge set E′ and are
encoded algebraically in the off-diagonal blocks M [ti,tj]. The static graph
G constructed in the proof of Theorem 1 is formed by retaining all the
edges shown and only the active nodes, and has the adjacency matrix A3.
The graph containing all the edges and temporal nodes shown has adjacency
matrix M3.

For the example of Figure 1, we have

V = {(1,t1), (2,t1), (1,t2), (3,t2), (2,t3), (3,t3)},
Ẽ = {((1,t1), (2,t1)), ((1,t2), (3,t2)), ((2,t3), (3,t3))},
E′ = {((1,t1), (1,t2)), ((2,t2), (2,t3)), ((3,t2), (3,t3))}.

In the order specified for V , the adjacency matrix of G is

then

A3 =

0 1 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

Starting from the vector b = e1, the sequence of iterates

is then

〈

1
0
0
0
0
0

 ,

0
1
1
0
0
0

 ,

0
0
0
1
1
0

 ,

0
0
0
0
0
2

 ,

0
0
0
0
0
0

 , . . .

〉
.

We see that (AT
n)2 encodes all the products in (6a)-(6d),

including both the ordinary matrix–vector product and the
� product. Furthermore, (AT

3)3b correctly counts the two
allowed temporal paths from (1, t1) to (3, t3), and that the
off-diagonal structure encoded in E′ and the M [t,t′] blocks
are critical to obtaining the correct count.

Finally, we note that some results regarding the BFS on
evolving graphs can be derived easily using properties of
the block adjacency matrix An. For example, we can prove
a simple lemma that the block adjacency matrix An is
nilpotent whenever all the subgraphs G[t] of Gn are acyclic.

Lemma 1 (Acyclicity implies nilpotence). Let Gn =
〈G[ti]〉ni=1 be an evolving directed graph and let all the
directed graphs G[t] be acyclic. Then An is nilpotent.

Proof: Recall from the definition of the matrix An that
it is block upper triangular, reflecting causality. Since each
directed graph G[t] is acyclic, its corresponding adjacency
matrix A[t] is strictly upper triangular. As a result, An must
be upper triangular.

Furthermore, none of the graphs G[t] can have any self-
edges, i.e. edges of the form (u, u), and so all diagonal
entries of A[t] must be zero. Therefore all the diagonal
entries of An by construction must be zero also.

We have now proven that An is an upper triangular
matrix whose diagonal entries are all zero. Therefore, An

is nilpotent.
Lemma 1 also holds for acyclic undirected graphs so

long as the corresponding adjacency matrix representation
is encoded in an asymmetric fashion akin to (1).

The blocked matrix structure of the adjacency matrices
presented here provide interesting relationships between
their matrix properties and the algorithmic properties of
BFS, made possible because of the reformulation of BFS
as repeated power iterations of the adjacency matrix in
Algorithm 2. Note, however, that these matrices need never
be instantiated for practical computations. Rather, since

Algorithm 2 only requires the matrix–vector product involv-
ing the adjacency matrix, the formulation of Algorithm 1
provides an efficient way to exploit the block structure of
An. The � operation provides an efficient way to compute
the action of the off-diagonal products. Representing the
diagonal blocks A[t] as sparse matrices further reduces the
cost of BFS by exploiting latent sparsity in graphs that show
up in practical applications.

D. The algebraic formulation of BFS on evolving graphs

The blocked matrix–vector products introduced in the
previous section allows us to write down an elegant algebraic
formulation of BFS on evolving graphs, as presented in
Algorithm 2.

Algorithm 2: An algebraic formulation of BFS on evolving
graphs. Given An, the adjacency matrix representation of
Gn and (v1, t1), a node of Gn, returns reached as defined
in Algorithm 1. The function nonzeros(v) returns the
nonzero indices of the vector v, and the function map(b)
maps a block vector’s indices to their corresponding active
nodes.

1 function ABFS(An, (v1, t1))
2 Form AT

n from An.
3 bv1 = 1
4 k = 1
5 reached[(v1, t1)] = 0
6 while nonzeros(b) 6= ∅
7 b = AT

nb
8 for k ∈ nonzeros(b)
9 if activeNodes(k) ∈ reached

10 bk = 0
11 end
12 end
13 for node ∈activeNodes(b)
14 reached[node] = k
15 end
16 k = k + 1
17 end
18 return reached
19 end

Theorem 3. Algorithm 2 terminates.

Proof: First, we prove that the BFS terminates in the
case of acyclic evolving graphs. Recall from Lemma 1 that
An is nilpotent, i.e. there exists some positive integer k for
which Ak

n = 0. Hence, after iteration k, b is assigned the
value Ak

nb = 0. Therefore, Algorithm 2 must terminate after
iteration k.

For evolving graphs with cycles, lines 9-11 of Algorithm
2 enforce that the BFS visits each active node at most once.
Since the kth block of b is zeroed out if an active node
has already been visited, the subgraph traversed in the BFS

cannot have cycles. Thus all that is required is the previous
result that the BFS on an acyclic graph terminates.

Theorem 4. Algorithm 1 and Algorithm 2 are equivalent.

Proof: The initialization steps are trivially equivalent.
At the beginning of iteration k, the block vector b represents
the frontier nodes encoding the frontier set of Algorithm 1.
The matrix–vector product AT

nb encodes the forward neigh-
bors of all the frontier nodes. Subsequently, active nodes that
have already been visited in previous iterations are zeroed
out of the new b.

E. Computational complexity analysis of the algebraic BFS

The complexity of the algebraic BFS of Algorithm 2 is
significantly more complicated that that of Algorithm 1.
While the latter uses the usual adjacency list representation
for graphs, the computational cost of the former depends
critically on the actual representation of the matrices. Fur-
thermore, the average case analysis is complicated by the
expected fill-in of the vector b, which influences the cost of
the matrix-vector product on line 7 and the expected number
of iterations of the while loop beginning on line 6.

While a full complexity analysis is beyond the scope of
this paper, it is straightforward to present worst-case results
for dense and compressed sparse column (CSC) matrices.

Lemma 2 (Number of iterations). In the worst case, the
number of iterations in the while loop of Algorithm 2 is
k = O(|E|).

Proof: In the worst case, the BFS must traverse every
active node, and only one new active node is discovered in
each iteration. The number of active nodes is bounded above
by the cardinality of the full edge set, |E|.

The average case analysis for the number of iterations is
considerably more complicated and is beyond the scope of
this paper.

Theorem 5 (Dense matrices). Suppose An is represented as
a dense matrix. Then the computational complexity of Algo-
rithm 2 is O(k|V |2), which in the worst case is O(|E||V |2).

Proof: Since An is a |V |×|V | matrix, the matrix-vector
product Anb takes O(|V |2) operations to compute. Thus the
cost of Algorithm 2 is O(k|V |2) = O(|E||V |2) in the worst
case.

It is clear that practical implementations of the BFS
should never construct the full matrix An in memory. What
happens if we use a sparse blocked representation?

Theorem 6 (Block diagonal sparse matrices). Suppose An

is represented by a collection of compressed sparse column
matrices for each diagonal block A[t]. Then the computa-
tional complexity of Algorithm 2 is O(k(|Ẽ|+ |V |)), which
in the worst case is O(|E|(|Ẽ|+ |V |)).

Proof: The gaxpy operation for CSC matrices costs
2nnz flops, where nnz is the number of stored values in
the matrix. The cost of each diagonal subblock calculation
A[t]bt is therefore O(|E[t]|), since A[t] by construction has
nonzero entries only when a static edge exists.

The off-diagonal products M [t,t′]bt′ can be computed
in O(|V [t]| + |E[t]|) time for all t′ ≥ t since it can be
implemented by the · operation, which constructs either a
zero vector or keeps the same vector. The cost of checking
the condition (A[t])T bt′ 6= 0 is O(|Et|) in the worst case
since all that is required is to check whether or not each
column of A is empty. Similarly, checking the condition
A[t]bt′ 6= 0 reduces to checking if each row of A is empty,
and thus is of cost O(|V t|).

Thus, the cost of multiplying one block row of AT (for
some time t) with b is O(|V [t]|+ |E[t]|). Summing over all
times yields the desired result.

We can see that even implementing the BFS algebraically
using CSC matrices is insufficient to reduce the running
time to linear, which can be achieved for the adjacency list
representation in Algorithm 1. This result strongly suggests
that additional work is needed to produce true algorithmic
equivalence at the computational level.

IV. IMPLEMENTATION IN JULIA

To study evolving graphs and experiment with various
graph types, we have developed EvolvingGraphs.jl [13], a
software package for the creation, manipulation, and study
of evolving graphs written in Julia [14]. It is freely available
online at

https://github.com/weijianzhang/EvolvingGraphs.jl

and available with the MIT “Expat” license. The package
contains an implementation of the evolving graph BFS of
Algorithm 1. IntEvolvingGraph, a data type in Evolv-
ingGraphs.jl, represents an evolving graph as adjacency lists.

We now present some simple timing data to show that our
implementation of Algorithm 1 is indeed linear scaling in
computational cost.

We generate a sequence of random (directed)
IntEvolvingGraphs with 105 active nodes and
10 time stamps. The first IntEvolvingGraph in the
sequence has about 108 static edges. We consecutively add
new random static edges to this IntEvolvingGraph.
For example, the second random IntEvolvingGraph
in the sequence has about 1.5 × 108 static edges and
the third has 1.8 × 108 static edges. Note that in this
experiment, we do not have direct control over the full
edge set E, only the static edge set Ẽ. When we add new
static edges, new causal edges may be added as well (if
the corresponding temporal nodes were not active before).
However, the number of newly introduced causal edges for
each active node is bounded by the number of time stamps,
so it suffices to demonstrate linear scaling in |Ẽ|. Figure 5

shows the plots of number of edges against the computation
time for running Algorithm 1 in Julia. All experiments are
conducted on a single core of a Linux system with 1TB of
RAM and 80 cores of Intel(R) Xeon(R) E7-8850s running
at 2.00 GHz clock speed. The results show Algorithm 1 can
be computed in linear time, which agrees with the result of
Theorem 2.

1 2 3 4 5

|Ẽ| ×108

15

20

25

30

35

40

45

50

Ti
m

e
(s

)

Figure 5. Experimental run time of Algorithm 1 on a collection of
random evolving graphs with 105 active nodes and 10 time stamps, showing
linear scaling in |Ẽ|. The horizontal axis shows the number of edges (|Ẽ|,
including only the static edges) of each evolving graph, while the vertical
axis shows the corresponding computation time.

V. APPLICATION TO CITATION NETWORKS

Evolving graphs have found many applications to ana-
lyzing networks that change over time [9], [10]. In this
section, we focus specifically on citation networks, and show
that evolving graph formalism presented above can be used
to capture the dynamical structure of citation networks.
Consider the evolving graph Gn = 〈G[t]〉t such that G[t]

has node set corresponding to authors active at time t and
directed edge set E[t] 3 (i, j) representing a citation of
author j by author i in a publication at time t.

Then given an author a at time t1, the evolving graph
BFS described above can compute T (a, t1), the set of all
the authors that have been influenced by a’s work at time
t1. Define also a community to be a group of researchers
that have been influenced by the same authors. For example,
given a paper published by a at time t, we can determine a’s
community by searching backward in time to find T−1(a, t),
the authors that influenced a at time t, and then searching
forward to find T (l1, t1)∪ T (l1, t2)∪ · · · ∪ T (lk, tk), where
(l1, t1), (l2, t2), . . . , (lk, tk) are the leaves of T−1(a, t). The
backward search in time follows straightforwardly from the
forward time traversal presented above simply by reversing
the time labels, e.g. by the transformation t→ −t.

We are currently investigating the use of our evolving
graph BFS on citation networks.

VI. CONCLUSION

The correct generalization of BFS to evolving graphs
necessitates a careful enumeration of temporal paths. The
structure associated with causal edges E′ turns out to be of
vital importance, and cannot be capture simply by products
of successive adjacency matrices, which by construction can
only capture the topologies of the static edges Ẽ. Only
by considering both causal edges and static edges can we
show that BFS over any evolving graph Gn computes the
correct result for our notion of distance. The new concepts of
activeness, temporal paths, and causal edges make possible
a correct implementation of BFS to evolving graphs and we
expect that these ideas will continue to provide powerful
new insights into how similar graphical algorithms may be
generalized correctly.

Furthermore, we show that BFS on evolving graphs ad-
mits an algebraic formulation that easily provides nontrivial
results, such as termination of the algorithm. However, our
current understanding tells us that the BFS over evolving
graphs is most efficiently computed in the adjacency list
representation, thus never forming explicit matrix-vector
products. Further work is needed to elucidate more efficient
formulations of the algebraic BFS for evolving graphs.

ACKNOWLEDGMENTS

We thank N. J. Higham and V. S̆ego (Manchester) for
helpful suggestions. W. Z. thanks the School of Mathematics
at U. Manchester for research & travel funding and A.
Edelman for arranging for a fruitful visit to MIT.

REFERENCES

[1] P. Flajolet, D. E. Knuth, and B. Pittel, “The first cycles
in an evolving graph,” Annals of Discrete Mathematics,
vol. 43, pp. 167–215, 1989. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167506008705752

[2] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal,
“PageRank on an evolving graph,” in Proceedings of the
18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2012, pp. 24–32. [Online].
Available: http://dl.acm.org/citation.cfm?id=2339539

[3] P. Borgnat, E. Fleury, J.-L. Guillaume, C. Magnien, C. Ro-
bardet, and A. Scherrer, “Evolving networks,” NATO ASI on
Mining Massive Data Sets for Security, NATO Science for
Peace and Security Series D: Information and Communica-
tion Security, pp. 198–204, 2008.

[4] J. Tang, M. Musolesi, C. Mascolo, and V. Latora,
“Temporal distance metrics for social network analysis,” in
Proceedings of the 2nd ACM workshop on Online social
networks. ACM, 2009, pp. 31–36. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1592674

[5] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson,
Y. Moreno, and M. A. Porter, “Multilayer networks,” Journal
of Complex Networks, vol. 2, no. 3, pp. 203–271, 2014.
[Online]. Available: http://comnet.oxfordjournals.org/content/
2/3/203.short

[6] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo,
and V. Latora, “Graph metrics for temporal networks,”
in Temporal Networks. Springer, 2013, pp. 15–40.
[Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-36461-7 2

[7] J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and
V. Latora, “Small-world behavior in time-varying graphs,”
Physical Review E, vol. 81, no. 5, p. 055101(R),
2010. [Online]. Available: http://journals.aps.org/pre/abstract/
10.1103/PhysRevE.81.055101

[8] J. Tang, M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia,
“Analysing information flows and key mediators through
temporal centrality metrics,” in Proceedings of the 3rd
Workshop on Social Network Systems. ACM, 2010,
p. 3. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1852661

[9] P. Grindrod, M. C. Parsons, D. J. Higham, and
E. Estrada, “Communicability across evolving networks,”
Physical Review E, vol. 83, no. 4, p. 046120, 2011.
[Online]. Available: http://journals.aps.org/pre/abstract/10.
1103/PhysRevE.83.046120

[10] P. Grindrod and D. J. Higham, “A matrix iteration for
dynamic network summaries,” SIAM Review, vol. 55,
no. 1, pp. 118–128, 2013. [Online]. Available: http:
//epubs.siam.org/doi/abs/10.1137/110855715

[11] J. Kepner and J. Gilbert, Eds., Graph Algorithms in the
Language of Linear Algebra, ser. Software, Environments,
Tools. Philadelphia, PA: SIAM, 2011. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9780898719918

[12] S. Even and G. Even, Graph algorithms, 2nd ed. Cambridge,
UK: Cambridge University Press, 2012.

[13] W. Zhang, “Dynamic network analysis in Julia,” Manchester
Institute for Mathematical Sciences, The University of
Manchester, UK, Tech. Rep. 2015.83, Sep. 2015. [Online].
Available: http://eprints.ma.man.ac.uk/2376/

[14] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman,
“Julia: A fast dynamic language for technical computing,”
ArXiv preprint 1209.5145, 2012. [Online]. Available:
http://arxiv.org/abs/1209.5145

