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CONSTRUCTING STRONG LINEARIZATIONS OF MATRIX

POLYNOMIALS EXPRESSED IN CHEBYSHEV BASES∗

PIERS W. LAWRENCE† AND JAVIER PÉREZ‡

Abstract. The need to solve polynomial eigenvalue problems for matrix polynomials expressed
in nonmonomial bases has become a very important problem. Among the most important bases in
numerical applications are the Chebyshev polynomials of the first and second kind. In this work,
we introduce a new approach for constructing strong linearizations for matrix polynomials expressed
in Chebyshev bases, generalizing the classical colleague pencil, and expanding the arena in which
to look for linearizations of matrix polynomials expressed in Chebyshev bases. We show that any
of these linearizations is a strong linearization regardless whether the matrix polynomial is regular
or singular. In addition, we show how to recover eigenvectors, minimal indices, and minimal bases
of the polynomial from those of any of the new linearizations. As an example, we also construct
strong linearizations for matrix polynomials of odd degree that are symmetric whenever the matrix
polynomials are symmetric.
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mials, singular matrix polynomials, eigenvector recovery, minimal bases, minimal indices, one-sided
factorizations, structure-preserving linearizations
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1. Introduction. Chebyshev polynomials are widely used in many areas of nu-
merical analysis, especially in approximation theory [12, 32, 26, 31]. A common
approach to solving the nonlinear eigenvalue problem

T (λ)x = 0, y∗T (λ) = 0,

for a holomorphic matrix-valued function T : Ω → Cn×n, is to construct a matrix
polynomial approximation P (λ) of the function T (λ), replacing the nonlinear eigen-
value problem with the polynomial eigenvalue problem

P (λ)x = 0, y∗P (λ) = 0

via Chebyshev interpolation [12].
One of the most common approaches to solve polynomial eigenvalue problems is

to linearize the matrix polynomial. Linearization transforms the polynomial problem
into an equivalent generalized eigenvalue problem—that is, a matrix pencil or a linear
matrix polynomial—for which standard techniques such as the QZ algorithm can be
used to recover the eigenstructure [23].

The linearization transformation is not unique [7, 22]. In practice, the most
frequently used linearization to solve a polynomial eigenvalue problem is the Frobenius
companion form, which can be constructed directly from the coefficients of the matrix
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polynomial when the polynomial is expressed in the monomial basis [7]. However, it
is also very desirable to have the ability to construct large families of linearizations
from which one can select the linearization that has the most favorable properties,
such as conditioning [17], backward errors [10, 16, 19, 27, 30], or the preservation of
structure [6, 8, 22, 21], for example.

On the other hand, when solving polynomial eigenvalue problems expressed in a
nonmonomial basis, it is important to avoid reformulating the matrix polynomial into
the monomial one [12, 31], since this change of basis can be poorly conditioned, and
may introduce numerical errors. For this reason, constructing linearizations of matrix
polynomials from the (nonmonomial) coefficients of P (λ) in a nonmonomial basis has
become an important need [24, 25, 28, 29]. In this work, we consider the problem of
constructing (strong) linearizations of matrix polynomials expressed in the first- or
second-kind Chebyshev polynomial bases.

The most well-known linearization easily built from the coefficients of a square
matrix polynomial expressed in the Chebyshev basis is the colleague pencil (3.3) in-
troduced by Good [15]. Recently, a family of linearizations for square matrix polyno-
mials expressed in the Chebyshev basis was introduced in [29]. This family was called
Fiedler-Chebyshev pencils, and it contains the colleague pencil (3.3) as a particular
case. Unfortunately, the same approach in [29] cannot be easily extended to rectan-
gular matrix polynomials. Furthermore, none of the linearizations belonging to the
Fiedler-Chebyshev pencil family reflect the same structure that the matrix polynomial
might possess [21].

In this work, we propose a different approach to the one taken in [29]. By adapt-
ing the approach in [11] to tackle Chebyshev polynomials, we provide a rich source
of new linearizations for matrix polynomials expressed in Chebyshev bases. We refer
to any of these linearizations as Chebyshev linearizations, and we prove that they are
strong linearizations, regardless of whether the matrix polynomial is regular, singu-
lar, square or rectangular. Moreover, to illustrate the power and flexibility of this
approach, we will construct through a number of examples several block symmetric
strong linearizations of matrix polynomials with odd degree.

Following this introduction, the rest of the paper is structured into three addi-
tional sections. Section 2 outlines the the notation and reviews the basic definitions
and previous results used in the paper. In Section 3, we introduce a class of block
anti-triangular pencils (which we call Chebyshev linearizations), and we outline a
simple procedure to easily generate strong linearizations of matrix polynomials ex-
pressed in Chebyshev bases from Chebyshev pencils. Finally, Section 4 demonstrates
how the eigenvectors, minimal bases, and minimal indices of a matrix polynomial and
those of any Chebyshev pencil are related, thus allowing us to give simple recipes for
recovering them.

2. Basic results and notation. In this section, we recall some definitions and
results relating to matrix polynomials. Throughout the paper we use the following
notation: given an arbitrary field F, we denote by F[λ] the ring of all univariate
polynomials in the variable λ with coefficients in F, and by F(λ) we denote the field
of rational functions with coefficients in F. By F[λ]m×n and F(λ)m×n we denote,
respectively, the set of m × n matrices with entries in F[λ] and the set of m × n
matrices with entries in F(λ).

A matrix P (λ) ∈ F[λ]m×n is called a m× n matrix polynomial. In this work, we
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will focus on matrix polynomials of the form

P (λ) =

d∑

k=0

Pkφk(λ) ∈ F[λ]m×n , (2.1)

where all of the polynomials φ0(λ), . . . , φd(λ) are either Chebyshev polynomials of the
first kind or of the the second kind. Chebyshev polynomials of the first kind, denoted
by {Ti(λ)}, satisfy the recurrence relation T0(λ) = 1, T1(λ) = λ, and

Ti(λ) = 2λTi−1(λ)− Ti−2(λ) i ≥ 2 . (2.2)

Chebyshev polynomials of the second kind, denoted by {Ui(λ)}, satisfy the recurrence
relation U0(λ) = 1, U1(λ) = 2λ, and

Ui(λ) = 2λUi−1(λ) − Ui−2(λ) i ≥ 2 . (2.3)

If the leading matrix coefficient Pd in (2.1) is not equal to the m×n zero matrix,
the quantity d is called the degree of P (λ); otherwise, d is called the grade of P (λ)
(also known as its extended degree [18]). We recall that a matrix polynomial of degree
d can be considered as a matrix polynomial of any grade larger than or equal to d.
Throughout this paper when the grade is not explicitly stated, we consider its grade
as its degree. We will denote the degree of a matrix polynomial P (λ) by deg(P (λ)).
A matrix polynomial of grade 1 is called a matrix pencil.

For any k ≥ deg(P (λ)) the k-reversal matrix polynomial of P (λ) is

revkP (λ) := λkP (λ−1).

If the degree of the polynomial P (λ) is clear, then we will sometimes write revP (λ)
instead of revkP (λ), where k = deg(P (λ)). Notice that revkP (λ) is also a matrix
polynomial.

A matrix polynomial P (λ) is said to be regular if P (λ) is square and detP (λ) is
not identically zero. Otherwise, the matrix polynomial P (λ) is said to be singular.
The rank of P (λ), denoted rankP (λ), is the rank of P (λ) when viewed as a matrix
with entries in the field F(λ). For the eigenstructure of a matrix polynomial we will
follow the same notation and definitions as in [9, Definition 2.17]. We recall that
the complete eigenstructure of a matrix polynomial consists of its finite and infinite
elementary divisors, together with its left and right minimal indices.

Singular matrix polynomials may have non-empty right and left nullspaces. These
vector spaces are introduced in the following definition; henceforth we refer to any
matrix polynomial P (λ) ∈ F[λ]m×1 as a vector polynomial.

Definition 2.1. The left and right nullspaces of a singular matrix polynomial
P (λ) ∈ F[λ]m×n, denoted by Nl(P ) and Nr(P ), respectively, are the vector spaces

Nl(P ) :={y(λ)T ∈ F(λ)1×m such that y(λ)TP (λ) = 0},

Nr(P ) :={x(λ) ∈ F(λ)n×1 such that P (λ)x(λ) = 0}.

It is always possible to find bases for Nl(P ) and Nr(P ) consisting entirely of
vector polynomials. Indeed, given any basis {x1(λ), . . . , xr(λ)}, multiply every vector
xj(λ) by the least common denominator of all entries of x1(λ), . . . , xr(λ). The order
of a vector polynomial basis is defined as the sum of the degrees of its vectors [14,
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Definition 2]. Among all the possible polynomial bases of Nl(P ) and Nr(P ), we are
interested in the ones with least order.

Definition 2.2. [14, Definition 3] Let V be a subspace of F(λ)n×1. A minimal
basis of V is any polynomial basis of V with least order among all polynomial bases.

The minimal bases of Nl(P ) and Nr(P ) are not unique, but the ordered list of
degrees of the vector polynomials in any minimal basis of V is always the same. This
motivates our next definition (see [14, Definition 4]).

Definition 2.3. Let P (λ) ∈ F[λ]m×n be a singular matrix polynomial, and let
{y1(λ)T , . . . , yq(λ)T } and {x1(λ), . . . , xp(λ)} be minimal bases of Nl(P ) and Nr(P ),
respectively, ordered such that deg(y1(λ)) ≤ · · · ≤ deg(yq(λ)) and deg(x1(λ)) ≤ · · · ≤
deg(xp(λ)). Let µj = deg(yj(λ)), for j = 1, 2, . . . , q, and ǫj = deg(xj(λ)), for j =
1, 2, . . . , p. Then, µ1 ≤ · · · ≤ µq and ǫ1 ≤ · · · ≤ ǫp are, respectively, the left and right
minimal indices of P (λ).

Finally, a linearization of a matrix polynomial P (λ) of grade d is a pencil L(λ) =
λB +A such that there exist two unimodular matrices (i.e., having constant nonzero
determinant) U(λ) and V (λ) satisfying

U(λ)L(λ)V (λ) =

[
Is

P (λ)

]
, (2.4)

for some natural number s, and where Is denotes the s × s identity matrix [9]. In
addition, the pencil L(λ) is said to be a strong linearization if rev1L(λ) = λA + B
is a linearization of revdP (λ), that is, if there exist unimodular matrix polynomials

Û(λ) and V̂ (λ) such that

Û(λ)rev1L(λ)V̂ (λ) =

[
Is

revdP (λ)

]
. (2.5)

We recall that the key property of any strong linearization L(λ) of P (λ) is that L(λ)
preserves the finite and infinite eigenstructure of P (λ) as well as the dimensions of
the right and left null spaces of P (λ) (see, for example, [9]). On the other hand, it is
well known that linearizations may change right and left minimal indices arbitrarily
[9, Theorem 4.11].

3. Constructing strong linearizations of matrix polynomials expressed

in Chebyshev bases. The aim of this section is to construct strong linearizations of
the matrix polynomial (2.1) that are constructible directly from its matrix coefficients.
To do so, we first introduce the concept of a Chebyshev pencil.

3.1. Chebyshev pencils. We will refer to any pencil with the following block
anti-triangular structure as a Chebyshev pencil :

L(λ) =

[
λM1 +M0 C

(j)
µ (λ)T ⊗ Im

C
(i)
ǫ (λ)⊗ In 0

] }
(µ+1)m}
ǫn

︸ ︷︷ ︸
(ǫ+1)n

︸ ︷︷ ︸
µm

, (3.1)
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where i, j ∈ {1, 2},

C
(j)
k (λ) =




1 −2λ 1
1 −2λ 1

. . .
. . .

. . .

1 −2λ 1
1 −jλ



∈ F[λ]k×(k+1), (3.2)

and where ⊗ denotes the Kronecker product.

Remark 1. Let us consider a square (n = m) matrix polynomial P (λ) expressed
in one of the Chebyshev bases (either the first or the second kind), as in (2.1). Then,
it is well known that the pencil

λ




2Pd

−2In
. . .

−2In
−jIn



+




Pd−1 Pd−2 − Pd Pd−3 · · · P0

In 0 In
. . .

. . .
. . .

In 0 In
In 0



, (3.3)

is a strong linearization for P (λ), where j = 1, 2 correspond to Chebyshev polynomials
of the first and second kind [2], respectively. This pencil is a particular case of a
comrade pencil [3], which is a linearization of a matrix polynomial expressed in an
orthogonal polynomial basis (for j = 1 or j = 2 it is also called a colleague pencil).
Notice that the pencil (3.3) is a Chebyshev pencil with

λM1 +M0 =
[
2λPd + Pd−1 Pd−2 − Pd Pd−3 · · · P1 P0

]
,

and ǫ = d− 1 and µ = 0.

In Section 3.3 we prove that the Chebyshev pencil (3.1) is always a strong lin-
earization of a certain matrix polynomial. This result allows us to construct strong
linearizations for the matrix polynomial, as we show in in Section 3.4. The tools
and auxiliary results needed to construct the unimodular matrix polynomials in the
linearization transformations (2.4) and (2.5) are introduced in the following section.

3.2. Auxiliary unimodular matrix polynomials. Here we will identify the
appropriate unimodular matrix polynomials in (2.4) and (2.5) for the Chebyshev
pencil (3.1).

It is clear that the pencils C
(j)
k (λ) in (3.2) have full row rank for any λ. A key

property of any matrix polynomial Q(λ) with this property is that it can be embedded
in a unimodular matrix polynomial

Q̂(λ) =

[
Q(λ)

Q̃(λ)

]
,

such that deg(Q̃(λ)) ≤ deg(Q(λ))−1 (see, for example, [5, Corollary 1]). Specializing
this result to a matrix polynomial Q(λ) of degree 1 and size k × (k + 1), Q(λ) may

be embedded in a unimodular matrix pencil Q̂(λ), where Q̃(λ) is just a constant row
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vector. For the matrix pencil C
(j)
k (λ) in (3.2), this result is evident, since

V
(j)
k (λ) :=

[
C

(j)
k (λ)
ek+1

]
=




1 −2λ 1
1 −2λ 1

. . .
. . .

. . .

1 −2λ 1
1 −jλ

1




∈ F[λ](k+1)×(k+1)

(3.4)
is clearly unimodular. Moreover, a unimodular matrix polynomial has a polynomial

inverse, and for the pencil V
(j)
k (λ) in (3.4), an explicit expression is easily derived, as

we show in the following lemma.

Lemma 3.1. Let V
(j)
k (λ) be the pencil in (3.4) with j ∈ {1, 2}. Then, its inverse

is given by

V
(j)
k (λ)−1 =

[
Mk(λ) Π

(j)
k (λ)

]
, (3.5)

where

Mk(λ) =




U0(λ) U1(λ) · · · Uk−1(λ)
. . .

. . .
...

U0(λ) U1(λ)
U0(λ)

0 · · · 0 0



∈ F[λ](k+1)×k, (3.6)

and where

Π
(1)
k (λ) =




Tk(λ)
...

T1(λ)
T0(λ)


 ∈ F[λ](k+1)×1, and Π

(2)
k (λ) =




Uk(λ)
...

U1(λ)
U0(λ)


 ∈ F[λ](k+1)×1. (3.7)

Proof. Using the recurrence relations (2.2) and (2.3), it is immediately verified

that V
(j)
k (λ)

[
Mk(λ) Π

(j)
k (λ)

]
= Ik+1.

The reversal of the pencil (3.2) is given by

rev1C
(j)
k (λ) =




λ −2 λ
λ −2 λ

. . .
. . .

. . .

λ −2 λ
λ −j



∈ F[λ]k×(k+1). (3.8)

Notice that the pencil (3.8) also has full row rank for any λ. This implies that it can
also be embedded in a unimodular matrix by appending a constant row vector

W
(j)
k (λ) :=

[ (
ω(j)

)T

rev1C
(j)
k (λ)

]
=




ω
(j)
k ω

(j)
k−1 ω

(j)
k−2 · · · ω

(j)
1 ω

(j)
0

λ −2 λ
λ −2 λ

. . .
. . .

. . .

λ −2 λ
λ −j




, (3.9)
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where, for convenience, the vector is appended in the first row. The vector ω(j) in

(3.9) must now be chosen to guarantee that W
(j)
k (λ) is unimodular, one such choice

is to ensure that detW
(j)
k (λ) = 1, as we will now show.

Lemma 3.2. Let W
(j)
k (λ) be the pencil in (3.9) with j ∈ {1, 2}. If we set

ω
(1)
i :=





(−1)k21−k

(
k

(k − i)/2

)
if k − i is even and i 6= 0,

2−k

(
k

k/2

)
if k is even and i = 0, and

0 otherwise,

and

ω
(2)
i :=





(−1)k2−k

((
k

(k − i)/2

)
−

(
k

(k − i − 2)/2

))
if k − i is even and i 6= 0,

0 otherwise,

for i = 0, 1, . . . , k, then detW
(j)
k (λ) = 1, for j = 1, 2.

Proof. We first use the properties of the k-reversal operation in order to obtain

an expression for the determinant detW
(j)
k (λ). The following sequence of equalities

holds:

detW
(j)
k (λ) = det

(
rev1

(
rev1W

(j)
k (λ)

))
= revk+1

(
det

(
rev1W

(j)
k (λ)

))
, (3.10)

and the determinant of interest is now

det
(
rev1W

(j)
k (λ)

)
= det




λω
(j)
k λω

(j)
k−1 · · · λω

(j)
1 λω

(j)
0

1 −2λ 1
. . .

. . .
. . .

1 −2λ 1
1 −jλ




. (3.11)

The pencil above can be shown to be a linearization of the polynomial

q(j)(λ) = (−1)kλ
k∑

i=0

ω
(j)
i φ

(j)
i (λ) , (3.12)

where the φ
(1)
k (λ) = Tk(λ), and φ

(2)
k (λ) = U0(λ). This may be established using the

linearization in [19, (3.2)], or via Laplace expansion along the first column of the
pencil in (3.11). Such an expansion yields

det
(
rev1W

(j)
k (λ)

)
=

k∑

i=0

λω
(j)
i (−1)k−i det

(
Si − λT

(j)
i

)
= q(j)(λ) , (3.13)

where we have used the well-known determinants [15] for j ∈ {1, 2} to obtain

det
(
Si − λT

(j)
i

)
= det




−2λ 1
1 −2λ 1

. . .
. . .

. . .

1 −2λ 1
1 −jλ




︸ ︷︷ ︸
i

= (−1)iφ
(j)
i (λ) . (3.14)
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Finally, substituting (3.12) into (3.10) yields

detW
(j)
k = (−1)k

k∑

i=0

ω
(j)
i λkφ

(j)
i (1/λ) = (−1)krevk

k∑

i=0

ω
(j)
i φ

(j)
i (λ) , (3.15)

which we equate to 1 and take the k-reversal to obtain the entries ω
(j)
i . These are ex-

actly the coefficients of the expansion of (−λ)k in a Chebyshev basis, that is, satisfying

(−λ)k =
k∑

i=0

ω
(j)
i φ

(j)
i (λ) . (3.16)

This expansion is a known result [1]. For j = 1, it is given by

(−λ)k = (−1)k21−k
∑′

0≤i≤k
k−i even

(
k

(k − i)/2

)
Ti(λ),

where the primed sum indicates that the contribution of i = 0 needs to be halved if
it appears. This expansion, together with the formula Ti(λ) = (Ui(λ) − Ui−2(λ))/2
implies the desired result that

(−λ)k = (−1)k2−k
∑

0≤i≤k
k−i even

((
k

(k − i)/2

)
−

(
k

(k − i− 2)/2

))
Ui(λ).

In contrast to the result in Lemma 3.1, an explicit formula for W
(j)
k (λ)−1 is

not as simple to obtain. However, since W
(j)
k (λ) is unimodular, it has a polynomial

inverse, and thus we can compute its expansion in a Chebyshev basis using Barnett’s
[4] extension of the Leverrier-Faddeev [13, 20] algorithm. For our purposes here we

only require the first column of the inverse W
(j)
k (λ)−1 in order to establish the strong

linearization property, we thus offer the following lemma.

Lemma 3.3. For j ∈ {1, 2}, let W
(j)
k (λ) be the pencil in (3.9) with the vector ω(j)

as in Lemma 3.2. The inverse of W
(j)
k (λ) is of the form

W
(j)
k (λ)−1 =

[
revkΠ

(j)
k (λ) N

(j)
k (λ)

]
, (3.17)

where Π
(j)
k (λ) is defined in (3.7), and where N

(j)
k (λ) is a matrix polynomial such that

deg(N
(j)
k (λ)) ≤ k − 1.

Proof. Let us introduce the notation

W
(j)
k (λ)−1 =

[
f(λ) N

(j)
k (λ)

]
,

where f(λ) corresponds to the first column of W
(j)
k (λ)−1. From

W
(j)
k (λ)W

(j)
k (λ)−1 =

[
(ω(j))T

rev1C
(j)
k (λ)

] [
f(λ) N

(j)
k (λ)

]
=

[
1 0
0 Ik

]
,
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we see that f(λ) must belong to the null space of rev1C
(j)
k (λ), which is a vector space

of dimension 1 (note that rev1C
(j)
k (λ) has full row rank and size k × (k + 1)). Direct

matrix multiplication allows us to immediately verify that the vector revkΠ
(j)
k (λ)

belongs to the null space of rev1C
(j)
k (λ). It follows that f(λ) = α(λ)revkΠ

(j)
k (λ)

for some polynomial function α(λ). Inspecting the (1, 1) entry, we additionally have

1 = (ω(j))T f(λ) = α(λ)(ω(j))T revkΠ
(j)
k (λ) = α(λ), and thus f(λ) = revkΠ

(j)
k (λ).

Finally, that the degree of the matrix polynomial N
(j)
k (λ) is bounded by k − 1

follows from the following argument. First, notice that

W
(j)
k (λ)−1 = adj

(
W

(j)
k (λ)

)
/ det

(
W

(j)
k (λ)

)
= adj

(
W

(j)
k (λ)

)
,

where adj
(
W

(j)
k (λ)

)
is the classical adjoint of W

(j)
k (λ). Then, to compute any of the

entries of the last k columns of adj
(
W

(j)
k (λ)

)
via cofactors, one has to compute the

determinant of a k × k matrix. The first row of this matrix is constant while the
entries of the other k− 1 rows are polynomials with degree at most 1. Therefore, the

degree of the entries of the last k − 1 rows of adj
(
W

(j)
k (λ)

)
are bounded by k − 1.

3.3. Chebyshev pencils as strong linearizations. We are now in a position
to prove Theorem 3.4, where we show that the Chebyshev pencil (3.1) is a strong
linearization of the matrix polynomial (3.18).

Theorem 3.4. Let L(λ) be a Chebyshev pencil as in (3.1). Then, the pencil L(λ)
is a strong linearization of the matrix polynomial

P (λ) = (Π(j)
µ (λ)T ⊗ Im)(λM1 +M0)(Π

(i)
ǫ (λ) ⊗ In), (3.18)

of grade d := ǫ+ µ+ 1.
Proof. We first show that L(λ) is a linearization of P (λ), that is, we construct

unimodular matrix polynomials U(λ) and V (λ) such that (2.4) holds. We make use

of the unimodular matrix polynomial V
(j)
k (λ)−1, with j ∈ {1, 2}, introduced in (3.5),

embedding it in the following unimodular matrices:

U1(λ) :=

[
V

(j)
µ (λ)−T ⊗ Im

Iǫn

]
=



Mµ(λ)

T ⊗ Im

Π
(j)
µ (λ)T ⊗ Im

Iǫn


 ,

and

V1(λ) :=

[
V

(i)
ǫ (λ)−1 ⊗ In

Iµm

]
=

[
Mǫ(λ)⊗ In Π

(i)
ǫ (λ)⊗ In

Iµm

]
.

Pre- and post-multiplying the Chebyshev pencil by U1(λ) and V1(λ), respectively, we
obtain 


Z(λ) X(λ) Iµm
Y (λ) P (λ) 0
Iǫn 0 0


 ,

where the matrix polynomials X(λ), Y (λ) and Z(λ) are given by

X(λ) = (Mµ(λ)
T ⊗ Im)(λM1 +M0)(Π

(i)
ǫ (λ)⊗ In),

Y (λ) = (Π(j)
µ (λ)T ⊗ Im)(λM1 +M0)(Mǫ(λ) ⊗ In), and

Z(λ) = (Mµ(λ)
T ⊗ Im)(λM1 +M0)(Mǫ(λ) ⊗ In).

(3.19)
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Because we have reduced the anti-diagonal blocks to identity matrices, it is clear that
these may be used to annihilate the entries Z(λ), Y (λ), and X(λ) in the above matrix.
Explicitly, we obtain the following transformation:



Iµm 0 −Z(λ)
0 0 Iǫn
0 Im −Y (λ)





Z(λ) X(λ) Iµm
Y (λ) P (λ) 0
Iǫn 0 0






0 Iǫn 0
0 0 In

Iµm 0 −X(λ)


 =



Iµm

Iǫn
P (λ)


 ,

and thus, the Chebyshev pencil L(λ) is a linearization of P (λ).
To show that L(λ) is a strong linearization, we need to prove that rev1L(λ) is a

linearization of revdP (λ). Thus, we construct unimodular matrices Û(λ) and V̂ (λ)
such that (2.5) holds. In this case, we make use of the unimodular matrix polynomial

W
(j)
k (λ)−1, with j = 1, 2, defined in (3.17). It follows from (3.18) and the properties

of the k-reversal polynomial that

revdP (λ) = (revµΠ
(j)
µ (λ)T ⊗ Im)(λM0 +M1)(revǫΠ

(i)
ǫ (λ)⊗ In) .

Let us now introduce the following unimodular matrix polynomials

Û1(λ) :=

[
W

(j)
µ (λ)−T ⊗ Im

Iǫn

]
=



revµΠ

(j)
µ (λ)T ⊗ Im

N
(j)
µ (λ)T ⊗ Im

Iǫn


 ,

and

V̂1(λ) :=

[
W

(i)
ǫ (λ)−1 ⊗ In

Iµm

]
=

[
revǫΠ

(i)
ǫ (λ) ⊗ In N

(i)
ǫ (λ)⊗ In

Iµm

]
.

Pre- and post-multiplying the pencil rev1L(λ) by Û1(λ) and V̂1(λ), respectively, we
obtain



revdP (λ) Ŷ (λ) 0

X̂(λ) Ẑ(λ) Iµm
0 Iǫn 0


 ,

where the matrix polynomials X̂(λ), Ŷ (λ) and Ẑ(λ) are

X̂(λ) = (N (j)
µ (λ)T ⊗ Im)(λM0 +M1)(revǫΠ

(i)
ǫ (λ)⊗ In),

Ŷ (λ) = (revµΠ
(j)
µ (λ)T ⊗ Im)(λM0 +M1)(N

(j)
ǫ (λ)⊗ In), and

Ẑ(λ) = (N (j)
µ (λ)T ⊗ Im)(λM0 +M1)(N

(i)
ǫ (λ) ⊗ In).

(3.20)

Finally, this pencil may be reduced further to



0 0 Iǫn
0 Iµm −Ẑ(λ)

Im 0 −Ŷ (λ)





revdP (λ) Ŷ (λ) 0

X̂(λ) Ẑ(λ) Iµm
0 Iǫn 0






0 0 In
Iǫn 0 0

0 Iµm −X̂(λ)


 =



Iǫn

Iµm
revdP (λ)


 ,

and thus the pencil rev1L(λ) is a linearization of revdP (λ). This establishes that the
Chebyshev pencil L(λ) is a strong linearization of the matrix polynomial (3.18).
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3.4. Constructing strong linearizations of a given matrix polynomial

expressed in one of the Chebyshev bases. From Theorem 3.4 we obtain the
following procedure for constructing strong linearizations of a given matrix polynomial
P (λ), as in (2.1), from a Chebyshev pencil (3.1):

Step 1 Choose natural numbers ǫ and µ such that ǫ+ µ = deg(P (λ)) − 1.

Step 2 Choose the pencil λM1 +M0 such that (3.18) is satisfied.

This procedure guarantees that the Chebyshev pencil (3.1) is a strong linearization
of P (λ). The goal now is to show how to construct the pencil λM1 +M0 in Step 2

from the coefficients in the Chebyshev basis of P (λ). We treat the cases of Chebyshev
polynomials of the first and second kind separately.

3.4.1. Chebyshev polynomials of the first kind. We first focus on matrix
polynomials of the form

P (λ) = PdTd(λ) + Pd−1Td−1(λ) + · · ·+ P1T1(λ) + P0T0(λ). (3.21)

In this case, the strong linearizations introduced in this section are based on Cheby-
shev pencils (3.1) with i = 1 and j = 2, or with i = 2 and j = 1, where

L(λ) =

[
λM1 +M0 C

(2)
µ (λ)T ⊗ Im

C
(1)
ǫ (λ)⊗ In 0

]
. (3.22)

We focus on the case i = 1 and j = 2 (since the case i = 2 and j = 1 is similar).
Let us start by considering the matrices M0 and M1 in (3.22) as (µ+1)× (ǫ+1)

block matrices [M0(i, j)] and [M1(i, j)], where M0(i, j),M1(i, j) ∈ Fm×n. Recall that
Theorem 3.4 implies that the Chebyshev pencil (3.22) is a strong linearization of the
matrix polynomial (3.21) if ǫ+ µ+ 1 = d and

P (λ) =(Π(2)
µ (λ)T ⊗ Im)(λM1 +M0)(Π

(1)
ǫ (λ)⊗ In) =

µ+1∑

r=1

ǫ+1∑

s=1

(λM1(r, s) +M0(r, s))Uµ+1−r(λ)Tǫ+1−s(λ).
(3.23)

The above equation shows the fundamental importance of finding expressions for
Chebyshev polynomials of the first kind in terms of products of the form Uℓ1(λ)Tℓ2(λ).
Lemma 3.5 outlines one way in which this may be done.

Lemma 3.5. Let {Tj(λ)} and {Uj(λ)} be, respectively, the Chebyshev polynomials
of the first and second kind. Then,

Tr+ℓ(λ) = Ur(λ)Tℓ(λ) − Ur−1(λ)Tℓ−1(λ), and

Tr+ℓ+1(λ) = 2λUr(λ)Tℓ(λ) − Ur(λ)Tℓ−1(λ)− Ur−1(λ)Tℓ(λ),

if ℓ 6= 0, and where we set U−1(λ) := 0 and T−1(λ) := 0.
Proof. The proof is immediately evident by applying the multiplication formula

Ur(λ)Uℓ(λ) =

ℓ∑

k=0

Ur−ℓ+2k(λ) , r ≥ ℓ , (3.24)

and the formula Tℓ(λ) = (Uℓ(λ) − Uℓ−2(λ))/2.
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Lemma 3.5 presents the key to be able to construct pencils λM1 +M0 such that
(3.23) is satisfied. Before presenting the general procedure to construct λM1 +M0,
we illustrate some specific examples of its application in Example 1, where we show
how to choose the pencil λM1 +M0 in order to linearize a matrix polynomial with a
low degree (namely, d = 6).

Example 1. Consider the m× n matrix polynomial P (λ) =
∑6

k=0 PkTk(λ), and
Chebyshev pencils (3.22) with ǫ = 3 and µ = 2. Lemma 3.5 allows us to express P (λ)
as a sum of products of Chebyshev polynomials, that is, as

P (λ) =

6∑

i=0

PiTi(λ) =

µ=2∑

i=0

ǫ=3∑

j=0

(λAij +Bij)Ui(λ)Tj(λ).

One specific choice is

P (λ) =P6(2λU2(λ)T3(λ)− U2(λ)T2(λ)− U1(λ)T3(λ))+

P5(U2(λ)T3(λ)− U1(λ)T2(λ))+

P4(2λU2(λ)T1(λ)− U1(λ)T1(λ)− U2(λ)T0(λ))+

P3(U2(λ)T1(λ)− U1(λ)T0(λ))+

P2U0(λ)T2(λ) + P1U0(λ)T1(λ) + P0U0(λ)T0(λ).

We then set M1(r, s) := Bµ+1−r,ǫ+1−s and M0(r, s) := Aµ+1−r,ǫ+1−s, for r = 1, . . . ,
µ+ 1 and s = 1, . . . , ǫ+ 1, to obtain the pencil

λM1 +M0 =



2λP6 + P5 −P6 2λP4 + P3 −P4

−P6 −P5 −P4 −P3

0 P2 P1 P0


 .

This guarantees that the Chebyshev pencil



2λP6 + P5 −P6 2λP4 + P3 −P4 Im 0
−P6 −P5 −P4 −P3 −2λIm Im
0 P2 P1 P0 −Im −2λIm
In −2λIn In 0 0 0
0 In −2λIn In 0 0
0 0 In −λIn 0 0




is a strong linearization of P (λ). Alternatively, we could have also written P (λ) as

P (λ) =P6(2λU2(λ)T3(λ) − U2(λ)T2(λ)− U1(λ)T3(λ))+

P5(U2(λ)T3(λ)− U1(λ)T2(λ))+

1

4
P4(2λU2(λ)T1(λ)− U1(λ)T1(λ) − U2(λ)T0(λ))+

3

4
P4(U1(λ)T3(λ)− U0(λ)T2(λ))+

P3U0(λ)T3(λ) + P2U0(λ)T2(λ) + P1U0(λ)T1(λ) + P0U0(λ)T0(λ),

and for which the Chebyshev pencil



2λP6 + P5 −P6
1
2λP4 − 1

4P4 Im 0
−P6 +

3
4P4 −P5 − 1

4P4 0 2λIm −Im
P3 P2 −

3
4P4 P1 P0 −Im 2λIm

In −2λIn In 0 0 0
0 In −2λIn In 0 0
0 0 In −λIn 0 0



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is also a strong linearization.
Following this example, we now present a general procedure to construct the

pencil λM1 +M0 in the Chebyshev pencil (3.22):

Step 1 Choose natural numbers ǫ and µ such that

ǫ + µ+ 1 = deg(P (λ)).

Step 2 Via Lemma 3.5, rewrite P (λ) as

P (λ) =

µ∑

i=0

ǫ∑

j=0

(λAij +Bij)Ui(λ)Tj(λ).

Step 3 Set

M1(r, s) := Bµ+1−r,ǫ+1−s and M0(r, s) := Aµ+1−r,ǫ+1−s,

for r = 1, . . . , µ+ 1 and s = 1, . . . , ǫ+ 1.
Equation (3.23) then guarantees that the Chebyshev pencil (3.22) is a strong lin-
earization of P (λ).

Remark 2. One may wonder if strong linearizations for the matrix polynomial
(3.21) can be constructed from Chebyshev pencils (3.1) with i = j = 1. The following
example answers this question in the affirmative. The pencil





















4λP7 + 2P6 P5 − P7 0 P3 Im 0 0
P5 − P7 2P4 0 0 −2λIm Im 0

0 0 2P2 0 −Im −2λIm −Im

0 0 P1 − P5 − P7 P0 − P2 − P4 − P6 0 Im −λIm

In −2λIn In 0 0 0 0
0 In −2λIn In 0 0 0
0 0 In −λIn 0 0 0





















is a strong linearization of the matrix polynomial P (λ) =
∑7

k=0 PkTk(λ) since









T3(λ)Im
T2(λ)Im
T1(λ)Im
T0(λ)Im









T 







4λP7 + 2P6 P5 − P7 0 P3

P5 − P7 2P4 0 0
0 0 2P2 0
0 0 P1 − P5 − P7 P0 − P2 − P4 − P6

















T3(λ)In
T2(λ)In
T1(λ)In
T0(λ)In









= P (λ) , (3.25)

as may be easily be verified using the formula 2Tr(λ)Ts(λ) = Tr+s(λ) + T|r−s|(λ).
However, notice that some of the block entries of this linearization are computed via
linear combinations involving a large number of the coefficients of P (λ), and thus
may suffer from cancellation errors. As the degree of P (λ) gets larger, the worst this
problem becomes. We have not found a way to circumvent this phenomenon. For this
reason, in this work we will not pursue the approach of constructing linearizations
from Chebyshev pencils (3.1) with i = j = 1.

3.4.2. Chebyshev polynomials of the second kind. We now focus on matrix
polynomials of the form

P (λ) = PdUd(λ) + Pd−1Ud−1(λ) + · · ·+ P1U1(λ) + P0U0(λ). (3.26)
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In this situation, the strong linearizations introduced in this section are based on
Chebyshev pencils (3.1) with i = 2 and j = 2, that is, we consider pencils of the form

L(λ) =

[
λM1 +M0 C

(2)
µ (λ)T ⊗ Im

C
(2)
ǫ (λ)⊗ In 0

]
. (3.27)

As in the previous section, we consider the matrices M0 and M1 in (3.27) as (µ+
1)× (ǫ+ 1) block matrices [M0(i, j)] and [M1(i, j)], where M0(i, j),M1(i, j) ∈ Fm×n.
Recall from Theorem 3.4 that the Chebyshev pencil (3.27) is a strong linearization of
a matrix polynomial (3.26) if ǫ+ µ+ 1 = d and

P (λ) =(Π(2)
µ (λ)T ⊗ Im)(λM1 +M0)(Π

(2)
ǫ (λ)⊗ In) =

µ+1∑

r=1

ǫ+1∑

s=1

(λM1(r, s) +M0(r, s))Uµ+1−r(λ)Uǫ+1−s(λ).
(3.28)

The equation above shows that finding expressions of Chebyshev polynomials of the
second kind in terms of products of the form Uℓ1(λ)Uℓ2(λ) is of fundamental impor-
tance. Lemma 3.6 gives one way in which this may be done.

Lemma 3.6. The Chebyshev polynomials of the second kind {Uj(λ)} satisfy the
recurrence relations

Ur+ℓ(λ) = Ur(λ)Uℓ(λ) − Ur−1(λ)Uℓ−1(λ), and

Ur+ℓ+1(λ) = 2λUr(λ)Uℓ(λ) − Ur(λ)Uℓ−1(λ)− Ur−1(λ)Uℓ(λ),

where we set U−1(λ) := 0.
Proof. The proof is immediate from the multiplication formula (3.24).

Analogously to the developments in the previous section, from Lemma (3.6) and
Equation (3.28) we obtain the following procedure to construct the pencil λM1 +M0

so that the Chebyshev pencil (3.27) is a strong linearization of the matrix polynomial
P (λ) in (3.26):

Step 1 Choose natural numbers ǫ and µ such that

ǫ + µ+ 1 = deg(P (λ)).

Step 2 Via Lemma 3.6, rewrite P (λ) as

P (λ) =

µ∑

i=0

ǫ∑

j=0

(λAij +Bij)Ui(λ)Uj(λ).

Step 3 Set

M1(r, s) := Bµ+1−r,ǫ+1−s and M0(r, s) := Aµ+1−r,ǫ+1−s,

for r = 1, . . . , µ+ 1 and s = 1, . . . , ǫ+ 1.
Equation (3.28) then guarantees that the Chebyshev pencil (3.27) is a strong lin-
earization of P (λ).

In Example 2 we illustrate the previous procedure for constructing strong lin-
earizations of a matrix polynomial with a small degree (d = 6).
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Example 2. Consider the m× n matrix polynomial P (λ) =
∑6

k=0 PkUk(λ), and
the Chebyshev pencil (3.27) with ǫ = 2 and µ = 3. We may write

P (λ) =P6(2λU3(λ)U2(λ) − U3(λ)U1(λ)− U2(λ)U2(λ))+

P5(2λU2(λ)U2(λ) − U2(λ)U1(λ)− U1(λ)U2(λ))+

P4(2λU1(λ)U2(λ) − U1(λ)U1(λ)− U0(λ)U2(λ))+

P3U3(λ)U0(λ) + P2U2(λ)U0(λ) + P1U1(λ)U0(λ) + P0U0(λ)U0(λ).

The procedure to construct Chebyshev pencils then gives




2λP6 −P6 P3 Im 0 0
2λP5 − P6 −P5 P2 −2λIm Im 0
2λP4 − P5 −P4 P1 Im −2λIm Im

−P4 0 P0 0 Im −2λIm
In −2λIn In 0 0 0
0 In −2λIn 0 0 0



,

is a strong linearization of P (λ). We could have also written P (λ) as

P (λ) =P6(2λU3(λ)U2(λ) − U3(λ)U1(λ)− U2(λ)U2(λ))+

P5(U3(λ)U2(λ) − U2(λ)U1(λ))+

P4(2λU1(λ)U2(λ) − U1(λ)U1(λ)− U0(λ)U2(λ))+

P3(U1(λ)U2(λ) − U0(λ)U1(λ)) + P3U3(λ)U0(λ)−

P3(2λU2(λ)U0(λ) − U1(λ)U0(λ))+

P2U2(λ)U1(λ) + 2λP1U0(λ)U0(λ) + P0U0(λ)U0(λ).

The procedure to construct Chebyshev pencils then gives




2λP6 − P5 −P6 P3 Im 0 0
−P6 −P5 −2λP3 + P2 −2λIm Im 0

2λP4 + P3 −P4 P3 Im −2λIm Im
−P4 −P3 2λP1 + P0 0 Im −2λIm
In −2λIn In 0 0 0
0 In −2λIn 0 0 0



,

which is also a strong linearization of P (λ).

We conclude this section presenting two block symmetric linearizations for n× n
matrix polynomials of odd degree, as in (3.26). In this case, let us define s := (d−1)/2,
and consider Chebyshev pencils (as in (3.27)) with ǫ = µ = s. The first of these block
symmetric pencils is based on writing P (λ) as

P (λ) =

s∑

j=0

Pd−2j (2λUs−j(λ)Us−j(λ) − Us−j(λ)Us−j−1(λ)−

Us−j−1(λ)Us−j(λ)) +
s∑

j=0

Pd−1−2j (Us−j(λ)Us−j(λ) − Us−j−1(λ)Us−j−1(λ)) .
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Applying the procedure in the previous section to this expansion for P (λ), we con-
struct λM1 +M0 as

















2λPd + Pd−1 −Pd

−Pd 2λPd−2 + Pd−3 − Pd−1 −Pd−2

−Pd−2 2λPd−4 + Pd−5 − Pd−3

. . .

. . .
. . . −P3

−P3 2λP1 + P0 − P2

















.

The second symmetric pencil is based on writing P (λ) as

P (λ) =Pd(2λUs(λ)Us(λ) − Us−1(λ)Us(λ) − Us(λ)Us−1(λ)+

s−2∑

j=0

Pd−1−2j (Us−2j(λ)Us−2j(λ) − Us−2j−1(λ)Us−2j−1(λ)) +

s−1∑

j=0

1

2
Pd−2−2j (Us−j(λ)Us−j−1(λ)− Us−j−1(λ)Us−j−2(λ)) +

s−1∑

j=0

1

2
Pd−2−2j (Us−j−1(λ)Us−j(λ)− Us−j−2(λ)Us−j−1(λ)) .

Applying the procedure to this expansion for P (λ) again, we construct λM1 +M0 as

1

2

















4λPd + 2Pd−1 Pd−2 − 2Pd

Pd−2 − 2Pd 2Pd−3 − 4λPd − 2Pd−1 Pd−4 − Pd−2

Pd−4 − Pd−2 2Pd−5 − 2Pd−3

. . .

. . .
. . . P1 − P3

P1 − P3 2P0 − 2P2

















.

Chebyshev pencils constructed using the block symmetric pencils λM1+M0 above
are block symmetric strong linearizations of P (λ). This implies that these pencils are
symmetric strong linearizations whenever the matrix polynomial P (λ) is symmetric
(that is, whenever PT

i = Pi, for i = 0, 1, . . . , d). These linearizations are illustrated
in the following example.

Example 3. Consider the symmetric n × n matrix polynomial P (λ) =∑5
k=0 PkUk(λ). Then, the Chebyshev pencils




2λP5 + P4 −P5 0 In 0
−P5 2λP3 + P2 − P4 −P3 −2λIn In
0 −P3 2λP1 + P0 − P2 In −2λIn
In −2λIn In 0 0
0 In −2λIn 0 0




,

and



2λP5 + P4 P3/2− P5 0 In 0
P3/2− P5 P2 − P4 P1/2− P3/2 −2λIn In

0 P1/2− P3/2 P0 − P2 In −2λIn
In −2λIn In 0 0
0 In −2λIn 0 0



,
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are symmetric strong linearizations of P (λ).
Remark 3. Here, we outline a method for constructing strong linearizations of

the matrix polynomial (3.21) using the techniques introduced in this section for the
matrix polynomial (3.26). First, notice that the following well-known relations between
Chebyshev polynomials of the first- and second-kind hold:

Tj(λ) = (Uj(λ)− Uj−2(λ))/2 with j ≥ 1,

Tj(λ) = λUj−1(λ)− Uj−2(λ) with j ≥ 1, and

Tj(λ) = Uj(λ) − λUj−1(λ),

where we set U−1 := 0 and U−2 := 0, and thus, we may write P (λ) as

P (λ) =

d−1∑

k=0

(λFk + Ek)Uk(λ).

more, using Lemma 3.6, we then may write P (λ) as

P (λ) =

µ∑

i=0

ǫ∑

j=0

(λAij +Bij)Ui(λ)Uj(λ),

with ǫ + µ = deg(P (λ)) − 1. Hence, we can construct strong linearizations of P (λ)
based on a Chebyshev pencils as in (3.27). For example, consider the n × n matrix

polynomial P (λ) =
∑d=5

k=0 PkTk(λ). We may write

P (λ) =(λP5 + P4/2)U4(λ) + (P3/2− P5)U3(λ) + (P2/2− P4/2)U2(λ)+

(P1/2− P3/2)U1(λ) + (P0 − P2/2)U0(λ).

Then, using Lemma 3.6 we may write

P (λ) =(λP5 + P4/2)(U2(λ)U2(λ) − U1(λ)U1(λ))+

(P3/2− P5)(2λU1(λ)U1(λ)− U1(λ)U0(λ)− U0(λ)U1(λ))+

(P2/2− P4/2)(U2(λ)U0(λ)/2 + U0(λ)U2(λ)/2)+

(P1/2− P3/2)2λU0(λ)U0(λ) + (P0 − P2/2)U0(λ)U0(λ).

Finally, using this last expansion for P (λ), it may be easily checked that the pencil



λP5 + P4/2 0 (P2 − P4)/4 In 0
0 λ(P3 − 3P5)− P4/2 −P3/2 + P5 −2λIn In

(P2 − P4)/4 −P3/2 + P5 λ(P1 − P3) + P0 − P2/2 0 −2λIn
In −2λIn In 0 0
0 In −2λIn 0 0




is a strong linearization of P (λ). Additionally, notice that this linearization is sym-
metric whenever P (λ) is symmetric.

4. One-sided factorizations, eigenvector formulas, and recovery proce-

dures for minimal indices and minimal bases. In this section, we show that
any Chebyshev pencil and its reversal satisfy simple one-sided factorizations. Using
these factorizations, we show that the eigenvectors (when P (λ) is regular), minimal
indices, and minimal bases (when P (λ) is singular) of P (λ) are related to those of
any Chebyshev pencil in a simple way. This, in turn, will allow us to easily recover
eigenvectors, minimal indices, and minimal bases of P (λ) from those of Chebyshev
pencils.
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4.1. One-sided factorizations. Let us start by considering the unimodular
matrix polynomials constructed in the proof of Theorem 3.4 to show that L(λ) is a
linearization of P (λ). These are

U(λ) =



Iµm 0 −Z(λ)
0 0 Iǫn
0 Im −Y (λ)





Mµ(λ)

T ⊗ Im 0

Π
(j)
µ (λ)T ⊗ Im 0

0 Iǫn


 =



Mµ(λ)

T ⊗ Im −Z(λ)
0 Iǫn

Π
(j)
µ (λ)T ⊗ Im −Y (λ)


 ,

and

V (λ) =

[
Mǫ(λ)⊗ In Π

(i)
ǫ ⊗ In 0

0 0 Iµm

]


0 Iǫn 0
0 0 In

Iµm 0 −X(λ)


 =

[
0 Mǫ(λ)⊗ In Π

(i)
ǫ ⊗ In

Iµm 0 −X(λ)

]
,

where the matrix polynomials X(λ), Y (λ), and Z(λ) are defined in (3.19). Addition-
ally, let the last block column and the last block row of V (λ) and U(λ) be denoted
by H(λ) and G(λ), respectively. Explicitly, these are

H(λ) =

[
Π

(i)
ǫ (λ) ⊗ In

−(Mµ(λ)
T ⊗ Im)(λM1 +M0)(Π

(i)
ǫ (λ)⊗ In)

]
, (4.1)

and

G(λ) =
[
Π

(j)
µ (λ)T ⊗ Im −(Π

(j)
µ (λ)⊗ Im)(λM1 +M0)(Mǫ(λ)⊗ In)

]
. (4.2)

In Theorem 4.1, we show that any Chebyshev pencil (3.1) satisfies simple left-
sided and right-sided factorizations.

Theorem 4.1. Let L(λ) be the Chebyshev pencil (3.1), P (λ) be the matrix poly-
nomial in (2.1), and H(λ) and G(λ) be the matrix polynomials in (4.1) and (4.2).
The following relations hold:

L(λ)H(λ) = eµ+1 ⊗ P (λ) and G(λ)L(λ) = eTǫ+1 ⊗ P (λ), (4.3)

where eℓ denotes the ℓth column of the d× d identity matrix (d := ǫ+ µ+ 1).
Proof. From the linearization equation (2.4), we have that

L(λ)H(λ) = U(λ)−1(ed ⊗ P (λ)) and G(λ)L(λ) = (eTd ⊗ P (λ))V (λ)−1.

We thus need to establish that U(λ)−1(ed⊗P (λ)) = eµ+1⊗P (λ) and (eTd⊗P (λ))V (λ)−1

= eTǫ+1 ⊗ P (λ). Indeed, we have

U(λ)−1(ed ⊗ P (λ)) =

[
V

(j)
µ (λ)T ⊗ Im

Iǫn

]

Iµm Z(λ) 0
0 Y (λ) Im
0 Iǫn 0


 (ed ⊗ P (λ)) =

[
V

(j)
µ (λ) ⊗ Im

Iǫn

]
(eµ+1 ⊗ P (λ)) = eµ+1 ⊗ P (λ),
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and

(eTd ⊗ P (λ))V (λ)−1 =(eTd ⊗ P (λ))




0 X(λ) Iµm
Iǫn 0 0
0 In 0



[
V

(j)
ǫ (λ)

Iµm

]
=

(eTǫ+1 ⊗ P (λ))

[
V

(j)
ǫ (λ)

Iµm

]
= eTǫ+1 ⊗ P (λ).

Let us now consider the unimodular matrix polynomials

Û(λ) =




0 0 Iǫn
0 Iµm −Ẑ(λ)

Im 0 −Ŷ (λ)






revµΠ

(j)
µ (λ)T ⊗ Im 0

N
(j)
µ (λ)T ⊗ Im 0

0 Iǫ


 =




0 Iǫn

N
(j)
µ (λ)T ⊗ Im −Ẑ(λ)

revµΠ
(j)
µ (λ)T ⊗ Im −Ŷ (λ)


 ,

and

V̂ (λ) =

[
revǫΠ

(i)
ǫ (λ) ⊗ In N

(i)
ǫ (λ)⊗ In 0

0 0 Iµm

]


0 0 In
Iǫn 0 0

0 Iµm −X̂(λ)


 =

[
N

(i)
ǫ (λ) ⊗ In 0 revǫΠ

(i)
ǫ (λ) ⊗ In

0 Iµm −X̂(λ)

]
,

constructed in the proof of Theorem 3.4 to show that rev1L(λ) is a linearization of

revdP (λ), where the matrix polynomials X̂(λ), Ŷ (λ), and Ẑ(λ) are defined in (3.20).

The last block column and the last block row of V̂ (λ) and Û(λ) are given by

Ĥ(λ) =

[
revǫΠ

(i)
ǫ (λ) ⊗ In

−(N
(j)
µ (λ)T ⊗ Im)(λM0 +M1)(revǫΠ

(i)
ǫ (λ)⊗ In)

]
, (4.4)

and

Ĝ(λ) =
[
revµΠ

(j)
µ (λ)T ⊗ Im −(revµΠ

(j)
µ (λ)T ⊗ Im)(λM0 +M1)(N

(i)
ǫ (λ) ⊗ In)

]
,

(4.5)
respectively. Finally, let us define the following vector

ω̂
(i)
k =

[
ω
(i)
k · · · ω

(i)
1 ω

(i)
0 0 · · · 0

]T
∈ C

d×1, with i ∈ {1, 2},

where the scalars ω
(i)
0 , ω

(i)
1 , . . . , ω

(i)
k are defined in Lemma 3.2.

In Theorem 4.2, we show that the reversal of any Chebyshev pencil also satisfies
simple left-sided and right-sided factorizations.

Theorem 4.2. Let L(λ) be the Chebyshev pencil (3.1), P (λ) be the matrix poly-

nomial in (2.1), and Ĥ(λ) and Ĝ(λ) be the matrix polynomials in (4.4) and (4.5).
The following relations hold:

rev1L(λ)Ĥ(λ) = ω̂(j)
µ ⊗ revdP (λ) and Ĝ(λ)rev1L(λ) = (ω̂(i)

ǫ )T ⊗ revdP (λ). (4.6)
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Proof. From the linearization equation (2.5), we have that

rev1L(λ)Ĥ(λ) = Û(λ)−1(ed⊗revdP (λ)) and Ĝ(λ)rev1L(λ) = (eTd ⊗revdP (λ))V̂ (λ)−1.

We thus need to establish that Û(λ)−1(ed ⊗ revdP (λ)) = ω̂
(j)
µ ⊗ revdP (λ) and (eTd ⊗

revdP (λ))V̂ (λ)−1 = (ω̂
(i)
ǫ )T ⊗ revdP (λ). Indeed, we have

Û(λ)−1(ed ⊗ revdP (λ)) =

[
W

(j)
µ (λ)T ⊗ Im

Iǫn

]

Ŷ (λ) 0 Im
Ẑ(λ) Iµm 0
Iǫn 0 0


 (ed ⊗ revdP (λ)) =

[
W

(j)
µ (λ)T ⊗ Im

Iǫn

]
(e1 ⊗ revdP (λ)) = ω̂(j)

µ ⊗ revP (λ),

and

(eTd ⊗ revdP (λ))V̂ (λ)−1 =(eTd ⊗ revdP (λ))




0 Iǫn 0

X̂(λ) 0 Iµm
In 0 0



[
W

(i)
ǫ (λ)T ⊗ In

Iǫn

]
=

(eT1 ⊗ revP (λ))

[
W

(i)
ǫ (λ)T ⊗ In

Iǫn

]
= (ω̂(i)

ǫ )T ⊗ revdP (λ).

4.2. Minimal indices and bases. In this section, we assume that the matrix
polynomial P (λ) is singular. The following theorem shows that the minimal indices
and minimal bases of P (λ) and those of any of its Chebyshev linearizations are closely
related.

Theorem 4.3. Let P (λ) be a matrix polynomial as in (2.1), L(λ) be a Chebyshev
linearization of P (λ) as in (3.1), and H(λ) and G(λ) be the matrix polynomials in
(4.1) and (4.2), respectively.

(a1) Suppose that {z1(λ), z2(λ), . . . , zp(λ)} is any right minimal basis of L(λ), with
vectors partitioned into blocks conformable to the blocks of L(λ), and let xℓ(λ)
be the (ǫ+1)th block of zℓ(λ), for ℓ = 1, 2, . . . , p. Then {x1(λ), x2(λ), . . . , xp(λ)}
is a right minimal basis of P (λ).

(a2) Suppose that {x1(λ), x2(λ), . . . , xp(λ)} is any right minimal basis of P (λ).
Then {H(λ)x1(λ), H(λ)x2(λ), . . . , H(λ)xp(λ)} is a right minimal basis of
L(λ).

(a3) If 0 ≤ ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫp are the right minimal indices of P (λ), then

0 ≤ ǫ1 + ǫ ≤ ǫ2 + ǫ ≤ · · · ≤ ǫp + ǫ

are the right minimal indices of L(λ).
(b1) Suppose that {w1(λ)

T , w2(λ)
T , . . . , wq(λ)

T } is any left minimal basis of L(λ),
with vectors partitioned into blocks conformable to the blocks of L(λ), and let
yℓ(λ)

T be the (µ + 1)th block of wℓ(λ)
T , for ℓ = 1, 2, . . . , q. Then {y1(λ)T ,

y2(λ)
T , . . . , yq(λ)

T } is a left minimal basis of P (λ).
(b2) Suppose that {y1(λ), y2(λ), . . . , yq(λ)} is any left minimal basis of P (λ). Then

{y1(λ)TG(λ), y2(λ)
TG(λ), . . . , yq(λ)

TG(λ)} is a left minimal basis of L(λ).
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(b3) If 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µq are the left minimal indices of P (λ), then

0 ≤ µ1 + µ ≤ µ2 + µ ≤ · · · ≤ µq + µ

are the left minimal indices of L(λ).
Proof. We prove parts (a1), (a2) and (a3), since the proofs for parts (b1), (b2) and

(b3) are similar. It follows from (4.3) that x(λ) ∈ Nr(P ) if and only if H(λ)x(λ) ∈
Nr(L). As a consequence of the structure of H(λ) in (4.1), we also see that x(λ) is a
vector polynomial if and only if z = H(λ)x(λ) is a vector polynomial. Additionally,
the structure of H(λ) implies that a list of vectors x1(λ), . . . , xj(λ) ∈ Nr(P ) is linearly
independent if and only if the list z1(λ) = H(λ)x1(λ), . . . , zj(λ) = H(λ)xj(λ) is
linearly independent. Therefore, the linear map z(λ) = H(λ)x(λ) induces a one-to-
one correspondence between vector polynomial bases of Nr(L) and vector polynomial
bases of Nr(P ).

To complete the argument, we first show that for a nonzero vector polynomial
x(λ) ∈ Nr(P ) it holds that deg(H(λ)x(λ)) = deg(x(λ)) + ǫ. To see why the previous
uniform degree-shifting property holds, we first note that there are only two different
types of blocks in H(λ)x(λ), namely, Tℓ(λ)x(λ) with 0 ≤ ℓ ≤ ǫ, and

−(Mµ(λ)
T ⊗ Im)(λM1 +M0)(Π

(i)
ǫ (λ)⊗ In)x(λ) = −X(λ)x(λ).

Clearly, the maximum degree among all blocks of the form Tℓ(λ)x(λ) is deg(x(λ)) +
ǫ, attained only in the topmost block of H(λ)x(λ). We now need to prove that
deg(X(λ)x(λ)) ≤ deg(x(λ)) + ǫ.

Since x(λ) ∈ Nr(P ), pre- and post-multiplying (4.3) by λµ and x(λ), respectively,
we must have that

L(λ)

[
λµΠ

(i)
ǫ (λ) ⊗ x(λ)

−λµX(λ)x(λ)

]
= eµ+1 ⊗ (λµP (λ)x(λ)) = 0.

Furthermore, taking the d-reverse in (4.6) we similarly obtain that

L(λ)

[
λµΠ

(i)
ǫ (λ)⊗ x(λ)

−(revµ−1N
(j)
µ (λ)T ⊗ Im)(λM1 +M0)(Π

(i)
ǫ (λ) ⊗ x(λ))

]
=

ω̂(j)
µ ⊗ (P (λ)x(λ)) = 0,

where we have used the fact that ǫ + µ = d − 1 and that deg(N
(j)
µ (λ)) ≤ µ − 1 (see

Lemma 3.3). Subtracting the two previous equations yields

L(λ)

[
0

−λµX(λ)x(λ) + (revµ−1N
(j)
µ (λ)T ⊗ Im)(λM1 +M0)(Π

(i)
ǫ (λ)⊗ x(λ))

]
= 0,

which implies that

(C(j)
µ (λ)T ⊗ Im) (−λµX(λ)x(λ)+

(revµ−1N
(j)
µ (λ)T ⊗ Im)(λM1 +M0)(Π

(i)
ǫ (λ)⊗ In)x(λ)

)
= 0.

Since C
(j)
µ (λ)T ⊗ Im has full column rank, we may conclude that

λµX(λ)x(λ) = (revµ−1N
(j)
µ (λ)T ⊗ Im)(λM1 +M0)(Π

(i)
ǫ (λ) ⊗ x(λ)).

Inspecting the degrees in the equation above we finally obtain that deg(X(λ)x(λ)) ≤
deg(x(λ)) + ǫ.
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4.3. Eigenvectors. In this section, we assume that the matrix polynomial P (λ)
is regular. In the following theorem, we show that the eigenvectors of P (λ) and
those of any of its Chebyshev linearizations are closely related. In addition, we show
how to recover the eigenvectors of P (λ) from those of its linearizations without any
computational cost. The existence of an eigenvector recovery procedure is essential
for a linearization to be relevant for applications. We start by considering eigenvectors
associated with finite eigenvalues.

Theorem 4.4. Let P (λ) be a regular matrix polynomial as in (2.1), L(λ) be a
Chebyshev linearization as in (3.1), and H(λ) and G(λ) be the matrix polynomials in
(4.1) and (4.2), respectively.

(a1) If z ∈ Fnd×1 is a right eigenvector of L(λ) with finite eigenvalue λ, then the
(ǫ+ 1)th block of z is a right eigenvector of P (λ) with finite eigenvalue λ.

(a2) If x ∈ Fn×1 is a right eigenvector of P (λ) with finite eigenvalue λ, then H(λ)x
is a right eigenvector of L(λ) with eigenvalue λ.

(b1) If w∗ ∈ F
1×nd is a left eigenvector of L(λ) with finite eigenvalue λ, then the

(µ+ 1)th block of w∗ is a left eigenvector of P (λ) with finite eigenvalue λ.
(b2) If y∗ ∈ F1×n is a left eigenvector of P (λ) with finite eigenvalue λ, then y∗G(λ)

is a left eigenvector of L(λ) with eigenvalue λ.

Proof. We focus on the right eigenvectors, since the results for the left eigenvec-
tors follow similar arguments. From (4.3) we immediately obtain that x is a right
eigenvector of P (λ) with finite eigenvalue λ if and only if z = H(λ)x is a right eigen-
vector of L(λ) with finite eigenvalue λ. The (ǫ + 1)th block entry of H(λ) is equal
to the identity matrix (recall that T0(λ) = 1), and thus, we obtain that the right
eigenvectors of P (λ) may be recovered from the (ǫ+ 1)th blocks of those of L(λ).

We now consider the eigenvectors associated with eigenvalues at infinity.

Theorem 4.5. Let P (λ) be a regular matrix polynomial as in (2.1), L(λ) be a

Chebyshev linearization as in (3.1), and Ĥ(λ) and Ĝ(λ) be the matrix polynomials in
(4.4) and (4.5), respectively.

(a1) If z ∈ Fnd×1 is a right eigenvector of L(λ) for the eigenvalue ∞, then

(−1)ǫ
∑ǫ

ℓ=0 ω
(i)
ℓ zℓ is a right eigenvector of P (λ) for the eigenvalue ∞.

(a2) If x ∈ Fnd×1 is a right eigenvector of P (λ) for the ∞ eigenvalue, then Ĥ(0)x
is a right eigenvector of L(λ) for the eigenvalue ∞.

(b1) If w∗ ∈ F1×nd is a left eigenvector of L(λ) for the eigenvalue ∞, then

(−1)µ
∑µ

ℓ=0 ω
(j)
ℓ w∗

ℓ is a left eigenvector of P (λ) for the ∞ eigenvalue.

(b2) If y∗ ∈ F1×n is a left eigenvector of P (λ) for the ∞ eigenvalue, then y∗Ĝ(0)
is a left eigenvector of L(λ) for the eigenvalue ∞.

Proof. Again, we focus only on right eigenvectors. Recall that a regular matrix
polynomial P (λ) has an infinite eigenvalue if and only if revdP (λ) has an eigenvalue
at zero, and the corresponding right eigenvectors of P (λ) at the eigenvalue ∞ are just
the right null vectors of revdP (0). From (4.6) we immediately obtain that x is a right

eigenvector of revdP (λ) with eigenvalue λ = 0 if and only if z = Ĥ(0)x is a right
eigenvector of rev1L(λ) with eigenvalue λ = 0. Finally, using (3.15) we obtain

(−1)ǫ
ǫ∑

ℓ=0

ω
(i)
ℓ zℓ = (−1)ǫ

ǫ∑

ℓ=0

ω
(i)
ℓ revkTk(λ)x = x,
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if i = 1, and

(−1)ǫ
ǫ∑

ℓ=0

ω
(i)
ℓ zℓ = (−1)ǫ

ǫ∑

ℓ=0

ω
(i)
ℓ revkUk(λ)x = x,

if i = 2.

5. Conclusion and future work. In this article, we have proposed a new ap-
proach for constructing strong linearizations for polynomials expressed in Chebyshev
bases, which we call Chebyshev pencils. These Chebyshev pencils have block anti-
symmetric structure, which affords us significant flexibility to distribute the coeffi-
cients of the polynomial within the diagonal block of the linearization. The structure
provides a clear separation between the parts containing the coefficients of the poly-
nomial and the parts containing the recurrence relations of the Chebyshev bases. A
novelty of such a separation is that this allows us to construct linearizations having
a mixture of products of first- and second-kind Chebyshev polynomials. We suspect
that this is not the end of the story, and that further generalizations of this idea
will give rise to new linearizations based on the mixing of other polynomial bases.
We have established the strong linearization property for the Chebyshev pencils by
embedding certain parts of the pencil (and their reversals) in unimodular matrices,
giving us a uniform way to construct linearizations of polynomial matrices. From
these unimodular matrices, we are then able to linearize a polynomial in one of the
two Chebyshev bases by factoring the Chebyshev polynomials in terms of products of
lower degree Chebyshev polynomials. We have also given the relationships between
the eigenvectors, minimal indices, and minimal bases of the linearization and those
of the matrix polynomial. These procedures give simple ways in which to recover
the complete eigenstructure of a polynomial matrix from the eigenstructure of the
Chebyshev pencil. Our approach is applied only to matrix polynomials expressed in
Chebyshev bases. However, it is easily seen that the general approach is applicable
to other polynomial bases, and we expect that generalizations for other bases will be
seen in the coming years.

Furthermore, besides their intrinsic matrix polynomial theoretical interest, the
results obtained in Section 4 about one-sided factorizations find applications in nu-
merical analysis, e.g., for conditioning [17] and backward error analysis [16]. In addi-
tion, it is well known that different linearizations of the same matrix polynomial can
have widely varying eigenvalue condition numbers or produce widely varying back-
ward errors. For this reason, the analysis of the influence of the linearization process
presented in this work on the accuracy and stability of the computed solution of a
polynomial eigenvalue problem will be the subject of future work.
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