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1. INTRODUCTION

In [Ja] Janko presented detailed evidence for the existence of a new finite sim-
ple group of ordef?1.33.5.7.113.23.29.31.37.43. Subsequently this group, now
calledJ4, was constructed (with the extensive use of machine) by Conway, Nor-
ton, Parker and Thackray (see [NO0]), and recently a computer-free construction
has been given by Ivanov and Meierfrankenfeld [IvMe].

A more recent development arising out of Buekenhout [Bu], Ronan and Smith
[RoSm] and Ronan and Stroth [RoSt] is the study of geometries related to various
of the sporadic simple groups. Of course, the motivation for such a programme is
to obtain a better understanding of this assorted menagerie of groups and (hope-
fully) unify their study. In [RoSm] one such geometry, the so-called maximal
2-local geometry fod, is described. This paper, together with [RW1] and [RW2],
is devoted to an exhaustive and detailed study of the structure of the maximal
2-local geometry fod, from a geometric slant. A major focus is the point-line
collinearity graph associated with this geometry which has 173,067,389 vertices.
We remark that the action @f on this graph yields the smallest faithful permu-
tation representation fal; . Also we note that the work in this paper, [RW1] and
[RW2] does not rely on any machine calculations. In fact, for our investigations
it is not necessary to assume that our grouflyiswe only need assume certain
local geometric data as listed in Hypothesis 1.1 below. Moreover, as will be seen,
we shall be studying rank 3 geometries (the maximal 2-local geometdy toas
rank 4 plus a "ghost node”).

Our group theoretic notation is standard and it, together with additional geo-
metric notation, will be reviewed towards the end of this section. We now intro-
duce our main hypothesis.

Hypothesis 1.1I" is a residually connected string geometry with type{€et, 2}
andG is a flag transitive subgroup @&futl” which satisfy the following:-

(i) for a€ g, 5 is the rank 2 geometry of trios and sextets (defined on the
Steiner systen$(5,8,24)), G5/Q(a) = M24 andQ(a) is the 11-dimensiond¥s-
Todd module; and,

(ii) for X € ', I'x is the rank 2 geometry of duads and hexads (defined on
the Steiner systen$(3,6,22)), Gx/Q(X) = My, : 2 and Q(X) = 217123 with
02(Gx) = 02(Q(X)) an extraspecial group of ordat+12,



Assume Hypothesis 1.1 holds. We shall use the following names for the ele-
ments ofl".

type 0 1 2
0 O 0
name  point line plane

Letae g, X € M2 and putH = G,/Q(a) (= M24) andK = Gx /Q(X) (= M22:
2). We recall that the geometry of trios and sextets consists of 3795 trios and
1771 sextets with, by definition, a trio being incident with a sextet whenever the
three octads forming the trio may be obtained from a pairing of the tetrads of
the sextet. While the geometry of duads and hexads has 231 duads (that is, 2-
element subsets of the 22-element set) and 77 hexads and incidence here is just
(set-wise) containment. Now the stabilizerbhof a trio (respectively, a sextet)
is isomorphic ta28 : (L3(2) x Sg) (respectively2® : (3'Ss)), and the stabilizer in
K of a duad (respectively, a hexad) is isomorphi2ta S5 (respectively,2* :
$). As a consequence of these observations and the flag transitiviywef see
that, inT 4, lines correspond to trios and planes correspond to sextets ahg, in
points correspond to hexads and lines correspond to duads. Further(Qgajce
is isomorphic to the 11-dimensionisllhbs-Todd module, whem, |, X is a maximal
flag, Q(a)|c,x ~ 1\6\4 andQ(a)|g, ~ 3.1\3.2\1.2 (see [MeSt]). Thus,

Cox (02(Q(X))/Z(02(Q(X))) < Q(X).

To prevent proliferation of notation, we adhere to the following convention: when
working in 5 (a € INp) we identify the lines and planes with the trios and sex-
tets of the Steiner syste®(5,8,24); and inT'x (X € I') the points and lines

will be identified with the hexads and duads of the Steiner sy§&y6,22). In
analysing the many configurationslig (a € I'g) that confront us, extensive use is
made of Curtis’'s MOG [Cu2]. We recommend the reader to have this miraculous
calculating device to hand.

Next we discuss the point-line collinearity graghof I'. The vertex set is
just o and two distinct verticea andb are adjacent irGg if and only if a and
b are collinear points ith g (that is, there exists a line i incident with botha
andb). We recall, sincd is a residually connected string geometry, tliyais a
connected graph. Far a vertex ofG, andi € N, Aj(a) is the set of vertices (points



of ") distance in G from a. Our first theorem gives a numerical summary of our
results.

Theorem A Suppose Hypothesis 1.1 holds anddédte a fixed point ofG. Then
(i) |F| =173 067,389,
(i) {a},A1(a),A3(a),035(a),A3(a),AL(a) andA3(a) are the orbits 06, onTo;
(iii) Az(a) = Al(a) ULs(a) ULS(a), Az(a) = Aj(a) ULS(a); and
(iv) |A1(a)] = 22.3.5.11.23, |Al(a)| = 24.7.11.23, |A3(a)| = 27.3.5.7.11.23,
|A3(a)| = 211.32.7.11.23, |Al(a)| = 2!1.3.5.7.11.23and|A%(a)| = 218.32.5.7.

Further, the number of edges between @Ggeorbits is given in Figure 1.2
below.



2,808

7,296

Figure 1.2



A very explicit and detailed description of the edges@fin terms of the
geometryl, is given below in Theorems C-G. A geometric definition of (g
orbits given in Theorem A appears later in this section.

In [Ivl] Ivanov gives partial results on the number of edges between points
of certainGa-orbits of G (G andl™ as in Theorem A). See also a more recent
monograph [Iv2] which elaborates upon the material in [Ivl]. The grgptas
also been studied by Meierfrankenfeld [Me].

From Theorem A we may readily deduce Theorem B.

Theorem B If Hypothesis 1.1 holds, the@ = J, andl is isomorphic to a rank 3
subgeometry of thé; maximal 2-local geometry.

We note that the main result of [Iv1] follows from Theorem B.

Before presenting Theorems C-G we introduce some notation.

Geometric Notation

Supposd” = (I, T, %) is a geometry ovef0,1,...,n—1}; sol is a rankn— 1 ge-
ometry with type mag and symmetric incidence relatien Let G be a subgroup
of Autl", the automorphism group of Fori € {0,1,...,n—1},xelandZCT,

i ={yerl|t(y) =i} (the objects of of typei) and
Mx = {y € T|x*Yy} (the residue geometry aj.

We usel (Z) to denote the set of objects hincident with all objects irnx
andrlij(Z) denotes the sét(Z) Nl;. If Z = {xy,...,X}, then we sometimes write
(X1, ...,Xk) andl(Xg, ..., X) instead of” ({x1, ...,X}) andl'j ({X1, ..., X}). By Gs
or Gy,..x, We mean the subgroup @ fixing every object in~ = {x,...,x}. For
x eI we define,

Q(x) = {g € Gy|g fixes every object i x}.

Clearly Q(x) is a normal subgroup dby; if H < Gx we denoteHQ(x)/Q(x), the
image ofH in G/Q(x), by H**



Now assume thdip andl1 are the "points” and "lines” of . The point-line
collinearity graphg(I') of I' is the graph whose vertex setfig with two vertices
being adjacent whenever they are collinear poinfs.iVe used( , ) to denote the
usual distance i; (") and so forx € Ny,

Ai(x) = {y € Told(y,x) = i}.

When Hypothesis 1.1 holds we writg instead ofG ().

For x,y € o we put{x,y}+ = A;(x) NA;1(y) and definez;(x) = {g € G«|g
fixes every point imd;(X) }.

Suppose two distinct collinear points bfare always collinear with a unique
line. (This will be the case when Hypothesis 1.1 pertains - see Lemma 3.5) Let
andy be two collinear points df ; the unique line collinear witlk andy will often
be denoted by + vy (respectivelyy + X) if we are viewing the line as a line iny
(respectivelyly).

Letabe a fixed point of;. Supposel is some other point off with d ¢ A1 (a),
and letl € '1(d). The point distribution of the linkis a sequence,
101120313031 47356

which means thdtp(l) (the points of” incident withl) consists of; A;(a) points,
io A3(a) points,iz A3(a) points,is A3(a) points,is A(a)points ande A3(a) points.
Wheneveii,, = 0 we omit that particular term from the sequence.

Theorem C Ford ¢ A%(a), Gag has 4 orbits ori'1(d) with the following point
distribution:-

ORBIT [ ORBIT SIZE | POINT DISTRIBUTION
Bo 15 301243
B1 2880 1A3AN]
B2 180 3n12A2
Bs 720 1A14n2

Theorem D Let d € A3(a). ThenGyq has 10 orbits orff1(d) with the following
point distribution:-



ORBIT ORBIT SIZE | POINT DISTRIBUTION
(BoBoPo {!}) 1 3nT2n3
(BoB2B2,02) 18 171412
(BoB3Ps, a3) 24 1034A3
(B1B1B1,00) 1536 103403
(B1B1P2,01) 288 10320321,
(B1B1Bs, o) 1152 10340}
(B1B1P3, a1) 576 102403
(B2B2PB2, a2) 24 30321}
(B2P3Ps, 1) 144 303203
(B3BaPBs, a3) 32 1A%4A1

Theorem E For d € A3(a), Gag has 9 orbits o 1(d) with the following point
distribution:-

ORBIT ORBIT SIZE | POINT DISTRIBUTION
(Bo, *) 5 171403
(Bo, **) 10 303203
(B1;215;215;18) 960 303213
(B1;215;215;2214) 1920 103201212
(B2;2%18;18) 60 1AS20321,
(B2; 2% 2214, 221%) 120 3A32A]
(B3; 18;18;18) 160 20330%
(Bs; 2214, 221%;18) 240 1A5405
(B3; 2214, 2214, 2214 320 1A3403

Theorem F Ford € Al(a), Gag has 10 orbits orff 1(d) with the following point
distribution:-



ORBIT | ORBIT SIZE | POINT DISTRIBUTION
{1} 1 30521\
(Bo, 012) 6 105407
(Bo,03) 8 1A540%
(B1,00) 2304 13201202
(By,a1) 576 3ni2n2
(B2,00) 144 2033A]
([32,02) 36 lA%ZAgZA%
(B3, ap) 384 173402
(Bs,01) 288 10340}
(B3, a3) 48 20I3A3

Theorem G For d € A3(a), Gag has 6 orbits orf1(d) with the following point

distribution:-

ORBIT | ORBIT SIZE | POINT DISTRIBUTION
S 253 175412

Dih(24) 253 303242
S 253 3ni2A2

Dih(12) 506 173403
S 1012 1ALAn2

Lo x L 1518 1A32A121%

The situations covered in Theorems C-G will be examined later in greater de-
tail, at the appropriate moment. However, we discuss briefly some of the notation
appearing in these theorems.

In Theorem CG:J is the stabilizer of a plane (sextet) @} = M4 and the
orbits of Gaq on the lines in"1(d) are just the orbits of the stabilizer of a sextet
upon the trios ir5(5, 8, 24) (see (2.4) for the definition d3i( , )). While in The-
orem D,G:J is the stabilizer of a sextet line i@ = My, - a sextet line consists
of a certain triple of sextet§Xs, X2, X3} which together determine a unique trio,

The orbits 0fGaq on T 1(d) are parameterized i 3; Bk, 0m) meaning that, up to
a possible reordering ofy, Xp, X3, a given trio is inBi(d, Xy), Bj(d, X2), Bk(d, X3)
andam(d,l) (see (2.2) for the definition afy( , )). Turning to Theorem E, there
we have thaG:J is the centralizer itS;3(= My4) of a certain involutiort*. Now
T* (as a permutation iM»4) has cycle type!? andCg.s(T*) is also a subgroup



of the stabilizer of a sexte{. So in this case the orbits @,q onI1(d) are pa-
rameterized by(f3;;21;21;2'1) to indicate that the trio is if§j(d, X) and that
the three octads of the trio cut the partition of 24 points into 12 pairs as given (in
some order). The first two orbits listed are not easily described in this scheme,
hence the ad hoe, *+. In Theorem FG:J turns out to be the stabilizer of a trio
| and sexteX wherel andX are incident. Thus we have ofq-orbit onl"1(d),
{I'}, while the remainder are described(fly,aj) meaning a trio is iffgi (d, X) and
aj(d,l).

Finally we come to Theorem G. Here we he@g = | »(23). From the point
of view of the Steiner syster§(5, 8,24) the maximal subgroup,(23) of M2y is
"invisible” in the sense that it does not leave invariant any combinatorial configu-
ration related to the Steiner system. Accordingly we are forced to label the orbits
for Gaqg onT1(d) in terms of their stabilizer structure (May).

Next we define th&,-orbits mentioned in Theorem A.

Definition 1.4 Let a be a fixed point ofj.

(i) Ad(a) = {ce Ayx(a)|l2(a,c) # 0}.

(if) A3(a) = {c ol there existdb € {a,c}+ such thab+c € ay(b,b+a)}.
(i) A3(a) = {c e Ig| there existd € {a,c}* such thab+c € ag(b,b+a)}.
(iv) Al(a) = {d € I'q| there existe € Al(a) such that+d € Bi(c,X(c,a))}.
(V) A%(a) = {d € I'g| there exists € A3(a) such that+d € (B1fB1B1,00)}-

We now review the contents of this paper. Section 2 establishes certain basic
notation and assembles relevant properties of the residue geometries. The various
subsets (of the set of trios) (a,l) andfi(a, X) are continually being scrutinized
throughout this work. This section also lays the groundwork, when studying the
residue of a plane, for our later study of trianglesgin In Section 3 we start to
array several important results that we shall heavily rely upon. First and foremost
we mention the involutions(X) and Lemma 3.3. The fact that, from the point of
view of I', G has two different types of triangles ( sparse and non-sparse triangles)
is revealed in Lemmas 3.8 and 3.9. We emphasise the value of Lemma 3.9 which
asserts that if a triangle b, c in G when viewed froma is a sparse (non-sparse)
triangle, then the same is also true when viewed floandc. This allows us
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to move our information around in a "crab-like” fashion. Two other results in
Section 3 worth mentioning are that a linelins incident with exactly 5 points
(Lemma 3.1) and two collinear points indetermine a unique line (Lemma 3.5).
After analysingA1(a) (a, a fixed point ofG) in Theorem 3.6, we begin disembow-
elling Ax(a). First, we investigatAl(a) obtaining, in Theorem 4.3, all we need to
know about thig5,-orbit without too much effort. On the other hand the analysis
of A%(a} is much more demanding but the resulting configurations are very pretty
(see Theorem 4.7). We remark that the geometric structures associatéd (aith
are pivotal in our study ofAz(a). We close Section 4 with Theorem 4.8 which
establishes some easy propertiesﬁ@(fa) - we will return later to study this orbit
again in [RW2].

In Section 5 we consider the edges betwagfa) andA3(a) UA3(a). We
particularly mention Theorem 5.2 in which it is shown that there are no edges in
G betweem\}(a) points andA3(a) points.

We follow the ATLAS [A] conventions for describing groups; our other group
theoretic notation is standard as given in, for example, [Go], [Su]. We end this
section by showing that Theorems C-G, together with other results, yield the data
displayed in Figure 1.2.

By Theorem 3.6(i)A1(a)| = 22.3.5.11.23= 15,180,

(Using Theorem C),

Al(a) — Dq(a) : 15x 3=45

a) — Al(a) : 15+ 180x 2 =375

a) — A5(a) : 180x 2+ 720x 4 = 3240
a) — Al(a) : 2880x 4= 11,520

NN N -
A~~~

2(a) — Nq(a): 18

As(a) — Al(a) : 24+3=27

A5(a) — A5(@) 1 144x 24+ 18x 3+24x 2+ 24x 3+ 1 =463
As(a) — A3(a) : 288x 2+ 576x 4+ 144x 2 = 3,168

A5( (@) 1 288x 2+24x 2+32x 44 1152x 4 =5,360
A3(a) — A3(a) : 1536x 4 = 6,144

(Using Theorem E)

Ad(a) — A1(a): 5

Ag(a) — A3(a) : 10x 3460+ 240= 330

A3(a) — A3(a) : 5x 3+ 10+ 960x 2+ 60+ 120x 2+ 240x 3+ 160= 3,125

11



A
A

3(a) — Al(a) 1 1920x 2+60x 2+ 120x 2+ 160x 3 = 4,680
(@) — A3(a) : 960x 2+ 1920x 2+ 320x 4 = 7,040

(Using Theorem F)

Ai(a) — Ll(a): 6

Al(a) — A5(a) : 3+ 8 x 1+ 36+ 288=335

Al(a) — A3(a) : 36x 2+ 48x 3+ 144x 2+ 2304= 2,808

Aj(@) — A3(@) 1 1+ 6 x 3+8x 3+ 36+ 48144x 2+ 288x 3+ 576x 2+
2304=4,735

Al(a) — A3(a) : 384x 4+576x 2+ 2304x 2 = 7,296

(Using Theorem G)

Ag(a) — A3(a) : 253

Ag(a) — A3(a) : 253x 3+ 506+ 1518= 2,783

A3(a) — Ai(a) : 253x 3+ 506+ 1518x 2 = 4,807

A3(a) — A3(a) : 253x 3+ 253+ 253+ 506 3+ 1012x 3+ 1518= 7,337
The edges emanating frofy (a) can now be calculated using the sizes of

Al(a), A3(a) andA3(a) (see Theorems 4.3(iv), 4.7(vi) and 4.8(ii)).

12



2. PROPERTIES OF THE RESIDUE GEOMETRIES

In our M24 related calculations we shall employ Curtis’'s MOG as described in
[Cu2]. The term "standard trio” and "standard sextet” refer, respectively, to the
following trio and sextet.

+ + | - - o O
+ + | - - o O
+ + | - - o o
+ + | - - o o
* X O]+ o
* X O+ o
* X O+ o
* X O+ o

For our M2 related calculations we will use the 22 element set formed by
removing the top row of the left-most heavy brick of the MOG.

Leta e g be fixed and seh = I';. By Hypothesis 1.1\ is isomorphic to the
geometry of trios and sextets of the Steiner system S(5,8,24) where we regard the
trios as being objects of type 1 and the sextets objects of type 2. As is well-known,
M2 = G,/Q(a) acts flag transitively upoA.

(2.1) (i) |A\1| = 3795and|Ay| = 1771
(i) Forl € Ap andX € Ay, [A2(1)| = 7 and|A1(X)| = 15.

Proof Consult [Cu2].

For distinct triosl andm there are four possible ways in which their octads
intersect. They are as below, where thg )" entry of the matrix is the number of
elements in the intersection of tit& octad ofl with the j'" octad ofm (assuming
an appropriate, fixed, labelling of the octadd ahdm).

)

4 2

To= T1

OO ®WNN
AhODNAN
AhOBNMDN
&
I
oM BNN
Ao~ BNMDN
hhOOM~D
N——
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Definition 2.2 Let | be a fixed trio in\1.
) = {me A1|]l andm haveTg-intersection matrix
(a,1) = {me A1]l andm haveT;-intersection matrix
az(a,l) = {me A4|l andm haveT,-intersection matrix3
(a,1) = {me A1]l andm haveTs-intersection matrix

Our notation here is chosen so as the subscrigt;(d, 1) is the number of
octads of m intersecting two octadsla#ach in exactly 4 elements.

(2.3)Let | be a fixed trio in\;.
(i) The Gy orbits of A; are{l}, ap(a,l), ai(a,1),02(a,1) andas(a,l).
(i) |oo(a,1)| = 2688 |ai(a,l)| = 1008 |oz(a,l)| = 42and|oz(a,l)| = 56.

Proof See Section 2, Chapter 1 of [Cul].

Let | be a trio andX be a sextet. Thehcuts the tetrads oK in one of the
following four possible ways.

4444/44
2222311111311111
44122222222
222222222222

Each of the three partitions gives the size of the non-empty intersection of an
octad ofl with each of the six tetrads &f. So, for example2222311111311111
means that one of the octadsladuts four of the tetrads of in 2 elements and
the other two each cut one tetradXfin 3 elements and the remaining 5 tetrads
in exactly one element.

Next we describe certain sets of trios which are of great importance in our
subsequent arguments.

Definition 2.4 Let X be a fixed sextet ik,
Bo(a, X) = {I € A1]l cutsX in 44|44|44}
Bi(a,X) = {l € A1]l cutsX in 222231111131111%
B2(a,X) ={I € A1|l cutsX in 44|22222222}
Bs(a,X) = {I € A1]l cutsX in 222222222222}

As an aide de memaoir, the subscriptffa, X) is the number of octads éfthat
cutXin 2222

14



(2.5)Let X be a fixed sextet ir»
(i) The Gax orbits of A1 arefo(a, X), B1(a, X), B2(a,X) andBs(a, X).
(i) |Bo(a, X)[ = 15, [B1(a, X)| = 2880 |B2(a, X)| = 180and|Bs(a, X)| = 1720

Proof See Section 2, Chapter 1 of [Cul]

Let X andY be distinct sextets. There are three possibilities for the intersection
matrix of X andY’; the (i, j ) entry being the number of elements in the intersec-
tion of theit" tetrad ofX with the jt" tetrad ofY, again assuming an appropriate
labelling of the tetrads ok andY.

N
e
N

P W PR
Wk PP

iy

|
Y
N
PR R R
e

N

N
N
N

N
N

Definition 2.6 For X a fixed sextet of\,,
Yo(a,X) ={Y € Az|X andY haveS-intersection matrik
vi(a,X) = {Y € A|X andY haveS;-intersection matrik
ya(a,X) = {Y € A|X andY haveSs-intersection matrik

15



Again we draw the reader’s attention to the following mnemonic used above: the
subscript ofy;(a, X) denotes the number of octadsandY have in common.

(2.7)Let X be a fixed sextet ir,.
(i) The Gyx orbits of Az are{X}, yo(a, X), y1(a, X) andys(a, X).
(i) [yo(a, X)| = 1440Q |y1(a,X)| = 240and|ys(a, X)| = 90.

Proof See Section 2, Chapter 1 of [Cul].

(2.8)Let X andY be sextets.

(i) If Y € yo(a, X), then of the 15 trios incident witki three are ir3(a, X) and
twelve inf1(a, X).

(i) If Y € y1(a,X), then of the 15 trios incident withf three are i3x(a, X)
and twelve inB1(a, X).

(iii) If Y € yz(a, X), then of the 15 trios incident withi one is inBg(a, X), Six
in B2(a, X) and eight inB3(a, X).

Proof A straightforward case-by-case check yields the result.

(2.9)Letl andmbe trios withm e aj(a,l) (j € {0,1,2,3}).
(i) If j € {0,1}, thenAy(l,m) = 0.
(i) If j € {2,3}, thenAz(l,m) contains a unique sextet.

Proof Observe that\y(I,m) # 0 implies that an octad df intersects the three
octads ofm in either 8/0|0 or 4|4/0. Hence (i) follows from the definition of
op(a,l) andas(a,l).

SinceG; is transitive om\1 and using (2.3)(i) there is no loss in generality in
assuming

+ +|- - ]o0o o
| + +|- -]o o
l+ 4+ |- -0 o
+ + |- - o o
+ +|- - |o o
+ +|- - |o .
m=_ . ~_ |ifmeaz(al); and
+ + - -
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if me az(a,l).

o+ o+
+I
0 o + +

1

+

+ + o ©
1

If me ax(a,l) let

* X% + +

* * + +
X =

X x| O O|lo o

X x| O O|lo o

andifme ag(a,l) let

(]
-0
O
O

* ot X X
o o + +

+ 4+ 0 o0

X X * *

Then, since a tetrad is contained in a unique sextet, we seAttlam) = {X}.

NOTATION When we havan € aj(a,l) with j € {2,3} we shall denote the
unique sextet iM\z(I, m) by X(a,|,m).

(2.10)Let X be a sextet and fike A1(X), the set of trios incident with X. Then
the orbits ofGax on A1(X) are{l}, A1(X)Naz(a,l) andA1(X) Naz(a,l) with
sizes 1, 6 and 8 respectively.

Proof Without loss of generality we taleto be the standard trio arXl the stan-
dard sextet. It is an easy matter to verify the size8diX) Nai(a,l) fori=2,3.
Recall thatG,x contains a subgroup which induc8supon the three octads of
| and also a subgroup fixing one octad gfointwise and acting as a Klein fours
group on the remaining 4 columns Xf This readily yields (2.10).

(2.11)Let X be a fixed sextet id, and letl be a trio inA\;.
(i) If I € Bo(a,X), then|az(a,l) NA1(X)| = 6 and|az(a,l) NA1(X)| =8.
(i) If 1 € B1(a,X), thenjaog(a,1) NA1(X)| =12and|as(a,l) NAL(X)| = 3.
(i) If I € Ba(a,X), then|as(a,l) NA1(X)| = 12and|az(a,l) NAL(X)| = 3.
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(iv) If I € Bs(a,X), thenjag(a,l)NA1(X)| =8, |ai(a,l)NA1(X)| =6and|az(a,l)N
A(X)|=1.

Proof This follows from the definitions using straightforward counting arguments.

On a few occasions it is convenient to have a labelling of the MOG elements
and, as in [CuZ2], we use the following:

14 17 11 22 19
84 131

2016 7|12 5
51810 2|21 6

8

= Wwo

For tetradss andt in the MOG,s@t denotes the symmetric difference of
andt. Sextet lines will play a prominent role in many of our later arguments. We
recall that a sextet line is a tripleXy, X2, X3} of sextets with the property thatsf
andt; are tetrads oK andX; such thas Nt; # 0 thens ®t; is a tetrad ofX, (for

{i,],k} ={1,2,3}).

Next we itemize properties of the plane residue. SXIéte a fixed plane of
I and set\ = I'x. From Hypothesis 1.1 is the geometry of hexads (objects of
type 0) and duads (objects of type 1) of the Steiner system S(3,6,22)aldehg
andl € A1 are incident by definition if C a. Also, by Hypothesis 1.1, we have
Gx/Q(X) = M2z : 2andMy; : 2 acts flag transitively oi. Note that\o plays the
role of points and\; that of lines inG(A\).

Remark A is isomorphic to the geometry of hexads and quintetdMgs : 2 as
described in [RoSm].

(2.12)i) |Ao| = 77 and|A1| = 231

(i) Forae Ng andl € A1, |A1(a)| = 15and|Ao(l)| = 5.

(iii) G(A) has diameter two and& b € Ag with d(a, b) = 2, then|A1(a)| = 60,
|Az(a)| = 16 and|{a,b}*| = 45 with G, transitive omA;(a) andAy(a).
Forae Ag andl € A\1(a) we define,

do(X,a,l) ={ke As(a)|lknl| =0} and
01(X,a,1) ={ke Ai(a)|lknl| =1} .

18



(2.13)Letac NAg andl € A1(a).

(i) The Ggx-orbits onA1(a) are{l }, &(X,a,l) andd;(X,a,l) with
160(X,a,1)| =6and|d:(X,a,l)| =8.

(i) Supposek € 8y(X,a,l) and letAg(l)\{a} = {a1,a2,a3,a4}. Eachg is
collinear with precisely two points ofp(K)\{a}; moreover, up to relabellingy
anday are collinear with the same pair of points/g(k)\{a} andasz anda, are
collinear with the remaining pair of points ig(k)\{a}. That is

and sok determines a pairing of the points &§(1)\{a}.

(iii) If ke d1(X,a,1), then every point iM\g(l)\{a} is collinear with each of
the points in\g(k)\{a}.

(iv) Letk (1 <i<6)bethelinesig(X,a,l). Thenk andk; (i # j) determine
the same pairing of\g(I)\{a} if and only if ki € & (X, a,k;).

Proof Without loss we may assume,

a=" = andl =
X X
X X X X

Then/No(l)\{a} = {a1,a2,a3,a4} where
X X

a] — an — X X

1= y R — X X ’
X X X X X X
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a3 = andag =

X X X X X X

SinceGgyx contains a subgroup inducir® upon the sea\| and also contains an
element interchanging the two (MOG) pointslpfve see that (i) holds.
(ii) In view of part (i) we may suppose,

X X
k =
X X
X X | X X X X
Letbl: ,b2: ]
X X
X X
X X
X X X X X X
bs = andby = .
X X
X X

So/No(k)\{a} = {b1,bz,b3,bs}. It is now easy to check tha anda, are only
collinear withb; andb, as areag andas with bz andbsy.

(iii) Sinceknl # 0, a hexad containingmust intersect each hexad containing
kin a duad, whence part (iii) follows.

(iv) Here we have ,

ki = X ko = w x ,
X X
ks = 9 ke = 9 ,
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It may be verified thak; andk, determine the pairinda;,az}{as,as}; ks and
ks determine the pairindas,as}{az,as}; andks andks determine the pairing
{a1,a3}{az,a4}. Part (iv) now follows immediately.

(2.14)Letaandb be collinear points ir\ with A1(a,b) = {l}. Supposéi,l,,me
N1(b) satisfy

(i) 11,12 € 31(X, b, 1), me dp(X,b,I); and

(i) 12 € &(X,b,11), me & (X, b,l;) fori =1,2.
Let di,dz € Ap(l1) ander, e € Ao(l2) be such thafd;,dy,e;,ex} are pairwise
collinear (see (2.13)(ii)). Then there is a unique paiimAo(m) which is collinear
with a and (up to a relabelling & andey) A1(d1,e1,X) # 0 # A1(d2, €2,X).

Proof SinceGy g is transitive omM\o(l)\{a}, we may suppose that

X X

a= , b=

X X X
X X X

andl =

X X

Given the conditions oh,l, andmwe may further assume that

l1= o=

andm=
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By (2.13)(ii) we must haved;,d>} equal to

X X
X X
{x x| x X }or
X X X X
X X
X X
{x X "X X }
X X X X

X X
X X
{ X x|’ X X }
X X X X
X X
. . . X X | X X . . .
in which case it can be checked that is the unique point

of Ao(m) collinear with all ofa, ds,d, e1, €. In the latter case the unique point of

No(m) is X

(2.15)Let {a,b,c} be a triangle inG(A) with k € A1(a,b), | € A1(b,c) andm e
Ai(a,c), and leti € {0,1}. If k € &;(X,a,m), thenl € & (X, b,k).

Proof Supposek € dp(X,a,m). Then by (2.13)(ii)c is collinear with exactly 3
points ofk, two of which area andb. Hencel € 8p(X,b,k) by (2.13). A similar
argument shows th&te &1 (X, a, m) implies thatl € 1(X, b, k).

Remark From (2.15) it follows that for a triangla,b,c in G(A) (and using the
notation in (2.15)) the size of the intersectidis!, knmandl Nmare the same.
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(2.16)Leta,c € Agwith d(a,c) = 2. If | € A1(a), then|Ao(l) N {a,c}*| = 3.

Proof As hexads im\, a andc are disjoint. Since is a duad incident witla, |

is disjoint fromc. Therefore there are exactly three hexads incident Wwithich
have a non-empty intersection with These three hexads correspond to the three
points of Ag(I) N {a,c}+.

3.1(X) AND TRIANGLES IN G

From[I” being a string geometry and (2.12)(ii) we have
Lemma 3.1Forl €1, [lo(l)| =5.

For X € 'z, we have thatZ(02(Q(X)))| = 2 by Hypothesis 1.1(ii). We put
Z(02(Q(X))) =< 1(X) >. Sot(X) € Z(Gx). Also note that fom e 'p(X), T(X) €
Q(a). This follows fromQ(a), Q(X) < Gax andCg,(Q(a)) = Q(a).

Lemma 3.2If a€ g andY € '>(a), then the following hold.
() Gy=22* .
(i) Q(a)” = Op(Gry) = 2%,

(i) Let1l# ge Oy(GLY). Then for three of the linekin '1(a,Y), g fixes each
pointinTo(l) and for the other twelve lindsin I"1(a,Y) g acts regularly on

Fo()\{a}.
(iv) Zi(a)=1.
Proof Becauses.y is the stabilizer iy, : 2 of a hexad, we have part (i).

SinceQ(a) is elementary abelian ar@(Q(Y)) is an extraspecial 2-group of
order2*12 | |1Q(a) N O2(Q(Y))| < 27 . Now Q(a) = 2!, Q(a) < 02(Gay) and

part (i) yield (ii).

In 'y we may, without loss of generality, chocse- i i
X X
Since the involutions irDy(G%Y) are all conjugate irG.Y, there is no loss in

further supposing that,
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g=|

By inspecting each of the 15 lines iy incident witha we see thag fixes all the
points inlo(l) for

and

X X

While for the remaining twelve linek g acts regularly o o(l)\{a}, and this
proves (iii).

If (iv) is false, thenQ(a) being aG,-chief factor give<Z; (a) = Q(a) (note that
Z1(a) < Q(a) by Hypothesis 1.1(i)). Therefore, by (i2(GLY) = Z1(a)*" fixes
all the points inro(l) for all | € I'1(a,Y), contradicting part (jii).

The next result describes the actiont¢K) in a point residue and is a vital
ingredient of many of our later arguments.

Lemma 3.3Letac Ny, | € M1(a) andX € Mx(a). Thenx'X) £ x for eachx €
Mo(1)\{a} ifand only if| € B1(a, X).

Proof From Lemma 3.2(iv) there exists= ['1(a) such thak™X) £ x for somex €
Fo(l)\{a}. LetY € z(a,l) and putty = 1(X)*Y . Thenty € Q(a)*" = 02(GLY)

by Lemma 3.2(ii). Noting thaty # 1 (asx" # xandx € 'y) using Lemma 3.2(iii)
we infer thatt (X) acts regularly ofiig(1)\{a}. Now suppose thate 3;(a, X) with

i # 1. Sincet(X) € Z(Gax), (2.5)(i) implies that (X) acts regularly o o(k)\{a}
for all k € Bi(a,X). LetZ € I'y(a) be such thaZ € y3(a,X). Again by Lemma
3.2(ii) 1z = 1(X)*? € Q(a)*? = 0(G:%). Consulting (2.8) we see that of the 15
linesinli(a,Z), 1isinfo(a,X), 6 are inz(a,X) and 8 inf3(a, X). So we have
1z # 1. Moreovertz acts regularly ori o(k)\{a} for either 1,7,9,14 or 15 of the
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lineskin M1(a,Z). This contradicts Lemma 3.2(iii) and thus we conclude that
1(X) acts regularly orig(1)\{a} if and only if| € B1(a, X).

One consequence of Lemma 3.3 is thatdgrXo € N'2(a) witha e Mg, T(X1) =
1(Xp) if and only if X = X5 . A further consequence of Lemma 3.3 is given in

Lemma 3.4 Letac g andX,Z € I'x(a) with X # Z. Thent(Z) € Q(X) if and
only if Z € y3(a, X).

Proof By (2.8)(i),(ii) if Z ¢ ys(a,X), then there exist$ € '1(a,X) such that
| € B1(a,Z). Thereforet(Z) acts regularly oro(l)\{a} by Lemma 3.3 and
1(Z) ¢ Q(X). Conversely, iZ € y3(a, X), thenl ¢ B1(a,Z) for everyl € I'1(a, X)
by (2.8)(iii). Hence, using Lemma 3.3,Z) fixes I'p(l) point-wise for each
| € M1(a,X). Then Lemma 3.2(iii) forces(Z) € Q(X), so proving the lemma.

Lemma 3.5Letl, ke 1. If [Fo(l)NTo(k)| > 2, thenl = k.

Proof Supposd # k, and let{a,b} C I'g(l) NTo(k) with a # b. If there exists
Y € lo(l,k), then we also ged,b € 'y sincel is a string geometry. But two
points inly are incident with a unique line. TherefoFe(l,k) = 0. Hence, by
(2.9), k € ap(a,l) Uas(a,l). Taking! to be the standard trio and, because of
+]+ + [+ +

.3)(i), we may also takk = N R (if k € ag(a,l)) andk =
(2.3)(i) Iso take =| N
+ — O | —
— 4+ [+ +[+ +
: - O_ O_ ; ;(ifkeal(a,l)). LettingX € I';(a) be the standard sextet
+ —|o o]|o o

we have that (in either cask) B1(a,X) andl € Bo(a, X). Now applying Lemma
3.3 to bothl andk gives the impossibl®™X) £ b = b'X) . Thus we infer that
| =k.

Let a andb be distinct collinear points ifig. Then by Lemma 3.51(a,b) =
{I'} for somel € I'1. We shall frequently denoteby a+ b or b+ a; a+ b indicates
that we are viewing as being in the residue, while b+ a that we are viewing
in M'y. We next introduce the following set of involutions@

T(a+b)={1(X)|[X elz(a+b)}.
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Observe thal (a+b) = T(b+a) and that, by (2.1)(ii)| T (a+b)| = 7.
For the remainder of this papais a fixed point ofG.

Theorem 3.6
() |A1(a)| = 22.3.5.11.23= 15,180andA;(a) is aGa-orbit.
(i) Forbe Aq(a), G2 =225: (S3x Lp(7)) andQ(a)p = 2°.

(i) Forbe Ai(a), < T(a+b) >=23; in particularT (a+ b) consists of the
non-trivial elements ok T(a+b) >.

Proof Together (2.1)(i) and Lemma 3.1 gii#s (a)|. From Lemma 3.%54p < Gg).
Selecting arK € IN'z(a) such tha+ b € B1(a,X) and employing Lemma 3.3 we
see thalQ(a), # Q(a) and, by Lemma 3.1[Gy) : Gap] = 2 or 22. Now [Lemma
3.5(b); MeSt] forceR(a), = 2° . HenceG:2 = 2°: (S5 x Ly(7)) andAy(a) is
a Gy-orbit, and so we have (i) and (ii). Léte Ai(a), and letX € N'x(a+b).
By [Lemma 3.5(b); MeSt[Gaasb has a minimal normal subgrouy of order23
contained iQ(a). Sincet(X) € Z(Gax), < 1(X) >=Z(T) for someT € Syb(Ga)
and sot(X) € N. Now N is a 3-dimensionaGF(2)L,(7)-module and siN* is a
Gaatb-coOnjugacy class. Thus* C T(a+ b) which yields iii).

We now consider triangles ig.

Lemma 3.7Let {a,|,X} be a maximal flag i and letk € '1(a,X)\{l}. Then
(i) ke &(X,a,l), when viewed i x, if and only ifk € '1(X) Naz(a, 1) when
viewed inl"5; and
(i) ke d1(X,a,1), when viewed iff x, if and only ifk € '1(X) Nasz(a, ) when
viewed inl g;

Proof Combining (2.10) and (2.13) (i) yields the result.

Lemma 3.8Let X € N'x(a) andl,k € '1(a,X). Putlo(l)\{a} = {a1,a,a3,a4}.

() If ke az(a,l), then eacly; is collinear with precisely two points &% (k)\{a}
and, up to relabellinga; anday are collinear with the same pair of points in
Mo(k)\{a} andaz anda4 are collinear with the remaining pair of pointdlig(k)\{a}.

(i) If ke az(a,l), then eacty; is collinear with every point ifig(k)\{a}.

Proof Combining (2.13) and Lemma 3.7 gives the lemma.
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Lemma 3.9Let{a,b,c} be atriangle inG and leti € {2,3}. If a+ b e aj(a,a+c),
thenb+c e aj(b,b+a).

Proof This is a consequence of (2.15) and Lemma 3.7.

Again we remark that for a trianglg, b, c} in G, Lemma 3.9 means that the
relationship betweea+ c anda+ b (ata) is the same as that betweknr-a and
b+ c (atb) and that betweeo+ b andc-+ a (atc). This fact enables us to readily
translate information between point residues.

We shall say that a trianglea, b, c} in G is sparseif a+b € az(a,a+c) (that
is Lemma 3.8(i) holds foa+ b anda+c) and that it isnon-sparseif a+b e
as(a,a+c) (that is Lemma 3.8(ii) holds foa+ b anda+c). By Lemma 3.9
sparse triangles and non-sparse triangles are well-defined.

Lemma 3.10Let X € 'p andb,c € I'g(X). If I € '1(b,c), thenl € I'1(X).

Proof Supposé ¢ I'1(X). SinceGpx has 2 orbits offi o(X)\{b}, using Lemma 3.5
it follows that every point of o(X)\{b} is collinear withb in . If Sis the set of
pairs(x,Y) such thalr € Mx(b) andx e A1(b)NTo(Y), then|S| = |2(b)|[Mo(X) —
1| =177176. Also, since)\;(a) is aGz-orbit,

1S = |A1(b)||2(b,c)| = 22.5.11.23|2(b,c)|.
However this implies thaf 2(b,c)| is not an integer, a contradiction.

Lemma3.11Let{a;,ap,a3} formatriangle inG, and set; =a; +ap, I =ax+a3
andlz =ag+a;. Thenly(a1,ap,a3) # 0 and for eactX € INx(ag,az,a3), MNo(li) C
Mo(X) (i=1,2,3). If, furthermore, thd; are distinct lines, thefi 2(ay,az,a3)| =
1.

Proof First we show thail 2(a;,az,a3)| = 1 when thel; are all distinct. Assume
thata; +ag € aj(a1,a; +az) wherei =0 or 1. Leta; + a, be the standard trio
in 5, and, without loss of generality, we may cho@get a3 to be as in Lemma
3.5. LetX be the standard sextet in,. Thent(X) € T(a1+a2) anda; + a3 €
B1(a1,X). Hence, by Lemma 3.3;()() # ag. Sincet(X) € Q(a1) NQ(az), Lemma
3.5 forces

ap+ag=ag+ay’) =ap+ay,

a contradiction. Thua; +as € aj(ag, a1 +ap) with i = 2,3whence (2.9)(ii) yields
that|[>(ay,a,a3)| = 1.
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If two of I1,l2 andls are equal, thef1(a;,az,a3) # 0 and then we also have
thatlp(as1,ap,a3) # 0. Thatlo(l;) C I'o(X) (fori =1,2,3) follows fromI™ being
a string geometry and Lemma 3.10.
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4. THE SECOND DISC

Recall thata is a fixed point ofG. In this section we teahy(a) limb from limb.
Much of our attention is focused on the intermediate points betaesA,(a).
In fact we dwell at great length ofa,c}+ for ¢ € A3(a); our labours being re-
warded by the picture displayed after Theorem 4.7.

Here we exhibit the subsets &§(a) with which we will become intimate.

Definition 4.1
A5(a) == {ce D(a)|M2(a,c) # 0}
A%(a) :={ceTlp(a)| there existb € {a, c}L such thab+ce aj(b,b+a)}
Ag(a) :={ceTlp(a)| there existb € {a, c}L such thab+c e ag(b,b+a)}.

Lemma 4.21;(a) = Al(a) UuA3(a) UAS(a).

Proof First we show tha\l(a) UA3(a) UAS(a) C Ax(a). Let ¢ € A3(a) with

b € {a,c}* such thatb+c € ai(b,b+a). If c € Ai(a), then by Lemma 3.11
M2(a,b,c) = {X} with b+a,b+c e M'(X). This is impossible by (2.9)(i) and
thusA3(a) C Ay(a); a similar argument givea3(a) C Ay(a). Now using (2.3)())
and(2.9)(ii) we obtain the result.

Theorem 4.3Let ¢ € A}(a).
(i) IF2(a,0)| = 1.
Setlz(a,c) = {X(a,c)}.
(i) {a,c}t Cro(X(a,c)).
(iii) |{a,c}*| = 45.
(iv) |AY(a)| = 2%.7.11.23

(v) Al(a) is aGa-orbit andGL ,

=Ga~2°:3%.
Proof Sincec € Al(a), there existsX € N'y(a,c). Sett = 1(X). We begin by
establishing

(4.3.1){a,c}- C To(X)

Letd € {a,c}+. We show thatd ¢ Mo(X) leads to a contradiction. From
d ¢ N'o(X), Hypothesis 1.1 implies that+d ¢ I'1(X). Thereforea+d € (Bi(a, X)
with i € {1,2,3}. If a+d € Bi(a,X), thend' # d by Lemma 3.3. Since ¢
Q(a)nQ(c), Lemma 3.5 then forceb+c=d+d" = d+a, contrary tod(a,c) = 2.
Thusa+d € B2(a,X) UBs(a,X). We claim that there existé € I'z(a,c,d) such
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thatY € ys3(a,X). Without loss of generality we may assurkeis the standard
sextet. By (2.5), without loss, we may take

+ + |+ +|0o o

a+d= t t i t Z Z if a+d € B2(a,X); and
— —|— —|o o
+ + |+ + |- —

atd=" T/ 17 “litardeps@x)
o o|— -

Let Z be the following sextet

*x x| - + |+
* X | 0O oo O
X % |0 oo O
X X|- + |+

Evidently we haveZ € y3(a,X) anda-+d € B1(a,Z). Consequenthyd™?) + d
by Lemma 3.3. FronZ € y3(a,X), 1(Z) € Q(X) by Lemma 3.4, and so(Z)
fixesc. Thus{c,d,d"?} is a triangle and hende(c,d,d"?)) contains a unique
plane by Lemma 3.11. Let denote this unique plane; we now verify théat
has the required properties. Becaa$g) € Q(a) andd,d™® e I'y(Y) we get
aco(Y) by Lemma 3.10. Thu¥ € Iz(a,c,d). It only remains to show that
Y € ya(a,X). From (2.16) for each € I'1(a, X) there existd € Ig(l) such that
b € {a,c}*. Now assume that ¢ ys(a,X). Then there exists< I'1(a, X) such
thatl € B1(a,Y) by (2.8). Thus we may find € {a,c}* such thaa+b e B1(a,Y).
Sincet(Y) € Q(a) N Q(c), Lemma 3.3 gives the contradictidnt a = b+ b' =
b+c. SoY € ys3(a,X), which establishes our claim. Frovhe yz(a, X), we see
there exist$ € ' (X)NI1(Y) with | € 1(a). Employing (2.16) yieldg, f € ['p(l)
such that{c,e, f} forms a triangle. Now Lemma 3.11 yields=Y, contrary to
Y € y3(a,X). This completes the proof of (4.3.1).

Let X; € Ma(a,c). By (4.3.1){a,c}* C Fo(X)NTo(X1). Combining (2.9)(ii)
and (2.12)(iii) yieldsX = X3, so proving part (i). Part (ii) follows from part (i) and
(4.3.1), while part (ii) and (2.12) (iii) imply (iii).

From part (i), (2.12)(iii) and (2.1)(i),
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|Ad(a)| = 16/ 2(a)| = 16.1771=2%.7.11.23,
as required.

Finally we consider (v). Thads%(a) is aGa-orbit follows from G, being tran-
sitive onl"z(a) (by the flag-transitivity ofG on ") and (2.12)(iii). Thus, by (iv),
Gac| = 217.3%5. Also, from part (i), Gac < Gax(ac) (~ 2192°3Ss). By order
considerationsG;:2N02(G:3 . ) # 1. Because the only subgroups®&; of 2

aX(a,c)
power index ar& Ag and3 86 We see tha6G;2 (GZ‘;‘( ac) )/OZ(G;‘;‘( ac) )= 3As
or 3S. Now Ox(GL, ) is a chief factor of21°263A6 and thereforeG*"Jl =
26355 or 263A¢ . The latter possibility implies thdQ(a) : Q(a) N Gag] = 2° with
Q(a) N Gy normalized by the219263A; which contradicts the module structure
of the M24-Todd module (see [Lemma 3.5(b); MeSt)). Conseque@gy(a o=

Ga~28:3s.
Our next result will be called upon in Lemma 4.6 and Theorem 4.8.

Lemma 4.4Suppose € A3(a) and letb € {a,c}* be such thab+c € ag(b,b+
a). Then there exists a uniquies I"'1(b) such that € az(b,b+a) Nnaz(b,b+c)
andA;(b) N {a,c}t =To(1)\{b}.

Proof In view of (2.3) we may, without loss, assume

+

+ |+ +
o

b+a= andb+c =

o O O O
0O O O O
o O +

+ + + +
+ + + +
+ + + |

J— o) J—

Ford € A;(b)N{a,c}+ we now determiné+d. We assert thai+d andb+a
do not have an octad in common. For if they did then that octasHefl would
have to cut the octads &f+ ¢ in 4,22, This is impossible by (2.9) and Lemma
3.11, since{b,c,d} forms a triangle. Similarlypb+ d andb+ c do not share a
common octad. Using (2.9) and Lemma 3.11 again we olttaiml € az(b,b+
a)Nas(b,b+c). Then by inspection we see that there is only one possibility for
+ +| - — +
+ + | - —

b+d, namelyb+d = . Applying Lemma 3.8 now gives

o o + +

+
@)
O

the lemma.
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Lemma 4.5 Let ¢ € Ah(a) wherei = 1,2 or 3 and letb € {a,c}* . If i =2
(respectivelyi = 3) we further assume that+ c € a1(b,b+ a) (respectivelyb+
c € ap(b,b+a)).
(i) If i = 1, thent(X) fixesc for all T1(X) € T(a+b).
(i) If i =2, then precisely three elementsTofa+ b) fix c.
(iii) If i =3, then only one element df(a+ b) fixes c.

Proof We may suppose that+ a is the standard trio and that

— + |+ + |+ +
+ | = | = =
b+c=
+ .
+ -
— + + |+ +
+ — o | — -
b+c=
++ —| — o
+ — o | — o

if b+c e ai(b,b+a); and

if b+c e ap(b,b+a).

In Iy, the seven sextets incident witht- a are as listed.

* X O o +

* X Olo +
X1 =

* X Olo +

* X O]o +

* X | - Olo +

X x| O - + o
X3 =

* X | - Olo +

X x| 0O + o

* % + +

x k|- |+ 4+
X5 =

X X| O Olo o

X x| 0O O|lo o

*x Kk . . + +

X X| O Olo o
X7 =

X x| O O|lo o

* * + +

Xo=

X X X X
X X% X X
O
O
+ + O O
o o + +

Il
X X X X
X Ok F X
+ 0o o +
O 4+ 4+ O

X X X F
X X X F
O
O
O 4+ O +
O 4+ O +
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If i =1, thenb € Ny(X(a,c)) by Theorem 4.3(ii). In thé =1 case we may
suppose that, i, X(a,c) is the sexte;. Thenb+c ¢ B1(b,X;) for all j €
{1,2,3,4,5,6,7}. Fori =2 we see thab+c < B1(b,Xj) for j =1,2,3,4 and
b+c ¢ B1(b,X;) for j =5,6,7. And fori = 3 we observe thab+c € B1(b, X;)
for j #5andb+c ¢ B1(b, Xs5). Employing Lemma 3.3 now gives the lemma.

Lemma 4.6Leti € {1,2,3}. Suppose that € A,(a) and thab,d € {a,c}".
(i) Let j € {0,1,2}. Thenb+ce Bj(b,b+a)ifandonlyifd+cec aj(d,d+a).
(ii) If d(b,d) =2, thend € A}(b).

Proof (i) First we considerj = 2. Soc e A%(a). By Theorem 4.3 we have
{X(a,c)} =T2(a,c) andd € INy(X(a,c)). Sinced(a,c) = 2, Lemma 3.8(ii) (ap-
plied tod,d +aandd + c) implies thatd + ¢ € a»(d,d +a), and so (i) holds when
j=2.

Now we suppose (i) is false and seek a contradiction. Thus we may assume
thatb+c € ag(b,b+a) andd + ¢ € a1 (d,d +a). As a consequencee A3(a) N
A3(a) and, by Theorem 4.3(iik; ¢ Ad(a).

(4.6.1)d(b,d) = 2.

If (4.6.1) is false, ther(b,d) = 1. Hence, by Lemma 4.4+d € az(b,b+
a)Noaz(b,b+c). Therefored+b € az(d,d+a) Naz(d,d+c) by Lemma 3.9.
Without loss of generality we may takkt+ a to be the standard trio and

+ [+ + [+ +

di+c=

+ + + |

Then, by inspection, the possibilities for+ b are as follows.

+ + |- - - — - — |+ + |- —

+ + |- —| = — - — |+ +| = —

+ + o + + |0 o

+ + o o + + o o

+ + |+ +| - — + + |- - = —

+ + |+ +| - — + +|o0o oo o
o O + + | - —| - =

— —]o o + + |0 o|o o




+ + + +
+ + + +

However, none of these lie in botty(d,d + a) andaz(d,d +c), so (4.6.1) must
hold.

If d € AL(b), then Theorem 4.3(ii) forces € A(a) whereasc ¢ Al(a). So
d ¢ Al(a). Hence, by (4.6.1), (2.3)(i) and the definition(b),

a+beag(aa+d)uai(a,a+d).

Suppos&+b € ag(a,a+d). Thend € A3(b). By Lemma 4.5(ii) there are three
elements off (a+ d) which fix c and from Lemma 4.5(iii) there is a unique ele-
ment of T (a+ b) fixing b. So we may seleat € T(a+ d) such thatt' = c and

b' #£b. So{c,b,b"} forms a triangle and hende(c,b,b") # 0. Because € Q(a),
Lemma 3.5 implies thai+ b' = b+aand hence Lemma 3.10 gives the untenable
M2(a,c) # 0.

Turning to the possibilita+b € a1 (a,a+d), using Lemma 4.5 again we may
find at € T(a+b) such thad = d" andc' # c. Then arguing as above we deduce
thatl,(b,d) # 0, againstd ¢ Al(b). From these contradictions we infer that (i)
holds.

(i) If ¢ e Al(a), then Theorem 4.3(ii) easily yields € A3(b). So we only
need show that assumiiegs A3(a), thend € A3(b) is impossible. By Lemma 4.5
there existg € T(a+b) such that' = c andd® # d. Arguing as in part (i) then
yieldsc € Al(a) which is impossible since € A3(a). So (ii) is proven.

Theorem 4.7Let c € A3(a), and letb € {a,c}*. Setb+a =1 andb+c=k.

(i) We have|A;(b)n{a,c}| = 9 with the points inA;(b) N {a,c}* incident
with the lineslq, 12, m ki, ko € '1(b), as shown.

34



Furtherl, 11,1, andm are incident with a (unique) plaré € I'>(a). Like-
wisek; ki, ko andmare also incident with a (unique) plaXg e IM'>(c). Also
mis the unique line of 1(b) in az(b,b+a)Naz(b,b+c).

(i) Using the notation of (i), there exists (uniqu&) Z; in I'2(a) with y1,y, €
Mo(Ya) @andzy,z; € Mo(Za). MoreoverSy(a,c) := {Xa, Ya, Za} forms a sextet
line in 4 and the six points iffg(Xa) N {a,c} are pairwise collinear, with
a similar statement for; andZs.

Setl = (Mo(Xa) UTo(Ya) UT0(2)) N {a,c}.
(i) If b’ el, thenSy(a,c) = Sp(a,c).
(iv) ForeachSe Sp(a,c), 1(S) fixesc.

(v) Every point of{a,c} is incident with exactly one Xy, Y; andZ, . Hence
{actt|=18

(vi) |A%(a)| =27.3.5.7.11.23.

Proof First we establish part (i). By Lemma 4.6(i) we have thatc € a4 (b, b+a)
and so, because of (2.3)(i), we may tdke b+ a to be the standard trio and

++ +[+ +

k=b+c=

+ + + |
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Letx € A(b)N{a,c}+. Lemma 3.11 and (2.9) imply that+ x € az(b,b+a) U
as(b,b+c). By inspection, the only possibilities fér+ x are as follows.

+ + |- - |- -
+ + |- - |- -
m= ;
+ +
+ +
- =+ +| - = + + |+ +| - —
| - =+ +| - = | + + |+ + |- -
=+ +]0 o ’ 271 —lo o ’
+ + |0 o — —]0 ©
+ + |- —| = — + + | - —| - —
+ +|o0o oo o + + | o
ki = »and ko =
+ 4| - | = + 4+ |0
+ +|o0o o|o o + +| - —| - —

Then we observe that

(4.7.1)(()me az(b,b+a)Nnaz(b,b+c)
(i) i € ag(b,b+a)Nnaz(b,b+c) fori=1,2
(i) ki € az(b,b+c)naz(b,b+a)fori=1,2.

Appealing to Lemma 3.8 we conclude thap(lij) N {a,c}| =3 = |[Io(k) N
{a,c}*| for i = 1,2. We further observe that, ifi,, m,l1,1, andl are incident

* % + +
. * K |- + + . .
with the sexte§ = « xlo ole o while, also inly, m, k1, ke andk are
X x| O Olo o
* X | - . .
. . . X % |+ + |+ +
incident with the sextef = « «loolo of
X % | O ¢) e) e}

Let X5 , respectivelyX, be the plane i corresponding t&, respectivelys..
Note thatk; ¢ I'1(Xa) andl; ¢ '1(Xc) fori=1,2.
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Inspectindy,l2, myet again yields that
(4.7.2)me az(b,l;) fori =1,2andly € ax(b,l1).
(4.7.3)The points of o(Xa) N {a,c}* are pairwise collinear.

If (4.7.3) were false, then Theorem 4.3(ii) foraes I'p(X5), contrary toc €
AZ(a).

Using Lemma 3.7 we interpret (4.7.1) (i), (ii) and (4.7.2)ix, as follows.

(4.7.4)(i) 11,12 € 31 (Xa, b, 1), me &(Xa,b,1); and
(i) 12 € do(Xa, b,11), me do(Xa,b,li) fori=1,2.

Combining (4.7.3), (4.7.4) and (2.14) we see that there is a unique xQint
say, inlo(m) which is collinear witha and such thaf 1(di,e;1,x2) # 0 where
di € Fo(l1) N{a,c}* ande; € Mo(l2) N{a,c}+. Because of (4.7.3) we now de-
duce that o(m) N {a,c}+ C {b,x2}. We now show thax, € {a,c}*. Supposing
X2 ¢ {a,c}+ we argue for a contradiction. Hence the points efXa) N {a,c}+,
when viewed fromb, lie on three lines, two of which are each incident with
three points of a,c}* and the third incident with just one point ¢&,c}*. This
latter statement also applies to any other poinf §iXa) N {a,c}*+ by Lemma
4.6(i). However we have seen that the line incident widhe;, x> has only two
points in{a,c}+ (namelyds, e;) which is the desired contradiction. Therefore
Fo(m)N{a,c}+ = {b,x;} and so we have established part (i).

We now consider part (ii); let1, Y2, 21,2 be as in the diagram in part (i). Note
that all the previous assertions & have appropriate analogues Xy. In partic-
ular, (analogue of (4.7.4%, ko € 81(Xc, b, k), me do(Xc, b, K), ko € &g(Xe, b, Ky)
andm € do(Xc,b,k)(i = 1,2). So, by (2.14), we may assunyg,y»,z;,z are

labelled so as
b

Y1

Yo
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(ThatisT1(x2,¥2,21) # 0 # M1(X2,22,y1) andla(ys,y2) # 0# M1(z1,2).) In X,
y2+ b andy, + xp are each incident with three points {, c}L while y> + V1 is
incident with just two points ofa,c}* . Lettingy, play the role ofo andX; the
role of X5 in part (ii) we deduce that there is a plaviec I'2(a) incident with the
line y; + V- (this line plays the part ah) and two more lines i 1(y2, Ya) incident
with a further four points of{a,c}*. None of these four points dfa,c}+ lie

in Fo(l1) UTo(l2). This is because of (2.9)(i) and Lemma 3.11 and the fact that
ke ay(b,l;) fori =1,2. Repeating this argument with in place ofy, produces a
planeZ, € M'x(a) and a further four points ofa, ¢} which are not incident with
Xa norY,. Our next goal is to show thdiX,, Ya, Z5} forms a sextet line i 3; this
will be done by identifying the linea+x;(= a+b), a+xz, a+Yy1, a+2z and
a+ 2z in 3. Without loss of generality we may takg to be the standard sextet

+ +|o —]o —

+ + | o — | o — . . . .
andl =a+bto be . SinceG,y, is transitive on the six

+ +]o —|o —

+ +|o —|o —

sextets im 2(a,1)\{Xa}, we may also assume that

+

X(a,l,a+y1) =

* X X X
X X X F
o O + +

o O + -

(] O
O O

Note thata+ z is also incident withX(a,l,a+y1). Becausé; € az(b,b+ a) by
(4.7.2)(iii), Lemma 3.9 implies that+ b(=1), a+y1, anda+ z;, are trios which
pairwise share an octad. Since these three trios are distinct this can only happen if
all three share the same octad. Now the stabiliz&4f X5, | andX(a,l,a+y1)

is transitive on the three octads loAnd so we may suppose the common octad

is the leftmost block of the MOG. This forcest y1 anda+ z; to be as follows

(with a possible interchanging g1 andz):-

a+yy= a+z =

+ + + +
+ + + +

+ + + +
+ + + +
|
|

Applying part (i) with x2 playing the role ofb gives thatx, +y; € az(X, %2 +
a) andxz +2z1 € a(X2,X2 +a). From (4.7.1)(i) we recall than € ax(b,b+ a).
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Appealing to Lemma 3.9 we infer that- xo, a+ Y1, a+2z; anda+b(=1), as trios
in Iy, share an octad in common. This fora@es X, to be one of the following
two trios.

+ + + +
+ + + +
[
O O O O
O O O O
(.
+ + + +
+ + + +

o 0 o0 o
o 0o o o
|
|

We assume the first possibility holds; the argument being similar if the other pos-
sibility holds. The sextetX(a,a+ x2,a+Yy1) and X(a,a+ Xz,a+ z1) are how
uniquely determined given the above identificatiomefxy, a+y; anda+z and

are

* % + . +

X X|+ - +
X(a,a+x2,a+Yy1) = « <o o - and

X | 0O o O

* X |+ 0Ol o

X x|+ O] o
X(a,a+xz,a+2) = e o+

X X o | O +

Sincez € Mo(x2 + y1) the trioa+ z is incident withX(a,a+ xz,a+y1). We
already have thaxy +y; € az(x2,x2 +a) and so Lemma 3.9 forces+ z to
have a common octad with+ x, anda+ y1, whence we must have+ z =

+ +]o —|— o
+ o+ —| - _— ,
° ° . Similarly we find that
+ + | — -
+ +|— o —
+ + - -
+ + - — . . o .
aty2=|, ,|_ _ . BecauseY; is the unique sextet incident with
+ +| - —
*x X + +
* ok e
botha+y; anda+ y, we see thaY, = o olo olx «x
o o | 0O O|x x
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Likewisea+ z; anda+ z uniquely specifyZy = o

X

O O > *
X X O O
oogo+ +
+ + 0O 0O

Hence{Xa,Ya,Za} in a sextet line i 3 and so, since (4.7.3) also holds fgrand
Z,, we have proved part (ii).

Before tackling part (iii) we develop further our earlier concrete description of
the sextet ling[ X, Ya, Za}. Recall that = a+ b was assumed to be the standard

+ + | — oo —

. . . + +| — oo —
trio and, without loss of generalitg+ xo = .

+ +|— o|o —

+ +|— oo —

We now aim to describe the 18 lines incident wétland each of the points ih
(=(Mo(Xa) UTo(Ya) UT0(Za)) N{a,c}t). Now there are two lined{ andly) in

[ 1(Xa) incident withb, each containing two points of ¢} No(Xa))\{b, %2},

with a similar statement fax,. Consequently, fox € ({a,c}* NTo(a))\{b,x2},
b+a € az(b,b+x) and thusa+x € az(a,a+b) by Lemma 3.9. Likewisa+x €
as(a,a+x2). Therefore the trioa+ x anda+ b cannot have an octad in common
and the triosa+ x anda+ xz cannot have an octad in common. Surveying the
trios in Xy (the standard sextet) we see that there are only four trios satisfying
these conditions and so we have pinned down the knes for x € ({a,c}*+ N

Fo(Xa))\{b,x2}. They are:-

o —|+ +|o0o -— o —|+ +|— o
o —|+ +|o0o — o —|+ +|—- o
o —|+ +]o o —|+ +|—- o
o —|+ +]o — o —|+ +|— o
a+Xxs3 a—+ X4
o —|o —|+ + — oo —|+ +
o —|o —|+ + — oo —|+ +
o —|o —|+ + — oo — |+ +
o —|o —|+ + — oo —|+ +

Starting witha+y; anda+ y2 (as described earlier) we may repeat the above
strategy and so obtain the linas-y fory € ({a,c}* NTo(Ya))\{y1,y2} thus:
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+ + o + +| - —
+ + o + + |- -
- -+ +| - - - -+ +
- — |+ +| = — - — |+ +
a-tys a-+Yys
+ + — — |+ +
+ + — — |+ +
- == -]+ + — —|o o |+ +
- == -]+ + — —|]o o |+ +

And starting witha+z, anda+z, yieldsa+zfor ze ({a,c}+ NlMo(Za))\{z1, 2}:

— + + |- — + + —
— + o+ | — — + o+ —
—l+ o+ - — |+ +| =
—|+ + — —|+ +| =

a-+273 a-+z4
— T+ + —— o]+ +
— — |+ + —| = o |+ +
— — + + - — |+ +
- — + + - — |+ +

We now begin the proof of part (iii). So as to avoid additional notation, we

— o |+ +|— o
: — + 4| — .
supposdy’ € | is such tha+b' = . O_ + 4+l i (the argument being
o —|+ +]o -—

similar for any other choice ofi+ b'). Sob’ € I'g(Zy). From (ii) we have five
points inlo(Za) N {a,c}* collinear withb' and saZ, € Sy (a,c) (hereZ, is playing
the role ofXj in part (i)).

Clearly we havea+ X, a+V; € az(a,a+b') fori = 3,4. Forx e | with a+x
equal toa+x; ora+Yy; (wherei € {3,4}) we must havex € A; (b') for otherwise
we would haved(b/,x) = 2, x € A}(b') andc € A3(a) which contradicts Lemma
4.6(ii). Thus we have located the four pointsAn(b) N {a,c}+ not contained in
o(Za); we may assume these points &exa, y3 andys. Note thatxz, xs € Io(X3)
andys,ya € To(Ya). Sinceb ¢ I'g(X3), b',x3 andx4 cannot be incident with a
common line and, similarlyy, y3 andy, cannot be incident with a common line.
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Now (see the construction of the sextet line in (ii); n¢xg, x4 },{ys,ya} play the
role of {y»,y3},{z1,2}) the other two sextets iy (a, c) are uniquely determined
by {a,x3,x4} and{a,ys,ys} and so must b&; andYa. ThusSy(a,c) = Sp(a,c)
as asserted.
Sett = 1(Xa). Thenb,x; € IN'g(Xy) implies thatt € Q(b) N Q(x2) and soc' €
Mo(c+b)No(c+x2). Sincec+ b andc+ x; are distinct lines, this forces= c'.
A similar argument works fot(Ya) andt(Z;), so proving (iv).
Next, we consider part (v). Supposing (v) is false we argue for a contradiction.
Thus there existd € {a,c}* with d ¢ |. By part (i) we have a sextet lingy(a, c)
in 4. SetSq(a,c) = {X,, Y4, Z4} andl’ = (Fo(X4) UTo(Y) UTo(ZL)) N{a,c}.

(4.7.5)N1" = 0.
If I N1’ £ 0, then (iii) forcesl =1, contrary tod ¢ .
(4.7.6)ForSe Sp(a,c) andS € S4(a,c) we haveS € y3(a,S).

First observe that, fox € 1, Ay (x) N {a,c}* C | by parts (i) (withx = b) and
(iii). Hence, forxe 1 andx € 1’, d(x,X) = 2 by (4.7.5). So, appealing to Lemma
4.6(ii), X € A3(x). Sett = 1(S), and assume th& ¢ ys(a,S). Then, by (2.8),
there exists( € Mo(S) N {a,c}* such thaia+ X € B1(a,S). Lemma 3.3 implies
that X'* # x' and from part (iv)c' = c. Forx € I'g(S) N {a,c}* we now haver
fixing c,X € A3(x) with T not fixing X' which, using Lemmas 3.11 and 3.5, yields
c € Al(a). From this contradiction we conclude tigitc y3(a, S), as claimed.

We now use the standard MOG labelling as described in Section 2 and will
next show that

(4.7.7)for eachS € S4(a,c), S has a tetrad containinf, c}.

Assume thaB € Sq(a,c) has no tetrad containin, «} and letsbe the tetrad
of S containing{e}. Then there are 8 possibilities feas follows:

X X X X

X X X
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X X
X X
X X X
X
X X X X
X
X X X
X X
X X
X
X X X
X X
Without loss assumeis w ; the other 7 cases may be dealt

with similarly. If T € S4(a,c) and T’ # S, then sinceT’ € y3(a,S) for each
Se Sp(a,c) by (4.7.6) andT’ € ys3(a,S) we see that there are three possibilities
for the tetradt, in T’ which containg«}, these being

X X X
X
X
X X X
X
X
X
X

However for each of the three possibilities we see skt is a tetrad of a sextet in
Sb(a,c). SinceSy(a,c) is a sextet line, this yieldSq(a,c) NSp(a, c) # 0, contrary
to (4.7.5). Therefor& has a tetrad containing, c}.

Using a similar argument to that in (4.7.7) we see that for &ehsq(a,c), S
has a tetrad containing the following 2-element subgetst 5}, {14, 8}, {20,18},

43



{17,4},{16,10}, {11,13}, {7,2}. ThereforeX}, Y;, Z, must appear in the follow-
ing list of 4 sextets.

*x OO0 x]o o * O %xX|o +
= Og x|+ + * - |0 x|+ o
X X|o + x Ol %]o o
X X|+ o x Odj - * | + +
* * + + * x O+ o
* - | x o o * - x O]o +
x Ol x O]o + x O] % o o
x O]l x O]+ o x O] % + +

It may be checked directly that taking the symmetric difference of any pair of these
sextets we obtain one of the sextetsSg{a, ) = {Xa, Ya,Za}. (By the symmetric
difference of two of the above sextets we mean the sextet whose tetrads are given
by the symmetric difference of intersecting tetrads of these two sextets). Thus
we haveSq(a,c) NSp(a,c) # 0, again contradicting (4.7.5). This is the desired
contradiction and so we have established part (v).

Finally we come to part (vi). Combining Theorem 3.6(i), (2.3)(ii), part (v) and
Lemma 4.6(i) gives, fob € {a,c}*,

_ 4|ay(b,b+a)||Ar(a)] 4100815180

—27357.1123
[{a,c}+| 18 ’

85(a)]

as claimed. At last the proof of Theorem 4.7 is complete.

Because of Theorem 4.7(iii) we may, and shall, yé& c) = {Xa,Ya,Za} to
denote the sextet line iRy whenc € A3(a). Below we summarize, for later use,
the concrete description ¢f,c}+ obtained in the previous theorem.

* o | X + O * K X X * o | X + O

* o | X + O * k|- X X * o | X + O

* o | X + O o o |O O]+ + o % x| O +

* o | X + O o o |O0 O]+ + o % x| O +
Xa Ya Zy
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o

o

o}

o

+ +
+ +

+ +

a+2zp

a+2

+ +
+ 4+
+ 4+
+ +
a+7z3

+ +
+ +

at+z,

e}

e}

a+zs

e}

(0]

o

O

(@]

(0]

o

O

(@]

a+Vy

a-t+yz

+ +

+ o+

a+ys

+ +

+ +
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Diagrammatically we may think of the points {m, ¢} in the following way.
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The points in

are such thata,3,a} and{a, 3,c} are both sparse triangles. The joining lines in
the picture showa, c}- from c's point of view. That is to say

means thafa, B,y,d,\, 4} are the points iffo(S) N {a,c}* for someSec $(c,a).
Theorem 4.8Letc € A3(a).

(i) {a,c}+ =To(l) for somel € 'y, and sg{a,c}*| =5.

(i) |A3(a)| = 211.32.7.11.23.

Proof (i) By definition there existd € {a,c}* with b+ c € ag(b,b+ a), whence
Lemma 4.6(i) implies

(4.8.1)for everyx € {a,c}* , x+c € ap(x,x+a).
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From Lemma 4.4 there exists a unique line I'1(b) with | € az(b,b+a)N
as(b,b+c) andA;(b)N{a,c}t =To(1)\{b}. We assume there exists- {a,c}*
with d ¢ 'o(l) and argue for a contradiction. By (4.8.1) and Lemma 4.4 again
we may findk € '1(d) with k € az(d,d +a)Nas(d,d+c) andr;1(d)N{a,c}+ =
Mo(k)\{d}. Clearlyk # 1. Let X (respectivelyY) be the unique plane ihz(a,l)
(respectively 2(a,k)).

(4.8.2)If x3,% € [o(l) with x1 # X, thena+x; € az(a,a+ x2). Similarly if
Y1,¥2 € Fo(K) with y1 # y», thena+y € az(a,a+ys2).

This is a consequence of the fact that az(b,b+a), k € az(d,d +a) and
Lemma 3.2.

By (4.8.2) we get

(4.8.3)Each of the 15 octads containing a tetradxolies in exactly one of the
trios {a+x|x € Mp(l)}, with a similar statement for and{a+y|y € o(k)}.

(4.8.4)Y € y3(a,X).

If Y € yo(a,X) Uyi(a, X), then we can find an octad, containing a tetrad of
X, which cuts the 6 tetrads dfin 3.1°. Letx € I'g(l) be such tha® is an octad of
the trioa+x. Then by definitiora+x € 31(a,Y), whencer(Y) ¢ Gx from Lemma
3.3. Notice that(Y) € G; becausa(Y) € Q(x) for all x € M'g(k) and ifc'(Y) # c,
c+c'Y) = ¢4 x for everyx € Mg(k), contrary to Lemma 3.5. Hende, x,x*(Y)}
is a triangle and so Lemma 3.11 implies(c, x,X'Y)) # 0. Howevert(Y) € Q(a)
and soa+x = a+x"Y), which gives»(a, c) # 0. Using Theorem 4.3(ii) we have
2(a,b,c) # 0, contrary tob+ ¢ € ap(b,b+a), and (4.8.4) is proved.

Denote the unique trio ifi1(a, X,Y) by m. We first show that eithdrfo(m) N
Mo(l) =0oro(m)NTo(k) =0. Assume thak € No(m)NTo(l) andy € Fo(m)N
Mo(k). If x#Yy, then{c,x,y} is a triangle. Moreovex+y = m= x+ a, whence
[2(a,c) # 0 by Lemma 3.11 againste A3(a). Thereforex=y. However, (4.8.1)
implies thatx+ ¢ € ap(x,x+ a) and so we get a contradiction to Lemma 4.4 be-
causel andk are two distinct lines irf 1(x) lying in az(X,x+ a) N az(X,X+ c)
such thatA;(x) N {a,c}* = Mo(N\{x} = Mo(k)\{x}. Without loss we assume
Mo(m)NTo(k) = 0. By (4.8.4) and (2.7)(i) we may choo¥eandY to be, respec-
tively,
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and

+ + +
0o
+ X X
+ X X

O
o o
o o o
o -+ O o| O O+ +
with m being the standard trio. Using (4.8.3) we can chamsd o(k) such that
a+ econtains the left-hand octad of anda+e# m. If Fo(m)NTo(l) = 0, then
by (4.8.3) again we can finfl € I'g(l) with a+ f = m such thata+ f contains
the right-hand octad ah. This forcesa+e € a;(a,a+ f) and soe € A3(f). We

now have a contradiction to Lemma 4.6(ii) becaaskee€ {a,c}+ andc € A3(a).

Hence we may assunig(m)NTo(l) # 0. In this case we choosiee IMNy(l) such

* ot ot ot
X X X X
O O X

o * X

X X
thata+ f is a trio incident with (the octad) i i . From (4.8.3)
X X

andlo(m)NTo(l) # 0 we have that+ f does not contain the left-hand octad of
mand we again obtain that+ e € ay(a,a+ f), which leads to a contradiction.
This completes the proof of part (i).

(i) By Lemma 4.6(i) for everyx € {a,c}+, x4 ¢ € ap(x,x+a). Hence if
b € {a,c}* (2.3)(ii), Theorem 3.6(i) and part (i) yield

_ 4ag(b,b+a)||A1(a)]  4.268815180

— 2113271123
[{a,c}| S

83(2)]

5. ADJACENCY IN Az(a), A BEGINNING

This section is wholly devoted to the study of the Agfc) NAx(a) for ¢ € AJ(a).
In turn we consider the sefs (c) N AL (a) fori = 1,2,3. We recall that for each
c € Al(a), X(a,c) is the unique plane ifiz(a,c).

Lemma 5.1Let c,d € Al(a) with d € Aq(c). AssumeX(a,c) # X(a,d). Then
{a,c}*N{ad} #0, andX(a,c) € ys(a X(a,d)).

Proof We first show thaX (a, ¢) € y3(a, X(a,d)) by assuming otherwise and argu-
ing for a contradiction. By (2.7)X(a,c) € yo(a,X(a,d)) Uyi(a, X(a,d)) whence
there existd € N'1(a,X(a,d)) such thatl € B1(a,X(a,c)). From (2.16) there
are three points ifo(l) N A1(d), and we let{a,x} = Mo(l) NAL(d). Lett =
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T(X(a,c)). By Lemma 3.X € (1) NA1(d) and sad® # d. Recall that € Q(a)N
Q(c). Henced +c=d+d" andX(a,d)"' = X(a,d). Therefored+c=d+d' €
M1(X(a,d)) by Lemma 3.10 and thuse I'p(X(a,d)). But thenX(a,c) = X(a,d)
by Theorem 4.3(i), contrary t¥(a,c) # X(a,d). SinceX(a,c) € y3(a,X(a,d))
there existsne N'1(a,X(a,c¢),X(a,d)). By (2.16)c andd are each collinear with
three points of o(m) and sd o(m)NA1(c) NA1(d) # 0 becausél o(m)| =5. This
completes the proof of the lemma.

Theorem 5.2Let ¢ € A}(a) ande € A3(a). Thene ¢ A(c).

Proof We assume the theorem is false and argue for a contradiction. So we have
c € Al(a) ande € A3(a) with e € Ag(c). Let X denote the unique plane ffp(a)
such that{a, e} C I'p(X) and putt = 1(X(a,c)).

(5.2.1)X e yz(a,X(a,c)) U{X(a,c)}.

If (5.2.1) does not hold theX € yp(a, X(a,c)) Uyi(a, X(a,c)). By considering
the intersection matrices for the tetrads>ofand X(a,c) we see that there are
exactly 8 octads oKX intersecting the tetrads of(a,c) in 3.1° and every trio
incident withX contains exactly O or 2 of these 8 octads. By Lemma 4.4 for any
x,X € {a,e}* with x # X' the triosa-+x anda+ X' are incident withX and do
not contain a common octad, whence we may chdpbéc {a e} such that
a+b € B2(a X(a,c)) UBs(a,X(a,c)) anda+b € Bi(a, X(a,c)). From Lemma
3.3 we haved' # b and(b')' =b'. Thuse' £ e otherwise{e,b,b'} is a triangle
which by Lemma 3.11 implieB» (e, b,b") # 0 and therT »(e,a) # 0 from Lemma
3.11, againse € A3(a). We now have a trianglge, €',b'} which, by Lemma
3.11, must lie in the residue of a plaMe Sincet € Q(c), e+ €' = e+ ¢, whence
c,b/ € To(Y) and sob’ € Ag(c) UA3(c). If b’ € A(c), Lemma 5.1 implies that
Y € ys(c,X(c,a)) U{X(c,a)}. However we then have(= t(X(c,a))) € Q(Y)
which contradicts the fact thate o(Y) ande' # e. We therefore conclude that
b’ € Ai(c) and consequentlg+b € '1(a, X, X(a,c)). This contradicts the fact
thatX € yo(a,X(a,c)) Uyi(a,X(a,c)) and so (5.2.1) is proved.

By (5.2.1) and Lemma 4.4 we can choose {a,c}* andx < {a,e}* such
that eithera+x € az(a,a+x) or a+x=a+x. First assume that for every
x € {a,c}*+ andX € {a, e}, a+x+#a+x. Choosex € {a,c} andx € {a e}
so thata+x € az(a,a+x). From Lemma 3.8 is collinear with three points
of Mo(a+ x) and sincec is collinear with three points dfp(a+ x)\{x} we may

49



suppose thax is chosen so that € A;(X') anda+x € az(a,a+X) (y will be
introduced shortly).

X C
®

X' €

By assumptionX’ ¢ {a,c}* , x ¢ {a,e}*, whenced(x,e) = 2= d(X,c). Since
X' +x € az(X, X +a) by Lemma 3.9 and’ + e € ag(X,X +a) by Lemma 4.6(i),
we must have! +e € ag(X,X +X)Uaz(X,X +x). Thereforee € AZ(x) UAS(X). If
e€ A3(x), then since all points ofe,x}* are collinear from Lemma 4.4 we obtain
the contradiction that € A;(X). Hencee € A3(x), whereuporc € A3(x') from
Lemma 4.6(ii). From Theorem 4.7(ii) there exists a sextetfifiee) in 'y and a
sextetXy € S(x,e) NM2(X) such thaS:= {x,e}+ NA1(X) NTo(Xx) is a set of five
pairwise collinear points. Laetc S. Theneis collinear with exactly three points
of Mo(X +y) and soy ¢ Az (a) because the five points ¢&, e} are incident with
a unique line. Ify € Al(a), then inly the triosx +y andx + a have a common
octad which cuts the octads ®f+ e in 4,22. Hencex +e € a;(X,X +y) for
i =0, 1which contradicts the fact the A1 (€). Furthermorey ¢ A3(a), otherwise
Lemma 4.4 implies tha is collinear with all points of o(X' + x), which is not
the case by Lemma 3.8 becaude x € ay(X', X' +a). Thus we deduce,

(5.2.2)y € A3(a) for everyy € S.

Sincex+ ¢, x+ X € az(x,x+a), in Ik the triosx+ ¢ andx+ X each share
a common octad with the trig+a. Howeverx' € A3(c) implies thatx+ X €
a1(X,x+ c), whence these two common octads are distinct octads-a@f. Since
these two octads are disjoint arg- X' # X+ a # x+ ¢, by Theorem 4.7 we con-
clude that the two octads lie in the trloincident with each sextet af(x,e).
Any trio is uniquely determined by two of its octads and so we havea = I.
We now have a contradiction to (5.2.2) becalseas(x,x+Y) for everyy € S
and soy € Ag(a) UAL(a) by Lemma 3.11. Therefore we deduce that there exists
x€ {a,c}+, X € {a, e}t witha+x=a+x. If x¢ {a,e}* andX ¢ {a,c}*, then
x € A3(e) andx’ ¢ A}(c) which contradicts Lemma 4.6(ii). Thus we may assume
thatx = X/, as pictured below.
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g;.

€

In Iy, X+ aandx-+ ¢ share a common octad which cuts the octads-pEin
4.2? because+- e € do(x, X+ a). Thereforex+e ¢ a;(x,x+c) for i = 2,3 which
contradicts Lemma 3.11 and (2.9) becaeseA;(c). This completes the proof of
Theorem 5.2.

Lemma 5.3Let c € Al(a). Then|Az(c) NAL(a)| = 375with 15 points ofA;(c) N
Al(a) lying in To(X(a,c)). Further, forl € Bo(c,X(c,a)), |A1(a) NTo(l)| = 3 and
[83(a) NTo(l)| =2.

Proof Assumed € A (c)NAY(a), withd ¢ Fo(X(a,c)). Then Lemma 5.1 implies
thatX(a,c) € ys(a, X(a,d)) and{a,c}* n{a,d}+ #0. Letbe {a,c}- N{a,d}+.
Sinceb—+c € az(b,b+a), (2.3) allows us to assume, without loss, thak i

+ 4+ |0 o|— — + +|o0o o|o o
+ + |0 ¢) - - + 4+ |0 o |o 0]

b+a= andb+c = .
+ + +|o0o o | — — + + + | - —| - —
+ +|o0o o|— — + +| - —| - —

The triob+d has an octad in common witht-a becausd+d € ax(b,b+a). If
this octad is not the left-hand octad Iof- a, thenX(a,c) € y3(b,X(a,d)) forces
b+d € ai(b,b+c). However{b,c,d} is a triangle whenc&»(b,c,d) # 0 which
contradicts (2.9). Therefole+ d contains the left-hand octad bfi-a and we can

+ +|o —]o —

+ +|o —|o — . .
chooseb+dtobe = | o | _ , rNotice thato+d € ay(b,b+c). This

+ + | — o|— o

forcesX(a,c) andX

—~

a,d), when viewed as sextets i, to be respectively

* K X X * o | X + O

*  x . X X * o | X + O
and )

o o | 0O O+ + o % x| O +

o o |00 O+ + o % x| O +

(5.3.1)If m=b+a, thend andc are collinear with the same three point$ig(m).
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Assume otherwise and argue for a contradiction.llgm) = {a, b, x1, X2, X3}
where{b,x1,%2} = A1(c) NTo(m) and{b,x1,X3} = A1(d) NTo(m). Choose the
* % | x O|o O

. - Ol x - o
sextetY in ', to be O +|x +lo +
+ . o % | X %
Bs(a,Y) andb+acBi(a,Y). Sincet(Y) € Q(b), t(Y) fixesb+d, b+candb+a.
By Lemma 3.3;1(Y) fixesc andd but acts o o(m) by interchanging two pairs
of points inl"o(m)\{b}. Sincet(Y) must fixA1(c) NIo(m) andAs(d) NTo(m) we
obtain the required contradiction and (5.3.1) is proved.

. Thenb+d € B3(a,Y), b+ce

Notice that giverb € {a,c} there are 6 sextets 6%, in y3(b, X(a,c)) which
are incident with the trido+a. If we letY € y3(b,X(a,c)) NM2(b+a), there are
two lines inT1(b,Y) Nax(b,b+c)Naz(b,b+a) and each line is incident with
precisely two points of}(a) NAz(c). Let S= {d € Al(a)|d € A1(c),X(a,d) #
X(a,c)}. Then by the above and (5.3.1)

{a,c}|lya(b, X (a,¢)) NTa(b+a)||F1(b,Y) Naz(b,b+c) Nag(b,b+a)|.2

SI=

To complete the proof we need to show that there are exactly 15 points of
A1 (c)NA(a) which are incident witkX (a, ¢). SinceA(c)NTMo(X(a,¢)) C Az(a)u
A}(a) and|{a,c}+ NTo(X(a,c))| = 45we conclude that

1A1(c) NAY(a) NMo(X(a,¢))| = |A1(c) NTo(X(a,c))| — 45= 60— 45= 15.

Lemma 5.4Letc € Al(a) andd € A1 (c). Then{a,c}+ NA1(d) # 0 if and only if
c+d ¢ Ba(c X(c,a)).

Proof From Theorem 4.3(v), the orbits &,c onT1(c) arefi(c, X(c,a)) for i =
0,1,2,3. If c+d € Bo(c, X(c,a)), thenc+d € M'1(X(c,a)). By (2.16)|o(c+d)N
{a,c}*| = 3 and hencga,c}+ NA;(d) # 0 as required. Next supposerd €
B2(c,X(c,a)). Thus there existse '1(c,X(c,a)) with | € az(c,c+d) by (2.11)
and by Lemma 3.8 € Aj(x) for three pointsx in Ig(l). Sincea is collinear
with three points inMo(1)\{c} we must have{a,c}* NA;(d) #0. If c+de
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Bs(c,X(c,a)) we can findk € I'1(c,X(c,a)) with k € az(c,c+d) from (2.11);
then Lemma 3.8 and (2.16) gif@,c}*+ NA;(d) # 0. To conclude the proof we
show that ifc+d € B1(c, X(c,a)) then{a,c}* NA1(d) = 0. Assume that+d €
Bi(c,X(c,a)) and that there existsc {a,c}*- NA;(d). Thenc+x € M1 (X(c,a))
andc+x € aj(c,c+d) fori =2,3. However, by (2.11¢+x € aj(c,c+d) for

j = 0,1, a contradiction.

If d € A2(a) we letly denote the trio i 1(a) which is incident withS for
every sexteBe S(a,d).

Lemma 5.5Letc € Al(a) andd € A3(a) NA;(c). Then eitheda, ¢}t n{a,d}+ #
0orX(a,c) € M(lg).

Proof By Theorem 4.3(i) there is a unique sexXd¢t, c) € N'x(a,c). LetS(a,d) =
{X,Y,Z} be the sextet line i 5 introduced in Theorem 4.7. We first show

(5.5.1)for everySe S(a,d), Se ys(a, X(a,c)) U{X(a,c)}.

AssumeS ¢ y3(a, X(a,c)) U {X(a,c)} and argue for a contradiction. Then
| € B1(a,X(a,c)) for precisely 12 triod € I'1(a,S) by (2.8) (i), (ii). Using the
intersection matrices fof (a, c) andSgiven in Section 2 we see that the three trios
| € I'1(a,S) which do not lie inf1(a, X(a,c)) contain the same octad. However
every octad incident witls lies in some trica+ x wherex € {a,d}* by Theorem
4.7, and so we may choobes {a,d}* NTo(S) such thata+b ¢ Bi(a, X(a,c)).
Leth’ € {a,d}+ with a+b' € B1(a, X(a,c)) and set =1(X(a,c)). Then(b')" # b/
by Lemma 3.3, whencd" # d, otherwise{t/, (b')',d} is a triangle and Lemma
3.11 implies the impossiblex(a, d) # 0. Sincea+b ¢ 31(a, X(a,¢)) andt € Q(c)
Lemma 3.3 gives us the following.

C

b

However,b ¢ A;(c) becaus&e yi(a, X(a,c)) fori = 0or 1 and so we must have
b € Al(c). Therefore, by Lemma 5.1, there existse {a,c}+ N {c,b}*. Using
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Lemma 4.6 and the fact th&e yi(a, X(a,c)) for i =0 or 1 we have thab” €
A}(d). By Theorem 4.7(ip+b” must lie in[1(S). We then have tha+ b’ €
M1(S)Nri(a, X(a,c)) which contradicts the fact th&e y;(a, X(a,c)) fori =0or
1. This proves (5.5.1)

(5.5.2)If xe {a,d}+ with a+x € 1 (X(a,c)), then{a,c}+ N {a,d}+ # 0.

By (2.16) there existy € {a,c}* with a+y=a+x. If xe {a,c}*+ we are
done; so we may suppoges Al(c) andx # y.

y C

a d

However Theorem 4.3(ii) implies thdte Np(X(c,X)) and sinceX(c,x) = X(c,a)
we havel p(a,d) # 0, contrary tod € A(a). Therefore (5.5.2) holds.

Suppose tha= X(a, c) for someS< $(a,d). Then there exists € {a,d}+ N
Mo(S) with a+x € M1 (X(a,c)) and so (5.5.2) proves the result in this case. In
view of (5.5.1) we may now assunge= yz(a,X(a,c)) for all Se S(a,d).

(5.5.3)In 5, X(a,c) is incident with an octad df;.

Without loss we may assume

* O + | x 0O * % X X

* O + | x O * k| - . X X
X_* o + | x O andyY = o o | DO Ol+ 4+

* © + | x 0O o o |0 O+ +

and sdy is the standard trio. Letbe the tetrad oK(a,c) containing the element
X

. Sincet cuts the tetrads of andY in 22.0%, eithert is

contained in the left-hand octadlgfort contains the duad
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and intersects one of the other five tetradXads or o | In the latter case

X
we see, using the MOG, thalies in a sextet incident with one of the three octads
of Ig. HenceX(a,c) is incident with an octad dfy becauseX(a, c) is the unique
sextet containing t, and (5.5.3) is verified.

By (5.5.3) and Theorem 4.7 there exigts {a,d}* with a+x € '1(X(a,c))
and soX(a,c) ¢ IMy(lg) implies that{a,c}*+ N {a,d}+ # 0. Now (5.5.2) completes
the proof of the lemma.

Lemma 5.6Let ¢ € A}(a) andl € I'1(c) be such that € B(c,X(c,a)). If d €
Fo(l)NA3(a), then, inl g, d + ¢ is the trio incident with each sext8te 5(d, a)

Proof Let X = X(a,c). By (2.11) there are three lines in(c,X) Nax(c,l) and
12 lines inl1(c,X) Nax(c,l). LetT1(c,X)Naz(c,l) = {ki, kz,ks}. From (2.16)
and Lemma 3.8 there existg € {a,c}+ NTo(ky) with x; € Ay(d). Since, in
My, X1+ C € az(X1, X1 + a) Naz(X1, X1 + d), Theorem 4.7(i) implies that there
exists a unique poirky € Mo(xg +¢)\{x1} with x; € {a,d}*. Similarly there
existxs, X4 € Mo(k2) andxs, Xs € Mo(k3) with x; € Ay (d) N {a,c}+ fori=3,4,5,6
andxs # Xa, X5 # Xg. Sincex; € ['o(X) foralli=1,2,3,4,5,6 andX € I'»(a), then
Theorem 4.7(ii) gives tha&X € S(a,d).

Letk, mbe the two lines iff 1 (X1 ) incident with points in{a, d} -\ { Xz, X3, X4, X5, Xe }
and setlo(k) N {a,d}* = {x1,y1,y2} andTo(m) N {a,d}* = {x1,21,2}. By
Theorem 4.7(i) there existé € ['>(d) with Y € I'x(x1 + X2,m, k) and sincec €
Mo(x1 + X2) we havec € I'o(Y). However{yi,y2,21,22} NTo(X) = 0 and so
{y1,¥2,21,22} N {a,c}+ = 0 which means thafyi,y»,21,2} C Al(c). Therefore,
inlg,d+x,d+Vi, d+z (i =1, 2),each contain some octad of the tdie-c. Since
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the 6 trios{d + x;,d +y;,d + z|i = 1,2} are all incident withY € $(d,a). The-

orem 4.7(i) and Lemma 4.6 imply they do not share a common octad and so the
trio d 4+ ¢ must be the trio incident with each sexg&¢t $(d,a) which completes

the proof of the lemma.

Lemma 5.7Let c € Al(a) andd € A3(a)NAx(c). Then{a,c}+N{ad}+ #0.

Proof Assume the result is false and argue for a contradiction. From Lemmas
5.4 and 5.5c+d € Bi(c,X(c,a)) and X(a,c) € Mz2(lq). Lett =1(X(a,¢))(=
1(X(c,a))). SinceX(a,c) € y3(a,S) for all Se S(a,d), 1 fixesb for everyb
{a,d}* by Lemma 3.3. However does not fixd, by Lemma 3.3 again, because
c+d e Bi(c,X(c,a)) and sad® € Mp(c+d)\{c,d}. If be {a,d}*, then{d,b,d"}
forms a sparse triangle becaus¢ A;(b), which implies thatd + c andd + b
have a common octad Ify, for everyb € {a,d}*. The only way this can happen
is if d+c is the trio incident with eacls € 5(d,a). Fix b € {a,d}* and let

x be the unique point ifa,d}* NA;(b) with b+ x € az(b,b+a) Nay(b,b+

d) (see Theorem 4.7(i)). We can choose a palnt g(b+ X) such thatc’ €
Al(a)NAq(d) andc #c. InTy, ¢ +d has an octad in common with+b and so

¢ +d € Bo(c,X(c,a)) UB(C,X(c,a)). Sinced ¢ Al(a) we must have’ +d €
B2(c,X(c',a)). Using Lemma 5.6 gives thdt+ ¢’ is the unique trio incident with
every sexteBe 5(d,a), whenced + ¢’ = d + c. Furthermore, i 3 X(a,c’) must
be a sextet i (a,d) which means thaX(a,c) € y3(X(a,c’)) U{X(a,c')}. Hence

T € Q(X(a,c')) and sor fixesc'. However we already know thatmovesd and
we have a contradiction to Lemma 3.3 becatise2’ = ¢+ d. This completes the
proof of Lemma 5.7.

Theorem 5.8Let ¢ € A}(a) andd € A3(a) NAx(c). Then the following hold.
(i) c+d € Ba(c.X(c,a)) UBs(c.X(c,a)).
(ii) If | € Ba(c,X(c,a)), then|Fo(l)NAL(a)| = 3and|o(1) NAZ(a)| = 2.
(iii) If 1 € B3(c,X(c,a)), then|lo(1)NAL(a)| = Land|o(l) NAS(a)| = 4.
(iv) |A1(c) NAS(a)| = 360+ 2880= 324Q

Proof(i) Part (i) is a consequence of Lemmas 5.4 and 5.7 together with the fact
thatd ¢ Np(X(c,a)).
(i) From Lemma 5.3 there are 360 points lying in
R:= (A1(c) N23())\To(X(c,)).
The Gy orbits onl"1(c) arefi(c, X(c,a)) fori =0,1,2,3 by Theorem 4.3(v) and
{c+x|x € R} is a union of these orbits. By considering the orbit sizes given in (2.5)

56



we conclude thafc+X|x € R} = Ba(c, X(c,a)) and |Io(c+ x) NAl(a)| = 3 for
eachx € R Fix x € Rand lety € Mo(c+X)\A}(a). Sincec+x € B2(c,X(c,a)) we
can choos® € {a,c}+ with c+b € a,(c,c+x). From (2.16) and Lemma 3.8 there
existsb/ € Mp(c+b) with b € {a,y}* and hencel(a,y) < 2. If y € A;(a), then
c+x=c+y e MN(X(c,a)), a contradiction, whencg{(a,y) = 2. Sincey ¢ A3(a)

by Theorem 5.2 we deduce thet A3(a) which means thdf o(c+x) NA3(a)| =2
and (ii) is proved.

(iii) Let x € {a,c}* . Then we can choosec "1 (x) with k € az(x,x-+¢) N
ai(x,x+a). If ye ro(k)\{k}, theny € A3(a) NA1(c) by Lemma 3.8 and the
definition of A3(a). Further,c+y € as(c,c+x) from Lemma 3.9 and sincg¢
Mo(X(c,a)) (2.11) implies that+y € B3(c, X(c,a)). Thereforeifl € B3(c,X(c,a))
we havelo(l) NA3(a) # 0 becauseBs(c,X(c,a)) is a Gac-orbit. Choosed €
A2(a)NTo(l) and letb € {a,c}* N {a,d}* (b exists by Lemma 5.7). Sindec
Bs(c,X(c,a)) we must have + b € az(c,|) and sob is collinear with all points
of Mp(l) by Lemma 3.8. Let) € I'p(1)\{c,d} andY € '»(b+c,b+d). Since
b+aec ax(b,b+c)nai(b,b+d), (2.11) implies thab+a € B2(b,Y). Using
(2.11) again we have+ a € ax(b,l) for exactly three lineg € I'1(b,Y), one
of which isb+c. As trios inl', these three lines each contain a common oc-
tad. Howeveb+d’ € az(b,b+c) and sob-+d’ has no octad in common with
b+ c. Therefore, using (2.11) again, we must havea € a1(b,b+d’), whence
d’ € A3(a) and (jii) is proved.

(iv) This follows from parts (i) - (iii) using (2.5).
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