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1. INTRODUCTION

In [Ja] Janko presented detailed evidence for the existence of a new finite sim-
ple group of order221.33.5.7.113.23.29.31.37.43. Subsequently this group, now
calledJ4, was constructed (with the extensive use of machine) by Conway, Nor-
ton, Parker and Thackray (see [No]), and recently a computer-free construction
has been given by Ivanov and Meierfrankenfeld [IvMe].

A more recent development arising out of Buekenhout [Bu], Ronan and Smith
[RoSm] and Ronan and Stroth [RoSt] is the study of geometries related to various
of the sporadic simple groups. Of course, the motivation for such a programme is
to obtain a better understanding of this assorted menagerie of groups and (hope-
fully) unify their study. In [RoSm] one such geometry, the so-called maximal
2-local geometry forJ4 is described. This paper, together with [RW1] and [RW2],
is devoted to an exhaustive and detailed study of the structure of the maximal
2-local geometry forJ4 from a geometric slant. A major focus is the point-line
collinearity graph associated with this geometry which has 173,067,389 vertices.
We remark that the action ofJ4 on this graph yields the smallest faithful permu-
tation representation forJ4 . Also we note that the work in this paper, [RW1] and
[RW2] does not rely on any machine calculations. In fact, for our investigations
it is not necessary to assume that our group isJ4 - we only need assume certain
local geometric data as listed in Hypothesis 1.1 below. Moreover, as will be seen,
we shall be studying rank 3 geometries (the maximal 2-local geometry forJ4 has
rank 4 plus a ”ghost node”).

Our group theoretic notation is standard and it, together with additional geo-
metric notation, will be reviewed towards the end of this section. We now intro-
duce our main hypothesis.

Hypothesis 1.1Γ is a residually connected string geometry with type set{0,1,2}
andG is a flag transitive subgroup ofAutΓ which satisfy the following:-

(i) for a ∈ Γ0, Γa is the rank 2 geometry of trios and sextets (defined on the
Steiner systemS(5,8,24)), Ga/Q(a)∼= M24 andQ(a) is the 11-dimensionalM24-
Todd module; and,

(ii) for X ∈ Γ2, ΓX is the rank 2 geometry of duads and hexads (defined on
the Steiner systemS(3,6,22)), GX/Q(X) ∼= M22 : 2 and Q(X) ∼= 21+123 with
O2(GX) = O2(Q(X)) an extraspecial group of order21+12.
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Assume Hypothesis 1.1 holds. We shall use the following names for the ele-
ments ofΓ.

0 1 2type

name point line plane

Let a∈ Γ0, X ∈ Γ2 and putH = Ga/Q(a)(∼= M24) andK = GX/Q(X)(∼= M22 :
2). We recall that the geometry of trios and sextets consists of 3795 trios and
1771 sextets with, by definition, a trio being incident with a sextet whenever the
three octads forming the trio may be obtained from a pairing of the tetrads of
the sextet. While the geometry of duads and hexads has 231 duads (that is, 2-
element subsets of the 22-element set) and 77 hexads and incidence here is just
(set-wise) containment. Now the stabilizer inH of a trio (respectively, a sextet)
is isomorphic to26 : (L3(2)×S3) (respectively,26 : (3.S6)), and the stabilizer in
K of a duad (respectively, a hexad) is isomorphic to25 : S5 (respectively,24 :
S6). As a consequence of these observations and the flag transitivity ofG we see
that, inΓa, lines correspond to trios and planes correspond to sextets and, inΓX,
points correspond to hexads and lines correspond to duads. Further, sinceQ(a)
is isomorphic to the 11-dimensionalM24-Todd module, whena, l ,X is a maximal
flag,Q(a)|GaX ∼ 1\6\4 andQ(a)|Gal ∼ 3.1\3.2\1.2 (see [MeSt]). Thus ,

CGX(O2(Q(X))/Z(O2(Q(X)))≤Q(X).

To prevent proliferation of notation, we adhere to the following convention: when
working in Γa (a ∈ Γ0) we identify the lines and planes with the trios and sex-
tets of the Steiner systemS(5,8,24); and in ΓX (X ∈ Γ2) the points and lines
will be identified with the hexads and duads of the Steiner systemS(3,6,22). In
analysing the many configurations inΓa (a∈ Γ0) that confront us, extensive use is
made of Curtis’s MOG [Cu2]. We recommend the reader to have this miraculous
calculating device to hand.

Next we discuss the point-line collinearity graphG of Γ. The vertex setG is
just Γ0 and two distinct verticesa andb are adjacent inG if and only if a and
b are collinear points inΓ0 (that is, there exists a line inΓ incident with botha
andb). We recall, sinceΓ is a residually connected string geometry, thatG is a
connected graph. Fora, a vertex ofG , andi ∈N, ∆i(a) is the set of vertices (points
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of Γ) distancei in G from a. Our first theorem gives a numerical summary of our
results.

Theorem A Suppose Hypothesis 1.1 holds and leta be a fixed point ofG . Then
(i) |Γ|= 173,067,389;
(ii) {a},∆1(a),∆1

2(a),∆2
2(a),∆3

2(a),∆1
3(a) and∆2

3(a) are the orbits ofGa onΓ0;
(iii) ∆2(a) = ∆1

2(a)∪∆2
2(a)∪∆3

2(a), ∆3(a) = ∆1
3(a)∪∆2

3(a); and
(iv) |∆1(a)| = 22.3.5.11.23, |∆1

2(a)| = 24.7.11.23, |∆2
2(a)| = 27.3.5.7.11.23,

|∆3
2(a)|= 211.32.7.11.23, |∆1

3(a)|= 211.3.5.7.11.23and|∆2
3(a)|= 218.32.5.7.

Further, the number of edges between theGa-orbits is given in Figure 1.2
below.
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A very explicit and detailed description of the edges ofG , in terms of the
geometryΓ, is given below in Theorems C-G. A geometric definition of theGa-
orbits given in Theorem A appears later in this section.

In [Iv1] Ivanov gives partial results on the number of edges between points
of certainGa-orbits of G (G and Γ as in Theorem A). See also a more recent
monograph [Iv2] which elaborates upon the material in [Iv1]. The graphG has
also been studied by Meierfrankenfeld [Me].

From Theorem A we may readily deduce Theorem B.

Theorem B If Hypothesis 1.1 holds, thenG∼= J4 andΓ is isomorphic to a rank 3
subgeometry of theJ4 maximal 2-local geometry.

We note that the main result of [Iv1] follows from Theorem B.

Before presenting Theorems C-G we introduce some notation.

Geometric Notation

SupposeΓ = (Γ,τ,∗) is a geometry over{0,1, ...,n−1}; soΓ is a rankn−1 ge-
ometry with type mapτ and symmetric incidence relation∗. Let G be a subgroup
of AutΓ, the automorphism group ofΓ. For i ∈ {0,1, ...,n−1}, x∈ Γ andΣ⊆ Γ,

Γi = {y∈ Γ|τ(y) = i} (the objects ofΓ of type i) and

Γx = {y∈ Γ|x∗y} (the residue geometry ofx).

We useΓ(Σ) to denote the set of objects inΓ incident with all objects inΣ
andΓi(Σ) denotes the setΓ(Σ)∩Γi . If Σ = {x1, ...,xk}, then we sometimes write
Γ(x1, ...,xk) andΓi(x1, ...,xk) instead ofΓ({x1, ...,xk}) andΓi({x1, ...,xk}). By GΣ
or Gx1...xk we mean the subgroup ofG fixing every object inΣ = {x1, ...,xk}. For
x∈ Γ we define,

Q(x) = {g∈Gx|g fixes every object inΓx}.
ClearlyQ(x) is a normal subgroup ofGx; if H 6 Gx we denoteHQ(x)/Q(x), the
image ofH in G/Q(x), by H∗x
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Now assume thatΓ0 andΓ1 are the ”points” and ”lines” ofΓ. The point-line
collinearity graphG(Γ) of Γ is the graph whose vertex set isΓ0 with two vertices
being adjacent whenever they are collinear points inΓ. We used( , ) to denote the
usual distance inG(Γ) and so forx∈ Γ0,

∆i(x) = {y∈ Γ0|d(y,x) = i}.

When Hypothesis 1.1 holds we writeG instead ofG(Γ).
For x,y ∈ Γ0 we put{x,y}⊥ = ∆1(x)∩∆1(y) and defineZ1(x) = {g ∈ Gx|g

fixes every point in∆1(x)}.
Suppose two distinct collinear points ofΓ are always collinear with a unique

line. (This will be the case when Hypothesis 1.1 pertains - see Lemma 3.5.) Letx
andy be two collinear points ofΓ; the unique line collinear withx andy will often
be denoted byx+y (respectively,y+x) if we are viewing the line as a line inΓx

(respectively,Γy).

Let a be a fixed point ofG . Supposed is some other point ofG with d /∈∆1(a),
and letl ∈ Γ1(d). The point distribution of the linel is a sequence,

i1∆1i2∆1
2i3∆2

2i4∆3
2i5∆1

3i6∆2
3

which means thatΓ0(l) (the points ofΓ incident withl ) consists ofi1 ∆1(a) points,
i2 ∆1

2(a) points,i3 ∆2
2(a) points,i4 ∆3

2(a) points,i5 ∆1
3(a)points andi6 ∆2

3(a) points.
Wheneverin = 0 we omit that particular term from the sequence.

Theorem C For d ∈ ∆1
2(a), Gad has 4 orbits onΓ1(d) with the following point

distribution:-

ORBIT ORBIT SIZE POINT DISTRIBUTION
β0 15 3∆12∆1

2
β1 2880 1∆1

24∆1
3

β2 180 3∆1
22∆2

2
β3 720 1∆1

24∆2
2

Theorem D Let d ∈ ∆2
2(a). ThenGad has 10 orbits onΓ1(d) with the following

point distribution:-
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ORBIT ORBIT SIZE POINT DISTRIBUTION
(β0β0β0,{l}) 1 3∆1

22∆2
2

(β0β2β2,α2) 18 1∆14∆2
2

(β0β3β3,α3) 24 1∆1
24∆2

2
(β1β1β1,α0) 1536 1∆2

24∆2
3

(β1β1β2,α1) 288 1∆2
22∆3

22∆1
3

(β1β1β3,α0) 1152 1∆2
24∆1

3
(β1β1β3,α1) 576 1∆2

24∆3
2

(β2β2β2,α2) 24 3∆2
22∆1

3
(β2β3β3,α1) 144 3∆2

22∆3
2

(β3β3β3,α3) 32 1∆2
24∆1

3

Theorem E For d ∈ ∆3
2(a), Gad has 9 orbits onΓ1(d) with the following point

distribution:-

ORBIT ORBIT SIZE POINT DISTRIBUTION
(β0,∗) 5 1∆14∆3

2
(β0,∗∗) 10 3∆2

22∆3
2

(β1;216;216;18) 960 3∆3
22∆2

3
(β1;216;216;2214) 1920 1∆3

22∆1
32∆2

3
(β2;24;18;18) 60 1∆2

22∆3
22∆1

3
(β2;24;2214;2214) 120 3∆3

22∆1
3

(β3;18;18;18) 160 2∆3
23∆1

3
(β3;2214;2214;18) 240 1∆2

24∆3
2

(β3;2214;2214;2214) 320 1∆3
24∆2

3

Theorem F For d ∈ ∆1
3(a), Gad has 10 orbits onΓ1(d) with the following point

distribution:-
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ORBIT ORBIT SIZE POINT DISTRIBUTION
{l} 1 3∆2

22∆1
3

(β0,α2) 6 1∆1
24∆1

3
(β0,α3) 8 1∆2

24∆1
3

(β1,α0) 2304 1∆3
22∆1

32∆2
3

(β1,α1) 576 3∆1
32∆2

3
(β2,α0) 144 2∆3

23∆1
3

(β2,α2) 36 1∆2
22∆3

22∆1
3

(β3,α0) 384 1∆1
34∆2

3
(β3,α1) 288 1∆2

24∆1
3

(β3,α3) 48 2∆1
33∆3

2

Theorem G For d ∈ ∆2
3(a), Gad has 6 orbits onΓ1(d) with the following point

distribution:-

ORBIT ORBIT SIZE POINT DISTRIBUTION
S4 253 1∆2

24∆2
3

Dih(24) 253 3∆3
22∆2

3
S4 253 3∆1

32∆2
3

Dih(12) 506 1∆3
24∆2

3
S3 1012 1∆1

34∆2
3

Z2×Z2 1518 1∆3
22∆1

32∆2
3

The situations covered in Theorems C-G will be examined later in greater de-
tail, at the appropriate moment. However, we discuss briefly some of the notation
appearing in these theorems.

In Theorem C,G∗dad is the stabilizer of a plane (sextet) inG∗dd
∼= M24 and the

orbits ofGad on the lines inΓ1(d) are just the orbits of the stabilizer of a sextet
upon the trios inS(5,8,24) (see (2.4) for the definition ofβi( , )). While in The-
orem D,G∗dad is the stabilizer of a sextet line inG∗dd

∼= M24 - a sextet line consists
of a certain triple of sextets{X1,X2,X3} which together determine a unique trio,l .
The orbits ofGad onΓ1(d) are parameterized by(βiβ jβk,αm) meaning that, up to
a possible reordering ofX1,X2,X3, a given trio is inβi(d,X1),β j(d,X2),βk(d,X3)
andαm(d, l) (see (2.2) for the definition ofαm( , )). Turning to Theorem E, there
we have thatG∗dad is the centralizer inG∗dd (∼= M24) of a certain involutionτ∗. Now
τ∗ (as a permutation inM24) has cycle type212 andCG∗dd

(τ∗) is also a subgroup
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of the stabilizer of a sextetX. So in this case the orbits ofGad on Γ1(d) are pa-
rameterized by(βi ;2·1·;2.1·;2·1·) to indicate that the trio is inβi(d,X) and that
the three octads of the trio cut the partition of 24 points into 12 pairs as given (in
some order). The first two orbits listed are not easily described in this scheme,
hence the ad hoc∗,∗∗. In Theorem F,G∗dad turns out to be the stabilizer of a trio
l and sextetX wherel andX are incident. Thus we have oneGad-orbit onΓ1(d),
{l}, while the remainder are described by(βi ,α j) meaning a trio is inβi(d,X) and
α j(d, l).

Finally we come to Theorem G. Here we haveG∗dad
∼= L2(23). From the point

of view of the Steiner systemS(5,8,24) the maximal subgroupL2(23) of M24 is
”invisible” in the sense that it does not leave invariant any combinatorial configu-
ration related to the Steiner system. Accordingly we are forced to label the orbits
for Gad on Γ1(d) in terms of their stabilizer structure (inM24).

Next we define theGa-orbits mentioned in Theorem A.

Definition 1.4 Let a be a fixed point ofG .

(i) ∆1
2(a) = {c∈ ∆2(a)|Γ2(a,c) 6= /0}.

(ii) ∆2
2(a) = {c∈ Γ0| there existsb∈ {a,c}⊥ such thatb+c∈ α1(b,b+a)}.

(iii) ∆3
2(a) = {c∈ Γ0| there existsb∈ {a,c}⊥ such thatb+c∈ α0(b,b+a)}.

(iv) ∆1
3(a) = {d ∈ Γ0| there existsc∈ ∆1

2(a) such thatc+d ∈ β1(c,X(c,a))}.
(v) ∆2

3(a) = {d ∈ Γ0| there existsc∈ ∆2
2(a) such thatc+d ∈ (β1β1β1,α0)}.

We now review the contents of this paper. Section 2 establishes certain basic
notation and assembles relevant properties of the residue geometries. The various
subsets (of the set of trios)αi(a, l) andβi(a,X) are continually being scrutinized
throughout this work. This section also lays the groundwork, when studying the
residue of a plane, for our later study of triangles inG . In Section 3 we start to
array several important results that we shall heavily rely upon. First and foremost
we mention the involutionsτ(X) and Lemma 3.3. The fact that, from the point of
view of Γ, G has two different types of triangles ( sparse and non-sparse triangles)
is revealed in Lemmas 3.8 and 3.9. We emphasise the value of Lemma 3.9 which
asserts that if a trianglea,b,c in G when viewed froma is a sparse (non-sparse)
triangle, then the same is also true when viewed fromb andc. This allows us
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to move our information aroundG in a ”crab-like” fashion. Two other results in
Section 3 worth mentioning are that a line inΓ is incident with exactly 5 points
(Lemma 3.1) and two collinear points inΓ determine a unique line (Lemma 3.5).
After analysing∆1(a) (a, a fixed point ofG) in Theorem 3.6, we begin disembow-
elling ∆2(a). First, we investigate∆1

2(a) obtaining, in Theorem 4.3, all we need to
know about thisGa-orbit without too much effort. On the other hand the analysis
of ∆2

2(a) is much more demanding but the resulting configurations are very pretty
(see Theorem 4.7). We remark that the geometric structures associated with∆2

2(a)
are pivotal in our study of∆3(a). We close Section 4 with Theorem 4.8 which
establishes some easy properties of∆3

2(a) - we will return later to study this orbit
again in [RW2].

In Section 5 we consider the edges between∆1
2(a) and ∆2

2(a)∪∆3
2(a). We

particularly mention Theorem 5.2 in which it is shown that there are no edges in
G between∆1

2(a) points and∆3
2(a) points.

We follow the ATLAS [A] conventions for describing groups; our other group
theoretic notation is standard as given in, for example, [Go], [Su]. We end this
section by showing that Theorems C-G, together with other results, yield the data
displayed in Figure 1.2.

By Theorem 3.6(i)|∆1(a)|= 22.3.5.11.23= 15,180.

(Using Theorem C),
∆1

2(a)−→ ∆1(a) : 15×3 = 45
∆1

2(a)−→ ∆1
2(a) : 15+180×2 = 375

∆1
2(a)−→ ∆2

2(a) : 180×2+720×4 = 3240
∆1

2(a)−→ ∆1
3(a) : 2880×4 = 11,520

(Using Theorem D)
∆2

2(a)−→ ∆1(a) : 18
∆2

2(a)−→ ∆1
2(a) : 24+3 = 27

∆2
2(a)−→ ∆2

2(a) : 144×2+18×3+24×2+24×3+1 = 463
∆2

2(a)−→ ∆3
2(a) : 288×2+576×4+144×2 = 3,168

∆2
2(a)−→ ∆1

3(a) : 288×2+24×2+32×4+1152×4 = 5,360
∆2

2(a)−→ ∆2
3(a) : 1536×4 = 6,144

(Using Theorem E)
∆3

2(a)−→ ∆1(a) : 5
∆3

2(a)−→ ∆2
2(a) : 10×3+60+240= 330

∆3
2(a)−→∆3

2(a) : 5×3+10+960×2+60+120×2+240×3+160= 3,125
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∆3
2(a)−→ ∆1

3(a) : 1920×2+60×2+120×2+160×3 = 4,680
∆3

2(a)−→ ∆2
3(a) : 960×2+1920×2+320×4 = 7,040

(Using Theorem F)
∆1

3(a)−→ ∆1
2(a) : 6

∆1
3(a)−→ ∆2

2(a) : 3+8×1+36+288= 335
∆1

3(a)−→ ∆3
2(a) : 36×2+48×3+144×2+2304= 2,808

∆1
3(a) −→ ∆1

3(a) : 1+ 6×3+ 8×3+ 36+ 48144×2+ 288×3+ 576×2+
2304= 4,735

∆1
3(a)−→ ∆2

3(a) : 384×4+576×2+2304×2 = 7,296

(Using Theorem G)
∆2

3(a)−→ ∆2
2(a) : 253

∆2
3(a)−→ ∆3

2(a) : 253×3+506+1518= 2,783
∆2

3(a)−→ ∆1
3(a) : 253×3+506+1518×2 = 4,807

∆2
3(a)−→ ∆2

3(a) : 253×3+253+253+506×3+1012×3+1518= 7,337

The edges emanating from∆1(a) can now be calculated using the sizes of
∆1

2(a), ∆2
2(a) and∆3

2(a) (see Theorems 4.3(iv), 4.7(vi) and 4.8(ii)).
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2. PROPERTIES OF THE RESIDUE GEOMETRIES

In our M24 related calculations we shall employ Curtis’s MOG as described in
[Cu2]. The term ”standard trio” and ”standard sextet” refer, respectively, to the
following trio and sextet.

+ + - - ◦ ◦
+ + - - ◦ ◦
+ + - - ◦ ◦
+ + - - ◦ ◦

? × · 2 + ◦
? × · 2 + ◦
? × · 2 + ◦
? × · 2 + ◦

For our M22 related calculations we will use the 22 element set formed by
removing the top row of the left-most heavy brick of the MOG.

Let a∈ Γ0 be fixed and setΛ = Γa. By Hypothesis 1.1Λ is isomorphic to the
geometry of trios and sextets of the Steiner system S(5,8,24) where we regard the
trios as being objects of type 1 and the sextets objects of type 2. As is well-known,
M24

∼= Ga/Q(a) acts flag transitively uponΛ.

(2.1) (i) |Λ1|= 3795and|Λ2|= 1771.
(ii) For l ∈ Λ1 andX ∈ Λ2, |Λ2(l)|= 7 and|Λ1(X)|= 15.

Proof Consult [Cu2].

For distinct triosl andm there are four possible ways in which their octads
intersect. They are as below, where the(i, j)th entry of the matrix is the number of
elements in the intersection of theith octad ofl with the jth octad ofm (assuming
an appropriate, fixed, labelling of the octads ofl andm).

T0 =




4 2 2
2 4 2
2 2 4


 T1 =




2 2 4
2 2 4
4 4 0




T2 =




8 0 0
0 4 4
0 4 4


 T3 =




4 4 0
4 0 4
0 4 4



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Definition 2.2 Let l be a fixed trio inΛ1.
α0(a, l) = {m∈ Λ1|l andm haveT0-intersection matrix}
α1(a, l) = {m∈ Λ1|l andm haveT1-intersection matrix}
α2(a, l) = {m∈ Λ1|l andm haveT2-intersection matrix}
α3(a, l) = {m∈ Λ1|l andm haveT3-intersection matrix}

Our notation here is chosen so as the subscript ofαi(a, l) is the number of
octads of m intersecting two octads ofl each in exactly 4 elements.

(2.3)Let l be a fixed trio inΛ1.
(i) TheGal orbits ofΛ1 are{l}, α0(a, l), α1(a, l),α2(a, l) andα3(a, l).
(ii) |α0(a, l)|= 2688, |α1(a, l)|= 1008, |α2(a, l)|= 42and|α3(a, l)|= 56.

Proof See Section 2, Chapter 1 of [Cu1].

Let l be a trio andX be a sextet. Thenl cuts the tetrads ofX in one of the
following four possible ways.

44|44|44
2222|311111|311111

44|2222|2222
2222|2222|2222.

Each of the three partitions gives the size of the non-empty intersection of an
octad ofl with each of the six tetrads ofX. So, for example,2222|311111|311111
means that one of the octads ofl cuts four of the tetrads ofX in 2 elements and
the other two each cut one tetrad ofX in 3 elements and the remaining 5 tetrads
in exactly one element.

Next we describe certain sets of trios which are of great importance in our
subsequent arguments.

Definition 2.4 Let X be a fixed sextet inΛ2

β0(a,X) = {l ∈ Λ1|l cutsX in 44|44|44}
β1(a,X) = {l ∈ Λ1|l cutsX in 2222|311111|311111}
β2(a,X) = {l ∈ Λ1|l cutsX in 44|2222|2222}
β3(a,X) = {l ∈ Λ1|l cutsX in 2222|2222|2222}.

As an aide de memoir, the subscript ofβi(a,X) is the number of octads ofl that
cutX in 2222.
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(2.5)Let X be a fixed sextet inΛ2

(i) TheGaX orbits ofΛ1 areβ0(a,X), β1(a,X), β2(a,X) andβ3(a,X).
(ii) |β0(a,X)|= 15, |β1(a,X)|= 2880, |β2(a,X)|= 180and|β3(a,X)|= 1720.

Proof See Section 2, Chapter 1 of [Cu1]

Let X andY be distinct sextets. There are three possibilities for the intersection
matrix of X andY; the(i, j)th entry being the number of elements in the intersec-
tion of theith tetrad ofX with the jth tetrad ofY, again assuming an appropriate
labelling of the tetrads ofX andY.

S0 =




2 1 1
2 1 1

2 1 1
2 1 1

1 1 1 1
1 1 1 1




S1 =




3 1
1 3

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




S3 =




2 2
2 2

2 2
2 2

2 2
2 2




Definition 2.6 For X a fixed sextet ofΛ2,
γ0(a,X) = {Y ∈ Λ2|X andY haveS0-intersection matrix}
γ1(a,X) = {Y ∈ Λ2|X andY haveS1-intersection matrix}
γ3(a,X) = {Y ∈ Λ2|X andY haveS3-intersection matrix}
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Again we draw the reader’s attention to the following mnemonic used above: the
subscript ofγi(a,X) denotes the number of octadsX andY have in common.

(2.7)Let X be a fixed sextet inΛ2.
(i) TheGaX orbits ofΛ2 are{X}, γ0(a,X), γ1(a,X) andγ3(a,X).
(ii) |γ0(a,X)|= 1440, |γ1(a,X)|= 240and|γ3(a,X)|= 90.

Proof See Section 2, Chapter 1 of [Cu1].

(2.8)Let X andY be sextets.
(i) If Y ∈ γ0(a,X), then of the 15 trios incident withY three are inβ3(a,X) and

twelve inβ1(a,X).
(ii) If Y ∈ γ1(a,X), then of the 15 trios incident withY three are inβ2(a,X)

and twelve inβ1(a,X).
(iii) If Y ∈ γ3(a,X), then of the 15 trios incident withY one is inβ0(a,X), six

in β2(a,X) and eight inβ3(a,X).

Proof A straightforward case-by-case check yields the result.

(2.9)Let l andmbe trios withm∈ α j(a, l) ( j ∈ {0,1,2,3}).
(i) If j ∈ {0,1}, thenΛ2(l ,m) = /0.
(ii) If j ∈ {2,3}, thenΛ2(l ,m) contains a unique sextet.

Proof Observe thatΛ2(l ,m) 6= /0 implies that an octad ofl intersects the three
octads ofm in either 8|0|0 or 4|4|0. Hence (i) follows from the definition of
α0(a, l) andα1(a, l).

SinceGa is transitive onΛ1 and using (2.3)(i) there is no loss in generality in
assuming

l =

+ + - - ◦ ◦
+ + - - ◦ ◦
+ + - - ◦ ◦
+ + - - ◦ ◦

m=

+ + - - ◦ ◦
+ + - - ◦ ◦
+ + ◦ ◦ - -
+ + ◦ ◦ - -

if m∈ α2(a, l); and
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m=

+ - + ◦ ◦ -
+ - + ◦ ◦ -
- + ◦ + - ◦
- + ◦ + - ◦

if m∈ α3(a, l).

If m∈ α2(a, l) let

X =

? ? · · + +
? ? · · + +
× × 2 2 ◦ ◦
× × 2 2 ◦ ◦

and ifm∈ α3(a, l) let

X =

? × · 2 + ◦
? × · 2 + ◦
× ? 2 · ◦ +
× ? 2 · ◦ +

Then, since a tetrad is contained in a unique sextet, we see thatΛ2(l ,m) = {X}.

NOTATION When we havem∈ α j(a, l) with j ∈ {2,3} we shall denote the
unique sextet inΛ2(l ,m) by X(a, l ,m).

(2.10)Let X be a sextet and fixl ∈ Λ1(X), the set of trios incident with X. Then
the orbits ofGalX on Λ1(X) are{l}, Λ1(X)∩α2(a, l) andΛ1(X)∩α3(a, l) with
sizes 1, 6 and 8 respectively.

Proof Without loss of generality we takel to be the standard trio andX the stan-
dard sextet. It is an easy matter to verify the sizes ofΛ1(X)∩αi(a, l) for i = 2,3.
Recall thatGalX contains a subgroup which inducesS3 upon the three octads of
l and also a subgroup fixing one octad ofl pointwise and acting as a Klein fours
group on the remaining 4 columns ofX. This readily yields (2.10).

(2.11)Let X be a fixed sextet inΛ2 and letl be a trio inΛ1.

(i) If l ∈ β0(a,X), then|α3(a, l)∩Λ1(X)|= 6 and|α2(a, l)∩Λ1(X)|= 8.

(ii) If l ∈ β1(a,X), then|α0(a, l)∩Λ1(X)|= 12and|α1(a, l)∩Λ1(X)|= 3.

(iii) If l ∈ β2(a,X), then|α1(a, l)∩Λ1(X)|= 12and|α2(a, l)∩Λ1(X)|= 3.
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(iv) If l ∈ β3(a,X), then|α0(a, l)∩Λ1(X)|= 8, |α1(a, l)∩Λ1(X)|= 6and|α3(a, l)∩
Λ1(X)|= 1.

Proof This follows from the definitions using straightforward counting arguments.

On a few occasions it is convenient to have a labelling of the MOG elements
and, as in [Cu2], we use the following:

∞ 14 17 11 22 19
0 8 4 13 1 9
3 20 16 7 12 5
15 18 10 2 21 6

For tetradss and t in the MOG,s⊕ t denotes the symmetric difference ofs
andt. Sextet lines will play a prominent role in many of our later arguments. We
recall that a sextet line is a triple{X1,X2,X3} of sextets with the property that ifsi

andt j are tetrads ofXi andXj such thatsi ∩ t j 6= /0 thensi⊕ t j is a tetrad ofXk (for
{i, j,k}= {1,2,3}).

Next we itemize properties of the plane residue. So letX be a fixed plane of
Γ and setΛ = ΓX. From Hypothesis 1.1,Λ is the geometry of hexads (objects of
type 0) and duads (objects of type 1) of the Steiner system S(3,6,22). Herea∈ Λ0

and l ∈ Λ1 are incident by definition ifl ⊆ a. Also, by Hypothesis 1.1, we have
GX/Q(X)∼= M22 : 2 andM22 : 2 acts flag transitively onΛ. Note thatΛ0 plays the
role of points andΛ1 that of lines inG(Λ).

Remark Λ is isomorphic to the geometry of hexads and quintets forM22 : 2 as
described in [RoSm].

(2.12)(i) |Λ0|= 77and|Λ1|= 231.
(ii) For a∈ Λ0 andl ∈ Λ1, |Λ1(a)|= 15and|Λ0(l)|= 5.
(iii) G(Λ) has diameter two and ifa,b∈Λ0 with d(a,b) = 2, then|∆1(a)|= 60,

|∆2(a)|= 16and|{a,b}⊥|= 45with GaX transitive on∆1(a) and∆2(a).

Fora∈ Λ0 andl ∈ Λ1(a) we define,

δ0(X,a, l) = {k∈ Λ1(a)||k∩ l |= 0} and
δ1(X,a, l) = {k∈ Λ1(a)||k∩ l |= 1} .

18



(2.13)Let a∈ Λ0 andl ∈ Λ1(a).
(i) TheGalX-orbits onΛ1(a) are{l}, δ0(X,a, l) andδ1(X,a, l) with

|δ0(X,a, l)|= 6 and|δ1(X,a, l)|= 8.
(ii) Supposek ∈ δ0(X,a, l) and letΛ0(l)\{a} = {a1,a2,a3,a4}. Eachai is

collinear with precisely two points ofΛ0(k)\{a}; moreover, up to relabelling,a1

anda2 are collinear with the same pair of points inΛ0(k)\{a} anda3 anda4 are
collinear with the remaining pair of points inΛ0(k)\{a}. That is

k

l
a

a1

a2

a3

a4

and sok determines a pairing of the points ofΛ0(l)\{a}.
(iii) If k ∈ δ1(X,a, l), then every point inΛ0(l)\{a} is collinear with each of

the points inΛ0(k)\{a}.
(iv) Let ki (16 i 6 6) be the lines inδ0(X,a, l). Thenki andk j (i 6= j) determine

the same pairing ofΛ0(l)\{a} if and only if ki ∈ δ0(X,a,k j).

Proof Without loss we may assume,

a =
× ×
× ×
× ×

andl =

× ×

ThenΛ0(l)\{a}= {a1,a2,a3,a4} where

a1 =

× ×

× × × ×
, a2 =

× ×
× ×

× ×
,
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a3 =

× ×

× × × ×
anda4 =

× ×
× ×

× ×
.

SinceGalX contains a subgroup inducingS4 upon the seta\l and also contains an
element interchanging the two (MOG) points ofl , we see that (i) holds.

(ii) In view of part (i) we may suppose,

k =
× ×

.

Let b1 =

× ×
× × × ×

, b2 =
× ×

× ×
× ×

,

b3 =

× ×
× × × ×

andb4 =
× ×

× ×
× ×

.

So Λ0(k)\{a} = {b1,b2,b3,b4}. It is now easy to check thata1 anda2 are only
collinear withb1 andb2 as area3 anda4 with b3 andb4.

(iii) Sincek∩ l 6= /0, a hexad containingl must intersect each hexad containing
k in a duad, whence part (iii) follows.

(iv) Here we have ,

k1 =
× ×

, k2 = × × ,

k3 =
×
× , k4 =

×
× ,
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k5 =
×

× andk6 =
×

× .

It may be verified thatk1 andk2 determine the pairing{a1,a2}{a3,a4}; k3 and
k4 determine the pairing{a1,a4}{a2,a3}; and k5 and k6 determine the pairing
{a1,a3}{a2,a4}. Part (iv) now follows immediately.

(2.14)Let a andb be collinear points inΛ with Λ1(a,b) = {l}. Supposel1, l2,m∈
Λ1(b) satisfy

(i) l1, l2 ∈ δ1(X,b, l), m∈ δ0(X,b, l); and
(ii) l2 ∈ δ0(X,b, l1), m∈ δ0(X,b, l i) for i = 1,2.

Let d1,d2 ∈ Λ0(l1) ande1,e2 ∈ Λ0(l2) be such that{d1,d2,e1,e2} are pairwise
collinear (see (2.13)(ii)). Then there is a unique pointx in Λ0(m) which is collinear
with a and (up to a relabelling ofe1 ande2) Λ1(d1,e1,x) 6= /0 6= Λ1(d2,e2,x).

Proof SinceGXal is transitive onΛ0(l)\{a}, we may suppose that

a =

× ×

× × × ×
, b =

× ×
× ×
× ×

andl =

× ×
.

Given the conditions onl1, l2 andm we may further assume that

l1 = ×
×

, l2 = ×
×

andm=
× ×

.
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By (2.13)(ii) we must have{d1,d2} equal to

{ ×
×

× ×
× ×

,

×
×

× ×
× ×

}
or

{ ×
×

× ×
× ×

,

×
×

× ×
× ×

}
.

If the former holds, then{e1,e2} must be

{ ×
×

× ×
× ×

,

×
×

× ×
× ×

}

in which case it can be checked that

× ×
× × × ×

is the unique point

of Λ0(m) collinear with all ofa,d1,d2,e1,e2. In the latter case the unique point of

Λ0(m) is
× ×

× ×
× ×

.

(2.15)Let {a,b,c} be a triangle inG(Λ) with k ∈ Λ1(a,b), l ∈ Λ1(b,c) andm∈
Λ1(a,c), and leti ∈ {0,1}. If k∈ δi(X,a,m), thenl ∈ δi(X,b,k).

Proof Supposek ∈ δ0(X,a,m). Then by (2.13)(ii)c is collinear with exactly 3
points ofk, two of which area andb. Hencel ∈ δ0(X,b,k) by (2.13). A similar
argument shows thatk∈ δ1(X,a,m) implies thatl ∈ δ1(X,b,k).

Remark From (2.15) it follows that for a trianglea,b,c in G(Λ) (and using the
notation in (2.15)) the size of the intersectionsk∩ l , k∩m andl ∩mare the same.
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(2.16)Let a,c∈ Λ0 with d(a,c) = 2. If l ∈ Λ1(a), then|Λ0(l)∩{a,c}⊥|= 3.

Proof As hexads inΛ, a andc are disjoint. Sincel is a duad incident witha, l
is disjoint fromc. Therefore there are exactly three hexads incident withl which
have a non-empty intersection withc. These three hexads correspond to the three
points ofΛ0(l)∩{a,c}⊥.

3. τ(X) AND TRIANGLES IN G

FromΓ being a string geometry and (2.12)(ii) we have

Lemma 3.1For l ∈ Γ1, |Γ0(l)|= 5.

For X ∈ Γ2, we have that|Z(O2(Q(X)))| = 2 by Hypothesis 1.1(ii). We put
Z(O2(Q(X))) =< τ(X) >. Soτ(X)∈Z(GX). Also note that fora∈Γ0(X), τ(X)∈
Q(a). This follows fromQ(a),Q(X) 6 GaX andCGa(Q(a)) = Q(a).

Lemma 3.2If a∈ Γ0 andY ∈ Γ2(a), then the following hold.

(i) G∗YaY
∼= 24 : S6.

(ii) Q(a)∗Y = O2(G∗YaY)∼= 24.

(iii) Let 1 6= g∈O2(G∗YaY). Then for three of the linesl in Γ1(a,Y), g fixes each
point inΓ0(l) and for the other twelve linesl in Γ1(a,Y) g acts regularly on
Γ0(l)\{a}.

(iv) Z1(a) = 1.

Proof BecauseG∗YaY is the stabilizer inM22 : 2 of a hexad, we have part (i).
SinceQ(a) is elementary abelian andO2(Q(Y)) is an extraspecial 2-group of

order21+12 , |Q(a)∩O2(Q(Y))| 6 27 . Now Q(a) ∼= 211, Q(a) 6 O2(GaY) and
part (i) yield (ii).

In ΓY we may, without loss of generality, choosea=
× ×
× ×
× ×

.

Since the involutions inO2(G∗YaY) are all conjugate inG∗YaY, there is no loss in
further supposing that,
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g =

· ·
· ·
· ·
· ·

.

By inspecting each of the 15 lines inΓY incident witha we see thatg fixes all the
points inΓ0(l) for

l =
× ×

, × ×

and

× ×
.

While for the remaining twelve linesl , g acts regularly onΓ0(l)\{a}, and this
proves (iii).

If (iv) is false, thenQ(a) being aGa-chief factor givesZ1(a) = Q(a) (note that
Z1(a) 6 Q(a) by Hypothesis 1.1(i)). Therefore, by (ii),O2(G∗YaY) = Z1(a)∗Y fixes
all the points inΓ0(l) for all l ∈ Γ1(a,Y), contradicting part (iii).

The next result describes the action ofτ(X) in a point residue and is a vital
ingredient of many of our later arguments.

Lemma 3.3Let a ∈ Γ0, l ∈ Γ1(a) andX ∈ Γ2(a). Thenxτ(X) 6= x for eachx ∈
Γ0(l)\{a} if and only if l ∈ β1(a,X).

Proof From Lemma 3.2(iv) there existsl ∈ Γ1(a) such thatxτ(X) 6= x for somex∈
Γ0(l)\{a}. LetY ∈ Γ2(a, l) and putτY = τ(X)∗Y . ThenτY ∈Q(a)∗Y = O2(G∗YaY)
by Lemma 3.2(ii). Noting thatτY 6= 1 (asxτY 6= x andx∈ΓY) using Lemma 3.2(iii)
we infer thatτ(X) acts regularly onΓ0(l)\{a}. Now suppose thatl ∈ βi(a,X) with
i 6= 1. Sinceτ(X)∈ Z(GaX), (2.5)(i) implies thatτ(X) acts regularly onΓ0(k)\{a}
for all k ∈ βi(a,X). Let Z ∈ Γ2(a) be such thatZ ∈ γ3(a,X). Again by Lemma
3.2(ii) τZ = τ(X)∗Z ∈ Q(a)∗Z = O2(G∗ZaZ). Consulting (2.8) we see that of the 15
lines inΓ1(a,Z), 1 is inβ0(a,X), 6 are inβ2(a,X) and 8 inβ3(a,X). So we have
τZ 6= 1. MoreoverτZ acts regularly onΓ0(k)\{a} for either 1,7,9,14 or 15 of the
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lines k in Γ1(a,Z). This contradicts Lemma 3.2(iii) and thus we conclude that
τ(X) acts regularly onΓ0(l)\{a} if and only if l ∈ β1(a,X).

One consequence of Lemma 3.3 is that forX1,X2∈ Γ2(a) with a∈ Γ0, τ(X1) =
τ(X2) if and only if X1 = X2 . A further consequence of Lemma 3.3 is given in

Lemma 3.4. Let a∈ Γ0 andX,Z ∈ Γ2(a) with X 6= Z. Thenτ(Z) ∈ Q(X) if and
only if Z ∈ γ3(a,X).

Proof By (2.8)(i),(ii) if Z /∈ γ3(a,X), then there existsl ∈ Γ1(a,X) such that
l ∈ β1(a,Z). Thereforeτ(Z) acts regularly onΓ0(l)\{a} by Lemma 3.3 and
τ(Z) /∈Q(X). Conversely, ifZ ∈ γ3(a,X), thenl /∈ β1(a,Z) for everyl ∈ Γ1(a,X)
by (2.8)(iii). Hence, using Lemma 3.3,τ(Z) fixes Γ0(l) point-wise for each
l ∈ Γ1(a,X). Then Lemma 3.2(iii) forcesτ(Z) ∈Q(X), so proving the lemma.

Lemma 3.5Let l ,k∈ Γ1. If |Γ0(l)∩Γ0(k)|> 2, thenl = k.

Proof Supposel 6= k, and let{a,b} ⊆ Γ0(l)∩Γ0(k) with a 6= b. If there exists
Y ∈ Γ0(l ,k), then we also geta,b ∈ ΓY sinceΓ is a string geometry. But two
points inΓY are incident with a unique line. ThereforeΓ2(l ,k) = /0. Hence, by
(2.9), k ∈ α0(a, l)∪ α1(a, l). Taking l to be the standard trio and, because of

(2.3)(i), we may also takek =

− + + + + +
+ − ◦ ◦ − −
+ ◦ ◦ − − ◦
+ ◦ − ◦ − ◦

(if k ∈ α0(a, l)) andk =

− + + + + +
+ − − − − −
+ − ◦ ◦ ◦ ◦
+ − ◦ ◦ ◦ ◦

(if k∈ α1(a, l)). LettingX ∈ Γ2(a) be the standard sextet

we have that (in either case)k∈ β1(a,X) andl ∈ β0(a,X). Now applying Lemma
3.3 to bothl andk gives the impossiblebτ(X) 6= b = bτ(X) . Thus we infer that
l = k.

Let a andb be distinct collinear points inΓ0. Then by Lemma 3.5Γ1(a,b) =
{l} for somel ∈ Γ1. We shall frequently denotel by a+b or b+a; a+b indicates
that we are viewingl as being in the residueΓa while b+a that we are viewingl
in Γb. We next introduce the following set of involutions inG

T(a+b) = {τ(X)|X ∈ Γ2(a+b)}.
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Observe thatT(a+b) = T(b+a) and that, by (2.1)(ii),|T(a+b)|= 7.
For the remainder of this papera is a fixed point ofG .

Theorem 3.6

(i) |∆1(a)|= 22.3.5.11.23= 15,180and∆1(a) is aGa-orbit.

(ii) Forb∈ ∆1(a), G∗aab
∼= 26 : (S3×L2(7)) andQ(a)b

∼= 29.

(iii) For b ∈ ∆1(a), < T(a+ b) >∼= 23 ; in particularT(a+ b) consists of the
non-trivial elements of< T(a+b) >.

Proof Together (2.1)(i) and Lemma 3.1 give|∆1(a)|. From Lemma 3.5Gab 6 Gal.
Selecting anX ∈ Γ2(a) such thata+b∈ β1(a,X) and employing Lemma 3.3 we
see thatQ(a)b 6= Q(a) and, by Lemma 3.1,[Gal : Gab] = 2 or 22. Now [Lemma
3.5(b); MeSt] forcesQ(a)b

∼= 29 . HenceG∗aab
∼= 26 : (S3× L2(7)) and∆1(a) is

a Ga-orbit, and so we have (i) and (ii). Letb ∈ ∆1(a), and letX ∈ Γ2(a+ b).
By [Lemma 3.5(b); MeSt]Gaa+b has a minimal normal subgroupN of order23

contained inQ(a). Sinceτ(X)∈Z(GaX), < τ(X) >= Z(T) for someT ∈Syl2(Ga)
and soτ(X) ∈ N. Now N is a 3-dimensionalGF(2)L2(7)-module and soN# is a
Gaa+b-conjugacy class. ThusN#⊆ T(a+b) which yields (iii).

We now consider triangles inG .

Lemma 3.7Let {a, l ,X} be a maximal flag inΓ and letk∈ Γ1(a,X)\{l}. Then
(i) k∈ δ0(X,a, l), when viewed inΓX, if and only if k∈ Γ1(X)∩α2(a, l) when

viewed inΓa; and
(ii) k∈ δ1(X,a, l), when viewed inΓX, if and only ifk∈ Γ1(X)∩α3(a, l) when

viewed inΓa;

Proof Combining (2.10) and (2.13) (i) yields the result.

Lemma 3.8Let X ∈ Γ2(a) andl ,k∈ Γ1(a,X). PutΓ0(l)\{a}= {a1,a2,a3,a4}.
(i) If k∈α2(a, l), then eachai is collinear with precisely two points ofΓ0(k)\{a}

and, up to relabelling,a1 and a2 are collinear with the same pair of points in
Γ0(k)\{a} anda3 anda4 are collinear with the remaining pair of points inΓ0(k)\{a}.

(ii) If k∈ α3(a, l), then eachai is collinear with every point inΓ0(k)\{a}.

Proof Combining (2.13) and Lemma 3.7 gives the lemma.
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Lemma 3.9Let{a,b,c} be a triangle inG and leti ∈{2,3}. If a+b∈αi(a,a+c),
thenb+c∈ αi(b,b+a).

Proof This is a consequence of (2.15) and Lemma 3.7.

Again we remark that for a triangle{a,b,c} in G , Lemma 3.9 means that the
relationship betweena+c anda+b (at a) is the same as that betweenb+a and
b+c (at b) and that betweenc+b andc+a (at c). This fact enables us to readily
translate information between point residues.

We shall say that a triangle{a,b,c} in G is sparseif a+b∈ α2(a,a+c) (that
is Lemma 3.8(i) holds fora+ b anda+ c) and that it isnon-sparseif a+ b ∈
α3(a,a+ c) (that is Lemma 3.8(ii) holds fora+ b anda+ c). By Lemma 3.9
sparse triangles and non-sparse triangles are well-defined.

Lemma 3.10Let X ∈ Γ2 andb,c∈ Γ0(X). If l ∈ Γ1(b,c), thenl ∈ Γ1(X).

Proof Supposel /∈Γ1(X). SinceGbX has 2 orbits onΓ0(X)\{b}, using Lemma 3.5
it follows that every point ofΓ0(X)\{b} is collinear withb in Γ. If S is the set of
pairs(x,Y) such thatY ∈ Γ2(b) andx∈ ∆1(b)∩Γ0(Y), then|S|= |Γ2(b)||Γ0(X)−
1|= 1771.76. Also, since∆1(a) is aGa-orbit,

|S|= |∆1(b)||Γ2(b,c)|= 22.5.11.23.|Γ2(b,c)|.

However this implies that|Γ2(b,c)| is not an integer, a contradiction.

Lemma 3.11Let{a1,a2,a3} form a triangle inG , and setl1 = a1+a2, l2 = a2+a3

andl3 = a3+a1. ThenΓ2(a1,a2,a3) 6= /0 and for eachX ∈ Γ2(a1,a2,a3), Γ0(l i)⊆
Γ0(X) (i = 1,2,3). If, furthermore, thel i are distinct lines, then|Γ2(a1,a2,a3)|=
1.

Proof First we show that|Γ2(a1,a2,a3)| = 1 when thel i are all distinct. Assume
that a1 + a3 ∈ αi(a1,a1 + a2) wherei = 0 or 1. Leta1 + a2 be the standard trio
in Γa1 and, without loss of generality, we may choosea1 +a3 to be as in Lemma
3.5. LetX be the standard sextet inΓa. Thenτ(X) ∈ T(a1 + a2) anda1 + a3 ∈
β1(a1,X). Hence, by Lemma 3.3,aτ(X)

3 6= a3. Sinceτ(X)∈Q(a1)∩Q(a2), Lemma
3.5 forces

a2 +a3 = a3 +aτ(X)
3 = a2 +a1,

a contradiction. Thusa1+a3∈αi(a1,a1+a2) with i = 2,3 whence (2.9)(ii) yields
that|Γ2(a1,a2,a3)|= 1.
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If two of l1, l2 andl3 are equal, thenΓ1(a1,a2,a3) 6= /0 and then we also have
thatΓ2(a1,a2,a3) 6= /0. ThatΓ0(l i)⊆ Γ0(X) (for i = 1,2,3) follows from Γ being
a string geometry and Lemma 3.10.
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4. THE SECOND DISC

Recall thata is a fixed point ofG . In this section we tear∆2(a) limb from limb.
Much of our attention is focused on the intermediate points betweena and∆2(a).
In fact we dwell at great length on{a,c}⊥ for c ∈ ∆2

2(a); our labours being re-
warded by the picture displayed after Theorem 4.7.

Here we exhibit the subsets of∆2(a) with which we will become intimate.

Definition 4.1
∆1

2(a) := {c∈ ∆2(a)|Γ2(a,c) 6= /0}
∆2

2(a) := {c∈ Γ0(a)| there existsb∈ {a,c}⊥ such thatb+c∈ α1(b,b+a)}
∆3

2(a) := {c∈ Γ0(a)| there existsb∈ {a,c}⊥ such thatb+c∈ α0(b,b+a)}.

Lemma 4.2∆2(a) = ∆1
2(a)∪∆2

2(a)∪∆3
2(a).

Proof First we show that∆1
2(a)∪ ∆2

2(a)∪ ∆3
2(a) ⊆ ∆2(a). Let c ∈ ∆2

2(a) with
b ∈ {a,c}⊥ such thatb+ c ∈ α1(b,b+ a). If c ∈ ∆1(a), then by Lemma 3.11
Γ2(a,b,c) = {X} with b+ a,b+ c ∈ Γ1(X). This is impossible by (2.9)(i) and
thus∆2

2(a) ⊆ ∆2(a); a similar argument gives∆3
2(a) ⊆ ∆2(a). Now using (2.3)(i)

and(2.9)(ii) we obtain the result.

Theorem 4.3Let c∈ ∆1
2(a).

(i) |Γ2(a,c)|= 1.
SetΓ2(a,c) = {X(a,c)}.

(ii) {a,c}⊥ ⊆ Γ0(X(a,c)).
(iii) |{a,c}⊥|= 45.
(iv) |∆1

2(a)|= 24.7.11.23.
(v) ∆1

2(a) is aGa-orbit andG∗aaX(a,c) = G∗aac
∼= 26 : 3.S6.

Proof Sincec ∈ ∆1
2(a), there existsX ∈ Γ2(a,c). Setτ = τ(X). We begin by

establishing

(4.3.1){a,c}⊥ ⊆ Γ0(X)

Let d ∈ {a,c}⊥. We show thatd /∈ Γ0(X) leads to a contradiction. From
d /∈ Γ0(X), Hypothesis 1.1 implies thata+d /∈ Γ1(X). Thereforea+d ∈ βi(a,X)
with i ∈ {1,2,3}. If a+ d ∈ β1(a,X), thendτ 6= d by Lemma 3.3. Sinceτ ∈
Q(a)∩Q(c), Lemma 3.5 then forcesd+c= d+dτ = d+a, contrary tod(a,c)= 2.
Thusa+d ∈ β2(a,X)∪β3(a,X). We claim that there existsY ∈ Γ2(a,c,d) such
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thatY ∈ γ3(a,X). Without loss of generality we may assumeX is the standard
sextet. By (2.5), without loss, we may take

a+d =

+ + + + ◦ ◦
+ + + + ◦ ◦
− − − − ◦ ◦
− − − − ◦ ◦

if a+d ∈ β2(a,X); and

a+d =

+ + + + − −
+ + + + − −
◦ ◦ − − ◦ ◦
◦ ◦ − − ◦ ◦

if a+d ∈ β3(a,X).

Let Z be the following sextet

? ? · + + ·
? × 2 ◦ ◦ 2

× ? 2 ◦ ◦ 2

× × · + + ·

Evidently we haveZ ∈ γ3(a,X) and a+ d ∈ β1(a,Z). Consequentlydτ(Z) 6= d
by Lemma 3.3. FromZ ∈ γ3(a,X), τ(Z) ∈ Q(X) by Lemma 3.4, and soτ(Z)
fixesc. Thus{c,d,dτ(Z)} is a triangle and henceΓ2(c,d,dτ(Z)) contains a unique
plane by Lemma 3.11. LetY denote this unique plane; we now verify thatY
has the required properties. Becauseτ(Z) ∈ Q(a) and d,dτ(Z) ∈ Γ0(Y) we get
a ∈ Γ0(Y) by Lemma 3.10. ThusY ∈ Γ2(a,c,d). It only remains to show that
Y ∈ γ3(a,X). From (2.16) for eachl ∈ Γ1(a,X) there existsb ∈ Γ0(l) such that
b∈ {a,c}⊥. Now assume thatY /∈ γ3(a,X). Then there existsl ∈ Γ1(a,X) such
thatl ∈ β1(a,Y) by (2.8). Thus we may findb∈ {a,c}⊥ such thata+b∈ β1(a,Y).
Sinceτ(Y) ∈ Q(a)∩Q(c), Lemma 3.3 gives the contradictionb+ a = b+ bτ =
b+ c. SoY ∈ γ3(a,X), which establishes our claim. FromY ∈ γ3(a,X), we see
there existsl ∈Γ1(X)∩Γ1(Y) with l ∈Γ1(a). Employing (2.16) yieldse, f ∈Γ0(l)
such that{c,e, f} forms a triangle. Now Lemma 3.11 yieldsX = Y, contrary to
Y ∈ γ3(a,X). This completes the proof of (4.3.1).

Let X1 ∈ Γ2(a,c). By (4.3.1){a,c}⊥ ⊆ Γ0(X)∩Γ0(X1). Combining (2.9)(ii)
and (2.12)(iii) yieldsX = X1, so proving part (i). Part (ii) follows from part (i) and
(4.3.1), while part (ii) and (2.12) (iii) imply (iii).

From part (i), (2.12)(iii) and (2.1)(i),
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|∆1
2(a)|= 16|Γ2(a)|= 16.1771= 24.7.11.23,

as required.
Finally we consider (v). That∆1

2(a) is aGa-orbit follows fromGa being tran-
sitive onΓ2(a) (by the flag-transitivity ofG on Γ) and (2.12)(iii). Thus, by (iv),
|Gac| = 217.33.5. Also, from part (i),Gac 6 GaX(a,c) (∼ 210263S6). By order
considerations,G∗aac∩O2(G∗aaX(a,c)) 6= 1. Because the only subgroups of3·S6 of 2
power index are3·A6 and3·S6, we see thatG∗aacO2(G∗aaX(a,c))/O2(G∗aaX(a,c))

∼= 3.A6

or 3.S6. Now O2(G∗aaX(a,c)) is a chief factor of210263A6 and thereforeG∗aac
∼=

263S6 or 263A6 . The latter possibility implies that[Q(a) : Q(a)∩Gac] = 25 with
Q(a)∩Gac normalized by the210263A6 which contradicts the module structure
of the M24-Todd module (see [Lemma 3.5(b); MeSt]). ConsequentlyG∗aaX(a,c) =
G∗aac

∼= 26 : 3.S6.

Our next result will be called upon in Lemma 4.6 and Theorem 4.8.

Lemma 4.4Supposec∈ ∆3
2(a) and letb∈ {a,c}⊥ be such thatb+c∈ α0(b,b+

a). Then there exists a uniquel ∈ Γ1(b) such thatl ∈ α3(b,b+ a)∩α3(b,b+ c)
and∆1(b)∩{a,c}⊥ = Γ0(l)\{b}.
Proof In view of (2.3) we may, without loss, assume

b+a =

+ + ◦ ◦ − −
+ + ◦ ◦ − −
+ + ◦ ◦ − −
+ + ◦ ◦ − −

andb+c =

− + + + + +
+ − ◦ ◦ − −
+ ◦ ◦ − − ◦
+ ◦ − ◦ − ◦

.

Ford∈∆1(b)∩{a,c}⊥ we now determineb+d. We assert thatb+d andb+a
do not have an octad in common. For if they did then that octad ofb+ d would
have to cut the octads ofb+ c in 4,22. This is impossible by (2.9) and Lemma
3.11, since{b,c,d} forms a triangle. Similarly,b+ d andb+ c do not share a
common octad. Using (2.9) and Lemma 3.11 again we obtainb+ d ∈ α3(b,b+
a)∩α3(b,b+c). Then by inspection we see that there is only one possibility for

b+d, namelyb+d =

+ + − − + +
+ + − − + +
− − ◦ ◦ ◦ ◦
− − ◦ ◦ ◦ ◦

. Applying Lemma 3.8 now gives

the lemma.
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Lemma 4.5 Let c ∈ ∆i
2(a) where i = 1,2 or 3 and letb ∈ {a,c}⊥ . If i = 2

(respectivelyi = 3) we further assume thatb+c∈ α1(b,b+a) (respectivelyb+
c∈ α0(b,b+a)).

(i) If i = 1, thenτ(X) fixesc for all τ(X) ∈ T(a+b).
(ii) If i = 2, then precisely three elements ofT(a+b) fix c.
(iii) If i = 3, then only one element ofT(a+b) fixes c.

Proof We may suppose thatb+a is the standard trio and that

b+c =

− + + + + +
+ − − − − −
+ − ◦ ◦ ◦ ◦
+ − ◦ ◦ ◦ ◦

if b+c∈ α1(b,b+a); and

b+c =

− + + + + +
+ − ◦ ◦ − −
+ ◦ ◦ − − ◦
+ ◦ − ◦ − ◦

if b+c∈ α0(b,b+a).

In Γb, the seven sextets incident withb+a are as listed.

X1 =

? × · 2 ◦ +
? × · 2 ◦ +
? × · 2 ◦ +
? × · 2 ◦ +

X2 =

? × · 2 ◦ +
? × · 2 ◦ +
× ? 2 · + ◦
× ? 2 · + ◦

X3 =

? × · 2 ◦ +
× ? 2 · + ◦
? × · 2 ◦ +
× ? 2 · + ◦

X4 =

? × · 2 + ◦
× ? 2 · ◦ +
× ? 2 · ◦ +
? × · 2 + ◦

X5 =

? ? · · + +
? ? · · + +
× × 2 2 ◦ ◦
× × 2 2 ◦ ◦

X6 =

? ? · · + +
× × 2 2 ◦ ◦
? ? · · + +
× × 2 2 ◦ ◦

X7 =

? ? · · + +
× × 2 2 ◦ ◦
× × 2 2 ◦ ◦
? ? · · + +
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If i = 1, thenb ∈ Γ0(X(a,c)) by Theorem 4.3(ii). In thei = 1 case we may
suppose that, inΓb, X(a,c) is the sextetX1. Thenb+ c /∈ β1(b,Xj) for all j ∈
{1,2,3,4,5,6,7}. For i = 2 we see thatb+ c ∈ β1(b,Xj) for j = 1,2,3,4 and
b+ c /∈ β1(b,Xj) for j = 5,6,7. And for i = 3 we observe thatb+ c∈ β1(b,Xj)
for j 6= 5 andb+c /∈ β1(b,X5). Employing Lemma 3.3 now gives the lemma.

Lemma 4.6Let i ∈ {1,2,3}. Suppose thatc∈ ∆i
2(a) and thatb,d ∈ {a,c}⊥.

(i) Let j ∈{0,1,2}. Thenb+c∈ β j(b,b+a) if and only ifd+c∈α j(d,d+a).
(ii) If d(b,d) = 2, thend ∈ ∆1

2(b).

Proof (i) First we considerj = 2. So c ∈ ∆1
2(a). By Theorem 4.3 we have

{X(a,c)} = Γ2(a,c) andd ∈ Γ0(X(a,c)). Sinced(a,c) = 2, Lemma 3.8(ii) (ap-
plied tod,d+a andd+c) implies thatd+c∈ α2(d,d+a), and so (i) holds when
j = 2.

Now we suppose (i) is false and seek a contradiction. Thus we may assume
thatb+c∈ α0(b,b+a) andd+c∈ α1(d,d+a). As a consequencec∈ ∆2

2(a)∩
∆3

2(a) and, by Theorem 4.3(ii),c /∈ ∆1
2(a).

(4.6.1)d(b,d) = 2.

If (4.6.1) is false, thend(b,d) = 1. Hence, by Lemma 4.4,b+d ∈ α3(b,b+
a)∩α3(b,b+ c). Therefored + b ∈ α3(d,d + a)∩α3(d,d + c) by Lemma 3.9.
Without loss of generality we may taked+a to be the standard trio and

d+c =

− + + + + +
+ − − − − −
+ − ◦ ◦ ◦ ◦
+ − ◦ ◦ ◦ ◦

.

Then, by inspection, the possibilities ford+b are as follows.

+ + − − − −
+ + − − − −
+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦

− − + + − −
− − + + − −
+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦

+ + + + − −
+ + + + − −
− − ◦ ◦ ◦ ◦
− − ◦ ◦ ◦ ◦

+ + − − − −
+ + ◦ ◦ ◦ ◦
+ + − − − −
+ + ◦ ◦ ◦ ◦
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+ + − − − −
+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦
+ + − − − −

However, none of these lie in bothα3(d,d+a) andα3(d,d+c), so (4.6.1) must
hold.

If d ∈ ∆1
2(b), then Theorem 4.3(ii) forcesc ∈ ∆1

2(a) whereasc /∈ ∆1
2(a). So

d /∈ ∆1
2(a). Hence, by (4.6.1), (2.3)(i) and the definition of∆1

2(b),

a+b∈ α0(a,a+d)∪α1(a,a+d).

Supposea+b∈ α0(a,a+d). Thend ∈ ∆3
2(b). By Lemma 4.5(ii) there are three

elements ofT(a+ d) which fix c and from Lemma 4.5(iii) there is a unique ele-
ment ofT(a+ b) fixing b. So we may selectτ ∈ T(a+ d) such thatcτ = c and
bτ 6= b. So{c,b,bτ} forms a triangle and henceΓ2(c,b,bτ) 6= /0. Becauseτ∈Q(a),
Lemma 3.5 implies thatb+bτ = b+a and hence Lemma 3.10 gives the untenable
Γ2(a,c) 6= /0.

Turning to the possibilitya+b∈α1(a,a+d), using Lemma 4.5 again we may
find aτ ∈ T(a+b) such thatd = dτ andcτ 6= c. Then arguing as above we deduce
that Γ2(b,d) 6= /0, againstd /∈ ∆1

2(b). From these contradictions we infer that (i)
holds.

(ii) If c ∈ ∆1
2(a), then Theorem 4.3(ii) easily yieldsd ∈ ∆1

2(b). So we only
need show that assumingc∈ ∆2

2(a), thend ∈ ∆3
2(b) is impossible. By Lemma 4.5

there existsτ ∈ T(a+b) such thatcτ = c anddτ 6= d. Arguing as in part (i) then
yieldsc∈ ∆1

2(a) which is impossible sincec∈ ∆2
2(a). So (ii) is proven.

Theorem 4.7Let c∈ ∆2
2(a), and letb∈ {a,c}⊥. Setb+a = l andb+c = k.

(i) We have|∆1(b)∩{a,c}⊥| = 9 with the points in∆1(b)∩{a,c}⊥ incident
with the linesl1, l2,m,k1,k2 ∈ Γ1(b), as shown.
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a

b=x1

l2

x2
l1

m

c

k1

k2

z2

y2

y1

z1

Furtherl , l1, l2 andm are incident with a (unique) planeXa ∈ Γ2(a). Like-
wisek,k1,k2 andmare also incident with a (unique) planeXc ∈ Γ2(c). Also
m is the unique line ofΓ1(b) in α2(b,b+a)∩α2(b,b+c).

(ii) Using the notation of (i), there exists (unique)Ya,Za in Γ2(a) with y1,y2 ∈
Γ0(Ya) andz1,z2∈ Γ0(Za). MoreoverSb(a,c) := {Xa,Ya,Za} forms a sextet
line in Γa and the six points inΓ0(Xa)∩{a,c}⊥ are pairwise collinear, with
a similar statement forYa andZa.

SetI = (Γ0(Xa)∪Γ0(Ya)∪Γ0(Z))∩{a,c}⊥.

(iii) If b′ ∈ I , thenSb′(a,c) = Sb(a,c).

(iv) For eachS∈ Sb(a,c), τ(S) fixesc.

(v) Every point of{a,c}⊥ is incident with exactly one ofXa,Ya andZa . Hence
|{a,c}⊥|= 18.

(vi) |∆2
2(a)|= 27.3.5.7.11.23.

Proof First we establish part (i). By Lemma 4.6(i) we have thatb+c∈α1(b,b+a)
and so, because of (2.3)(i), we may takel = b+a to be the standard trio and

k = b+c =

− + + + + +
+ − − − − −
+ − ◦ ◦ ◦ ◦
+ − ◦ ◦ ◦ ◦

.
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Let x∈ ∆1(b)∩{a,c}⊥. Lemma 3.11 and (2.9) imply thatb+x∈ α2(b,b+a)∪
α3(b,b+c). By inspection, the only possibilities forb+x are as follows.

m=

+ + - - - -
+ + - - - -
+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦

;

l1 =

− − + + − −
− − + + − −
+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦

; l2 =

+ + + + − −
+ + + + − −
− − ◦ ◦ ◦ ◦
− − ◦ ◦ ◦ ◦

;

k1 =

+ + − − − −
+ + ◦ ◦ ◦ ◦
+ + − − − −
+ + ◦ ◦ ◦ ◦

; and k2 =

+ + − − − −
+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦
+ + − − − −

.

Then we observe that

(4.7.1)(i)m∈ α2(b,b+a)∩α2(b,b+c)
(ii) l i ∈ α3(b,b+a)∩α2(b,b+c) for i = 1,2
(iii) ki ∈ α3(b,b+c)∩α2(b,b+a) for i = 1,2.

Appealing to Lemma 3.8 we conclude that|Γ0(l i)∩{a,c}⊥| = 3 = |Γ0(ki)∩
{a,c}⊥| for i = 1,2. We further observe that, inΓb, m, l1, l2 and l are incident

with the sextetSl =

? ? · · + +
? ? · · + +
× × 2 2 ◦ ◦
× × 2 2 ◦ ◦

while, also inΓb, m,k1,k2 andk are

incident with the sextetSk =

? × · · · ·
× ? + + + +
× ? 2 2 2 2

× ? ◦ ◦ ◦ ◦
.

Let Xa , respectivelyXc, be the plane inΓ corresponding toSl , respectivelySk.
Note thatki /∈ Γ1(Xa) andl i /∈ Γ1(Xc) for i = 1,2.
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Inspectingl1, l2,m yet again yields that

(4.7.2)m∈ α2(b, l i) for i = 1,2 andl2 ∈ α2(b, l1).

(4.7.3)The points ofΓ0(Xa)∩{a,c}⊥ are pairwise collinear.

If (4.7.3) were false, then Theorem 4.3(ii) forcesc∈ Γ0(Xa), contrary toc∈
∆2

2(a).

Using Lemma 3.7 we interpret (4.7.1) (i), (ii) and (4.7.2) inΓXa as follows.

(4.7.4)(i) l1, l2 ∈ δ1(Xa,b, l), m∈ δ0(Xa,b, l); and
(ii) l2 ∈ δ0(Xa,b, l1), m∈ δ0(Xa,b, l i) for i = 1,2.

Combining (4.7.3), (4.7.4) and (2.14) we see that there is a unique pointx2,
say, inΓ0(m) which is collinear witha and such thatΓ1(d1,e1,x2) 6= /0 where
d1 ∈ Γ0(l1)∩{a,c}⊥ ande1 ∈ Γ0(l2)∩{a,c}⊥. Because of (4.7.3) we now de-
duce thatΓ0(m)∩{a,c}⊥ ⊆ {b,x2}. We now show thatx2 ∈ {a,c}⊥. Supposing
x2 /∈ {a,c}⊥ we argue for a contradiction. Hence the points ofΓ0(Xa)∩{a,c}⊥,
when viewed fromb, lie on three lines, two of which are each incident with
three points of{a,c}⊥ and the third incident with just one point of{a,c}⊥. This
latter statement also applies to any other point inΓ0(Xa)∩ {a,c}⊥ by Lemma
4.6(i). However we have seen that the line incident withd1,e1,x2 has only two
points in{a,c}⊥ (namelyd1,e1) which is the desired contradiction. Therefore
Γ0(m)∩{a,c}⊥ = {b,x2} and so we have established part (i).

We now consider part (ii); lety1,y2,z1,z2 be as in the diagram in part (i). Note
that all the previous assertions forXa have appropriate analogues forXc. In partic-
ular, (analogue of (4.7.4))k1,k2 ∈ δ1(Xc,b,k), m∈ δ0(Xc,b,k), k2 ∈ δ0(Xc,b,k1)
and m∈ δ0(Xc,b,ki)(i = 1,2). So, by (2.14), we may assumey1,y2,z1,z2 are
labelled so as

b

x2

z2

y2

y1

z1
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.
(That isΓ1(x2,y2,z1) 6= /0 6= Γ1(x2,z2,y1) andΓ1(y1,y2) 6= /0 6= Γ1(z1,z2).) In Xc,
y2 + b andy2 + x2 are each incident with three points of{a,c}⊥ while y2 + y1 is
incident with just two points of{a,c}⊥ . Letting y2 play the role ofb andXc the
role of Xa in part (ii) we deduce that there is a planeYa ∈ Γ2(a) incident with the
line y1+y2 (this line plays the part ofm) and two more lines inΓ1(y2,Ya) incident
with a further four points of{a,c}⊥. None of these four points of{a,c}⊥ lie
in Γ0(l1)∪Γ0(l2). This is because of (2.9)(i) and Lemma 3.11 and the fact that
k∈ α1(b, l i) for i = 1,2. Repeating this argument withz2 in place ofy2 produces a
planeZa ∈ Γ2(a) and a further four points of{a,c}⊥ which are not incident with
Xa norYa. Our next goal is to show that{Xa,Ya,Za} forms a sextet line inΓa; this
will be done by identifying the linesa+ x1(= a+ b), a+ x2, a+ y1, a+ z1 and
a+z2 in Γa. Without loss of generality we may takeXa to be the standard sextet

and l = a+ b to be

+ + ◦ − ◦ −
+ + ◦ − ◦ −
+ + ◦ − ◦ −
+ + ◦ − ◦ −

. SinceGaXal is transitive on the six

sextets inΓ2(a, l)\{Xa}, we may also assume that

X(a, l ,a+y1) =

? ? + · · +
× × · + · +
× ? 2 ◦ 2 ◦
? × 2 ◦ 2 ◦

.

Note thata+z1 is also incident withX(a, l ,a+y1). Becausek1 ∈ α2(b,b+a) by
(4.7.1)(iii), Lemma 3.9 implies thata+b(= l), a+y1, anda+z1, are trios which
pairwise share an octad. Since these three trios are distinct this can only happen if
all three share the same octad. Now the stabilizer inGa of Xa, l andX(a, l ,a+y1)
is transitive on the three octads ofl and so we may suppose the common octad
is the leftmost block of the MOG. This forcesa+ y1 anda+ z1 to be as follows
(with a possible interchanging ofy1 andz1):-

a+y1 =

+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦
+ + − − − −
+ + − − − −

a+z1 =

+ + ◦ − ◦ −
+ + ◦ − ◦ −
+ + − ◦ − ◦
+ + − ◦ − ◦

.

Applying part (i) with x2 playing the role ofb gives thatx2 + y1 ∈ α2(x2,x2 +
a) andx2 + z1 ∈ α2(x2,x2 + a). From (4.7.1)(i) we recall thatm∈ α2(b,b+ a).
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Appealing to Lemma 3.9 we infer thata+x2, a+y1, a+z1 anda+b(= l), as trios
in Γa, share an octad in common. This forcesa+ x2 to be one of the following
two trios.

+ + − ◦ ◦ −
+ + − ◦ ◦ −
+ + − ◦ ◦ −
+ + − ◦ ◦ −

+ + ◦ ◦ − −
+ + ◦ ◦ − −
+ + ◦ ◦ − −
+ + ◦ ◦ − −

We assume the first possibility holds; the argument being similar if the other pos-
sibility holds. The sextetsX(a,a+ x2,a+ y1) and X(a,a+ x2,a+ z1) are now
uniquely determined given the above identification ofa+x2, a+y1 anda+z1 and
are

X(a,a+x2,a+y1) =

? ? + · · +
× × + · · +
? × 2 ◦ ◦ 2

× ? 2 ◦ ◦ 2

and

X(a,a+x2,a+z1) =

? × + 2 ◦ ·
× ? + 2 ◦ ·
? ? · ◦ 2 +
× × · ◦ 2 +

.

Sincez2 ∈ Γ0(x2 + y1) the trio a+ z2 is incident withX(a,a+ x2,a+ y1). We
already have thatx2 + y1 ∈ α2(x2,x2 + a) and so Lemma 3.9 forcesa+ z2 to
have a common octad witha+ x2 and a+ y1, whence we must havea+ z2 =
+ + ◦ − − ◦
+ + ◦ − − ◦
+ + − ◦ ◦ −
+ + − ◦ ◦ −

. Similarly we find that

a+ y2 =

+ + ◦ ◦ − −
+ + ◦ ◦ − −
+ + − − ◦ ◦
+ + − − ◦ ◦

. BecauseYa is the unique sextet incident with

botha+y1 anda+y2 we see thatYa =

? ? · · + +
? ? · · + +
◦ ◦ 2 2 × ×
◦ ◦ 2 2 × ×

.
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Likewisea+z1 anda+z2 uniquely specifyZa =

? ◦ × · + 2

? ◦ × · + 2

◦ ? · × 2 +
◦ ? · × 2 +

.

Hence{Xa,Ya,Za} in a sextet line inΓa and so, since (4.7.3) also holds forYa and
Za, we have proved part (ii).

Before tackling part (iii) we develop further our earlier concrete description of
the sextet line{Xa,Ya,Za}. Recall thatl = a+b was assumed to be the standard

trio and, without loss of generality,a+x2 =

+ + − ◦ ◦ −
+ + − ◦ ◦ −
+ + − ◦ ◦ −
+ + − ◦ ◦ −

.

We now aim to describe the 18 lines incident witha and each of the points inI
(=(Γ0(Xa)∪Γ0(Ya)∪Γ0(Za))∩{a,c}⊥). Now there are two lines (l1 and l2) in
Γ1(Xa) incident withb, each containing two points of ({a,c}⊥∩Γ0(Xa))\{b,x2},
with a similar statement forx2. Consequently, forx∈ ({a,c}⊥∩Γ0(a))\{b,x2},
b+a∈ α3(b,b+x) and thusa+x∈ α3(a,a+b) by Lemma 3.9. Likewisea+x∈
α3(a,a+x2). Therefore the triosa+x anda+b cannot have an octad in common
and the triosa+ x anda+ x2 cannot have an octad in common. Surveying the
trios in Xa (the standard sextet) we see that there are only four trios satisfying
these conditions and so we have pinned down the linesa+ x for x ∈ ({a,c}⊥ ∩
Γ0(Xa))\{b,x2}. They are:-

◦ − + + ◦ −
◦ − + + ◦ −
◦ − + + ◦ −
◦ − + + ◦ −

◦ − + + − ◦
◦ − + + − ◦
◦ − + + − ◦
◦ − + + − ◦

a+x3 a+x4

◦ − ◦ − + +
◦ − ◦ − + +
◦ − ◦ − + +
◦ − ◦ − + +

− ◦ ◦ − + +
− ◦ ◦ − + +
− ◦ ◦ − + +
− ◦ ◦ − + +

.

Starting witha+ y1 anda+ y2 (as described earlier) we may repeat the above
strategy and so obtain the linesa+y for y∈ ({a,c}⊥∩Γ0(Ya))\{y1,y2} thus:
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◦ ◦ + + ◦ ◦
◦ ◦ + + ◦ ◦
− − + + − −
− − + + − −

◦ ◦ + + − −
◦ ◦ + + − −
− − + + ◦ ◦
− − + + ◦ ◦

a+y3 a+y4

◦ ◦ ◦ ◦ + +
◦ ◦ ◦ ◦ + +
− − − − + +
− − − − + +

◦ ◦ − − + +
◦ ◦ − − + +
− − ◦ ◦ + +
− − ◦ ◦ + +

.

And starting witha+z1 anda+z2 yieldsa+z for z∈ ({a,c}⊥∩Γ0(Za))\{z1,z2}:

− ◦ + + − ◦
− ◦ + + − ◦
◦ − + + ◦ −
◦ − + + ◦ −

− ◦ + + ◦ −
− ◦ + + ◦ −
◦ − + + − ◦
◦ − + + − ◦

a+z3 a+z4

◦ − ◦ − + +
◦ − ◦ − + +
− ◦ − ◦ + +
− ◦ − ◦ + +

◦ − − ◦ + +
◦ − − ◦ + +
− ◦ ◦ − + +
− ◦ ◦ − + +

.

We now begin the proof of part (iii). So as to avoid additional notation, we

supposeb′ ∈ I is such thata+b′ =

− ◦ + + − ◦
− ◦ + + − ◦
◦ − + + ◦ −
◦ − + + ◦ −

(the argument being

similar for any other choice ofa+ b′). So b′ ∈ Γ0(Za). From (ii) we have five
points inΓ0(Za)∩{a,c}⊥ collinear withb′ and soZa∈ Sb′(a,c) (hereZa is playing
the role ofXa in part (i)).

Clearly we havea+xi , a+yi ∈ α2(a,a+b′) for i = 3,4. Forx∈ I with a+x
equal toa+xi or a+yi (wherei ∈ {3,4}) we must havex∈ ∆1(b′) for otherwise
we would haved(b′,x) = 2, x∈ ∆1

2(b
′) andc∈ ∆2

2(a) which contradicts Lemma
4.6(ii). Thus we have located the four points in∆1(b)∩{a,c}⊥ not contained in
Γ0(Za); we may assume these points arex3,x4,y3 andy4. Note thatx3,x4∈ Γ0(Xa)
andy3,y4 ∈ Γ0(Ya). Sinceb′ /∈ Γ0(Xa), b′,x3 andx4 cannot be incident with a
common line and, similarly,b′,y3 andy4 cannot be incident with a common line.
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Now (see the construction of the sextet line in (ii); note{x3,x4},{y3,y4} play the
role of{y2,y3},{z1,z2}) the other two sextets inSb′(a,c) are uniquely determined
by {a,x3,x4} and{a,y3,y4} and so must beXa andYa. ThusSb′(a,c) = Sb(a,c)
as asserted.

Setτ = τ(Xa). Thenb,x2 ∈ Γ0(Xa) implies thatτ ∈Q(b)∩Q(x2) and socτ ∈
Γ0(c+b)∩Γ0(c+x2). Sincec+b andc+x2 are distinct lines, this forcesc = cτ.
A similar argument works forτ(Ya) andτ(Za), so proving (iv).

Next, we consider part (v). Supposing (v) is false we argue for a contradiction.
Thus there existsd ∈ {a,c}⊥ with d /∈ I . By part (i) we have a sextet lineSd(a,c)
in Γa. SetSd(a,c) = {X′a,Y′a,Z′a} andI ′ = (Γ0(X′a)∪Γ0(Y′a)∪Γ0(Z′a))∩{a,c}⊥.

(4.7.5)I ∩ I ′ = /0.

If I ∩ I ′ 6= /0, then (iii) forcesI = I ′, contrary tod /∈ I .

(4.7.6)ForS∈ Sb(a,c) andS′ ∈ Sd(a,c) we haveS′ ∈ γ3(a,S).

First observe that, forx∈ I , ∆1(x)∩{a,c}⊥ ⊆ I by parts (i) (withx = b) and
(iii). Hence, forx∈ I andx′ ∈ I ′, d(x,x′) = 2 by (4.7.5). So, appealing to Lemma
4.6(ii), x′ ∈ ∆2

2(x). Setτ = τ(S), and assume thatS′ /∈ γ3(a,S). Then, by (2.8),
there existsx′ ∈ Γ0(S′)∩{a,c}⊥ such thata+ x′ ∈ β1(a,S). Lemma 3.3 implies
that x′τ 6= x′ and from part (iv)cτ = c. For x ∈ Γ0(S)∩{a,c}⊥ we now haveτ
fixing c,x′ ∈ ∆2

2(x) with τ not fixing x′ which, using Lemmas 3.11 and 3.5, yields
c∈ ∆1

2(a). From this contradiction we conclude thatS′ ∈ γ3(a,S), as claimed.

We now use the standard MOG labelling as described in Section 2 and will
next show that

(4.7.7)for eachS′ ∈ Sd(a,c), S′ has a tetrad containing{0,∞}.

Assume thatS′ ∈ Sd(a,c) has no tetrad containing{0,∞} and letsbe the tetrad
of S′ containing{∞}. Then there are 8 possibilities forsas follows:

× ×

× ×

× ×

×
×
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×
×

× ×

×
×

×
×

× ×

×
×

× ×

× ×

×
×
×

×

×
×

× ×

Without loss assumes is

× ×

× × ; the other 7 cases may be dealt

with similarly. If T ′ ∈ Sd(a,c) and T ′ 6= S′, then sinceT ′ ∈ γ3(a,S) for each
S∈ Sb(a,c) by (4.7.6) andT ′ ∈ γ3(a,S′) we see that there are three possibilities
for the tetrad,t, in T ′ which contains{∞}, these being

×
×

×
×

× ×

× ×

×
×
×

×
.

However for each of the three possibilities we see thats⊕t is a tetrad of a sextet in
Sb(a,c). SinceSd(a,c) is a sextet line, this yieldsSd(a,c)∩Sb(a,c) 6= /0, contrary
to (4.7.5). ThereforeS′ has a tetrad containing{0,∞}.

Using a similar argument to that in (4.7.7) we see that for eachS′ ∈ Sd(a,c), S′
has a tetrad containing the following 2-element subsets:{3,15}, {14,8}, {20,18},
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{17,4}, {16,10}, {11,13}, {7,2}. ThereforeX′a,Y′a,Z′a must appear in the follow-
ing list of 4 sextets.

? 2 2 ? ◦ ◦
? 2 2 ? + +
× · · × ◦ +
× · · × + ◦

? · 2 × ◦ +
? · 2 × + ◦
× 2 · ? ◦ ◦
× 2 · ? + +

? · ? · + +
? · ? · ◦ ◦
× 2 × 2 ◦ +
× 2 × 2 + ◦

? · × 2 + ◦
? · × 2 ◦ +
× 2 ? · ◦ ◦
× 2 ? · + +

It may be checked directly that taking the symmetric difference of any pair of these
sextets we obtain one of the sextets inSb(a,c) = {Xa,Ya,Za}. (By the symmetric
difference of two of the above sextets we mean the sextet whose tetrads are given
by the symmetric difference of intersecting tetrads of these two sextets). Thus
we haveSd(a,c)∩ Sb(a,c) 6= /0, again contradicting (4.7.5). This is the desired
contradiction and so we have established part (v).

Finally we come to part (vi). Combining Theorem 3.6(i), (2.3)(ii), part (v) and
Lemma 4.6(i) gives, forb∈ {a,c}⊥,

|∆2
2(a)|= 4|α1(b,b+a)||∆1(a)|

|{a,c}⊥| =
4.1008.15180

18
= 27.3.5.7.11.23,

as claimed. At last the proof of Theorem 4.7 is complete.

Because of Theorem 4.7(iii) we may, and shall, useS (a,c) = {Xa,Ya,Za} to
denote the sextet line inΓa whenc∈ ∆2

2(a). Below we summarize, for later use,
the concrete description of{a,c}⊥ obtained in the previous theorem.

? ◦ × · + 2

? ◦ × · + 2

? ◦ × · + 2

? ◦ × · + 2

? ? · · × ×
? ? · · × ×
◦ ◦ 2 2 + +
◦ ◦ 2 2 + +

? ◦ × · + 2

? ◦ × · + 2

◦ ? · × 2 +
◦ ? · × 2 +

Xa Ya Za
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+ + ◦ − ◦ −
+ + ◦ − ◦ −
+ + ◦ − ◦ −
+ + ◦ − ◦ −

+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦
+ + − − − −
+ + − − − −

+ + ◦ − ◦ −
+ + ◦ − ◦ −
+ + − ◦ − ◦
+ + − ◦ − ◦

a+x1 a+y1 a+z1

+ + ◦ − − ◦
+ + ◦ − − ◦
+ + ◦ − − ◦
+ + ◦ − − ◦

+ + ◦ ◦ − −
+ + ◦ ◦ − −
+ + − − ◦ ◦
+ + − − ◦ ◦

+ + ◦ − − ◦
+ + ◦ − − ◦
+ + − ◦ ◦ −
+ + − ◦ ◦ −

a+x2 a+y2 a+z2

◦ − + + ◦ −
◦ − + + ◦ −
◦ − + + ◦ −
◦ − + + ◦ −

◦ ◦ + + ◦ ◦
◦ ◦ + + ◦ ◦
− − + + − −
− − + + − −

− ◦ + + − ◦
− ◦ + + − ◦
◦ − + + ◦ −
◦ − + + ◦ −

a+x3 a+y3 a+z3

◦ − + + − ◦
◦ − + + − ◦
◦ − + + − ◦
◦ − + + − ◦

◦ ◦ + + − −
◦ ◦ + + − −
− − + + ◦ ◦
− − + + ◦ ◦

− ◦ + + ◦ −
− ◦ + + ◦ −
◦ − + + − ◦
◦ − + + − ◦

a+x4 a+y4 a+z4

◦ − ◦ − + +
◦ − ◦ − + +
◦ − ◦ − + +
◦ − ◦ − + +

◦ ◦ ◦ ◦ + +
◦ ◦ ◦ ◦ + +
− − − − + +
− − − − + +

◦ − ◦ − + +
◦ − ◦ − + +
− ◦ − ◦ + +
− ◦ − ◦ + +

a+x5 a+y5 a+z5

◦ − − ◦ + +
◦ − − ◦ + +
◦ − − ◦ + +
◦ − − ◦ + +

◦ ◦ − − + +
◦ ◦ − − + +
− − ◦ ◦ + +
− − ◦ ◦ + +

− ◦ ◦ − + +
− ◦ ◦ − + +
◦ − − ◦ + +
◦ − − ◦ + +

a+x6 a+y6 a+z6

Diagrammatically we may think of the points in{a,c}⊥ in the following way.
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z5 z6y5 y6

x5 x6

z1 z2y1 y2

x1 x2

y3 y4 z3 z4

x3 x4

The points in

α β

are such that{α,β,a} and{α,β,c} are both sparse triangles. The joining lines in
the picture show{a,c}⊥ from c’s point of view. That is to say

α β

λ µγ δ

means that{α,β,γ,δ,λ,µ} are the points inΓ0(S)∩{a,c}⊥ for someS∈ S (c,a).

Theorem 4.8Let c∈ ∆3
2(a).

(i) {a,c}⊥ = Γ0(l) for somel ∈ Γ1, and so|{a,c}⊥|= 5.
(ii) |∆3

2(a)|= 211.32.7.11.23.

Proof (i) By definition there existsb∈ {a,c}⊥ with b+c∈ α0(b,b+a), whence
Lemma 4.6(i) implies

(4.8.1)for everyx∈ {a,c}⊥ , x+c∈ α0(x,x+a).
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From Lemma 4.4 there exists a unique linel ∈ Γ1(b) with l ∈ α3(b,b+ a)∩
α3(b,b+c) and∆1(b)∩{a,c}⊥ = Γ0(l)\{b}. We assume there existsd∈ {a,c}⊥
with d /∈ Γ0(l) and argue for a contradiction. By (4.8.1) and Lemma 4.4 again
we may findk∈ Γ1(d) with k∈ α3(d,d+a)∩α3(d,d+c) andΓ1(d)∩{a,c}⊥ =
Γ0(k)\{d}. Clearlyk 6= l . Let X (respectivelyY) be the unique plane inΓ2(a, l)
(respectivelyΓ2(a,k)).

(4.8.2) If x1,x2 ∈ Γ0(l) with x1 6= x2, thena+ x1 ∈ α3(a,a+ x2). Similarly if
y1,y2 ∈ Γ0(k) with y1 6= y2, thena+y∈ α3(a,a+y2).

This is a consequence of the fact thatl ∈ α3(b,b+ a), k ∈ α3(d,d + a) and
Lemma 3.2.

By (4.8.2) we get

(4.8.3)Each of the 15 octads containing a tetrad ofX lies in exactly one of the
trios{a+x|x∈ Γ0(l)}, with a similar statement forY and{a+y|y∈ Γ0(k)}.

(4.8.4)Y ∈ γ3(a,X).

If Y ∈ γ0(a,X)∪ γ1(a,X), then we can find an octadO, containing a tetrad of
X, which cuts the 6 tetrads ofY in 3.15. Let x∈ Γ0(l) be such thatO is an octad of
the trioa+x. Then by definitiona+x∈ β1(a,Y), whenceτ(Y) /∈Gx from Lemma
3.3. Notice thatτ(Y) ∈Gc becauseτ(Y) ∈Q(x) for all x∈ Γ0(k) and if cτ(Y) 6= c,
c+ cτ(Y) = c+ x for everyx∈ Γ0(k), contrary to Lemma 3.5. Hence{c,x,xτ(Y)}
is a triangle and so Lemma 3.11 impliesΓ2(c,x,xτ(Y)) 6= /0. Howeverτ(Y) ∈Q(a)
and soa+x= a+xτ(Y), which givesΓ2(a,c) 6= /0. Using Theorem 4.3(ii) we have
Γ2(a,b,c) 6= /0, contrary tob+c∈ α0(b,b+a), and (4.8.4) is proved.

Denote the unique trio inΓ1(a,X,Y) by m. We first show that eitherΓ0(m)∩
Γ0(l) = /0 or Γ0(m)∩Γ0(k) = /0. Assume thatx∈ Γ0(m)∩Γ0(l) andy∈ Γ0(m)∩
Γ0(k). If x 6= y, then{c,x,y} is a triangle. Moreoverx+ y = m= x+ a, whence
Γ2(a,c) 6= /0 by Lemma 3.11 againstc∈ ∆3

2(a). Thereforex = y. However, (4.8.1)
implies thatx+ c∈ α0(x,x+a) and so we get a contradiction to Lemma 4.4 be-
causel andk are two distinct lines inΓ1(x) lying in α3(x,x+ a)∩α3(x,x+ c)
such that∆1(x)∩ {a,c}⊥ = Γ0(l)\{x} = Γ0(k)\{x}. Without loss we assume
Γ0(m)∩Γ0(k) = /0. By (4.8.4) and (2.7)(i) we may chooseX andY to be, respec-
tively,
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? ◦ × · + 2

? ◦ × · + 2

? ◦ × · + 2

? ◦ × · + 2

and

? ? · · × ×
? ? · · × ×
◦ ◦ 2 2 + +
◦ ◦ 2 2 + +

with m being the standard trio. Using (4.8.3) we can choosee∈ Γ0(k) such that
a+econtains the left-hand octad ofm, anda+e 6= m. If Γ0(m)∩Γ0(l) = /0, then
by (4.8.3) again we can findf ∈ Γ0(l) with a+ f 6= m such thata+ f contains
the right-hand octad ofm. This forcesa+e∈ α1(a,a+ f ) and soe∈ ∆2

2( f ). We
now have a contradiction to Lemma 4.6(ii) becausee, f ∈ {a,c}⊥ andc∈ ∆3

2(a).
Hence we may assumeΓ0(m)∩Γ0(l) 6= /0. In this case we choosef ∈ Γ0(l) such

thata+ f is a trio incident with (the octad)

× ×
× ×
× ×
× ×

. From (4.8.3)

andΓ0(m)∩Γ0(l) 6= /0 we have thata+ f does not contain the left-hand octad of
m and we again obtain thata+ e∈ α1(a,a+ f ), which leads to a contradiction.
This completes the proof of part (i).

(ii) By Lemma 4.6(i) for everyx ∈ {a,c}⊥, x+ c ∈ α0(x,x+ a). Hence if
b∈ {a,c}⊥ (2.3)(ii), Theorem 3.6(i) and part (i) yield

|∆3
2(a)|= 4|α0(b,b+a)||∆1(a)|

|{a,c}⊥| =
4.2688.15180

5
= 211.32.7.11.23.

5. ADJACENCY IN ∆2(a), A BEGINNING

This section is wholly devoted to the study of the set∆1(c)∩∆2(a) for c∈ ∆1
2(a).

In turn we consider the sets∆1(c)∩∆i
2(a) for i = 1,2,3. We recall that for each

c∈ ∆1
2(a), X(a,c) is the unique plane inΓ2(a,c).

Lemma 5.1Let c,d ∈ ∆1
2(a) with d ∈ ∆1(c). AssumeX(a,c) 6= X(a,d). Then

{a,c}⊥∩{a,d}⊥ 6= /0, andX(a,c) ∈ γ3(a,X(a,d)).

Proof We first show thatX(a,c)∈ γ3(a,X(a,d)) by assuming otherwise and argu-
ing for a contradiction. By (2.7),X(a,c) ∈ γ0(a,X(a,d))∪ γ1(a,X(a,d)) whence
there existsl ∈ Γ1(a,X(a,d)) such thatl ∈ β1(a,X(a,c)). From (2.16) there
are three points inΓ0(l)∩ ∆1(d), and we let{a,x} = Γ0(l)∩ ∆1

2(d). Let τ =
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τ(X(a,c)). By Lemma 3.3xτ ∈Γ0(l)∩∆1(d) and sodτ 6= d. Recall thatτ∈Q(a)∩
Q(c). Henced+ c = d+dτ andX(a,d)τ = X(a,d). Therefored+ c = d+dτ ∈
Γ1(X(a,d)) by Lemma 3.10 and thusc∈ Γ0(X(a,d)). But thenX(a,c) = X(a,d)
by Theorem 4.3(i), contrary toX(a,c) 6= X(a,d). SinceX(a,c) ∈ γ3(a,X(a,d))
there existsm∈ Γ1(a,X(a,c),X(a,d)). By (2.16)c andd are each collinear with
three points ofΓ0(m) and soΓ0(m)∩∆1(c)∩∆1(d) 6= /0 because|Γ0(m)|= 5. This
completes the proof of the lemma.

Theorem 5.2Let c∈ ∆1
2(a) ande∈ ∆3

2(a). Thene /∈ ∆1(c).

Proof We assume the theorem is false and argue for a contradiction. So we have
c∈ ∆1

2(a) ande∈ ∆3
2(a) with e∈ ∆1(c). Let X denote the unique plane inΓ2(a)

such that{a,e}⊥ ⊆ Γ0(X) and putτ = τ(X(a,c)).

(5.2.1)X ∈ γ3(a,X(a,c))∪{X(a,c)}.

If (5.2.1) does not hold thenX ∈ γ0(a,X(a,c))∪γ1(a,X(a,c)). By considering
the intersection matrices for the tetrads ofX and X(a,c) we see that there are
exactly 8 octads ofX intersecting the tetrads ofX(a,c) in 3.15 and every trio
incident withX contains exactly 0 or 2 of these 8 octads. By Lemma 4.4 for any
x,x′ ∈ {a,e}⊥ with x 6= x′ the triosa+ x anda+ x′ are incident withX and do
not contain a common octad, whence we may chooseb,b′ ∈ {a,e}⊥ such that
a+ b′ ∈ β2(a,X(a,c))∪β3(a,X(a,c)) anda+ b ∈ β1(a,X(a,c)). From Lemma
3.3 we havebτ 6= b and(b′)τ = b′. Thuseτ 6= e otherwise{e,b,bτ} is a triangle
which by Lemma 3.11 impliesΓ2(e,b,bτ) 6= /0 and thenΓ2(e,a) 6= /0 from Lemma
3.11, againste∈ ∆3

2(a). We now have a triangle{e,eτ,b′} which, by Lemma
3.11, must lie in the residue of a planeY. Sinceτ ∈Q(c), e+eτ = e+c, whence
c,b′ ∈ Γ0(Y) and sob′ ∈ ∆1(c)∪∆1

2(c). If b′ ∈ ∆1
2(c), Lemma 5.1 implies that

Y ∈ γ3(c,X(c,a))∪ {X(c,a)}. However we then haveτ(= τ(X(c,a))) ∈ Q(Y)
which contradicts the fact thate∈ Γ0(Y) andeτ 6= e. We therefore conclude that
b′ ∈ ∆1(c) and consequentlya+ b ∈ Γ1(a,X,X(a,c)). This contradicts the fact
thatX ∈ γ0(a,X(a,c))∪ γ1(a,X(a,c)) and so (5.2.1) is proved.

By (5.2.1) and Lemma 4.4 we can choosex ∈ {a,c}⊥ andx′ ∈ {a,e}⊥ such
that eithera+ x ∈ α2(a,a+ x′) or a+ x = a+ x′. First assume that for every
x∈ {a,c}⊥ andx′ ∈ {a,e}⊥, a+x 6= a+x′. Choosex∈ {a,c}⊥ andx′ ∈ {a,e}⊥
so thata+ x ∈ α2(a,a+ x′). From Lemma 3.8x′ is collinear with three points
of Γ0(a+ x) and sincec is collinear with three points ofΓ0(a+ x)\{x} we may
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suppose thatx is chosen so thatx ∈ ∆1(x′) anda+ x ∈ α2(a,a+ x′) (y will be
introduced shortly).

ya

cx

ex'

By assumptionx′ /∈ {a,c}⊥ , x /∈ {a,e}⊥, whenced(x,e) = 2= d(x′,c). Since
x′+x∈ α2(x′,x′+a) by Lemma 3.9 andx′+e∈ α0(x′,x′+a) by Lemma 4.6(i),
we must havex′+e∈α0(x′,x′+x)∪α1(x′,x′+x). Thereforee∈ ∆2

2(x)∪∆3
2(x). If

e∈ ∆3
2(x), then since all points of{e,x}⊥ are collinear from Lemma 4.4 we obtain

the contradiction thatc ∈ ∆1(x′). Hencee∈ ∆2
2(x), whereuponc ∈ ∆2

2(x
′) from

Lemma 4.6(ii). From Theorem 4.7(ii) there exists a sextet lineS (x,e) in Γx and a
sextetXx ∈ S (x,e)∩Γ2(x′) such thatS:= {x,e}⊥∩∆1(x′)∩Γ0(Xx) is a set of five
pairwise collinear points. Lety∈ S. Thene is collinear with exactly three points
of Γ0(x′+y) and soy /∈ ∆1(a) because the five points of{a,e}⊥ are incident with
a unique line. Ify∈ ∆1

2(a), then inΓx′ the triosx′+y andx′+a have a common
octad which cuts the octads ofx′ + e in 4,22. Hencex′ + e∈ αi(x′,x′ + y) for
i = 0,1which contradicts the fact thaty∈∆1(e). Furthermorey /∈∆3

2(a), otherwise
Lemma 4.4 implies thata is collinear with all points ofΓ0(x′+ x), which is not
the case by Lemma 3.8 becausex′+x∈ α2(x′,x′+a). Thus we deduce,

(5.2.2)y∈ ∆2
2(a) for everyy∈ S.

Sincex+ c,x+ x′ ∈ α2(x,x+ a), in Γx the triosx+ c andx+ x′ each share
a common octad with the triox+ a. Howeverx′ ∈ ∆2

2(c) implies thatx+ x′ ∈
α1(x,x+c), whence these two common octads are distinct octads ofx+a. Since
these two octads are disjoint andx+x′ 6= x+a 6= x+c, by Theorem 4.7 we con-
clude that the two octads lie in the triol incident with each sextet ofS (x,e).
Any trio is uniquely determined by two of its octads and so we havex+ a = l .
We now have a contradiction to (5.2.2) becausel ∈ α2(x,x+ y) for everyy ∈ S
and soy∈ ∆1(a)∪∆1

2(a) by Lemma 3.11. Therefore we deduce that there exists
x∈ {a,c}⊥, x′ ∈ {a,e}⊥ with a+x = a+x′. If x /∈ {a,e}⊥ andx′ /∈ {a,c}⊥, then
x∈ ∆3

2(e) andx′ /∈ ∆1
2(c) which contradicts Lemma 4.6(ii). Thus we may assume

thatx = x′, as pictured below.
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a

c

e

x = x'

In Γx, x+a andx+c share a common octad which cuts the octads ofx+e in
4.22 becausex+e∈ α0(x,x+a). Thereforex+e /∈ αi(x,x+c) for i = 2,3 which
contradicts Lemma 3.11 and (2.9) becausee∈ ∆1(c). This completes the proof of
Theorem 5.2.

Lemma 5.3Let c∈ ∆1
2(a). Then|∆1(c)∩∆1

2(a)|= 375with 15 points of∆1(c)∩
∆1

2(a) lying in Γ0(X(a,c)). Further, forl ∈ β0(c,X(c,a)), |∆1(a)∩Γ0(l)|= 3 and
|∆1

2(a)∩Γ0(l)|= 2.

Proof Assumed ∈ ∆1(c)∩∆1
2(a), with d /∈ Γ0(X(a,c)). Then Lemma 5.1 implies

thatX(a,c) ∈ γ3(a,X(a,d)) and{a,c}⊥∩{a,d}⊥ 6= /0. Let b∈ {a,c}⊥∩{a,d}⊥.
Sinceb+c∈ α2(b,b+a), (2.3) allows us to assume, without loss, that inΓb,

b+a =

+ + ◦ ◦ − −
+ + ◦ ◦ − −
+ + ◦ ◦ − −
+ + ◦ ◦ − −

andb+c =

+ + ◦ ◦ ◦ ◦
+ + ◦ ◦ ◦ ◦
+ + − − − −
+ + − − − −

.

The triob+d has an octad in common withb+a becauseb+d ∈ α2(b,b+a). If
this octad is not the left-hand octad ofb+ a, thenX(a,c) ∈ γ3(b,X(a,d)) forces
b+d ∈ α1(b,b+c). However{b,c,d} is a triangle whenceΓ2(b,c,d) 6= /0 which
contradicts (2.9). Thereforeb+d contains the left-hand octad ofb+a and we can

chooseb+d to be

+ + ◦ − ◦ −
+ + ◦ − ◦ −
+ + − ◦ − ◦
+ + − ◦ − ◦

. Notice thatb+d ∈ α2(b,b+c). This

forcesX(a,c) andX(a,d), when viewed as sextets inΓb, to be respectively

? ? · · × ×
? ? · · × ×
◦ ◦ 2 2 + +
◦ ◦ 2 2 + +

and

? ◦ × · + 2

? ◦ × · + 2

◦ ? · × 2 +
◦ ? · × 2 +

.

(5.3.1)If m= b+a, thend andc are collinear with the same three points inΓ0(m).
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Assume otherwise and argue for a contradiction. LetΓ0(m) = {a,b,x1,x2,x3}
where{b,x1,x2} = ∆1(c)∩Γ0(m) and{b,x1,x3} = ∆1(d)∩Γ0(m). Choose the

sextetY in Γb to be

? ? × 2 ◦ 2

· 2 × · ◦ ·
2 + × + ◦ +
+ · ◦ ? × ?

. Then b+ d ∈ β3(a,Y), b+ c ∈

β3(a,Y) andb+a∈ β1(a,Y). Sinceτ(Y)∈Q(b), τ(Y) fixesb+d, b+c andb+a.
By Lemma 3.3,τ(Y) fixesc andd but acts onΓ0(m) by interchanging two pairs
of points inΓ0(m)\{b}. Sinceτ(Y) must fix∆1(c)∩Γ0(m) and∆1(d)∩Γ0(m) we
obtain the required contradiction and (5.3.1) is proved.

Notice that givenb∈ {a,c}⊥ there are 6 sextets ofΓb in γ3(b,X(a,c)) which
are incident with the triob+a. If we let Y ∈ γ3(b,X(a,c))∩Γ2(b+a), there are
two lines inΓ1(b,Y)∩α2(b,b+ c)∩α2(b,b+ a) and each line is incident with
precisely two points of∆1

2(a)∩∆1(c). Let S= {d ∈ ∆1
2(a)|d ∈ ∆1(c),X(a,d) 6=

X(a,c)}. Then by the above and (5.3.1)

|S|= |{a,c}⊥||γ3(b,X(a,c))∩Γ2(b+a)||Γ1(b,Y)∩α2(b,b+c)∩α2(b,b+a)|.2
3

=
45.6.2.2

3
= 360.

To complete the proof we need to show that there are exactly 15 points of
∆1(c)∩∆1

2(a) which are incident withX(a,c). Since∆1(c)∩Γ0(X(a,c))⊆∆1(a)∪
∆1

2(a) and|{a,c}⊥∩Γ0(X(a,c))|= 45we conclude that

|∆1(c)∩∆1
2(a)∩Γ0(X(a,c))|= |∆1(c)∩Γ0(X(a,c))|−45= 60−45= 15.

Lemma 5.4Let c∈ ∆1
2(a) andd ∈ ∆1(c). Then{a,c}⊥∩∆1(d) 6= /0 if and only if

c+d /∈ β1(c,X(c,a)).

Proof From Theorem 4.3(v), the orbits ofGac on Γ1(c) areβi(c,X(c,a)) for i =
0,1,2,3. If c+d∈ β0(c,X(c,a)), thenc+d∈ Γ1(X(c,a)). By (2.16)|Γ0(c+d)∩
{a,c}⊥| = 3 and hence{a,c}⊥ ∩∆1(d) 6= /0 as required. Next supposec+ d ∈
β2(c,X(c,a)). Thus there existsl ∈ Γ1(c,X(c,a)) with l ∈ α2(c,c+d) by (2.11)
and by Lemma 3.8d ∈ ∆1(x) for three pointsx in Γ0(l). Sincea is collinear
with three points inΓ0(l)\{c} we must have{a,c}⊥ ∩ ∆1(d) 6= /0. If c+ d ∈
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β3(c,X(c,a)) we can findk ∈ Γ1(c,X(c,a)) with k ∈ α3(c,c+ d) from (2.11);
then Lemma 3.8 and (2.16) give{a,c}⊥∩∆1(d) 6= /0. To conclude the proof we
show that ifc+d ∈ β1(c,X(c,a)) then{a,c}⊥∩∆1(d) = /0. Assume thatc+d ∈
β1(c,X(c,a)) and that there existsx∈ {a,c}⊥∩∆1(d). Thenc+x∈ Γ1(X(c,a))
andc+ x ∈ αi(c,c+ d) for i = 2,3. However, by (2.11)c+ x ∈ α j(c,c+ d) for
j = 0,1, a contradiction.

If d ∈ ∆2
2(a) we let ld denote the trio inΓ1(a) which is incident withS for

every sextetS∈ S (a,d).

Lemma 5.5Let c∈ ∆1
2(a) andd∈ ∆2

2(a)∩∆1(c). Then either{a,c}⊥∩{a,d}⊥ 6=
/0 or X(a,c) ∈ Γ2(ld).

Proof By Theorem 4.3(i) there is a unique sextetX(a,c) ∈ Γ2(a,c). Let S (a,d) =
{X,Y,Z} be the sextet line inΓa introduced in Theorem 4.7. We first show

(5.5.1)for everyS∈ S (a,d), S∈ γ3(a,X(a,c))∪{X(a,c)}.
AssumeS /∈ γ3(a,X(a,c))∪ {X(a,c)} and argue for a contradiction. Then

l ∈ β1(a,X(a,c)) for precisely 12 triosl ∈ Γ1(a,S) by (2.8) (i), (ii). Using the
intersection matrices forX(a,c) andSgiven in Section 2 we see that the three trios
l ∈ Γ1(a,S) which do not lie inβ1(a,X(a,c)) contain the same octad. However
every octad incident withS lies in some trioa+x wherex∈ {a,d}⊥ by Theorem
4.7, and so we may chooseb∈ {a,d}⊥∩Γ0(S) such thata+ b /∈ β1(a,X(a,c)).
Let b′ ∈{a,d}⊥ with a+b′ ∈ β1(a,X(a,c)) and setτ = τ(X(a,c)). Then(b′)τ 6= b′
by Lemma 3.3, whencedτ 6= d, otherwise{b′,(b′)τ,d} is a triangle and Lemma
3.11 implies the impossibleΓ2(a,d) 6= /0. Sincea+b /∈ β1(a,X(a,c)) andτ∈Q(c)
Lemma 3.3 gives us the following.

a
d

c

b

d τ

However,b /∈ ∆1(c) becauseS∈ γi(a,X(a,c)) for i = 0 or 1 and so we must have
b∈ ∆1

2(c). Therefore, by Lemma 5.1, there existsb′′ ∈ {a,c}⊥∩{c,b}⊥. Using
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Lemma 4.6 and the fact thatS∈ γi(a,X(a,c)) for i = 0 or 1 we have thatb′′ ∈
∆1

2(d). By Theorem 4.7(i)b+ b′′ must lie inΓ1(S). We then have thata+ b′′ ∈
Γ1(S)∩Γ1(a,X(a,c)) which contradicts the fact thatS∈ γi(a,X(a,c)) for i = 0 or
1. This proves (5.5.1)

(5.5.2)If x∈ {a,d}⊥ with a+x∈ Γ1(X(a,c)), then{a,c}⊥∩{a,d}⊥ 6= /0.

By (2.16) there existsy ∈ {a,c}⊥ with a+ y = a+ x. If x ∈ {a,c}⊥ we are
done; so we may supposex∈ ∆1

2(c) andx 6= y.

d

c

a

x

y

However Theorem 4.3(ii) implies thatd ∈ Γ0(X(c,x)) and sinceX(c,x) = X(c,a)
we haveΓ2(a,d) 6= /0, contrary tod ∈ ∆2

2(a). Therefore (5.5.2) holds.

Suppose thatS= X(a,c) for someS∈ S (a,d). Then there existsx∈ {a,d}⊥∩
Γ0(S) with a+ x ∈ Γ1(X(a,c)) and so (5.5.2) proves the result in this case. In
view of (5.5.1) we may now assumeS∈ γ3(a,X(a,c)) for all S∈ S (a,d).

(5.5.3)In Γa, X(a,c) is incident with an octad ofld.

Without loss we may assume

X =

? ◦ · + × 2

? ◦ · + × 2

? ◦ · + × 2

? ◦ · + × 2

andY =

? ? · · × ×
? ? · · × ×
◦ ◦ 2 2 + +
◦ ◦ 2 2 + +

,

and sold is the standard trio. Lett be the tetrad ofX(a,c) containing the element
×

. Sincet cuts the tetrads ofX andY in 22.04, eithert is

contained in the left-hand octad ofld or t contains the duad

×
×
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and intersects one of the other five tetrads ofX as

×
×

or ×
×

. In the latter case

we see, using the MOG, thatt lies in a sextet incident with one of the three octads
of ld. HenceX(a,c) is incident with an octad ofld becauseX(a,c) is the unique
sextet containing t, and (5.5.3) is verified.

By (5.5.3) and Theorem 4.7 there existsx∈ {a,d}⊥ with a+x∈ Γ1(X(a,c))
and soX(a,c) /∈ Γ2(ld) implies that{a,c}⊥∩{a,d}⊥ 6= /0. Now (5.5.2) completes
the proof of the lemma.

Lemma 5.6Let c ∈ ∆1
2(a) and l ∈ Γ1(c) be such thatl ∈ β2(c,X(c,a)). If d ∈

Γ0(l)∩∆2
2(a), then, inΓd, d+c is the trio incident with each sextetS∈ S (d,a)

Proof Let X = X(a,c). By (2.11) there are three lines inΓ1(c,X)∩α2(c, l) and
12 lines inΓ1(c,X)∩α1(c, l). Let Γ1(c,X)∩α2(c, l) = {k1,k2,k3}. From (2.16)
and Lemma 3.8 there existsx1 ∈ {a,c}⊥ ∩ Γ0(k1) with x1 ∈ ∆1(d). Since, in
Γx1, x1 + c ∈ α2(x1,x1 + a)∩ α2(x1,x1 + d), Theorem 4.7(i) implies that there
exists a unique pointx2 ∈ Γ0(x1 + c)\{x1} with x2 ∈ {a,d}⊥. Similarly there
existx3,x4 ∈ Γ0(k2) andx5,x6 ∈ Γ0(k3) with xi ∈ ∆1(d)∩{a,c}⊥ for i = 3,4,5,6
andx3 6= x4, x5 6= x6. Sincexi ∈ Γ0(X) for all i = 1,2,3,4,5,6 andX ∈ Γ2(a), then
Theorem 4.7(ii) gives thatX ∈ S (a,d).

a
x2

c

d

x1

x3

x4

x5

x6

Letk,mbe the two lines inΓ1(x1) incident with points in{a,d}⊥\{x2,x3,x4,x5,x6}
and setΓ0(k) ∩ {a,d}⊥ = {x1,y1,y2} and Γ0(m) ∩ {a,d}⊥ = {x1,z1,z2}. By
Theorem 4.7(i) there existsY ∈ Γ2(d) with Y ∈ Γ2(x1 + x2,m,k) and sincec ∈
Γ0(x1 + x2) we havec ∈ Γ0(Y). However{y1,y2,z1,z2} ∩ Γ0(X) = /0 and so
{y1,y2,z1,z2}∩{a,c}⊥ = /0 which means that{y1,y2,z1,z2} ⊆ ∆1

2(c). Therefore,
in Γd, d+xi , d+yi , d+zi (i = 1,2),each contain some octad of the triod+c. Since
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the 6 trios{d + xi ,d + yi ,d + zi |i = 1,2} are all incident withY ∈ S (d,a). The-
orem 4.7(i) and Lemma 4.6 imply they do not share a common octad and so the
trio d+ c must be the trio incident with each sextetS∈ S (d,a) which completes
the proof of the lemma.

Lemma 5.7Let c∈ ∆1
2(a) andd ∈ ∆2

2(a)∩∆1(c). Then{a,c}⊥∩{a,d}⊥ 6= /0.

Proof Assume the result is false and argue for a contradiction. From Lemmas
5.4 and 5.5c+ d ∈ β1(c,X(c,a)) and X(a,c) ∈ Γ2(ld). Let τ = τ(X(a,c))(=
τ(X(c,a))). SinceX(a,c) ∈ γ3(a,S) for all S∈ S (a,d), τ fixes b for everyb ∈
{a,d}⊥ by Lemma 3.3. Howeverτ does not fixd, by Lemma 3.3 again, because
c+d ∈ β1(c,X(c,a)) and sodτ ∈ Γ0(c+d)\{c,d}. If b∈ {a,d}⊥, then{d,b,dτ}
forms a sparse triangle becausec /∈ ∆1(b), which implies thatd + c and d + b
have a common octad inΓd, for everyb∈ {a,d}⊥. The only way this can happen
is if d + c is the trio incident with eachS∈ S (d,a). Fix b ∈ {a,d}⊥ and let
x be the unique point in{a,d}⊥ ∩ ∆1(b) with b+ x ∈ α2(b,b+ a)∩α2(b,b+
d) (see Theorem 4.7(i)). We can choose a pointc′ ∈ Γ0(b+ x) such thatc′ ∈
∆1

2(a)∩∆1(d) andc′ 6= c. In Γc′, c′+d has an octad in common withc′+b and so
c′+d ∈ β0(c′,X(c′,a))∪β2(c′,X(c′,a)). Sinced /∈ ∆1

2(a) we must havec′+d ∈
β2(c′,X(c′,a)). Using Lemma 5.6 gives thatd+c′ is the unique trio incident with
every sextetS∈ S (d,a), whenced+c′ = d+c. Furthermore, inΓa X(a,c′) must
be a sextet inS (a,d) which means thatX(a,c) ∈ γ3(X(a,c′))∪{X(a,c′)}. Hence
τ ∈ Q(X(a,c′)) and soτ fixesc′. However we already know thatτ movesd and
we have a contradiction to Lemma 3.3 becausec+c′ = c+d. This completes the
proof of Lemma 5.7.

Theorem 5.8Let c∈ ∆1
2(a) andd ∈ ∆2

2(a)∩∆1(c). Then the following hold.
(i) c+d ∈ β2(c,X(c,a))∪β3(c,X(c,a)).
(ii) If l ∈ β2(c,X(c,a)), then|Γ0(l)∩∆1

2(a)|= 3 and|Γ0(l)∩∆2
2(a)|= 2.

(iii) If l ∈ β3(c,X(c,a)), then|Γ0(l)∩∆1
2(a)|= 1 and|Γ0(l)∩∆2

2(a)|= 4.
(iv) |∆1(c)∩∆2

2(a)|= 360+2880= 3240.

Proof(i) Part (i) is a consequence of Lemmas 5.4 and 5.7 together with the fact
thatd /∈ Γ0(X(c,a)).

(ii) From Lemma 5.3 there are 360 points lying in
R := (∆1(c)∩∆1

2(a))\Γ0(X(c,a)).

TheGac orbits onΓ1(c) areβi(c,X(c,a)) for i = 0,1,2,3 by Theorem 4.3(v) and
{c+x|x∈R} is a union of these orbits. By considering the orbit sizes given in (2.5)
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we conclude that{c+ x|x ∈ R} = β2(c,X(c,a)) and |Γ0(c+ x)∩∆1
2(a)| = 3 for

eachx∈R. Fix x∈Rand lety∈ Γ0(c+x)\∆1
2(a). Sincec+x∈ β2(c,X(c,a)) we

can chooseb∈{a,c}⊥ with c+b∈α2(c,c+x). From (2.16) and Lemma 3.8 there
existsb′ ∈ Γ0(c+ b) with b′ ∈ {a,y}⊥ and henced(a,y) 6 2. If y∈ ∆1(a), then
c+x = c+y∈ Γ1(X(c,a)), a contradiction, whenced(a,y) = 2. Sincey /∈ ∆3

2(a)
by Theorem 5.2 we deduce thaty∈∆2

2(a) which means that|Γ0(c+x)∩∆2
2(a)|= 2

and (ii) is proved.
(iii) Let x ∈ {a,c}⊥ . Then we can choosek ∈ Γ1(x) with k ∈ α3(x,x+ c)∩

α1(x,x+ a). If y ∈ Γ0(k)\{k}, theny ∈ ∆2
2(a)∩∆1(c) by Lemma 3.8 and the

definition of ∆2
2(a). Further,c+ y∈ α3(c,c+ x) from Lemma 3.9 and sincey /∈

Γ0(X(c,a)) (2.11) implies thatc+y∈ β3(c,X(c,a)). Therefore ifl ∈ β3(c,X(c,a))
we haveΓ0(l)∩ ∆2

2(a) 6= /0 becauseβ3(c,X(c,a)) is a Gac-orbit. Choosed ∈
∆2

2(a)∩Γ0(l) and letb ∈ {a,c}⊥ ∩{a,d}⊥ (b exists by Lemma 5.7). Sincel ∈
β3(c,X(c,a)) we must havec+ b∈ α3(c, l) and sob is collinear with all points
of Γ0(l) by Lemma 3.8. Letd′ ∈ Γ0(l)\{c,d} andY ∈ Γ2(b+ c,b+ d). Since
b+ a ∈ α2(b,b+ c)∩α1(b,b+ d), (2.11) implies thatb+ a ∈ β2(b,Y). Using
(2.11) again we haveb+ a ∈ α2(b, l) for exactly three linesl ∈ Γ1(b,Y), one
of which is b+ c. As trios in Γb these three lines each contain a common oc-
tad. Howeverb+ d′ ∈ α3(b,b+ c) and sob+ d′ has no octad in common with
b+c. Therefore, using (2.11) again, we must haveb+a∈ α1(b,b+d′), whence
d′ ∈ ∆2

2(a) and (iii) is proved.
(iv) This follows from parts (i) - (iii) using (2.5).
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