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Abstract

We give a simpler equivalent of the Principle of Language Invariance
within the framework of Pure Inductive Logic which is more evidently
rational.
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Introduction

The purpose of this short note is to give an equivalent version of the Principle
of Language Invariance, which is simpler, easier to verify, and arguably more ev-
idently rational. This reformulation of Language Invariance has actually been
known for several years, and even been used implicitly, but without any printed
referent to it existing. The present note aims at correcting this omission.

We shall assume the reader is familiar with the context and notation of Polyadic
Pure Inductive Logic, see for example [2], [3].

∗Supported by a UK Engineering and Physical Sciences Research Council Research
Grant.
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The Main Theorem

Let w be a probability function on a possibly polyadic language L with, as usual,
constants ai, i ∈ N+, and relation symbols1 R1, R2, . . . , Rq of arities r1, r2, . . . , rq
respectively, satisfying Constant Exchangeability (Ex) and Predicate Exchange-
ability (Px).

According to the ‘standard definition’:

Language Invariance I

The probability function w satisfies Language Invariance if there is a family of
probability functions wL, one on each language L, satisfying Ex+Px such that
wL = w and whenever L ⊆ L′, wL = wL

′
�SL (i.e. wL

′
restricted to SL).

We shall refer to this version as Li1.

Let L∞ be a language extending L with countably infinite numbers of relation
symbols of each arity (and as standard still the constants ai, i ∈ N+). Then Li1 is
well known to be equivalent to Li2:

Language Invariance II

The probability function w satisfies Language Invariance if there is a probability
function w∞ on L∞ extending w and satisfying Ex+Px.

To see this equivalence, if w satisfies Li1 then by taking the union of the wL from
the language invariant family with L a finite sub-language of L∞ we obtain the
required w∞.

Conversely given w∞ and L a (finite) language pick a sub-language L′ of L∞
isomorphic to L, extend this isomorphism to one, σ say, between SL and SL′ and
define for θ ∈ SL,

wL(θ) = w∞(σθ).

Because L∞ satisfies Px the particular choice of L′ does not matter and these wL

give the required language invariant family for Li1.

In this note we are interested in the following apparent weakening, Li3, of Li1:

Language Invariance III

The probability function w satisfies Language Invariance if for each language L ex-
tending L there is a probability function wL on SL satisfying Ex+Px and extending
w.

1As usual all the languages considered will have constants ai for i ∈ N+ and only
finitely many relation symbols unless stated otherwise.
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We shall refer to this as Li3. The main result of this paper is:

Theorem 1. Li1 and Li3 are equivalent.

Proof. Clearly Li1⇒ Li3 so, in view of the observation that Li2⇒ Li1, it is enough
to show Li3 ⇒ Li2.

Suppose that w satisfies Li3. Let

L = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Ln ⊂ . . .

be (finite) languages with union L∞. As given by Li3 let wn be a probability
function on SLn satisfying Ex+Px and extending w. Let θn for n ∈ N enumerate
QFSL∞ and such that θn ∈ SLn.

We now repeatedly apply a standard sequential compactness construction. Start-
ing at stage 0 with the sequence of all natural numbers suppose that by stage n
we have produced a subsequence

mn
0 < mn

1 < mn
2 < mn

3 < . . . (1)

such that for each i < n and r ≤ j, k,

|wmn
j
(θi)− wmn

k
(θi)| ≤ 2−r. (2)

Now consider the values of wmn
j
(θn) for j ∈ N. These will have an accumulation

point so we can pick a subsequence2

mn+1
0 < mn+1

1 < mn+1
2 < mn+1

3 < . . .

of (1) such that for r ≤ j, k,

|wmn+1
j

(θn)− wmn+1
k

(θn)| ≤ 2−r. (3)

Clearly then for this subsequence (2) will hold with n+ 1 in place of n.

Noticing that the sequence

m0
0 < m1

1 < m2
2 < m3

3 < . . .

will be a subsequence of each of the sequences (1) eventually we can by (2) properly
define (i.e. the limit will exist) w∞ on QFSL∞ by

w∞(θ) = lim
r→∞

wmr
r
(θ).

2We can even define it here so there is no need to invoke the Axiom of Choice.
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Since for θ, φ ∈ QFSL∞ and r sufficiently large the standard conditions to be a
probability function on quantifier free sentences, i.e.

(P1) If |= φ then wmr
r
(φ) = 1;

(P2) If θ |= ¬φ the wmr
r
(θ ∨ φ) = wmr

r
(θ) + wmr

r
(φ);

hold for the probability function wmr
r

by taking limits we see that they must also
hold for w∞. Furthermore since the wmr

r
satisfy Ex+Px and extend w so will w∞

on QFSL∞.

By Gaifman’s Theorem, see [1] (or in the notation of this paper [3, Theorem 7.1])
we can uniquely extend w∞ to a probability function3 on SL∞ satisfying Ex+Px.

To show that on SL w∞ extends w notice that since all the wm extend w we must
have that w∞ agrees with w on QFSL. Since w and w∞�SL are both extensions
of w on QFSL to SL and any such extension is unique by Gaifman’s Theorem,
they must agree too on SL. So we have as required Li2.

Recall from [3] that we say that w satisfies Language Invariance with P, where P
is some property, if the members wL of the Li1 family also all satisfy the property
P. From the proof of Theorem 1 it follows that this too is equivalent to the cor-
responding enhancement of Li3 for properties preserved under limits, for example
Strong Negation, Spectrum Exchangeability, Permutation Invariance.

Conclusion

We would argue that noting the equivalence of Li3 and Language Invariant (Li1)
is worthwhile for two reasons. Firstly it is ostensibly weaker than Li1 and hence
in practice may be more easily derived. Secondly it seems more obviously rational
in that it simply requires of an agent’s chosen, supposedly rational, probability
function on SL that for each extension of L it has some extension which is also
rational in the sense of satisfying Ex+Px without additionally requiring that these
extensions put together form a consistent family.
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