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ABSTRACT

In this paper we consider estimating the parameters of a multivariate multiple nonlinear regression
model with correlated errors, through the use of Finite Fourier Transforms. Consistency and asymp-
totic normality of the weighted least squares estimates are established under various conditions on
the regressor variables. These conditions involve different types of scalings, and such scaling factors
are obtained explicitly for various nonlinear regression models including an interesting model which
requires estimating the frequencies. This is a very classical problem in signal processing and is also
of great interest in many other areas. We illustrate our techniques on the time-series data of polar
motion (which is now widely known as ”Chandlers Wobble”) where one has to estimate the drift pa-
rameters, the offset parameters and the two periodicities associated with elliptical motion. The data
was first analyzed by Arato, Kolmogorov and Sinai who treat it as bivariate time series data satisfying
a finite order time series model. They estimate the periodicities using the coefficients of the models.
Our analysis shows that the two dominant frequencies are 12 hours and 410 days and that the errors
exhibit some long-range dependence.

1 Introduction

One of the classical problems in statistical analysis is to find a suitable relationship between a response
variable Yt and a set of p regressor variables x1,x2,...xpunder suitable assumptions on the errors. The
usual assumption is that the errors are independent, identically distributed random variables. This was
later generalized to the case when the errors are correlated. In many situations the response function
is a nonlinear function in both regressor variables and the parameters. The asymptotic results on the
estimators of the parameters are now well known (see for example Jennrich, 1969). The results were
later extended to the case of nonlinear multiple regression with correlated errors. Hannan(1971) proves
results when the errors satisfy a linear stationary process. The methods used by Hannan are frequency
domain methods, which heavily depend on the properties of Finite Fourier Transforms. The set of
conditions imposed on the regressor variables (see Grenander and Rosenblatt,1957) depends on the
the nature of the nonlinear parameters to be estimated. The central limit theorems associated with
the estimated and the scaling factors are also dependent on the parameters. If the parameters to be
estimated are frequencies, even though the model looks like linear, but contain sine and cosine terms,
one has to impose a different set of conditions than the usual conditions. A brief discussion of this
important aspect was discussed by Hannan (1971). Robinson (1972) extended the results of Hannan to
the multivariate nonlinear regression situation, when the regression matrix is not of full rank and the
parameters satisfy some constraints. The methods and the asymptotic theory of Robinson does not
include the situation when the parameters are frequencies and also the variance-covariance matrices
of the estimated parameters given are not explicit enough to compute. In this paper our objective
is to consider various forms of the relationships( linear in parameters and nonlinear in parameters
and a mixture of both) and find suitable scaling factors for establishing asymptotic properties of the
estimates.Our main result is the exact for for the asymptotic variance of the estimator in terms of the
regression spectral density function and the weighting matrix. We introduce new scaling factors which
are required for proving the central limit theorems of the parameters of the mixed type models ( linear
and/or nonlinear in parameters)
An interesting problem one encounters in practice is to compare the features ( such as long time
trends, common periodicities etc) between two or more of the response variables when the errors are
correlated and may have different marginal distributions. The frequency domain approach is extremely
useful in such contexts as we do not need to know the distributions of the errors. We do not go into
details on testing hypotheses on these parameters.
More specifically we consider in this paper a multivariate multiple non-linear regression model with
multivariate correlated stationary random errors satisfying some conditions. The minimum contrast
estimate ([12], [16]) of the unknown parameters are constructed in frequency domain. The mixed model
containing the linear regression and linear combinations of the nonlinear regressions is considered in
detail.
To illustrate our methods we consider the analysis of time series of Polar motion (in geophysics this
is widely described as “Chandlers Wobble”). One of the first papers dealing with statistical analysis
of this data is due to Arato, Kolmogorov and Sinay (1962) who estimate the parameters of the polar
motion, such as offset(trend), drift and periodicities. Using high resolution GPS data it is shown in
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this paper that besides the well-known Chandler period of 410 days, a secondary period of 12 hours is
also present and the residual series seems to exhibit long range dependency. The motion of the pole
(as a function of time) can be described by two polar coordinates which are strongly correlated. This
motion is very similar to that of a rotating spinning top that is used by children as a toy.

2 Non-Linear Time Series Regression

2.1 Model

Consider a d dimensional observational vector Y t, the random disturbances Zt and the function Xt (ϑ0)
satisfying the usual model

Y t = Xt (ϑ0) + Zt. (1)

The function Xt (ϑ) can be a nonlinear function of both regressors variables and the p-dimensional
parameter vector ϑ ∈ Θ ⊂ Rp, while Zt is a d-dimensional stationary time series. The set Θ of
admissible parameters ϑ is defined by a number of possibly nonlinear equations, see [27], for more
details. We shall assume that the set Θ is chosen suitably in each case. For convenience we consider
Xt (ϑ) as a regressor vector , although in particular cases we may have to separate the regressors
and the parameters. The regressor variables may depend on the parameters nonlinearly. One specific
model, we have in mind, for Xt (ϑ) can be written in the form

Xt (ϑ) = B1X1,t + B2X2,t (λ)

= [B1,B2]

�
X1,t

X2,t (λ)

�

= BX3,t (λ) .

This can be considered as a mixed model since it is both linear as well as non-linear in the parameters
at the same time. The parameter vector ϑ contains both B1 and B2 and also the vector λ. The
admissible set Θ is the union of three subsets. There is no restriction on the entries of matrix B1

with size d × p1. However the matrix B2 and the vector λ may have to satisfy some identifiability
conditions. The parameter λ is identified unless some particular entries of B2 annihilate an entry, say
λk, from the model. If λ are set of frequencies to be estimated we may have to put some constraints
so that they lie within a compact set, for harmonic regressors λ ∈ [−1/2, 1/2]2, see Section 5.3.
We assume that Zt is a stationary linear processes, and has the moving average representation

Zt =

∞X

k=−∞
AkW t−k,

with

∞X

k=−∞
Tr (AkCW A∗

k) < ∞.

Here we assume that W t is a sequence of independent identically distributed random vectors( i.i.d.vectors)
and CW = Var W t, is non-singular We also assume that Zt has a (element by element)piecewise con-
tinuous spectral density matrix SZ (ω) , as in [13], [5]. The model is feedback free, i.e. Zt does not
depend on Xt.

2.2 The regression spectrum

Consider the regressor function Xt (ϑ) which is a function of t which may depend nonlinearly on
parameters ϑ belonging to the compact set Θ. It is widely known that the Grenander’s conditions
( see [10], [9]), for the regressor Xt (ϑ) are sufficient and in some situations ([32]), also necessary to
establish the consistency of the least squares ( LS) estimators. They are as follows. Let

‖Xk,t (ϑ)‖2T =

TX
t=1

X2
k,t (ϑ) .

denote the Euclidean norm of the kth regressor of the vector X(ϑ)
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Condition 1 (G1) For all k = 1, 2, . . . , d,

lim
T→∞

‖Xk,t (ϑ)‖2T = ∞.

Condition 2 (G2) For all k = 1, 2, . . . , d,

lim
T→∞

X2
k,T+1 (ϑ)

‖Xk,t (ϑ)‖2T
= 0.

Without any loss of generality we can assume that the regressor Xt (ϑ) is scaled : ‖Xk,t (ϑ)‖2T ' T, for
all k, see Definition 15 and a note therein. Define the following matrices. Let for each integer h ∈ [0, T ),

bCX,T (h, ϑ1, ϑ2) =
1

T

T−hX
t=1

Xt+h (ϑ1) Xᵀ
t (ϑ2) , (2)

bCX,T (−h, ϑ1, ϑ2) = bCᵀ
X,T (h, ϑ2, ϑ1) .

Whenever ϑ1 = ϑ2 = ϑ, throughout our paper we use the shorter notation bCX,T (h, ϑ1, ϑ2)
���
ϑ1=ϑ2=ϑ

=

bCX,T (h, ϑ). The next condition we impose essentially means that the regressor Xt (ϑ) is changing
’slowly’ in the following sense. For each integer h, ‖Xk,t (ϑ)‖2T+h ' T .

Condition 3 (G3) For each integer h,

lim
T→∞

bCX,T (h, ϑ) = CX (h, ϑ) .

Condition 4 (G4) CX (0, ϑ) is non-singular.

One can use the Bochner’s theorem for the limit CX such that

CX (h, ϑ) =

Z 1/2

−1/2

exp (i2πλh) dF (λ, ϑ) ,

where F is a spectral distribution matrix function of the regressors (from now on abbreviated, SDFR)
whose entries are of bounded variations. The SDFR can be obtained as the limit of the vector of
periodogram ordinates (see [5] for details). We now introduce the discrete Fourier transform

dX,T (ω, ϑ) =

T−1X
t=0

Xt (ϑ) z−t, z = exp (2πiω) , − 1

2
≤ ω <

1

2
,

and the periodogram of the non-random vectorXt (ϑ)given by

IX,T (ω, ϑ1, ϑ2) =
1

T
dX,T (ω, ϑ1) d∗X,T (ω, ϑ2) ,

where ∗ denotes the transpose and complex conjugate. Both dX,T and IX,T may depend on some
parameters. We have the well known relation

bCX,T (h, ϑ1, ϑ2) =

Z 1/2

−1/2

exp (i2πλh) IX,T (λ, ϑ1, ϑ2) dλ,

IX,T (ω, ϑ1, ϑ2) =
X

|h|<T

bCX,T (h, ϑ1, ϑ2) e−i2πωh,

Iᵀ
X,T (ω, ϑ1, ϑ2) = IX,T (ω, ϑ2, ϑ1).

between bCX,T and the periodogram. The definition (2), which Jennrich ([21]) calls tail product, re-
minds us of the empirical cross-covariance matrix of a stationary time series, usually scaled by 1/T
(which might not work in some particular cases of the regressors without some additional scaling).
This implies that the series Xt does not belong to L2, i.e.

lim
T→∞

dX,T (ω, ϑ)


2

= ∞.
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For the univariate case, we refer the reader to the classical books of Grenander-Rosenblatt [9], T. W.
Anderson [3], and for vector-valued case, to Hannan [13], Brillinger [5].
Now, define the empirical SDFR FT as

FT (ω, ϑ1, ϑ2) =

Z ω

0

IX,T (λ, ϑ1, ϑ2)dλ,

then it follows from the Grenander’s conditions stated above that F is the weak limit of FT and this
is condition we really need later. See also Chapter 7 of Ibragimov and Rozanov [18].

Condition 5 (I-R) The matrix function FT converges to F weakly. More precisely, for each continuous
bounded function ϕ (ω) the limit

lim
T→∞

Z 1/2

−1/2

ϕ (ω) dFT (ω, ϑ1, ϑ2) =

Z 1/2

−1/2

ϕ (ω) dF (ω, ϑ1, ϑ2) , (3)

holds.

Note, if FT converges to F weakly then (3) is valid not only for continuous bounded functions but
also for some wider classes of functions such as piecewise continuous functions having discontinuity at
finitely many ω−points with F−measure zero, dF (ω, ϑ1, ϑ2) = 0. This is very important, in particular
for disturbances with long memory, see [34]. The matrix function F is Hermite symmetric since FT

satisfies following
Fᵀ

T (ω, ϑ1, ϑ2) = FT (ω, ϑ2, ϑ1) = FT (−ω, ϑ2, ϑ1) .

The regressor Xt (ϑ) depends on the parameter ϑ ∈ Θ, therefore we require all Grenander’s condi-
tions to hold uniformly in ϑ.

2.3 The Objective Function

The frequency domain analysis has a number of advantages. First all the Fourier transforms of a large
stationary sample behave like i.i.d. complex Gaussian random variables under some broad assumptions,
see [5]. The FFT is technically simple to use. For example, it turns the data Y t, t = 1, 2, . . . , T, from
time domain into frequency domain dY ,T (ωk) , (here we define the Fourier frequencies ωk = k/T ∈
[−1/2, 1/2], k = −T1, , . . . ,−1, 0, 1, . . . , T1, where T1 = Int [(T − 1) /2], only). It is obvious that

dY ,T (ω) = dX,T (ω, ϑ0) + dZ,T (ω),

The parameter vector ϑ0 denotes the true unknown value and we would like to adjust the regressor
Xt (ϑ) in the model such that the distance

dY ,T (ω)− dX,T (ω, ϑ) = dX,T (ω, ϑ0)− dX,T (ω, ϑ) + dZ,T (ω), (4)

is minimal, in some sense. The Euclidean distance, for instance, is

T1X

k=−T1

dY ,T (ωk)− dX,T (ωk, ϑ)


2

=

T1X

k=−T1

dX,T (ωk, ϑ0)− dX,T (ωk, ϑ) + dZ,T (ωk)


2

,

which, by Parseval Theorem, actually corresponds to the sum of squares in time domain

T−1X
t=0

‖Y t −Xt (ϑ)‖2 =

T−1X
t=0

‖Xt (ϑ0)−Xt (ϑ) + Zt‖2 .

Therefore minimizing either of the above two expressions leads to the same result. The Zt itself is not
necessarily an i.i.d. hence we are facing a generalized non-linear regression problem with stationary
residuals. The quadratic function we minimize, somewhat parallel to that suggested by Hannan [14]
for scalar valued case, is

QT (ϑ) =
1

T 2

T1X

k=−T1

�
dY ,T (ωk)− dX,T (ωk, ϑ)

�∗
Φ (ωk)

�
dY ,T (ωk)− dX,T (ωk, ϑ)

�

=
1

T

T1X

k=−T1

Tr (IY ,T (ωk)Φ (ωk)) + Tr (IX,T (ωk, ϑ)Φ (ωk))− 2ReTr (IY ,X,T (ωk, ϑ)Φ (ωk)) , (5)
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where Φ (ωk) is a series of matrix weights, originated from a continuous, Hermitian matrix function
Φ, satisfying Φ (ω) ≥ 0. The equation (4) can be rewritten as

QT (ϑ) =
1

T

T1X

k=−T1

Tr (IX,T (ωk, ϑ0)Φ (ωk)) + Tr (IX,T (ωk, ϑ)Φ (ωk)) + Tr (IZ,T (ωk)Φ (ωk))

+
2

T

T1X

k=−T1

Tr ([IX,Z,T (ωk, ϑ0)− IX,Z,T (ωk, ϑ)]Φ (ωk))− Tr (IX,T (ωk, ϑ, ϑ0)Φ (ωk)) .

The proof of IX,Z,T (ωk, ϑ) → 0, a.s. and uniformly in ϑ is given by Robinson [27], Lemma 1. Now,
suppose Conditions I-R, (or G1-G4) hold and we take the limit

Q (ϑ) = lim
T→∞

QT (ϑ)

=

Z 1/2

−1/2

Tr (Φ (ω) d [F (ω, ϑ0) + F (ω, ϑ)− F (ω, ϑ0, ϑ)− F (ω, ϑ, ϑ0)])

+

Z 1/2

−1/2

Tr [SZ (ω)Φ (ω)] dω

= R (ϑ, ϑ0) +

Z 1/2

−1/2

Tr [Φ (ω)SZ (ω)] dω. (6)

The function

R (ϑ, ϑ0) =

Z 1/2

−1/2

Tr (Φ (ω) d [F (ω, ϑ0) + F (ω, ϑ)− F (ω, ϑ0, ϑ)− F (ω, ϑ, ϑ0)]) ,

is the only part of Q (ϑ) which depends on ϑ. We shall require the following condition to ensure the
existence of the minimum, (see [27])

Condition 6 (R)
R (ϑ, ϑ0) > 0, ϑ ∈ Θ, ϑ 6= ϑ0.

Then we have the contrast function R for ϑ0

R (ϑ, ϑ0) > R (ϑ0) = 0.

Therefore we minimize the contrast process QT (ϑ) for R (ϑ0, ϑ). Obviously

lim
T→∞

[QT (ϑ)−QT (ϑ0)] = R (ϑ0, ϑ) .

The minimum contrast estimator bϑT is the value which realizes that minimum value of QT (ϑ)

bϑT = arg min
ϑ∈Θ

QT (ϑ) .

One can easily see ( using [25] Theorem 7, Ch. 7) under some additional assumptions given below, that
QT (ϑ) is convex since the Hessian HQ (ϑ0) is nonnegative definite. Therefore the next Theorem, due
to Robinson [27], is valid not only for a compact setΘ, but also for more general classes of parameters,
for example which belong to convex parameter set Θ as well. The minimum contrast method is also
called the quasi-likelihood and it is very efficient in several cases even in non-Gaussian situations, for
instance see [2].

Theorem 7 Under the assumptions I-R (or G1-4), and R, the minimum contrast estimator bϑT converges
a.s. to ϑ0.

3 Asymptotic Normality

For the asymptotic normality it is necessary to consider the second derivatives of the SDFR and
their limits for the objective function as usual, see [27]. The matrix of the second derivatives of
bCX,T (h, ϑ1, ϑ2) can be calculated, by using the matrix differential calculus, ([25])

∂2 bCX,T (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

=
∂

∂ϑᵀ
1

Vec

 
∂ Vec bCX,T (h, ϑ1, ϑ2)

∂ϑᵀ
2

!
.
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Here the differentiation of the RHS can be carried out directly, see Section 7.2 in the Appendix. Notice,
the order of the variables ϑ1, ϑ2 in bCX,T , is opposite to the order of the partial derivatives: ∂ϑᵀ

2∂ϑᵀ
1 .

The later means that one differentiates first by ϑ2 and then by ϑ1which operates on the right hand
side Starting the differentiating by ϑ1, and then followed by ϑ2, it can be written as ‘direct’ one

∂2 bCX,T (h, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

= (Kp·d ⊗Ud)Kd·dp
∂2 bCX,T (−h, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑᵀ

2

,

where we used the commutation matrix Kp·d, see (20), ⊗ denotes the Kronecker product, and Ud is
the d× d identity matrix. Following Hannan [14] we assume the following condition

Condition 8 (H) All the second partial derivatives of the regressor Xt (ϑ) exist and
∂2 bCX,T (h,ϑ1,ϑ2)

∂ϑ
ᵀ
2 ∂ϑ

ᵀ
1

con-

verges to some limit, denote it by
∂2CX(h,ϑ1,ϑ2)

∂ϑ
ᵀ
2 ∂ϑ

ᵀ
1

.

It is necessary to emphasize that Condition H is

∂2CX (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

•
= lim

T→∞
∂2 bCX,T (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

,

where the left hand side is defined by the limit(which is the derivative of CX .) From now on we shall

use the symbol
•
= for the definition of the left side of an expression.

The above notation is used for the regression spectrum as well.

Condition 9 (I-R-H) The derivative
∂2FT (ω,ϑ1,ϑ2)

∂ϑ
ᵀ
1 ∂ϑ

ᵀ
2

, of the matrix function FT converges weakly to some

function denoted by
∂2F(ω,ϑ1,ϑ2)

∂ϑ
ᵀ
2 ∂ϑ

ᵀ
1

.

Again
∂2F (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

•
= lim

T→∞
∂2FT (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

,

by definition. Using the above formulae for the derivatives we calculate the Hessian HF for the SDFR
F as well, see Section 7.2 in the Appendix for the proof.

Lemma 10 Assume Condition I-R-H, then

HF (ω, ϑ) =

�
Hϑ1F (ω, ϑ1, ϑ2) +

∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

(7)

+Hϑ2F (ω, ϑ1, ϑ2) +
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

�����
ϑ1=ϑ2=ϑ

,

where the indirect derivative satisfies

∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

= (Kp·d ⊗Ud)Kd·dp
∂2F (−ω, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑᵀ

2

.

3.1 Asymptotic Variance

For the variance of Vec
∂QT (ϑ0)

∂ϑᵀ consider the expression

Vec
∂QT (ϑ)

∂ϑᵀ =
1

T

T1X

k=−T1

�
∂ Vec IX,T (ωk, ϑ)

∂ϑᵀ − ∂ (Vec IY ,X,T (ωk, ϑ) + Vec IX,Y ,T (ωk, ϑ))

∂ϑᵀ

�ᵀ
(8)

× [VecΦᵀ (ωk)] .

Let Ψ be some matrix function of appropriate dimension, and introduce the following notation, which
will be frequently used,

J (Ψ,F) =

Z 1/2

−1/2

(Up ⊗ [Vec (Ψᵀ (ωk))]ᵀ) d

 
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

����
ϑ1=ϑ2=ϑ0

!
,

where Up denotes the identity matrix of order p.
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Lemma 11

lim
T→∞

Var

�√
T Vec

∂QT (ϑ0)

∂ϑᵀ

�
= 4J (ΦSZΦ,F).

See Section 7.3 in the Appendix for the proof. The limit of the Hessian is calculated from (8). The
Hessians according to the Hϑ1IX,T (ωk, ϑ1, ϑ2) and Hϑ2IX,T (ωk, ϑ1, ϑ2) of the terms in (8) at ϑ1 =
ϑ2 = ϑ0 will cancel with HϑIY ,X,T (ωk, ϑ) and HϑIX,Y ,T (ωk, ϑ) respectively, so we have to deal only
with the mixed derivatives of IX,T (ωk, ϑ). See Section 7.4 in Appendix. Hence the Hessian of Q (ϑ) at
ϑ = ϑ0 follows.

Lemma 12
HQ (ϑ0) = lim

T→∞
[HQT (ϑ0)] = 2J (Φ,F).

Notice that the matrix J = J (ΦSZΦ,F) and the Hessian HQ (ϑ0) are the same except that the later
one depends only on Φ, i.e. HQ (ϑ0) = J (Φ,F).
Put

JT = Var

�√
T Vec

∂QT (ϑ0)

∂ϑᵀ

�
,

and suppose the following condition holds.

Condition 13 (R) The limit variance matrix J (ΦSZΦ,F) of the Var

�√
T Vec

∂QT (ϑ0)
∂ϑᵀ

�
, be positive defi-

nite, for all admissible spectral density SZ and SDFR F, moreover suppose that J (Φ,F) > 0.

Theorem 14 Under assumptions I-R, I-R-H and R

√
TJ

−1/2
T HQT

�
bbϑ
��bϑT − ϑ0

� D→ N (0,Up) ,

where
bbϑ is closer to ϑ0 than bϑT . In other words

lim
T→∞

Var
h√

T
�bϑT − ϑ0

�i
= J−1 (Φ,F)J (ΦSZΦ,F)J−1 (Φ,F)

��
ϑ=ϑ0

. (9)

The optimal choice of Φ (ω) is S−1
Z (ω) assuming SZ (ω) > 0. The choice S−1

Z (ω) is appropriate since
the ”residual” series dZ,T (ωk) are asymptotically independent Gaussian random vectors with variance

matrix TSZ (ωk) . The covariance matrix in this case
�
Φ =S−1

Z

�
follows from (9)

lim
T→∞

Var
h√

T
�bϑT − ϑ0

�i
= J−1 �S−1

Z ,F
�
, (10)

where

J−1 �S−1
Z ,F

�
=

"Z 1/2

−1/2

h
Up ⊗

�
Vec

�
S−1

Z (ω)
�ᵀ�ᵀi

d
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

����
ϑ1=ϑ2=ϑ0

#−1

.

4 Scaling

To assess the generality of scaling consider the linear case

Y t = BXt + Zt,

In this case ϑ = VecB, so the regressor Xt depends on the parameter ϑ linearly, (Xt depends only on
t ) Here B is d × p and Xt is p × 1. If ‖Xk,t‖T ' Dk (T ) which tends to infinity by the Grenander’s
Condition G1, then the

bCX,T (h, ϑ1, ϑ2) =
1

T

T−hX
t=1

Xt+h (ϑ1) Xᵀ
t (ϑ2) ,

might not converge unless each Dk (T ) ' √
T . This condition is not satisfied when we consider the

polynomial regression models . Grenander’s condition can be interpreted in the following way. Define
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the diagonal matrix DT =diag (D1, D2, . . . , Dp), where Dk = Dk (T ) ' ‖Xk,t‖T . Now, consider the
linear regression problem

Y t = eBV t + Zt,

where V t =
√

TD−1
T Xt.Now consider the revised version of the model and observe the connection

eBV t =

�
1√
T

BDT

��√
TD−1

T Xt

�
,

between the original and the scaled equation. Therefore the asymptotic variance of the estimate of the
parameter matrix B is now related by

lim
T→∞

Var
√

T

�
beB− eB0

�
= lim

T→∞
Var

h�
bB−B0

�
DT

i
.

We call this type of transformation as ’primary’ scaling and the result is the properly scaled regressor.
Note here that the procedure of scaling opens the possibility of considering random regressors which
are not necessarily weak stationary because of the second order moments do not exist, (see [22]) or it
may be asymptotically stationary.

Definition 15 The series Xt is properly scaled if

‖Xk,t‖2T ' T,

as T →∞, for each k = 1, 2, . . . , d.

In general, let Dk (T ) ' ‖Xk,t‖T , for each k and define DT =diag (D1, D2, . . . , Dd), then it is easy to

see that the new regressor vector
√

TD−1
T Xt is properly scaled. The primary scaling of the nonlinear

regressors Xt (ϑ) is possible if Dk (T ) does not depend on the unknown parameter ϑ. Even if the
regressors Xt (ϑ) are properly scaled, there may be some problems arising when we take the limit of
the derivatives because there is no guarantee for the convergence of the sums involved. Therefore we
have to introduce some further scaling to the properly scaled regressors Xt (ϑ).
Consider first, the diagonal matrix DT = diag (DX,k (T ) , k = 1, 2, . . . , d) and apply the scaling which
results in

√
TD−1

T Xt (ϑ). Another type of scaling can be obtained by the the process of differentiation.

We define the scaled partial derivative ∂s,T (ϑ) of the diagonal matrix D1,T = diag
�
D

(1)
k (T ) , k = 1, 2, . . . , p

�

by ∂
�
D−1

1,T ϑ
�
, resulting

∂

∂s,T ϑᵀ
�
D−1

T Xt (ϑ)
�

=

�
∂

∂ϑᵀ
�
D−1

T Xt (ϑ)
��

D−1
1,T , (11)

which gives
∂

∂s,T ϑᵀ
�
D−1

T Xt (ϑ)
�

= D−1
T

�
∂

∂ϑᵀ Xt (ϑ)

�
D−1

1,T .

Notice, the entries of the scaled partial derivatives are
h
DX,j (T ) D

(1)
k (T )

i−1

∂Xj,t (ϑ) /∂ϑk. The sec-

ond scaled derivatives of bCX,T (h, ϑ1, ϑ2) are of interest

∂2
s,T
bCDT X,T (h, ϑ1, ϑ2)

∂s,T ϑᵀ
2∂s,T ϑᵀ

1

=
�
D−1

1,T ⊗Ud2
� ∂2 bC√

TD−1
T

X,T
(h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

D−1
1,T

= T
�
D−1

1,T ⊗D−1
T ⊗D−1

T

� ∂2 bCX,T (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

D−1
1,T ,

see Section 7.5 in Appendix for the proof. Note that 1/T in the expression of bCX,T is canceled and
the role of scaling has been absorbed completely by the scaling matrices.

Condition 16 (H’) All the second partial derivatives of the regressor vector Xt (ϑ) exist. There exist diago-

nal matrices DT and D1,T such that, uniformly in ϑ, the scaled derivative
∂2

s,T
bC√

TD
−1
T

X,T
(h,ϑ1,ϑ2)

∂s,T ϑ
ᵀ
2 ∂s,T ϑ

ᵀ
1

converges

to some limit,which we denote it by
∂2

sCX(h,ϑ1,ϑ2)
∂sϑ1∂sϑ2

.
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The above condition H implies that

∂2
sCX (h, ϑ1, ϑ2)

∂sϑ
ᵀ
2∂sϑ

ᵀ
1

•
= lim

T→∞
∂2

s,T
bCDT X,T (h, ϑ1, ϑ2)

∂s,T ϑᵀ
2∂s,T ϑᵀ

1

.

The diagonal matrices DT and D1,T can be chosen directly. In cases when the entries of the partial
derivatives separate, i.e.when

‖∂Xj,t (ϑ) /∂ϑk‖T ' BX,j (T ) B
(1)
k (T ) ,

then DT = diag (BX,j (T ) , k = 1, 2, . . . , d), and D1,T = diag
�
B

(1)
k (T ) , k = 1, 2, . . . , p

�
, say. Note here

that the matrix DT contains the factors of primary scaling. There may be regressors Xt (ϑ), with
derivatives which may require other forms of scaling may be required. and the above scaling does not
apply.
The above notation is used for the regression spectrum as well.

Condition 17 (I-R-H’) The scaled derivative
∂2

s,T FT (ω,ϑ1,ϑ2)
∂s,T ϑ

ᵀ
1 ∂s,T ϑ

ᵀ
2

, of matrix function FT converges weakly to

some function which we denote by
∂2

sF(h,ϑ1,ϑ2)
∂sϑ

ᵀ
2 ∂sϑ

ᵀ
1

.

Define

JT (DT ,Ψ,F)=

Z 1/2

−1/2

(Up ⊗ [Vec (DT Ψᵀ (ωk)DT )]
ᵀ
) d

 
∂2

sF (ω, ϑ1, ϑ2)

∂sϑ
ᵀ
2∂sϑ

ᵀ
1

����
ϑ1=ϑ2=ϑ0

!
,

Theorem 18 Under the conditions I-R and I-R-H’ we have

√
TJ

−1/2
T Hs,T QT (ϑ0)D1,T

�bϑT − ϑ0

� D→ N (0,Up) .

In other words the variance of
�bϑT − ϑ0

�
can be approximated by

D−1
1,T J−1

T (DT ,Φ,F)JT (DT ,ΦSZΦ,F)J−1
T (DT ,Φ,F)D−1

1,T

��
ϑ=ϑ0

.

Moreover if Φ =S−1
Z , one obtains the asymptotic variance in the reduced and neat form

D1,T J−1
T

�
DT ,S−1

Z ,F
�
D1,T .

We shall see in the next Section that the linear regressors are scaled directly.

Remark 19 The spectrum SZ in general is not known, which then it leads to a semiparametric problem,
and therefore one uses a recursive form for the estimation of the parameters. In such situations one notices
that the additional term to the function R in the objective function is the Whittle likelihood up to a constant.
As long as we restrict to rational spectral density functions, the methods of Hannan ([14]) apply and both the
estimator of the unknown parameter ϑ and the estimator for the parameters of the spectrum are consistent.
The details will be published in a later paper.

5 Some particular cases of special interest

We now consider some particular cases of the regression function which are of interest.

5.1 Multiple Linear Regression with Stationary Errors

Consider the linear case

Y t = BXt + Zt,

and in this case ϑ = VecB, so the regressors depend on the parameter ϑ linearly, (Xt depends only
on t but ϑ). Here B is d× p and Xt is p× 1. The ’primary’ scaling, if it is necessary, is given by the
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diagonal matrix
√

TD−1
T with DT =diag (D1, D2, . . . , Dp), where Dk (T ) ' ‖Xk,t‖T . Since it is easy

to see that

bCX,T (h, ϑ1, ϑ2) =
1

T

T−hX
t=1

Xt+h (ϑ1) Xᵀ
t (ϑ2) ,

where Xt (ϑ) = BXt, converges for all possible values of B if and only if

bCX,T (h) =
1

T

T−hX
t=1

Xt+hXᵀ
t ,

converges. Assume that Xt is properly scaled (otherwise scale it,
√

TD−1
T Xt). Observe that

∂Xt(ϑ)

∂ϑk
=

∂BXt
∂ϑk

=
h
0, . . . , 0, Xjk,t, 0, . . . , 0

iᵀ
, therefore the ’secondary’ scaling is D1,T = Udp.

For the above model the discrete Fourier transform reduces to

dY ,T (ω) = BdX,T (ω) + dZ,T (ω).

and the periodograms for each term of the above are given by

IX,T (ωk, ϑ) = BIX,T (ωk)Bᵀ,

IY ,X,T (ωk, ϑ) = IY ,X,T (ωk)Bᵀ,

IX,Y ,T (ωk, ϑ) = BIX,Y ,T (ωk) ,

The normal equations are obtained by solving

∂QT (B)

∂B
= 0,

and the estimates can be obtained. The expression for the variance covariance matrix of the estimate
vector is (in the vectorized form)

Vec
�
bB
�

=

0
@

T1X

k=−T1

Iᵀ
X,T (ωk)⊗Φ (ωk)

1
A
−1

Vec

T1X

k=−T1

Φ (ωk) IY ,X,T (ωk)

If the inverse does not exist, we can use the Generalized inverse. This estimate is linear and unbiased
since

E

T1X

k=−T1

Φ (ωk) IY ,X,T (ωk) = Φ (ωk)B0IX,T (ωk) .

The Hessian of QT (B) is

HQT (B) =
1

T

T1X

k=−T1

�
Iᵀ

X,T (ωk)⊗Φ (ωk) + IX,T (ωk)⊗Φᵀ (ωk)
�

=

Z 1/2

−1/2

dFᵀ (ω)⊗Φ (ω)+o (1) .

The variance matrix of the estimate bB

lim
T→∞

Var

0
@ 1√

T
Vec

T1X

k=−T1

Φ (ωk) IY ,X,T (ωk)

1
A = 4 Vec

Z 1/2

−1/2

dFᵀ (ω)⊗ [Φ (ω)SZ (ω)Φ (ω)] ,

see (29). In particular we have the expressions in both situations when the estimates are the ordi-
nary least squares estimates ( when the errors are independent)and also in the case of weighted least
squares(LS) estimates .In the first case Φ (ω) = Udand in the later case Φ (ω) = S−1

Z (ω) which
leads to the best linear unbiased estimates, BLUE. Grenander(1954) shows that under some as-
sumptions asymptotically the LS and BLUE are equivalent. When such conditions satisfy we have

Var
h√

T Vec
�
bB
�i

=
hR 1/2

−1/2
dFᵀ (ω)⊗S−1

Z (ω)
i−1

.This limit does not depend on B0. This result can

also obtained from the general formula (10) for the variance.
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Remark 20 The estimation of the transpose of the matrix B is used more often in time domain (see [13]).

Then the variance of Vec (bBᵀ) follows from (12) easily

Var
h√

T Vec
�
bBᵀ
�i

= Var
h
Kp·d Vec

�
bB
�i

= Kp·d VarVec
�
bB
�
Kd·p,

hence

lim
T→∞

Var
h√

T Vec
�
bBᵀ
�i

=

"Z 1/2

−1/2

S−1
Z (ω)⊗dFᵀ (ω)

#−1

.

See Section 7.6 of the Appendix. In practice, we are interested in the asymptotic variance of bB of the
original unscaled regressors. Since we have an estimate of the matrix 1√

T
BDT , writing

BXt =

�
1√
T

BDT

�√
TD−1

T Xt,

we get the asymptotic variance of Vec bB to be
"Z 1/2

−1/2

DT dFᵀ (ω)DT⊗S−1
Z (ω)

#−1

, (12)

(see also [13], Theorem 10, Chapter VII). For instance, if we consider the polynomial regressors of
the form Xj,t = tj−1, j = 1, , . . . , p, then the corresponding scaling factors we should use are Tj (T ) 'p

T 2j−1/ (2j − 1) (this later one applies for any fractional j > 1/2 as well), and DT =diag (T1, T2, . . . Td).

In this case the SDFR F is concentrated at zero with values dFj,k (0) =
p

(2k − 1) (2j − 1)/ (k + j − 1) ,

so the asymptotic variance of Vec bB is
�
D−1

T dF−1 (0)D−1
T

�⊗SZ (0) ,

(see [9] p. 247, for scalar valued case.)

5.2 A mixed model involving parameters both linearly and nonlinearly

A very realistic model is the following

Y t = Xt (ϑ0) + Zt,

where the regressor is of the form

Xt (ϑ) = B1X1,t + B2X2,t (λ) (13)

= [B1,B2]

�
X1,t

X2,t (λ)

�

= BX3,t (λ) ,

Here the unknown parameter ϑ = Vec (VecB1, VecB2, λ), where B1 is d × p, B2 is d × q, λ is r × 1,

X1,t is of dimension p, X2,t (λ) is of dimension q, B = [B1,B2] and X3,t (λ) =

�
X1,t

X2,t (λ) .

�
First we

consider the problem of estimation, by minimizing the objective function

QT (B, λ) =
1

T

T1X

k=−T1

�
Tr (IY ,T (ωk)Φ (ωk)) + Tr

�
BIX3,T (ωk, λ)BᵀΦ (ωk)

�
(14)

−Tr
�
IY ,X3,T (ωk, λ)BᵀΦ (ωk)

�− Tr
�
BIX3,Y ,T (ωk, λ)Φ (ωk)

��
.

Now, differentiate with respect to B1,B2 and λ. We can apply the linear methods for B in terms of

X3,t (λ) . Suppose that the bB=
h
bB1, bB2

i
and bλ, satisfies the system of equations

∂QT (B, λ)

∂B
= 0,

Vec
∂QT (λ)

∂λᵀ = 0.
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The estimation of the linear parameters B1 and B2 can be carried out as in linear regression when the
parameter λ is fixed. It leads to a recursive procedure. When we first set λ = eλ(chosen), the normal
equations result in

Vec
�
bB
�

=

0
@

T1X

k=−T1

Iᵀ
X3,T

�
ωk, eλ

�
⊗Φ (ωk)

1
A
−1

Vec

T1X

k=−T1

Φ (ωk) IY ,X3,T

�
ωk, eλ

�
,

Now, to obtain the estimates for λ, we keep B = bB fixed and then minimize (14), i.e. find the solution
to the equation

T1X

k=−T1

�
∂BIX3,T (ωk, λ)Bᵀ

∂λᵀ − ∂IY ,X3,T (ωk, λ)Bᵀ

∂λᵀ − ∂BIX3,Y ,T (ωk, λ)

∂λᵀ

�ᵀ

λ=bλ
VecΦᵀ (ωk) = 0.

The primary scaling of X3,t (λ) =

�
X1,t

X2,t (λ)

�
, is given by DT = diag (DX1,T ,DX2,T ) where DX1,T =

diag (DX1,k (T ) , k = 1, 2, . . . , p), and DX2,T = diag (DX2,k (T ) , k = 1, 2, . . . , q). The secondary scaling
of the regressors are D1,T = diag (Udp+dq,D3,T ) . Let us denote the limit of the variance covariance
of the derivatives 2

66664

h
∂QT (B1,B2,λ)

∂ VecB
ᵀ
1

iᵀ

h
∂QT (B1,B2,λ)

∂ VecB
ᵀ
2

iᵀ

h
∂QT (B1,B2,λ)

∂λᵀ

iᵀ

3
77775

by

Σ = 2

2
4

Σ11 Σ12 Σ1λD3,T

Σ21 Σ22 Σ2λD3,T

D3,T Σλ1 D3,T Σλ2 D3,T ΣλλD3,T

3
5 ,

where the blocks of Σ contain already the scaling DT of the regressor,(this includes the case when
Φ = S−1

Z ). The part that is linear in parameters results in

Σ11 =

Z 1/2

−1/2

DX1,T dFᵀ
11 (ω)DX1,T⊗S−1

Z (ω) ,

Σ12 =

Z 1/2

−1/2

DX2,T dFᵀ
12 (ω, λ0)DX1,T⊗S−1

Z (ω)

Σ22 =

Z 1/2

−1/2

DX2,T dFᵀ
22 (ω, λ0)DX2,T⊗S−1

Z (ω) .

In the mixed context we get

Σ1λ =

Z 1/2

−1/2

�
DX1,T ⊗ S−1

Z (ω)B2,0DX2,T

�
d

∂F1,2 (ω, λ0)

∂λᵀ ,

Σ2λ =

Z 1/2

−1/2

�
DX2,T ⊗ S−1

Z (ω)B2,0DX2,T

� ∂F2,2 (ω, λ0)

∂λᵀ .

The following nonlinear block matrix Σλλ comes from the general result (10)

Σλλ = 2

Z 1/2

−1/2

�
Ur ⊗Vec

��
DX2,T Bᵀ

2,0S
−1
Z (ω)B2,0DX2,T

�ᵀ�ᵀ�
d

∂2F2,2 (ω, λ1, λ2)

∂λᵀ
2∂λᵀ

1

����
λ1=λ2=λ0

.

Finally the variance matrix of the estimates Vec
�
Vec bB1, Vec bB2, bλ

�
is

Var
h
Vec

�
Vec bB1, Vec bB2, bλ

�i
'
2
4

Σ11 Σ12 Σ1λD3,T

Σ21 Σ22 Σ2λD3,T

D3,T Σλ1 D3,T Σλ2 D3,T ΣλλD3,T

3
5
−1

.

See Section [?] of the Appedix for details.
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5.3 Linear trend with harmonic components, a worked example

Here we consider a special case of the mixed model considered above. This model is later used to
illustrate our analysis of Chandler’s Wobble. Let

Y t = Xt (ϑ0) + Zt,

where

Xt (ϑ) = B

�
1
t

�
+ A

2
664

cos (2πtλ1)
sin (2πtλ1)
cos (2πtλ2)
sin (2πtλ2)

3
775 .

The parameter is ϑᵀ = ([VecB1]
ᵀ , [VecB2]

ᵀ , [λ1, λ2]) , |λi| ≤ π, λ1 6= λ2, λi 6= 0,±1/2. It is readily
seen that the estimation of the coefficient matrix B of the linear regression is given by

B =

�
b11 b12

b21 b22

�
.

We see later that we can estimate B independently of A given by

A =

�
a11 a12 a13 a14

a21 a22 a23 a24

�
.

The primary scaling for X1,t is DX1,T =diag
�
T 1/2, T 3/2/

√
3
�
, and for X2,t (λ) is DX2,T =T 1/2/

√
2U4,

since X1,t = [1, t]ᵀ and X2,t (λ) = [cos (2πtλ1) , sin (2πtλ1) , cos 2πtλ2, sin (2πtλ2)]. The secondary
scaling for the linear part X1,t as we have already seen is U2, and the secondary one for the nonlinear

part is U4 and the scaled partial derivatives corresponding to λ is D3,T = 2πT/
√

3U2 since the
primary scaling

p
T/2 has already been applied. Therefore the scaling matrix DT of the regressors�

Xᵀ
1,t, X

ᵀ
2,t (λ)

�ᵀ
is DT = diag

�
DX1,T ,DX2,T

�
, and D1,T = diag (U12,D3,T ). The asymptotic variance

is therefore given by

D−1
1,T J−1 �DT S−1

Z DT ,F
�
D−1

1,T .

In general, the proper scaling for the term Xk,tXm,t+h in bCX,T is 1/
�‖Xk,t‖T ‖Xm,t‖T

�
. Here it can

be changed into an equivalent function of T , instead of (2) we have

bCX,T (h, ϑ1, ϑ2) = D−1
T

T−hX
t=1

Xt+h (ϑ1) Xᵀ
t (ϑ2)D

−1
T .

Let us partition the second derivative of SDFR according to the parameters, using the obvious notation

∂2F (ω, λ1, λ2)

∂λᵀ
2∂λᵀ

1

=

2
4
F11 F12 F1λ

F21 F22 F2λ

Fλ1 Fλ2 Fλλ

3
5 ,

Assume λ1 6= λ2, λi 6= 0,±1/2.

1. The regression spectrum of the linear part

dF11 (ω) =

�
1

√
3/2√

3/2 1

�
dδω≥0

δω≥0 denotes the Kronecker delta. Hence the block Σ11 reduces to

Σ11 = DX1,T dF11 (0)DX1,T⊗S−1
Z (0) .

2. It is seen here that the mixed model parameters has no effect, F12 (ω, λ0) = 0, Σ12 = 0, and
F1λ (ω, λ0) = 0, Σ1λ = 0.

3. The F22 (ω, λ0) corresponds to the coefficient A. Let

H1h (λ) =

�
cos (2πλh) − sin (2πλh)
sin (2πλh) cos (2πλh)

�
,
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Notice

bCX2,T

�
h, λ, µ

�
= D−1

X2,T

T−hX
t=1

X2,t+h (λ) Xᵀ
2,t

�
µ
�
D−1

X2,T

→
�

δλ1=µ1H1h (λ1) δλ1=µ2H1h (λ1)
δλ2=µ1H1h (λ2) δλ2=µ2H1h (λ2)

�
,

where δλ=ω denotes the Kronecker delta. Define the step functions

gcλ (ω) =

8
<
:

0, ω < −λ,
1/2, −λ ≤ ω < λ,
1, λ ≤ ω,

gsλ (ω) =

8
<
:

0, ω < −λ,
i/2, −λ ≤ ω < λ,
0, λ ≤ ω,

and

G1λ (ω) =

�
gcλ (ω) −gsλ (ω)
gsλ (ω) gcλ (ω)

�
.

Now we have

lim
T→∞

bCX2,T

�
h, λ, µ

�
=

Z 1/2

−1/2

exp (i2πωh) dF22

�
ω, λ, µ

�
,

where

F22

�
ω, λ, µ

�
=

�
δλ1=µ1G1λ1 (ω) δλ1=µ2G1λ1 (ω)
δλ2=µ1G1λ2 (ω) δλ2=µ2G1λ2 (ω)

�
.

The scaled version of the block is

Σ22 =

Z 1/2

−1/2

(DX2,T dFᵀ
22 (ω, λ0)DX2,T )⊗S−1

Z (ω)

= T/2

2
664

�
ReS−1

Z (λ1) ImS−1
Z (λ1)

− ImS−1
Z (λ1) ReS−1

Z (λ1)

�
0

0

�
ReS−1

Z (λ2) ImS−1
Z (λ2)

− ImS−1
Z (λ2) ReS−1

Z (λ2)

�

3
775 .

4. For F2λ (ω, λ0), define the matrices

U2 (1) =

�
1 0
0 0

�
,

U2 (2) =

�
0 0
0 1

�
,

then we have

√
3

2πT

∂ Vec bCX2,X2,T

�
h, λ, µ

�

∂µᵀ →
√

3

2

2
6666666666664

δλ1=µ1U2 (1)⊗
�− sin (2πλ1h)

cos (2πλ1h)

�

δλ1=µ2U2 (1)⊗
�− cos (2πλ1h)
− sin (2πλ1h)

�

δλ2=µ1U2 (2)⊗
�− sin (2πλ2h)

cos (2πλ2h)

�

δλ2=µ2U2 (2)⊗
�− cos (2πλ2h)
− sin (2πλ2h)

�

3
7777777777775

,

Notice, if λ = µ and λ1 6= λ2 then this later matrix is written

�
Vec [U2 (1)⊗H2h (λ1)] , Vec [U2 (2)⊗H2h (λ2)]

�
,

where

H2h (λ) =

�− sin (2πλh) − cos (2πλh)
cos (2πλh) − sin (2πλh)

�
.

Notice that for the three frequencies λ = [λ1, λ2, λ3] we would have

�
Vec [U3 (1)⊗H2h (λ1)] , Vec [U3 (2)⊗H2h (λ2)] , Vec [U3 (3)⊗H2h (λ3)]

�
,
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where U3 (j) is a 3× 3 matrix with zero elements except the jth entry in the diagonal which is 1.

F2λ (ω, λ) =

√
3

2

�
Vec [U2 (1)⊗G2λ1 (ω)] , Vec [U2 (2)⊗G2λ2 (ω)]

�
,

where

G2λ (ω) =

�−gsλ (ω) −gcλ (ω)
gcλ (ω) −gsλ (ω)

�
.

Applying the general formula for Σ2λ,

Σ2λ =

Z 1/2

−1/2

�
U4 ⊗ S−1

Z (ω)A0DX2,T

� �
DX2,T ⊗U4

�
dF2λ (ω, λ0)

=
T

2

Z 1/2

−1/2

�
U4 ⊗ S−1

Z (ω)A0

�
dF2λ (ω, λ0) .

Put

Γ2 =

�
i −1
1 i

�

Λ2 (ω) = U4 ⊗ S−1
Z (ω)A0

Σ2λ =

√
3T

4

�
Λ2 (λ1)Vec [U2 (1)⊗ Γ2] , Λ2 (λ2)Vec [U2 (2)⊗ Γ2]

�
.

5. Finally, Fλλ (ω, λ0) reduces to

3

(2π)2 T 2

∂2 Vec bCX2,T

�
h, λ, µ

�

∂µᵀ∂λᵀ →

2
666666666666664

δλ1=µ1U2 (1)⊗
�
cos (2πλ1h)
sin (2πλ1h)

�

δλ1=µ1U2 (1)⊗
�− sin 2πλ1h
cos (2πλ1h)

�

016×2

δλ2=µ2U2 (2)⊗
�
cos (2πλ2h)
sin (2πλ2h)

�

δλ2=µ2U2 (2)⊗
�− sin (2πλ2h)

cos (2πλ2h)

�

3
777777777777775

.

Define now the matrix U2,4 (1, 1) of 2 × 4 with all element zero except the entry (1, 1) which is one.
Then we have �

Vec [U2,4 (1, 1)⊗H3h (λ1)] , Vec [U2,4 (2, 4)⊗H3h (λ2)]
�
,

where

H3h (λ) =

�
cos (2πλh) − sin (2πλh)
sin (λ2πh) cos (2πλh)

�
.

The SDFR is given by

Fλλ (ω, λ) = (2π)2
�
Vec [U2,4 (1, 1)⊗G3λ1 (ω)] , Vec [U2,4 (2, 4)⊗G3λ2 (ω)]

�
,

where

G3λ (ω) =

�
gcλ (ω) −gsλ (ω)
gsλ (ω) gcλ (ω)

�
.

The corresponding variance matrix is

Σλλ =
T

2

Z 1/2

−1/2

�
U2 ⊗Vec

h
Aᵀ �S−1

Z (ω)
�ᵀ

A
iᵀ�

dFλλ (ω, λ)

=
T

2

Z 1/2

−1/2

2
4
h
Vec

�
Aᵀ
h
S−1

Z (ω)
iᵀ

A
�iᵀ

01×16

01×16

h
Vec

�
Aᵀ
h
S−1

Z (ω)
iᵀ

A
�iᵀ

3
5 dFλλ (ω, λ) .

For computational purposes, set

Γ3 =

�
1 i
−i 1

�
,

Λ (ω) = U2 ⊗
h
Vec

�
Aᵀ �S−1

Z (ω)
�ᵀ

A
�iᵀ

,
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then the variance matrix has the form

Σλλ = (2π)2
T

2
Re
�
Λ (λ1)Vec [U2,4 (1, 1)⊗ Γ3] , Λ (λ2)Vec [U2,4 (2, 4)⊗ Γ3]

�
.

It simplifies further

Σλλ =
T

2

�
σ11 0
0 σ22

�
,

the entries are given in terms of the entries Amn (ω) =
h
Aᵀ
h
S−1

Z

iᵀ
A
i

mn
,

σ11 = Re A11 (λ1) + Im A21 (λ1)− Im A12 (λ1) + Re A22 (λ1) ,

σ22 = Re A33 (λ2) + Im A43 (λ2)− Im A34 (λ2) + Re A44 (λ2) .

Now we return to the asymptotic variance matrix of the parameters.Let us collect the blocks of the
variance matrix

D1,T

2
4

Σ11 0 0
0 Σ22 Σ2λ

0 Σλ2 Σλλ

3
5D1,T ,

where D1,T = diag (U12,D2,T ). The variance matrix of the coefficient bA

2

T

�
Σ′22 − Σ′2λΣ′−1

λλ Σ′λ2

�−1
,

and of bλ
D−1

3,T

�
Σλλ − Σλ2Σ

−1
22 Σ2λ

�−1
D−1

3,T =
6

(2π)2 T 3

�
Σ′λλ − Σ′λ2Σ

′−1
22 Σ′2λ

�−1
,

where D3,T = 2πT/
√

3U12, and Σ′ denotes the covariance matrix without scaling. The speed of

convergence of the variance matrix of the coefficient bA is T/2 and the frequency bλ is (2π)2 T 3/6.

6 Chandler wobble
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Centralized wobbling motion in polar coordinates

Data Description: The Chandler wobble, named after its 1891 discoverer, Seth Carlo Chandler,
Jr., is one of several wobbling motions exhibited by Earth as it rotates on its vertical axis, similar
to a spinning top The period of this wobble is approximately between 430-435 days. It has been
estimated by several researchers using various models and methods (see, for instance Brillinger [4] and
Arató-Kolmogorov-Sinay [1].) Some properties of the monthly data has been described in [19].
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x−values and the fitted ones in MAS vs. hours

Since 1995, an integrated solution to the various GPS (Global Positioning System) series has been
available. For our current analysis here, we use the hourly measurements between Modified Julian Day
(MJD) 49719 (corresponding to JAN 1, ’95) and MJD 50859 (corresponding to FEB 15, ’98). The
values of the data are given in milli-arcseconds or MAS, where 1 arcsec∼ 30m. The number of data
points are T = 27, 361.
Rotational variations of polar motion are due to the superposition of the influences of 6 partial tides.
Different techniques suggest that these are real oscillations of polar motion. Rapid oscillations with
periods of 12hours has already been considered, see IVS 2004 General Meeting Proceedings, [11].
The aim of our investigation is to provide statistical evidence for the presence of 12h oscillation, i.e.
to show that the frequency 2π/12 has statistically significant non-zero weight. Also another question
of interest is whether there is any significant shift in the position of the center.
The model, [28], to be fitted is combination of a linear trend with harmonic components(usually termed
as drift,offset and elliptical periodic motions parameters),

Y t = B2×2

�
1
t

�
+ A4×2

2
664

cos (2πtλ1)
sin (2πtλ1)
cos (2πtλ2)
sin (2πtλ2)

3
775+ Zt,

where Y t is the measurement vector corresponding to the polar coordinates of the position The matrices
A and B together with the frequencies λi, (|λi| ≤ π) are unknown and are to be estimated .This model
is a special case of the nonlinear model we considered in this paper.We started the computations with
the initial values λ1 = 2π/410/24, and λ2 = 2π/12, and the number of Fourier frequencies we used are
213. The estimates of the parameters are found to be

bB =

�
41.6043 0.0003
323.4485 −0.0007

�
,

bA =

� −244.8065 16.5279 0.1248 −0.0521
25.3854 256.5682 0.0166 0.1064

�
,

and

bλ =

�
0.0001
0.0833

�
.

The estimated frequencies correspond to the periods 410.5626 days and 11.9999 hours which are close
to the estimates obtained by geophysicists. Analyzing the residual series Zt we found some evidence
of long range memory behavior in the residuals. In the following subsection we discuss the effect of
this on our analysis.

6.1 Disturbance with Long Memory

Let Zt be a stationary time series with piecewise continuous spectral density SZ (ω)

SZ (ω) = Λ (ω)S]
2 (ω) Λ∗ (ω) ,
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where the Λ (ω) = diag
��

1− ei2πω
�−h1 ,

�
1− ei2πω

�−h2 , . . . ,
�
1− ei2πω

�−hd
�

, hk ∈ [0, 1/2) , k =

1, 2, . . . , d, and the matrix S]
2 (ω) is a positive continuous spectral density matrix (we have often in mind

a stationary, physically realizable, vector-ARIMA time series). The Hurst exponents (h1, h2, . . . , hd)
are not necessarily different, denote them h = (h1, h2, . . . , hd). Following Yajima(1991) we can define
for each fixed hk the regressors can be classified according to the discontinuity of their spectrum at
zero. [33]. In the present case we consider that the frequencies are known ,thus reducing the non-
linear regression to linear regression. We introduce the scaling according to the long memory. Let
DL,T = diag

�
T hk , k = 1, 2, . . . , d

�
be the diagonal matrix then

Σ11 = DX1,T dF11 (0)DX1,T ⊗DL,T S−1
Z (0)DL,T .

Robinson-Hidalgo ([26] Theorem 5) have shown that the weights S−1
Z are consistently estimated via

recursion even if the data are long range dependent.
The technique of estimation we follow is based on multiple recursion. First we set SZ , equal to a
known matrix and estimate parameters ϑ. We keep the initial value of ϑ fixed and estimate residual
spectrum SZ . Then fix the estimated linear parameter and find the estimate of the nonlinear parameter
ϑ through a weighted nonlinear least squares procedure. The procedure is repeated until the estimates
converge.

Conclusions

• The estimation of the Hurst parameter is done by using the methods of Terdik and Igloi [20], which
is based on the higher order cumulants (up to order 5). We found that both Hurst estimates are very
close to 1/2, i.e. h1 = 0.4986 and h2 = 0.4860. Therefore we used the marginal Hurst parameters for
our estimation of the entire model considered earlier.

• As expected (see the models fitted by geophysicists), there is no real information on the location
parameter (the constant in the model) because the estimated variances of parameters and b21 so large.
Some improvement can be obtained by using Dahlhaus’s method, [8]. The diagonals of the variance

matrix of Vec bB are
�
1.1733 ∗ 106, 0.7725 ∗ 106, 0.2097, 0.1381

�

• The Standard Error (SE) for the parameters b12, and b22 are 0.4579 and 0.3716, hence there is no
evidence of the shifting of either coordinates, at least with larger than 95% confidence.

• Actually, we have only ’two observations’ of the period∼ 410 days therefore it is not surprising that the
SE of the parameters a1:2,1:2 again, are large enough showing no information on the values. Specifically,
the SEs are [397.1890, 481.8903, 436.7575, 442.9037] .

• Now, the main interest is the SE of the parameters λ2 and a1:2,3:4. The SE of the estimates ba1:2,3:4

is [0.0154, 0.0218, 0.0233, 0.0146] so we conclude that all of them are significantly different from zero(
except a1,3). There is some empirical evidence to justify fitting a new model with an additional
frequency λ3 = 30, λ4 = 2λ2 The estimation of frequencies such as λ4 can create problems (similar
problems do arise in biology -see eg. [6]).

Acknowledgement 21 We thank Professor József Závoti for providing us the High resolution Chandler
Wobbler data. This research was partially supported by the Hungarian NSF, OTKA No. T047067

7 Appendix

7.1 Some Useful Matrix Relations

Vec (abᵀ) = b⊗ a, (15)

aᵀ ⊗ b = baᵀ = b⊗ aᵀ. (16)

see ([25]), p.28.
(VecA)ᵀ VecB = Tr (AᵀB) , (17)

see ([25]), p30. The vectors a, b and c fulfil

(a⊗ b) cᵀ = a⊗ (bcᵀ) , (18)
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(a⊗ b) cᵀ = (acᵀ)⊗ b, (19)

The commutation matrix Km·n is defined by the relation

Km·n VecA =VecAᵀ, (20)

for any matrix A with dimension m× n. Next identity is

(a⊗ b) cᵀ = Kd·d (b⊗ a) cᵀ. (21)

We have, see ([25]), p.47,. if A is m× n and B is p× q then

Vec (A⊗B) = (Un ⊗Kq·m ⊗Up) (VecA⊗VecB) (22)

Kp·m (A⊗B)Kn·q = B⊗A. (23)

One can prove the following identity

ABbaᵀ = [U⊗ (VecB)ᵀ] (Kn·d ⊗Um)Kd·mn [baᵀ ⊗VecAᵀ] , (24)

where the only assumption for the matrices A and B, vectors b and a, is that the matrix product
on the left side should be valid, U is the identity matrix with appropriate order. We also have the
following

Kdp·d (Kd·p ⊗Ud) = Up ⊗Kd·d. (25)

7.2 Jacobian and Hessian of SDFR, Proofs

Consider the Jacobian ∂Xt (ϑ) /∂ϑᵀ of the regressor Xt (ϑ) then the Jacobian of bCX,T (h, ϑ) is

∂ bCX,T (h, ϑ)

∂ϑᵀ =
1

T

T−hX
t=1

�
Xt (ϑ)⊗ ∂Xt+h (ϑ)

∂ϑᵀ +
∂Xt (ϑ)

∂ϑᵀ ⊗Xt+h (ϑ)

�

=
∂ bCX (h, ϑ1, ϑ2)

∂ϑᵀ
1

+
∂ bCX (h, ϑ1, ϑ2)

∂ϑᵀ
2

�����
ϑ1=ϑ2=ϑ

,

see (18, 19) and (16). Now take the limit of ∂ bCX,T (h, ϑ) /∂ϑᵀ and define the Jacobian ∂F (λ, ϑ) /∂ϑᵀ

for SDFR F by
∂CX (h, ϑ)

∂ϑᵀ =

Z 1/2

−1/2

exp (i2πλh) d
∂F (λ, ϑ)

∂ϑᵀ ,

i.e. the ∂CX (h, ϑ) /∂ϑᵀ is the inverse Fourier transform of ∂F (λ, ϑ) /∂ϑᵀ. If the limit of the Jacobian

∂FT (ω, ϑ)

∂ϑᵀ =

Z ω

0

∂IX,T (λ, ϑ)

∂ϑᵀ dλ,

exists and the differential operator and the limit are exchangeable then we have

lim
T→∞

∂FT (ω, ϑ)

∂ϑᵀ =
∂

∂ϑᵀ lim
T→∞

FT (ω, ϑ) =
∂F (ω, ϑ)

∂ϑᵀ .

This is not always the case of course. Notice

FT (ω, ϑ) =

Z ω

0

IX,T (λ, ϑ)dλ

=

Z ω

0

1

T
dX,T (λ, ϑ1)d

∗
X,T (λ, ϑ2)dλ

����
ϑ1=ϑ2=ϑ

= FT (ω, ϑ1, ϑ2)|ϑ1=ϑ2=ϑ ,

therefore
∂F (ω, ϑ)

∂ϑᵀ =
∂F (ω, ϑ1, ϑ2)

∂ϑᵀ
1

+
∂F (ω, ϑ1, ϑ2)

∂ϑᵀ
2

����
ϑ1=ϑ2=ϑ

.

This corresponds to the Jacobian

∂CX (h, ϑ)

∂ϑᵀ =
∂CX (h, ϑ1, ϑ2)

∂ϑᵀ
1

+
∂CX (h, ϑ1, ϑ2)

∂ϑᵀ
2

����
ϑ1=ϑ2=ϑ

.
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The Hessian HF of F (λ, ϑ) is defined similarly, first the Hessian of bCX,T (h, ϑ)

HbCX,T (h, ϑ) =
1

T

T−hX
t=1

∂ Vec
h
Xt (ϑ)⊗ ∂Xt+h(ϑ)

∂ϑᵀ +
∂Xt(ϑ)

∂ϑᵀ ⊗Xt+h (ϑ)
i

∂ϑᵀ

=
1

T

T−hX
t=1

∂ (Kp·d ⊗Ud)
�
Xt (ϑ)⊗Vec

∂Xt+h(ϑ)

∂ϑᵀ

�

∂ϑᵀ

+
∂
�
Vec

∂Xt(ϑ)

∂ϑᵀ ⊗Xt+h (ϑ)
�

∂ϑᵀ

=
1

T

T−hX
t=1

(Kp·d ⊗Ud)

�
∂Xt (ϑ)

∂ϑᵀ ⊗Vec
∂Xt+h (ϑ)

∂ϑᵀ + Xt (ϑ)⊗ HXt+h (ϑ)

�

+

�
Vec

∂Xt (ϑ)

∂ϑᵀ ⊗ ∂Xt+h (ϑ)

∂ϑᵀ + HXt (ϑ)⊗Xt+h (ϑ)

�
.

Notice

(Kp·d ⊗Ud)

�
∂Xt (ϑ)

∂ϑᵀ ⊗Vec
∂Xt+h (ϑ)

∂ϑᵀ

�
= (Kp·d ⊗Ud)Kd·dp

�
Vec

∂Xt+h (ϑ)

∂ϑᵀ ⊗ ∂Xt (ϑ)

∂ϑᵀ

�
,

(Kp·d ⊗Ud)
�
Xt (ϑ)⊗ HXt+h (ϑ)

�
= (Kp·d ⊗Ud)Kd·dp

�
HXt+h (ϑ)⊗Xt (ϑ)

�
,

see (23). Let us denote the limit of HbCX,T (h, ϑ) by HCX (h, ϑ), and its inverse Fourier transform by
HF (λ, ϑ), i.e.

HCX (h, ϑ) =

Z 1/2

−1/2

exp (i2πλh) dHF (λ, ϑ) .

Similarly

HCX (h, ϑ) = (Kp·d ⊗Ud)Kd·dp

�
Hϑ1CX (−h, ϑ2, ϑ1) +

∂2CX (−h, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑᵀ

2

�����
ϑ1=ϑ2=ϑ

+Hϑ2CX (h, ϑ1, ϑ2) +
∂2CX (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

����
ϑ1=ϑ2=ϑ

where we used the short notation

∂2CX (h, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

=
∂

∂ϑᵀ
1

Vec

�
∂ VecCX (h, ϑ1, ϑ2)

∂ϑᵀ
2

�
,

here the partial derivative of the right side can be carried out directly (the order of the variables ϑ1, ϑ2

is opposite to the order of the derivatives, ∂ϑᵀ
2∂ϑᵀ

1 means that first by ϑ2 then by ϑ1, i.e. the operator
acting by right hand side). Starting by ϑ1 then followed by ϑ2 is ’indirect’, since

∂2CX (h, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

= (Kp·d ⊗Ud)Kd·dp
∂2CX (−h, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑᵀ

2

,

for the reason of this see (22). Note that

CX (−h, ϑ2, ϑ1) = Cᵀ
X (h, ϑ1, ϑ2) .

Similarly the Hessian by ϑ2 is direct and by ϑ1 is indirect, i.e.

Hϑ1CX (h, ϑ1, ϑ2) = (Kp·d ⊗Ud)Kd·dpHϑ1CX (−h, ϑ2, ϑ1) .

According to the above notations we write

HF (ω, ϑ) =

�
Hϑ1F (ω, ϑ1, ϑ2) +

∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

+Hϑ2F (ω, ϑ1, ϑ2) +
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

�����
ϑ1=ϑ2=ϑ

,

Again here, for instance

∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

= (Kp·d ⊗Ud)Kd·dp
∂2F (−ω, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑᵀ

2

.
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7.3 Variance of the derivatives

The summands in

Vec
∂QT (ϑ)

∂ϑᵀ =
1

T

T1X

k=−T1

�
∂ Vec IX,T (ωk, ϑ)

∂ϑᵀ − ∂ (Vec IY ,X,T (ωk, ϑ) + Vec IX,Y ,T (ωk, ϑ))

∂ϑᵀ

�ᵀ

× [VecΦᵀ (ωk)] ,

are asymptotically independent therefore we are interested in the variance separately . Notice

�
∂ (Vec IZ,X,T (ωk, ϑ) + Vec IX,Z,T (ωk, ϑ))

∂ϑᵀ

�ᵀ
VecΦᵀ (ωk)

= 2

�
∂ Vec IZ,X,T (ωk, ϑ)

∂ϑᵀ

�ᵀ
VecΦᵀ (ωk) ,

indeed

�
∂ Vec IZ,X,T (ωk, ϑ)

∂ϑᵀ

�ᵀ
[VecΦᵀ (ωk)] = Vec

∂ TrΦᵀ (ωk) Iᵀ
X,Z,T (ωk, ϑ)

∂ϑᵀ

=

�
∂ Vec IX,Z,T (ωk, ϑ)

∂ϑᵀ

�ᵀ
VecΦᵀ (ωk) ,

and

T

T1X

k=−T1

∂ Vec IZ,X,T (ωk, ϑ)

∂ϑᵀ VecΦᵀ (ωk) =

T1X

k=−T1

" 
Vec

∂dX,T (ωk, ϑ)

∂ϑᵀ

!
⊗ dZ,T (ωk)

#
VecΦᵀ (ωk) ,

therefore we consider the variance matrix of the complex random variables, see [5] p. 89.,

Var

��
∂ Vec IX,Z,T (ωk, ϑ)

∂ϑᵀ

�ᵀ
[VecΦᵀ (ωk)]

�

=
1

T 2
Var

 �
∂dX,T (ωk, ϑ)

∂ϑᵀ

�ᵀ
Φᵀ (ωk) dZ,T (ωk)

!

=
1

T

�
∂dX,T (ωk, ϑ)

∂ϑᵀ

�ᵀ
Φᵀ (ωk)Sᵀ

Z (ωk)Φᵀ (ωk)

"
∂dX,T (ωk, ϑ)

∂ϑᵀ

#
+ o (1) .

Because of (24), this limit is written

�
∂dX,T (ωk, ϑ)

∂ϑᵀ
1

�ᵀ
Φᵀ (ωk)Sᵀ

Z (ωk)Φᵀ (ωk)

"
∂dX,T (ωk, ϑ)

∂ϑᵀ
2

#

= T
�
Up ⊗

h
Vec

�
Φᵀ (ωk)Sᵀ

Z (ωk)Φᵀ (ωk)
�iᵀ� ∂dX,T (ωk, ϑ2)

∂ϑᵀ
2

⊗Vec
∂dX,T (ωk, ϑ1)

∂ϑᵀ
1

!

The variance matrix of the derivative
∂QT (ϑ0)

∂ϑᵀ has the limit

lim
T→∞

Var

�√
T Vec

∂QT (ϑ0)

∂ϑᵀ

�
=

Z 1/2

−1/2

�
Up ⊗

h
Vec

�
Φᵀ (ω)Sᵀ

Z (ω)Φᵀ (ω)
�iᵀ�

× d

 
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

+
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

����
ϑ1=ϑ2=ϑ0

!

It is worth noting that
�
Up ⊗

h
Vec

�
Φᵀ (ω)Sᵀ

Z (ω)Φᵀ (ω)
�iᵀ�

(Kp·d ⊗Ud)Kd·dp = (Up ⊗ [Vec (Φ (ω)SZ (ω)Φ (ω))]ᵀ) , (26)

and
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

= (Kp·d ⊗Ud)Kd·dp
∂2F (−ω, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑᵀ

2

,
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hence the asymptotic variance is written

Z 1/2

−1/2

�
Up ⊗

h
Vec

�
Φᵀ (ωk)Sᵀ

Z (ωk)Φᵀ (ωk)
�iᵀ�

d

 
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

+
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
1∂ϑᵀ

2

����
ϑ1=ϑ2=ϑ0

!

= 2

Z 1/2

−1/2

�
Up ⊗

h
Vec

�
Φᵀ (ωk)Sᵀ

Z (ωk)Φᵀ (ωk)
�iᵀ�

d

 
∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

����
ϑ1=ϑ2=ϑ0

!
.

7.4 Hessian of Q

We are interested in, for instance,

∂

∂ϑᵀ
2

��
∂ Vec IX,T (ωk, ϑ1, ϑ2)

∂ϑᵀ
1

�ᵀ
VecΦᵀ (ωk)

�����
ϑ1=ϑ2=ϑ

,

Now, using the chain rule for the derivatives, we have

∂

∂ϑᵀ
2

Vec

�
[VecΦᵀ (ωk)]ᵀ

�
dX,T (ωk, ϑ2)⊗

∂dX,T (ωk, ϑ1)

∂ϑᵀ
1

��

= (Up ⊗ [VecΦᵀ (ωk)]ᵀ)
∂

∂ϑᵀ
2

Vec

�
dX,T (ωk, ϑ2)⊗

∂dX,T (ωk, ϑ1)

∂ϑᵀ
1

�

= (Up ⊗ [VecΦᵀ (ωk)]
ᵀ
) (Kp·d ⊗Ud)Kd·dp

 
Vec

∂dX,T (ωk, ϑ1)

∂ϑᵀ
1

⊗ ∂dX,T (ωk, ϑ2)

∂ϑᵀ
2

!

= (Up ⊗ [VecΦ (ωk)]ᵀ)

 
Vec

∂dX,T (ωk, ϑ1)

∂ϑᵀ
1

⊗ ∂dX,T (ωk, ϑ2)

∂ϑᵀ
2

!

= T (Up ⊗ [VecΦ (ωk)]ᵀ)
∂2IX,T (−ω, ϑ2, ϑ1)

∂ϑᵀ
1∂ϑᵀ

2

, (27)

see (24) and (25). Similar steps lead to the mixed derivative ∂2/∂ϑᵀ
2∂ϑᵀ

1

∂

∂ϑᵀ
1

Vec

 
[VecΦᵀ (ωk)]

ᵀ
"

∂dX,T (ωk, ϑ2)

∂ϑᵀ
2

⊗ dX,T (ωk, ϑ1)

#!

= (Up ⊗ [VecΦᵀ (ωk)]ᵀ)

"
Vec

∂dX,T (ωk, ϑ2)

∂ϑᵀ
2

⊗ ∂dX,T (ωk, ϑ1)

∂ϑᵀ
1

#

= T (Up ⊗ [VecΦᵀ (ωk)]ᵀ)
∂2IX,T (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

, (28)

clearly at ϑ1 = ϑ2 = ϑ the expressions (27) and (28) are complex conjugates of each other.

7.5 Scaled derivatives

Consider the second scaled derivative of Xt+h (ϑ1) Xᵀ
t (ϑ2)

∂2
s,T Xt+h (ϑ1) Xᵀ

t (ϑ2)

∂s,T ϑᵀ
2∂s,T ϑᵀ

1

= Vec
∂s,T Xt (ϑ2)

∂s,T ϑᵀ
2

⊗ ∂s,T Xt+h (ϑ1)

∂s,T ϑᵀ
1

+ (Kp·d ⊗Ud)Kd·dp

�
Vec

∂s,T Xt+h (ϑ1)

∂s,T ϑᵀ
1

⊗ ∂s,T Xt (ϑ2)

∂s,T ϑᵀ
2

�
,

at DT Xt (ϑ). The scaled derivative of each term is

DT

�
∂

∂ϑᵀ Xt (ϑ)

�
D1,T ,

by definition, hence

Vec
∂s,T DT Xt (ϑ2)

∂s,T ϑᵀ
2

⊗ ∂s,T DT Xt+h (ϑ1)

∂s,T ϑᵀ
1

= (D1,T ⊗DT ⊗DT )

×
�
Vec

∂Xt (ϑ2)

∂ϑᵀ
2

⊗ ∂Xt+h (ϑ1)

∂ϑᵀ
1

�
D1,T .
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The matrices (D1,T ⊗DT ⊗DT ) and (Kp·d ⊗Ud)Kd·dp commute. We conclude

∂2
s,T DT Xt+h (ϑ1)DT Xᵀ

t (ϑ2)

∂s,T ϑᵀ
2∂s,T ϑᵀ

1

= (D1,T ⊗DT ⊗DT )

"
∂2Xt+h (ϑ1) Xᵀ

t (ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

#
D1,T .

7.6 Asymptotic Variance for the parameters of the linear model

The variance matrix of the complex vector Vec
PT1

k=−T1
Φ (ωk) IY ,X,T (ωk), can be easily calculated as

in Terdik (see [29]). Using the procedure outlined there, we obtain

lim
T→∞

Var

0
@ 1

T
Vec

T1X

k=−T1

Φ (ωk) IY ,X,T (ωk)

1
A (29)

= Vec

Z 1/2

−1/2

dFᵀ (ω)⊗
h
Φ (ω)SZ (ω)Φ (ω)

i

Setting Φ (ω) = S−1
Z (ω), we can derive the variance (12) directly form (10). The mixed derivative

∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

,

is the inverse Fourier transform of the same mixed derivative of CX (h, ϑ) which is the limit of the
∂2IX,T (ω,ϑ1,ϑ2)

∂ϑ
ᵀ
2 ∂ϑ

ᵀ
1

at ϑ1 = ϑ2 = ϑ, in our case,

∂2IX,T (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

= Vec
∂dX,T (ωk, ϑ2)

∂ϑᵀ
2

⊗ ∂dX,T (ωk, ϑ1)

∂ϑᵀ
1

(30)

= Vec
∂B2dX,T (ωk)

∂ (VecB2)
ᵀ ⊗ ∂B1dX,T (ωk)

∂ (VecB1)
ᵀ

= dX,T (ωk)⊗VecUd ⊗ dᵀ
X,T (ωk)⊗Ud,

and the product

(Upd ⊗ [VecΦᵀ (ωk)]ᵀ)
�
dX,T (ωk)⊗VecUd ⊗ dᵀ

X,T (ωk)⊗Ud

�

equals to h
dX,T (ωk) d∗X,T (ωk)

iᵀ
⊗Φ (ωk) ,

and (12) follows.

7.7 The Variance matrix for the parameters of the mixed model

Rewrite the objective function in terms of the parameters

QT (B1,B2, λ) =

T1X

k=−T1

�
Tr (IY ,T (ωk)Φ (ωk)) + Tr

�
B1IX1,T (ωk)Bᵀ

1Φ (ωk)
�

(31)

+ Tr
�
B1IX1,X2,T (ωk, λ)Bᵀ

2Φ (ωk)
�

+ Tr
�
B2IX2,X1,T (ωk, λ)Bᵀ

1Φ (ωk)
�

+ Tr
�
B2IX2,T (ωk, λ)Bᵀ

2Φ (ωk)
�

− Tr
�
IY ,X1,T (ωk)Bᵀ

1Φ (ωk)
�− Tr

�
B1IX1,Y ,T (ωk)Φ (ωk)

�

−Tr
�
IY ,X2,T (ωk, λ)Bᵀ

2Φ (ωk)
�− Tr

�
B2IX2,Y ,T (ωk, λ)Φ (ωk)

��
.

Consider now the normal equations

∂QT (B1,B2, λ)

∂B1
= 0,

∂QT (B1,B2, λ)

∂B2
= 0,

Vec
∂QT (B1,B2, λ)

∂λᵀ = 0.
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They can be written as

∂QT (B1,B2, λ)

∂B1
=

T1X

k=−T1

Φᵀ (ωk)B1I
ᵀ
X1,T (ωk) + Φ (ωk)B1IX1,T (ωk)

+ Φᵀ (ωk)B2I
ᵀ
X1,X2,T (ωk, λ) + Φ (ωk)B2IX2,X1,T (ωk, λ)

−Φ (ωk) IY ,X1,T (ωk)−Φᵀ (ωk) Iᵀ
X1,Y ,T (ωk).

Similarly

∂QT (B1,B2, λ)

∂B2
=

T1X
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Φᵀ (ωk)B2I
ᵀ
X2,T (ωk, λ) + Φ (ωk)B2IX2,T (ωk, λ)
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X1,X2,T (ωk, λ) + Φ (ωk)B1IX2,X1,T (ωk, λ)

−Φ (ωk) IY ,X2,T (ωk, λ)−Φᵀ (ωk) Iᵀ
X2,Y ,T (ωk, λ),

and finally
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∂QT (B1,B2, λ)

∂λᵀ =

T1X

k=−T1

�
∂B1IX1,X2,T (ωk, λ)Bᵀ

2

∂λᵀ +
∂B2IX2,X1,T (ωk, λ)Bᵀ

1

∂λᵀ
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∂B2IX2,T (ωk, λ)Bᵀ

2

∂λᵀ − ∂IY ,X2,T (ωk, λ)Bᵀ
2

∂λᵀ − ∂B2IX2,Y ,T (ωk, λ)

∂λᵀ

�
Vec [Φᵀ (ωk)] .

The variance of the derivatives
Let us denote the limit of the Hessian matrix of the estimates Vec

�
Vec bB1, Vec bB2, bλ

�
by

Σ = 2

2
4

Σ11 Σ12 Σ1λ

Σ21 Σ22 Σ2λ

Σλ1 Σλ2 Σλλ

3
5 .

The second derivative of ∂QT (B1,B2, λ) /∂B1 by B1 does not depend either on B2 nor λ, therefore
according to (12)

Σ11 =

Z 1/2

−1/2

dFᵀ
11 (ω)⊗S−1

Z (ω) .

By setting Φ = S−1
Z . The matrix Σ12 between Vec bB1 and Vec bB2 follows from

∂2QT (B1,B2, λ)

∂B2∂B1
=

T1X

k=−T1

IX1,X2,T (ωk, λ)⊗Φᵀ (ωk) + Iᵀ
X2,X1,T (ωk, λ)⊗Φ (ωk) ,

it is

Σ12 =

Z 1/2

−1/2

dFᵀ
1,2 (ω, λ0)⊗S−1

Z (ω) .

The second derivative of ∂QT (B1,B2, λ) /∂B2 by B2 is similar except the SDFR depends on λ

Σ22 =

Z 1/2

−1/2

�
dF2 (ω, λ0)⊗

�
S−1

Z (ω)
�ᵀ�

.
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Now for the matrix Σ1λ consider
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ᵀ
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∂λᵀ
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1

T

T1X
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∂λᵀ
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∂λᵀ

#
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1

T
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#

+ (Up ⊗Φ (ωk)B2)

"
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∂λᵀ

#
,

hence the limit

Σ1λ =

Z 1/2

−1/2

(Up ⊗Φ (ω)B2,0) d
∂F1,2 (ω, λ0)

∂λᵀ

=
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�
d
∂F1,2 (ω, λ0)

∂λᵀ .

The matrix Σ2λ based on

∂QT (B1,B2, λ)

∂B2
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ᵀ
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ᵀ
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T1X
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∂λᵀ
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∂λᵀ
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ᵀ
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ᵀ
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,

Use the equation (13) then the limit of the derivative at ϑ = ϑ0 is zero,
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∂λᵀ
1

����
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.

The matrix Σλλ can be obtained from the general result (10)
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h
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��
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��
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Finally Vec
�
Vec bB1, Vec bB2, bλ
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T→∞
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Σ21 Σ22 Σ2λ
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3
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Use Theorem 2, [25] p.16 for the inverse. We use the general formula for the variance of the estimate
of ϑ = Vec (VecB1, VecB2, λ) . Here B1 is d×p, B2 is d× q, λ is r×1, X1,t is of dimension p, X2,t (λ)
is of dimension q. For the mixed derivative

∂2F (ω, ϑ1, ϑ2)

∂ϑᵀ
2∂ϑᵀ

1

(32)

we use

IX,T (ωk, ϑ) = BIX3,T (ωk, λ)Bᵀ

=
h
B1dX1,T (ωk) + B2dX2,T (ωk, λ)

i h
B1dX1,T (ωk) + B2dX2,T (ωk, λ)

i∗���
B1=B2

,

For the parameters ϑ1, ϑ2 we haveϑi = Vec (VecB1i, VecB2i, λi) , i = 1, 2. Write

IX,T

�
ωk, ϑ1,ϑ2

�
=
h
B11dX1,T (ωk) + B21dX2,T (ωk, λ1)

i h
B12dX1,T (ωk) + B22dX2,T (ωk, λ2)

i∗

= B11dX1,T (ωk) d∗X1,T (ωk)Bᵀ
12 + B21dX2,T (ωk, λ1) d∗X1,T (ωk)Bᵀ

12

+ B11dX1,T (ωk) d∗X2,T (ωk, λ2)B
ᵀ
22 + B21dX2,T (ωk, λ1) d∗X2,T (ωk, λ2)B

ᵀ
22.

The variance of 2
66664

h
∂QT (B1,B2,λ)

∂ VecB
ᵀ
1

iᵀ

h
∂QT (B1,B2,λ)

∂ VecB
ᵀ
2

iᵀ

h
∂QT (B1,B2,λ)

∂λᵀ

iᵀ

3
77775

according to the mixed derivative(32) contains nine nonzero terms which are discussed below:

1. We have already considered the case

∂2B11dX1,T (ωk) d∗X1,T (ωk)Bᵀ
12

∂B12∂B11

= dX1,T (ωk)⊗VecUd ⊗ dᵀ
X1,T (ωk)⊗Ud

(see (30)). For the linear model we have

(Upd ⊗ [VecΦᵀ (ωk)]
ᵀ
)
�
dX1,T (ωk)⊗VecUd ⊗ dᵀ

X1,T (ωk)⊗Ud

�

=
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dX1,T (ωk) d∗X1,T (ωk)

iᵀ
⊗Φ (ωk) .

The cases

∂2B21dX2,T (ωk, λ1) d∗X1,T (ωk)Bᵀ
12

∂B12∂B21

= dX1,T (ωk)⊗VecUd ⊗ dᵀ
X2,T (ωk, λ1)⊗Ud,

and

∂2B11dX1,T (ωk) d∗X2,T (ωk, λ2)B
ᵀ
22

∂B22∂B11

= dX2,T (ωk, λ2)⊗VecUd ⊗ dᵀ
X1,T (ωk)⊗Ud,

∂2B21dX2,T (ωk, λ1) d∗X2,T (ωk, λ2)B
ᵀ
22

∂B22∂B21

= dX2,T (ωk, λ2)⊗VecUd ⊗ dᵀ
X2,T (ωk, λ1)⊗Ud.

are similar since the parameters λi are fixed here. Also
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2.

(Upd ⊗ [VecΦᵀ (ωk)]
ᵀ
)
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dX1,T (ωk)⊗VecUd ⊗ dᵀ
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�

=
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3. Taking the derivative by λ2 and λ1
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therefore we can apply the earlier results.

4. Consider now

(Upd ⊗ [VecΦᵀ (ωk)]ᵀ)
∂2B21dX2,T (ωk, λ1) d∗X1,T (ωk)Bᵀ

12

∂B12∂λᵀ
1

= (Upd ⊗ [VecΦᵀ (ωk)]ᵀ)
∂

∂λᵀ
1

0
@Vec

∂ Vec
h
B21dX2,T (ωk, λ1) d∗X1,T (ωk)Bᵀ

12

i

∂ (VecB12)
ᵀ

1
A

= (Upd ⊗ [VecΦᵀ (ωk)]ᵀ)
∂

∂λᵀ
1

(Udp ⊗Kd·d)Vec
�
B21dX2,T (ωk, λ1) d∗X1,T (ωk)⊗Ud

�

= (Upd ⊗ [VecΦ (ωk)]ᵀ)
∂

∂λᵀ
1

Vec
�
B21

�
dX2,T (ωk, λ1) d∗X1,T (ωk)

�
⊗Ud

�

=
∂

∂λᵀ
1

Vec
h
[VecΦ (ωk)]ᵀ

�
B21

�
dX2,T (ωk, λ1) d∗X1,T (ωk)

�
⊗Ud

�i

=
∂

∂λᵀ
1

Vec
h�

B21

�
dX2,T (ωk, λ1) d∗X1,T (ωk)

�
⊗Ud

�
VecΦ (ωk)

i

=
∂

∂λᵀ
1

Vec
h
Φ (ωk)B21

�
dX2,T (ωk, λ1) d∗X1,T (ωk)

�i

= (Up ⊗Φ (ωk)B21)

"
dX1,T (ωk)⊗

∂dX2,T (ωk, λ)

∂λᵀ

#
.

5. The case

(Uqd ⊗ [VecΦ (ωk)]ᵀ)
∂2B21dX2,T (ωk, λ1) d∗X2,T (ωk, λ2)B

ᵀ
22

∂B22∂λᵀ
1

= (Uq ⊗Φ (ωk)B21)

"
dX2,T (ωk, λ2)⊗

∂dX2,T (ωk, λ1)

∂λ1
ᵀ

#
.

is similar to the previous one.
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6.

∂2B21dX2,T (ωk, λ1) d∗X2,T (ωk, λ2)B
ᵀ
22

∂λᵀ
2∂B21

=
∂

∂ (VecB21)
ᵀ Vec

"
(B22 ⊗B21)

 
dX2,T (ωk, λ2)

∂λᵀ
2

⊗ dX2,T (ωk, λ1)

!#

=
∂

∂ (VecB21)
ᵀ

 " 
dX2,T (ωk, λ2)

∂λᵀ
2

⊗ dX2,T (ωk, λ1)

!ᵀ

⊗Ud2

#
Vec (B22 ⊗B21)

!

=

" 
dX2,T (ωk, λ2)

∂λᵀ
2

⊗ dX2,T (ωk, λ1)

!ᵀ

⊗Ud2

#
(Uq ⊗Kq·d ⊗Ud) (VecB22 ⊗Udq) .

7.

∂2B11dX1,T (ωk) d∗X2,T (ωk, λ2)B
ᵀ
22

∂λᵀ
2∂B11

=

" 
dX2,T (ωk, λ2)

∂λᵀ
2

⊗ dX1,T (ωk)

!ᵀ

⊗Ud2

#
(Uq ⊗Kp·d ⊗Ud) (VecB22 ⊗Udp) .

Also we can obtain

Z 1/2

−1/2

Ur ⊗ ([Vec (Φᵀ (ωk))]
ᵀ

[B22 ⊗B21]) d
∂2F2 (ω, λ1, λ2)

∂λᵀ
2∂λᵀ

1

.
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