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Abstract

There are efficient software programs for extracting from image sequences certain mixtures of
distributions, such as multivariate Gaussians, to represent the important features needed for
accurate document retrieval from databases. This note describes a method to use information
geometric methods to measure distances between distributions in mixtures of multivariate
Gaussians. There is no general analytic solution for the information geodesic distance be-
tween two k-variate Gaussians, but for many purposes the absolute information distance is
not essential and comparative values suffice for proximity testing. For two mixtures of multi-
variate Gaussians we must resort to approximations to incorporate the weightings. In practice,
the relation between a reasonable approximation and a true geodesic distance is likely to be
monotonic, which is adequate for many applications. Here we compare several choices for
the incorporation of weightings in distance estimation and provide illustrative results from
simulations of differently weighted mixtures of multivariate Gaussians.
Keywords: Information geometry, multivariate spatial covariance, Gaussian mix-
tures, geodesic distance, approximations. MSC 60D05 53B20

1 Introduction

A recent review of techniques for extracting local features for automatic object recognition in
images has been given by Cao et al [4]; implicit in such techniques is computer vision and the
elicitation of features that are invariant under image transformation for object classification. In
a number of important areas of application the representation of local features—think of smiley,
neutral or sad faces in video sequences—can be achieved through mixtures of multivariate Gaussian
distributions. The Riemannian manifold of the family of k-variate Gaussians for a given k is well
understood through information geometric study using the Fisher metric. For an introduction to
information geometry and a range of applications see [1].

Here we consider a mixture distribution consisting of a linear combination of k-variate Gaussians
with an increasing sequence of k = 2, 3, . . . , N variables:

f2 = (2, µ2,Σ2), f3 = (3, µ3,Σ3)..., fN = (N,µN ,ΣN ) and ∀k
∫
Rk

fk = 1 (1)

where µk ∈ Rk is the k-vector of means and Σk ∈ R(k2+k)/2 is the positive definite symmetric
(k × k) covariance matrix with components (σij), i ≤ j = 1, 2, ..., k. The standard basis for the
space of covariance matrices is Eij = 1ii for i = j, Eij = 1ij + 1ji for i 6= j so

Σ =

k∑
i≤j=1

σijEij .
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2 Information distance estimation between mixtures of multivariate Gaussians

We presume that the parameters and relative weights wk of these component probability density
functions (1) have been obtained empirically, giving a mixture density:

f =

N∑
k=2

wkfk, with wk ≥ 0 and

N∑
k=2

wk = 1. (2)

We wish to be able to estimate the information distance D(fA, fB) between two such distribu-
tions, fA = (µA,ΣA, wA) and fB = (µB ,ΣB , wB). What we have analytically are natural norms,
on the space of means and on the space of covariances, giving the information distance between
two multivariate Gaussians of the same number k of variables in two particular cases:

1. ΣA = ΣB = Σ : fA = (k, µA,Σ), fB = (k, µB ,Σ)
Here we have the positive definite symmetric quadratic form Σ to give a norm on the difference
vector of means:

Dµ(fA, fB) =

√
(µA − µB)

T · Σ−1 · (µA − µB). (3)

2. µA = µB = µ : fA = (k, µ,ΣA), fB = (k, µ,ΣB)
Here we need a positive definite symmetric matrix constructed from ΣA and ΣB to give a
norm on the space of differences between covariances; the information metric is given by
Atkinson and Mitchell [2] from a result attributed to S.T. Jensen, using

SAB = ΣA
−1/2 · ΣB · ΣA−1/2

, with {λABj } = Eig(SAB) so

DΣ(fA, fB) =

√√√√1

2

k∑
j=1

log2(λABj ). (4)

In principle, (4) yields all of the geodesic distances since the information metric is invariant under
affine transformations of the mean [2] Appendix 1; see also the article of P.S. Eriksen [3].

Also, we know analytically the Kullback-Leibler divergence, or relative entropy, between two mul-
tivariate Gaussians fA = (k, µA,ΣA), fB = (k, µB ,ΣB) with the same number k of variables, its
square root giving a separation measurement [5]:

KL(fA, fB) =
1

2
log(

det ΣB

det ΣA
) +

1

2
Tr[ΣB

−1

· ΣA]

+
1

2

(
µA − µB

)T · ΣB−1

·
(
µA − µB

)
− k

2
. (5)

This is not symmetric, so to obtain a distance we could take the average KL-distance in both
directions:

DKL(fA, fB) =

√
|KL(fA, fB)|+ |KL(fB , fA)|

2
(6)

The Kullback-Leibler distance tends to the information distance as two distributions become closer
together; conversely it becomes less accurate as they move apart. Explicitly, we have for the
covariance part DKLΣ(fA, fB)

DKLΣ(fA, fB) =
1

2

(√∣∣∣∣12 log

(
det ΣB

det ΣA

)
+

1

2
Tr [Σ−B .ΣA]− k

2

∣∣∣∣
+

√∣∣∣∣12 log

(
det ΣA

det ΣB

)
+

1

2
Tr [Σ−A.ΣB ]− k

2

∣∣∣∣
)
. (7)

The true geodesic distance is plotted against DKLΣ(fA, fB) in Figure 1 for 600 bivariate Gaussian
covariance matrices.
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Figure 1: Plot of DΣ(fA, fB) from (4) on DKLΣ(fA, fB) from (7) for 600 bivariate Gaussian
covariance matrices.

1.1 Example: Bivariate Gaussians

f(x, y) =
1

2π
√

∆
exp
−1

∆2
(y − µ2)2σ11 + (x− µ1)[(x− µ1)σ22 + 2(−y + µ2))σ12] (8)

µ = (µ1, µ2), ∆ = Det[Σ] = σ11σ22 − σ2
12

Σ =

(
σ11 σ12

σ12 σ22

)
= σ11

(
1 0
0 0

)
+ σ12

(
0 1
1 0

)
+ σ22

(
0 0
0 1

)
Σ−1 =

(
σ22

∆ −σ12

∆
−σ12

∆
σ11

∆

)

Dµ(fA, fB) =

√
(µA − µB)

T · Σ−1 · (µA − µB) =√(
µA2 − µB2

) (
σ11

(
µA2 − µB2

)
− σ12

(
µA1 − µB1

))
∆

+

(
µA1 − µB1

) (
σ22

(
µA1 − µB1

)
− σ12

(
µA2 − µB2

))
∆

.

The analytic expression for distance between two covariance matrices is cumbersome so we show
a numerical example:

ΣA =

(
1 0
0 1

)
, ΣB =

(
3 2
2 6

)
, SAB =

(
3 2
2 6

)
, SBA =

(
0.42857 −0.14286
−0.14286 0.21429

)
with eigenvalues : λAB1 = 7, λAB2 = 2 and λBA1 = 0.5, λBA2 = 0.14286, respectively, then

DΣ(ΣA,ΣB) =

√√√√1

2

n∑
j=1

log2(λj) = 1.46065.

DKL(ΣA,ΣB) =
1

2

(√
1

2
log 14− 19

28
+

√
1

2
log

1

14
+

7

2

)
≈ 1.1386.
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2 Approximating distances between arbitrary mixtures

There is no general analytic solution for the geodesic distance between two k-variate Gaussians, but
for many purposes the absolute information distance is not essential and comparative values suffice
for proximity testing, then the sum D = Dµ +DΣ from (3) and (4) is a sufficient approximation.
Indeed, (4) gives the geodesic distance between fA with ΣA = I and fB with µA = µB = 0 and
the information metric is invariant under affine transformations of the mean [2, 3].

So, a fortiori, also we do not have the distance between two mixtures of multivariate Gaussians:
fA = (µA,ΣA, wA) and fB = (µB ,ΣB , wB). For this we must resort to approximations for
incorporating the weightings of component Gaussians. In practice, it may not matter greatly
since the relation between a reasonable approximation and a true geodesic distance is likely to be
monotonic, which may be adequate for many applications.

One method is to combine equations (3) and (4) through the linear combination (2), obtaining
an approximation as a corresponding linear combination of distances. To achieve this there are
several choices of how to combine weighted sets of Dµ and DΣ and here we mention two. The
natural choice §2.1 incorporates the Gaussian component weights wk inside the matrix operations;
a simpler choice §2.2 just takes the average weighted values. Figure 2 and, Figure 3 illustrate
their results on different sequences of weight vectors. However, both of those approaches suffer
from the disadvantage of assuming that the k-variate components from two mixtures come from
the same space but in fact there may be no connection between the contributing features they are
representing.

The new implementation described in §2.3 uses the incorporated weights, the information geometric
norm on the mean vectors and the Frobenius norm on the covariance matrices to project the mixture
distributions onto the complex plane. This allows the direct calculation of a distance between two
mixture distributions using moduli, without assuming any connections between the mixtures.

2.1 Incorporated weights

Given two mixture distributions fA = (µA,ΣA), fB = (µB ,ΣB) we split the distance estimate
function D∗ into D∗

µ and D∗
Σ as follows:

D∗(fA, fB) = D∗
µ(fA, fB) +D∗

Σ(fA, fB), where (9)

D∗
µ(fA, fB) =

N∑
k=2

1

2

(√(
wAk µ

A − wBk µB
)T · (wAk ΣAk )−1 ·

(
wAk µ

A − wBk µB
)

+

√(
wAk µ

A − wBk µB
)T · (wBk ΣBk )−1 ·

(
wAk µ

A − wBk µB
))

(10)

D∗
Σ(fA, fB) =

N∑
k=2

DΣ(wAk ΣAk , w
B
k ΣBk ), using(4), which simplifies to (11)

=

√√√√1

2

N∑
k=2

(log λABk )2, with {λABk } = EigWAB
k , where (12)

WAB
k = (wAk ΣAk )−1/2 · wBk ΣBk · (wAk ΣAk )−1/2 = (wBk /w

A
k )
(

(ΣAk )−1/2 · ΣBk · (ΣAk )−1/2
)
.

Figure 2 shows the effect on D∗ of differing incorporated weighting sequences using (10), (12)
for the case ΣAk = ΣBk = ΣBk for random k-variate Gaussians with k = 2, 3, 4, 5. The weight
sequences are for mixtures A : wAk = (0.1, 0.2, 0.3, 0.4), B : wBk = (0.25, 0.25, 0.25, 0.25), C :
wCk = (0.4, 0.3, 0.2, 0.1), and we see that D∗(fA, fB) < D∗(fB , fC) consistently across ten random
replications using incorporated weights.
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D∗(fA, fB), D∗(fB , fC), D∗(fA, fC) for ten random Gaussians with weights:

wAk = (0.1, 0.2, 0.3, 0.4), wBk = (0.25, 0.25, 0.25, 0.25), wCk = (0.4, 0.3, 0.2, 0.1)

Figure 2: Effect of incorported weights §2.1: Distances between pairs of mixtures of random
k-variate Gaussians having k = 2, 3, 4, 5 variables, with increasing weights A, uniform weights B,
and decreasing weights C. The three bars give D∗(fA, fB), D∗(fB , fC), D∗(fA, fC) respectively,
for ten different random sequences of k-variate Gaussians.
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D∗(fA, fB), D∗(fB , fC), D∗(fA, fC) for ten random Gaussians with weights:

wAk = (0.1, 0.2, 0.3, 0.4), wBk = (0.25, 0.25, 0.25, 0.25), wCk = (0.4, 0.3, 0.2, 0.1)

Figure 3: Effect of averaged weights §2.2: Distances between pairs of mixtures of random
k-variate Gaussians having k = 2, 3, 4, 5 variables, with increasing weights A, uniform weights B,
and decreasing weights C. The three bars give D#(fA, fB), D#(fB , fC), D#(fA, fC) respectively,
for ten different random sequences of k-variate Gaussians.
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Figure 4: Effect of weightings using mixture projection onto C §2.3: Distances be-
tween pairs of mixtures of random k-variate Gaussians having k = 2, 3, 4, 5 variables, with
increasing weights A, uniform weights B, and decreasing weights C. The three bars give
∆(fA, fB),∆(fB , fC),∆(fA, fC) respectively, for ten different random sequences of k-variate
Gaussians.
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(fA, fB , fC) for ten random Gaussians with weights:
wA

k = (0.1, 0.2, 0.3, 0.4), wB
k = (0.25, 0.25, 0.25, 0.25), wC

k = (0.4, 0.3, 0.2, 0.1)
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Figure 5: Mixture projection onto C §2.3: Mixtures are shown plotted in (||µ||, ||Σ||)-space
for the 10 random k-variate Gaussians having k = 2, 3, 4, 5 variables, with increasing weights fA,
uniform weights fB , and decreasing weights fC . The gA, gB , gC are for the same mixtures except
that ΣC2 has been replaced by ΣC2 /5 and hA, hB , hC are for the same mixtures except that ΣC5 has
been replaced by ΣC5 /5 to show the effect of a change in one covariance component. The mean for
each over the ten replications is shown as a large point.
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2.2 Averaged weights

Given two mixture distributions fA = (µA,ΣA), fB = (µB ,ΣB) we could split the distance esti-

mate function D# into D#
µ and D#

Σ as follows with δµ = (µA − µB):

D#
µ (fA, fB) =

N∑
k=2

1

2

(
wAk

√
δµT · ΣA−1

k · δµ+ wBk

√
δµT · ΣBk −1 · δµ

)
(13)

D#
Σ (fA, fB) =

N∑
k=2

1

2
(wAk + wBk )DΣ(ΣAk ,Σ

B
k ) using(4), which simplifies to

=

N∑
k=2

1

2
(wAk + wBk )

√√√√1

2

N∑
k=2

(log λABk )2 where {λABk } = EigHAB
k with (14)

HAB
k =

(
(ΣAk )−1/2 · ΣBk · (ΣAk )−1/2

)
.

In this case, if fA = (µA,ΣA), and fB = (µB ,ΣB) arise as differently weighted sums of the same

sequence of covariances, then ΣAk = ΣBk so HAB
k is the identity matrix and D#

Σ (fA, fB) = 0.
Figure 3 shows the effect on D# of differing averaged weighting sequences using (13), (14).

2.3 Mixtures projected onto the complex plane

The idea here is simple: for each mixture distribution fA given by a weighted sum (2) we obtain
two numbers ||µA|| and ||ΣA|| being the weighted sums of norms of means and covariances. The
norm on mean vectors is given by (3) and for the covariance matrices we need a matrix norm,
which here we choose as the Frobenius norm given for an n× n matrix Mαβ by the square root of
the sum of squares of its elements mαβ ,

||Mαβ ||2 =

n∑
α=1

n∑
β=1

(mαβ)2

Note that if Mαβ has eigenvalues {λα} and is represented on a basis of eigenvectors then

||Mαβ ||2 =

n∑
α=1

(λα)2.

Given a mixture distribution fA consisting of M different multivariate Gaussians:
GA = {GAi (µAi ,Σ

A
i )}i=1,M with weights wA = {wAi }i=1,M we have

fA =

M∑
m=1

wAmG
A
m

||µA|| =

√√√√ M∑
m=1

wAm ((µAm)T .(ΣAm)−1.µAm) (15)

||ΣA|| =

√√√√ M∑
m=1

wAm||ΣAm||2. (16)

Now we can represent fA by the complex number φA = ||µA|| + i||ΣA|| and its difference from
another such complex number φB for fB gives us a distance measure in our reduced space of
mixtures:

∆(fA, fB) = |φB − φA|. (17)
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The result of using (17) to project mixtures onto the complex plane is shown in Figure 4. The
three bars give ∆(fA, fB),∆(fB , fC),∆(fA, fC) respectively, for ten different random sequences
of k-variate Gaussians. The three barcharts, in Figure 2, Figure 3 and Figure 4, use the same
mixtures of multivariate Gaussians. It appears that the projection of mixtures onto the complex
plane, Figure 4, as described in the present section gives a wider range of differences and shows the
intuitively expected largest differences mostly between increasing and decreasing weight sequences,
∆(fA, fC) in the third columns of each replication.

Figure 5 shows a plot of the points (||µ||, ||Σ||) ∈ C for the ten mixtures of random k-variate
Gaussians having k = 2, 3, 4, 5 variables, with increasing weights fA, uniform weights fB , and
decreasing weights fC . The gA, gB , gC are for the same mixtures except that ΣC2 has been replaced
by ΣC2 /5 and hA, hB , hC are for the same mixtures except that ΣC5 has been replaced by ΣC5 /5 to
show the effect of a change in one covariance component. In each case the mean for each over the
ten replications is shown as a large point.
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