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The Singular Value
Decomposition†

Nicholas J. Higham

One of the most useful matrix factorizations is the
singular value decomposition (SVD), which is defined
for an arbitrary rectangular matrix A ∈ Cm×n. It takes
the form

A = UΣV∗, Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n, (1)

where p =min(m,n), Σ is a diagonal matrix with diag-
onal elements σ1 > σ2 > · · · > σp > 0, and U ∈ Cm×m
and V ∈ Cn×n are unitary. The σi are the singular val-
ues of A, and they are the nonnegative square roots
of the p largest eigenvalues of A∗A. The columns of
U and V are the left and right singular vectors of A,
respectively.

Postmultiplying (1) by V gives AV = UΣ since V∗V =
I, which shows that the ith columns of U and V are
related by Avi = σiui for i = 1: p. Similarly, A∗ui =
σivi for i = 1: p. A geometrical interpretation of
the former equation is that the singular values of A
are the lengths of the semiaxes of the hyperellipsoid
{Ax : ‖x‖2 = 1 }.

Assuming thatm > n for notational simplicity, from
(1) we have

A∗A = V(Σ∗Σ)V∗, (2)

with Σ∗Σ = diag(σ2
1 , σ

2
2 , . . . , σ2

n), which shows that the
columns of V are eigenvectors of the matrix A∗A with
corresponding eigenvalues the squares of the singular
values ofA. Likewise, the columns ofU are eigenvectors
of the matrix AA∗.

The SVD reveals a great deal about the matrix A and
the key subspaces associated with it. The rank, r , of A
is equal to the number of nonzero singular values and
the range and the null space of A are spanned by the
first r columns of U and the last n − r columns of V ,
respectively.

The SVD reveals not only the rank but also how close
A is to a matrix of a given rank, as shown by a classic
1936 theorem of Eckart and Young.

Theorem 1 (Eckart–Young). Let A ∈ Cm×n have the
SVD (1). If k < r = rank(A), then for the 2-norm and
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Figure 1 Photo of blackboard, inverted so that white and
black are interchanged in order to show more clearly the
texture of the board. Top: original 1067× 1600 image. Bot-
tom: image compressed using rank 40 approximation A40

computed from SVD.

the Frobenius norm,

min
rank(B)=k

‖A−B‖ = ‖A−Ak‖ =

σk+1, 2-norm,√∑r
i=k+1 σ

2
i , F -norm,

where

Ak = UDkV∗, Dk = diag(σ1, . . . , σk,0, . . . ,0).

In many situations the matrices that arise are nec-
essarily of low rank but errors in the underlying data
make the matrices actually obtained of full rank. The
Eckart–Young result tells us that in order to obtain a
lower rank matrix we are justified in discarding (i.e.,
setting to zero) singular values that are of the same
order of magnitude as the errors in the data.

The SVD (1) can be written as an outer product
expansion

A =
p∑
i=1

σiuiv∗i ,

and Ak in the Eckart–Young theorem is given by the
same expression with p replaced by k. If k � p then
Ak requires much less storage than A and so the SVD
can provide data compression (or data reduction). As an
example, consider the monochrome image at the top
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of figure 1 represented by a 1067× 1600 array of RGB
values (R = G = B since the image is monochrome).
Let A ∈ R1067×1600 contain the values from any one of
the three channels. The singular values ofA range from
8.4×104 down to 1.3×101. If we retain only the singular
values down to the 40th, σ40 = 2.1× 103 (a somewhat
arbitrary cutoff since there is no pronounced gap in the
singular values), we obtain the image at the bottom of
figure 1. The reduced SVD requires only 6 percent of
the storage of the original matrix. Some degradation is
visible in the compressed image (and more can be seen
when it is viewed at 100 percent size on-screen), but it
retains all the key features of the original image. While
this example illustrates the power of the SVD, image
compression is in general done much more effectively
by the JPEG scheme.

A pleasing feature of the SVD is that the singular val-
ues are not unduly affected by perturbations. Indeed,
if A is perturbed to A + E then no singular value of A
changes by more than ‖E‖2.

The SVD is a valuable tool in applications where
two-sided orthogonal transformations can be carried
out without “changing the problem”, as it allows the
matrix of interest to be diagonalized. Foremost among
such problems is the linear least squares problem
minx∈Cn ‖b −Ax‖2.

The SVD was first derived by Beltrami in 1873. The
first reliable method for computing it was published
by Golub and Kahan in 1965; this method applies two-
sided unitary transformations to A and does not form
and solve the equation (2), or its analog for AA∗. Once
software for computing the SVD became readily avail-
able, in the 1970s, the use of the SVD proliferated.
Among the wide variety of uses of the SVD are for text
mining, deciphering encrypted messages, and image
deblurring.
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