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Abstract

We give an explicit plane-by-plane filtered back-projection reconstruction algorithm
for the transverse ray transform of symmetric second rank tensor fields on Euclidean
3-space, using data from rotation about three orthogonal axes. We show that in the
general case two axis data is insufficient but give an explicit reconstruction procedure
for the potential case with two axis data.

1 Introduction

The transverse ray transform (TRT) of rank two symmetric tensor fields in three
dimensional Euclidean space has recently been shown to be of importance in x-ray
diffraction strain tomography [5], however currently reconstruction algorithms are
known only for data from rotations about six axes [8, Sec 5.1.6] or complete data
[5]. Given that, in the proposed application, each projection is acquired laboriously
using a raster scan, it is advantageous to perform the reconstruction using data from
a minimum number of axes and making the most of the data collected from each
projection. In this paper we give an explicit reconstruction formula for three axis
data using similar techniques to those employed by [4] for the truncated transverse ray
transform (TTRT). The inversion formula uses plane-by-plane filter and back-projection
operations familiar from inversion of the parallel x-ray transform of a scalar field. We
go on to show that data from only two rotation axes are insufficient in the general
case, but give an explicit reconstruction for the potential case with two axis data. We
present some numerical results for our reconstruction algorithms using simulated data.

2 Definitions and notation

We denote the complex vector space of symmetric R-bilinear maps R3 � R3 Ñ C by
S2C3 . The elements of this space are (complex-valued) symmetric tensors of second
rank on R3. We will identify a complex symmetric tensor f P S2C3 with the C-linear
operator, f : Cn Ñ Cn, as usual xfξ, ηy � xfη, ξy � fpξ, ηq where η, ξ P R3.
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Defining the Schwartz space of rapidly decreasing functions SpRnq on n-dimensional
Euclidean (n � 2 or 3) space in the usual way, we extend this definition to (complex)
vector fields SpRn;Cnq and complex symmetric tensor fields as SpRn;S2Cnq. The
choice of Schwartz spaces and the use of complex vectors and tensors is convenient
as we will rely heavily on the Fourier transform. Extension to Sobolev spaces for
compactly supported fields follows using the usual apparatus as applied to scalar ray
transforms [7]. We define the Fourier transform F : SpR3q Ñ SpR3q, by

F rf s � f̂pyq � p2πq�3{2

»
R3

e�ixy,xyfpxq dx.

Given an orthonormal basis pe1, e2, e3q of R3, a tensor f P S2C3 can be represented
by the symmetric 3 � 3 matrix pfjkq, fjk � fpej , ekq. The Hermitian scalar product

on S2C3 can be written as xf, gy �
°3
j,k�1 fjkḡjk independently of the choice of an

orthonormal basis. Since only orthonormal bases will be used in this paper, we do not
distinguish between co- and contravariant tensors.

We will need the partial Fourier transform FV : SpR3q Ñ SpR3q, for any k-
dimensional vector subspace V � R3. Given Cartesian coordinates px1, x2, x3q in R3

such that
V � tx|xk�1 � .... � x3 � 0u. the partial Fourier Transform can be written as

FV rf s � f̂py1, ..., yk, xk�1, ..., x3q � p2πq�k{2
»
Rk

e�ipy1x1�...�ykxkqfpxq dx1...dxk.

This result is independent of the choice of orthonormal coordinates and satisfies the
commutation law F � FV FV K � FV KFV .

The oriented lines in R3 can be parameterized by points of the tangent bundle of
the unit sphere S2 in R3

TS2 � tpξ, xq P R3 � R3 | |ξ| � 1, xξ, xy � 0u � R3 � R3.

An oriented line l � R3 is uniquely represented as l � tx� tξ | t P Ru with pξ, xq P TS2.
The Schwartz space SpTS2q is defined as in [4].

Our main object of interest is the Transverse Ray Transform (TRT) of symmetric
rank two tensor fields

J : SpR3;S2C3q Ñ SpTS2;S2C3q,

which is defined by

Jfpξ, xq �

» 8

�8

Pξfpx� tξq dt, (1)

where Pξ : S2C3 Ñ S2C3 is the orthogonal projection onto the subspace
tf P S2C3 | fξ � 0u.

For example, for an orthonormal basis of the form pe1, e2, e3 � ξq, the projection is
expressed by

Pξf �

�� f11 f12 0
f12 f22 0
0 0 0

�. (2)
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By contrast the scalar x-ray transform (or simply the ray transform) of a function
f P SpR3q is defined by

Xfpξ, xq �

» 8

�8

fpx� tξqdt.

We also have the Longitudinal Ray Transform (LRT),

I : SpR3;C3q Ñ SpTS2q, I : SpR3;S2C3q Ñ SpTS2q,

defined on vector and tensor fields respectively by

Ifpξ, xq �

» 8

�8

xfpx� tξq, ξydt, Ifpξ, xq �

» 8

�8

xfpx� tξqξ, ξy dt. (3)

The x-ray transform and LRT can also be defined on a plane in R3. For η P S2, let
ηK � tξ P R3 | xξ, ηy � 0u, Rη � tsη | s P Ru, ηKC be the complexification of ηK and
S1η � tξ P ηK | |ξ| � 1u be the unit sphere in ξK. Given s P R, let sη � ηK be the plane

through sη parallel to ηK and ιs,η : sη � ηK � R3 be the identical embedding. The
family of oriented lines in the plane sη� ηK is parameterized by points of the manifold
TS1η � tpξ, xq | ξ P S1η, x P ηK, xξ, xy � 0u such that a point pξ, xq P TS1η corresponds
to the line tsη � x� tξ | t P Ru. We define the X-ray transform on a plane Xη,sfpξ, xq
and the LRT on the plane sη � ηK

Xη,s : Spsη � ηK;Cq Ñ SpTS1ηq (4)

Iη,s : Spsη � ηK; ηKC q Ñ SpTS1ηq (5)

Iη,s : Spsη � ηK;S2ηKC q Ñ SpTS1ηq (6)

by the following formulae

Xη,sfpξ, xq �
³8
�8

fpsη � x� tξq dt, (7)

Iη,sfpξ, xq �
³8
�8

xfpsη � x� tξq, ξy dt, (8)

Iη,sfpξ, xq �
³8
�8

xfpsη � x� tξqξ, ξy dt (9)

respectively. One can see that operators (3) and (9) are related. If f P SpR3;S2C3q
and ι�η,sf is the slice of f by the plane sη � ηK, then
Iη,spι

�
η,sfqpξ, xq � Ifpξ, sη � xq, for pξ, xq P TS1η.

A typical experimental situation would involve rotation of the specimen (or equiva-
lently the source and detector) about some finite collection of axes. In the scalar case
of the x-ray transform rotation about one axis is sufficient as the problem reduces to
the Radon transform in the plane, for a family of planes normal to the rotation axis.
Consider first the case n � 2 in which X is identical to the Radon transform. In this
case the formal adjoint B � X� : SpTS1q Ñ C8pR2q, the back-projection operator, is
well defined and given by

Bφpxq �
1

2π

»
S1
φpξ, xξ, xyqdξ (10)
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for φ P SpTS1q. We then have the inversion formula [7] for data φpξ, xq � Xη,sfpξ, xq
in the range of X

F rfpxqspyq � |y|F rBφpxqs, (11)

which means that inversion is performed by a ramp filter (also known as a Riesz
potential) applied to the back-projected data.

This operation can be performed slice by slice to invert the x-ray transform for
n � 3, in which case data is needed only for ξ P ηK for some fixed rotation axis η P S2.
In this case the slice-by-slice back-projection operator Bη : SpR � TS1ηq Ñ C8pR3q.
The reconstruction formula (11) becomes

FηKrfpxqsps, yq � |Πηy|FηKrBηφpxqs, (12)

where s � xx, ηy.
Notice that the component xη, Jfpξ, xqηy � Xxη, fηypx, ξq, for ξ P ηK is simply the

scalar x-ray transform in the plane through x normal to η. As observed in [8, Sec
5.1.6] this component can be reconstructed using any inversion formula for the planar
Radon transform inversion plane by plane, including the one given in (12). Choosing
six rotation axes ηi so that the outer products ηηT are linearly independent in S2R3

recovers f everywhere. As mentioned in the introduction this procedure is likely to be
time-consuming as rotations are performed about six axes and yet for each ray only
one measurement (out of a possible three) is used. The aim of this paper is to show,
via a constructive inversion procedure, that f can be determined uniquely from the
data Jfpx, ξq for ξ P eKi , i � 1, ..., 3. Of course the diagonal elements fii are already
determined as above so our main task is to provide a reconstruction procedure for the
off-diagonal elements.

For a given rotation axis η and direction ξ P ηK we have in addition to the ‘axial’
component xη, Jfpξ, xqηy the ‘non axial’ components xζ, Jfpξ, xqηy where ζ � ξ � η
and xζ, Jfpξ, xqζy with which to reconstruct the off-diagonal (in a basis including η)
elements of f .

3 Relations between transforms

The aim of this section is to write the non-axial components of Jfpξ, xq, ξ P ηK in
terms of longitudinal ray transforms on transaxial planes.

We have Pξpfq � ΠξfΠξ where Πξ is the orthogonal projection matrix onto ξK,
and the ‘off diagonal’ component can be expressed as

xpJfqpξ, xqη, ξ � ηy �

» 8

�8

xΠξfpx� tξqΠξη, ξ � ηydt

�

» 8

�8

xfpx� tξqη, ξ � ηydt �

» 8

�8

xη � fpx� tξqη, ξy dt.

Since the vector field η�fη is orthogonal to η, its restriction to every plane sη�ηK

can be considered as a vector field on the plane, i.e., pη � fηq|sη�ηK P Spsη � ηK; ηKC q.
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As this is then contracted with the ray direction ξ we have

Iη,sppη � fηq|sη�ηKqpξ, xq � xpJfqpξ, xqη, ξ � ηy for pξ, xq P TS1η. (13)

As we have seen in (2), that the TRT depends only on the projection normal to the
direction of the ray. Now working in pη, ζ � ξ � η, ξq coordinates, let us consider,
xJfpξ, xqζ, ζy, which can be transformed into

xJfpξ, xqζ, ζy �

» 8

�8

xfpx� tξqζ, ζy dt. (14)

Let us parameterize ξ in the usual sense as

ξ �

�� cos θ
sin θ

0

�, so, ζ �

�� � sin θ
cos θ

0

�.
Since ζ P ξK we can calculate

xζ, fζy � p� sin θ, cos θ, 0q

�� f11 f12 0
f12 f22 0
0 0 0

��� � sin θ
cos θ

0

�
� f22 cos2 θ � 2f12 cos θ sin θ � f11 sin2 θ

� pcos θ, sin θ, 0q

�� f22 �f12 0
�f12 f11 0

0 0 0

��� cos θ
sin θ

0

�
� ξAdjeK3 pfqξ,

where AdjeK3 pfq denotes the adjugate matrix of the slice of f restricted to the plane;
of course this is nothing other than the conjugation of Pe3f with a right angle rotation
about the e3 axis. Hence using the above, we see that for ξ P ηK

xJfpξ, xqζ, ζy �

» 8

�8

xfpx� tξqζ, ζy dt

�

» 8

�8

xAdjηKpfqpx� tξqξ, ξy � xIAdjηKpfqpξ, xqξ, ξy, (15)

which is the LRT transform of the two dimensional adjugate of the slice of f restricted
to the plane. We notice that this is also exactly the transverse ray transform in the
planar case. The results of this section can be summarized in the following Lemma:

Lemma 1 Let f P SpR3;S2C3q be a symmetric tensor field. The equations

Iη,sppη � fηq|sη�ηKq � pJ1
η,sfq, (16)

Iη,s
�
AdjηKpι

�
η,sfq

�
� pJ2

η,sfq, (17)
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hold for every s P R and η P S2, where

pJ1
η,sfq � xpJfqpξ, sη � xqη, ξ � ηy, pJ2

η,sfq � xpJfqpξ, sη � xqζ, ζy.

In the next section, we will transform (16) and (17) to algebraic equations by
applying the Fourier transform to back-projected data.

4 Main algebraic equations

4.1 Curl Components of Tensor and Vector Fields

We can now transform (16) and (17) to algebraic equations by applying the Fourier
transform. We only require what [8] refers to as tangential component τg P C8pR2q of
a vector field g P C8pR2;C2q, which is defined by

pτgqpyq � xgpyq, yKy. (18)

Here the vector yK is the result of rotating y by π{2 in the positive direction. Of course,
one can understand (18) as the 2D curl of a vector field in Fourier (frequency) space.
The manifold TS1 can be identified with R�S1 by the diffeomorphism pp, ξq ÞÑ pξ, pξKq
for pp, ξq P R� S1. Therefore the derivative B

Bp : SpTS1q Ñ SpTS1q is well defined. For

a vector field f P SpR2;C2q, the tangential component of the Fourier Transform F rf s
is recovered by the LRT, If , by the formula

τF rf s �
i

2
|y|F

�
B

�
BpIfq

Bp


�
. (19)

We see in [4] and [9], the tangential component, τg P C8pR2q, of a tensor field
g P C8pR2;S2C2q is defined by

pτgqpyq � |y|2tr g � xgpyqy, yy. (20)

This is exactly the Fourier transform of the single unique non-zero component of the
compatibility tensor of Barré de Saint-Venant in the plane

W pfq �
B2f11
Bx22

� 2
B2f12
Bx1Bx2

�
B2f22
Bx21

, (21)

which is also sometimes described as the curl of a symmetric tensor field. For f P
SpR2;S2C2q, the tangential component of the Fourier transform F rf s is recovered from
the LRT, If, as

τF rf s �
1

2
|y|3F rBpIfqs. (22)

For φ P SpTS1q, the function Bφpxq is C8-smooth and bounded on R2 but does
not decay fast enough to be in the Schwartz class. Thus we understand the Fourier
transform in the distribution sense in (19) and (22).
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4.2 Derivation of System of Equations

Let f P SpR3;S2C3q be a symmetric tensor field and denote by f 1 � FηKrf s P
SpR3;S2C3q the partial Fourier transform of f . For any s P R, the restriction of the
vector field η � f 1η to the plane sη � ηK coincides with the 2D Fourier transform of
pη � fηq|sη�ηK . This is pη � f 1ηq|sη�ηK � FηKrpη � fηq|sη�ηKs.

We then apply formula (19) to the vector field pη � fηq|sη�ηK , giving

τppη � fηq|sη�ηKqpsη � yq �
i

2
|y|FηK

�
Bη

�
BpIη,sppη � fηq|sη�ηKqq

Bp


�
for y P ηK,

(23)
Using (16), we can transform (23) giving

τppη � f 1ηq|sη�ηKqpsη � yq �
i

2
|y|FηK

��
Bη

BpJ1
ηfq

Bp

�
psη � xq

�
, (24)

Note that (18) gives

τppη � f 1ηq|sη�ηKqpsη � yq � xη � f 1psη � yqη, η � yy � xf 1psη � yqη, yy. (25)

Upon substitution of (25) into the LHS of (24) and applying the one-dimensional
Fourier transform FRη taking s to σ gives

xf̂pση � y1qη, y1y �
i

2
|y1|F

��
Bη

BpJ1
ηfq

Bp

�
psη � x1q

�
for y1 P ηK, (26)

where f̂ is the three-dimensional Fourier transform F rf s. Since y1 P ηK and σ P R, we
let y � ση � y1, where y1 � Πηy. Hence the previous formula (26) can be written as

xf̂pyqη,Πηyy �
i

2
|Πηy|F

��
Bη

BpJ1
ηfq

Bp

�
pxq

�
, (27)

Note that (27) is identical to the off-diagonals for the TTRT operator case in [4].
Moreover this will just reconstruct the solenoidal part of the off-diagonals since the
Fourier transform interweaves with the solenoidal part. For any s P R, the slice ι�η,sf

1

coincides with the 2D Fourier transform of the slice ι�η,sf , i.e., ι�η,sf
1 � FηKrι

�
η,sf s,

where the Fourier transform on the plane sη� ηK. Henceforth, we refer to the adjugate
of the slice of f 1 restricted to the plane as AdjηKpι

�
η,sf

1q � h1. Upon application of
formula (22) to h1, we see

rτph1qspsη � yq �
1

2
|y|3FηKrBηpIη,spAdjηKpι

�
η,sfqqqs for y P ηK. (28)

Using Lemma 1 we can rewrite the above as

rτph1qspsη � yq �
1

2
|y|3FηKrBηpJ

2
ηfqpsη � xqs for y P ηK, (29)
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Now, we apply formula (20) to the field g � h1 P Spsη � ηK;S2ηKC q to give

rτph1qspsη � yq � |y|2trh1psη � yq � xh1psη � yqy, yy for y P ηK. (30)

Next, substitute (30) into (29) to give

|y|2trh1psη � yq � xh1psη � yqy, yy �
1

2
|y|3FηKrBηpJ

2
ηfqpsη � xqs for y P ηK. (31)

By applying the one-dimensional Fourier transform on Rη to the above, we obtain

|y1|2tr ĥpση � y1q � xĥpση � y1qy1, y1y �
1

2
|y1|3F rBηpJ

2
ηfqpsη � x1qs, (32)

for y P ηK. As before, employing a change of variables, y � ση � y1, transforms the
above to

|Πηy|
2tr ĥpyq � xĥpyqΠηy,Πηyy �

1

2
|Πηy|

3F rBηpJ
2
ηfqpxqs, for y P R3. (33)

In the following statement, the results are summarized.

Lemma 2 Let pf be the 3D Fourier transform of a symmetric tensor field f P
SpR3;S2C3q. For a unit vector η P S2, the following equations hold with the ad-

ditional condition that ph P SpR2;S2C2q, is defined to be the 2D adjugate of f restricted
to the plane

x pfpyqη,Πηyy � ληpyq and (34)

|πηy|
2tr ĥpyq � xĥpyqΠηy,Πηyy � µηpyq, (35)

hold on R3, with the right hand sides defined by

ληpyq �
i

2
|Πηy|F

��
Bη

BpJ1
ηfq

Bp

�
pxq

�
, (36)

µηpyq �
1

2
|Πηy|

3F rBηpJ
2
ηfqpxqs. (37)

The partial derivative B
Bp : SpR� TS1ηq Ñ SpR� TS1ηq is defined with the help of the

diffeomorphism R2�S1η Ñ R�R�TS1η, ps, p, ξq ÞÑ ps, ξ, pξ�ηq. Given the data Jf |ηK ,
right-hand sides ληpyq and µηpyq of equations (34) - (35) can be effectively recovered
by formulas (36) - (37).

Consider the case where η � η1 � p1, 0, 0q. So Πηy � p0, y2, y3q, pfη � p pf11, pf12, pf13q.
To abbreviate formulas further, let us denote ληi by λi and µηi as µi. We use the
orthonormal basis vectors e1, e2 and e3 for η (i.e. η1 � e1, η2 � e2 and η3 � e3). With
the aid of (34) and (36), we obtain a system of equations�� y2 y3 0

y1 0 y3
0 y1 y2

�
��� pf12pf13pf23

���

�� λ1
λ2
λ3

�. (38)
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The system of equations (38) can be solved to give

pf12 �
λ1
2y2

�
λ2
2y1

�
λ3y3
2y1y2

, (39)

pf13 �
λ1
2y3

�
λ3
2y1

�
λ2y2
2y1y3

, (40)

pf23 �
λ2
2y3

�
λ3
2y2

�
λ1y1
2y2y3

. (41)

The result is summarized in the following theorem

Theorem 1 A symmetric tensor field f P SpR3;S2C3q is uniquely determined by the
data Jfpξ, xq for ξ P ηKi , i � 1, 2, 3 where pη1, η2, η3q forms an orthogonal basis.

5 Alternative formulae for diagonal components

While the diagonal components fii are easily determined as we have seen, there is an
alternative more complicated procedure to recover them. As this uses different data it
can also be viewed as a compatibility condition on the three axis data.

Consider (35) and (37). When η � e1, we have trĥ � f̂22 � f̂33, and

ĥ �

�� 0 0 0

0 f̂33 �f̂23
0 �f̂23 f̂22

�.
In the same manner as above (λi), we achieve a system of equations for µi

py22 � y23qpf̂22 � f̂33q � py22 f̂33 � 2y2y3f̂23 � y23 f̂22q � µ1,

py21 � y23qpf̂11 � f̂33q � py21 f̂33 � 2y1y3f̂13 � y23 f̂11q � µ2,

py21 � y22qpf̂11 � f̂22q � py21 f̂22 � 2y1y2f̂12 � y22 f̂11q � µ3. (42)

Rearranging the above gives the following�� 0 y22 y23
y21 0 y23
y21 y22 0

��� f̂11
f̂22
f̂33

��

�� µ1 � 2y2y3f̂23
µ2 � 2y1y3f̂13
µ3 � 2y1y2f̂12

�. (43)

Let us relabel the RHS of the above as�� µ1 � 2y2y3f̂23
µ2 � 2y1y3f̂13
µ3 � 2y1y2f̂12

��

�� ν1
ν2
ν3

�. (44)

In this way the solution of (43) can be written as

f̂11 �
1

2y21
pν2 � ν3 � ν1q,
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f̂22 �
1

2y22
pν1 � ν3 � ν2q,

f̂33 �
1

2y23
pν2 � ν1 � ν3q. (45)

Upon substitution of the off-diagonals and µ’s into (45), we obtain

f̂11 �
1

2y21
pµ2 � µ3 � µ1 � y2λ2 � y3λ3 � 3y1λ1q,

f̂22 �
1

2y22
pµ1 � µ3 � µ2 � y1λ1 � y3λ3 � 3y2λ2q,

f̂33 �
1

2y23
pµ2 � µ1 � µ3 � y2λ2 � y1λ1 � 3y3λ3q. (46)

6 Insufficiency for two axes

To reduce the data acquisition time, experimentalists would want to rotate the specimen
on its axis as few times as possible. We show that in the general case two orthogonal
axes are insufficient by considering components in the null space of the TRT. Thus
Jηf � 0. If we had two orthogonal axes, say η � e1, e2, then xη, Jηfηy � 0. This
implies that f11 � f22 � 0. From the definition of ληpyq and µηpyq, λ1 � λ2 � 0 and
µ1 � µ2 � 0. The system of equations for the off-diagonals (38) gives us

y2f̂12 � y3f̂13 � λ1 � 0, (47)

y1f̂12 � y3f̂23 � λ2 � 0. (48)

Moreover the system of equations corresponding to the other non-axial components,
(44), gives

y22 f̂22 � y23 f̂33 � µ1 � 2y2y3f̂23, (49)

y21 f̂11 � y23 f̂33 � µ2 � 2y1y3f̂13. (50)

Due to the argument at the start we can rearrange (50) as

y23 f̂33 � �2y2y3f̂23, (51)

y23 f̂33 � �2y1y3f̂13. (52)

From the above, say f̂33 is arbitrary and consequently f̂13 and f̂23 are determined as

f̂23 � �
y3
2y2

f̂33 and f̂13 � �
y3
2y1

f̂33. (53)

Using the values obtained in (53) and substituting into (48) we can write f̂12 as

f̂12 �
y23

2y1y2
f̂33. (54)

Thus all the off-diagonal components in the tensor field are determined through f̂33
which is arbitrary. Hence two axes are insufficient.
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7 Potential cases

In the potential case fij � Bui{Bxj � Buj{Bxi where u P SpR3;C3q. This is important
for applications in that a linear strain tensor f has this form where u is twice the
displacement field.

Without loss of generality suppose that data is known only for rotations about
η � e1, e2. We have immediately f11, f22 and hence by direct integration twice u1 and
u2. We now also have f12 from the partial derivatives of u1 and u2. It remains only to
find u3. Multiplying f̂12 by y1y2 and f̂13 by y1y3 and adding both of them in (41) gives

y1y2f̂12 � y1y3f̂13 � y1λ1. (55)

This gives us f13 in terms of known data and as Bu1{Bx3 is known we have Bu3{Bx1
and hence u3. We summarise in the theorem

Theorem 2 A potential f P SpR3;S2pC3qq is determined uniquely from Jfpξ, xq
restricted to ξ P ηK1 and ξ P ηK2 where η1 and η2 are orthogonal.

This result is of considerable practical importance as it means that stain tensors, in a
scheme such as that envisaged in [5], can be recovered from rotations about only two
axes.

We now show that in general a potential f cannot be recovered uniquely from a
one-axis rotation by constructing a general element of the null space. Suppose we
rotate only about e1 we have immediately f11 � 0 and as f̂ij � yiûj � yj ûi we see
u1 � 0. Now as λ1 and u1 are zero

y2û2 � y3û3 �

�
λ1 � py22 � y23qû1

�
y1

� 0. (56)

and as µ1 � 0

y2û2 � y3û3 �
µ1

2py22 � y23q
� 0, (57)

giving no new information. So u must satisfy u1 � 0 and Bu2{Bx2 � Bu3{Bx3 � 0. For
example if u2 is arbitrarily specified, then

u3 � �

8»
�8

Bu2
Bx2

dx3. (58)

8 Numerical results

8.1 Forward model

In order to generate data sets, we need to implement a discretized version of the
operator J described in (1) as a matrix which will calculate integrals of projections
and act upon generated strain fields represented by an array. Instead of calculating
the whole matrix, we generate it one row at a time (on the fly) which corresponds to
one individual source-detector pair for one of the three components in Pξf described
by (2).
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8.1.1 Discrete representation of the tensor field

The discretized tensor field is stored as a N � N � N � 6 vector, containing the 6
distinct values of the symmetric second rank tensor field for each voxel in a N �N �N
voxel grid. We increment first by the tensor component number, then the position x1,
x2 and finally x3. Furthermore, the data is represented by a 3 � nθ � h� w � 3 multi-
dimensional array (5 dimensional), where we use 3 rotation axes pη � e1, e2 and e3q,
nθ angles steps for tomographic acquisition around each axis and h�w represents how
many rays in the horizontal and vertical direction. The factor of 3 is the number of
independent values of Jf in (2) which we integrate along each ray.

8.1.2 Methodology

We simulate an experimental setup with parallel rays passing through a specimen.
Sources and detectors consist of arrays in an equally spaced grid, either side of the
object being scanned. The ratio of the number of rays in the horizontal to vertical
direction is 4 : 3. The source-detector pair is kept fixed and the object is rotated. We
follow the procedure of [10, Chapter 5.1.4] to calculate the approximate integral along
a line through a voxel grid. This will give us the contribution of each voxel to the
total integral for a given ray. For a given tensor we need to calculate the projection
on to the plane perpendicular to the ray. To simplify this, we rotate the coordinate
system. We extract the two appropriate components (relating to the axial and non-axial
components). Since we have the contribution of each voxel to the integral, the length
of intersection of the ray with the voxel, from ray tracing we can form the sum of these
intersection lengths with the voxel values to form the approximate integral.

For our numerical experiments, phantoms were generated inside a cubic grid
measuring 405�405�405 voxels and measurements were simulated for a source/detector
grid with 405�540 pixels. The number of rays in the vertical direction was taken to be
the image height (i.e. 405 pixels). The pixel grid was then down-sampled by a factor
of 3 to 135� 180 pixels by the process of binning. Finally 1% Gaussian pseudo-random
noise was added before reconstructing on a courser voxel grid measuring 135�135�135.
The number of angles (projections) was 240 per rotation axis.

8.2 Generating Phantoms

For input into the forward projector we generate two different phantoms or test fields.
The first one only has smooth features and is expected to be less sensitive to algorithmic
instabilities. The second phantom contains sharp edges and is designed to highlight
the limitations of the explicit reconstruction algorithm for discontinuous strain fields.

8.2.1 Phantom 1: smooth

Phantom 1 is constructed from smooth Gaussians which makes it relatively easy to
reconstruct. We define a cubic domain r�1, 1s3 on which the components of f are
supported, defined by 3-dimensional Gaussians bαpxq for each of the components fij
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according to Table 1, where

bαpxq � α expp�50|x� a|2q.

Table 1: Phantom 1 - Smooth

fij α a1 a2 a3

f11

-1 -0.5 -0.5 -0.5
1 -0.5 0.5 -0.5

-1 -0.5 0.5 0.5

f12
1 0.5 -0.5 0.5

-1 0.5 0.5 -0.5

f13

1 -0.5 -0.5 -0.5
-1 -0.5 -0.5 0.5
1 -0.5 0.5 0.5

f22

-1 0.5 -0.5 -0.5
1 0.5 0.5 0.5

-1 0.5 0.5 0.5

f23
1 -0.5 -0.5 0.5

-1 -0.5 0.5 -0.5

f33

1 0.5 -0.5 -0.5
-1 0.5 -0.5 0.5
1 0.5 0.5 0.5

Table 2: Phantom 2 - Sharp

i j I1 I2 I3

1 1 [-0.4,0.4] [-0.6,0.2] [-0,8,0.8]
1 2 [-0.4,0.4] [-0.2,0.6] [-0.8,0.8]
1 3 [-0.8,0.8] [-0.4,0.4] [-0.6,0.2]
2 2 [-0.8,0.8] [-0.4,0.4] [-0.2,0.6]
2 3 [-0.6,0.2] [-0.8,0.8] [-0.4,0.4]
3 3 [-0.2,0.6] [-0.8,0.8] [-0.4,0.4]

8.2.2 Phantom 2: sharp

Phantom 2 is constructed to contain sharp edges, to highlight non-linear strain fields
which is not quite compatible with the reconstruction algorithm. As in the smooth
case, we define f on the cube r�1, 1s3, but set fij to be the characteristic function of
I1 � I2 � I3 , according to Table 2.

8.3 Reconstruction Procedure

The recovery of axial components are relatively straight forward as this is just plane-
by-plane Radon inversion. Hence, we apply a ramp-filter (Ram-Lak) to the data and
back-project to achieve the diagonal entries for each rotation axis. Since, we can think
of back-projection as the dual operator of ray integration, we reuse the ray tracing
code to implement back-projection as the transpose of ray integration.

From (36), we see that the simulated data values J1 that are collected for each
plane need to be differentiated in the p-direction, before any back-projection takes
place. To implement this, we perform a regularised derivative, which we carry out
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in the Fourier domain using a Hamming window regularisation. After performing a
one-dimensional Discrete Fourier Transform using the Fast Fourier Transform FFT
algorithm, we multiply by �ikwpnq, where wpnq is the Hamming window. For a
discrete signal of length N, labelled by n � 0, ...., N � 1, the Hamming window wpnq is
given by

wpnq � 0.54 � 0.46 cos

�
2πn

N � 1



. (59)

The result is returned to the spatial domain using the inverse FFT algorithm.
Following the filter we back-project the differentiated plane by plane data onto the

voxel grid and the tangential vector field components (i.e. λ) are calculated using a
three dimensional FFT algorithm and application of a ramp-filter in frequency space.
Then equations (41) are used to recover the off-diagonal terms in frequency space. The

only exception is the voxel py1, y2, y3q � p0, 0, 0q, where f̂12, f̂13 and f̂23 are undefined.
Here, the value is set using linear interpolation from nearby voxels. To complete our
reconstruction, we employ the three dimensional inverse FFT to recover fij .

8.4 Results and summary

Below we illustrate the results of our implemented reconstructions which clearly show
the performance of the algorithm on two different tensor fields. As expected, the
smooth (Gaussian) field is reconstructed well. However, when we introduce sharp edges
in the components of a field such as a crack, we see that as expected the reconstruction
is inaccurate and artefacts are visible. The artefacts increase as more noise is added.
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(a) Reconstruction of f11 (b) Original f11

(c) Reconstruction of f12 (d) Original f12

(e) Reconstruction of f13 (f) Original f13

Figure 1: Reconstruction of several gaussian balls f11, f12 and f13
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(a) Reconstruction of f22 (b) Original f22

(c) Reconstruction of f23 (d) Original f23

(e) Reconstruction of f33 (f) Original f33

Figure 2: Reconstruction of several gaussian balls for f22, f23 and f33

16



(a) Reconstruction of f11 (b) Original f11

(c) Reconstruction of f12 (d) Original f12

(e) Reconstruction of f13 (f) Original f13

Figure 3: Reconstruction of sharp phantom, f11, f12 and f13
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(a) Reconstruction of f22 (b) Original f22

(c) Reconstruction of f23 (d) Original f23

(e) Reconstruction of f33 (f) Original f33

Figure 4: Reconstruction of sharp phantom, f22, f23 and f33
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9 Conclusions and further work

Overall the procedure we describe would provide an efficient method for x-ray diffraction
tomography. It handles smooth tensor fields well but for discontinuous strain fields
it would be sensible to try different modified ramp filters or explicit regularization
methods such as total variation.

If would be possible in the case of a tensor field that is the result of an infinitesimal
strain to use only two axes of rotation, and recover the displacement field directly.
However it might be better in practice to use the general procedure and then verify to
what extent the compatibility condition holds on the reconstructed tensor.

We have pointed out that as there are two distinct methods of calculating the
diagonal components this provides a consistency condition on the data. As the plane-by-
plane data is written in terms of scalar, vector and tensor longitudinal ray transforms,
and the ranges of these operators can be determined in the plane case as a singular
function expansion in a suitable Hilbert space. In fan beam coordinates the singular
value decomposition of the ray transform is given by [3]. See also [1] and [2] for a
parallel beam formulation.

The Helgason-Ludwig range conditions for the scalar Radon transform in the plane

[7, Sec II.4] simply states that the kth moment of the data
8³
�8

skXfpξ, sξKq ds, when

it exists, is a polynomial of degree ¤ k in ξ. For the LRT of a rank m tensor the
condition is simply degree ¤ k �m. A deeper connection between these conditions
and the singular function expansion is given by [6].

Such consistency conditions, characterizing the range of the forward operator
are of great assistance in diagnosing errors and unaccounted for physical effects in
experimental data.

Another avenue worth considering on the practical side is to develop a reconstruction
algorithm involving general (non-orthonormal) axes. In experiments it is often not
feasible to rotate the specimen through 90� and remain in the field of view of the
measurement system.

Explicit reconstruction algorithms such as the one we have given are useful practi-
cally for data that is complete and uniformly sampled. For partial, sparse or irregularly
sampled data representing the forward problem simply as a sparse matrix and solving
using iterative algorithms with explicit regularization is generally better, although
typically requiring large amounts of memory and parallel processors.
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