The point-line collinearity graph of the
Fi' ${ }_{24}$ maximal 2 - localgeometry - thefirstthreediscs

Rowley, Peter and Walker, Louise

2015

MIMS EPrint: 2015.97

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
            School of Mathematics
                            The University of Manchester
                            Manchester, M13 9PL, UK
```


The point-line collinearity graph of the $F i_{24}^{\prime}$ maximal 2-local geometry - the first three discs

Peter Rowley and Louise Walker
School of Mathematics
University of Manchester
Manchester, M13 9PL
UK

Abstract

The disc structure of the point-line collinearity graph for the maximal 2-local geometry associated with the largest simple Fischer group is investigated. For an arbitrary vertex of this graph the first three discs are determined. Additionally a fragment of the fourth disc is uncovered.

1 Introduction and main results

The investigations of Fischer [5] into groups generated by 3-transpositions not only had an influence upon certain later work related to the classification of the finite simple groups but also unearthed three previously unknown sporadic groups, $F i_{22}, F i_{23}$ and $F i_{24}$. The first two of these are simple while $F i_{24}$, though not simple, has a simple subgroup $F i_{24}^{\prime}$ of index 2. For more on these groups and 3-transposition groups in general see the book by Aschbacher [1].

Along with many of the other sporadic simple groups, $F i_{22}, F i_{23}$ and $F i_{24}^{\prime}$ possess minimal parabolic geometries and maximal 2-local geometries (see [9] and [10]). In the present paper we study the point-line collinearity graph \mathcal{G} of Γ, the maximal 2-local geometry for $F i_{24}^{\prime}$. This geometry has rank 4 and its associated diagram is

Many properties of Γ are itemized in Section 2. We recall that the vertices of \mathcal{G} are Γ_{0}, the points of Γ and two points are adjacent in \mathcal{G} if they are incident with a common line. In [11],[12],[13] and [14] complete and detailed descriptions of the corresponding point-line collinearity graphs for $F i_{22}$ and $F i_{23}$ are presented.

For $x \in \Gamma_{0}$ and $i \in \mathbb{N}, \Delta_{i}(x)$ denotes the set of points of Γ_{0} distance i from x. Let $G=F i_{24}^{\prime}$. Now G acts flag transitively on Γ and so, in studying \mathcal{G}, there is no loss in choosing and fixing a point a of Γ. Here we shall obtain properties of the first three discs of \mathcal{G} around a (that is, of $\Delta_{1}(a), \Delta_{2}(a)$ and $\left.\Delta_{3}(a)\right)$ as well as describing a certain fragment of $\Delta_{4}(a)$. In a subsequent paper [16], a complete description of \mathcal{G} is obtained - however the work in [16] is exclusively computer based, whereas this paper does not rely on any machine calculations. It is worth remarking that the notation and conventions used here and in [16] are compatible so as to allow a smooth transition between the two viewpoints. Earlier in [17], the second author obtained results on the structure of the first three discs of \mathcal{G}. The arguments given here will differ to some extent from those in [17] as we may now call upon results in [12],[13] and [14]. Further we are able to give more detail on
adjacency within $\Delta_{3}(a)$.
We now present our main results - for notation we refer the reader to Section 2.

Theorem 1. (i) $\Delta_{1}(a)$ is a G_{a}-orbit of size 1518;
(ii) $\Delta_{2}(a)$ is the union of three G_{a}-orbits $\Delta_{2}^{i}(a)(i=1,2,3)$ and $\left|\Delta_{2}(a)\right|=$ 1, 560, 504;
(iii) $\Delta_{3}(a)$ is the union of ten G_{a}-orbits $\Delta_{3}^{i}(a)(i=1, \ldots, 10)$ and $\left|\Delta_{3}(a)\right|=$ 1, 400, 874, 432; and
(iv) $\Delta_{4}(a) \cap\left\{x \in \Gamma_{0} \mid \Omega_{x} \cap \Omega_{a} \neq \emptyset\right\}$ is the union of six G_{a}-orbits $\Delta_{4}^{i}(a)$ ($i=1, \ldots, 6$) and consists of $3,992,911,872$ points.

Tables 1 and 2 list the sizes of the above mentioned G_{a}-orbits $\Delta_{j}^{i}(a)$.

$\Delta_{j}^{i}(a)$	Size of $\Delta_{j}^{i}(a)$
$\Delta_{1}(a)$	$2 \cdot 3 \cdot 11 \cdot 23=1518$
$\Delta_{2}^{1}(a)$	$2^{5} \cdot 3 \cdot 7 \cdot 11 \cdot 23=170,016$
$\Delta_{2}^{2}(a)$	$2^{8} \cdot 3 \cdot 7 \cdot 11 \cdot 23=1,360,128$
$\Delta_{2}^{3}(a)$	$2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 23=30,360$
$\Delta_{3}^{1}(a)$	$2^{12} \cdot 11 \cdot 23=1,036,288$
$\Delta_{3}^{2}(a)$	$2^{10} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 23=11,658,240$
$\Delta_{3}^{3}(a)$	$2^{12} \cdot 3 \cdot 7 \cdot 11 \cdot 23=21,762,048$
$\Delta_{3}^{4}(a)$	$2^{12} \cdot 3 \cdot 23=282,624$
$\Delta_{3}^{5}(a)$	$2^{15} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 23=522,289,152$
$\Delta_{3}^{6}(a)$	$2^{12} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23=108,810,240$
$\Delta_{3}^{7}(a)$	$2^{9} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23=40,803,840$
$\Delta_{3}^{8}(a)$	$2^{6} \cdot 5 \cdot 7 \cdot 11 \cdot 23=566,720$
$\Delta_{3}^{9}(a)$	$2^{13} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23=652,861,440$
$\Delta_{3}^{10}(a)$	$2^{9} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23=40,803,840$
Table 1	

$\Delta_{j}^{i}(a)$	Size of $\Delta_{j}^{i}(a)$
$\Delta_{4}^{1}(a)$	$2^{16} .3^{2} .5 \cdot 11 \cdot 23=746,127,360$
$\Delta_{4}^{2}(a)$	$2^{15} .3 \cdot 11.23=24,870,912$
$\Delta_{4}^{3}(a)$	$2^{15} .3 \cdot 5 \cdot 7 \cdot 11.23=870,481,920$
$\Delta_{4}^{4}(a)$	$2^{19} .3^{2} .7 \cdot 23=759,693,312$
$\Delta_{4}^{5}(a)$	$2^{18} .3 \cdot 11 \cdot 23=198,967,296$
$\Delta_{4}^{6}(a)$	$2^{18} .3 \cdot 7 \cdot 11 \cdot 23=1,392,771,072$

Table 2

Theorem 2. Let $x \in \Delta_{1}(a)$. Then $G_{a x} \sim 2^{10} 2^{4} A_{8}$ (with $G_{a x}^{* x}=\left(G_{a x}^{* x}\right)_{x+a} \sim$ $2^{4} A_{8}$, an octad stabilizer) has 4 orbits on $\Gamma_{1}(x)$ with point distribution as follows.

$$
\begin{array}{ccc}
\text { Orbit } & \text { Size } & \text { Point distribution } \\
\{x+a\} & 1 & \{a\} 2 \Delta_{1} \\
\alpha_{0}(x, x+a) & 30 & \Delta_{1} 2 \Delta_{2}^{3} \\
\alpha_{2}(x, x+a) & 448 & \Delta_{1} 2 \Delta_{2}^{2} \\
\alpha_{4}(x, x+a) & 280 & \Delta_{1} 2 \Delta_{2}^{1}
\end{array}
$$

Theorem 3. Let $x \in \Delta_{2}^{1}(a)$. Then $G_{a x} \sim 2^{7} 2^{6}\left(3 \times S_{5}\right)$ (with $G_{a x}^{* x}=$ $\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}\right\} \sim 2^{6}\left(3 \times S_{5}\right)$, where $\Lambda_{1}=\Omega_{a} \cap \Omega_{x}$ is a tetrad and Λ_{2} is the unique sextet of Ω_{x} containing Λ_{1}. Also $G_{a x} \leq G_{a X}$ where X is the unique hyperplane incident with both a and x. Further, $G_{a x}$ has 6 orbits on $\Gamma_{1}(x)$ with point distribution as follows.

Orbit Size Point distribution

$\alpha_{4,4^{2}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	5	$\Delta_{1} 2 \Delta_{2}^{1}$
$\alpha_{0,4^{2}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	10	$\Delta_{2}^{1} 2 \Delta_{3}^{8}$
$\alpha_{1,31^{5}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	320	$\Delta_{2}^{1} 2 \Delta_{3}^{6}$
$\alpha_{2,2^{4}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	240	$\Delta_{2}^{1} 2 \Delta_{3}^{2}$
$\alpha_{0,2^{4}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	120	$\Delta_{2}^{1} 2 \Delta_{3}^{7}$
$\alpha_{3,31^{5}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	64	$\Delta_{2}^{1} 2 \Delta_{3}^{1}$

Theorem 4. Let $x \in \Delta_{2}^{2}(a)$. Then $G_{a x} \sim 2^{5} 2^{4} S_{6},\left|\{a, x\}^{\perp}\right|=1$ and $G_{a x}^{* x}=$ Stab $G_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}\right\} \sim 2^{4} S_{6}$, where Λ_{1} is the octad of Ω_{x} corresponding to $x+b$ (where $b=\{a, x\}^{\perp}$) and $\Lambda_{2}=\Omega_{a} \cap \Omega_{b} \cap \Omega_{x}$, a duad contained in Λ_{1}. The number of $G_{a x}$-orbits on $\Gamma_{1}(x)$ is 8 with point distribution as follows.

Orbit Size Point distribution

$\alpha_{8,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)=\{x+b\}$	1	$\Delta_{1} 2 \Delta_{2}^{2}$
$\alpha_{2,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	16	$\Delta_{2}^{2} \Delta_{3}^{3} \Delta_{3}^{4}$
$\alpha_{4,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	60	$\Delta_{2}^{2} 2 \Delta_{3}^{2}$
$\alpha_{4,1}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	160	$\Delta_{2}^{2} 2 \Delta_{3}^{6}$
$\alpha_{2,1}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	192	$\Delta_{2}^{2} 2 \Delta_{3}^{5}$
$\alpha_{4,0}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	60	$\Delta_{2}^{2} 2 \Delta_{3}^{10}$
$\alpha_{2,0}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	240	$\Delta_{2}^{2} 2 \Delta_{3}^{9}$
$\alpha_{0,0}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	30	$\Delta_{2}^{2} 2 \Delta_{3}^{7}$

Theorem 5. Let $x \in \Delta_{2}^{3}(a)$. Then $G_{a x} \sim 2^{9} 2^{6}\left(L_{3}(2) \times 3\right)$ and $G_{a x}^{* x} \sim$ $2^{6}\left(L_{3}(2) \times 3\right)$, the derived subgroup of $\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}\right\}$ where Λ_{1} is a trio of Ω_{x}. Also $G_{a x} \leq G_{a \pi}$ where π is the unique plane incident with both a and x. The number of $G_{a x}$-orbits on $\Gamma_{1}(x)$ is 3 with point distribution as follows.

Orbit Size Point distribution

$$
\begin{array}{ccc}
\alpha_{80^{2}}\left(x, \Lambda_{1}\right) & 3 & \Delta_{1} 2 \Delta_{2}^{3} \\
\alpha_{4^{2}}\left(x, \Lambda_{1}\right) & 84 & \Delta_{2}^{3} 2 \Delta_{3}^{8} \\
\alpha_{42^{2}}\left(x, \Lambda_{1}\right) & 672 & \Delta_{2}^{3} 2 \Delta_{3}^{10}
\end{array}
$$

Now we move onto $\Delta_{3}(a)$ the third disc of a; we caution that in the following results the point distribution is incomplete.

Theorem 6. Let $x \in \Delta_{3}^{1}(a)$. Then $G_{a x} \sim 2^{2} L_{3}(4) S_{3}$ and $G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}\right\} \sim$ $L_{3}(4): S_{3}$ where Λ_{1} is a triad of Ω_{x}. The number of $G_{a x}$-orbits on $\Gamma_{1}(x)$ is 4, the point distribution of 3 of them are as follows.

Orbit	Size	Point distribution
$\alpha_{3}\left(x, \Lambda_{1}\right)$	21	$\Delta_{2}^{1} 2 \Delta_{3}^{1}$
$\alpha_{2}\left(x, \Lambda_{1}\right)$	168	$\Delta_{3}^{1} 2 \Delta_{3}^{3}$
$\alpha_{1}\left(x, \Lambda_{1}\right)$	360	$\Delta_{3}^{1} 2 \Delta_{4}^{1}$

Theorem 7. Let $x \in \Delta_{3}^{2}(a)$. Then $G_{a x} \sim 2^{4} 2^{3}:\left(L_{3}(2) \times 2\right)$ and $G_{a x}^{* x}=$ $\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}\right\} \sim 2^{3}:\left(L_{3}(2) \times 2\right)$ where Λ_{1} is an octad and Λ_{2} is a duad of Ω_{x} and $\Lambda_{1} \cap \Lambda_{2}=\emptyset$. The number of $G_{a x}$-orbits on $\Gamma_{1}(x)$ is 11, the point distribution of 6 of them are as follows.

Orbit	Size	Point distribution
$\alpha_{0,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	7	$\Delta_{2}^{1} 2 \Delta_{3}^{2}$
$\alpha_{0,1}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	16	$\Delta_{3}^{2} 2 \Delta_{4}^{2}$
$\alpha_{4,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	14	$\Delta_{2}^{2} 2 \Delta_{3}^{2}$
$\alpha_{2,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	56	$\Delta_{3}^{2} 2 \Delta_{3}^{3}$
$\alpha_{4,1}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	112	$\Delta_{3}^{2} 2 \Delta_{4}^{3}$
$\alpha_{2,1}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	224	$\Delta_{3}^{2} 2 \Delta_{4}^{1}$

Theorem 8. Let $x \in \Delta_{3}^{3}(a)$. Then $G_{a x} \sim 22^{4}: S_{6}$ and $G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}\right\} \sim$ $2^{4}: S_{6}$ where Λ_{1} is an octad and Λ_{2} is a duad of Ω_{x} and $\Lambda_{2} \subseteq \Lambda_{1}$. The number of $G_{a x}$-orbits on $\Gamma_{1}(x)$ is 8 , the point distribution of 5 of them are as follows.

Orbit Size Point distribution

$\alpha_{8,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)=\left\{\Lambda_{1}\right\}$	1	$\Delta_{2}^{2} \Delta_{3}^{3} \Delta_{3}^{4}$
$\alpha_{2,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	16	$\Delta_{3}^{1} 2 \Delta_{3}^{3}$
$\alpha_{4,2}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	60	$\Delta_{3}^{2} 2 \Delta_{3}^{3}$
$\alpha_{4,1}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	160	$\Delta_{3}^{3} 2 \Delta_{4}^{6}$
$\alpha_{2,1}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	192	$\Delta_{3}^{3} 2 \Delta_{4}^{4}$

Theorem 9. Let $x \in \Delta_{3}^{4}(a)$. Then $G_{a x} \sim 2: M_{22}: 2$ and $G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}\right\} \sim$ $M_{22}: 2$ where Λ_{1} is a duad of Ω_{x}. The number of $G_{a x}$-orbits on $\Gamma_{1}(x)$ is 3, the point distribution of 2 of them are as follows.

Orbit Size Point distribution

$$
\begin{array}{ccc}
\alpha_{2}\left(x, \Lambda_{1}\right) & 77 & \Delta_{2}^{2} \Delta_{3}^{3} \Delta_{3}^{4} \\
\alpha_{1}\left(x, \Lambda_{1}\right) & 352 & \Delta_{3}^{4} 2 \Delta_{4}^{5}
\end{array}
$$

Theorem 10. Let $x \in \Delta_{3}^{5}(a)$. Then $G_{a x} \cong G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\} \sim$ $2^{4}: A_{5}$ where $\Lambda_{1}=O_{1}, \Lambda_{2}=\{\infty\}$ and $\Lambda_{3}=\{14\}$. The number of $G_{a x}$-orbits on $\Gamma_{1}(x)$ is 13, the point distribution of 9 of them are as follows.

Orbit Size Point distribution

$\alpha_{8,1,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)=\left\{O_{1}\right\}$	1	$\Delta_{2}^{2} 2 \Delta_{3}^{5}$
$\alpha_{2,1,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	16	$\Delta_{3}^{5} \Delta_{4}^{4} \Delta_{4}^{5}$
$\alpha_{4,1,0}^{(1)}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	40	$\Delta_{3}^{5} 2 \Delta_{4}^{3}$
$\alpha_{4,1,0}^{(2)}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	40	$\Delta_{3}^{5} \Delta_{4}^{5} \Delta_{4}^{6}$
$\alpha_{4,0,1}^{(1)}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	40	$\Delta_{3}^{5} 2 \Delta_{4}^{3}$
$\alpha_{4,0,1}^{(2)}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	40	$\Delta_{3}^{5} \Delta_{4}^{5} \Delta_{4}^{6}$
$\alpha_{4,1,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	60	$\Delta_{3}^{5} \Delta_{4}^{1} \Delta_{4}^{3}$
$\alpha_{2,1,0}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	96	$2 \Delta_{3}^{5} \Delta_{4}^{6}$
$\alpha_{2,0,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	96	$2 \Delta_{3}^{5} \Delta_{4}^{6}$

Theorem 11. Let $x \in \Delta_{3}^{6}(a)$. Then $G_{a x} \sim 2^{6}: 3 S_{4}$ and $G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\} \sim$ $2^{4}: 3 S_{4}$ where Λ_{1} is an octad of Ω_{x}, Λ_{2} a tetrad contained in Λ_{1} and Λ_{3} a 1 -element subset of Λ_{2}. The number of $G_{a x}$-orbits on $\Gamma_{1}(x)$ is 16, the point distribution of 7 of them are as follows.

Orbit	Size	Point distribution
$\left\{\Lambda_{1}\right\}$	1	$\Delta_{2}^{1} 2 \Delta_{3}^{6}$
$\alpha_{4,4,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	4	$\Delta_{2}^{2} 2 \Delta_{3}^{6}$
$\alpha_{4,1,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	16	$\Delta_{3}^{6} \Delta_{4}^{2} \Delta_{4}^{3}$
$\alpha_{2,2,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	48	$\Delta_{3}^{6} 2 \Delta_{4}^{3}$
$\alpha_{4,3,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	48	$\Delta_{3}^{6} 2 \Delta_{4}^{1}$
$\alpha_{2,1,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	64	$\Delta_{3}^{6} \Delta_{4}^{5} \Delta_{4}^{6}$
$\alpha_{4,2,1}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	72	$\Delta_{3}^{6} 2 \Delta_{4}^{1}$

Theorem 12. (i) Let $x \in \Delta_{3}^{7}(a)$. Then $G_{a x} \sim\left[2^{9}\right] S_{4}$ and $G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\} \sim$ $\left[2^{6}\right] S_{4}$ where $\Lambda_{1}=O_{1}, \Lambda_{2}=\mathcal{T}_{0}$ and Λ_{3} is the partition of O_{1} given by $\{\infty, 14\},\{0,8\},\{3,20\},\{15,18\}$. The point distribution of 2 of the $G_{a x}$-orbits on $\Gamma_{1}(x)$ are as follows.

Orbit	Size	Point distribution
$\alpha_{8,8,2^{4}}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	1	$\Delta_{2}^{1} 2 \Delta_{3}^{7}$
$\alpha_{0,8,0^{4}}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	1	$\Delta_{2}^{2} 2 \Delta_{3}^{7}$
$\alpha_{0,0,0^{4}}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$	1	$\Delta_{2}^{2} 2 \Delta_{3}^{7}$

(ii) For $x \in \Delta_{3}^{8}(a), G_{a x} \sim 2^{13}: 3.3^{2}: 4$ and $G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}\right\} \sim$ $2^{6} .3 .3^{2}: 4$ where $\Lambda_{1}=S_{0}$ and Λ_{2} is the partition given by

$$
\Sigma=\{\infty, 14,0,8,3,20,15,18,17,4,16,10\} \text { and } \Omega_{x} \backslash \Sigma .
$$

The point distribution of 2 of the $G_{a x}$-orbits on $\Gamma_{1}(x)$ are as follows.

Orbit	Size	Point distribution
$\alpha_{4^{2}, 8}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	6	$\Delta_{2}^{3} 2 \Delta_{3}^{8}$
$\alpha_{4^{2}, 4^{2}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$	9	$\Delta_{2}^{1} 2 \Delta_{3}^{8}$

(iii) For $x \in \Delta_{3}^{9}(a), G_{a x} \cong G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\} \sim 2.2^{4}: S_{4}$ where $\Lambda_{1}=O_{1}, \Lambda_{2}=\{\infty, 14\}$ and $\Lambda_{3}=\mathcal{T}_{0}$. The point distribution of the $G_{a x}$-orbit $\alpha_{8,2,8}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ is $\Delta_{2}^{2} 2 \Delta_{3}^{9}$.
(iv) For $x \in \Delta_{3}^{10}(a), G_{a x} \sim\left[2^{9}\right]: S_{4}$ and $G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\} \sim$ $\left[2^{5}\right]: S_{4}$ where Λ_{1} is the tetrad $\{\infty, 0,3,15\}, \Lambda_{2}$ is the duad $\{14,8\}$ and Λ_{3} is the duad $\{20,18\}$. The point distributions of 2 of the $G_{a x}$-orbits on $\Gamma_{1}(x)$ are as follows.

Orbit Size Point distribution

$$
\begin{array}{lll}
\alpha_{4,2,2}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right) & 1 & \Delta_{2}^{3} 2 \Delta_{3}^{10} \\
\alpha_{4,0,0}\left(x, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right) & 4 & \Delta_{2}^{2} 2 \Delta_{3}^{10}
\end{array}
$$

Theorem 13. (i) For $x \in \Delta_{4}^{1}(a), G_{a x} \sim 2 L_{3}(2) 2$ and $G_{a x}^{* x} \sim L_{3}(2) 2$.
(ii) For $x \in \Delta_{4}^{2}(a), G_{a x} \cong G_{a x}^{* x} \cong A_{8}$.
(iii) For $x \in \Delta_{4}^{3}(a), G_{a x} \cong G_{a x}^{* x} \sim 2^{6} 3^{2}$.
(iv) For $x \in \Delta_{4}^{4}(a), G_{a x} \cong G_{a x}^{* x} \cong L_{2}(11)$.
(v) For $x \in \Delta_{4}^{5}(a), G_{a x} \cong G_{a x}^{* x} \cong A_{7}$.
(vi) For $x \in \Delta_{4}^{6}(a), G_{a x} \cong G_{a x}^{* x} \sim\left(3 \times A_{5}\right) 2$.

Since, for $t \in \Omega_{a}, G_{a x}=G_{a x}^{t}$ for all $x \in \Delta_{4}^{i}(a)(i=1, \ldots, 6)$, the point distributions given in Theorems 11-16 of [12] may be directly translated to give the point distributions for $G_{a x}$-orbits on $\Gamma_{1}(x)$ of those lines within Γ_{0}^{t}.

We close this section by summarizing the collapsed adjacencies established in the above results.

2 Notation and Γ

The maximal 2-local geometry Γ for $G=F i_{24}^{\prime}$ has rank 4 and we use $\Gamma_{i}(i=$ $0,1,2,3$) to denote the objects of type i in Γ; objects of type 0 (respectively $1,2,3)$ will be referred to as points (respectively lines, planes, hyperplanes). For $x \in \Gamma$, the residue of x, Γ_{x}, is defined to be $\{y \in \Gamma \mid x * y\}$ where $*$ is the symmetric incidence relation of Γ. Also, for $x \in \Gamma$, we set

$$
Q(x)=\left\{g \in G_{x} \mid g \text { fixes all objects in } \Gamma_{x}\right\},
$$

and for $H \leqslant G_{x}$ we write $H^{* x}$ for $H Q(x) / Q(x)$. If $\Sigma \subseteq \Gamma$ and $i \in\{0,1,2,3\}$, then we set $\Gamma_{i}(\Sigma)=\left\{x \in \Gamma_{i} \mid x * y\right.$ for all $\left.y \in \Sigma\right\}$. The point-line collinearity graph \mathcal{G} of Γ has Γ_{0} as its vertex set and for $x, y \in \Gamma_{0}, x$ and y are adjacent in \mathcal{G} if they are collinear, that is if $\Gamma_{1}(x, y) \neq \emptyset$. For $x, y \in \Gamma_{0}$, put $\{x, y\}^{\perp}=$ $\Delta_{1}(x) \cap \Delta_{1}(y)$. Also for $x \in \Gamma_{0}$, we define $Z_{1}(x)=\{g \in G \mid g$ fixes $\{x\} \cup$ $\Delta_{1}(x)$ pointwise $\}$ - note that $Z_{1}(x) \unlhd G_{x}$.

We take as our starting point the following properties of Γ.
(2.1)(i) G acts flag transitively on Γ.
(ii) Γ is a string geometry.
(iii) For $l \in \Gamma_{1},\left|\Gamma_{0}(l)\right|=3$ and if $x, y \in \Gamma_{0}(l)$ with $x \neq y$, then $\Gamma_{1}(x, y)=$ $\{l\}$.
(iv) For $x \in \Gamma_{0}, G_{x} \sim 2^{11 \cdot} M_{24}$ with $Q(x) \cong 2^{11}$, the dual of the Golay code module and $G_{x}^{* x} \cong M_{24}$. Moreover, Γ_{x} is isomorphic to the M_{24} maximal 2-local geometry.
(v) For $X \in \Gamma_{3}, G_{X} \sim 2_{+}^{1+12} .3 . U_{4}(3) .2$ with $Q(X) \sim 2_{+}^{1+12} .3, Z\left(G_{X}\right)=$ $Z\left(O_{2}(Q(X)) \cong 2\right.$ and $G_{X}^{* X} \sim U_{4}(3) .2$. Also, Γ_{X} is isomorphic to a geometry for $U_{4}(3) .2$ which is a subgeometry of the unitary geometry for $U_{6}(2)$.

In (2.1) and elsewhere we follow the ubiquitous ATLAS [2] in describing group structures - it is also a convenient source for information about subgroups of M_{24} and $U_{4}(3) .2$. In the situation of (2.1) we shall frequently denote ℓ by $x+y$ (to indicate we are viewing ℓ in Γ_{x}) or $y+x$ (to indicate we are viewing ℓ in Γ_{y}). See Section 3 for further details on the residue geometry in (2.1)(v).

Let $x \in \Gamma_{0}$ and let l, π, X be, respectively, a line, plane and hyperplane in Γ_{x}. We remark that ℓ corresponds to an octad, π to a trio and X to a sextet (see [9] and [4]). For a further discussion of Γ_{x} and Γ_{X} see Section 3. Other details of these geometries may be found in [6] and [17].

Before introducing an alternative way of viewing Γ we note, in passing, that $\left|\Gamma_{0}\right|=2,503,413,946,215$ and that the permutation rank of G on Γ_{0} is 120 [7].

Let \mathcal{T} denote the set of transpositions in $F i_{24}$. It is a fact that a maximal set B of pairwise commuting transpositions has $|B|=24$ and $\operatorname{Stab}_{G}(B) \sim$ $2^{11 \cdot} M_{24}$. Such a set is called a base in [2] and G is transitive on the set of bases. Since $F i_{24}^{\prime}$ has only one conjugacy class of subgroups isomorphic to $2^{11 \cdot} \cdot M_{24}$ we may identify Γ_{0} with the set of bases in a way which is compatible with the G-action. For $x \in \Gamma_{0}$ we use Ω_{x} to denote the base identified with x. Now Ω_{x} carries a copy of the Steiner system $S(24,8,5)$ preserved by $\operatorname{Stab}_{G}\left(\Omega_{x}\right)$. Indeed an octad of Ω_{x} corresponds to a line in Γ_{x} (such an octad is contained in precisely three bases and incidence between points and lines corresponds to containment of bases and octads). Therefore $x, y \in \Gamma_{0}$ are adjacent in \mathcal{G} if and only if $\Omega_{x} \cap \Omega_{y}$ is an octad of both Ω_{x} and Ω_{y}.

For $t \in \mathcal{T}$ put $\Gamma_{0}^{t}=\left\{x \in \Gamma_{0} \mid t \in \Omega_{x}\right\}$. So the points in Γ_{0}^{t} correspond to all the bases which contain the fixed transposition t. Also put $G^{t}=C_{G}(t)$. Then $G^{t} \cong F i_{23}$ and Γ_{0}^{t} is the set of points of the $F i_{23}$ geometry scrutinized in [11],[12],[13] (see especially Section 1). Further, if \mathcal{G}^{t} denotes the point-line collinearity graph of this $F i_{23}$ geometry, then we see that for $x, y \in \Gamma_{0}^{t}, x$ and
y are adjacent in \mathcal{G}^{t} if and only if x and y are adjacent in \mathcal{G}. This observation gives us access to a rich vein of geometric information from [12],[13],[14]. So, in studying \mathcal{G}, we may view Γ geometrically working within residues or regard Γ_{0} as living in the world of transpositions. In our arguments we adopt whichever viewpoint is the most efficacious. We shall also frequently call upon data given in [15] and accordingly will denote result (i.j) in [15] by $\mathbf{O}(\mathrm{i} . \mathrm{j})$. We carry along the notational conventions of [4]. So \mathcal{S}_{0} and \mathcal{T}_{0} denote the standard sextet and standard trio and O_{1}, O_{2}, O_{3} are the heavy blocks of the MOG. Additionally we adapt the notation in [15] in the following manner. Let $x \in \Gamma_{0}$. In Γ_{x} the lines correspond to the octads of the M_{24} maximal 2local geometry so to indicate we are working in Γ_{x} we write $\alpha_{i}\left(x, \Lambda_{1}\right)$ instead of just α_{i} (see $\mathbf{O}(2.1)$), with a similar convention for the other orbits itemized in [15].
(2.2) Let x be a point in Γ.
(i) $\Delta_{2}^{1}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $b \in\{x, y\}^{\perp}$ such that $\left.b+y \in \alpha_{4}(b, b+x)\right\}$.
(ii) $\Delta_{2}^{2}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $b \in\{x, y\}^{\perp}$ such that $\left.b+y \in \alpha_{2}(b, b+x)\right\}$.
(iii) $\Delta_{2}^{3}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $b \in\{x, y\}^{\perp}$ such that $\left.b+y \in \alpha_{0}(b, b+x)\right\}$.
(iv) $\Delta_{3}^{1}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{1}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\left.\alpha_{3,31^{5}}\left(c, \Omega_{x} \cap \Omega_{c}, \mathcal{S}_{c x}\right)\right\}$.
(v) $\Delta_{3}^{2}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{2}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\alpha_{4,2}\left(c, c+b, \mathcal{D}_{c x}\right)$, where $\left.\{b\}=\{x, c\}^{\perp}\right\}$.
(vi) $\Delta_{3}^{3}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{2}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\alpha_{2,2}\left(c, c+b, \mathcal{D}_{c x}\right)$, where $\{b\}=\{x, c\}^{\perp}$ and for $t \in \mathcal{D}_{c x}, c$ is the unique point in $\left.\Gamma_{0}^{t} \cap \Delta_{2}^{2}(x) \cap \Delta_{1}(y)\right\}$.
(vii) $\Delta_{3}^{4}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{2}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\alpha_{2,2}\left(c, c+b, \mathcal{D}_{c x}\right)$, where $\{b\}=\{x, c\}^{\perp}$ and for $t \in \mathcal{D}_{c x}$, there are 77 points in $\left.\Gamma_{0}^{t} \cap \Delta_{2}^{2}(x) \cap \Delta_{1}(y)\right\}$.
(viii) $\Delta_{3}^{5}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{2}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\alpha_{2,1}\left(c, c+b, \mathcal{D}_{c x}\right)$, where $\left.\{b\}=\{x, c\}^{\perp}\right\}$.
(ix) $\Delta_{3}^{6}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{2}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\alpha_{4,1}\left(c, c+b, \mathcal{D}_{c x}\right)$, where $\left.\{b\}=\{x, c\}^{\perp}\right\}$.
(x) $\Delta_{3}^{7}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{1}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\left.\alpha_{0,2^{4}}\left(c, \Omega_{x} \cap \Omega_{c}, \mathcal{S}_{c x}\right)\right\}$.
(xi) $\Delta_{3}^{8}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{3}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\left.\alpha_{4}\left(c, \mathcal{T}_{c x}\right)\right\}$.
(xii) $\Delta_{3}^{9}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{2}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\alpha_{2,0}\left(c, c+b, \mathcal{D}_{c x}\right)$, where $\left.\{b\}=\{x, c\}^{\perp}\right\}$.
(xiii) $\Delta_{3}^{10}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{3}(x) \cap \Delta_{1}(y)$ such that $c+y \in$ $\left.\alpha_{42^{2}}\left(c, \mathcal{T}_{c x}\right)\right\}$.
(xiv) $\Delta_{4}^{1}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $d \in \Delta_{3}^{1}(x) \cap \Delta_{1}(y)$ such that $d+y \in$ $\left.\alpha_{1}\left(d, \mathcal{T}_{d x}\right)\right\}$.
(xv) $\Delta_{4}^{2}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $d \in \Delta_{3}^{2}(x) \cap \Delta_{1}(y)$ such that $d+y \in$ $\left.\alpha_{0,1}\left(d, \mathcal{O}_{d x}, \mathcal{D}_{d x}\right)\right\}$.
(xvi) $\Delta_{4}^{3}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $d \in \Delta_{3}^{2}(x) \cap \Delta_{1}(y)$ such that $d+y \in$ $\left.\alpha_{4,1}\left(d, \mathcal{O}_{d x}, \mathcal{D}_{d x}\right)\right\}$.
(xvii) $\Delta_{4}^{4}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $d \in \Delta_{3}^{3}(x) \cap \Delta_{1}(y)$ such that $d+y \in$ $\alpha_{2,1}\left(d, d+b, \mathcal{D}_{d x}\right)$, where $\left.\{b\}=\Delta_{1}(d) \cap \Delta_{2}^{2}(x)\right\}$.
(xviii) $\Delta_{4}^{5}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $d \in \Delta_{3}^{4}(x) \cap \Delta_{1}(y)$ such that $d+y \in$ $\left.\alpha_{1}\left(d, \mathcal{D}_{d x}\right)\right\}$.
(xix) $\Delta_{4}^{6}(x)=\left\{y \in \Gamma_{0} \mid\right.$ there exists $d \in \Delta_{3}^{3}(x) \cap \Delta_{1}(y)$ such that $d+y \in$ $\alpha_{4,1}\left(d, d+b, \mathcal{D}_{d x}\right)$, where $\left.\{b\}=\Delta_{1}(d) \cap \Delta_{2}^{2}(x)\right\}$.

In (2.2) the letters $\mathcal{O}, \mathcal{D}, \mathcal{S}, \mathcal{T}$ (with appropriate subscripts) stand for, respectively, particular octads, duads, sextets and trios of certain bases. Their exact description will emerge later, and will tie in with the data given in [15].

Remark

In fact

$$
\Delta_{3}^{8}(x)=\bigcup_{X \in \Gamma_{3}(x)} \Gamma_{0}(X) \cap \Delta_{3}(x) .
$$

See [17] for further details.

Let $x \in \Gamma_{0}$ and $t \in \Omega_{x}$. Set $\Delta_{1}(x)^{t}=\Delta_{1}(x) \cap \Gamma_{0}^{t}$ and for $i=1,2$, let $\Delta_{2}^{i}(x)^{t}=\Delta_{2}^{i}(x) \cap \Gamma_{0}^{t}$. For $i=1, \ldots, 6$ we set

$$
\begin{gathered}
\Delta_{3}^{i}(x)^{t}=\Delta_{3}^{i}(x) \cap \Gamma_{0}^{t} \quad \text { and } \\
\Delta_{4}^{i}(x)^{t}=\Delta_{4}^{i}(x) \cap \Gamma_{0}^{t} .
\end{gathered}
$$

Further we put $Q(x)^{t}=Q(x) \cap G^{t}$. The above notation is set up so as $\Delta_{j}^{i}(x)^{t}$ corresponds to the $\Delta_{j}^{i}(x)$ as given in [12;(2.15)] for the point-line collinearity graph \mathcal{G}^{t}.
(2.3) Let $x \in \Gamma_{0}$.
(i) $\Delta_{1}(x)=\bigcup_{t \in \Omega_{x}} \Delta_{1}(x)^{t}, \Delta_{2}^{i}(x)=\bigcup_{t \in \Omega_{x}} \Delta_{2}^{i}(x)^{t}(i=1,2)$ and $\Delta_{j}^{i}(x)=$ $\bigcup_{t \in \Omega_{x}} \Delta_{j}^{i}(x)^{t}(i=1, \ldots, 6, j=3,4)$.
(ii) For each $t \in \Omega_{x}, Q(x)=Q(x)^{t}$.
(iii) $\Delta_{1}(x), \Delta_{2}^{1}(x), \Delta_{2}^{2}(x), \Delta_{3}^{i}(x)$ and $\Delta_{4}^{i}(x)(i=1, \ldots, 6)$ are all distinct G_{x} orbits.
(iv) If $t \in \Omega_{x}$ and $y \in \Gamma_{0}^{t}$, then $\left[G_{x y}: G_{x y}^{t}\right] \leq 24$.

Proof. Part (i) follows from (2.2) and (ii) holds because $Q(x)$ centralizes all transpositions t in Ω_{x}. Since G_{x} acts transitively on the 24 transpositions in Ω_{x} and, by [12], $\Delta_{1}(x)^{t}, \Delta_{2}^{1}(x)^{t}, \Delta_{2}^{2}(x)^{t}, \Delta_{3}^{i}(x)^{t}, \Delta_{4}^{i}(x)^{t}$ are all G_{x}^{t}-orbits (of differing sizes) we infer that (iii) holds. Because $\left|\Omega_{x}\right|=24$ the $G_{x y}$-orbit of t can have size at most 24 , whence we have (iv).

3 The point and hyperplane residues

Recall that we shall employ the same notational conventions as in [15] for the subscripts of α. Suppose that $x \in \Gamma_{0}, \ell \in \Gamma_{1}(x)$ and $X \in \Gamma_{3}(x)$. Hence by (2.1) we may identify ℓ with an octad of Ω_{x} and X with a sextet of Ω_{x}. So, for example, $\alpha_{4^{2}}(x, X)$ denotes the set of octads (lines) which cuts the sextet X in 4^{2}, and $\alpha_{2}(x, \ell)$ is the set of octads (lines) which intersects the $\operatorname{octad} \ell$ in two elements. Also we define $\beta_{0}(x, X), \beta_{1}(x, X), \beta_{3}(x, X)$ to be the set of sextets of Ω_{x} (not equal to X) which have, respectively, exactly 0 , 1 and 3 octads which are also incident with X. Additionally we define the following subsets of $\Gamma_{3}(x)$:-

$$
\begin{aligned}
& \delta_{1}(x, \ell)=\left\{Y \in \Gamma_{3}(x) \mid \ell \in \alpha_{4^{2}}(x, Y)\right\} \\
& \delta_{2}(x, \ell)=\left\{Y \in \Gamma_{3}(x) \mid \ell \in \alpha_{2^{4}}(x, Y)\right\} \\
& \delta_{3}(x, \ell)=\left\{Y \in \Gamma_{3}(x) \mid \ell \in \alpha_{1^{5} 3}(x, Y)\right\}
\end{aligned}
$$

Lemma 3.1. Let $x \in \Gamma_{0}, \ell \in \Gamma_{1}(x)$ and $X, \in \Gamma_{3}(x)$.
(i) The $G_{x \ell \text {-orbits on }} \Gamma_{1}(x)$ are $\{\ell\}, \alpha_{0}(x, \ell), \alpha_{2}(x, \ell)$ and $\alpha_{4}(x, \ell)$ where $\left|\alpha_{0}(x, \ell)\right|=30,\left|\alpha_{2}(x, \ell)\right|=448$ and $\left|\alpha_{4}(x, \ell)\right|=280$
(ii) The $G_{x \ell}$-orbits on $\Gamma_{3}(x)$ are $\delta_{1}(x, \ell), \delta_{2}(x, \ell)$ and $\delta_{3}(x, \ell)$ where $\left|\delta_{1}(x, \ell)\right|=$ $35,\left|\delta_{2}(x, \ell)\right|=840$ and $\left|\delta_{3}(x, \ell)\right|=896$

Proof. See [3] or [4].
Lemma 3.2. Let $x \in \Gamma_{0}$ and $X \in \Gamma_{3}(x)$ (so in Γ_{x}, X may be identified with a sextet in Ω_{x}). Then the orbits of $G_{x X}$ on $\Gamma_{1}(x)$ (the octads of Ω_{x}) are $\alpha_{4^{2}}(x, X), \alpha_{1^{5} 3}(x, X)$ and $\alpha_{2^{4}}(x, X)$. Moreover $\left|\alpha_{4^{2}}(x, X)\right|=15,\left|\alpha_{1^{5} 3}(x, X)\right|=$ 384 and $\left|\alpha_{2^{4}}(x, X)\right|=360$.

Proof. Since $G_{x X}^{* x} \sim 2^{6} 3 S_{6}$, the stabilizer of the sextet X, this follows from [3].

Lemma 3.3. For $x \in \Gamma_{0}$ and $X \in \Gamma_{3}(x)$, the $G_{x X}$-orbits on $\Gamma_{3}(x)$ are $\{X\}, \beta_{0}(x, X), \beta_{1}(x, X)$ and $\beta_{3}(x, X)$. Further $\left|\beta_{0}(x, X)\right|=1440,\left|\beta_{1}(x, X)\right|=$ 240 and $\left|\beta_{3}(x, X)\right|=90$.

Proof. See [3].
Lemma 3.4. Let $x \in \Gamma_{0}$ and $X, Y \in \Gamma_{3}(x)$.
(i) Suppose $Y \in \beta_{3}(x, X)$. Of the fifteen octads in Ω_{x} incident with X, three are in $\alpha_{4^{2}}(x, Y)$ and twelve are in $\alpha_{2^{4}}(x, Y)$.
(ii) Suppose $Y \in \beta_{1}(x, X)$. Of the fifteen octads in Ω_{x} incident with X, one is in $\alpha_{4^{2}}(x, Y)$, six are in $\alpha_{2^{4}}(x, Y)$ and eight are in $\alpha_{1^{5} 3}(x, Y)$.
(iii) Suppose $Y \in \beta_{0}(x, X)$. Of the fifteen octads in Ω_{x} incident with X, seven are in $\alpha_{2^{4}}(x, Y)$ and eight are in $\alpha_{1^{5} 3}(x, Y)$.

Proof. Since G_{x} is transitive on $\Gamma_{3}(x)$ we may suppose X is the standard sextet. Then, in view of Lemma 3.2, for parts (i) (ii) and (iii) respectively we may take

$$
\begin{gathered}
Y=\begin{array}{cc|cc|cc}
\times & \times & - & - & * & * \\
\times & \times & - & - & * & * \\
0 & 0 & + & + & \square & \square \\
0 & \circ & + & + & \square & \square
\end{array}, \quad Y=\begin{array}{|cc|cc|cc|}
\hline \times & \circ & - & - & - & - \\
0 & \times & + & + & + & + \\
0 & \times & * & * & * & * \\
0 & \times & \square & \square & \square & \square
\end{array} \\
\text { and } Y=\begin{array}{|cc|cc|cc|}
\hline \times & \times & \times & - & * & + \\
\times & - & - & - & 0 & \square \\
0 & + & * & \square & * & 0 \\
\square & * & + & 0 & \square & + \\
\hline
\end{array}
\end{gathered}
$$

It is now straightforward to check the result.
Lemma 3.5. Let $x \in \Gamma_{0}, m \in \Gamma_{1}(x)$ and $X \in \Gamma_{3}(x)$. If $m \notin \Gamma_{1}(X)$, then there exists $Y \in \beta_{3}(x, X) \cup\{X\}$ such that $m \in \alpha_{153}(x, Y)$.

Proof. Since $m \notin \Gamma_{1}(X), m \notin \alpha_{4^{2}}(x, X)$. Hence, by Lemma 3.2, $m \in$ $\alpha_{1^{5} 3}(x, X) \cup \alpha_{2^{4}}(x, X)$. If $m \in \alpha_{1^{5} 3}(x, X)$, then we let $Y=X$. So now we assume that $m \in \alpha_{2^{4}}(x, X)$. Let t_{1} and t_{2} be tetrads of X such that $\left|t_{1} \cap m\right|=2$ and $\left|t_{2} \cap m\right|=0$. Now choose a tetrad t_{3} such that $\left|t_{3} \cap t_{1}\right|=\left|t_{3} \cap t_{2}\right|=2$ and $\left|t_{3} \cap m\right|=1$. Letting Y be the unique sextet containing t_{3}, we have $Y \in \beta_{3}(x, X)$ and $m \in \alpha_{1^{5} 3}(x, Y)$, so proving the lemma.

The balance of this section considers the hyperplane residue of Γ. Set $H=U_{4}(3) \cdot 2\left(\cong G_{X}^{* X}\right.$ where $\left.X \in \Gamma_{3}\right)$. We consider H as a subgroup of $U_{6}(2)$, and let V denote the 6 -dimensional $G F(4)$ unitary module. Now there are 693 isotropic 1-subspaces of V (see [2]) and H has two orbits on these 1 -spaces, say, \mathcal{P} and \mathcal{Q} with $|\mathcal{P}|=567$ and $|\mathcal{Q}|=126$. Of the 6237 isotropic 2-subspaces of $V, 2835$ of them have three 1 -subspaces in \mathcal{P} and two 1 -subspaces in \mathcal{Q} - denote this set by \mathcal{L}. Among the 891 isotropic 3 subspaces, 567 contain exactly one 1 -subspace in \mathcal{Q}; call this set \mathcal{R}. We
define a geometry $\Lambda=\Lambda_{0} \cup \Lambda_{1} \cup \Lambda_{2}$ where $\Lambda_{0}=\mathcal{P}, \Lambda_{1}=\mathcal{L}$ and $\Lambda_{2}=\mathcal{R}$ where incidence is symmetrized inclusion. This geometry is an example of a GAB (see [6]) and we have

Lemma 3.6. For $X \in \Gamma_{3}, \Gamma_{X}$ is isomorphic to Λ.
Our next result lists some properties of Λ we shall require later on.
Lemma 3.7. Let $x \in \Lambda_{0}$.
(i) The H_{x}-orbits on Λ_{0} are $D_{1}(x), D_{2}^{1}(x), D_{2}^{2}(x)$ and $D_{3}^{1}(x)$ where $\left|D_{1}(x)\right|=$ $30,\left|D_{2}^{1}(x)\right|=120,\left|D_{2}^{2}(x)\right|=96$ and $\left|D_{3}^{1}(x)\right|=320$.
(ii) The point-line collinearity graph of Λ is as follows

(iii) We have $H_{x} \sim 2^{4} S_{6}$ with $O_{2}(H) \cong 2^{4}$.
(iv) If $g \in O_{2}\left(H_{x}\right), g \neq 1$, then g interchanges $\Lambda_{0}(l) \backslash\{x\}$ for 8 lines l incident with x and fixes $\Lambda_{0}(l)$ for the other 7 lines incident with x.

Proof. See either [6], [8] or Section 3 of [17].

4 Involutions

In this section we explore the combinatorial relationship between G and the residue geometries as it relates to the action of G on Γ.

Lemma 4.1. Let $x \in \Gamma_{0}$ and $X \in \Gamma_{3}(x)$. Then
(i) $Q(x) \cap Q(X) \cong 2^{7}$ and $Q(x)^{* X}\left(\cong 2^{4}\right) \unlhd G_{x X}^{* X} \sim 2^{4} S_{6}$; and
(ii) $Z_{1}(x)=1$.

Proof. First we note that $Q(x) \nless Q(X)$. For $Q(x) \leqslant Q(X)$ gives, by (2.1)(v), $Q(x) \leqslant O_{2}(Q(X)) \cong 2_{+}^{1+12}$. Since $Q(x)$ is elementary abelian of order 2^{11}, this is impossible. So $1 \neq Q(x)^{* X} \unlhd G_{x X}^{* X} \cong 2^{4} S_{6}$, using Lemma 3.7(iii). Since the 2^{4} is an irreducible S_{6}-module we must have $Q(x)^{* X} \cong 2^{4}$. Hence $Q(x) \cap Q(X) \cong 2^{7}$ and part (i) holds.

Since $Q(x)$ is an irreducible G_{x}-module and $Z_{1}(x) \unlhd G_{x}$, either $Z_{1}(x)=1$ or $Z_{1}(x)=Q(x)$. If $Z_{1}(x)=Q(x)$, then $Z_{1}(x)^{* X}=O_{2}\left(G_{x X}^{* X}\right)$ by part (i). However, from Lemma 3.7(iv), every non-trivial element of $O_{2}\left(G_{x X}^{* X}\right)$ moves some point in $\Gamma_{X} \cap \Delta_{1}(x)$ whereas $Z_{1}(x)$ fixes all points in $\Delta_{1}(x)$ by definition, a contradiction. Thus $Z_{1}(x)=1$.

For $X \in \Gamma_{3}$, we use $\tau(X)$ to denote the involution in $Z\left(G_{X}\right)$; recall that $\left|Z\left(G_{X}\right)\right|=2$ by (2.1)(v). Now let $x \in \Gamma_{0}(X)$. In Γ_{x} we may identify X with a sextet (of Ω_{x}) whose tetrads are T_{1}, \ldots, T_{6}, and we have, for each $i \in\{1, \ldots, 6\}$,

$$
\tau(X)=\prod_{t \in T_{i}} t
$$

(We note that $\tau(X)$ is a tetra-transposition in the language of $[2 ; \mathrm{p} 207]$.) Also observe, as $C_{G}(\tau(X))=G_{X}$, for $X, Y \in \Gamma_{3}, \tau(X)=\tau(Y)$ if and only if $X=Y$.

Let $x \in \Gamma_{0}$. In Ω_{x} consider a duad (that is, a 2-element subset), say $D=\left\{t_{1}, t_{2}\right\}$. Then $\delta(D)=t_{1} t_{2}$ is referred to as a bi-transposition in [2]. Every involution in G is conjugate in G to either $\tau(X)$ or $\delta(D)$.

Lemma 4.2. Let $x \in \Gamma_{0}, X \in \Gamma_{3}(x)$ and D be a duad of Ω_{x}. Then
(i) $\tau(X), \delta(D) \in Q(x)$;
(ii) $C_{G}(\tau(X)) \sim 2^{1+12} 3 U_{4}(3) 2, C_{G}(\delta(D)) \sim 2 \cdot F_{22}: 2$ and
(iii) $Q(x) \backslash\{1\}=\tau(X)^{G_{x}} \cup \delta(D)^{G_{x}}$ with $\left|\tau(X)^{G_{x}}\right|=1771$ and $\left|\delta(D)^{G_{x}}\right|=$ 276.

Proof. The definitions of $\tau(X), \delta(D)$ and (2.1)(iv),(v) give part (i). For part (ii) see [2]. Part (iii) follows from the definition of $\tau(X), \delta(D)$ and properties of the Golay co-code.

Our next lemma concerns sextet lines whose definition we recall. For $x \in \Gamma_{0}$, let $X_{1}, X_{2}, X_{3} \in \Gamma_{3}(x)$, if for all $i, j, 1 \leq i<j \leq 3$ we have $X_{i} \in$ $\beta_{3}\left(x, X_{j}\right)$, then $\left\{X_{1}, X_{2}, X_{3}\right\}$ is called a sextet line of Ω_{x}.

Lemma 4.3. Suppose that $x \in \Gamma_{0}$ and $\left\{X_{1}, X_{2}, X_{3}\right\}$ is a sextet line of Ω_{x}. Then $\tau\left(X_{1}\right) \tau\left(X_{2}\right)=\tau\left(X_{3}\right)$.

Proof. Since, for $X \in \Gamma_{3}$,

$$
\tau(X)=\prod_{t \in T} t
$$

for any tetrad T of X, the lemma follows immediately.

Lemma 4.4. Let $x \in \Gamma_{0}, l \in \Gamma_{1}(x)$ and $X \in \Gamma_{3}(x)$. Then $\tau(X)$ interchanges the points in $\Gamma_{0}(l) \backslash\{x\}$ if and only if $l \in \alpha_{15} 5_{3}(x, X)$.

Proof. Since G_{x} is transitive on $\Gamma_{3}(x)$ we may in Γ_{x}, without loss of generality, suppose X is the standard sextet. Now let Y be the sextet

\times	\circ	-	-	-	-
\circ	\times	+	+	+	+
\circ	\times	$*$	$*$	$*$	$*$
\circ	\times	\square	\square	\square	\square

By Lemma 3.4(ii), of the 15 octads incident with Y, one is in $\alpha_{4^{2}}(x, X)$, eight are in $\alpha_{1^{5} 3}(x, X)$ and six are in $\alpha_{2^{4}}(x, X)$. Since $\tau(X) \in Z\left(G_{x X}\right)$, if $\tau(X)$ fixes $\Gamma_{0}(l)$ (point-wise) for some $l \in \alpha_{4^{2}}(x, X)$ (respectively $\alpha_{1^{5} 3}(x, X)$, $\alpha_{2^{4}}(x, X)$), then, by Lemma 3.2 $\tau(X)$ fixes $\Gamma_{0}(l)$ (point-wise)) for all $l \in$ $\alpha_{4^{2}}(x, X)$ (respectively $\alpha_{1^{5} 3}(x, X), \alpha_{2^{4}}(x, X)$). Because G_{x} is transitive on $\Gamma_{3}(x)$ and, by Lemma 4.1(ii), $Z_{1}(x)=1, \tau(X)^{* Y} \neq 1$. So, by Lemmas 4.1(i) and 4.2(i), $1 \neq \tau(X)^{* Y} \in Q(x)^{* Y}=O_{2}\left(G_{x Y}^{* Y}\right)$. Then $\tau(X)^{* Y}$ (and $\left.\tau(X)\right)$ fixes $\Gamma_{0}(l)$ (point-wise) for exactly 7 of the lines $l \in \Gamma_{1}(x, Y)$ by Lemma 3.7(iv). Therefore $\tau(X)$ interchanges the points in $\Gamma_{0}(l) \backslash\{x\}$ only when $l \in$ $\alpha_{153}(x, X)$.

Lemma 4.5. Let $x \in \Gamma_{0}, l \in \Gamma_{1}(x)$ and D be a duad in Ω_{x}. Then $\delta(D)$ interchanges the points in $\Gamma_{0}(l) \backslash\{x\}$ if and only if $l \in \alpha_{1}(x, D)$.

Proof. INSERT DOESN'T LOOK LIKE WE NEED $\delta(D)$.
Lemma 4.6. Let $x \in \Gamma_{0}$ and $X, Y \in \Gamma_{3}(x)$ with $X \neq Y$. Then $Y \in \beta_{3}(x, X)$ if and only if $\tau(Y) \in Q(X)$.

Proof. If $Y \in \beta_{0}(x, X) \cup \beta_{1}(x, X)$, then there exists $l \in \alpha_{153}(x, Y)$ by consulting the MOG in [4], and so, by Lemma 4.4, $\tau(Y)$ does not fix $\Gamma_{0}(l)$ point-wise. Therefore $\tau(Y) \notin Q(X)$. While if $Y \in \beta_{3}(x, X)$, then $\Gamma_{1}(x, X) \subseteq \alpha_{4^{2}}(x, Y) \cup$ $\alpha_{2^{4}}(x, Y)$ and hence $\tau(Y)$ fixes $\Gamma_{0}(l)$ point-wise for all $l \in \Gamma_{1}(x, X)$ by Lemma 4.4. Since, by Lemmas 4.1(i) and 4.2(i), $\tau(Y)^{* X} \in Q(x)^{* X}=O_{2}\left(G_{x X}^{* X}\right)$, Lemma 3.7(iv) implies $\tau(Y)^{* X}=1$. So $\tau(Y) \in Q(X)$ as desired.

Lemma 4.7. Let x, y, z be distinct points of Γ_{0} such that $\{x, y, z\}$ is a triangle in \mathcal{G}. Then $z \in \Gamma_{0}\left(x+y\right.$) (or, in other words, $\{x, y, z\}=\Gamma_{0}(l)$ for some $\left.l \in \Gamma_{1}\right)$.

Proof. We have that $\Omega_{x} \cap \Omega_{y}$ and $\Omega_{z} \cap \Omega_{y}$ are octads in Ω_{y}. Let $t \in \Omega_{x} \cap \Omega_{z}$. Then t centralizes the transpositions in $\Omega_{x} \cap \Omega_{y}$ and $\Omega_{z} \cap \Omega_{y}$ and so either $\Omega_{x} \cap \Omega_{y}=\Omega_{z} \cap \Omega_{y}$ or $t \in \Omega_{y}$. In either case we get $\Omega_{x} \cap \Omega_{y}=\Omega_{y} \cap \Omega_{z}=$ $\Omega_{x} \cap \Omega_{z}$.

Lemma 4.8. (i) $\left|\Delta_{1}(a)\right|=1518=2.3 .11 .23$;
(ii) $\Delta_{1}\left(\right.$ a) is a G_{a}-orbit; and
(iii) if $x \in \Delta_{1}(a)$, then $G_{a x} \sim 2^{10} 2^{4} A_{8}$ (with $G_{a x}^{* x}=G_{x x+a}^{* x}$, an octad stabilizer).

Proof. (i) Since $\left|\Gamma_{0}(l) \backslash\{a\}\right|=2$ for any $l \in \Gamma_{1}(x),\left|\Delta_{1}(a)\right|=2\left|\Gamma_{1}(a)\right|=1518$.
(ii) For $l \in \Gamma_{1}(a)$ we can find $X \in \Gamma_{3}(a)$ such that $l \in \alpha_{1^{5} 3}(a, X)$. Hence by Lemma 4.4, $Q(a)$ is transitive on $\Gamma_{0}(l) \backslash\{a\}$. Since G_{a} is transitive on $\Gamma_{1}(a)$, (ii) holds.
(iii) We have $G_{a x} \leqslant G_{x x+a}$ because $x+a$ is the unique line in $\Gamma_{1}(a, x)$ and $\left[G_{x x+a}: G_{a x}\right] \leq 2$ as $\left|\Gamma_{0}(x+a) \backslash\{x\}\right|=2$. Hence as $Q(a)$ is transitive on $\Gamma_{0}(x+a) \backslash\{x\}$ we obtain (iii).

Combining Lemma 4.8 and $\mathbf{O}(2.1)$ with the definitions of $\Delta_{2}^{1}(a), \Delta_{2}^{2}(a)$ and $\Delta_{2}^{3}(a)$ given in (2.2) we obtain Theorem 2.

Lemma 4.9. Let $y \in \Delta_{1}(x)$ where $x \in \Gamma_{0}$. Then
(i) $|Q(x) \cap Q(y)|=2^{6}$; and
(ii) for $X \in \Gamma_{3}(x), \tau(X) \in Q(y)$ if and only if $X \in \Gamma_{3}(y)$.

Proof. Since $O_{2}\left(G_{x y}^{* y}\right)$ is an irreducible 4-dimensional A_{8}-module over $G F(2)$, $Q(x)_{y}^{* y}=1$ or $O_{2}\left(G_{x y}\right)^{* y}$. Suppose $Q(x)_{y}^{* y}=1$ and so $Q(x)_{y}=Q(x) \cap Q(y)$.

Let $X \in \Gamma_{3}(x)$ with $x+y \in \alpha_{2^{4}}(x, X)$. Then $\tau(X) \in Q(x)_{y} \subseteq Q(y)$. Therefore

$$
|Q(y)| \geq 1771+840=2611
$$

by Lemma 3.1(ii). This contradicts $|Q(y)|=2^{11}$ from (2.1)(iv). So $\left|Q(x)_{y}^{* b}\right|=$ 2^{4} and then part (i) follows from Lemma 4.8(iii). For part (ii), if $X \in$ $\Gamma_{3}(y)$ then $\tau(X) \in Q(y)$ by Lemma 4.2(i). Suppose that $X \notin \Gamma_{3}(y)$ and $\tau(X) \in Q(y)$. Since $x+y \notin \Gamma_{1}(X)$, we then have $x+y \in \alpha_{2^{4}}(x, X) \cup$ $\alpha_{1^{5} 3}(x, X)$. Suppose that $x+y \in \alpha_{2^{4}}(x, X)$. Since $G_{x y}^{* x}$ is transitive on the set of hyperplanes $\delta_{2}(x, x+y)=\left\{Y \in \Gamma_{3}(x) \mid x+y \in \alpha_{2^{4}}(x, Y)\right\}$ by Lemma 3.1(ii) and $\tau(X) \in Q(y)$ we have $\tau(Y) \in Q(y)$ for all $Y \in \delta_{2}(x, x+y)$. Then

$$
|Q(x) \cap Q(y)| \geq 35+840=875
$$

This contradicts part (i). By a similar argument, if $x+y \in \alpha_{153}(x, X)$ we get

$$
|Q(x) \cap Q(y)| \geq 35+896=933
$$

again giving a contradiction. This proves part (ii).

5 The Second Disc of a

We begin by defining certain subsets of $\Delta_{2}(a)$ as follows.

$$
\begin{gathered}
\widetilde{\Delta}_{2}^{1}(a)=\left\{x \in \Delta_{2}(a) \mid \Gamma_{3}(a, x) \neq \emptyset=\Gamma_{2}(a, x)\right\} \\
\widetilde{\Delta}_{2}^{2}(a)=\left\{x \in \Delta_{2}(a) \mid \Gamma_{3}(a, x)=\emptyset\right\} \\
\widetilde{\Delta}_{2}^{3}(a)=\left\{x \in \Delta_{2}(a) \mid \Gamma_{3}(a, x) \neq \emptyset \neq \Gamma_{2}(a, x)\right\} .
\end{gathered}
$$

An immediate consequence of these definitions is
Lemma 5.1. For $1 \leq j<k \leq 3, \widetilde{\Delta}_{2}^{j}(a) \cap \widetilde{\Delta}_{2}^{k}(a)=\emptyset$ and $\bigcup_{i=1}^{3} \widetilde{\Delta}_{2}^{i}(a)=$
$\Delta_{2}(a)$.
Lemma 5.2. Suppose $x \in \Delta_{2}(a)$ with $X \in \Gamma_{3}(a, x)$. Then $\{a, x\}^{\perp} \subseteq \Gamma_{0}(X)$.
Proof. Let $b \in\{a, x\}^{\perp}$ and assume that $b \notin \Gamma_{0}(X)$. Then $a+b \notin \Gamma_{1}(X)$ as Γ is a string geometry. Using Lemma 3.5, we can find $Y \in \beta_{3}(a, X) \cup\{X\}$ for which $a+b \in \alpha_{1^{5} 3}(a, Y)$. By Lemma 4.6, $\tau(Y) \in Q(X)$ which implies that $\tau(Y) \in Q(a)_{x}$. Since $\tau(Y)$ does not fix b by Lemma 4.4 we get a triangle $\left\{x, b, b^{\tau(Y)}\right\}$ which then forces $a=x$ by Lemma 4.7. From this contradiction we infer that $b \in \Gamma_{0}(X)$, so proving the lemma.

Lemma 5.3. For $i=1,2,3, \widetilde{\Delta}_{2}^{i}(a)=\Delta_{2}^{i}(a)$.
Proof. Let $b \in\{a, x\}^{\perp}$. Using MOG information in Ω_{b}, Lemma 5.2 implies that $\widetilde{\Delta}_{2}^{i}(a)=\Delta_{2}^{i}(a)$ for $i=1,2,3$.

Lemma 5.4. Let $x \in \Delta_{2}^{1}(a)$. Then there is a unique hyperplane in $\Gamma_{3}(a, x)$.
Proof. Let $X, Y \in \Gamma_{3}(a, x)$ and $b \in\{a, x\}^{\perp}$. Then $b \in \Gamma_{0}(X) \cap \Gamma_{0}(Y)$ by Lemma 5.2. If $X \neq Y$, then $b+x, b+a \in \Gamma_{0}(X) \cap \Gamma_{0}(Y)$ and $\Gamma_{2}(b+x, b+a) \neq \emptyset$ by considering MOG information in Γ_{b}. Hence $x \notin \widetilde{\Delta}_{2}^{1}(x)$, whereas $\widetilde{\Delta}_{2}^{1}(x)=$ $\Delta_{2}^{1}(x)$ by Lemma 5.3. Thus we conclude $X=Y$ and the lemma is proved.

Let the unique hyperplane in Lemma 5.4 be denoted by $X(a, x)$ (respectively $X(x, a)$) if we regard $X(a, x) \in \Gamma_{3}(a)$ (respectively $X(x, a) \in \Gamma_{3}(x)$). Of course $X(a, x)=X(x, a)$.

Lemma 5.5. Let $x \in \Delta_{2}^{1}(a)$. Then $\left|\{a, x\}^{\perp}\right|=5$ and, for each $b \in\{a, x\}^{\perp}$, the octad $a+b$ in Ω_{a} contains a fixed tetrad of the sextet $X(a, x)$.

Proof. By Lemma 5.2, for every $b \in\{a, x\}^{\perp}, b \in \Gamma_{0}(X(a, x))$ and so $a+b \in$ $\Gamma_{1}(X(a, x))$. Working in the residue geometry of $X(a, x)$ and using Lemma 3.7(ii) we get $\left|\{a, x\}^{\perp}\right|=5$. Since $\Gamma_{2}(a, x)=\emptyset$ by Lemma 5.3, in Ω_{a}, the five octads $\left\{a+b \mid b \in\{a, x\}^{\perp}\right\}$ must intersect in the same tetrad of the sextet $X(a, x)$.

Note that $x \in \Delta_{2}^{1}(a)$ implies $a \in \Delta_{2}^{1}(x)$. We denote the fixed tetrad in Ω_{a} (respectively Ω_{x}) described in Lemma 5.5 by $t(a, x)$ (respectively $t(x, a)$).

Lemma 5.6. (i) $\left|\Delta_{2}^{1}(a)\right|=2^{5}$.3.7.11.23.
(ii) $\Delta_{2}^{1}(a)$ is a G_{a}-orbit.
(iii) For $x \in \Delta_{2}^{1}(a)$ and $G_{a x}^{* x} \sim 2^{6}\left(3 \times S_{5}\right)$ is the stabilizer in $G_{x}^{* x}$ of $X(x, a)$ and $t(x, a)$ and $\left|Q(x)_{a}\right|=2^{7}$.

Proof. By Lemma 3.7(i), for any $X \in \Gamma_{3}(a),\left|\Gamma_{0}(X) \cap \Delta_{2}^{1}(a)\right|=96$ and so by Lemma 5.4 we get $\left|\Delta_{2}^{1}\right|=96 .\left|\Gamma_{3}(a)\right|=2^{5}$.3.7.11.23, proving part (i).

For part (ii), let $b \in \Delta_{1}(a)$ and $x \in \Delta_{2}^{1}(a) \cap \Delta_{1}(b)$. Then in $\Omega_{b}, b+a \in$ $\alpha_{4}(b, b+x)$. Since $\alpha_{4}(b, b+x)$ is a $G_{a b}^{* b}$-orbit it is enough to show that there exists $g \in G_{a b}$ with $x^{g}=x^{\prime}$ where $\Gamma_{0}(b+x)=\left\{b, x, x^{\prime}\right\}$. In Ω_{b} we can choose a sextet Y incident with the octad $b+a$ such that $b+x \in \alpha_{1^{5} 3}(x, Y)$. Then by Lemma 4.4, $\tau(Y) \in(Q(a) \cap Q(b)) \backslash G_{x}$ and so $\tau(Y)$ is the required element of $G_{a b}$.

For $t \in \Omega_{a} \cap \Omega_{b} \cap \Omega_{x}, a, x \in V\left(\mathcal{G}^{t}\right)$ with $x \in \Delta_{2}^{1}(a)^{t}$. Hence $Q(x)_{a}=$ $Q(x)_{a}^{t} \cong 2^{7}$ by Theorem 3 of [12]. Since, by parts (i) and (ii), $\left|G_{a x}\right|=2^{16} .3^{2} .5$, Lemmas 5.4 and 5.5 yield part (iii).

We now turn to $\Delta_{2}^{2}(a)$.
Lemma 5.7. Let $x \in \Delta_{2}^{2}(a)$ and $b \in\{a, x\}^{\perp}$. Then
(i) $\left|\Delta_{1}(b) \cap \Delta_{2}^{2}(a)\right|=2^{7} .7$ with $G_{a b}$ transitive on $\Delta_{1}(b) \cap \Delta_{2}^{2}(a)$; and
(ii) $\left|\{a, x\}^{\perp}\right|=1$ or 2 .

Proof. Since $\Gamma_{3}(a, x)=\emptyset$ by Lemma 5.3, we have $b+a \in \alpha_{2}(b, b+x)$. So by Lemma3.1(i), $\left|\Delta_{1}(b) \cap \Delta_{2}^{2}(a)\right|=2 \times 448=2^{7} .7$. Let $x^{\prime} \in \Gamma_{0}(b+x) \backslash\{b, x\}$. We can choose $Y \in \Gamma_{3}(b+a)$ with $b+x \in \alpha_{1^{5} 3}(b, Y)$. By Lemma $4.4 x^{\tau(Y)}=x^{\prime}$
and so $G_{a b}$ is transitive on $\Delta_{1}(b) \cap \Delta_{2}^{2}(a)$ because $\alpha_{2}(b, b+x)$ is a $G_{a b}$-orbit by Lemma 3.1(i).

Using (i), [2] and the fact that $G_{a b} \sim 2^{14} A_{8}$ by Lemma 4.8(iii) we must have $G_{a b x} \sim 2^{9} S_{6}$ or $2^{10} A_{6}$. In either case $G_{a b x}^{* a}$ is contained in the stabilizer in Ω_{a} of a duad δ contained in the octad $a+b$. We now show that for every $c \in\{a, x\}^{\perp}$, the octad $a+c$ in Ω_{a} contains δ. Assume, for a contradiction that for some $c \in\{a, x\}^{\perp}, a+c$ does not contain δ. Since $\Gamma_{3}(a, x)=\emptyset$, we must have $a+c \in \alpha_{2}(a, a+b)$. Using MOG information there are exactly 15 sextets in $\Gamma_{3}(a, b)$ that each have a tetrad containing δ. Let T denote this set of 15 sextets. We can take $Y_{1}, Y_{2}, Y_{3} \in T$ forming a sextet line. Since $\tau\left(Y_{1}\right) \tau\left(Y_{2}\right)=\tau\left(Y_{3}\right)$ by Lemma 4.3 we must have $\tau\left(Y_{i}\right) \in G_{x}$ for each $i=1,2,3$. Since $G_{a b x}$ is transitive on T we must have $\tau(Y) \in G_{x}$ for each $Y \in T$ Since $a+c$ does not contain δ we must have $a+c \in \alpha_{1^{5} 3}(Y)$ for some $Y \in T$ and then $x^{\tau(Y)} \neq x$. Lemma 4.6 now implies that $a=x$, a contradiction. Part (ii) follows because we cannot find three octads in Ω_{a}, intersecting pairwise in exactly δ.

Lemma 5.8. Let $x \in \Delta_{2}^{2}(a)$. Then
(i) $\Delta_{2}^{2}(a)$ is a G_{a}-orbit;
(ii) $\left|\{a, x\}^{\perp}\right|=1,\left|\Delta_{2}^{2}(a)\right|=2^{8}$.3.7.11.23 and $G_{a b}$ is transitive on $\Delta_{1}(b) \cap$ $\Delta_{2}^{2}(a)$ where $\{a, x\}^{\perp}=\{b\}$; and
(iii) $G_{a x}^{* x} \sim 2^{4} S_{6}$ is the stabilizer in Ω_{x} of the octad $x+b$ and the duad $\Omega_{a} \cap \Omega_{b} \cap \Omega_{x}$ where $\{a, x\}^{\perp}=\{b\}$.

Proof. Part (i) follows from Lemma $5.7(\mathrm{i})$ and the fact that $\Delta_{1}(a)$ is a $G_{a^{-}}$ orbit.

Suppose that $\left|\{a, x\}^{\perp}\right| \neq 1$. Then $\{a, x\}^{\perp}=\{b, c\}$ with $b \neq c$ by Lemma 5.7(ii). Lemma 4.6 rules out $d(b, c)=1$. If $c \in \Delta_{2}^{1}(b) \cup \Delta_{2}^{3}(b)\left(=\widetilde{\Delta}_{2}^{1}(b) \cup\right.$ $\left.\widetilde{\Delta}_{2}^{3}(b)\right)$, then $b, c \in \Gamma_{0}(X)$ for some $X \in \Gamma_{3}$ whence, by Lemma 5.2, $a, x \in$
$\Gamma_{0}(X)$. However $\Gamma_{3}(a, x)=\emptyset$, and therefore $x \in \Delta_{2}^{2}(b)$. Hence $a+c \in$ $\alpha_{2}(a, a+b)$. From Theorem 4 of [12] $Q(a)_{x} \cong 2^{5}$, as $G_{a b x} \sim 2^{9} S_{6}$ or $2^{10} A_{6}$, $G_{a b x}^{* a} \sim 2^{4} S_{6}$ or $2^{5} A_{6}$. In particular $2^{8}| | G_{a b x}^{* a} \mid$. Clearly $G_{a b x}=G_{a b x c}$ and so $G_{a b x c}^{* a}=G_{a b x}^{* a}$. Since $a+c \in \alpha_{2}(a, a+b), G_{a b x c}^{* a}$ leaves a dodecad of Ω_{a} invariant whence $G_{a b x c}^{* a}$ is isomorphic to a subgroup of M_{12}. But $2^{8}| | G_{a b x c}^{* a} \mid$ yields a contradiction. Thus we conclude that $\left|\{a, x\}^{\perp}\right|=1$, and consequently for $b \in\{a, x\}^{\perp}$

$$
\left|\Delta_{2}^{2}(a)\right|=\frac{\left|\Delta_{1}(b) \cap \Delta_{2}^{2}(a)\right|\left|\Delta_{1}(a)\right|}{\left|\{a, x\}^{\perp}\right|}=2^{8.3 .7 .11 .13 .}
$$

Part (iii), using $Q(x)_{a} \cong 2^{5}$, follows readily.

Lemma 5.9. Let $x \in \Delta_{2}^{3}(a)$. Then there is a unique element $\Lambda(a, x) \in$ $\Gamma_{2}(a, x)$ and for every $b \in\{a, x\}^{\perp}, b \in \Gamma_{0}(\Lambda(a, x))$.

Proof. By definition, $\Gamma_{2}(a, x) \neq \emptyset$. Let $b \in\{a, x\}^{\perp}$ with $b+a \in \alpha_{0}(b, b+x)$ and let $\Lambda(a, x)$ be the unique element of $\Gamma_{2}(b+a, b+x)$. Suppose $b^{\prime} \in\{a, x\}^{\perp}$ with $b^{\prime} \notin \Gamma_{0}(\Lambda(a, x))$. In Ω_{b} there are seven sextets $X_{i}(i=1, \ldots, 7)$ in $\Gamma_{3}(b+a, b+x)$ and by Lemma $5.2 b^{\prime} \in \Gamma_{0}\left(X_{i}\right)$ for each $i=1, \ldots, 7$. Therefore, in $\Omega_{b^{\prime}}$ there exists a trio $\Lambda \in \Gamma_{2}\left(b^{\prime}+a, b^{\prime}+x, X_{i}\right)$ for each $i=1, \ldots, 7$. Considering the situation in Ω_{a} we must have $\Lambda=\Lambda(a, x)$ and the lemma is proved.

We follow our earlier notational convention and also denote the unique plane in Lemma 5.9 by $\Lambda(x, a)$ if we are viewing $\Lambda(x, a)$ as a trio in Γ_{x}.

Lemma 5.10. Let $x \in \Delta_{2}^{3}(a)$. Then $\left|\Gamma_{3}(a, x)\right|=7$ and $\left|\{a, x\}^{\perp}\right|=3$.
Proof. By Lemma 5.2, for $X \in \Gamma_{3}, X \in \Gamma_{3}(a, x)$ if and only if $X \in \Gamma_{3}(\Lambda(a, x))$. The result now follows from Lemma 5.9 because in Γ_{X} there are three points collinear with a and x and in $\Gamma_{a},\left|\Gamma_{3}(\Lambda(a, x))\right|=7$.

Lemma 5.11. Let $x \in \Delta_{2}^{3}(a)$. Then
(i) $\left|\Delta_{2}^{3}(a)\right|=2^{3} \cdot 3 \cdot 5 \cdot 11.23$;
(ii) $\Delta_{2}^{3}(a)$ is a G_{a}-orbit;
(iii) $G_{a x}^{* x} \sim 2^{6}\left(L_{3}(2) \times 3\right)$ is a subgroup of index 2 of the stabilizer in Ω_{x} of the trio $\Lambda(x, a)$ and $\left|Q(x)_{a}\right|=2^{9}$.

Proof. Since $\left|\{a, x\}^{\perp}\right|=3$ by Lemma 5.10, $\left|\alpha_{0}(b, b+a)\right|=30\left(b \in\{a, x\}^{\perp}\right)$ and, by Lemma 4.8(i), $\left|\Delta_{1}(a)\right|=2.3 .11 .23$, we calculate that $\left|\Delta_{2}^{3}(a)\right|=$ 2^{3}.3.5.11.23.

For part (ii), let $b \in \Delta_{1}(a)$ with $\Lambda \in \Gamma_{2}(a, b)$ and $X \in \Gamma_{3}(\Lambda)$. Then $G_{a X \Lambda}^{* X} \sim 2^{4}\left(S_{4} \times 2\right)$ and is transitive on the four points in $\Delta_{2}^{3}(a) \cap \Delta_{1}(b) \cap \Gamma_{0}(\Lambda)$. Then G_{a} is transitive on $\Delta_{2}^{3}(a)$ because $\Gamma_{2}(a)$ and $\Delta_{1}(a)$ are G_{a}-orbits.

By Lemma $5.10\{a, x\}^{\perp}=\left\{b_{1}, b_{2}, b_{3}\right\}$. Also, using Lemma 5.9, $G_{a x}^{* a} \leq$ $G_{a x \Lambda(a, x)}^{* a} \sim 2^{6}\left(L_{3}(2) \times S_{3}\right)$. Let $1 \leq i<j \leq 3$. Then $a+b_{i}$ and $a+b_{j}$ are disjoint octads as they are both incident with the trio $\Lambda(a, x)$. Choose a tetrad δ of Ω_{a} which intersects $a+b_{i}$ in two elements and $a+b_{j}$ in one element, and let Y denote the sextet of Ω_{a} with δ a tetrad of Y. Then $a+b_{i} \in \alpha_{2^{4}}(a, Y)$ and $a+b_{j} \in \alpha_{15_{3}}(a, Y)$. Hence, by Lemma 4.4, $\tau(Y) \in Q(a)_{b_{i}} \backslash Q(a)_{b_{j}}$. Thus $Q(a)_{b_{i}} \neq Q(a)_{b_{j}}$ for $1 \leq i<j \leq 3$. Further $Q(a)_{x} \leq Q(a)_{b_{i}}(1 \leq i \leq 3)$, for $Q(a)_{x} \not \leq Q(a)_{b_{i}}$ yields that $\left|\{a, x\}^{\perp} \cap \Gamma_{0}\left(a+b_{i}\right)\right|=2$ whereas no two points of $\{a, x\}^{\perp}$ are colinear. So, as $\left[Q(a): Q(a)_{b_{i}}\right]=2$ and $Q(a)_{b_{i}} \neq$ $Q(a)_{b_{j}}$ for $i \neq j$, we have $\left[Q(a): Q(a)_{x}\right] \geq 2^{2}$. Consequently using part (i) either $G_{a x}^{* a} \sim 2^{6}\left(L_{3}(2) \times 3\right)$ with $\left|Q(a)_{x}\right|=2^{9}$ or $G_{a x}^{* x} \sim 2^{6}\left(L_{3}(2) \times S_{3}\right)$ with $\left|Q(a)_{x}\right|=2^{8}$. Suppose the latter holds. Let ξ be the element of order 3 in the S_{3} direct factor of $G_{a x}^{* x}$. Then, as ξ permutes the three octads $\left\{a+b_{i} \mid i=1,2,3\right\}$ and $Q(a)_{b_{i}} \neq Q(a)_{b_{j}}(i \neq j), \xi$ must act non-trivially on $Q(a) / Q(a)_{x}$. But then λ centralizes $Q(a) / Q(a)_{x}$ where λ is an element of
$G_{a x}^{* x}$ of order 7, a contradiction as $\left|C_{Q(a)}(\lambda)\right|=2^{2}$. Thus, as $a \in \Delta_{2}^{3}(x)$, we obtain $G_{a x}^{* x} \sim 2^{6}\left(L_{3}(2) \times S_{3}\right)$ and $\left|Q(x)_{a}\right|=2^{9}$, so proving (iii).

Lemma 5.6 combined with (2.2) proves Theorem 3 except for the octad orbits $\alpha_{2,2^{4}}\left(x, \Lambda_{1}, \Lambda_{2}\right), \alpha_{1,31^{5}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$ and $\alpha_{0,4^{2}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$. The first two will be settled by Theorems 7 and 11 and the data in $\mathbf{O}(2.2)$, while the last one follows from Theorem 12(ii). Theorem 4, apart from the octad orbits $\alpha_{0,0}\left(x, \Lambda_{1}, \Lambda_{2}\right)$ and $\alpha_{4,0}\left(x, \Lambda_{1}, \Lambda_{2}\right)$, follows from Lemma 5.8 and (2.2). The remaining two orbits are dealt with by Theorem 12(i),(iv) and $\mathbf{O}(2.3)$. Finally Lemma 5.11 and (2.2) deliver Theorem 5.

6 Theorems 6-11 and 13

Lemma 6.1. Suppose that $x \in \Gamma_{0}$ and that $\Omega_{a} \cap \Omega_{x} \neq \emptyset$. Let $t \in \Omega_{a}$ and let Δ denote the G_{a}-orbit of x. Set $k=\left|\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}\right|$. Then

$$
k|\Delta|=24\left|\Delta \cap \Gamma_{0}^{t}\right| .
$$

Proof. Since Δ is a G_{a}-orbit and G_{a} acts transitively on $\Omega_{a},\left|\Delta \cap \Gamma_{0}^{s}\right|$ is the same for all $s \in \Omega_{a}$. Furthermore we also have that $\left|\left\{s \in \Omega_{a} \mid y \in \Gamma_{0}^{s}\right\}\right|$ is the same for all $y \in \Delta$. Because $\Omega_{a} \cap \Omega_{x} \neq \emptyset$ we note that $k \neq 0$. Now counting in two ways the number of elements in

$$
\left|\left\{(s, y) \in \Omega_{a} \times \Delta \mid y \in \Gamma_{0}^{s}\right\}\right|
$$

yields, as $\left|\Omega_{a}\right|=24$, the
lemma.

For $x \in \Gamma_{0}$ and $s \in \Omega_{x}, G_{x}^{s}$ denotes the stabilizer of x in $G^{s} \cong F i_{23}$. So $G_{x}^{s} \sim 2^{11} M_{23}$. Also recall that $Q(x)^{s}$ denotes the normal elementary abelian
subgroup of G_{x}^{s} of order 2^{11}.
Lemma 6.2. For $x \in \Gamma_{0}$ and $s \in \Omega_{x}, Q(x)^{s}=Q(x)$.
Proof. Since $2^{11} M_{23} \sim G_{x}^{s} \leqslant G_{x} \sim 2^{11} M_{24}$, the subgroup structure of M_{24} forces $Q(x)^{s}=Q(x)$.

Lemma 6.3. (i) If $x \in \Delta_{2}^{1}(a)$, then $\left|\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}\right|=4$.
(ii) If $x \in \Delta_{2}^{2}(a)$, then $\left|\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}\right|=2$.

Proof. Let $x \in \Delta_{2}^{1}(a)$ and set $k=\left|\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}\right|$. Observe that, for $t \in \Omega_{a}, \Delta_{2}^{1}(a) \cap \Gamma_{0}^{t}=\Delta_{2}^{1}(a)^{t}$. Since G_{a} is transitive on $\Delta_{2}^{1}(a)$, Lemmas 5.6(ii) and 6.1 imply that

$$
k\left|\Delta_{2}^{1}(a)\right|=24\left|\Delta_{2}^{1}(a)^{t}\right|,
$$

where t is some fixed transposition in Ω_{a}. From Lemma 5.6(i) and Table 1 of $[12],\left|\Delta_{2}^{1}(a)\right|=2^{5} .3 .7 .11 .23$ and $\left|\Delta_{2}^{1}(a)^{t}\right|=2^{4} .7 .11 .23$, and therefore $k=4$.

A similar argument, using Lemma 5.8 instead of Lemma 5.6, establishes part (ii).

Lemma 6.4. For $i=1, \ldots, 6, \Delta_{3}^{i}(a)$ is a G_{a}-orbit and, for $t \in \Omega_{a}, \Delta_{3}^{i}(a) \cap$ $\Gamma_{0}^{t}=\Delta_{3}^{i}(a)^{t}$.

Proof. Let $x \in \Delta_{2}^{1}(a)$ and $t \in\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}=\Omega_{a} \cap \Omega_{x}$. From Lemma 5.6 and Theorem 3 of $[12],\left|G_{a x}\right|=2^{16} .3 .5$ and $\left|G_{a x}^{t}\right|=2^{14} .3 .5$. So $\left[G_{a x}: G_{a x}^{t}\right]=4$ and hence, by 6.3(i), $G_{a x}$ is transitive on $\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}$. Because $G_{a x}^{t}$ is transitive on $\Delta_{3}^{1}(a)^{t}=\Delta_{3}^{1}(a) \cap \Gamma_{0}^{t}$, we conclude that G_{a} is transitive on $\Delta_{3}^{1}(a)$.

The remaining sets $\Delta_{3}^{i}(a)(i=2, \ldots, 6)$ are defined from $\Delta_{2}^{2}(a)$. Now similar arguments may be employed for these sets as $\left[G_{a x}: G_{a x}^{t}\right]=2$ for $x \in$ $\Delta_{2}^{2}(a)$ (where $t \in\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}$) and, by 6.3(ii) $\left|\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}\right|=2$.

Theorem 6.5. Let $x \in \Delta_{3}^{i}(a)$.
(i) If $i=1$, then $G_{a x} \sim 2^{2} L_{3}(4) S_{3}, G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}\right\} \sim L_{3}(4) S_{3}$ where Λ_{1} is a triad of Ω_{x} and $\left|\Delta_{3}^{1}(a)\right|=2^{12} .11 .23$.
(ii) If $i=2$, then $G_{a x} \sim 2^{4} 2^{3}\left(L_{3}(2) \times 2\right), G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}\right\} \sim$ $2^{3}\left(L_{3}(2) \times 2\right)$ where Λ_{1} is an octad, Λ_{2} a duad of Ω_{x} with $\Lambda_{1} \cap \Lambda_{2}=\emptyset$ and $\left|\Delta_{3}^{2}(a)\right|=2^{10} .3^{2} .5 \cdot 11.23$.
(iii) If $i=3$, then $G_{a x} \sim 22^{4} S_{6}, G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}\right\} \sim 2^{4} S_{6}$ where Λ_{1} is an octad, Λ_{2} a duad of Ω_{x} with $\Lambda_{2} \subseteq \Lambda_{1}$, and $\left|\Delta_{3}^{3}(a)\right|=2^{12}$.3.7.11.23.
(iv) If $i=4$, then $G_{a x} \sim 2 M_{22} 2, G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}\right\} \cong M_{22} 2$ where Λ_{1} is a duad of Ω_{x} and $\left|\Delta_{3}^{4}(a)\right|=2^{12} .3 .23$.
(v) If $i=5$, then $G_{a x} \cong G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\} \sim 2^{4} A_{5}$ where Λ_{1} is an octad of $\Omega_{x},\left|\Lambda_{2}\right|=\left|\Lambda_{3}\right|=1$ with $\Lambda_{2} \cup \Lambda_{3} \subseteq \Lambda_{1}$, and $\left|\Delta_{3}^{5}(a)\right|=$ $2^{15} .3^{2} .7 .11 .23$.
(vi) If $i=6$, then $G_{a x} \sim 2^{6} 3 S_{4}, G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\} \sim 2^{4} 3 S_{4}$ where Λ_{1} is an octad of $\Omega_{x},\left|\Lambda_{2}\right|=4,\left|\Lambda_{3}\right|=1, \Lambda_{3} \subseteq \Lambda_{2} \subseteq \Lambda_{1}$, and $\left|\Delta_{3}^{6}(a)\right|=$ $2^{12} .3 .5 .7 .11 .23$.

Proof. (i) Let $t \in \Omega_{a}$. From Lemma $6.4 \Delta_{3}^{1}(a)$ is a G_{a}-orbit and $\Delta_{3}^{1}(a) \cap \Gamma_{0}^{t}=$ $\Delta_{3}^{1}(a)^{t}$. For $x \in \Delta_{3}^{1}(a)$, let $k=\left|\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}\right|$. Using Lemma 6.1 we obtain

$$
k\left|\Delta_{3}^{1}(a)\right|=24\left|\Delta_{3}^{1}(a)^{t}\right|
$$

By the definition of $\Delta_{3}^{1}(a)$, there exists $y \in \Delta_{2}^{1}(a)$ such that $y+x \in$ $\alpha_{3,31^{5}}\left(x, \Lambda_{1}, \Lambda_{2}\right)$. Now consulting Theorem 3, we see that $\Lambda_{1}=\Omega_{a} \cap \Omega_{y}$, and hence $\left|\Omega_{a} \cap \Omega_{x}\right| \geq 3$. So $k \geq 3$. Therefore, as $\left|\Delta_{3}^{1}(a)^{t}\right|=2^{9} .11 .23$ by Table 1 of [12],

$$
\begin{gathered}
\left|\Delta_{3}^{1}(a)\right|=\frac{24\left|\Delta_{3}^{1}(a)^{t}\right|}{k}=\frac{24 \cdot 2^{9} \cdot 11.23}{k} \\
\quad \leq \frac{24.2^{9} .11 .23}{3}=2^{12} .11 .2
\end{gathered}
$$

Supposing that $x \in \Gamma_{0}^{t}$. Then $G_{a x} \sim 2^{2} L_{3}(4) 2$ by 5 of [12]. Since $\Delta_{3}^{1}(a)$ is a G_{a}-orbit, $\left|\Delta_{3}^{1}(a)\right|$ must divide $\left[G_{a}: G_{a x}^{t}\right]=2^{1} 2.3$.11.23. Bearing in mind
the possible overgroups of $L_{3}(4) 2$ in $M_{24} \cong G_{x}^{* x}$ and Lemma 6.2, we get that $\left[G_{a x}: G_{a x}^{t}\right]=3$. Thus $\left|\Delta_{3}^{1}(a)\right|=2^{12} .11 .23$ with $k=3$ and $G_{a x} \sim 2^{2} L_{3}(4) S_{3}$ with $G_{a x}^{* x}=\operatorname{Stab}_{G_{x}^{* x}}\left\{\Lambda_{1}\right\}, \Lambda_{1}$ being the triad $\{t\} \cup D(x, a)$. (With $D(a, x)$ as in Theorem 5 of [12].) This establishes (i).

Parts (ii)-(vi) may be proved in a similar fashion. For these cases we may extract $k=\left|\left\{s \in \Omega_{a} \mid x \in \Gamma_{0}^{s}\right\}\right|$ (for $\left.x \in \Delta_{3}^{i}(x), i=2, \ldots, 6\right)$ from [12]. Recall that in the $F i_{23}$ geometry, a hyperplane is just a transposition with points of this geometry being sets of 23 pairwise commuting transpositions. For $x \in \Delta_{3}^{i}(a)^{t}, t \in \Omega_{a}$ where $i \in\{2,3,4\}, a$ and x are incident with a unique hyperplane of the $F i_{23}$ geometry (see Section 1 of [12]) - so for $i \in\{2,3,4\}$, $k=2$. Whereas, for $x \in \Delta_{3}^{i}(a)^{t}, i \in\{5,6\}, a$ and x are not incident with a common hyperplane of the $F i_{23}$ geometry. Thus $k=1$ for $i \in\{5,6\}$. So knowing k we can make effective use of Lemma 6.1. We observe that for $x \in \Delta_{3}^{i}(a) \cap \Gamma_{0}^{t}\left(t \in \Omega_{a}\right)$ we have $G_{a x}=G_{a x}^{t}$ for $i=3,5,6$. While $\left[G_{a x}: G_{a x}^{t}\right]=2$ for $i=2,3,4$. In these latter cases we must also call on the services of Lemma 6.2 in order to deduce that $G_{a x}$ has shape, respectively, $2^{4} 2^{3}\left(L_{3}(2) \times 2\right), 2^{2} 2^{4} S_{6}$ and $2 M_{22} 2$.

We are now in a position to verify Theorems 6 -13. For Theorem 6, Theorem 6.5(i) gives $G_{a x}$ and $G_{a x}^{* x}$ for $x \in \Delta_{3}^{1}(a)$. We must discover the point distribution of the $G_{a x}$ line orbits $\alpha_{i}\left(x, \Lambda_{1}\right)(i=1,2,3)$, three of the $G_{a x}^{* x}-$ orbits on lines - see [15]. Let $y \in \Delta_{1}(x)$ be such that $x+y \in \alpha_{1}\left(x, \Lambda_{1}\right)$. Now we may further assume y is chosen so as $x, y \in \Gamma_{0}^{t}$ for some $t \in \Omega_{a}$. Then, by Theorem 5 of [12], $x+y \in \alpha_{0}\left(x, D(x, a)\right.$) (seen within Γ_{0}^{t}) with $x+y$ having point distribution $\Delta_{3}^{1 t} 2 \Delta_{4}^{1 t}$. Since $\alpha_{1}\left(x, \Lambda_{1}\right)$ is a $G_{a x}$-orbit and $\Delta_{4}^{1}(a)^{t} \subseteq \Delta_{4}^{1}(a)$, we conclude that lines in $\alpha_{1}\left(x, \Lambda_{1}\right)$ have point distribution $\Delta_{3}^{1} 2 \Delta_{4}^{1}$. Similarly we see that $\alpha_{2}\left(x, \Lambda_{1}\right)$ has point distribution $\Delta_{3}^{1} 2 \Delta_{3}^{3}$ and $\alpha_{3}\left(x, \Lambda_{1}\right)$ has point distribution $\Delta_{2}^{1} 2 \Delta_{3}^{1}$.

The same kind of arguments work for $\Delta_{3}^{2}(a), \Delta_{3}^{3}(a), \Delta_{3}^{4}(a), \Delta_{3}^{5}(a)$ and $\Delta_{3}^{6}(a)$, so we omit the details.

The same strategy as employed in this section will reveal $G_{a x}$ and orbit sizes for $x \in \Delta_{4}^{i}(a), i=1, \ldots, 6$. Note that in all these cases $k=\mid\left\{s \in \Omega_{a} \mid x \in\right.$ $\left.\Gamma_{0}^{s}\right\} \mid=1$ as a and x cannot be incident with a common hyperplane in the $F i_{23}$ geometry, as the point-line collinearity graph of the $F i_{22}$ geometry has diameter 3 (see Appendix 1 of [11]).

7 Proof of Theorem 12

The orbits considered in Theorem 12 do not lie within a $F i_{23}$ residue and so we cannot apply the same reasoning as in Section 6. Recall that for any $X \in \Gamma_{3}, \Gamma_{X}$ is isomorphic to the geometry for $U_{4}(3) .2$ described in [6].

We define

$$
\widetilde{\Delta_{3}^{8}}(a)=\left\{x \in \Gamma_{0} \mid \Gamma_{3}(a, x) \neq \emptyset \text { and } d(a, x)=3\right\} .
$$

Lemma 7.1. $\Delta_{3}^{8}(a)=\widetilde{\Delta_{3}^{8}}(a)$.
Proof. If $x \in \widetilde{\Delta_{3}^{8}}(a)$ and $X \in \Gamma(a, x)$, using information about the geometry Γ_{X} given in Lemma 3.7(ii), there exists $c \in \Delta_{2}(a) \cap \Delta_{1}(a)$ with $c+x \in$ $\alpha_{4^{2}}(c, \mathcal{T})$ where $\mathcal{T} \in \Gamma_{2}(a, c)$. By $(2.2) c \in \Delta_{2}^{3}(a)$ and $x \in \Delta_{3}^{8}(a)$. Conversely if $x \in \Delta_{3}^{8}(a)$ we must have $\Gamma_{3}(a, x) \neq \emptyset$ by $\mathbf{O}(2.4)$ and $d(a, x)=3$ by Lemma 5.2. So $x \in \widetilde{\Delta_{3}^{8}}(a)$ as required.

Lemma 7.2. If $x \in \Delta_{3}^{8}(a)$, then $\left|\Gamma_{3}(a, x)\right|=1$.
Proof. Let $x \in \Delta_{3}^{8}(a)$ and assume that $X, Y \in \Gamma_{3}(a, x)$ with $X \neq Y$. Using information about the $U_{4}(3) .2$ geometry described in Lemma 3.7(??), for every $l \in \Gamma_{1}(a, X)$, there exists $b \in \Gamma_{0}(l)$ with $b \in \Delta_{2}(x) \cap \Delta_{1}(a)$. If $Y \notin$ $\beta_{3}(a, X)$, then there is some $b \in \Delta_{2}(x) \cap \Delta_{1}(a)$ with $a+b \in \alpha_{1^{5} 3}(a, Y)$ by Lemma 3.4. Therefore Lemma 4.4 implies that $\tau(Y)$ does not fix b. Since
$\tau(Y) \in Q(a)_{x}, b^{\tau(Y)} \in \Gamma_{0}(a+b) \cap \Delta_{2}(x)$. However, as $\Gamma_{0}(a+b) \subseteq \Gamma_{0}(X)$, Lemma 3.7(ii) implies that $a \in \Delta_{1}(x)$, a contradiction. Hence $Y \in \beta_{3}(a, X)$. In Γ_{a}, there are three octads l incident with X and Y and for one of these, we can find $y \in \Gamma_{0}(l) \cap \Delta_{2}^{1}(a)$. Since $X, Y \in \Gamma_{3}(a, y)$ we now have a contradiction to Lemma 5.4, and so $X=Y$ as asserted.

Lemma 7.3. Let $c_{1} \in \Delta_{2}^{2}(a)$ and $c_{2} \in \Delta_{2}(a) \cap \Delta_{1}\left(c_{1}\right)$. Then
(i) $c_{2} \in \Delta_{2}^{2}(a)$; and
(ii) if $y \in \Gamma_{0}\left(c_{1}+c_{2}\right) \backslash\left\{c_{1}, c_{2}\right\}$, then $y \in \Delta_{1}(a)$.

Proof. (i) Suppose that $c_{2} \in \Delta_{2}^{1}(a) \cup \Delta_{2}^{3}(a)$, and argue for a contradiction. Then, by definition of $\Delta_{2}^{1}(a)$ and $\Delta_{2}^{3}(a)$, there exists $X \in \Gamma_{3}\left(a, c_{2}\right)$. Since $c_{1} \in \Delta_{2}^{2}(a),\left|\left\{a, c_{1}\right\}^{\perp}\right|=1$. Let $\left\{a, c_{1}\right\}^{\perp}=\{b\}$. If $b \in \Gamma_{0}(X)$, then, using Lemma 5.2, $c_{1} \in\left\{b, c_{2}\right\}^{\perp} \subseteq \Gamma_{0}(X)$ and so $X \in \Gamma_{3}\left(a, c_{2}\right)$, whereas $\Gamma_{3}\left(a, c_{2}\right)=$ \emptyset. Thus $b \notin \Gamma_{0}(X)$ and as a consequence $a+b \notin \Gamma_{1}(X)$. Hence $a+b \in$ $\alpha_{2^{4}}(a, X) \cup \alpha_{1^{5} 3}(a, X)$. Assume that $a+b \in \alpha_{2^{4}}(a, X)$. Then $\tau(X) \in Q(a)_{b}$ by Lemma 4.4. Since $X \notin \Gamma_{3}(b), \tau(X) \notin Q(b)$ by Lemma 4.9(ii). So $\tau(X) \in$ $Q(a)_{b} \backslash Q(b)$ and hence $\tau(X)^{* b} \in Q(a)^{* b}=O_{2}\left(G_{b a}^{* b}\right)$. Since $b+c_{1} \in \alpha_{2}(b, b+a)$ we then infer that $\tau(X)^{* b}$ does not leave the octad $b+c$ invariant. Hence $\tau(X) \notin G_{c_{1}}$. However $\tau(X) \in Q\left(c_{2}\right)$ and so we obtain a triangle $\left\{b, c_{1}, c_{1}^{\tau(X)}\right\}$ with $c_{1}^{\tau(X)} \in \Gamma_{0}\left(c_{1}+c_{2}\right)$. Lemma 4.7 forces $b=c_{2}$, a contradiction. Thus we have shown that $a+b \notin \alpha_{2^{4}}(a, X)$ and so $a+b \in \alpha_{1^{5} 3}(a, X)$. By Lemma 4.4, $b^{\tau(X)} \neq b$. If $c_{1}^{\tau(X)}=c_{1}$, then $\left\{b, b^{\tau(X)}, c_{1}\right\}$ is a triangle, whence $a=c_{1}$ by Lemma 4.7. Thus $c_{1}^{\tau(X)} \neq c_{1}$. Since $c_{1}^{\tau(X)} \in \Gamma_{0}\left(c_{1}+c_{2}\right)$, this gives $\left\{b, c_{1}^{\tau(X)}\right\} \subseteq\left\{b^{\tau(X)}, c_{1}\right\}^{\perp}$ which, as $b^{\tau(X)} \in \Delta_{2}^{2}\left(c_{1}\right)$, contradicts Lemma 5.8(ii) (note that $b=c_{1}^{\tau(X)}$ would give $c_{2} \in \Gamma_{0}\left(b+c_{1}\right)$ and then $c_{2} \in \Delta_{2}^{2}(a)$). With this contradiction we have established part (i).
(ii) Let $\left\{a, c_{i}\right\}^{\perp}=\left\{b_{i}\right\}$ for $i=1,2$. Suppose (ii) is false and argue for a contradiction. We first claim that $d\left(b_{1}, c_{2}\right)=2=d\left(b_{2}, c_{1}\right)$. If, say, $d\left(b_{1}, c_{2}\right)=$

1, then $\left\{b_{1}, c_{1}, c_{2}\right\}$ is a triangle and so, as $c_{1}, c_{2} \in \Delta_{2}(a)$, Lemma 4.7 yields that $y=b_{1} \in \Delta_{1}(a)$. Thus $d\left(b_{1}, c_{2}\right)=1$ and, similarly, $d\left(b_{2}, c_{1}\right)=2$. In particular, this gives $b_{1} \neq b_{2}$. Further, $d\left(b_{1}, b_{2}\right)=2$. For $d\left(b_{1}, b_{2}\right)=1$ implies $b_{2} \in \Gamma_{0}\left(a+b_{1}\right)$ by Lemma 4.7 and then $\left\{b_{1}, c_{2}\right\} \subseteq\left\{b_{2}, c_{1}\right\}^{\perp}$. This contradicts Lemma 5.8(ii) as $b_{2} \in \Delta_{2}^{2}\left(c_{1}\right)$.
If $b_{1} \in \Delta_{2}^{1}\left(b_{2}\right) \cup \Delta_{2}^{3}\left(b_{2}\right)$, then by part (i) (with b_{1} in place of a) $c_{1} \notin \Delta_{2}^{2}\left(b_{2}\right)$. Therefore $c_{1} \in \Delta_{2}^{1}\left(b_{2}\right) \cup \Delta_{2}^{3}\left(b_{2}\right)$. Consequently $a \in \Delta_{2}^{2}\left(c_{1}\right)$ and $b_{2} \in \Delta_{2}^{1}\left(c_{1}\right) \cup$ $\Delta_{2}^{3}\left(c_{1}\right)$ which is contrary to part (i) (with c_{1} in place of a). Thus $b_{1} \notin \Delta_{2}^{1}\left(b_{2}\right) \cup$ $\Delta_{2}^{3}\left(b_{2}\right)$ and hence $b_{1} \in \Delta_{2}^{2}\left(b_{2}\right)$. Similar arguments show that $c_{1} \in \Delta_{2}^{2}\left(b_{2}\right)$ and $c_{2} \in \Delta_{2}^{2}\left(b_{1}\right)$. By considering the elements of $\Gamma_{3}\left(b_{1}, c_{1}\right)$ as sextets in $\Omega_{b_{1}}$ and using Lemma 4.4 there exists $Y \in \Gamma_{3}\left(b_{1}, c_{1}\right)$ with $\tau(Y) \in G_{a}$. Suppose that $\tau(Y) \notin G_{c_{2}}$. Since $\tau(Y)$ fixes the line $c_{1}+c_{2}$, Lemma 4.7 implies that $b_{2}^{\tau(Y)} \neq b_{2}$ and $\tau(Y) \notin Q(a)$. Therefore $1 \neq \tau(Y)^{* a} \in O_{2}\left(G_{a b_{1}}^{* a}\right)$. This means that, in Ω_{a}, the octads $a+b_{2}^{\tau(Y)}, a+b_{1}$ and $a+b_{2}$ interest pairwise in the same duad. However we see from the MOG [4] that this is impossible. Thus we have shown that $\tau(Y) \in G_{c_{2}}$. Since $b_{1} \in \Delta_{2}^{2}\left(c_{2}\right), Y \notin \Gamma_{3}\left(c_{2}\right)$ and so $\tau(Y) \notin Q\left(c_{2}\right)$ by Lemma 4.9(ii). Then $1 \neq \tau(Y)^{* c_{2}} \in O_{2}\left(G_{c_{2} c_{1}}^{* c_{2}}\right)$. Since $c_{2}+b_{2} \in \alpha_{2}\left(c_{2}, c_{2}+c_{1}\right), \tau(Y)^{* c_{2}}$ does not fix $c_{2}+b_{2}$. This contradicts Lemma 5.8(ii) and this gives part (ii), and completes the proof of Lemma 7.3.

Lemma 7.4. (i) $\Delta_{3}^{8}(a)$ is a G_{a}-orbit and $\left|\Delta_{3}^{8}(a)\right|=2^{6}$.5.7.11.23.
(ii) For $x \in \Delta_{3}^{8}(a), G_{a x} \sim 2^{13}: 3.3^{2}: 4$ and $G_{a x}^{* x} \sim 2^{6}: 3.3^{2}: 4$ is the stabilizer in $G_{x}^{* x}$ of the sextet $X \in \Gamma_{3}(a, x)$ and the partition of Ω_{x} into $\Sigma=\{\infty, 14,0,8,3,20,15,18,17,4,16,10\}$ and its complement (where X is identified with a standard sextet in Ω_{x}).
(iii) $\left|\Delta_{2}^{1}(a) \cap \Delta_{1}(x)\right|=6$ and $\left|\Delta_{2}^{3}(a) \cap \Delta_{1}(x)\right|=9$.
(iv) Let $x \in \Delta_{3}^{8}(a)$ and $\{X\}=\Gamma_{3}(a, x)$. If $\{a, b, c, x\}$ is a path of length 3 in \mathcal{G}, then $b, c \in \Gamma_{0}(X)$. Moreover $\Delta_{2}^{2}(a) \cap \Delta_{1}(x)=\emptyset$.

Proof. Let $x \in \Delta_{3}^{8}(a)$. By Lemma $7.2 \Gamma_{3}(a, x)=\{X\}$. Observe that $\Gamma_{0}(X) \cap$ $\Delta_{3}^{8}(a)=D_{3}^{1}(a)$ by Lemmas 7.1 and 3.7 (ii). Since G_{a} is transitive on $\Gamma_{3}(a)$ and by Lemma $3.7(\mathrm{i}), D_{3}^{1}(a)$ is a $G_{a X}$-orbit, we see that $\Delta_{3}^{8}(a)$ is a G_{a}-orbit. Also, as $\left|D_{3}^{1}(a)\right|=320$ by Lemma 3.7(i),

$$
\begin{aligned}
\left|\Delta_{3}^{8}(a)\right| & =\left|\Gamma_{3}(a)\right|\left|\Gamma_{0}(X) \cap \Delta_{3}^{8}(a)\right| \\
& =7.11 .23 .320=2^{6} .5 .7 .11 .23 .
\end{aligned}
$$

So (i) holds.
Clearly we have $G_{a x} \leq G_{a x X}$ and so $G_{a x}^{* x} \leq G_{a x X}^{* x} \sim 2^{6} 3 S_{6}$. Also, by part (i), $\left|G_{a x}\right|=2^{15} .3^{3}$. We now look at $Q(a)_{x}$. Using Lemma 4.6, as $a, x \in \Gamma_{0}(X)$, gives $\left\langle\tau(Y) \mid Y \in \beta_{3}(a, X)\right\rangle \leq Q(a)_{x}$. Hence, by Lemma 3.3, $\left|Q(a)_{x}\right| \geq 2^{7}$. Now select $y \in \Delta_{2}^{1}(a) \cap \Gamma_{0}(X)\left(=D_{2}^{2}(a)\right)$ with $y \in \Delta_{1}(x)$. Suppose $Q(a)_{x} \not \leq$ $Q(a)_{y}$, and let $g \in Q(a)_{x} \backslash Q(a)_{y}$. Then $y^{g} \neq y$ and $y^{g} \in \Delta_{1}(x) \cap \Delta_{2}^{1}(a) \cap$ $\Gamma_{0}(X)$. Let $b \in\{a, y\}^{\perp}$ (and note that $y \in \Gamma_{0}(X)$. Since $y \in Q(a), b^{g} \in$ $\Gamma_{0}(a+b)$. If $b \neq b^{g}$, then Lemma 3.7(ii) forces $a \in \Delta_{1}(x)$ whereas $d(a, x)=3$. Thus $b=b^{g}$ and consequently $\{a, y\}^{\perp}=\left\{a, y^{g}\right\}^{\perp}$. Looking in $\Gamma_{0}(X)$ we see this is impossible [*****NEED GOOD REASON ${ }^{* * * * *}$] Hence we infer that $Q(a)_{x} \leq Q(a)_{y}$. By Theorem $3\left|Q(a)_{y}^{\prime}\right|=2^{7}$ and therefore $\left|Q(a)_{x}\right|=2^{7}$. Since $a \in \Delta_{3}^{8}(x)$, we also get $\left|Q(x)_{a}\right|=2^{7}$, and so $\left|G_{a x}^{* x}\right|=2^{8} .3^{3}$. Since $G_{a x}^{* x}$ contains a Sylow 3 -subgroup of $G_{a x X}^{* x}$ and the only subgroup of S_{6} of order $3^{2} 2^{\alpha}$ are subgroups of $3^{2}: 4$ we see that $G_{a x}^{* x} \sim 2^{6}: 3.3^{2}: 4$ which completes the proof of (ii).
Consulting Lemma 3.7(ii) we see $\left|\Delta_{2}^{1}(a) \cap \Delta_{1}(x) \cap \Gamma_{0}(X)\right|=6$ and $\mid \Delta_{2}^{3}(a) \cap$ $\Delta_{1}(x) \cap \Gamma_{0}(X) \mid=9$. If $\left|\Delta_{2}^{3}(a) \cap \Delta_{1}(x)\right|>9$ then for $y \in \Delta_{2}^{3}(a)$ the lines in $\alpha_{42^{2}}(y, \tau(a, y))$ must be incident with at least one point in $\Delta_{3}^{8}(a)$. Let $k=\left|\Delta_{1}(x) \cap \Delta_{2}^{3}(a)\right|$. Using part (ii), Lemma 5.11 and $\mathbf{O}(2.4)$ we calculate that $k=36+9$ or $72+9$. Now, by $\mathbf{O}(2.11)$, there are no line orbits (apart from $\alpha_{4^{2}, 8}(x, X)$ and $\left.\alpha_{4^{2}, 4^{2}}(x, X)\right)$ of size ≤ 72. Thus we conclude that $\mid \Delta_{2}^{3}(a) \cap$
$\Delta_{1}(x) \mid=9$. A similar argument, using $\left|\Delta_{3}^{8}(a)\right|,\left|\Delta_{2}^{1}(a)\right|$ and $\mathbf{O}(2.11)$ shows that $\left|\Delta_{2}^{1}(a) \cap \Delta_{1}(x)\right|=6$ - note that all the line orbits from $y \in \Delta_{2}^{1}(a)$ have already been accounted for except $\alpha_{0,2^{4}}\left(y, \Lambda_{1}, \Lambda_{2}\right)$.

Suppose (iv) is false, and argue for a contradiction. Then, by Lemma 5.2, $b, c \notin \Gamma_{0}(X)$. By Lemma 3.5 there exists $Y \in \beta_{3}(a, X) \cup\{X\}$ with $a+b \in$ $\alpha_{153}(a, Y)$. Set $\tau=\tau(Y)$. By Lemma $4.6 \tau \in Q(X)$ and so $a^{\tau}=a$ and $x^{\tau}=$ x. Also, from Lemma 4.4, $b \neq b^{\tau} \in \Gamma_{0}(a+b)$. Note that $b, b^{\tau} \in \Delta_{2}(x)$ and that b and b^{τ} are in the same G_{x}-orbit. Lemma 7.1 implies that $a \in \Delta_{3}^{8}(x)$. If $b \in \Delta_{2}^{1}(x) \cup \Delta_{2}^{3}(x)$, then part (iii) (with a and x interchanged) yields that $b \in \Gamma_{0}(X)$. Thus $b, b^{\tau} \in \Delta_{2}^{2}(x)$. Using Lemma 7.3(ii) (with x in place of a) we infer that $a \in \Delta_{1}(x)$, a contradiction. That $\Delta_{2}^{2}(a) \cap \Delta_{1}(x)=\emptyset$ follows from Lemma 3.7(ii).

We now consider the set
$\Delta_{3}^{10}(a)=\left\{x \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{3}(a) \cap \Delta_{1}(x)$ such that $\left.c+x \in \alpha_{42^{2}}\left(c, \mathcal{T}_{c a}\right)\right\}$
where $\mathcal{T}_{c a}$ is the unique element of $\Gamma_{2}(a, c)$.
Lemma 7.5. $\Delta_{3}^{10}(a) \subseteq \Delta_{3}(a)$ and $\Delta_{3}^{10}(a) \cap \Delta_{3}^{8}(a)=\emptyset$ and so $\Gamma_{3}(a, x)=\emptyset$.
Proof. Let $x \in \Delta_{3}^{10}(a)$ and $c \in \Delta_{2}^{3}(a) \cap \Delta_{1}(x)$ such that $c+x \in \alpha_{42^{2}}\left(c, \mathcal{T}_{c a}\right)$. By Lemma 7.4(iv), if $x \in \Delta_{3}^{8}(a)$, then there exists $X \in \Gamma_{3}(a, x)$ and in Ω_{c} the octad $c+x$ would intersect $\mathcal{T}_{c a}$ in 4^{2}, a contradiction. So $\Delta_{3}^{10}(a) \cap \Delta_{3}^{8}(a)=\emptyset$ and $\Gamma_{3}(a, x)=\emptyset$. If $x \in \Delta_{1}(a)$, then $x \in\{a, c\}^{\perp}$ and so $x \in \Gamma_{0}(X)$ for each $X \in \Gamma_{3}(a, c)$, a contradiction. Suppose that $x \in \Delta_{2}(a)$. Then Lemma 7.3 gives that $x \in \Delta_{2}^{1}(a) \cup \Delta_{2}^{3}(a)$. However this contradicts $\Gamma_{3}(a, x)=\emptyset$ again. Therefore $x \in \Delta_{3}(a)$ by definition.

We now turn to $\Delta_{3}^{7}(a)$. Recall from (2.2) that
$\Delta_{3}^{7}(a)=\left\{x \in \Gamma_{0} \mid\right.$ there exists $c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(x)$ such that $c+y \in \alpha_{0,2^{4}}\left(c, \Omega_{c} \cap \Omega_{a}, \mathcal{S}_{c a}\right\}$
where $\Omega_{c} \cap \Omega_{a}$ is the tetrad of Ω_{a} described in Lemma 5.5 and $\mathcal{S}_{c a}$ is the sextet in Ω_{a} corresponding to the unique element of $\Gamma_{3}(a, c)$.

The next result shows the link between $\Delta_{3}^{7}(a)$ and $\Delta_{3}^{10}(a)$.
Lemma 7.6. For any $x \in \Gamma_{0}, x \in \Delta_{3}^{10}(a)$ if and only if $a \in \Delta_{3}^{7}(a)$.
Proof. Let $x \in \Delta_{3}^{10}(a)$ and let $c \in \Delta_{2}^{3}(a) \cap \Delta_{1}(x)$ with $c+x \in \alpha_{4^{2}}\left(c, \mathcal{T}_{c a}\right)$. If $\{a, c\}^{\perp}=\left\{b_{1}, b_{2}, b_{3}\right\}$ we may suppose that $b_{1} \in \Delta_{2}^{1}(x)$ and $b_{2}, b_{3} \in \Delta_{2}^{2}(a)$. In $\Omega_{b_{1}}$, the octad $b_{1}+c$ is incident with the sextet $X\left(b_{1}, x\right)$, where $X\left(b_{1}, x\right)$ is the unique element of $\Gamma_{3}\left(b_{1}, x\right)$ (see Lemma 5.4). Also $\left(b_{1}+a\right) \cap\left(b_{1}+c\right)=$ \emptyset as octads because $c \in \Delta_{2}^{3}(a)$. Therefore $b_{1}+a \in \alpha_{2^{4}}\left(b_{1}, X\left(b_{1}, x\right)\right)$ and $\left|\left(b_{1}+a\right) \cap t\left(b_{1}, x\right)\right|=0$ where T is the tetrad contained in $b_{1}+d$ for all $d \in\left\{b_{1}, x\right\}^{\perp}$. Therefore $a \in \Delta_{3}^{7}(x)$ by definition.

Conversely assume $a \in \Delta_{3}^{7}(x)$ and let $b \in \Delta_{2}^{1}(x) \cap \Delta_{1}(a)$ with $b+a \in$ $\alpha_{2^{4}}(b, X)$ where X is the unique element of $\Gamma_{3}(b, x)$ and $|(b+a) \cap t(b, x)|=0$ in Ω_{b} where $t(b, x)=\Omega_{b} \cap \Omega_{x}$. Then there exists $d \in\{b, x\}^{\perp}$ such that $b+x \in \Gamma_{1}(X)$ and $(b+d) \cap(b+a)=\emptyset$ in Ω_{b}. Hence $d \in \Delta_{2}^{3}(a)$ and now $x \in \Delta_{3}^{10}$ by definition.

Lemma 7.7. Suppose that $x_{1}, x_{2} \in \Delta_{2}(a)$ and $x_{1} \in \Delta_{1}\left(x_{2}\right)$. Let $\Gamma_{0}\left(x_{1}+x_{2}\right)=$ $\left\{x_{1}, x_{2}, x\right\}$. Then $x_{1}, x_{2} \in \Delta_{2}^{i}(a)$ for the same $i \in\{1,2,3\}$ and $x \in \Delta_{1}(a)$.

Proof. If $x_{1} \in \Delta_{2}^{3}(a)$, the lemma follows from Lemma 7.3. So we may assume $x_{1} \in \Delta_{2}^{1}(a) \cup \Delta_{2}^{3}(a)$. The point distributions [****GIVE REFS****] of lines from $\Delta_{2}^{1}(a) \cup \Delta_{2}^{3}(a)$ are all known with the exception of $\alpha_{0,2^{4}}\left(x_{1}, \Lambda_{1}, \Lambda_{2}\right)$ when $x_{1} \in \Delta_{2}^{1}(a)$. From Lemmas 7.5 and 7.6, we deduce that $\Delta_{3}^{7}(a) \subseteq \Delta_{3}(a)$. In particular, for $\ell \in \alpha_{0,2^{4}}\left(x_{1}, \Lambda_{1}, \Lambda_{2}\right), \Lambda_{0}(\ell) \cap \Delta_{2}^{1}(a)=\left\{x_{1}\right\}$, so completing the proof of Lemma 7.7.

Lemma 7.8. Let $x \in \Delta_{3}^{10}(a)$ and $c \in \Delta_{2}^{3}(a) \cap \Delta_{1}(x)$.
(i) We have $\Delta_{2}(x) \cap \Delta_{1}(a)=\{a, c\}^{\perp}$ with $\left|\Delta_{2}^{1}(x) \cap \Delta_{1}(a)\right|=1, \mid \Delta_{2}^{2}(x) \cap$ $\Delta_{1}(a) \mid=2$ and $\left|\Delta_{2}^{3}(x) \cap \Delta_{1}(a)\right|=0$.
(ii) If $b \in \Delta_{2}^{1}(x) \cap \Delta_{1}(a)$, then $\Delta_{2}(a) \cap \Delta_{1}(x)=\{b, x\}^{\perp}$ with $\mid \Delta_{2}^{1}(x) \cap$ $\Delta_{1}(a)\left|=0,\left|\Delta_{2}^{2}(x) \cap \Delta_{1}(a)\right|=4\right.$ and $| \Delta_{2}^{3}(x) \cap \Delta_{1}(a) \mid=1$.

Proof. In Ω_{c}, for every $b \in\{a, c\}^{\perp}$, the octad $c+b$ is incident with the trio $\mathcal{T}_{c a}$ and since $c+x \in \alpha_{42^{2}}\left(c, \mathcal{T}_{c a}\right)$ we get $\left|\Delta_{2}^{1}(x) \cap\{a, c\}^{\perp}\right|=1,\left|\Delta_{2}^{2}(x) \cap\{a, c\}^{\perp}\right|=2$ and $\left|\Delta_{2}^{3}(x) \cap\{a, c\}^{\perp}\right|=0$ from the definitions of $\Delta_{2}^{i}(x), i=1,2,3$. Let $\{b\}=\Delta_{2}^{1}(x) \cap\{a, c\}^{\perp}$. In Ω_{b}, the two octads $b+a$ and $b+c$ are incident with the trio $\mathcal{T}_{c a}$ and so the octads are disjoint. Let X be the unique element of $\Gamma_{3}(b, x)$. Then $b+a \in \alpha_{2^{4}}(b, X)$. Therefore, for every $d \in\{b, x\}^{\perp}$, the octads $b+a$ and $b+x$ intersect in exactly two elements of Ω_{b}. So $\left|\Delta_{2}^{1}(x) \cap\{b, x\}^{\perp}\right|=0$, $\left|\Delta_{2}^{2}(x) \cap\{b, x\}^{\perp}\right|=4$ and $\left|\Delta_{2}^{3}(x) \cap\{b, x\}^{\perp}\right|=1$.

To complete the proof by Lemma 5.8(ii), it is enough to show that $\Delta_{2}(x) \cap$ $\Delta_{1}(a)=\{a, c\}^{\perp}$. Assume that $b_{1} \in \Delta_{2}(x) \cap \Delta_{1}(a)$ with $b_{1} \notin\{a, c\}^{\perp}$. If $a+b_{1} \in \Gamma_{1}(X)$ for some $X \in \Gamma_{3}(a, c)$, then $a+b_{1} \in \Gamma_{1}(Y) \cup \alpha_{2^{4}}(a, Y)$ for every $Y \in \Gamma_{3}(a, c)$ and so $\tau(Y) \in Q(a)_{b}$ by Lemmas 4.2(i) and 4.4. By the definition of $\Delta_{3}^{7}(a)$ we can find $Y \in \Gamma_{3}(a, c)$ with $c+x \in \alpha_{153}(c, Y)$ and then $\tau(Y) \notin G_{x}$ by Lemma 4.4. So $x, x^{\tau(Y)} \in \Delta_{2}\left(b_{1}\right)$ and Lemma 7.7 gives $c \in \Delta_{1}\left(b_{1}\right)$, contrary to the choice of b_{1}. Therefore $a+b_{1} \notin \Gamma_{1}(X)$ for all $X \in \Gamma_{3}(a, c)$ and so in Ω_{a}, the octad $a+b_{1}$ intersects the trio $\mathcal{T}_{c a}$ in 42^{2}.

We now show that $b_{1} \in \Delta_{2}^{2}(x)$. Let X be the unique element of $\Gamma_{3}(b, x)$. Assume $b_{1} \notin \Delta_{2}^{2}(x)$ for a contradiction. Then there exists $Y \in \Gamma_{3}\left(x, b_{1}\right)$. If $X \in \beta_{i}(x, Y)$ for $i=1,0$, then there exists $d \in\left\{x, b_{1}\right\}^{\perp}$ with $x+d \in$ $\alpha_{1^{5} 3}(x, X)$. By Lemma $4.4 d^{\tau(X)} \neq d$. Since $b+a \in \alpha_{2^{4}}(b, X)$, using Lemma 4.4 again we have $a^{\tau(X)}=a$. Using Lemma 7.7 with d and $d^{\tau(X)}$ we get $y \in \Delta_{1}(a)$. So we must have $X \in \beta_{3}(x, Y)$. We can choose $d \in\{d, x\}^{\perp}$ with $x+d \in \alpha_{4^{2}}(x, Y)$. So $d \in \Gamma_{0}(Y)$. If $d \in \Delta_{1}\left(b_{1}\right)$ then $d \notin \Delta_{2}^{2}(a)$ by Lemma 5.8(ii). Then $d=c$ from the first part of the proof. This contradicts the fact that $b_{1} \notin\{a, c\}^{\perp}$. If $d \in \Delta_{2}\left(b_{1}\right)$, then Lemma 7.7 implies that the point in $\Gamma_{0}\left(a+b_{1}\right) \backslash\left\{a, b_{1}\right\}$ lies in $\Delta_{1}(x)$ and using Lemma 7.7 again we get $x \in \Delta_{1}(a)$. So $d \in \Delta_{3}^{8}\left(b_{1}\right)$ because $\Gamma_{3}\left(d, b_{1}\right) \neq \emptyset$. However Lemma 7.4(iv)
now yields $\Gamma_{3}(a, x) \neq \emptyset$ which contradicts Lemma 7.5. Hence we have shown that $b_{1} \in \Delta_{2}^{2}(x)$.

Let d be the unique point in $\left\{x, b_{1}\right\}^{\perp}$. We can choose $Y \in \Gamma_{3}(a, c)$ such that $c+x \in \alpha_{2^{4}}(c, Y)$. Then $\tau(Y)$ fixes x by Lemma 4.4. Assume $d \notin \Delta_{2}^{2}(a)$ and let $Z \in \Gamma_{3}(a, d)$. If $Z \notin \Gamma_{3}\left(\mathcal{T}_{c a}\right)$ we could choose $Y_{1} \in \Gamma_{3}\left(\mathcal{T}_{c a}\right)$ such that $Y_{1} \in \beta_{i}(a, Z)$ for $i=0$ or 1 and $b^{\prime} \in\{a, d\}^{\perp}$ with $a+b^{\prime} \in \alpha_{15}{ }^{5}\left(a, Y_{1}\right)$. So $\tau\left(Y_{1}\right)$ does not fix b^{\prime} by Lemma 4.4 and then Lemma 7.7 gives $a \in \Delta_{1}(x)$, a contradiction. Therefore $Z \in \Gamma_{3}\left(\mathcal{T}_{c a}\right)$. Applying a similar argument to the one used to show $b_{1} \in \Delta_{2}^{2}(x)$, we can prove that $d \in \Delta_{2}^{2}(a)$.

Since $b_{1} \notin\{a, c\}^{\perp}$, the octad $a+b_{1}$ in Ω_{a} is not incident with the trio $\mathcal{T}_{c a}$. Therefore we can choose $Y \in \Gamma_{3}(a, c)$ with $\tau(Y) \in G_{x}$ and $b_{1} \notin \Gamma_{0}(Y)$. If $\tau(Y)$ does not fix b_{1} Lemma 7.7 would imply that $a \in \Delta_{1}(x)$ and so $\tau(Y) \in G_{b_{1}} .{ }^{* * *}$ SHOW THAT $d^{\tau(Y)} \neq d^{* * *}$. We now have $\left|\left\{b_{1}, x\right\}^{\perp}\right|>1$ which contradicts Lemma 5.8(ii). This completes the proof of the lemma.

Lemma 7.9. (i) $\left|\Delta_{3}^{10}(a)\right|=2^{9} .3^{2}$.5.7.11.23.
(ii) G_{a} is transitive on $\Delta_{3}^{10}(a)$.
(iii) For $x \in \Delta_{3}^{10}(a), G_{a x} \sim 2^{9}: S_{4}$ and $G_{a x}^{* x} \sim 2^{6}: S_{4}$ is the stabilizer in $G_{x}^{* x}$ of the tetrad $t(x, b)$ (where b is the unique element of $\Delta_{1}(a) \cap \Delta_{2}^{1}(x)$) and a partition of $x+c \backslash t(x, b)$ into two pairs of elements.

Proof. Let $x \in \Delta_{3}^{10}(a)$ and c be the unique point in $\Delta_{2}^{3}(a) \cap \Delta_{1}(x)$ (c exists by Lemma 7.8). Then $\left|\Delta_{3}^{10}(a) \cap \Delta_{1}(c)\right|=2 \mid \alpha_{42^{2}}\left(c, \mathcal{T}_{c a} \mid=2.672\right.$ by $\mathbf{O}(2.4)$. By the uniqueness of c and Lemma 5.11(i) we have

$$
\left|\Delta_{3}^{2}(a)\right|=2.672 .\left|\Delta_{2}^{3}(a)\right|=2^{9} .3^{2} .5 .7 .11 .23 .
$$

For part (ii), working in Ω_{c}, there are four sextets $X \in \Gamma_{3}(a, c)$ such that $c+x \in \alpha_{1^{5} 3}(c, X)$ and so $\tau(X) \notin G_{x}$ by Lemma 4.4. Therefore $G_{a c}$
is transitive on $\Gamma_{0}(c+x) \backslash\{c\}$. Now part (ii) follows because $\alpha_{153}(c, X)$ is a $G_{a c}$-orbit on $\Gamma_{1}(c)$ and $\Delta_{2}^{3}(a)$ is a G_{a}-orbit of points by Lemma 5.11 (ii).

Turning to part (iii) we have $G_{a x} \leqslant G_{a c}$. Let $b \in\{a, c\}^{\perp} \cap \Delta_{2}^{1}(x)$ (b exists and is unique by Lemma 7.8(i)). By Lemma 7.8(ii) there exists $c_{1}, c_{2} \in$ $\{b, x\}^{\perp} \cap \Delta_{2}^{2}(a)$ with $c_{1} \neq c_{2}$. We show that $\left|Q(a)_{x}\right| \leq 2^{3}$ by first proving that $Q(a)_{x} \leqslant Q(a)_{c_{i}}$ for $i=1$ and 2. Assume $g \in Q(a) x \backslash Q(a)_{c_{i}}$ for a contradiction. If $b^{g}=b$, then in Ω_{b} the octads $b+c_{1}$ and $b+c_{1}^{g}$ contain the same two elements of $b+a$. However Lemma 5.5 implies that $t(b, x) \subseteq b+c$ which gives $(b+a) \cap(b+c) \neq \emptyset$, contrary to Lemma 5.9. So $b^{g} \neq b$ and we can use Lemma 7.7 to show that $a \in \Delta_{1}(x)$, a contradiction. So $Q(a)_{x} \leqslant Q(a)_{c_{i}}$ for $i=1,2$. Since $(b+a) \cap\left(b+c_{i}\right)=\emptyset$ in Ω_{b}, there are seven hyperplanes $Y_{i} \in \Gamma_{3}(a, b)(i=1, \ldots, 7)$ with $\tau\left(Y_{i}\right) \in G_{c_{1} c_{2}}$ and the subgroup generated by the elements $\tau\left(Y_{i}\right)$ has order at least 2^{4}. Further we can show that, up to relabelling $Q(a) \cap Q\left(c_{1}\right)=\left\langle\tau\left(Y_{1}\right) \tau\left(Y_{2}\right) \tau\left(Y_{3}\right)\right\rangle \leqslant Q(a)_{c_{1} c_{2}}$. (See Lemma 6.15 in [17] for details). Since $Q(a)_{c_{1} c_{2}} \neq Q(a)_{c_{1}}$ we have $\left|Q(a)_{c_{1} c_{2}}\right|=2^{4}$ by Theorem 4. Therefore $\left|Q(a)_{c_{1} c_{2}}^{* c_{1}}\right|=2^{3}$. In $\Omega_{c_{1}}$ the octads $c_{1}+b$ and $c_{1}+x$ intersect in four elements and the subgroup of $O_{2}\left(G_{c_{1} b}^{* c_{1}}\right)$ fixing $c_{1}+x$ is of order 2^{2}. Therefore $\left|Q(a)_{c_{1} c_{2} x}^{* c_{1}}\right| \leq 2^{2}$ and so $\left|Q(a)_{x}\right| \leq 2^{3}$, as required.

By parts (i) and (ii), $\left[G_{a c}: G_{a x}\right]=2^{6} .3 .7$. Since $\left|Q(a)_{c}\right|=2^{9}$ by Theorem 5 we must have $\left|Q(a)_{x}\right| \leq 2^{3}$ and so $\left|Q(a)_{x}\right|=2^{3}$ and $\left[G_{a c}^{* a}: G_{a x}^{* a}\right]=3.7$. Using the ATLAS [2] and Theorem 5 we get $G_{a x}^{* a} \sim 2^{6}: S_{4}$. This completes the proof of the lemma.

Lemmas 7.6 and 7.8 now imply
Lemma 7.10. Let $x \in \Delta_{3}^{7}(a)$ and $c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(x)$. Then
(i) $\Delta_{2}(x) \cap \Delta_{1}(a)=\{a, c\}^{\perp}$ with $\left|\Delta_{2}^{1}(x) \cap \Delta_{1}(a)\right|=2,\left|\Delta_{2}^{2}(x) \cap \Delta_{1}(a)\right|=0$ and $\left|\Delta_{2}^{3}(x) \cap \Delta_{1}(a)\right|=1$.
(ii) If $b \in \Delta_{2}^{3}(x) \cap \Delta_{1}(a)$, then $\Delta_{2}(a) \cap \Delta_{1}(x)=\{b, x\}^{\perp}$ with $\mid \Delta_{2}^{1}(a) \cap$ $\Delta_{1}(x)\left|=4,\left|\Delta_{2}^{2}(a) \cap \Delta_{1}(x)\right|=1\right.$ and $| \Delta_{2}^{3}(a) \cap \Delta_{1}(x) \mid=0$.

Lemma 7.11. (i) $\left|\Delta_{3}^{7}(a)\right|=2^{9} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11.23$.
(ii) G_{a} is transitive on $\Delta_{3}^{7}(a)$.
(iii) For $x \in \Delta_{3}^{7}(a), G_{a x} \sim 2^{9}: S_{4}$ and $G_{a x}^{* x} \sim 2^{5}: S_{4}$ is the stabilizer in $G_{x}^{* x}$ of the octad $x+d$ (where d is the unique element of $\Delta_{2}^{2}(a) \cap \Delta_{1}(x)$), the trio \mathcal{T}_{0} which is the unique element of $\Gamma_{3}(b, x)$ for $b \in \Delta_{2}^{3}(x) \cap \Delta_{1}(a)$ and a partition of the octad $x+d$ into four 2-element sets.

Proof. Let $x \in \Delta_{3}^{7}(a)$ and $c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(x)$. Then $\left|\Delta_{3}^{3}(a) \cap \Delta_{1}(c)\right|$ is twice the number of octads in Ω_{c} lying in $\alpha_{2^{4}}(c, X(c, a))$ that have an empty intersection with $t(c, a)$. This number is 240 . Therefore Lemmas 5.6 and 7.10 give

$$
\left|\Delta_{3}^{7}\right|=2^{9} .3^{2} .5 \cdot 7 \cdot 11.23
$$

Let $x^{\prime} \in \Gamma_{0}(c+x) \backslash\{c, x\}$. Then by definition $x^{\prime} \in \Delta_{3}^{7}(a)$. Since $c+x \notin$ $\Gamma_{1}(X(c, a))$, there exists $Y \in \beta_{3}(c, X(c, a))$ with $c+x \in \alpha_{1^{5} 3}(c, Y)$. For this Y we have $x^{\tau(Y)}=x^{\prime}$ by Lemma 4.4. By $\mathbf{O}(2.2)$ and Lemma 5.5(iii) $G_{c a}^{* c}$ is transitive on the lines in $\alpha_{2^{4}}(c, X(c, a))$ that have an empty intersection with $t(c, a)$ and so part (ii) follows from the transitivity of G_{a} on $\Delta_{2}^{2}(a)$ (see Lemma 5.6(ii)).

For part (iii) we know that $a \in \Delta_{3}^{10}(x)$ by Lemma 7.6 and hence $G_{a x} \sim$ $2^{9}: S_{4}$ by Lemma 7.9(iii). Let $b \in \Delta_{2}^{3}(x) \cap \Delta_{1}(a)$ and $e_{1}, e_{2} \in\{b, x\}^{\perp} \cap \Delta_{2}^{2}(a)$ with $e_{1} \neq e_{2}$. (Such points exist by Lemma 7.10.) Assume $Q(a)_{x} \nless Q(a)_{e_{1}}$ and let $g \in Q(a)_{y} \backslash Q(a)_{e_{1}}$. If $b^{g}=b$, then $g^{* b} \in O_{2}\left(G_{b a}^{* b}\right)$ and so in Ω_{b}, the octads $b+e_{1}$ and $b+e_{1}^{g}$ intersect $b+a$ in the same two elements. However $e_{1}^{g} \in\{b, x\}^{\perp}$ and so $\left(b+e_{1}\right) \cap\left(b+e_{1}^{g}\right)=\emptyset$ because $b \in \Delta_{2}^{3}(x)$. Therefore $b^{g} \neq b$. Since $b^{g} \in \Gamma_{0}(a+b)$, Lemma 7.7 implies that $a \in \Delta_{1}(x)$, a contradiction. Therefore $Q(a)_{x} \leqslant Q(a)_{e_{1}}$ and similarly $Q(a)_{x} \leqslant Q(a)_{e_{2}}$. Using an argument similar to that in the proof of Lemma 7.9(iii), we get $\left|Q(a)_{x}\right| \leq 2^{4}$.

Since c is the unique point in $\Delta_{2}^{1}(a) \cap \Delta_{1}(x), G_{a x} \leqslant G_{a c}$. By Lemma 5.6(iii) we have $\left|Q(c)_{a}\right|=2^{7}$. Therefore $Q(c)_{a}^{* a} \leqslant O_{2}\left(G_{a c}^{* a}\right)$. Since $c+x \in$
$\alpha_{2^{4}}(c, X(c, a))$, there exists $Y \in \beta_{3}(c, X(c, a))$ such that $c+x \in \alpha_{1^{5} 3}(c, Y)$. Then Lemma 4.4 implies that $\tau(Y) \notin G_{x}$. However $\tau(Y) \in Q(c) \cap Q(X(c, a))$ and $\tau(Y) \notin Q(a)$. Therefore $\mid O_{2}\left(G_{x a}^{* x} \mid \leq 2^{5}\right.$ and so $G_{x a}^{* x} \sim 2^{5} S_{4}$ and $\left|Q(x)_{a}\right|=$ 2^{4}.

We end this section by examining the set

$$
\begin{aligned}
& \Delta_{3}^{9}(a)=\left\{x \in \Gamma_{0} \mid \text { there exists } c \in \Delta_{2}^{2}(a) \cap \Delta_{1}(x)\right. \text { such that } \\
& \left.\quad c+x \in \alpha_{2,0}\left(c, c+b, \mathcal{D}_{c a}\right) \text {, where }\{b\}=\{a, c\}^{\perp}\right\} .
\end{aligned}
$$

Lemma 7.12. $\Delta_{3}^{9}(a) \cap \Delta_{3}^{i}(a)=\emptyset$ for $i=1, \ldots, 8$ and $i=10$.

Proof. Since $\Omega_{a} \cap \Omega_{x}=\emptyset$ by definition, $\Delta_{3}^{9}(a) \cap \Delta_{3}^{i}(a)=\emptyset$ for $i=1, \ldots, 6$. By Lemma 7.4(iii), $\Delta_{3}^{9}(a) \cap \Delta_{3}^{8}(a)=\emptyset$. By Lemmas 7.8 and 7.10 and [RW5; (2.3)] if $x \in \Delta_{3}^{7}(a) \cup \Delta_{3}^{10}(a)$, then $|c+x \cap c+b|=0$ or 4 in Ω_{c} for any $c \in \Delta_{2}^{2}(a) \cap \Delta_{1}(x)$. Therefore $\Delta_{3}^{9}(a) \cap \Delta_{3}^{i}(a)=\emptyset$ for $i=7,10$ as required.

Lemma 7.13. Let $x \in \Delta_{3}^{9}(a)$. Then there exists a unique path of length three between a and x in \mathcal{G}.

Proof. Let $c \in \Delta_{2}^{2}(a) \cap \Delta_{1}(x)$ with $c+x \in \alpha_{2,0}\left(c, c+b, \mathcal{D}_{c a}\right)$ and $\{b\}=\{a, c\}^{\perp}$. Then $b \in \Delta_{2}^{2}(x)$ by definition. Assume that a, b_{1}, c_{1}, x is another path of length three in \mathcal{G}. By Lemmas 7.8, 7.10 and 7.4 and [RW5;(2.2) and (2.4)] we must have $c_{1} \in \Delta_{2}^{2}(a)$ and $b_{1} \in \Delta_{2}^{2}(x)$. It then follows from Lemma 5.8(ii) that $b_{1} \neq b$ and $c_{1} \neq c$. Therefore $b_{1} \in \Delta_{2}(b)$ and we consider the three possible choices separately.

First assume that $b_{1} \in \Delta_{2}^{3}(b)$. Notice that $c_{1} \notin \Delta_{1}(b) \cup \Delta_{2}(b)$ by Lemma 7.7 and Lemma 5.8(ii) and so $c_{1} \in \Delta_{3}(b)$. Therefore $c_{1} \in \Delta_{3}^{8}(b) \cup \Delta_{3}^{10}(b)$ by [RW5;(2.4)]. However Lemma 7.4(iii) implies that $c_{1} \in \Delta_{3}^{10}(b)$. We now have $c \in \Delta_{2}^{1}\left(c_{1}\right) \cap\left\{b, b_{1}\right\}^{\perp}$ by Lemma 7.8 and so $c, c_{1} \in\left\{x, b_{1}\right\}^{\perp}$, contrary to Lemma 5.8(ii).

Next suppose that $b_{1} \in \Delta_{2}^{1}(b)$. Therefore $c \in \Delta_{3}^{7}\left(b_{1}\right) \cup \Delta_{3}^{8}\left(b_{1}\right)$. Using Lemma 7.4(iii) we must have $c \in \Delta_{3}^{7}\left(b_{1}\right)$. This again leads to the contradiction that $c, c_{1} \in\left\{x, b_{1}\right\}^{\perp}$.

Therefore we must have $b_{1} \in \Delta_{2}^{2}(b)$. In $\Omega_{c}, c+x \cap \mathcal{D}_{c a}=\emptyset$ and $\mid c+x \cap$ $c+b \mid=2$. Using the MOG in [C1] and Lemma 4.4 we can find a sextet $Y \in \Gamma_{3}(c, b)$ with $\tau(Y) \in G_{a} x$. Since $\tau(Y) \notin Q(a)$ and $a+b_{1} \in \alpha_{2}(a, a+b)$, $\tau(Y)$ does not fix $a+b_{1}$. However by the above argument we must have $a+b_{1}^{\tau(Y)} \alpha_{2}(a, a+b) \cap \alpha_{2}\left(a, a+b_{1}\right)$ and $a+b \cap a+b_{1}=a+b \cap a+b_{1}^{\tau(Y)}$ in Ω_{a}. As this cannot occur we again get a contradiction. This completes the proof of the lemma.

Lemma 7.14. (i) $\left|\Delta_{3}^{9}(a)\right|=2^{13} \cdot 3^{2}$.5.7.11.23.
(ii) G_{a} is transitive on $\Delta_{3}^{9}(a)$.
(iii) For $x \in \Delta_{3}^{9}(a), G_{a x} \sim 2^{5}: S_{4}$ and $G_{a x}^{* x} \sim 2^{4}: S_{4}$.

Proof. Let $x \in \Delta_{3}^{9}(a)$ and let a, b, c, x be the unique path of length three between a and x in \mathcal{G}.
(i) From [RW5:(2.4)], $\Delta_{1}(c) \cap \Delta_{3}^{9}(a)=2 \times 240=2^{5}$.3.5. Using Lemmas 5.8(ii) and Lemma 7.13 we then have $\left|\Delta_{3}^{9}(a)\right|=2^{1} 3.3^{2}$.5.7.11.23.
(ii) Since $c+x \alpha_{2,0}\left(c, c+b, \mathcal{D}_{c a}\right)$ and using Lemma 4.4, we can find $Y \in$ $\Gamma_{3}(b, c)$ with $\tau(Y) \in G_{a} \backslash G_{x}$. Since $\tau(Y)$ fixes $c+x, \tau(Y)$ interchanges the points in $\Gamma_{0}(c+x) \backslash\{c\}$. Since G_{a} is transitive on $\Delta_{2}^{2}(a)$ and $\alpha_{2,0}\left(c, c+b, \mathcal{D}_{c a}\right)$ is a $G_{a c}$ orbit, G_{a} is transitive on $\Delta_{3}^{9}(a)$.
(iii) We have $G_{a x} \leq G_{a c}$. Since $c+x \in \alpha_{2}(c, c+b)$, then $Q(a)_{c x}^{* c}=1$ and so $Q(a)_{x} \leq Q(a) \cap Q(c)$. Using the MOG in [C1], there exist $\left.Y_{1}, Y_{2}, Y_{3} \in \Gamma_{(} c+b\right)$ with $Q(a) \cap Q(c)=<\tau\left(Y_{1}\right) \tau\left(Y_{2}\right) \tau\left(Y_{3}\right)>$. Further, if δ is the duad in Ω_{c} fixed by $G_{c a}^{* c}$ and t_{i} is the tetrad in Y_{i} containing $\delta(i=1,2,3)$, then of the six elements in $(c+a) \backslash \delta$ in Ω_{c}, three lie in exactly two of the tetrads t_{i} and three lie in none of the tetrads t_{i}. (For details see Proposition 8.12 in [W] where $\Delta_{2}^{2}(a)$ is denoted by $\Delta_{2}^{3}(a)$.) Since $\Omega_{a} \cap \Omega_{x}=\emptyset$ we have that
$c+x \in \alpha_{153}\left(c, Y_{i}\right)$ for precisely two or none of the sextets $Y_{i}, i=1,2,3$. Therefore $\tau\left(Y_{1}\right) \tau\left(Y_{2}\right) \tau\left(Y_{3}\right) \in G_{x}$ by Lemma 4.4. Therefore $\left|Q(a)_{x}\right|=2$ and it follows that $\left[G_{x b}^{* x}: G_{x a}^{* x}\right]=2.3 .5$.. Since $G_{x b}^{* x} \sim 2^{4} S_{6}$ by Lemma 5.8(iii) we must have $G_{x a}^{* x} \sim 2^{4} S_{4}$, as required.

References

[1] M. Aschbacher, 3-transposition Groups, Cambridge University Press, 1996.
[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Oxford Univ.Press, London, 1985.
[3] R.T. Curtis, On the Mathieu group M_{24} and related topics, Ph.D. thesis, University of Cambridge (1972).
[4] R.T. Curtis, A new combinatorial approach to M_{24}, Math.Proc.Cambridge Philos.Soc. 79 (1976), 25-42.
[5] B. Fischer, Groups generated by 3-transpositions, Invent. Math. 13 (1971), 232-246.
[6] W.M. Kantor, Some geometries that are almost buildings, Europ. J. Combin. 2 (1981), 239-247
[7] S. Linton, personal communication
[8] R. List, On a Unitary group in six dimensions, Ph.D. Thesis, University of Birmingham (1973).
[9] M.A. Ronan and S.D. Smith, 2-Local geometries for some sporadic groups, A.M.S. Proc.Symp.Pure Math. 37 (1980), 283-289.
[10] M. Ronan and G.Stroth, Minimal parabolic geometries for the sporadic groups, European J. Comb.,5 (1984), 59-91.
[11] P. Rowley and L. Walker, On the $F i_{22}$-minimal parabolic geometry, Geom.Dedicata 61(1996), no.2, 121-167.
[12] P. Rowley and L. Walker, A 195,747,435 vertex graph related to the Fischer group $F i_{23}$, I, to appear JP J. Algebra Number Theory Appl.
[13] P. Rowley and L. Walker, A 195,747,435 vertex graph related to the Fischer group Fi_{23}, II, to appear JP J. Algebra Number Theory Appl.
[14] P. Rowley and L. Walker, A 195,747,435 vertex graph related to the Fischer group $F i_{23}$, III, to appear JP J. Algebra Number Theory Appl.
[15] P. Rowley and L. Walker, Octad orbits for certain subgroups of M_{24}, preprint.
[16] P. Rowley and B. Wright, Structure of the $F i_{24}^{\prime}$ maximal 2-local geometry point-line collinearity graph, preprint.
[17] L. Walker, The maximal 2-local geometry for $F i_{24}^{\prime}$, Thesis, University of Manchester, 1991.

