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Abstract

The disc structure of the point-line collinearity graph for the max-

imal 2-local geometry associated with the largest simple Fischer group

is investigated. For an arbitrary vertex of this graph the first three

discs are determined. Additionally a fragment of the fourth disc is

uncovered.

1 Introduction and main results

The investigations of Fischer [5] into groups generated by 3-transpositions

not only had an influence upon certain later work related to the classification

of the finite simple groups but also unearthed three previously unknown spo-

radic groups, Fi22, F i23 and Fi24. The first two of these are simple while Fi24,

though not simple, has a simple subgroup Fi′24 of index 2. For more on these

groups and 3-transposition groups in general see the book by Aschbacher [1].
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Along with many of the other sporadic simple groups, Fi22, F i23 and Fi′24

possess minimal parabolic geometries and maximal 2-local geometries (see [9]

and [10]). In the present paper we study the point-line collinearity graph G
of Γ, the maximal 2-local geometry for Fi′24. This geometry has rank 4 and

its associated diagram is

Many properties of Γ are itemized in Section 2. We recall that the vertices

of G are Γ0, the points of Γ and two points are adjacent in G if they are

incident with a common line. In [11],[12],[13] and [14] complete and detailed

descriptions of the corresponding point-line collinearity graphs for Fi22 and

Fi23 are presented.

For x ∈ Γ0 and i ∈ N, ∆i(x) denotes the set of points of Γ0 distance

i from x. Let G = Fi′24. Now G acts flag transitively on Γ and so, in

studying G, there is no loss in choosing and fixing a point a of Γ. Here

we shall obtain properties of the first three discs of G around a (that is, of

∆1(a),∆2(a) and ∆3(a)) as well as describing a certain fragment of ∆4(a).

In a subsequent paper [16], a complete description of G is obtained - however

the work in [16] is exclusively computer based, whereas this paper does not

rely on any machine calculations. It is worth remarking that the notation

and conventions used here and in [16] are compatible so as to allow a smooth

transition between the two viewpoints. Earlier in [17], the second author

obtained results on the structure of the first three discs of G. The arguments

given here will differ to some extent from those in [17] as we may now call

upon results in [12],[13] and [14]. Further we are able to give more detail on
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adjacency within ∆3(a).

We now present our main results - for notation we refer the reader to

Section 2.

Theorem 1. (i) ∆1(a) is a Ga-orbit of size 1518;

(ii) ∆2(a) is the union of three Ga-orbits ∆
i
2(a) (i = 1, 2, 3) and |∆2(a)| =

1, 560, 504;

(iii) ∆3(a) is the union of ten Ga-orbits ∆
i
3(a) (i = 1, ..., 10) and |∆3(a)| =

1, 400, 874, 432; and

(iv) ∆4(a) ∩ {x ∈ Γ0|Ωx ∩ Ωa ̸= ∅} is the union of six Ga-orbits ∆i
4(a)

(i = 1, ..., 6) and consists of 3, 992, 911, 872 points.

Tables 1 and 2 list the sizes of the above mentioned Ga-orbits ∆
i
j(a).

∆i
j(a) Size of ∆i

j(a)

∆1(a) 2.3.11.23 = 1518

∆1
2(a) 25.3.7.11.23 = 170, 016

∆2
2(a) 28.3.7.11.23 = 1, 360, 128

∆3
2(a) 23.3.5.11.23 = 30, 360

∆1
3(a) 212.11.23 = 1, 036, 288

∆2
3(a) 210.32.5.11.23 = 11, 658, 240

∆3
3(a) 212.3.7.11.23 = 21, 762, 048

∆4
3(a) 212.3.23 = 282, 624

∆5
3(a) 215.32.7.11.23 = 522, 289, 152

∆6
3(a) 212.3.5.7.11.23 = 108, 810, 240

∆7
3(a) 29.32.5.7.11.23 = 40, 803, 840

∆8
3(a) 26.5.7.11.23 = 566, 720

∆9
3(a) 213.32.5.7.11.23 = 652, 861, 440

∆10
3 (a) 29.32.5.7.11.23 = 40, 803, 840

Table 1
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∆i
j(a) Size of ∆i

j(a)

∆1
4(a) 216.32.5.11.23 = 746, 127, 360

∆2
4(a) 215.3.11.23 = 24, 870, 912

∆3
4(a) 215.3.5.7.11.23 = 870, 481, 920

∆4
4(a) 219.32.7.23 = 759, 693, 312

∆5
4(a) 218.3.11.23 = 198, 967, 296

∆6
4(a) 218.3.7.11.23 = 1, 392, 771, 072

Table 2

Theorem 2. Let x ∈ ∆1(a). Then Gax ∼ 21024A8 (with G∗x
ax = (G∗x

ax)x+a ∼
24A8, an octad stabilizer) has 4 orbits on Γ1(x) with point distribution as

follows.

Orbit Size Point distribution

{x+ a} 1 {a}2∆1

α0(x, x+ a) 30 ∆12∆
3
2

α2(x, x+ a) 448 ∆12∆
2
2

α4(x, x+ a) 280 ∆12∆
1
2

Theorem 3. Let x ∈ ∆1
2(a). Then Gax ∼ 2726(3 × S5) (with G∗x

ax =

StabG∗x
x
{Λ1,Λ2} ∼ 26(3 × S5), where Λ1 = Ωa ∩ Ωx is a tetrad and Λ2 is

the unique sextet of Ωx containing Λ1. Also Gax ≤ GaX where X is the

unique hyperplane incident with both a and x. Further, Gax has 6 orbits on

Γ1(x) with point distribution as follows.

Orbit Size Point distribution

α4,42(x,Λ1,Λ2) 5 ∆12∆
1
2

α0,42(x,Λ1,Λ2) 10 ∆1
22∆

8
3

α1,315(x,Λ1,Λ2) 320 ∆1
22∆

6
3

α2,24(x,Λ1,Λ2) 240 ∆1
22∆

2
3

α0,24(x,Λ1,Λ2) 120 ∆1
22∆

7
3

α3,315(x,Λ1,Λ2) 64 ∆1
22∆

1
3
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Theorem 4. Let x ∈ ∆2
2(a). Then Gax ∼ 2524S6, |{a, x}⊥| = 1 and G∗x

ax =

StabG∗x
x
{Λ1,Λ2} ∼ 24S6, where Λ1 is the octad of Ωx corresponding to x + b

(where b = {a, x}⊥) and Λ2 = Ωa ∩ Ωb ∩ Ωx, a duad contained in Λ1. The

number of Gax-orbits on Γ1(x) is 8 with point distribution as follows.

Orbit Size Point distribution

α8,2(x,Λ1,Λ2) = {x+ b} 1 ∆12∆
2
2

α2,2(x,Λ1,Λ2) 16 ∆2
2∆

3
3∆

4
3

α4,2(x,Λ1,Λ2) 60 ∆2
22∆

2
3

α4,1(x,Λ1,Λ2) 160 ∆2
22∆

6
3

α2,1(x,Λ1,Λ2) 192 ∆2
22∆

5
3

α4,0(x,Λ1,Λ2) 60 ∆2
22∆

10
3

α2,0(x,Λ1,Λ2) 240 ∆2
22∆

9
3

α0,0(x,Λ1,Λ2) 30 ∆2
22∆

7
3

Theorem 5. Let x ∈ ∆3
2(a). Then Gax ∼ 2926(L3(2) × 3) and G∗x

ax ∼
26(L3(2)× 3), the derived subgroup of StabG∗x

x
{Λ1} where Λ1 is a trio of Ωx.

Also Gax ≤ Gaπ where π is the unique plane incident with both a and x. The

number of Gax-orbits on Γ1(x) is 3 with point distribution as follows.

Orbit Size Point distribution

α802(x,Λ1) 3 ∆12∆
3
2

α42(x,Λ1) 84 ∆3
22∆

8
3

α422(x,Λ1) 672 ∆3
22∆

10
3

Now we move onto ∆3(a) the third disc of a; we caution that in the

following results the point distribution is incomplete.

Theorem 6. Let x ∈ ∆1
3(a). Then Gax ∼ 22L3(4)S3 and G∗x

ax = StabG∗x
x
{Λ1} ∼

L3(4) : S3 where Λ1 is a triad of Ωx. The number of Gax-orbits on Γ1(x) is

4, the point distribution of 3 of them are as follows.
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Orbit Size Point distribution

α3(x,Λ1) 21 ∆1
22∆

1
3

α2(x,Λ1) 168 ∆1
32∆

3
3

α1(x,Λ1) 360 ∆1
32∆

1
4

Theorem 7. Let x ∈ ∆2
3(a). Then Gax ∼ 2423 : (L3(2) × 2) and G∗x

ax =

StabG∗x
x
{Λ1,Λ2} ∼ 23 : (L3(2) × 2) where Λ1 is an octad and Λ2 is a duad

of Ωx and Λ1 ∩ Λ2 = ∅. The number of Gax-orbits on Γ1(x) is 11, the point

distribution of 6 of them are as follows.

Orbit Size Point distribution

α0,2(x,Λ1,Λ2) 7 ∆1
22∆

2
3

α0,1(x,Λ1,Λ2) 16 ∆2
32∆

2
4

α4,2(x,Λ1,Λ2) 14 ∆2
22∆

2
3

α2,2(x,Λ1,Λ2) 56 ∆2
32∆

3
3

α4,1(x,Λ1,Λ2) 112 ∆2
32∆

3
4

α2,1(x,Λ1,Λ2) 224 ∆2
32∆

1
4

Theorem 8. Let x ∈ ∆3
3(a). Then Gax ∼ 224 : S6 and G∗x

ax = StabG∗x
x
{Λ1,Λ2} ∼

24 : S6 where Λ1 is an octad and Λ2 is a duad of Ωx and Λ2 ⊆ Λ1. The num-

ber of Gax-orbits on Γ1(x) is 8, the point distribution of 5 of them are as

follows.

Orbit Size Point distribution

α8,2(x,Λ1,Λ2) = {Λ1} 1 ∆2
2∆

3
3∆

4
3

α2,2(x,Λ1,Λ2) 16 ∆1
32∆

3
3

α4,2(x,Λ1,Λ2) 60 ∆2
32∆

3
3

α4,1(x,Λ1,Λ2) 160 ∆3
32∆

6
4

α2,1(x,Λ1,Λ2) 192 ∆3
32∆

4
4

Theorem 9. Let x ∈ ∆4
3(a). Then Gax ∼ 2 : M22 : 2 and G∗x

ax = StabG∗x
x
{Λ1} ∼

M22 : 2 where Λ1 is a duad of Ωx. The number of Gax-orbits on Γ1(x) is 3,

the point distribution of 2 of them are as follows.
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Orbit Size Point distribution

α2(x,Λ1) 77 ∆2
2∆

3
3∆

4
3

α1(x,Λ1) 352 ∆4
32∆

5
4

Theorem 10. Let x ∈ ∆5
3(a). Then Gax

∼= G∗x
ax = StabG∗x

x
{Λ1,Λ2,Λ3} ∼

24 : A5 where Λ1 = O1, Λ2 = {∞} and Λ3 = {14}. The number of Gax-orbits

on Γ1(x) is 13, the point distribution of 9 of them are as follows.

Orbit Size Point distribution

α8,1,1(x,Λ1,Λ2,Λ3) = {O1} 1 ∆2
22∆

5
3

α2,1,1(x,Λ1,Λ2,Λ3) 16 ∆5
3∆

4
4∆

5
4

α
(1)
4,1,0(x,Λ1,Λ2,Λ3) 40 ∆5

32∆
3
4

α
(2)
4,1,0(x,Λ1,Λ2,Λ3) 40 ∆5

3∆
5
4∆

6
4

α
(1)
4,0,1(x,Λ1,Λ2,Λ3) 40 ∆5

32∆
3
4

α
(2)
4,0,1(x,Λ1,Λ2,Λ3) 40 ∆5

3∆
5
4∆

6
4

α4,1,1(x,Λ1,Λ2,Λ3) 60 ∆5
3∆

1
4∆

3
4

α2,1,0(x,Λ1,Λ2,Λ3) 96 2∆5
3∆

6
4

α2,0,1(x,Λ1,Λ2,Λ3) 96 2∆5
3∆

6
4

Theorem 11. Let x ∈ ∆6
3(a). Then Gax ∼ 26 : 3S4 and G∗x

ax = StabG∗x
x
{Λ1,Λ2,Λ3} ∼

24 : 3S4 where Λ1 is an octad of Ωx, Λ2 a tetrad contained in Λ1 and Λ3 a

1-element subset of Λ2. The number of Gax-orbits on Γ1(x) is 16, the point

distribution of 7 of them are as follows.

Orbit Size Point distribution

{Λ1} 1 ∆1
22∆

6
3

α4,4,1(x,Λ1,Λ2,Λ3) 4 ∆2
22∆

6
3

α4,1,1(x,Λ1,Λ2,Λ3) 16 ∆6
3∆

2
4∆

3
4

α2,2,1(x,Λ1,Λ2,Λ3) 48 ∆6
32∆

3
4

α4,3,1(x,Λ1,Λ2,Λ3) 48 ∆6
32∆

1
4

α2,1,1(x,Λ1,Λ2,Λ3) 64 ∆6
3∆

5
4∆

6
4

α4,2,1(x,Λ1,Λ2,Λ3) 72 ∆6
32∆

1
4
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Theorem 12. (i) Let x ∈ ∆7
3(a). Then Gax ∼ [29]S4 and G∗x

ax = StabG∗x
x
{Λ1,Λ2,Λ3} ∼

[26]S4 where Λ1 = O1, Λ2 = T0 and Λ3 is the partition of O1 given by

{∞, 14}, {0, 8}, {3, 20}, {15, 18}. The point distribution of 2 of the Gax-orbits

on Γ1(x) are as follows.

Orbit Size Point distribution

α8,8,24(x,Λ1,Λ2,Λ3) 1 ∆1
22∆

7
3

α0,8,04(x,Λ1,Λ2,Λ3) 1 ∆2
22∆

7
3

α0,0,04(x,Λ1,Λ2,Λ3) 1 ∆2
22∆

7
3

(ii) For x ∈ ∆8
3(a), Gax ∼ 213 : 3.32 : 4 and G∗x

ax = StabG∗x
x
{Λ1,Λ2} ∼

26.3.32 : 4 where Λ1 = S0 and Λ2 is the partition given by

Σ = {∞, 14, 0, 8, 3, 20, 15, 18, 17, 4, 16, 10} and Ωx\Σ.

The point distribution of 2 of the Gax-orbits on Γ1(x) are as follows.

Orbit Size Point distribution

α42,8(x,Λ1,Λ2) 6 ∆3
22∆

8
3

α42,42(x,Λ1,Λ2) 9 ∆1
22∆

8
3

(iii) For x ∈ ∆9
3(a), Gax

∼= G∗x
ax = StabG∗x

x
{Λ1,Λ2,Λ3} ∼ 2.24 : S4 where

Λ1 = O1, Λ2 = {∞, 14} and Λ3 = T0. The point distribution of the Gax-orbit

α8,2,8(x,Λ1,Λ2,Λ3) is ∆
2
22∆

9
3.

(iv) For x ∈ ∆10
3 (a), Gax ∼ [29] : S4 and G∗x

ax = StabG∗x
x
{Λ1,Λ2,Λ3} ∼

[25] : S4 where Λ1 is the tetrad {∞, 0, 3, 15}, Λ2 is the duad {14, 8} and Λ3

is the duad {20, 18}. The point distributions of 2 of the Gax-orbits on Γ1(x)

are as follows.

Orbit Size Point distribution

α4,2,2(x,Λ1,Λ2,Λ3) 1 ∆3
22∆

10
3

α4,0,0(x,Λ1,Λ2,Λ3) 4 ∆2
22∆

10
3
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Theorem 13. (i) For x ∈ ∆1
4(a), Gax ∼ 2L3(2)2 and G∗x

ax ∼ L3(2)2.

(ii) For x ∈ ∆2
4(a), Gax

∼= G∗x
ax

∼= A8.

(iii) For x ∈ ∆3
4(a), Gax

∼= G∗x
ax ∼ 2632.

(iv) For x ∈ ∆4
4(a), Gax

∼= G∗x
ax

∼= L2(11).

(v) For x ∈ ∆5
4(a), Gax

∼= G∗x
ax

∼= A7.

(vi) For x ∈ ∆6
4(a), Gax

∼= G∗x
ax ∼ (3× A5)2.

Since, for t ∈ Ωa, Gax = Gt
ax for all x ∈ ∆i

4(a) (i = 1, ..., 6), the point

distributions given in Theorems 11-16 of [12] may be directly translated to

give the point distributions for Gax-orbits on Γ1(x) of those lines within Γt
0.

We close this section by summarizing the collapsed adjacencies established

in the above results.
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2 Notation and Γ

The maximal 2-local geometry Γ for G = Fi′24 has rank 4 and we use Γi (i =

0, 1, 2, 3) to denote the objects of type i in Γ; objects of type 0 (respectively

1,2,3) will be referred to as points (respectively lines, planes, hyperplanes).

For x ∈ Γ, the residue of x, Γx, is defined to be {y ∈ Γ | x ∗ y} where ∗ is the

symmetric incidence relation of Γ. Also, for x ∈ Γ, we set

Q(x) = {g ∈ Gx | g fixes all objects in Γx},

and for H 6 Gx we write H∗x for HQ(x)/Q(x). If Σ ⊆ Γ and i ∈ {0, 1, 2, 3},
then we set Γi(Σ) = {x ∈ Γi | x∗y for all y ∈ Σ}. The point-line collinearity
graph G of Γ has Γ0 as its vertex set and for x, y ∈ Γ0, x and y are adjacent

in G if they are collinear, that is if Γ1(x, y) ̸= ∅. For x, y ∈ Γ0, put {x, y}⊥ =

∆1(x) ∩ ∆1(y). Also for x ∈ Γ0, we define Z1(x) = {g ∈ G | g fixes {x} ∪
∆1(x) pointwise} - note that Z1(x)�Gx.

We take as our starting point the following properties of Γ.

(2.1)(i) G acts flag transitively on Γ.

(ii) Γ is a string geometry.

(iii) For l ∈ Γ1, |Γ0(l)| = 3 and if x, y ∈ Γ0(l) with x ̸= y, then Γ1(x, y) =

{l}.

(iv) For x ∈ Γ0, Gx ∼ 211.M24 with Q(x) ∼= 211, the dual of the Golay

code module and G∗x
x

∼= M24. Moreover, Γx is isomorphic to the M24

maximal 2-local geometry.

(v) For X ∈ Γ3, GX ∼ 21+12
+ .3.U4(3).2 with Q(X) ∼ 21+12

+ .3, Z(GX) =

Z(O2(Q(X)) ∼= 2 and G∗X
X ∼ U4(3).2. Also, ΓX is isomorphic to a

geometry for U4(3).2 which is a subgeometry of the unitary geometry

for U6(2).
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In (2.1) and elsewhere we follow the ubiquitous ATLAS [2] in describ-

ing group structures - it is also a convenient source for information about

subgroups of M24 and U4(3).2. In the situation of (2.1) we shall frequently

denote ℓ by x+y (to indicate we are viewing ℓ in Γx) or y+x (to indicate we

are viewing ℓ in Γy). See Section 3 for further details on the residue geometry

in (2.1)(v).

Let x ∈ Γ0 and let l, π,X be, respectively, a line, plane and hyperplane

in Γx. We remark that ℓ corresponds to an octad, π to a trio and X to a

sextet (see [9] and [4]). For a further discussion of Γx and ΓX see Section 3.

Other details of these geometries may be found in [6] and [17].

Before introducing an alternative way of viewing Γ we note, in passing,

that |Γ0| = 2, 503, 413, 946, 215 and that the permutation rank of G on Γ0 is

120 [7].

Let T denote the set of transpositions in Fi24. It is a fact that a maximal

set B of pairwise commuting transpositions has |B| = 24 and StabG(B) ∼
211.M24. Such a set is called a base in [2] and G is transitive on the set of

bases. Since Fi′24 has only one conjugacy class of subgroups isomorphic to

211.M24 we may identify Γ0 with the set of bases in a way which is compatible

with the G-action. For x ∈ Γ0 we use Ωx to denote the base identified with

x. Now Ωx carries a copy of the Steiner system S(24, 8, 5) preserved by

StabG(Ωx). Indeed an octad of Ωx corresponds to a line in Γx (such an octad

is contained in precisely three bases and incidence between points and lines

corresponds to containment of bases and octads). Therefore x, y ∈ Γ0 are

adjacent in G if and only if Ωx ∩ Ωy is an octad of both Ωx and Ωy.

For t ∈ T put Γt
0 = {x ∈ Γ0|t ∈ Ωx}. So the points in Γt

0 correspond to

all the bases which contain the fixed transposition t. Also put Gt = CG(t).

Then Gt ∼= Fi23 and Γt
0 is the set of points of the Fi23 geometry scrutinized

in [11],[12],[13] (see especially Section 1). Further, if Gt denotes the point-line

collinearity graph of this Fi23 geometry, then we see that for x, y ∈ Γt
0, x and
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y are adjacent in Gt if and only if x and y are adjacent in G. This observation
gives us access to a rich vein of geometric information from [12],[13],[14].

So, in studying G, we may view Γ geometrically working within residues

or regard Γ0 as living in the world of transpositions. In our arguments we

adopt whichever viewpoint is the most efficacious. We shall also frequently

call upon data given in [15] and accordingly will denote result (i.j) in [15] by

O(i.j). We carry along the notational conventions of [4]. So S0 and T0 denote

the standard sextet and standard trio and O1, O2, O3 are the heavy blocks of

the MOG. Additionally we adapt the notation in [15] in the following manner.

Let x ∈ Γ0. In Γx the lines correspond to the octads of the M24 maximal 2-

local geometry so to indicate we are working in Γx we write αi(x,Λ1) instead

of just αi (see O(2.1)), with a similar convention for the other orbits itemized

in [15].

(2.2) Let x be a point in Γ.

(i) ∆1
2(x) = {y ∈ Γ0| there exists b ∈ {x, y}⊥ such that b+y ∈ α4(b, b+x)}.

(ii) ∆2
2(x) = {y ∈ Γ0| there exists b ∈ {x, y}⊥ such that b+y ∈ α2(b, b+x)}.

(iii) ∆3
2(x) = {y ∈ Γ0| there exists b ∈ {x, y}⊥ such that b+y ∈ α0(b, b+x)}.

(iv) ∆1
3(x) = {y ∈ Γ0| there exists c ∈ ∆1

2(x) ∩ ∆1(y) such that c + y ∈
α3,315(c,Ωx ∩ Ωc,Scx)}.

(v) ∆2
3(x) = {y ∈ Γ0| there exists c ∈ ∆2

2(x) ∩ ∆1(y) such that c + y ∈
α4,2(c, c+ b,Dcx), where {b} = {x, c}⊥}.

(vi) ∆3
3(x) = {y ∈ Γ0| there exists c ∈ ∆2

2(x) ∩ ∆1(y) such that c + y ∈
α2,2(c, c+ b,Dcx), where {b} = {x, c}⊥ and for t ∈ Dcx, c is the unique

point in Γt
0 ∩∆2

2(x) ∩∆1(y)}.
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(vii) ∆4
3(x) = {y ∈ Γ0| there exists c ∈ ∆2

2(x) ∩ ∆1(y) such that c + y ∈
α2,2(c, c + b,Dcx), where {b} = {x, c}⊥ and for t ∈ Dcx, there are 77

points in Γt
0 ∩∆2

2(x) ∩∆1(y)}.

(viii) ∆5
3(x) = {y ∈ Γ0| there exists c ∈ ∆2

2(x) ∩ ∆1(y) such that c + y ∈
α2,1(c, c+ b,Dcx), where {b} = {x, c}⊥}.

(ix) ∆6
3(x) = {y ∈ Γ0| there exists c ∈ ∆2

2(x) ∩ ∆1(y) such that c + y ∈
α4,1(c, c+ b,Dcx), where {b} = {x, c}⊥}.

(x) ∆7
3(x) = {y ∈ Γ0| there exists c ∈ ∆1

2(x) ∩ ∆1(y) such that c + y ∈
α0,24(c,Ωx ∩ Ωc,Scx)}.

(xi) ∆8
3(x) = {y ∈ Γ0| there exists c ∈ ∆3

2(x) ∩ ∆1(y) such that c + y ∈
α4(c, Tcx)}.

(xii) ∆9
3(x) = {y ∈ Γ0| there exists c ∈ ∆2

2(x) ∩ ∆1(y) such that c + y ∈
α2,0(c, c+ b,Dcx), where {b} = {x, c}⊥}.

(xiii) ∆10
3 (x) = {y ∈ Γ0| there exists c ∈ ∆3

2(x) ∩ ∆1(y) such that c + y ∈
α422(c, Tcx)}.

(xiv) ∆1
4(x) = {y ∈ Γ0| there exists d ∈ ∆1

3(x) ∩ ∆1(y) such that d + y ∈
α1(d, Tdx)}.

(xv) ∆2
4(x) = {y ∈ Γ0| there exists d ∈ ∆2

3(x) ∩ ∆1(y) such that d + y ∈
α0,1(d,Odx,Ddx)}.

(xvi) ∆3
4(x) = {y ∈ Γ0| there exists d ∈ ∆2

3(x) ∩ ∆1(y) such that d + y ∈
α4,1(d,Odx,Ddx)}.

(xvii) ∆4
4(x) = {y ∈ Γ0| there exists d ∈ ∆3

3(x) ∩ ∆1(y) such that d + y ∈
α2,1(d, d+ b,Ddx), where {b} = ∆1(d) ∩∆2

2(x)}.

14



(xviii) ∆5
4(x) = {y ∈ Γ0| there exists d ∈ ∆4

3(x) ∩ ∆1(y) such that d + y ∈
α1(d,Ddx)}.

(xix) ∆6
4(x) = {y ∈ Γ0| there exists d ∈ ∆3

3(x) ∩ ∆1(y) such that d + y ∈
α4,1(d, d+ b,Ddx), where {b} = ∆1(d) ∩∆2

2(x)}.

In (2.2) the letters O,D,S, T (with appropriate subscripts) stand for, re-

spectively, particular octads, duads, sextets and trios of certain bases. Their

exact description will emerge later, and will tie in with the data given in [15].

Remark

In fact

∆8
3(x) =

∪
X∈Γ3(x)

Γ0(X) ∩∆3(x).

See [17] for further details.

Let x ∈ Γ0 and t ∈ Ωx. Set ∆1(x)
t = ∆1(x) ∩ Γt

0 and for i = 1, 2, let

∆i
2(x)

t = ∆i
2(x) ∩ Γt

0. For i = 1, ..., 6 we set

∆i
3(x)

t = ∆i
3(x) ∩ Γt

0 and

∆i
4(x)

t = ∆i
4(x) ∩ Γt

0.

Further we put Q(x)t = Q(x)∩Gt. The above notation is set up so as ∆i
j(x)

t

corresponds to the ∆i
j(x) as given in [12;(2.15)] for the point-line collinearity

graph Gt.

(2.3) Let x ∈ Γ0.

(i) ∆1(x) =
∪

t∈Ωx
∆1(x)

t, ∆i
2(x) =

∪
t∈Ωx

∆i
2(x)

t (i = 1, 2) and ∆i
j(x) =∪

t∈Ωx
∆i

j(x)
t (i = 1, ..., 6, j = 3, 4).

(ii) For each t ∈ Ωx, Q(x) = Q(x)t.

15



(iii) ∆1(x),∆
1
2(x),∆

2
2(x),∆

i
3(x) and ∆i

4(x) (i = 1, ..., 6) are all distinct Gx-

orbits.

(iv) If t ∈ Ωx and y ∈ Γt
0, then [Gxy : G

t
xy] ≤ 24.

Proof. Part (i) follows from (2.2) and (ii) holds because Q(x) centralizes all

transpositions t in Ωx. Since Gx acts transitively on the 24 transpositions in

Ωx and , by [12], ∆1(x)
t,∆1

2(x)
t,∆2

2(x)
t,∆i

3(x)
t,∆i

4(x)
t are all Gt

x-orbits (of

differing sizes) we infer that (iii) holds. Because |Ωx| = 24 the Gxy-orbit of t

can have size at most 24, whence we have (iv).

3 The point and hyperplane residues

Recall that we shall employ the same notational conventions as in [15] for

the subscripts of α. Suppose that x ∈ Γ0, ℓ ∈ Γ1(x) and X ∈ Γ3(x). Hence

by (2.1) we may identify ℓ with an octad of Ωx and X with a sextet of Ωx.

So, for example, α42(x,X) denotes the set of octads (lines) which cuts the

sextet X in 42, and α2(x, ℓ) is the set of octads (lines) which intersects the

octad ℓ in two elements. Also we define β0(x,X), β1(x,X), β3(x,X) to be

the set of sextets of Ωx (not equal to X) which have, respectively, exactly 0,

1 and 3 octads which are also incident with X. Additionally we define the

following subsets of Γ3(x):-

δ1(x, ℓ) = {Y ∈ Γ3(x) | ℓ ∈ α42(x, Y )}

δ2(x, ℓ) = {Y ∈ Γ3(x) | ℓ ∈ α24(x, Y )}

δ3(x, ℓ) = {Y ∈ Γ3(x) | ℓ ∈ α153(x, Y )}.

Lemma 3.1. Let x ∈ Γ0, ℓ ∈ Γ1(x) and X,∈ Γ3(x).

(i) The Gxℓ-orbits on Γ1(x) are {ℓ}, α0(x, ℓ), α2(x, ℓ) and α4(x, ℓ) where

|α0(x, ℓ)| = 30, |α2(x, ℓ)| = 448 and |α4(x, ℓ)| = 280
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(ii) The Gxℓ-orbits on Γ3(x) are δ1(x, ℓ), δ2(x, ℓ) and δ3(x, ℓ) where |δ1(x, ℓ)| =
35, |δ2(x, ℓ)| = 840 and |δ3(x, ℓ)| = 896

Proof. See [3] or [4].

Lemma 3.2. Let x ∈ Γ0 and X ∈ Γ3(x) (so in Γx, X may be identified

with a sextet in Ωx). Then the orbits of GxX on Γ1(x) (the octads of Ωx) are

α42(x,X), α153(x,X) and α24(x,X).Moreover |α42(x,X)| = 15, |α153(x,X)| =
384 and |α24(x,X)| = 360.

Proof. Since G∗x
xX ∼ 263S6, the stabilizer of the sextet X, this follows from

[3].

Lemma 3.3. For x ∈ Γ0 and X ∈ Γ3(x), the GxX−orbits on Γ3(x) are

{X}, β0(x,X), β1(x,X) and β3(x,X). Further |β0(x,X)| = 1440, |β1(x,X)| =
240 and |β3(x,X)| = 90.

Proof. See [3].

Lemma 3.4. Let x ∈ Γ0 and X, Y ∈ Γ3(x).

(i) Suppose Y ∈ β3(x,X). Of the fifteen octads in Ωx incident with X,

three are in α42(x, Y ) and twelve are in α24(x, Y ).

(ii) Suppose Y ∈ β1(x,X). Of the fifteen octads in Ωx incident with X, one

is in α42(x, Y ), six are in α24(x, Y ) and eight are in α153(x, Y ).

(iii) Suppose Y ∈ β0(x,X). Of the fifteen octads in Ωx incident with X,

seven are in α24(x, Y ) and eight are in α153(x, Y ).

Proof. Since Gx is transitive on Γ3(x) we may suppose X is the standard

sextet. Then, in view of Lemma 3.2, for parts (i) (ii) and (iii) respectively

we may take

17



Y =

× × − − ∗ ∗
× × − − ∗ ∗
◦ ◦ + + 2 2

◦ ◦ + + 2 2

, Y =

× ◦ − − − −
◦ × + + + +

◦ × ∗ ∗ ∗ ∗
◦ × 2 2 2 2

and Y =

× × × − ∗ +

× − − − ◦ 2

◦ + ∗ 2 ∗ ◦
2 ∗ + ◦ 2 +

.

It is now straightforward to check the result.

Lemma 3.5. Let x ∈ Γ0,m ∈ Γ1(x) and X ∈ Γ3(x). If m /∈ Γ1(X), then

there exists Y ∈ β3(x,X) ∪ {X} such that m ∈ α153(x, Y ).

Proof. Since m /∈ Γ1(X),m /∈ α42(x,X). Hence, by Lemma 3.2, m ∈
α153(x,X)∪α24(x,X). If m ∈ α153(x,X), then we let Y = X. So now we as-

sume that m ∈ α24(x,X). Let t1 and t2 be tetrads of X such that |t1∩m| = 2

and |t2 ∩m| = 0. Now choose a tetrad t3 such that |t3 ∩ t1| = |t3 ∩ t2| = 2

and |t3 ∩ m| = 1. Letting Y be the unique sextet containing t3, we have

Y ∈ β3(x,X) and m ∈ α153(x, Y ), so proving the lemma.

The balance of this section considers the hyperplane residue of Γ. Set

H = U4(3).2(∼= G∗X
X where X ∈ Γ3). We consider H as a subgroup of

U6(2), and let V denote the 6-dimensional GF (4) unitary module. Now

there are 693 isotropic 1-subspaces of V (see [2]) and H has two orbits on

these 1-spaces, say, P and Q with |P| = 567 and |Q| = 126. Of the 6237

isotropic 2-subspaces of V , 2835 of them have three 1-subspaces in P and

two 1-subspaces in Q – denote this set by L. Among the 891 isotropic 3-

subspaces, 567 contain exactly one 1-subspace in Q; call this set R. We

18



define a geometry Λ = Λ0 ∪ Λ1 ∪ Λ2 where Λ0 = P ,Λ1 = L and Λ2 = R
where incidence is symmetrized inclusion. This geometry is an example of a

GAB (see [6]) and we have

Lemma 3.6. For X ∈ Γ3, ΓX is isomorphic to Λ.

Our next result lists some properties of Λ we shall require later on.

Lemma 3.7. Let x ∈ Λ0.

(i) The Hx-orbits on Λ0 are D1(x), D
1
2(x), D

2
2(x) and D

1
3(x) where |D1(x)| =

30, |D1
2(x)| = 120, |D2

2(x)| = 96 and |D1
3(x)| = 320.

(ii) The point-line collinearity graph of Λ is as follows

(iii) We have Hx ∼ 24S6 with O2(H) ∼= 24.

(iv) If g ∈ O2(Hx), g ̸= 1, then g interchanges Λ0(l)\{x} for 8 lines l

incident with x and fixes Λ0(l) for the other 7 lines incident with x.

Proof. See either [6], [8] or Section 3 of [17].
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4 Involutions

In this section we explore the combinatorial relationship between G and the

residue geometries as it relates to the action of G on Γ.

Lemma 4.1. Let x ∈ Γ0 and X ∈ Γ3(x). Then

(i) Q(x) ∩Q(X) ∼= 27 and Q(x)∗X(∼= 24)�G∗X
xX ∼ 24S6; and

(ii) Z1(x) = 1.

Proof. First we note thatQ(x) 
 Q(X). ForQ(x) 6 Q(X) gives, by (2.1)(v),

Q(x) 6 O2(Q(X)) ∼= 21+12
+ . Since Q(x) is elementary abelian of order 211,

this is impossible. So 1 ̸= Q(x)∗X � G∗X
xX

∼= 24S6, using Lemma 3.7(iii).

Since the 24 is an irreducible S6-module we must have Q(x)∗X ∼= 24. Hence

Q(x) ∩Q(X) ∼= 27 and part (i) holds.

Since Q(x) is an irreducible Gx-module and Z1(x)�Gx, either Z1(x) = 1

or Z1(x) = Q(x). If Z1(x) = Q(x), then Z1(x)
∗X = O2(G

∗X
xX) by part (i).

However, from Lemma 3.7(iv), every non-trivial element of O2(G
∗X
xX) moves

some point in ΓX∩∆1(x) whereas Z1(x) fixes all points in ∆1(x) by definition,

a contradiction. Thus Z1(x) = 1.

For X ∈ Γ3, we use τ(X) to denote the involution in Z(GX); recall that

|Z(GX)| = 2 by (2.1)(v). Now let x ∈ Γ0(X). In Γx we may identify X with a

sextet (of Ωx) whose tetrads are T1, ..., T6, and we have, for each i ∈ {1, ..., 6},

τ(X) =
∏
t∈Ti

t

(We note that τ(X) is a tetra-transposition in the language of [2;p207].)

Also observe, as CG(τ(X)) = GX , for X,Y ∈ Γ3, τ(X) = τ(Y ) if and only if

X = Y .
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Let x ∈ Γ0. In Ωx consider a duad (that is, a 2-element subset), say

D = {t1, t2}. Then δ(D) = t1t2 is referred to as a bi-transposition in [2].

Every involution in G is conjugate in G to either τ(X) or δ(D).

Lemma 4.2. Let x ∈ Γ0, X ∈ Γ3(x) and D be a duad of Ωx. Then

(i) τ(X), δ(D) ∈ Q(x);

(ii) CG(τ(X)) ∼ 21+123U4(3)2, CG(δ(D)) ∼ 2.F22 : 2 and

(iii) Q(x)\{1} = τ(X)Gx ∪ δ(D)Gx with |τ(X)Gx | = 1771 and |δ(D)Gx | =
276.

Proof. The definitions of τ(X), δ(D) and (2.1)(iv),(v) give part (i). For part

(ii) see [2]. Part (iii) follows from the definition of τ(X), δ(D) and properties

of the Golay co-code.

Our next lemma concerns sextet lines whose definition we recall. For

x ∈ Γ0, let X1, X2, X3 ∈ Γ3(x), if for all i, j, 1 ≤ i < j ≤ 3 we have Xi ∈
β3(x,Xj), then {X1, X2, X3} is called a sextet line of Ωx.

Lemma 4.3. Suppose that x ∈ Γ0 and {X1, X2, X3} is a sextet line of Ωx.

Then τ(X1)τ(X2) = τ(X3).

Proof. Since, for X ∈ Γ3,

τ(X) =
∏
t∈T

t

for any tetrad T of X, the lemma follows immediately.

Lemma 4.4. Let x ∈ Γ0, l ∈ Γ1(x) and X ∈ Γ3(x). Then τ(X) interchanges

the points in Γ0(l)\{x} if and only if l ∈ α153(x,X).
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Proof. SinceGx is transitive on Γ3(x) we may in Γx, without loss of generality,

suppose X is the standard sextet. Now let Y be the sextet

× ◦ − − − −
◦ × + + + +

◦ × ∗ ∗ ∗ ∗
◦ × 2 2 2 2

.

By Lemma 3.4(ii), of the 15 octads incident with Y , one is in α42(x,X),

eight are in α153(x,X) and six are in α24(x,X). Since τ(X) ∈ Z(GxX), if

τ(X) fixes Γ0(l) (point-wise) for some l ∈ α42(x,X) (respectively α153(x,X),

α24(x,X)), then, by Lemma 3.2 τ(X) fixes Γ0(l) (point-wise)) for all l ∈
α42(x,X) (respectively α153(x,X), α24(x,X)). Because Gx is transitive on

Γ3(x) and, by Lemma 4.1(ii), Z1(x) = 1, τ(X)∗Y ̸= 1. So, by Lemmas 4.1(i)

and 4.2(i), 1 ̸= τ(X)∗Y ∈ Q(x)∗Y = O2(G
∗Y
xY ). Then τ(X)∗Y (and τ(X))

fixes Γ0(l) (point-wise) for exactly 7 of the lines l ∈ Γ1(x, Y ) by Lemma

3.7(iv). Therefore τ(X) interchanges the points in Γ0(l)\{x} only when l ∈
α153(x,X).

Lemma 4.5. Let x ∈ Γ0, l ∈ Γ1(x) and D be a duad in Ωx. Then δ(D)

interchanges the points in Γ0(l)\{x} if and only if l ∈ α1(x,D).

Proof. INSERT DOESN’T LOOK LIKE WE NEED δ(D).

Lemma 4.6. Let x ∈ Γ0 and X, Y ∈ Γ3(x) with X ̸= Y . Then Y ∈ β3(x,X)

if and only if τ(Y ) ∈ Q(X).

Proof. If Y ∈ β0(x,X)∪β1(x,X), then there exists l ∈ α153(x, Y ) by consult-

ing the MOG in [4], and so, by Lemma 4.4, τ(Y ) does not fix Γ0(l) point-wise.

Therefore τ(Y ) /∈ Q(X). While if Y ∈ β3(x,X), then Γ1(x,X) ⊆ α42(x, Y )∪
α24(x, Y ) and hence τ(Y ) fixes Γ0(l) point-wise for all l ∈ Γ1(x,X) by Lemma

4.4. Since, by Lemmas 4.1(i) and 4.2(i), τ(Y )∗X ∈ Q(x)∗X = O2(G
∗X
xX),

Lemma 3.7(iv) implies τ(Y )∗X = 1. So τ(Y ) ∈ Q(X) as desired.
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Lemma 4.7. Let x, y, z be distinct points of Γ0 such that {x, y, z} is a triangle

in G. Then z ∈ Γ0(x + y) (or, in other words, {x, y, z} = Γ0(l) for some

l ∈ Γ1).

Proof. We have that Ωx ∩Ωy and Ωz ∩Ωy are octads in Ωy. Let t ∈ Ωx ∩Ωz.

Then t centralizes the transpositions in Ωx ∩ Ωy and Ωz ∩ Ωy and so either

Ωx ∩ Ωy = Ωz ∩ Ωy or t ∈ Ωy. In either case we get Ωx ∩ Ωy = Ωy ∩ Ωz =

Ωx ∩ Ωz.

Lemma 4.8. (i) |∆1(a)| = 1518 = 2.3.11.23;

(ii) ∆1(a) is a Ga-orbit; and

(iii) if x ∈ ∆1(a), then Gax ∼ 21024A8 (with G∗x
ax = G∗x

xx+a, an octad stabi-

lizer).

Proof. (i) Since |Γ0(l)\{a}| = 2 for any l ∈ Γ1(x), |∆1(a)| = 2|Γ1(a)| = 1518.

(ii) For l ∈ Γ1(a) we can find X ∈ Γ3(a) such that l ∈ α153(a,X). Hence

by Lemma 4.4 , Q(a) is transitive on Γ0(l)\{a}. Since Ga is transitive on

Γ1(a), (ii) holds.

(iii) We have Gax 6 Gxx+a because x + a is the unique line in Γ1(a, x)

and [Gxx+a : Gax] ≤ 2 as |Γ0(x+ a)\{x}| = 2. Hence as Q(a) is transitive on

Γ0(x+ a)\{x} we obtain (iii).

Combining Lemma 4.8 and O(2.1) with the definitions of ∆1
2(a), ∆

2
2(a)

and ∆3
2(a) given in (2.2) we obtain Theorem 2.

Lemma 4.9. Let y ∈ ∆1(x) where x ∈ Γ0. Then

(i) |Q(x) ∩Q(y)| = 26; and

(ii) for X ∈ Γ3(x), τ(X) ∈ Q(y) if and only if X ∈ Γ3(y).

Proof. Since O2(G
∗y
xy) is an irreducible 4-dimensional A8-module over GF (2),

Q(x)∗yy = 1 or O2(Gxy)
∗y. Suppose Q(x)∗yy = 1 and so Q(x)y = Q(x) ∩Q(y).

23



Let X ∈ Γ3(x) with x + y ∈ α24(x,X). Then τ(X) ∈ Q(x)y ⊆ Q(y).

Therefore

|Q(y)| ≥ 1771 + 840 = 2611

by Lemma 3.1(ii). This contradicts |Q(y)| = 211 from (2.1)(iv). So |Q(x)∗by | =
24 and then part (i) follows from Lemma 4.8(iii). For part (ii), if X ∈
Γ3(y) then τ(X) ∈ Q(y) by Lemma 4.2(i). Suppose that X /∈ Γ3(y) and

τ(X) ∈ Q(y). Since x + y /∈ Γ1(X), we then have x + y ∈ α24(x,X) ∪
α153(x,X). Suppose that x + y ∈ α24(x,X). Since G∗x

xy is transitive on the

set of hyperplanes δ2(x, x + y) = {Y ∈ Γ3(x)|x + y ∈ α24(x, Y )} by Lemma

3.1(ii) and τ(X) ∈ Q(y) we have τ(Y ) ∈ Q(y) for all Y ∈ δ2(x, x+ y). Then

|Q(x) ∩Q(y)| ≥ 35 + 840 = 875.

This contradicts part (i). By a similar argument, if x + y ∈ α153(x,X) we

get

|Q(x) ∩Q(y)| ≥ 35 + 896 = 933,

again giving a contradiction. This proves part (ii).

5 The Second Disc of a

We begin by defining certain subsets of ∆2(a) as follows.

∆̃1
2(a) = {x ∈ ∆2(a) |Γ3(a, x) ̸= ∅ = Γ2(a, x)}

∆̃2
2(a) = {x ∈ ∆2(a) |Γ3(a, x) = ∅}

∆̃3
2(a) = {x ∈ ∆2(a) |Γ3(a, x) ̸= ∅ ̸= Γ2(a, x)}.

An immediate consequence of these definitions is

Lemma 5.1. For 1 ≤ j < k ≤ 3, ∆̃j
2(a) ∩ ∆̃k

2(a) = ∅ and
∪3

i=1 ∆̃
i
2(a) =
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∆2(a).

Lemma 5.2. Suppose x ∈ ∆2(a) with X ∈ Γ3(a, x). Then {a, x}⊥ ⊆ Γ0(X).

Proof. Let b ∈ {a, x}⊥ and assume that b /∈ Γ0(X). Then a+ b /∈ Γ1(X) as Γ

is a string geometry. Using Lemma 3.5, we can find Y ∈ β3(a,X) ∪ {X} for

which a + b ∈ α153(a, Y ). By Lemma 4.6, τ(Y ) ∈ Q(X) which implies that

τ(Y ) ∈ Q(a)x. Since τ(Y ) does not fix b by Lemma 4.4 we get a triangle

{x, b, bτ(Y )} which then forces a = x by Lemma 4.7. From this contradiction

we infer that b ∈ Γ0(X), so proving the lemma.

Lemma 5.3. For i = 1, 2, 3, ∆̃i
2(a) = ∆i

2(a).

Proof. Let b ∈ {a, x}⊥. Using MOG information in Ωb, Lemma 5.2 implies

that ∆̃i
2(a) = ∆i

2(a) for i = 1, 2, 3.

Lemma 5.4. Let x ∈ ∆1
2(a). Then there is a unique hyperplane in Γ3(a, x).

Proof. Let X, Y ∈ Γ3(a, x) and b ∈ {a, x}⊥. Then b ∈ Γ0(X) ∩ Γ0(Y ) by

Lemma 5.2. IfX ̸= Y , then b+x, b+a ∈ Γ0(X)∩Γ0(Y ) and Γ2(b+x, b+a) ̸= ∅
by considering MOG information in Γb. Hence x /∈ ∆̃1

2(x), whereas ∆̃
1
2(x) =

∆1
2(x) by Lemma 5.3. Thus we concludeX = Y and the lemma is proved.

Let the unique hyperplane in Lemma 5.4 be denoted by X(a, x) (respec-

tively X(x, a)) if we regard X(a, x) ∈ Γ3(a) (respectively X(x, a) ∈ Γ3(x)).

Of course X(a, x) = X(x, a).

Lemma 5.5. Let x ∈ ∆1
2(a). Then |{a, x}⊥| = 5 and, for each b ∈ {a, x}⊥,

the octad a+ b in Ωa contains a fixed tetrad of the sextet X(a, x).

Proof. By Lemma 5.2, for every b ∈ {a, x}⊥, b ∈ Γ0(X(a, x)) and so a+ b ∈
Γ1(X(a, x)). Working in the residue geometry of X(a, x) and using Lemma

3.7(ii) we get |{a, x}⊥| = 5. Since Γ2(a, x) = ∅ by Lemma 5.3, in Ωa, the five

octads {a + b|b ∈ {a, x}⊥} must intersect in the same tetrad of the sextet

X(a, x).
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Note that x ∈ ∆1
2(a) implies a ∈ ∆1

2(x). We denote the fixed tetrad in Ωa

(respectively Ωx) described in Lemma 5.5 by t(a, x) (respectively t(x, a)).

Lemma 5.6. (i) |∆1
2(a)| = 25.3.7.11.23.

(ii) ∆1
2(a) is a Ga-orbit.

(iii) For x ∈ ∆1
2(a) and G∗x

ax ∼ 26(3× S5) is the stabilizer in G∗x
x of X(x, a)

and t(x, a) and |Q(x)a| = 27.

Proof. By Lemma 3.7(i), for any X ∈ Γ3(a), |Γ0(X)∩∆1
2(a)| = 96 and so by

Lemma 5.4 we get |∆1
2| = 96.|Γ3(a)| = 25.3.7.11.23, proving part (i).

For part (ii), let b ∈ ∆1(a) and x ∈ ∆1
2(a) ∩∆1(b). Then in Ωb, b + a ∈

α4(b, b+ x). Since α4(b, b+ x) is a G∗b
ab-orbit it is enough to show that there

exists g ∈ Gab with xg = x′ where Γ0(b+x) = {b, x, x′}. In Ωb we can choose

a sextet Y incident with the octad b+ a such that b+ x ∈ α153(x, Y ). Then

by Lemma 4.4, τ(Y ) ∈ (Q(a)∩Q(b))\Gx and so τ(Y ) is the required element

of Gab.

For t ∈ Ωa ∩ Ωb ∩ Ωx, a, x ∈ V (Gt) with x ∈ ∆1
2(a)

t. Hence Q(x)a =

Q(x)ta
∼= 27 by Theorem 3 of [12]. Since, by parts (i) and (ii), |Gax| = 216.32.5,

Lemmas 5.4 and 5.5 yield part (iii).

We now turn to ∆2
2(a).

Lemma 5.7. Let x ∈ ∆2
2(a) and b ∈ {a, x}⊥. Then

(i) |∆1(b) ∩∆2
2(a)| = 27.7 with Gab transitive on ∆1(b) ∩∆2

2(a); and

(ii) |{a, x}⊥| = 1 or 2.

Proof. Since Γ3(a, x) = ∅ by Lemma 5.3, we have b+ a ∈ α2(b, b+ x). So by

Lemma3.1(i), |∆1(b)∩∆2
2(a)| = 2×448 = 27.7. Let x′ ∈ Γ0(b+x)\{b, x}. We

can choose Y ∈ Γ3(b+ a) with b+ x ∈ α153(b, Y ). By Lemma 4.4 xτ(Y ) = x′
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and so Gab is transitive on ∆1(b) ∩∆2
2(a) because α2(b, b+ x) is a Gab-orbit

by Lemma 3.1(i).

Using (i), [2] and the fact that Gab ∼ 214A8 by Lemma 4.8(iii) we must

have Gabx ∼ 29S6 or 210A6. In either case G∗a
abx is contained in the stabilizer

in Ωa of a duad δ contained in the octad a+ b. We now show that for every

c ∈ {a, x}⊥, the octad a + c in Ωa contains δ. Assume, for a contradiction

that for some c ∈ {a, x}⊥, a + c does not contain δ. Since Γ3(a, x) = ∅, we
must have a + c ∈ α2(a, a + b). Using MOG information there are exactly

15 sextets in Γ3(a, b) that each have a tetrad containing δ. Let T denote

this set of 15 sextets. We can take Y1, Y2, Y3 ∈ T forming a sextet line.

Since τ(Y1)τ(Y2) = τ(Y3) by Lemma 4.3 we must have τ(Yi) ∈ Gx for each

i = 1, 2, 3. Since Gabx is transitive on T we must have τ(Y ) ∈ Gx for each

Y ∈ T Since a + c does not contain δ we must have a + c ∈ α153(Y ) for

some Y ∈ T and then xτ(Y ) ̸= x. Lemma 4.6 now implies that a = x, a

contradiction. Part (ii) follows because we cannot find three octads in Ωa,

intersecting pairwise in exactly δ.

Lemma 5.8. Let x ∈ ∆2
2(a). Then

(i) ∆2
2(a) is a Ga-orbit;

(ii) |{a, x}⊥| = 1, |∆2
2(a)| = 28.3.7.11.23 and Gab is transitive on ∆1(b) ∩

∆2
2(a) where {a, x}⊥ = {b}; and

(iii) G∗x
ax ∼ 24S6 is the stabilizer in Ωx of the octad x + b and the duad

Ωa ∩ Ωb ∩ Ωx where {a, x}⊥ = {b}.

Proof. Part (i) follows from Lemma 5.7(i) and the fact that ∆1(a) is a Ga-

orbit.

Suppose that |{a, x}⊥| ̸= 1. Then {a, x}⊥ = {b, c} with b ̸= c by Lemma

5.7(ii). Lemma 4.6 rules out d(b, c) = 1. If c ∈ ∆1
2(b) ∪ ∆3

2(b) (= ∆̃1
2(b) ∪

∆̃3
2(b)), then b, c ∈ Γ0(X) for some X ∈ Γ3 whence, by Lemma 5.2, a, x ∈
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Γ0(X). However Γ3(a, x) = ∅, and therefore x ∈ ∆2
2(b). Hence a + c ∈

α2(a, a + b). From Theorem 4 of [12] Q(a)x ∼= 25, as Gabx ∼ 29S6 or 210A6,

G∗a
abx ∼ 24S6 or 25A6. In particular 28

∣∣|G∗a
abx|. Clearly Gabx = Gabxc and so

G∗a
abxc = G∗a

abx. Since a+c ∈ α2(a, a+b), G∗a
abxc leaves a dodecad of Ωa invariant

whence G∗a
abxc is isomorphic to a subgroup of M12. But 28

∣∣|G∗a
abxc| yields a

contradiction. Thus we conclude that |{a, x}⊥| = 1, and consequently for

b ∈ {a, x}⊥

|∆2
2(a)| =

|∆1(b) ∩∆2
2(a)||∆1(a)|

|{a, x}⊥|
= 28.3.7.11.13.

Part (iii), using Q(x)a ∼= 25, follows readily.

Lemma 5.9. Let x ∈ ∆3
2(a). Then there is a unique element Λ(a, x) ∈

Γ2(a, x) and for every b ∈ {a, x}⊥, b ∈ Γ0(Λ(a, x)).

Proof. By definition, Γ2(a, x) ̸= ∅. Let b ∈ {a, x}⊥ with b + a ∈ α0(b, b + x)

and let Λ(a, x) be the unique element of Γ2(b+a, b+x). Suppose b′ ∈ {a, x}⊥

with b′ /∈ Γ0(Λ(a, x)). In Ωb there are seven sextets Xi (i = 1, ..., 7) in

Γ3(b+a, b+x) and by Lemma 5.2 b′ ∈ Γ0(Xi) for each i = 1, ..., 7. Therefore,

in Ωb′ there exists a trio Λ ∈ Γ2(b
′ + a, b′ + x,Xi) for each i = 1, ..., 7.

Considering the situation in Ωa we must have Λ = Λ(a, x) and the lemma is

proved.

We follow our earlier notational convention and also denote the unique

plane in Lemma 5.9 by Λ(x, a) if we are viewing Λ(x, a) as a trio in Γx.

Lemma 5.10. Let x ∈ ∆3
2(a). Then |Γ3(a, x)| = 7 and |{a, x}⊥| = 3.

Proof. By Lemma 5.2, forX ∈ Γ3,X ∈ Γ3(a, x) if and only ifX ∈ Γ3(Λ(a, x)).

The result now follows from Lemma 5.9 because in ΓX there are three points

collinear with a and x and in Γa, |Γ3(Λ(a, x))| = 7.
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Lemma 5.11. Let x ∈ ∆3
2(a). Then

(i) |∆3
2(a)| = 23.3.5.11.23;

(ii) ∆3
2(a) is a Ga-orbit;

(iii) G∗x
ax ∼ 26(L3(2)× 3) is a subgroup of index 2 of the stabilizer in Ωx of

the trio Λ(x, a) and |Q(x)a| = 29.

Proof. Since |{a, x}⊥| = 3 by Lemma 5.10, |α0(b, b + a)| = 30 (b ∈ {a, x}⊥)
and, by Lemma 4.8(i), |∆1(a)| = 2.3.11.23, we calculate that |∆3

2(a)| =

23.3.5.11.23.

For part (ii), let b ∈ ∆1(a) with Λ ∈ Γ2(a, b) and X ∈ Γ3(Λ). Then

G∗X
aXΛ ∼ 24(S4×2) and is transitive on the four points in ∆3

2(a)∩∆1(b)∩Γ0(Λ).

Then Ga is transitive on ∆3
2(a) because Γ2(a) and ∆1(a) are Ga-orbits.

By Lemma 5.10 {a, x}⊥ = {b1, b2, b3}. Also, using Lemma 5.9, G∗a
ax ≤

G∗a
axΛ(a,x) ∼ 26(L3(2) × S3). Let 1 ≤ i < j ≤ 3. Then a + bi and a + bj

are disjoint octads as they are both incident with the trio Λ(a, x). Choose a

tetrad δ of Ωa which intersects a+bi in two elements and a+bj in one element,

and let Y denote the sextet of Ωa with δ a tetrad of Y . Then a+bi ∈ α24(a, Y )

and a+ bj ∈ α153(a, Y ). Hence, by Lemma 4.4, τ(Y ) ∈ Q(a)bi \Q(a)bj . Thus

Q(a)bi ̸= Q(a)bj for 1 ≤ i < j ≤ 3. Further Q(a)x ≤ Q(a)bi (1 ≤ i ≤ 3),

for Q(a)x � Q(a)bi yields that |{a, x}⊥ ∩ Γ0(a + bi)| = 2 whereas no two

points of {a, x}⊥ are colinear. So, as [Q(a) : Q(a)bi ] = 2 and Q(a)bi ̸=
Q(a)bj for i ̸= j, we have [Q(a) : Q(a)x] ≥ 22. Consequently using part

(i) either G∗a
ax ∼ 26(L3(2) × 3) with |Q(a)x| = 29 or G∗x

ax ∼ 26(L3(2) × S3)

with |Q(a)x| = 28. Suppose the latter holds. Let ξ be the element of order

3 in the S3 direct factor of G∗x
ax. Then, as ξ permutes the three octads

{a + bi
∣∣i = 1, 2, 3} and Q(a)bi ̸= Q(a)bj (i ̸= j), ξ must act non-trivially on

Q(a)/Q(a)x. But then λ centralizes Q(a)/Q(a)x where λ is an element of

29



G∗x
ax of order 7, a contradiction as |CQ(a)(λ)| = 22. Thus, as a ∈ ∆3

2(x), we

obtain G∗x
ax ∼ 26(L3(2)× S3) and |Q(x)a| = 29, so proving (iii).

Lemma 5.6 combined with (2.2) proves Theorem 3 except for the octad

orbits α2,24(x,Λ1,Λ2), α1,315(x,Λ1,Λ2) and α0,42(x,Λ1,Λ2). The first two

will be settled by Theorems 7 and 11 and the data in O(2.2), while the

last one follows from Theorem 12(ii). Theorem 4, apart from the octad

orbits α0,0(x,Λ1,Λ2) and α4,0(x,Λ1,Λ2), follows from Lemma 5.8 and (2.2).

The remaining two orbits are dealt with by Theorem 12(i),(iv) and O(2.3).

Finally Lemma 5.11 and (2.2) deliver Theorem 5.

6 Theorems 6-11 and 13

Lemma 6.1. Suppose that x ∈ Γ0 and that Ωa ∩ Ωx ̸= ∅. Let t ∈ Ωa and let

∆ denote the Ga-orbit of x. Set k = |{s ∈ Ωa|x ∈ Γs
0}|. Then

k|∆| = 24|∆ ∩ Γt
0|.

Proof. Since ∆ is a Ga-orbit and Ga acts transitively on Ωa, |∆ ∩ Γs
0| is the

same for all s ∈ Ωa. Furthermore we also have that |{s ∈ Ωa|y ∈ Γs
0}| is the

same for all y ∈ ∆. Because Ωa ∩ Ωx ̸= ∅ we note that k ̸= 0. Now counting

in two ways the number of elements in

|{(s, y) ∈ Ωa ×∆|y ∈ Γs
0}|

yields, as |Ωa| = 24, the

lemma.

For x ∈ Γ0 and s ∈ Ωx, G
s
x denotes the stabilizer of x in Gs ∼= Fi23. So

Gs
x ∼ 211M23. Also recall that Q(x)s denotes the normal elementary abelian
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subgroup of Gs
x of order 211.

Lemma 6.2. For x ∈ Γ0 and s ∈ Ωx, Q(x)s = Q(x).

Proof. Since 211M23 ∼ Gs
x 6 Gx ∼ 211M24, the subgroup structure of M24

forces Q(x)s = Q(x).

Lemma 6.3. (i) If x ∈ ∆1
2(a), then |{s ∈ Ωa|x ∈ Γs

0}| = 4.

(ii) If x ∈ ∆2
2(a), then |{s ∈ Ωa|x ∈ Γs

0}| = 2.

Proof. Let x ∈ ∆1
2(a) and set k = |{s ∈ Ωa|x ∈ Γs

0}|. Observe that, for

t ∈ Ωa, ∆
1
2(a)∩Γt

0 = ∆1
2(a)

t. Since Ga is transitive on ∆1
2(a), Lemmas 5.6(ii)

and 6.1 imply that

k|∆1
2(a)| = 24|∆1

2(a)
t|,

where t is some fixed transposition in Ωa. From Lemma 5.6(i) and Table 1 of

[12], |∆1
2(a)| = 25.3.7.11.23 and |∆1

2(a)
t| = 24.7.11.23, and therefore k = 4.

A similar argument, using Lemma 5.8 instead of Lemma 5.6, establishes

part (ii).

Lemma 6.4. For i = 1, ..., 6, ∆i
3(a) is a Ga-orbit and, for t ∈ Ωa, ∆

i
3(a) ∩

Γt
0 = ∆i

3(a)
t.

Proof. Let x ∈ ∆1
2(a) and t ∈ {s ∈ Ωa|x ∈ Γs

0} = Ωa ∩ Ωx. From Lemma 5.6

and Theorem 3 of [12], |Gax| = 216.3.5 and |Gt
ax| = 214.3.5. So [Gax : Gt

ax] = 4

and hence, by 6.3(i), Gax is transitive on {s ∈ Ωa|x ∈ Γs
0}. Because Gt

ax is

transitive on ∆1
3(a)

t = ∆1
3(a)∩Γt

0, we conclude that Gais transitive on ∆1
3(a).

The remaining sets ∆i
3(a) (i = 2, ..., 6) are defined from ∆2

2(a). Now

similar arguments may be employed for these sets as [Gax : Gt
ax] = 2 for x ∈

∆2
2(a) (where t ∈ {s ∈ Ωa|x ∈ Γs

0}) and, by 6.3(ii) |{s ∈ Ωa|x ∈ Γs
0}| = 2.

Theorem 6.5. Let x ∈ ∆i
3(a).

(i) If i = 1, then Gax ∼ 22L3(4)S3, G
∗x
ax = StabG∗x

x
{Λ1} ∼ L3(4)S3 where

Λ1 is a triad of Ωx and |∆1
3(a)| = 212.11.23.
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(ii) If i = 2, then Gax ∼ 2423(L3(2) × 2), G∗x
ax = StabG∗x

x
{Λ1,Λ2} ∼

23(L3(2)× 2) where Λ1 is an octad, Λ2 a duad of Ωx with Λ1 ∩ Λ2 = ∅
and |∆2

3(a)| = 210.32.5.11.23.

(iii) If i = 3, then Gax ∼ 224S6, G
∗x
ax = StabG∗x

x
{Λ1,Λ2} ∼ 24S6 where Λ1 is

an octad, Λ2 a duad of Ωx with Λ2 ⊆ Λ1, and |∆3
3(a)| = 212.3.7.11.23.

(iv) If i = 4, then Gax ∼ 2M222, G
∗x
ax = StabG∗x

x
{Λ1} ∼= M222 where Λ1 is a

duad of Ωx and |∆4
3(a)| = 212.3.23.

(v) If i = 5, then Gax
∼= G∗x

ax = StabG∗x
x
{Λ1,Λ2,Λ3} ∼ 24A5 where Λ1 is

an octad of Ωx, |Λ2| = |Λ3| = 1 with Λ2 ∪ Λ3 ⊆ Λ1, and |∆5
3(a)| =

215.32.7.11.23.

(vi) If i = 6, then Gax ∼ 263S4, G
∗x
ax = StabG∗x

x
{Λ1,Λ2,Λ3} ∼ 243S4 where

Λ1 is an octad of Ωx, |Λ2| = 4, |Λ3| = 1, Λ3 ⊆ Λ2 ⊆ Λ1, and |∆6
3(a)| =

212.3.5.7.11.23.

Proof. (i) Let t ∈ Ωa. From Lemma 6.4 ∆1
3(a) is a Ga-orbit and ∆1

3(a)∩Γt
0 =

∆1
3(a)

t. For x ∈ ∆1
3(a), let k = |{s ∈ Ωa|x ∈ Γs

0}|. Using Lemma 6.1 we

obtain

k|∆1
3(a)| = 24|∆1

3(a)
t|.

By the definition of ∆1
3(a), there exists y ∈ ∆1

2(a) such that y + x ∈
α3,315(x,Λ1,Λ2). Now consulting Theorem 3, we see that Λ1 = Ωa ∩ Ωy,

and hence |Ωa ∩ Ωx| ≥ 3. So k ≥ 3. Therefore, as |∆1
3(a)

t| = 29.11.23 by

Table 1 of [12],

|∆1
3(a)| =

24|∆1
3(a)

t|
k

=
24.29.11.23

k

≤ 24.29.11.23

3
= 212.11.2.

Supposing that x ∈ Γt
0. Then Gax ∼ 22L3(4)2 by 5 of [12]. Since ∆1

3(a) is

a Ga-orbit, |∆1
3(a)| must divide [Ga : Gt

ax] = 212.3.11.23. Bearing in mind
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the possible overgroups of L3(4)2 in M24
∼= G∗x

x and Lemma 6.2, we get that

[Gax : Gt
ax] = 3. Thus |∆1

3(a)| = 212.11.23 with k = 3 and Gax ∼ 22L3(4)S3

with G∗x
ax = StabG∗x

x
{Λ1}, Λ1 being the triad {t} ∪D(x, a). (With D(a, x) as

in Theorem 5 of [12].) This establishes (i).

Parts (ii)-(vi) may be proved in a similar fashion. For these cases we may

extract k = |{s ∈ Ωa|x ∈ Γs
0}| (for x ∈ ∆i

3(x), i = 2, ..., 6) from [12]. Recall

that in the Fi23 geometry, a hyperplane is just a transposition with points

of this geometry being sets of 23 pairwise commuting transpositions. For

x ∈ ∆i
3(a)

t, t ∈ Ωa where i ∈ {2, 3, 4}, a and x are incident with a unique

hyperplane of the Fi23 geometry (see Section 1 of [12]) - so for i ∈ {2, 3, 4},
k = 2. Whereas, for x ∈ ∆i

3(a)
t, i ∈ {5, 6}, a and x are not incident with

a common hyperplane of the Fi23 geometry. Thus k = 1 for i ∈ {5, 6}.
So knowing k we can make effective use of Lemma 6.1. We observe that

for x ∈ ∆i
3(a) ∩ Γt

0 (t ∈ Ωa) we have Gax = Gt
ax for i = 3, 5, 6. While

[Gax : Gt
ax] = 2 for i = 2, 3, 4. In these latter cases we must also call on the

services of Lemma 6.2 in order to deduce that Gax has shape, respectively,

2423(L3(2)× 2), 2224S6 and 2M222.

We are now in a position to verify Theorems 6-13. For Theorem 6, The-

orem 6.5(i) gives Gax and G∗x
ax for x ∈ ∆1

3(a). We must discover the point

distribution of the Gax line orbits αi(x,Λ1) (i = 1, 2, 3), three of the G∗x
ax-

orbits on lines - see [15]. Let y ∈ ∆1(x) be such that x + y ∈ α1(x,Λ1).

Now we may further assume y is chosen so as x, y ∈ Γt
0 for some t ∈ Ωa.

Then, by Theorem 5 of [12], x + y ∈ α0(x,D(x, a)) (seen within Γt
0) with

x + y having point distribution ∆1t
3 2∆

1t
4 . Since α1(x,Λ1) is a Gax-orbit and

∆1
4(a)

t ⊆ ∆1
4(a), we conclude that lines in α1(x,Λ1) have point distribution

∆1
32∆

1
4. Similarly we see that α2(x,Λ1) has point distribution ∆1

32∆
3
3 and

α3(x,Λ1) has point distribution ∆1
22∆

1
3.

The same kind of arguments work for ∆2
3(a),∆

3
3(a),∆

4
3(a),∆

5
3(a) and

∆6
3(a), so we omit the details.
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The same strategy as employed in this section will reveal Gax and orbit

sizes for x ∈ ∆i
4(a), i = 1, ..., 6. Note that in all these cases k = |{s ∈ Ωa|x ∈

Γs
0}| = 1 as a and x cannot be incident with a common hyperplane in the

Fi23 geometry, as the point-line collinearity graph of the Fi22 geometry has

diameter 3 (see Appendix 1 of [11]).

7 Proof of Theorem 12

The orbits considered in Theorem 12 do not lie within a Fi23 residue and

so we cannot apply the same reasoning as in Section 6. Recall that for any

X ∈ Γ3, ΓX is isomorphic to the geometry for U4(3).2 described in [6].

We define

∆̃8
3(a) = {x ∈ Γ0 | Γ3(a, x) ̸= ∅ and d(a, x) = 3}.

Lemma 7.1. ∆8
3(a) = ∆̃8

3(a).

Proof. If x ∈ ∆̃8
3(a) and X ∈ Γ(a, x), using information about the geometry

ΓX given in Lemma 3.7(ii), there exists c ∈ ∆2(a) ∩ ∆1(a) with c + x ∈
α42(c, T ) where T ∈ Γ2(a, c). By (2.2) c ∈ ∆3

2(a) and x ∈ ∆8
3(a). Conversely

if x ∈ ∆8
3(a) we must have Γ3(a, x) ̸= ∅ by O(2.4) and d(a, x) = 3 by Lemma

5.2. So x ∈ ∆̃8
3(a) as required.

Lemma 7.2. If x ∈ ∆8
3(a), then |Γ3(a, x)| = 1.

Proof. Let x ∈ ∆8
3(a) and assume that X,Y ∈ Γ3(a, x) with X ̸= Y . Using

information about the U4(3).2 geometry described in Lemma 3.7(??), for

every l ∈ Γ1(a,X), there exists b ∈ Γ0(l) with b ∈ ∆2(x) ∩ ∆1(a). If Y /∈
β3(a,X), then there is some b ∈ ∆2(x) ∩ ∆1(a) with a + b ∈ α153(a, Y ) by

Lemma 3.4. Therefore Lemma 4.4 implies that τ(Y ) does not fix b. Since
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τ(Y ) ∈ Q(a)x, b
τ(Y ) ∈ Γ0(a + b) ∩ ∆2(x). However, as Γ0(a + b) ⊆ Γ0(X),

Lemma 3.7(ii) implies that a ∈ ∆1(x), a contradiction. Hence Y ∈ β3(a,X).

In Γa, there are three octads l incident with X and Y and for one of these, we

can find y ∈ Γ0(l)∩∆1
2(a). Since X,Y ∈ Γ3(a, y) we now have a contradiction

to Lemma 5.4, and so X = Y as asserted.

Lemma 7.3. Let c1 ∈ ∆2
2(a) and c2 ∈ ∆2(a) ∩∆1(c1). Then

(i) c2 ∈ ∆2
2(a); and

(ii) if y ∈ Γ0(c1 + c2)\{c1, c2}, then y ∈ ∆1(a).

Proof. (i) Suppose that c2 ∈ ∆1
2(a) ∪ ∆3

2(a), and argue for a contradiction.

Then, by definition of ∆1
2(a) and ∆3

2(a), there exists X ∈ Γ3(a, c2). Since

c1 ∈ ∆2
2(a), |{a, c1}⊥| = 1. Let {a, c1}⊥ = {b}. If b ∈ Γ0(X), then, using

Lemma 5.2, c1 ∈ {b, c2}⊥ ⊆ Γ0(X) and so X ∈ Γ3(a, c2), whereas Γ3(a, c2) =

∅. Thus b /∈ Γ0(X) and as a consequence a + b /∈ Γ1(X). Hence a + b ∈
α24(a,X) ∪ α153(a,X). Assume that a + b ∈ α24(a,X). Then τ(X) ∈ Q(a)b

by Lemma 4.4. Since X /∈ Γ3(b), τ(X) /∈ Q(b) by Lemma 4.9(ii). So τ(X) ∈
Q(a)b\Q(b) and hence τ(X)∗b ∈ Q(a)∗b = O2(G

∗b
ba). Since b+c1 ∈ α2(b, b+a)

we then infer that τ(X)∗b does not leave the octad b + c invariant. Hence

τ(X) /∈ Gc1 . However τ(X) ∈ Q(c2) and so we obtain a triangle {b, c1, cτ(X)
1 }

with c
τ(X)
1 ∈ Γ0(c1 + c2). Lemma 4.7 forces b = c2, a contradiction. Thus we

have shown that a + b /∈ α24(a,X) and so a + b ∈ α153(a,X). By Lemma

4.4, bτ(X) ̸= b. If c
τ(X)
1 = c1, then {b, bτ(X), c1} is a triangle, whence a = c1

by Lemma 4.7. Thus c
τ(X)
1 ̸= c1. Since c

τ(X)
1 ∈ Γ0(c1 + c2), this gives

{b, cτ(X)
1 } ⊆ {bτ(X), c1}⊥ which, as bτ(X) ∈ ∆2

2(c1), contradicts Lemma 5.8(ii)

(note that b = c
τ(X)
1 would give c2 ∈ Γ0(b + c1) and then c2 ∈ ∆2

2(a)). With

this contradiction we have established part (i).

(ii) Let {a, ci}⊥ = {bi} for i = 1, 2. Suppose (ii) is false and argue for a

contradiction. We first claim that d(b1, c2) = 2 = d(b2, c1). If, say, d(b1, c2) =
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1, then {b1, c1, c2} is a triangle and so, as c1, c2 ∈ ∆2(a), Lemma 4.7 yields

that y = b1 ∈ ∆1(a). Thus d(b1, c2) = 1 and, similarly, d(b2, c1) = 2. In

particular, this gives b1 ̸= b2. Further, d(b1, b2) = 2. For d(b1, b2) = 1 implies

b2 ∈ Γ0(a+ b1) by Lemma 4.7 and then {b1, c2} ⊆ {b2, c1}⊥. This contradicts
Lemma 5.8(ii) as b2 ∈ ∆2

2(c1).

If b1 ∈ ∆1
2(b2) ∪∆3

2(b2), then by part (i) (with b1 in place of a) c1 /∈ ∆2
2(b2).

Therefore c1 ∈ ∆1
2(b2) ∪∆3

2(b2). Consequently a ∈ ∆2
2(c1) and b2 ∈ ∆1

2(c1) ∪
∆3

2(c1) which is contrary to part (i) (with c1 in place of a). Thus b1 /∈ ∆1
2(b2)∪

∆3
2(b2) and hence b1 ∈ ∆2

2(b2). Similar arguments show that c1 ∈ ∆2
2(b2) and

c2 ∈ ∆2
2(b1). By considering the elements of Γ3(b1, c1) as sextets in Ωb1 and

using Lemma 4.4 there exists Y ∈ Γ3(b1, c1) with τ(Y ) ∈ Ga. Suppose

that τ(Y ) /∈ Gc2 . Since τ(Y ) fixes the line c1 + c2, Lemma 4.7 implies that

b
τ(Y )
2 ̸= b2 and τ(Y ) /∈ Q(a). Therefore 1 ̸= τ(Y )∗a ∈ O2(G

∗a
ab1

). This means

that, in Ωa, the octads a + b
τ(Y )
2 , a + b1 and a + b2 interest pairwise in the

same duad. However we see from the MOG [4] that this is impossible. Thus

we have shown that τ(Y ) ∈ Gc2 . Since b1 ∈ ∆2
2(c2), Y /∈ Γ3(c2) and so

τ(Y ) /∈ Q(c2) by Lemma 4.9(ii). Then 1 ̸= τ(Y )∗c2 ∈ O2(G
∗c2
c2c1

). Since

c2+ b2 ∈ α2(c2, c2+ c1), τ(Y )∗c2 does not fix c2+ b2. This contradicts Lemma

5.8(ii) and this gives part (ii), and completes the proof of Lemma 7.3.

Lemma 7.4. (i) ∆8
3(a) is a Ga-orbit and |∆8

3(a)| = 26.5.7.11.23.

(ii) For x ∈ ∆8
3(a), Gax ∼ 213 : 3.32 : 4 and G∗x

ax ∼ 26 : 3.32 : 4 is the

stabilizer in G∗x
x of the sextet X ∈ Γ3(a, x) and the partition of Ωx into

Σ = {∞, 14, 0, 8, 3, 20, 15, 18, 17, 4, 16, 10} and its complement (where

X is identified with a standard sextet in Ωx).

(iii) |∆1
2(a) ∩∆1(x)| = 6 and |∆3

2(a) ∩∆1(x)| = 9.

(iv) Let x ∈ ∆8
3(a) and {X} = Γ3(a, x). If {a, b, c, x} is a path of length 3

in G, then b, c ∈ Γ0(X). Moreover ∆2
2(a) ∩∆1(x) = ∅.
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Proof. Let x ∈ ∆8
3(a). By Lemma 7.2 Γ3(a, x) = {X}. Observe that Γ0(X)∩

∆8
3(a) = D1

3(a) by Lemmas 7.1 and 3.7(ii). Since Ga is transitive on Γ3(a)

and by Lemma 3.7(i), D1
3(a) is a GaX-orbit, we see that ∆

8
3(a) is a Ga-orbit.

Also, as |D1
3(a)| = 320 by Lemma 3.7(i),

|∆8
3(a)| = |Γ3(a)||Γ0(X) ∩∆8

3(a)|

= 7.11.23.320 = 26.5.7.11.23.

So (i) holds.

Clearly we have Gax ≤ GaxX and so G∗x
ax ≤ G∗x

axX ∼ 263S6. Also, by part (i),

|Gax| = 215.33. We now look at Q(a)x. Using Lemma 4.6, as a, x ∈ Γ0(X),

gives ⟨τ(Y )|Y ∈ β3(a,X)⟩ ≤ Q(a)x. Hence, by Lemma 3.3, |Q(a)x| ≥ 27.

Now select y ∈ ∆1
2(a) ∩ Γ0(X) (= D2

2(a)) with y ∈ ∆1(x). Suppose Q(a)x �

Q(a)y, and let g ∈ Q(a)x \ Q(a)y. Then yg ̸= y and yg ∈ ∆1(x) ∩ ∆1
2(a) ∩

Γ0(X). Let b ∈ {a, y}⊥ (and note that y ∈ Γ0(X). Since y ∈ Q(a), bg ∈
Γ0(a+b). If b ̸= bg, then Lemma 3.7(ii) forces a ∈ ∆1(x) whereas d(a, x) = 3.

Thus b = bg and consequently {a, y}⊥ = {a, yg}⊥. Looking in Γ0(X) we see

this is impossible [*****NEED GOOD REASON*****] Hence we infer that

Q(a)x ≤ Q(a)y. By Theorem 3 |Q(a)′y| = 27 and therefore |Q(a)x| = 27.

Since a ∈ ∆8
3(x), we also get |Q(x)a| = 27, and so |G∗x

ax| = 28.33. Since G∗x
ax

contains a Sylow 3-subgroup of G∗x
axX and the only subgroup of S6 of order

322α are subgroups of 32 : 4 we see that G∗x
ax ∼ 26 : 3.32 : 4 which completes

the proof of (ii).

Consulting Lemma 3.7(ii) we see |∆1
2(a) ∩∆1(x) ∩ Γ0(X)| = 6 and |∆3

2(a) ∩
∆1(x) ∩ Γ0(X)| = 9. If |∆3

2(a) ∩ ∆1(x)| > 9 then for y ∈ ∆3
2(a) the lines

in α422(y, τ(a, y)) must be incident with at least one point in ∆8
3(a). Let

k = |∆1(x) ∩ ∆3
2(a)|. Using part (ii), Lemma 5.11 and O(2.4) we calculate

that k = 36+9 or 72+9. Now, byO(2.11), there are no line orbits (apart from

α42,8(x,X) and α42,42(x,X)) of size ≤ 72. Thus we conclude that |∆3
2(a) ∩
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∆1(x)| = 9. A similar argument, using |∆8
3(a)|, |∆1

2(a)| and O(2.11) shows

that |∆1
2(a) ∩∆1(x)| = 6 - note that all the line orbits from y ∈ ∆1

2(a) have

already been accounted for except α0,24(y,Λ1,Λ2).

Suppose (iv) is false, and argue for a contradiction. Then, by Lemma 5.2,

b, c /∈ Γ0(X). By Lemma 3.5 there exists Y ∈ β3(a,X) ∪ {X} with a + b ∈
α153(a, Y ). Set τ = τ(Y ). By Lemma 4.6 τ ∈ Q(X) and so aτ = a and xτ =

x. Also, from Lemma 4.4, b ̸= bτ ∈ Γ0(a + b). Note that b, bτ ∈ ∆2(x) and

that b and bτ are in the same Gx-orbit. Lemma 7.1 implies that a ∈ ∆8
3(x).

If b ∈ ∆1
2(x) ∪∆3

2(x), then part (iii) (with a and x interchanged) yields that

b ∈ Γ0(X). Thus b, bτ ∈ ∆2
2(x). Using Lemma 7.3(ii) (with x in place of a)

we infer that a ∈ ∆1(x), a contradiction. That ∆2
2(a) ∩ ∆1(x) = ∅ follows

from Lemma 3.7(ii).

We now consider the set

∆10
3 (a) = {x ∈ Γ0| there exists c ∈ ∆3

2(a)∩∆1(x) such that c+x ∈ α422(c, Tca)}

where Tca is the unique element of Γ2(a, c).

Lemma 7.5. ∆10
3 (a) ⊆ ∆3(a) and ∆10

3 (a) ∩∆8
3(a) = ∅ and so Γ3(a, x) = ∅.

Proof. Let x ∈ ∆10
3 (a) and c ∈ ∆3

2(a) ∩∆1(x) such that c+ x ∈ α422(c, Tca).

By Lemma 7.4(iv), if x ∈ ∆8
3(a), then there exists X ∈ Γ3(a, x) and in Ωc the

octad c+x would intersect Tca in 42, a contradiction. So ∆10
3 (a)∩∆8

3(a) = ∅
and Γ3(a, x) = ∅. If x ∈ ∆1(a), then x ∈ {a, c}⊥ and so x ∈ Γ0(X) for each

X ∈ Γ3(a, c), a contradiction. Suppose that x ∈ ∆2(a). Then Lemma 7.3

gives that x ∈ ∆1
2(a) ∪∆3

2(a). However this contradicts Γ3(a, x) = ∅ again.

Therefore x ∈ ∆3(a) by definition.

We now turn to ∆7
3(a). Recall from (2.2) that

∆7
3(a) = {x ∈ Γ0| there exists c ∈ ∆1

2(a)∩∆1(x) such that c+y ∈ α0,24(c,Ωc∩Ωa,Sca}
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where Ωc ∩ Ωa is the tetrad of Ωa described in Lemma 5.5 and Sca is the

sextet in Ωa corresponding to the unique element of Γ3(a, c).

The next result shows the link between ∆7
3(a) and ∆10

3 (a).

Lemma 7.6. For any x ∈ Γ0, x ∈ ∆10
3 (a) if and only if a ∈ ∆7

3(a).

Proof. Let x ∈ ∆10
3 (a) and let c ∈ ∆3

2(a) ∩∆1(x) with c+ x ∈ α42(c, Tca). If

{a, c}⊥ = {b1, b2, b3} we may suppose that b1 ∈ ∆1
2(x) and b2, b3 ∈ ∆2

2(a). In

Ωb1 , the octad b1 + c is incident with the sextet X(b1, x), where X(b1, x) is

the unique element of Γ3(b1, x) (see Lemma 5.4). Also (b1 + a) ∩ (b1 + c) =

∅ as octads because c ∈ ∆3
2(a). Therefore b1 + a ∈ α24(b1, X(b1, x)) and

|(b1 + a) ∩ t(b1, x)| = 0 where T is the tetrad contained in b1 + d for all

d ∈ {b1, x}⊥. Therefore a ∈ ∆7
3(x) by definition.

Conversely assume a ∈ ∆7
3(x) and let b ∈ ∆1

2(x) ∩ ∆1(a) with b + a ∈
α24(b,X) where X is the unique element of Γ3(b, x) and |(b+a)∩ t(b, x)| = 0

in Ωb where t(b, x) = Ωb ∩ Ωx. Then there exists d ∈ {b, x}⊥ such that

b + x ∈ Γ1(X) and (b + d) ∩ (b + a) = ∅ in Ωb. Hence d ∈ ∆3
2(a) and now

x ∈ ∆10
3 by definition.

Lemma 7.7. Suppose that x1, x2 ∈ ∆2(a) and x1 ∈ ∆1(x2). Let Γ0(x1+x2) =

{x1, x2, x}. Then x1, x2 ∈ ∆i
2(a) for the same i ∈ {1, 2, 3} and x ∈ ∆1(a).

Proof. If x1 ∈ ∆3
2(a), the lemma follows from Lemma 7.3. So we may assume

x1 ∈ ∆1
2(a) ∪∆3

2(a). The point distributions [****GIVE REFS****] of lines

from ∆1
2(a)∪∆3

2(a) are all known with the exception of α0,24(x1,Λ1,Λ2) when

x1 ∈ ∆1
2(a). From Lemmas 7.5 and 7.6, we deduce that ∆7

3(a) ⊆ ∆3(a). In

particular, for ℓ ∈ α0,24(x1,Λ1,Λ2), Λ0(ℓ) ∩∆1
2(a) = {x1}, so completing the

proof of Lemma 7.7.

Lemma 7.8. Let x ∈ ∆10
3 (a) and c ∈ ∆3

2(a) ∩∆1(x).

(i) We have ∆2(x) ∩∆1(a) = {a, c}⊥ with |∆1
2(x) ∩∆1(a)| = 1, |∆2

2(x) ∩
∆1(a)| = 2 and |∆3

2(x) ∩∆1(a)| = 0.
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(ii) If b ∈ ∆1
2(x) ∩ ∆1(a), then ∆2(a) ∩ ∆1(x) = {b, x}⊥ with |∆1

2(x) ∩
∆1(a)| = 0, |∆2

2(x) ∩∆1(a)| = 4 and |∆3
2(x) ∩∆1(a)| = 1.

Proof. In Ωc, for every b ∈ {a, c}⊥, the octad c+b is incident with the trio Tca

and since c+x ∈ α422(c, Tca) we get |∆1
2(x)∩{a, c}⊥| = 1, |∆2

2(x)∩{a, c}⊥| = 2

and |∆3
2(x) ∩ {a, c}⊥| = 0 from the definitions of ∆i

2(x), i = 1, 2, 3. Let

{b} = ∆1
2(x)∩{a, c}⊥. In Ωb, the two octads b+a and b+ c are incident with

the trio Tca and so the octads are disjoint. Let X be the unique element of

Γ3(b, x). Then b+a ∈ α24(b,X). Therefore, for every d ∈ {b, x}⊥, the octads
b+a and b+x intersect in exactly two elements of Ωb. So |∆1

2(x)∩{b, x}⊥| = 0,

|∆2
2(x) ∩ {b, x}⊥| = 4 and |∆3

2(x) ∩ {b, x}⊥| = 1.

To complete the proof by Lemma 5.8(ii), it is enough to show that ∆2(x)∩
∆1(a) = {a, c}⊥. Assume that b1 ∈ ∆2(x) ∩ ∆1(a) with b1 /∈ {a, c}⊥. If

a + b1 ∈ Γ1(X) for some X ∈ Γ3(a, c), then a + b1 ∈ Γ1(Y ) ∪ α24(a, Y ) for

every Y ∈ Γ3(a, c) and so τ(Y ) ∈ Q(a)b by Lemmas 4.2(i) and 4.4. By the

definition of ∆7
3(a) we can find Y ∈ Γ3(a, c) with c + x ∈ α153(c, Y ) and

then τ(Y ) /∈ Gx by Lemma 4.4. So x, xτ(Y ) ∈ ∆2(b1) and Lemma 7.7 gives

c ∈ ∆1(b1), contrary to the choice of b1. Therefore a + b1 /∈ Γ1(X) for all

X ∈ Γ3(a, c) and so in Ωa, the octad a+ b1 intersects the trio Tca in 422.

We now show that b1 ∈ ∆2
2(x). Let X be the unique element of Γ3(b, x).

Assume b1 /∈ ∆2
2(x) for a contradiction. Then there exists Y ∈ Γ3(x, b1).

If X ∈ βi(x, Y ) for i = 1, 0, then there exists d ∈ {x, b1}⊥ with x + d ∈
α153(x,X). By Lemma 4.4 dτ(X) ̸= d. Since b+ a ∈ α24(b,X), using Lemma

4.4 again we have aτ(X) = a. Using Lemma 7.7 with d and dτ(X) we get

y ∈ ∆1(a). So we must have X ∈ β3(x, Y ). We can choose d ∈ {d, x}⊥

with x + d ∈ α42(x, Y ). So d ∈ Γ0(Y ). If d ∈ ∆1(b1) then d /∈ ∆2
2(a) by

Lemma 5.8(ii). Then d = c from the first part of the proof. This contradicts

the fact that b1 /∈ {a, c}⊥. If d ∈ ∆2(b1), then Lemma 7.7 implies that the

point in Γ0(a + b1)\{a, b1} lies in ∆1(x) and using Lemma 7.7 again we get

x ∈ ∆1(a). So d ∈ ∆8
3(b1) because Γ3(d, b1) ̸= ∅. However Lemma 7.4(iv)
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now yields Γ3(a, x) ̸= ∅ which contradicts Lemma 7.5. Hence we have shown

that b1 ∈ ∆2
2(x).

Let d be the unique point in {x, b1}⊥. We can choose Y ∈ Γ3(a, c) such

that c+ x ∈ α24(c, Y ). Then τ(Y ) fixes x by Lemma 4.4. Assume d /∈ ∆2
2(a)

and let Z ∈ Γ3(a, d). If Z /∈ Γ3(Tca) we could choose Y1 ∈ Γ3(Tca) such that

Y1 ∈ βi(a, Z) for i = 0 or 1 and b′ ∈ {a, d}⊥ with a + b′ ∈ α153(a, Y1). So

τ(Y1) does not fix b′ by Lemma 4.4 and then Lemma 7.7 gives a ∈ ∆1(x), a

contradiction. Therefore Z ∈ Γ3(Tca). Applying a similar argument to the

one used to show b1 ∈ ∆2
2(x), we can prove that d ∈ ∆2

2(a).

Since b1 /∈ {a, c}⊥, the octad a + b1 in Ωa is not incident with the trio

Tca. Therefore we can choose Y ∈ Γ3(a, c) with τ(Y ) ∈ Gx and b1 /∈ Γ0(Y ).

If τ(Y ) does not fix b1 Lemma 7.7 would imply that a ∈ ∆1(x) and so

τ(Y ) ∈ Gb1 . ***SHOW THAT dτ(Y ) ̸= d***. We now have |{b1, x}⊥| > 1

which contradicts Lemma 5.8(ii). This completes the proof of the lemma.

Lemma 7.9. (i) |∆10
3 (a)| = 29.32.5.7.11.23.

(ii) Ga is transitive on ∆10
3 (a).

(iii) For x ∈ ∆10
3 (a), Gax ∼ 29 : S4 and G∗x

ax ∼ 26 : S4 is the stabilizer in G∗x
x

of the tetrad t(x, b) (where b is the unique element of ∆1(a) ∩ ∆1
2(x))

and a partition of x+ c\t(x, b) into two pairs of elements.

Proof. Let x ∈ ∆10
3 (a) and c be the unique point in ∆3

2(a) ∩∆1(x) (c exists

by Lemma 7.8). Then |∆10
3 (a) ∩ ∆1(c)| = 2|α422(c, Tca| = 2.672 by O(2.4).

By the uniqueness of c and Lemma 5.11(i) we have

|∆2
3(a)| = 2.672.|∆3

2(a)| = 29.32.5.7.11.23.

For part (ii), working in Ωc, there are four sextets X ∈ Γ3(a, c) such

that c + x ∈ α153(c,X) and so τ(X) /∈ Gx by Lemma 4.4. Therefore Gac
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is transitive on Γ0(c + x)\{c}. Now part (ii) follows because α153(c,X) is a

Gac-orbit on Γ1(c) and ∆3
2(a) is a Ga-orbit of points by Lemma 5.11(ii).

Turning to part (iii) we have Gax 6 Gac. Let b ∈ {a, c}⊥∩∆1
2(x) (b exists

and is unique by Lemma 7.8(i)). By Lemma 7.8(ii) there exists c1, c2 ∈
{b, x}⊥ ∩ ∆2

2(a) with c1 ̸= c2. We show that |Q(a)x| ≤ 23 by first proving

that Q(a)x 6 Q(a)ci for i = 1 and 2. Assume g ∈ Q(a)x\Q(a)ci for a

contradiction. If bg = b, then in Ωb the octads b + c1 and b + cg1 contain the

same two elements of b+ a. However Lemma 5.5 implies that t(b, x) ⊆ b+ c

which gives (b+a)∩(b+c) ̸= ∅, contrary to Lemma 5.9. So bg ̸= b and we can

use Lemma 7.7 to show that a ∈ ∆1(x), a contradiction. So Q(a)x 6 Q(a)ci

for i = 1, 2. Since (b + a) ∩ (b + ci) = ∅ in Ωb, there are seven hyperplanes

Yi ∈ Γ3(a, b) (i = 1, ..., 7) with τ(Yi) ∈ Gc1c2 and the subgroup generated

by the elements τ(Yi) has order at least 24. Further we can show that, up

to relabelling Q(a) ∩ Q(c1) = ⟨τ(Y1)τ(Y2)τ(Y3)⟩ 6 Q(a)c1c2 . (See Lemma

6.15 in [17] for details). Since Q(a)c1c2 ̸= Q(a)c1 we have |Q(a)c1c2 | = 24 by

Theorem 4. Therefore |Q(a)∗c1c1c2
| = 23. In Ωc1 the octads c1 + b and c1 + x

intersect in four elements and the subgroup of O2(G
∗c1
c1b

) fixing c1 + x is of

order 22. Therefore |Q(a)∗c1c1c2x
| ≤ 22 and so |Q(a)x| ≤ 23, as required.

By parts (i) and (ii), [Gac : Gax] = 26.3.7. Since |Q(a)c| = 29 by Theorem

5 we must have |Q(a)x| ≤ 23 and so |Q(a)x| = 23 and [G∗a
ac : G∗a

ax] = 3.7.

Using the ATLAS [2] and Theorem 5 we get G∗a
ax ∼ 26 : S4. This completes

the proof of the lemma.

Lemmas 7.6 and 7.8 now imply

Lemma 7.10. Let x ∈ ∆7
3(a) and c ∈ ∆1

2(a) ∩∆1(x). Then

(i) ∆2(x)∩∆1(a) = {a, c}⊥ with |∆1
2(x)∩∆1(a)| = 2, |∆2

2(x)∩∆1(a)| = 0

and |∆3
2(x) ∩∆1(a)| = 1.

(ii) If b ∈ ∆3
2(x) ∩ ∆1(a), then ∆2(a) ∩ ∆1(x) = {b, x}⊥ with |∆1

2(a) ∩
∆1(x)| = 4, |∆2

2(a) ∩∆1(x)| = 1 and |∆3
2(a) ∩∆1(x)| = 0.

42



Lemma 7.11. (i) |∆7
3(a)| = 29.32.5.7.11.23.

(ii) Ga is transitive on ∆7
3(a).

(iii) For x ∈ ∆7
3(a), Gax ∼ 29 : S4 and G∗x

ax ∼ 25 : S4 is the stabilizer in G∗x
x

of the octad x+d (where d is the unique element of ∆2
2(a)∩∆1(x)), the

trio T0 which is the unique element of Γ3(b, x) for b ∈ ∆3
2(x) ∩ ∆1(a)

and a partition of the octad x+ d into four 2-element sets.

Proof. Let x ∈ ∆7
3(a) and c ∈ ∆1

2(a) ∩ ∆1(x). Then |∆3
3(a) ∩ ∆1(c)| is

twice the number of octads in Ωc lying in α24(c,X(c, a)) that have an empty

intersection with t(c, a). This number is 240. Therefore Lemmas 5.6 and

7.10 give

|∆7
3| = 29.32.5.7.11.23.

Let x′ ∈ Γ0(c + x)\{c, x}. Then by definition x′ ∈ ∆7
3(a). Since c + x /∈

Γ1(X(c, a)), there exists Y ∈ β3(c,X(c, a)) with c + x ∈ α153(c, Y ). For this

Y we have xτ(Y ) = x′ by Lemma 4.4. By O(2.2) and Lemma 5.5(iii) G∗c
ca

is transitive on the lines in α24(c,X(c, a)) that have an empty intersection

with t(c, a) and so part (ii) follows from the transitivity of Ga on ∆2
2(a) (see

Lemma 5.6(ii)).

For part (iii) we know that a ∈ ∆10
3 (x) by Lemma 7.6 and hence Gax ∼

29 : S4 by Lemma 7.9(iii). Let b ∈ ∆3
2(x)∩∆1(a) and e1, e2 ∈ {b, x}⊥∩∆2

2(a)

with e1 ̸= e2. (Such points exist by Lemma 7.10.) Assume Q(a)x 
 Q(a)e1

and let g ∈ Q(a)y\Q(a)e1 . If bg = b, then g∗b ∈ O2(G
∗b
ba) and so in Ωb, the

octads b + e1 and b + eg1 intersect b + a in the same two elements. However

eg1 ∈ {b, x}⊥ and so (b+e1)∩(b+eg1) = ∅ because b ∈ ∆3
2(x). Therefore b

g ̸= b.

Since bg ∈ Γ0(a + b), Lemma 7.7 implies that a ∈ ∆1(x), a contradiction.

Therefore Q(a)x 6 Q(a)e1 and similarly Q(a)x 6 Q(a)e2 . Using an argument

similar to that in the proof of Lemma 7.9(iii), we get |Q(a)x| ≤ 24.

Since c is the unique point in ∆1
2(a) ∩ ∆1(x), Gax 6 Gac. By Lemma

5.6(iii) we have |Q(c)a| = 27. Therefore Q(c)∗aa 6 O2(G
∗a
ac). Since c + x ∈
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α24(c,X(c, a)), there exists Y ∈ β3(c,X(c, a)) such that c + x ∈ α153(c, Y ).

Then Lemma 4.4 implies that τ(Y ) /∈ Gx. However τ(Y ) ∈ Q(c)∩Q(X(c, a))

and τ(Y ) /∈ Q(a). Therefore |O2(G
∗x
xa| ≤ 25 and so G∗x

xa ∼ 25S4 and |Q(x)a| =
24.

We end this section by examining the set

∆9
3(a) = {x ∈ Γ0 | there exists c ∈ ∆2

2(a) ∩∆1(x) such that

c+ x ∈ α2,0(c, c+ b,Dca), where {b} = {a, c}⊥}.

Lemma 7.12. ∆9
3(a) ∩∆i

3(a) = ∅ for i = 1, ..., 8 and i = 10.

Proof. Since Ωa ∩ Ωx = ∅ by definition, ∆9
3(a) ∩ ∆i

3(a) = ∅ for i = 1, ..., 6.

By Lemma 7.4(iii), ∆9
3(a) ∩∆8

3(a) = ∅. By Lemmas 7.8 and 7.10 and [RW5;

(2.3)] if x ∈ ∆7
3(a) ∪ ∆10

3 (a), then |c + x ∩ c + b| = 0 or 4 in Ωc for any

c ∈ ∆2
2(a)∩∆1(x). Therefore ∆

9
3(a)∩∆i

3(a) = ∅ for i = 7, 10 as required.

Lemma 7.13. Let x ∈ ∆9
3(a). Then there exists a unique path of length

three between a and x in G.

Proof. Let c ∈ ∆2
2(a)∩∆1(x) with c+x ∈ α2,0(c, c+b,Dca) and {b} = {a, c}⊥.

Then b ∈ ∆2
2(x) by definition. Assume that a, b1, c1, x is another path of

length three in G. By Lemmas 7.8, 7.10 and 7.4 and [RW5;(2.2) and (2.4)]

we must have c1 ∈ ∆2
2(a) and b1 ∈ ∆2

2(x). It then follows from Lemma 5.8(ii)

that b1 ̸= b and c1 ̸= c. Therefore b1 ∈ ∆2(b) and we consider the three

possible choices separately.

First assume that b1 ∈ ∆3
2(b). Notice that c1 /∈ ∆1(b) ∪∆2(b) by Lemma

7.7 and Lemma 5.8(ii) and so c1 ∈ ∆3(b). Therefore c1 ∈ ∆8
3(b) ∪ ∆10

3 (b)

by [RW5;(2.4)]. However Lemma 7.4(iii) implies that c1 ∈ ∆10
3 (b). We now

have c ∈ ∆1
2(c1) ∩ {b, b1}⊥ by Lemma 7.8 and so c, c1 ∈ {x, b1}⊥, contrary to

Lemma 5.8(ii).
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Next suppose that b1 ∈ ∆1
2(b). Therefore c ∈ ∆7

3(b1) ∪ ∆8
3(b1). Using

Lemma 7.4(iii) we must have c ∈ ∆7
3(b1). This again leads to the contradic-

tion that c, c1 ∈ {x, b1}⊥.
Therefore we must have b1 ∈ ∆2

2(b). In Ωc, c + x ∩ Dca = ∅ and |c + x ∩
c + b| = 2. Using the MOG in [C1] and Lemma 4.4 we can find a sextet

Y ∈ Γ3(c, b) with τ(Y ) ∈ Gax. Since τ(Y ) /∈ Q(a) and a+ b1 ∈ α2(a, a+ b),

τ(Y ) does not fix a + b1. However by the above argument we must have

a+ b
τ(Y )
1 α2(a, a+ b)∩α2(a, a+ b1) and a+ b∩ a+ b1=a+ b∩ a+ b

τ(Y )
1 in Ωa.

As this cannot occur we again get a contradiction. This completes the proof

of the lemma.

Lemma 7.14. (i) |∆9
3(a)| = 213.32.5.7.11.23.

(ii) Ga is transitive on ∆9
3(a).

(iii) For x ∈ ∆9
3(a), Gax ∼ 25 : S4 and G∗x

ax ∼ 24 : S4.

Proof. Let x ∈ ∆9
3(a) and let a, b, c, x be the unique path of length three

between a and x in G.
(i) From [RW5:(2.4)], ∆1(c) ∩∆9

3(a) = 2 × 240 = 25.3.5. Using Lemmas

5.8(ii) and Lemma 7.13 we then have |∆9
3(a)| = 213.32.5.7.11.23.

(ii) Since c + xα2,0(c, c + b,Dca) and using Lemma 4.4, we can find Y ∈
Γ3(b, c) with τ(Y ) ∈ Ga\Gx. Since τ(Y ) fixes c + x, τ(Y ) interchanges the

points in Γ0(c+x)\{c}. Since Ga is transitive on ∆2
2(a) and α2,0(c, c+ b,Dca)

is a Gac orbit, Ga is transitive on ∆9
3(a).

(iii) We have Gax ≤ Gac. Since c+x ∈ α2(c, c+b), then Q(a)∗ccx = 1 and so

Q(a)x ≤ Q(a)∩Q(c). Using the MOG in [C1], there exist Y1, Y2, Y3 ∈ Γ(c+b)

with Q(a) ∩ Q(c) =< τ(Y1)τ(Y2)τ(Y3) >. Further, if δ is the duad in Ωc

fixed by G∗c
ca and ti is the tetrad in Yi containing δ (i = 1, 2, 3), then of

the six elements in (c + a)\δ in Ωc, three lie in exactly two of the tetrads

ti and three lie in none of the tetrads ti. (For details see Proposition 8.12

in [W] where ∆2
2(a) is denoted by ∆3

2(a).) Since Ωa ∩ Ωx = ∅ we have that
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c + x ∈ α153(c, Yi) for precisely two or none of the sextets Yi, i = 1, 2, 3.

Therefore τ(Y1)τ(Y2)τ(Y3) ∈ Gx by Lemma 4.4. Therefore |Q(a)x| = 2 and

it follows that [G∗x
xb : G∗x

xa] = 2.3.5.. Since G∗x
xb ∼ 24S6 by Lemma 5.8(iii) we

must have G∗x
xa ∼ 24S4, as required.
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