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Abstract

We derive an explicit formula for the remainder term of a Taylor polynomial of
a matrix function. This formula generalizes a known result for the remainder of
the Taylor polynomial for an analytic function of a complex scalar. We investi-
gate some consequences of this result, which culminate in new upper bounds for
the level-1 and level-2 condition numbers of a matrix function in terms of the
pseudospectrum of the matrix. Numerical experiments show that, although the
bounds can be pessimistic, they can be computed much faster than the stan-
dard methods. This makes the upper bounds ideal for a quick estimation of the
condition number whilst a more accurate (and expensive) method can be used
if further accuracy is required. They are also easily applicable to more com-
plicated matrix functions for which no specialized condition number estimators
are currently available.
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pseudospectrum, Fréchet derivative
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1. Introduction

Taylor’s theorem is a standard result in elementary calculus (see e.g. [17]).
If f : R → R is k times continuously differentiable at a ∈ R, then the theorem
states that there exists Rk : R→ R such that

f(x) =

k∑
j=0

f (j)(a)

j!
(x− a)j +Rk(x)

and Rk(x) = o(|x − a|k) as x → a. Depending on any additional assumptions
on f , various precise formulae for the remainder term Rk(x) are available. For

1This work was supported by European Research Council Advanced Grant MATFUN
(267526).

2Email addresses: edvin.deadman@manchester.ac.uk (E. Deadman), samuel.relton@

manchester.ac.uk (S. D. Relton)



example, if f is k + 1 times continuously differentiable on the closed interval
between a and x, then

Rk(x) =
f (k+1)(c)

(k + 1)!
(x− a)k+1 (1)

for some c between a and x. This is known as the Lagrange form of the remain-
der. Alternative expressions, such as the Cauchy form or the integral form for
the remainder are well known [17].

Taylor’s theorem generalizes to analytic functions in the complex plane: the
remainder must now be expressed in terms of a contour integral. If f(z) is
complex analytic in an open subset D ⊂ C of the complex plane, the kth-degree
Taylor polynomial of f at a ∈ D satisfies

f(z) =

k∑
j=0

f (k)(a)

k!
(z − a)j +Rk(z),

where

Rk(z) =
(z − a)k+1

2πi

∫
Γ

f(w)dw

(w − a)k+1(w − z)
, (2)

and Γ is a circle, centred at a, such that Γ ⊂ D. See [1, Chap. 5, Sec. 1.2] for
a proof of this result.

The first goal of this paper is to generalize (2) to matrices, thereby pro-
viding an explicit expression for the remainder term for the kth-degree Taylor
polynomial of a matrix function. Note that it will not be possible to obtain an
expression similar to (1) because its derivation relies on the mean value theorem
which does not have an exact analogue for matrix-valued functions. Our second
goal is to investigate applications of this result in bounding the derivatives and
condition numbers of matrix functions via pseudospectra.

Convergence results for Taylor polynomials of matrix functions have been
known since the work of Hensel [8], Turnbull [20], and Weyr [21] (see [11,
Thm. 4.7] for a more recent exposition). Mathias [15] also obtains a norm-
wise truncation error bound for matrix function Taylor polynomials which form
part of the Schur–Parlett algorithm [4]. There are also a number of remainder
theorems within the operator theory literature which can be applied to matrix
functions. However, to our knowledge, this paper represents the first time an
explicit remainder term (as opposed to a bound) has been specifically obtained
for the Taylor polynomial of a matrix function.

The remaining sections of this paper are organized as follows. In section 2
we state and prove the remainder term for the kth-degree Taylor polynomial of
a matrix function. In section 3 we investigate some applications of this result by
bounding the first order remainder term using pseudospectral techniques and
relating it to the condition number of f(A). In section 4 we extend these results
to the level-2 condition number of a matrix function, introduced in [13]. In
section 5 we examine the behaviour of the pseudospectral bounds on some test
problems and show that they can be computed efficiently. Finally in section 6
we present our conclusions and discuss some potential extensions of this work.
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2. Remainder term for Taylor polynomials

The Taylor series theorems found in Higham’s monograph [11] primarily
involve expanding f(A) about a multiple of the identity matrix I:

f(A) =

∞∑
j=0

f (j)(α)

j!
(A− αI)j .

Our starting point is the more general Taylor series expansion in terms of Fréchet
derivatives, obtained by Al-Mohy and Higham [2, Thm. 1]. Suppose that f has
a power series expansion

∑∞
j=0 ajx

j with radius of convergence r > 0 centered
at the origin. The interior of the circle |x| < r defines a simply connected set D.
Then, given A,E ∈ Cn×n with Λ(A), Λ(A + E) ⊂ D (where Λ(X) denotes the
spectrum of the matrix X), Al-Mohy and Higham proved that

f(A+ E) =

∞∑
j=0

1

j!
D

[j]
f (A,E), (3)

where

D
[j]
f (A,E) =

dj

dtj

∣∣∣∣
t=0

f(A+ tE). (4)

They called the D
[j]
f (A,E) terms Fréchet derivatives. More precisely, D

[j]
f (A,E)

is a special case of the jth order Fréchet derivative described by Higham and
Relton [13], in which the perturbations in the j directions are all E. The

first of these terms, D
[1]
f (A,E), coincides with the “standard” Fréchet deriva-

tive Lf (A,E). Additionally, if A and E commute then we have D
[j]
f (A,E) =

Ejf (j)(A), where f (j) denotes the jth derivative of the scalar function f(x).
Before writing down the remainder term obtained by truncating the Taylor

series in (3), we first recall the standard result that, for any invertible A and B,

A−1 −B−1 = A−1(B −A)B−1. (5)

We will also need the following lemma.

Lemma 2.1. Let X(t) = A− tB, where t is a scalar. Then

dj

dtj

∣∣∣∣
t=0

X(t)−1 = j!A−1(BA−1)j .

Proof. Note that
d

dt
X−1 = −X−1X ′X−1,

where X ′ denotes the derivative of X, and that, since higher derivatives of X
vanish,

dj

dtj
X−1 = (−1)jj!X−1(X ′X−1)j .

The result then follows by substituting X = A− tB and setting t = 0.

3



Furthermore, we note that by the Cauchy–Hadamard theorem any power
series in the complex plane converging to a function f must converge on a
circular domain with radius of convergence r (which can be infinite). In the
following results, for the purpose of maximizing generality, we say that f has a
power series expansion which converges on a simply connected set D. Clearly
D must be a subset of this circular domain, but need not be circular itself.
The reason for this distinction is that the ε-pseudospectrum of A, introduced in
section 3, give rise to sets of differing shape.

We now state and prove the main result of this paper, which gives an explicit
form of the remainder term when truncating (3).

Theorem 2.2. Let f have a power series expansion about the origin with radius
of convergence r and let D ⊂ C be a simply connected set within the circle of
radius r centered at 0. Let A, E ∈ Cn×n be such that Λ(A), Λ(A + E) ⊂ D.
Then for any k ∈ N

f(A+ E) = Tk(A,E) +Rk(A,E),

where

Tk(A,E) =

k∑
j=0

1

j!
D

[j]
f (A,E), (6)

Rk(A,E) =
1

2πi

∫
Γ

f(z)(zI −A− E)−1[E(zI −A)−1]k+1dz, (7)

and Γ is a closed contour in D enclosing Λ(A) and Λ(A+ E).

Proof. The result is proved by induction on k. For the case k = 0 we have
f(A+ E) = f(A) +R0(A,E). Then

R0(A,E) = f(A+ E)− f(A)

=
1

2πi

∫
Γ

f(z)[(zI −A− E)−1 − (zI −A)−1]dz,

using the Cauchy integral definition of a matrix function. It follows from (5)
that

R0(A,E) =
1

2πi

∫
Γ

f(z)(zI −A− E)−1E(zI −A)−1dz.

For the inductive step, we assume that f(A+ E) = Tk(A,E) + Rk(A,E). The
remainder for the (k + 1)st degree Taylor polynomial is given by

Rk+1(A,E) = f(A+ E)− Tk+1(A,E)

= f(A+ E)− Tk(A,E)− 1

(k + 1)!
D

[k+1]
f (A,E)

= Rk(A,E)− 1

(k + 1)!

dk+1

dtk+1

∣∣∣∣
t=0

f(A+ tE).
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Substituting the inductive hypothesis for Rk(A,E) and the Cauchy integral
form for f(A+ tE) gives

Rk+1(A,E) =
1

2πi

∫
Γ

f(z)(zI −A− E)−1[E(zI −A)−1]k+1dz

− 1

2πi(k + 1)!

dk+1

dtk+1

∫
Γ

f(z)(zI −A− tE)−1dz.

By the continuity of f we can apply the Leibniz integral rule to differentiate the
integrand in the second term and simplify it using Lemma 2.1. We obtain

Rk+1(A,E) =
1

2πi

∫
Γ

f(z)
[
(zI −A− E)−1[E(zI −A)−1]k+1

−(zI −A)−1[E(zI −A)−1]k+1
]
dz

=
1

2πi

∫
Γ

f(z)(zI −A− E)−1[E(zI −A)−1]k+2dz,

where (5) has been used once more. This completes the proof.

We end this section by briefly describing how Theorem 2.2 also allows us
to obtain a remainder term for Padé approximants (this was first done in the
scalar case by Elliot [5]).

Suppose that we approximate f(z) using a rational function pm(z)/qn(z),
where pm(z) and qn(z) are polynomials of degree m and n respectively. The
Padé approximant is the unique choice (up to scalar multiples) of pm(z) and
qn(z) such that f(z) − pm(z)/qn(z) = O(zm+n+1). Therefore, using the same
rational function to approximate the corresponding matrix function, we have
qn(X)f(X)−pm(X) = O(‖X‖m+n+1). We introduce the truncation error term
Sm,n(X) to the Padé approximant such that

f(X) =
pm(X)

qn(X)
− Sm,n(X).

Then, by rearranging the above,

qn(X)Sm,n(X) = qn(X)f(X)− pm(X) = O(‖X‖m+n+1).

The term qn(X)Sm,n(X) is then the remainder term if we consider p(X) to be
a power series expansion of qn(X)f(X) when we set A = 0 and E = X. The
remainder has degree at least m + n and so, by applying (7) with k = m + n,
we obtain

Sm,n(X) =
qn(X)−1Xm+n+1

2πi

∫
Γ

qn(z)f(z)(zI −X)−1

zm+n+1
dz,

where the closed contour Γ encloses Λ(X) and the origin.
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3. Application to condition numbers and pseudospectra

In this section we use Theorem 2.2 to study the behaviour of the condition
number of a matrix function, which measures the sensitivity of f(A) to small
perturbations in A. The results in this section are applicable for any induced
matrix norm. Our approach requires borrowing a number of techniques from
the analysis of pseudospectra. Recall that the ε-pseudospectrum of a matrix X
is the set

Λε(X) =
{
z ∈ C : ‖(zI −X)−1‖ ≥ ε−1

}
. (8)

To begin, the following lemma provides some pseudospectral bounds on the size
of the remainder terms.

Lemma 3.1. Let f and D satisfy the criteria of Theorem 2.2. Furthermore let
ε > 0 be such that Λε(A) ⊂ D and Λε(A + E) ⊂ D, and take Γ̃ε ⊂ D to be a
closed contour that encloses both Λε(A) and Λε(A + E). Then the remainder
term Rk(A,E) is bounded by

‖Rk(A,E)‖ ≤ ‖E‖
k+1L̃ε

2πεk+2
max
z∈Γ̃ε
|f(z)|, (9)

where L̃ε is the length of Γ̃ε. In particular, when a circular contour centered at
0 is used,

‖Rk(A,E)‖ ≤ ‖E‖
k+1

εk+2
max

θ∈[0,2π]
|f(ρ̃εe

iθ)|, (10)

where ρ̃ε = max{|z| : z ∈ Λε(A+ E) ∩ Λε(A)} is the radius of the circle.

(Note that tildes on L̃ε, Γ̃ε, and ρ̃ε are used because, for this result only,
the contour needs to enclose Λε(A + E) in addition to Λε(A). For subsequent
results, the contour need only enclose Λε(A) and the tildes are dropped.)

Proof. The proof is analogous to that of the bound

‖f(A)‖ ≤ L̃ε
2πε

max
z∈Γ̃ε
|f(z)|,

obtained by Trefethen and Embree [19, Ch. 14]. We bound the norm of Rk(A,E)
by noting that

‖Rk(A,E)‖ ≤ ‖E‖
k+1

2π

∫
Γ̃ε

|f(z)|‖(zI −A− E)−1‖‖(zI −A)−1‖k+1.

On Γ̃ε we have ‖(zI −A−E)−1‖ ≤ ε−1 and ‖(zI −A)−1‖ ≤ ε−1. The first part
of the lemma follows immediately. For the second part, take Γ̃ε to be a circle
with center 0 and radius ρ̃ε = max{|z| : z ∈ Λε(A+ E) ∩ Λε(A)}.

6



We can also use this result to bound the absolute condition number of a
matrix function. Recall that the absolute condition number measures the first
order sensitivity of f(A) to small perturbations in A and is given by [11, Chap. 3]

condabs(f,A) := lim
τ→0

sup
‖E‖≤τ

‖f(A+ E)− f(A)‖
τ

= max
‖E‖≤1

‖Lf (A,E)‖. (11)

Lemma 3.1 provides us with the following bound on the absolute condition
number.

Corollary 3.2. Let f and D satisfy the criteria of Theorem 2.2. Let ε > 0
be such that Λε(A) ⊂ D, and let Γε ⊂ D be a closed contour of length Lε that
encloses the ε-pseudospectrum. Then

condabs(f,A) ≤ Lε
2πε2

max
z∈Γε
|f(z)|. (12)

In particular, when a circular contour centered at 0 is used,

condabs(f,A) ≤ ρε
ε2

max
θ∈[0,2π]

|f(ρεe
iθ)|, (13)

where ρε = max{|z| : z ∈ Λε(A)} is the pseudospectral radius of A.

Proof. Set k = 0 in (9). Consider ‖E‖ = α < ε so that, by an equivalent
definition of the ε-pseudospectrum, we have Λ(A + E) ⊂ Λε(A). Then, since
R0(A,E) = Lf (A,E) + o(‖E‖), we have

‖Lf (A,E) + o(α)‖ ≤ αLε
2πε2

max
z∈Γε
|f(z)|.

We divide by α and take the supremum over all E such that ‖E‖ ≤ α to obtain

sup
‖E‖≤α

‖Lf (A,E/α) + o(α)/α‖ ≤ Lε
2πε2

max
z∈Γε
|f(z)|.

Note that the curve Γε must enclose Λε(A + E) since ‖E‖ ≤ α < ε. The proof
of (12) is completed by taking the limit α → 0 and recalling that the absolute
condition number of a matrix function is given by operator norm of the Fréchet
derivative (11).

The proof of (13) is essentially the same, except that (10) is taken as the
starting point rather than (9).

Note that an alternative proof of the corollary can be obtained by starting
with the integral representation of the Fréchet derivative

Lf (A,E) =
1

2πi

∫
Γε

f(z)(zI −A)−1E(zI −A)−1dz,

and bounding it above using the techniques from the proof of Lemma 3.1.
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Assuming that these bounds can be computed efficiently they are of consid-
erable interest as most existing results regarding the estimation of the condition
number provide only lower bounds [11, Chap. 3]. Indeed, this is particularly
interesting when combined with a bound on the size of the ε-pseudospectrum
given by the following result.

Lemma 3.3 (Reddy, Schmid, and Henningson). Let W (A) be the numerical
range of A and ∆δ be a closed disk of radius δ. Then for all ε > 0

Λε(A) ⊂W (A) +∆ε,

where set addition is defined componentwise; that is S1 + S2 = {s1 + s2 : s1 ∈
S1, s2 ∈ S2}.

Proof. See Reddy, Schmid, and Henningson [16, Thm. 2.1].

Since the numerical radius, r(A) := supz∈W (A) |z|, is equal to ‖A‖2 we know
that the ε-pseudospectral radius is no larger than ‖A‖2 + ε. Thus we obtain the
following corollary.

Corollary 3.4. Let f , D, and ε > 0 satisfy the criteria of Corollary 3.2 and
suppose that ‖A‖2 + ε < r, the radius of convergence for the power series ex-
pansion of f . Then

condabs(f,A) ≤ ‖A‖2 + ε

ε2
max

|z|=‖A‖2+ε
|f(z)|. (14)

Proof. The circle of radius ‖A‖2 + ε around the origin encloses Λε(A) and is of
length 2π(‖A‖2 + ε). Using this contour in (13) gives the desired result.

One potential application of this result is in the design and analysis of algo-
rithms for computing matrix functions. Many such algorithms work by rescaling
A to be of small norm, applying the function to this scaled matrix (via a Padé
approximant or Taylor series), and then undoing the effect of the scaling. This
corollary may allow us to better understand the numerical effect of applying the
matrix function to the scaled matrix, since such analysis is typically done only
in exact arithmetic.

We end this section by briefly mentioning a related theorem due to Lui [14,
Thm. 3.1], concerning the relationship between the pseudospectra of A and
f(A). The theorem is restated here in our notation. Recall that Rk(A,E) was
defined in Theorem 2.2 and that R0(A,E) = Lf (A,E) + o(‖E‖).

Lemma 3.5 (Lui). Let ε, f , and Γε satisfy the conditions of Corollary 3.2. Fur-
thermore let f(Λε(A)) = {f(z) : z ∈ Λε(A)} and M = max‖E‖≤ε ‖R0(A,E)‖.
Then f(Λε(A)) ⊂ ΛM (f(A)).

Proof. If z is an eigenvalue of A + E with ‖E‖ ≤ ε (so that z ∈ Λε(A)), then
f(z) is an eigenvalue of f(A+E) = f(A) +R0(A,E) and ‖R0(A,E)‖ ≤M .

This result shows that, to first order in ε, the ε-pseudospectrum of A is
related to the δ-pseudospectrum of f(A) via f(Λε(A)) ⊂ Λδ(f(A)), where δ =
condabs(f,A)ε.
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4. Application to higher order condition numbers

Higham and Relton [13] introduce the level-q condition number for matrix
functions, which is defined recursively by

cond
(q)
abs(f,A) := lim

α→0
sup
‖Z‖≤α

| cond
(q−1)
abs (f,A+ Z)− cond

(q−1)
abs (f,A)|

α
, (15)

where cond
(1)
abs(f,A) := condabs(f,A). In section 3 we focused on the first or-

der remainder term, R0(A,E), and results concerning the condition number
condabs(f,A) but—by choosing k > 0 in Lemma 3.1—we can attempt to ex-
tend results such as Corollary 3.2 to these higher order condition numbers.

Before proceeding, we must first investigate the relationship between the

D
[j]
f (A,E) defined in (4) and higher order Fréchet derivatives. Recall that

D
[j]
f (A,E) is a special case of the jth order Fréchet derivative in which the

perturbation in each direction is E. In [13] a definition of the jth order Fréchet
derivative, assuming it is continuous in A, is given in terms of the mixed partial
derivative:

L
(j)
f (A,E1, . . . , Ej) =

∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

f(A+ s1E1 + · · ·+ sjEj). (16)

The following theorem expresses this jth order Fréchet derivative in terms of a
contour integral.

Theorem 4.1. Let f be j times Fréchet differentiable such that the jth Fréchet
derivative is continuous at A, and let Γ be a closed contour enclosing Λ(A) such
that f is analytic inside and on Γ . Then, the jth order Fréchet derivative of a
matrix function f(A) in the directions E1, . . . , Ej is given by

L
(j)
f (A,E1, . . . , Ej) =

1

2πi

∫
Γ

f(z)(zI −A)−1
∑
σ∈Sj

k∏
i=1

Eσ(i)(zI −A)−1dz, (17)

where Sj is the set of permutations of {1, 2, . . . , k}. In particular the derivative

D
[j]
f (A,E) is given by

D
[j]
f (A,E) =

j!

2πi

∫
Γ

f(z)(zI −A)−1[E(zI −A)−1]j+1dz. (18)

Proof. For any choice of si (in some neighbourhood of 0) and Ei, we can write
f(A + s1E1 + · · · + sjEj) as a Cauchy integral by using the standard Cauchy
integral definition of a matrix function and choosing a contour Γ that encloses
some neighbourhood of Λ(A). Then (16) becomes

L
(j)
f (A,E1, . . . , Ej) =

∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

∫
Γ̃

f(z)(zI − (A+ s1E1 + · · ·+ sjEj))
−1dz.

9



Using the Leibniz integral rule, the differential operator

∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

can be brought inside the integral sign. The required integrand is then obtained
by using the identity

d

dx
U−1 = −U−1 dU

dx
U−1.

The result (17) follows by then restricting the contour to any closed curve Γ
containing Λ(A). The second part of the theorem, (18), follows by setting
E1 = · · · = Ej .

Theorem 4.1 shows that, to first order, the kth remainder term in the Tay-
lor series is simply the (k + 1)st derivative, as we might expect. Specifically,
comparing (18) with (7) we find

Rk(A,E) =
1

(k + 1)!
D

[k+1]
f (A,E) + o(‖E‖k+2).

In addition, Theorem 4.1 allows us to prove the following theorem, which
uses the pseudospectrum of A to bound the norm of the jth order Fréchet
derivative.

Theorem 4.2. Let f satisfy the criteria of Theorem 4.1 and let Γε be a closed
contour enclosing Λε(A) such that f is analytic inside and on Γε. Then the jth
order Fréchet derivative can be bounded by

‖L(j)
f (A,E1, . . . , Ej)‖ ≤

j!Lε
2πεj+1

(
max
z∈Γε
|f(z)|

) j∏
i=1

‖Ei‖, (19)

where Lε is the length of Γε.

Proof. In (17), use the contour Γε, take norms and note that ‖(zI−A)−1‖ ≤ ε−1
on Γε.

It would be desirable to obtain a bound on the level-q condition number, by
first bounding it in terms of the norm of the qth Fréchet derivative and then
applying Theorem 4.2. However, in the general case such bounds prove to be far
too weak to be of any interest. Instead we restrict ourselves to the case q = 2
and the level-2 condition number.

Lemma 4.3. Let f satisfy the criteria of Theorem 4.1 and let Γε a closed
contour enclosing Λε(A) such that f is analytic inside and on Γ . The level-2
condition number is bounded by

cond
(2)
abs(f,A) ≤ Lε

πε3
max
z∈Γε

|f(z)|.
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When a circular contour centered at 0 is used,

cond
(2)
abs(f,A) ≤ 2ρε

ε3
max

θ∈[0,2π]
|f(ρεe

iθ)|,

where ρε, the pseudospectral radius, is the radius of the circle.

Proof. Higham and Relton [13, Sec. 5] give an upper bound for the level-2
absolute condition number in terms of the norm of the 2nd Fréchet derivative

cond
(2)
abs(f,A) ≤ max

‖E1‖=1
max
‖E2‖=1

‖L(2)
f (A,E1, E2)‖. (20)

Substituting the bound from (19) into (20) gives the required results.

5. Numerical Experiments

In this section we show how our pseudospectral bounds on the condition
number, (12) and (13), can be used to estimate the condition number of ma-
trix functions in practice. We also find that they are cheaper than alternative
approaches and, therefore, one might use the pseudospectral bound as a quick
estimate of the condition number. If this estimate is unsatisfactorily large we
can use existing methods to estimate it more accurately. The term “unsatisfac-
torily large” can be made precise in the following manner: many applications
only require the first few digits of the result to be correct so that a relative error
of, for example, 1e-4 is perfectly acceptable. When using a backwards stable
algorithm the relative error is approximately bounded above by the condition
number multiplied by the unit roundoff (u = 2−53 in IEEE double precision
arithmetic).

Throughout this section, to compute our bound on the condition number,
we will be using (12)

condabs(f,A) ≤ Lε
2πε2

max
z∈Γε
|f(z)|,

where Γε is a closed contour of length Lε that encloses the pseudospectrum of
A and lies within the region where f has a convergent power series. Recall also
that the relative condition number condrel(f,A), is given by

condrel(f,A) = condabs(f,A)
‖A‖
‖f(A)‖

.

Combining these two results allows us to bound the relative condition number
from above. This bound will be cheap to compute provided that the cost of
computing Lε and maxz∈Γε |f(z)| is sufficiently small.

In order to use this bound in practice we must choose which matrix norm
to consider, the value of ε, and the contour Γε. We will use the Frobenius norm
since, in this norm, there is an explicit formula for the condition number which
can be computed using [11, Alg. 3.17]. However, the pseudospectrum is not
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defined in the Frobenius norm, since it requires the use of an induced norm.
To resolve this, one can easily show that the absolute condition number in the
Frobenius norm is bounded above by

√
n times the condition number in the

2-norm, where n is the size of the matrix. Hence we have

condrel(f,A, ‖ · ‖F ) ≤
√
n condabs(f,A, ‖ · ‖2)

‖A‖F
‖f(A)‖F

.

The right-hand side of this equation is what we will compute, where the condabs(·)
term is bounded above by (12).

It remains to choose ε and Γε. Looking at (12) we see that, heuristically,
in order to minimize the upper bound we would like ε to be reasonably far
from 0. Some of our test functions will have power series that are convergent
in a circle of radius 1 around the point z = 0; for these cases we choose Γε
to be a circle centered at 0 with radius 0.99 and find the largest ε such that
the ε-pseudospectral radius lies inside this circle. This is computed using the
nonlinear optimization routine fminbnd in MATLAB. When our function has
a power series with an infinite radius of convergence we choose ε = 1 and take
Γε to be a circle centered at the mean of the eigenvalues of A (γ = 1

n

∑
λi)

with radius equal to the ε-pseudospectral radius of A − γI. Finally, to find
max |f(z)| on these contours, we again use the nonlinear optimization routine
fminbnd in MATLAB. We use psapsr by Guglielmi and Overton [7] to compute
the ε-pseudospectral radii throughout.

We will compare our pseudospectral method described above (hereafter re-
ferred to as condpseudo) in the Frobenius norm against two alternative methods
for computing the condition number: funm condest fro from the Matrix Func-
tion Toolbox [10] and an “exact” method detailed by Higham [11, Alg. 3.17],
which we refer to as condold and condexact, respectively.

The method condold uses finite difference approximations to the derivatives
of the matrix function and has O(n3) cost. Meanwhile condexact expresses the

condition number as the 2-norm of a matrix Kf (A) ∈ Cn2×n2

, called the Kro-
necker form of the matrix function, which must be computed explicitly with cost
O(n5). Therefore condexact is impractical for all but the smallest problems.

Our first experiment compares condpseudo and condold to condexact in
terms of accuracy and reliability on a range of matrix functions. The purpose
of this experiment is to confirm that condpseudo does indeed return an upper
bound on the condition number and that this upper bound is not much larger
than the exact value.

We compare the three different algorithms on four matrix functions corre-
sponding to the scalar functions log(1 + x), (1 + x)1/15, exp(x), and cos(x).
The first two of these have a power series representation which is convergent
for |x| < 1, whilst the latter have globally convergent power series. The matrix
functions are computed using logm and expm in MATLAB, along with cosm

from [3], and powerm fre new by Higham and Lin [12].
For each function we use 29 test matrices (of size n = 10) from the Matrix

Computation Toolbox [9] and plot both the computed condition numbers and
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Figure 1: Condition number estimates/bounds for the matrix function corresponding to
f(x) = log(1+x) in the Frobenius norm over 29 test matrices. We have condold and condexact

overlapping almost entirely. Left: The condition number estimates/bounds. Right: The ratios
of condpseudo and condold to condexact.
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Figure 2: Condition number estimates/bounds for the matrix function corresponding to
f(x) = (1 + x)1/15 in the Frobenius norm over 29 test matrices. We have condold and
condexact overlapping almost entirely. Left: The condition number estimates/bounds. Right:
The ratios of condpseudo and condold to condexact.

the ratio of condpseudo and condold to condexact. For the first two func-
tions, where we need all eigenvalues to lie within the region of convergence, we
transform each matrix to have eigenvalues centered at 0 with ‖A‖2 = 1 so that
all eigenvalues lie within the unit disk.

In Figure 1 we see the condition number as computed by the three methods,
for each of the 29 test matrices, using the function f(x) = log(1+x). The results
are ordered by decreasing condition number as computed by condexact. We
can immediately see that condpseudo is indeed an upper bound and is usually
2–4 orders of magnitude larger than the exact condition number. Meanwhile
condold is generally a very good estimate of the condition number.

Next in Figure 2 we compare the condition numbers when using the function
f(x) = (1 + x)1/15. In this case we see very similar behaviour to the previous
function: condold and condexact are almost identical whilst condpseudo pro-
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Figure 3: Condition number estimates/bounds for the matrix function corresponding to
f(x) = exp(x) in the Frobenius norm over 29 test matrices. We have condold and condexact

overlapping almost entirely. Left: The condition number estimates/bounds. Right: The ratios
of condpseudo and condold to condexact.
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Figure 4: Condition number estimates/bounds for the matrix function corresponding to
f(x) = cos(x) in the Frobenius norm over 29 test matrices. We have condold and condexact

overlapping almost entirely. Left: The condition number estimates/bounds. Right: The ratios
of condpseudo and condold to condexact.

vides an upper bound that is generally 2–4 orders of magnitude larger than the
true condition number.

Figure 3 shows the results when using f(x) = exp(x). In this case condpseudo
performs slightly better than previously being only 1–3 orders of magnitude
above condexact on most test problems.

Finally, Figure 4 displays the results for f(x) = cos(x). In this case, as for
the exponential we see that condpseudo is a reliable upper bound, generally
being 1–3 orders of magnitude above condexact except for one case on the left-
hand side in which it is more than 10 orders of magnitude larger. This is due to
the matrix in question having eigenvalues extending far into the complex plane:
as the cosine function grows exponentially in the direction of the imaginary axis
| cos(z)| is extremely large on the chosen contour.

Each of these four cases shows that condpseudo provides a reliable upper
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bound on the condition number and is generally just a few orders of magnitude
above the true value. We also note that, since condpseudo needs only the scalar
function f(x) and does not need to compute the derivatives of a matrix function,
via finite differences or otherwise, it can easily be applied to very complicated
matrix functions such as cos(

√
A) (for which no specially designed algorithms

exist) with no modification. Matrix functions such as this can arise in finite
element semidiscretization of the wave equation. For example, the second order
differential equation

y′′(t) +Ay(t) = g(t), y(0) = y0, y′(0) = y′0,

has the solution

y(t) = cos(
√
At)y0 + (

√
A)−1 sin(

√
At)y′0 +

∫ t

0

(
√
A)−1 sin

(√
A(t− s)

)
g(s) ds,

where
√
A denotes any square root of A [6, p. 124], [18]; see also [11, Prob. 4.1]

for the case g(t) = 0.
Our next experiment compares the speed of estimating the condition number

as the size of the matrix grows. Here we focus on the function f(x) = (1+x)t for
t = 1/5, 1/15, 1/52 and for n between 10 and 1000. For each value of n we take
A to be a matrix with elements normally distributed with zero mean and unit
variance, scaled to have unit norm. Since condexact is an O(n5) algorithm it
becomes increasing impractical as n grows: instead we will compare condpseudo
against condold and a different algorithm, condhili. This latter algorithm,
designed by Higham and Lin [12], estimates the condition number of matrix
powers in a similar manner to condold but actually computes the derivatives
of the matrix function, as opposed to using finite difference approximations.
The algorithm is designed to estimate the condition number in the 1-norm but
has similar computational complexity to condold which works in the Frobenius
norm. This experiment was run on a laptop with an Intel dual-core i7 processor
using MATLAB R2014b.

Figure 5 shows the results of this experiment. On the left are the runtimes
using each of the 3 algorithms to compute the condition number of (I+A)1/t for
the various values of t whilst the right-hand plot shows the speedup when using
condpseudo relative to the other methods. The x-axis shows n, the size of the
matrices, whilst the y-axis shows the runtime in seconds (left-hand plot) and the
speedup obtained (right-hand plot). We see that condpseudo is much cheaper
than the alternatives for fairly small matrices and appears to settle at around
1.5 times faster than condold and 2 times faster than condhili, respectively,
on this machine. This would suggest that using condpseudo is beneficial for
applications where low-accuracy solutions are required and is particularly good
in situations where lots of small matrix functions need to be computed.

6. Conclusions

The main results in this paper are as follows. We have obtained an explicit
expression for the remainder term of a matrix function Taylor polynomial (The-

15



0 200 400 600 800 1000
10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

condpseudo t=1/5
condpseudo t=1/15
condpseudo t=1/52
condold t=1/5
condold t=1/15
condold t=1/52
condhili t=1/5
condhili t=1/15
condhili t=1/52

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
vs. condold t=1/5
vs. condold t=1/15
vs. condold t=1/52
vs. condhili t=1/5
vs. condhili t=1/15
vs. condhili t=1/52

Figure 5: Runtime in seconds and resulting speedup when computing the matrix function
corresponding to f(x) = (1 + x)t for t = 1/5, 1/15, 1/52 using condpseudo, condold, and
condhili as n varies between 10 and 1000. The x-axis shows n, the size of the test matrix,
whilst the y-axis denotes the runtime and speedup, respectively. Left: Runtime in seconds
when running each algorithm. Right: Speedup when using condpseudo compared to condold

and condhili.

orem 2.2). Combining this with use of the ε-pseudospectrum of A leads to upper
bounds on the condition numbers of f(A). Our numerical experiments demon-
strated that our bounds can be used for practical computations: they provide
a cheap upper bound on the condition number which is often only a few orders
of magnitude too large. This means that our bounds could be used as a quick
estimate of the condition number and if this estimate is too large, for instance
if the estimate suggests that an insufficient number of correct significant figures
might be obtained in computing f(A), then existing methods can be used to
obtain the condition number more accurately.

Another benefit of our approach is that it can easily be applied to bound
the condition number of complicated matrix functions such as cos(

√
A) without

modification, as there are currently no specialized methods for computing such
quantities.

Our results may also have further useful applications in the development of
matrix function algorithms by allowing us to estimate the size of the remainder
terms for Padé approximants, for example. We may also be able to glean further
insight into the behaviour of existing algorithms to compute matrix functions,
see the discussion of (14). This will be the subject of future work.
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