Yy
er

The Universit
of Manchest

MANCHESTER

1824

Programming Languages: An Applied
Mathematics View

Higham, Nicholas J.

2015

MIMS EPrint: 2015.89

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Programming Languages: An
Applied Mathematics View'
Nicholas J. Higham

The purpose of this article is to give an overview of
computer programming languages from the point of
view of applied mathematics. The historical develop-
ment is emphasized because modern languages have
been strongly influenced by those that came before and
indeed the oldest language of all, Fortran, is still widely
used. Figure 2 shows the major relationships between
the languages discussed in this article.

1 The Early Days

The first digital stored-program computers were pro-
grammed by directly entering the low-level instruc-
tions, represented by binary numbers, that the cen-
tral processing unit understood; see figure 1. This was
tedious and error-prone, so assembly languages were
developed that allowed the instructions to be entered
as mnemonics, which were then translated by software
(the assembler) into the corresponding binary instruc-
tions. To add 5 to a number stored in a memory loca-
tion one might write a sequence of assembly language
instructions such as LDA P (load the contents of mem-
ory location P into the accumulator), ADC #5 (add 5
to the accumulator), STA Q (store the contents of the
accumulator in memory location Q). Assembly language
requires the programmer to work at the level of indi-
vidual machine instructions and is far removed from
mathematical notation.

It was a major step forward when John Backus and his
colleagues at IBM designed the language Fortran and in
1957 distributed a Fortran compiler for the IBM 704
computer. A compiler translates a program written in a
high-level language into a sequence of machine instruc-
tions that can then be directly executed. Standing for
“formula translation”, Fortran allowed mathematical
expressions to be expressed in a natural algebraic nota-
tion, such as Q = P + 5 for the example above. It also
included many of the features we take for granted
in programming languages today, such as loops, con-
ditional tests, arrays, and elementary functions. For-

1. Author’s final version, before copy editing and cross-referencing,
of: N. J. Higham. Programming languages: An applied mathematics
view. In N. J. Higham, M. R. Dennis, P. Glendinning, P. A. Martin,
F. Santosa, and J. Tanner, editors, The Princeton Companion to Applied
Mathematics, pages 828-839. Princeton University Press, Princeton,
NJ, USA, 2015.

Fibin. | C |24 268 2
s Cl-af - 5 -
1624 =
-5 C '&J
<427 XA
-133' Tass 1= Ln
dulr 21 a-\(r.}
Tt
a0
dulr 26 | 1o
e B 25 T
~15GC
ot |
0| 0 [ty
[

evi0lo?

Figure 1 The first program for a stored-program computer:
a version of Tom Kilburn’s highest factor routine that first
ran on the Manchester “Baby” on June 21, 1948. Taken from
G. C. Tootill’s notebook. Copyright of The University of
Manchester.

tran was a huge success and it became the first pro-
gramming language to be standardized, as American
National Standards Institute (ANSI) standard Fortran 66
(where the digits denote the year of adoption of the
standard). Standardization was important for expand-
ing the number of compiler implementations of the lan-
guage and aiding the portability of programs from one
system to another. Fortran 66 included subroutines and
functions, and also supported three floating-point data
types: real, double precision, and complex.
Subroutines and functions are examples of subpro-
grams: sequences of code forming essentially separate
programs that can be called with different input argu-
ments from a main program or other subprogram. They
are essential in mathematical computation for encapsu-
lating basic operations such as adding two vectors or
finding a norm of a vector, as well as for higher level
tasks such as finding the roots of a polynomial or solv-
ing a differential equation. Arguments to a subprogram
can be passed in at least two ways. In call by value
the argument is evaluated at the time of the subpro-
gram call and its value is copied into the formal param-

http://www.ma.man.ac.uk/~higham/pcam/index.php
http://www.ma.man.ac.uk/~higham/pcam/index.php

1958

1960 Algol 60

1962
1964 [Basic | (PL/I J

1968 Algol 68

1971

1975

1984
1985

1995

2003
2007

C++

Java

Figure 2 Timeline of selected programming languages, with major influences denoted by arrows.

eter inside the subprogram. In call by reference the
address of the parameter is passed, so that the actual
and formal parameters effectively share the same mem-
ory locations. An important difference between call by
value and call by reference is that in the latter case
any change made to the argument within the subpro-
gram also changes the actual argument. In Fortran all
parameters are passed by reference.

The first commercial Fortran textbook was “A Guide
to Fortran Programming” by Daniel McCracken, pub-
lished in 1961. The author has stated that only a cou-
ple of programs in the book had been tested because
machine time cost $46 per hour!

Lisp, invented by John McCarthy in 1958, is the sec-
ond oldest language still in wide use. The name stands
for “list processor” and, as the name suggests, Lisp
is based on list data structures. Lisp is well suited
to functional programming, in which programs are
entirely expressed in terms of mathematical functions
(in particular, function application is the only control
structure) and functions have no “side-effects”, that is,

they do not do anything except return a value. Lisp
programs look completely different to those written
in an imperative language such as Fortran, not least
due to the profusion of parentheses and the use of
prefix notation (the sum 1 + 2 + 3 is expressed as
(+ 1 2 3)—see section 5.4). While Lisp is rarely used
for floating-point computation it is well suited to sym-
bolic computation, and it is the language in which the
popular Emacs editor is mostly written. Lisp also has
intrinsic mathematical interest due to its close rela-
tion to Alonzo Church’s lambda calculus. The “if-then-
else” construct first appeared in Lisp. Lisp has vari-
ous dialects, including Scheme (used particularly for
teaching) and Common Lisp.

Fortran had been developed in an ad hoc manner.
A different language called Algol 60 was produced in
1960 through the efforts of an international committee.
The language was described in a formal notation, later
called Backus-Naur form. Algol 60 was based on nested
blocks delimited by begin and end statements with
the scope of a variable (the region of the program in

which it is valid) restricted to the enclosing block, and
it allowed for dynamic arrays, whose size is determined
during execution of the program. It became the “offi-
cial” language for publishing mathematical software in
the 1960s (notably for the first six years of the jour-
nal Communications of the ACM, which began in 1960),
and a strong competitor to Fortran for practical use.
However the language ultimately did not succeed, for
a variety of reasons, including the fact that it did not
define any input-output facilities (making it impossible
to write a portable “Hello, world!” program). Neverthe-
less, some influential early mathematical software was
published in Algol 60, notably linear algebra software in
the journal Numerische Mathematik, later collected into
a 1971 volume of the Handbook for Automatic Compu-
tation series. In late 2014 it was reported that a lan-
guage called JOVIAL based on a 1958 version of Algol
was still in use in the UK air traffic control system.

Algol 60 greatly influenced future languages, such
as Algol 68 (1968), a more rigorously defined language
designed by a working group of the International Feder-
ation for Information Processing, which was mainly of
interest to computer science researchers, and Pascal,
published in 1971 by Niklaus Wirth, which is a much
smaller and simpler language than Algol 68. Pascal was
widely taught in universities through the 1980s, as it
promoted the notion of structured programming (see
section 5.17) and so provided a way to avoid the hard to
read “spaghetti code” that could easily be produced in
Fortran 66. It also achieved wide use in industry, thanks
to the availability of compilers on early PCs and Mac-
intosh computers. However, Pascal was not well-suited
to numerical programming, not least due to its support
for only one type of floating-point variable (real) and the
absence of an exponentiation operator.

An influential early textbook was George Forsythe
and Cleve Moler’s Computer Solution of Algebraic Equa-
tions, published in 1967. It contained listings of pro-
grams written in Algol 60, Fortran, and PL/T for solv-
ing a square linear system of equations Ax = b.
(PL/I (1964) was a large language that was not widely
adopted for scientific computing; Edsger Dijkstra said
that “Using PL/I must be like flying a plane with 7,000
buttons, switches, and handles to manipulate in the
cockpit.”) These codes were part of a long sequence that
led to the Fortran linear system solver in the LINPACK
(1979) library.

Basic was invented at Dartmouth College in 1964 by
John Kemeny and Thomas Kurtz in order to teach pro-
gramming to students who did not necessarily have a

science background. At Dartmouth, Basic was used on a
time-sharing system, which allowed the programmer to
interact with the computer via a terminal, as opposed
to the usual batch processing of the time in which
jobs were prepared on punched cards and handled by
computer operators. The original Basic was in some
respects a simplified Fortran, with only one data type
(double precision), free-form input, the keyword LET
required before every assignment, numbered lines, and
a GOTO command whose destination was a line number.
Many early personal computers, including the IBM PC,
provided versions of Basic (usually based on Microsoft
Basic), typically built into the firmware of the machine.
Visual Basic, introduced by Microsoft in 1991, included
features to aid in the development of graphical user
interface (GUI) applications and it continues to exist
as part of the .NET framework. Although a language
often associated with writing games (such as the classic
Star Trek game originating on 1970s minicomputers),
Basic was a capable language for numerical computa-
tions and its accessibility on microcomputers led to it
being widely used in mathematical research and teach-
ing, including by this author. Basic was often imple-
mented with an interpreter, which translates and exe-
cutes each statement in the source code before going
on to the next statement.

Another 1960s development was the language APL,
implemented at IBM in 1965. It takes its name, and
much of its notation, from the 1962 book A Program-
ming Language by Kenneth Iverson. It is unusual in
using non-ASCII characters to represent operators and
functions, which make possible very concise programs
that are often criticized as being cryptic. The notation
-] and [-] for the floor and ceiling functions originates
in Iverson’s book and is used (as functions | and [) in
APL. Indeed, APL has been described as an “executable
notation.” APL has powerful array processing and is
normally interpreted. It was never widely adopted but
has been influential and is still in use today.

2 The Modern Era

The language C (1973), by Dennis Ritchie, is a com-
pact language in which the Unix operating system was
mainly implemented. C has float and long floating-
point data types, corresponding to single and dou-
ble precision, respectively. Arguments to C functions
are passed by value, but a pointer can be passed in
order to achieve call by reference. The syntax is terse
and powerful. C has been remarkably successful, for

several reasons. First, its operations and types map
directly to the hardware, making it easy to write pro-
grams that carry out low-level system tasks and mak-
ing it possible for compilers to produce very efficient
code. Second, an ANSI/ISO standard was produced in
1989 (and revised in 1999 and 2011), aiding portabil-
ity of programs. Third, C has remained more free from
proprietary extensions than other languages.

The language C++ by Bjarne Stroustrup (1985)
is a descendant of C that is a superset, but for
minor details, and adds better type checking, flex-
ible data abstraction mechanisms, and support for
object-oriented programming. Data abstraction allows
the programmer to specify user-defined types, called
classes in C++, and isolates how they are represented
from how they are used—in other words, it hides the
implementation details within the implementation of
the types. Object-oriented programming is a method-
ology based on a hierarchy of classes and objects,
which are specific instances of the classes with their
own characteristics. One of the most popular uses of
object-oriented programming is in developing GUIs.
C++ also supports “generic programming”, through the
use of templates, whereby code can be written with
parametrized types.

Throughout the history of computing, new program-
ming languages have regularly been designed, with vari-
ous goals, including providing a better general-purpose
language or providing a language tailored to specific
purposes, such as system programming tasks.

Java, developed by James Gosling at Sun Microsys-
tems in 1995, is a widely-used object-oriented lan-
guage with a syntax similar to that of C++. It com-
piles to a machine-independent bytecode that runs in
the Java virtual machine (JVM), and a JVM is provided
for each machine on which Java is to be used. The
initial version of Java required bitwise reproducibility
of floating-point arithmetic across different machines.
While superficially an attractive feature it inhibited
common compiler optimizations as well as the use
of extended precision registers. These over-restrictive
floating-point semantics were relaxed in later versions
of Java, but other aspects such as the lack of com-
plex arithmetic continue to hinder its use for numeri-
cal computation. JVMs exploit just-in-time compilation,
in which Java bytecode is compiled into native machine
code at run time. The JVM has importance beyond Java:
some more recent languages such as Scala (2003) and
Clojure (a dialect of Lisp created in 2007) compile to
JVM bytecode.

Of the many languages introduced since C++, the
most important from the computational mathematics
point of view is Python (1991), designed by Guido van
Rossum. Python is a dynamic language, which means
that it lies somewhere between an interpreted lan-
guage and a compiled language, with many features of
the latter. It supports several programming paradigms,
including object orientation and functional program-
ming. Its success in scientific computing stems to a
large extent from its libraries, which provide core com-
putational and graphics capabilities (NumPy, SciPy, and
matplotlib), and from its ability to integrate compo-
nents written in other languages, such as C and For-
tran. It has been said that “one doesn’t need to switch
to Python, only to know where to use it.” Python was
designed to be a readable language and its expression
syntax is similar to that of C.

The newest language discussed here is Julia (2012),
designed specifically for high-performance scientific
computing. Julia is a dynamic language that achieves
speed approaching that of compiled C code, in part
due to just-in-time compilation using the LLVM com-
piler infrastructure. A distinctive feature of Julia is its
exploitation of multiple dispatch, which allows a func-
tion to existin several forms operating on different data
types, with the appropriate version being called at run
time based on the actual arguments supplied. An inter-
esting feature of Julia is that it allows the user to view
the underlying assembly language that the language
generates. Viewing these low-level operations can pro-
vide much insight into how the language works and its
efficiency; see figure 3.

The Fortran standard has undergone regular revi-
sions, known as “Fortran xy”, where xy is 77, 90, 95,
2003, or 2008 and is related to the year of publication
of the standard. Fortran 77 introduced an if-then-else
construct, improved input/output, and a character data
type. Fortran 90 incorporated dynamic array allocation,
operations on arrays, modules (a mechanism for pack-
aging data, derived types, subprograms, and interface
blocks), recursive subprograms, numeric inquiry func-
tions, and parametrized intrinsic types. Later revisions
have introduced support for object-oriented program-
ming and for handling exceptions in IEEE floating-point
arithmetic, and interoperability with C.

3 Parallelism

Most of the languages mentioned above do not include
facilities for managing execution of codes in parallel,

In [1]: f(x,y) = x*y

Out[1]: f (generic function with 1 method)

In [2]: @code_native f(3,5)
.text
Filename: In[1]
Source Tine: 1
push RBP
mov RBP, RSP
Source Tine: 1
imul RDI, RSI
mov RAX, RDI
pop RBP
ret

In [3]: @code_native f(3.0,5.0)
.text
Filename: In[1]
Source Tine: 1
push RBP
mov RBP, RSP
Source Tine: 1
mulsd XMMO, XMM1
pop RBP
ret

Figure 3 A short Julia session, run from within a Jupyter notebook. The text that follows “In [-]:” on a line is user input.
The definition of the function f does not specify the types of the arguments. Julia generates different x86 assembler code
depending on whether the actual arguments are integers (as in In [2]) or floating-point numbers (as in In [3]).

that is, for specifying how a computation is to be bro-
ken up and executed by different processors simulta-
neously. Various extensions of existing languages have
been proposed for parallel computing, but generally
they have not achieved widespread or long-term use.
Two widely used systems for parallel computing are the
Message Passing Interface (MPI) for distributed mem-
ory systems and Open MP for shared memory sys-
tems. Both are implemented as application program-
ming interfaces (APIs) that can be invoked from lan-
guages such as C, C++, and Fortran. For expressing
parallelism on specialist devices such as graphics pro-
cessing units (GPUs), specialist languages are available,
such as CUDA for NVIDIA GPUs and Open Comput-
ing Language (OpenCL) for GPUs and heterogeneous
platforms in general.

4 Problem Solving Environments

Nowadays a large part of scientific computing is done
within environments that provide a programming lan-
guage, an interactive command window with the dis-
play of graphics, and the ability to export graphics and
more generally publish documents to HTML, PDF, TgX,
and so on. They usually also have the ability to mix
numerical and symbolic computing and by default dis-
play the result of assignments in the command window.
The term problem solving environments (PSEs) is used
for such systems, of which there are many.

PSEs have dynamic languages that, combined with
the interactive interface, avoid the edit-compile-run
cycle of languages such as C and Fortran. They allow
quick coding without the need to define the types of

variables before use. Moreover, a PSE language typi-
cally includes high level constructs that would corre-
spond in a traditional language to many lines of code,
such as a command to find the indices of the largest
element(s) of an array or to compute the eigensystem
of a matrix. Since it is generally accepted that a pro-
grammer’s productivity, measured in the number lines
of code written, is independent of the language, it fol-
lows that using a higher level language should allow
the programmer to achieve more in a given time. On
the other hand, PSEs usually do not execute code as
fast as a compiled language.

The oldest PSE is MATLAB, originally written in For-
tran in 1978 by Cleve Moler as a means of providing
students with easy access to the EISPACK and LINPACK
linear algebra program libraries. Rewritten in C, MAT-
LAB was released as a commercial product in 1984 by
The MathWorks. The fundamental data type in MAT-
LAB is a matrix and MATLAB fully supports complex
arithmetic.

An interesting feature of MATLAB is that much of it
is written in MATLAB, in the form of M-files containing
MATLAB commands. Certain key functions are written
in C or call vendor-supplied Basic Linear Algebra Sub-
programs (BLAS) or LAPACK codes. MATLAB programs
tend to be much shorter than their equivalents in com-
piled languages and yet, depending on the nature of
the code, they can run at similar speed. Because of the
ease and economy of coding, and the interactive inter-
face which aids debugging, MATLAB is often used as
a prototyping tool: an environment for developing and
testing ideas before implementing them in a language
such as C or Fortran.

GNU Octave is free software with many of the fea-
tures of MATLAB and a largely compatible syntax, so
that carefully coded programs can run in both MAT-
LAB and Octave. Scilab is another open source alterna-
tive to MATLAB, but it is less compatible with MATLAB
than Octave.

Maple started out as a computer algebra system
developed at the University of Waterloo in 1980. It is
now a commercial product sold by Waterloo Maple and
has all the usual features of a PSE.

Mathematica, by Wolfram Research Software, had a
notebook interface from its first release in 1988, show-
ing program code, output with typeset mathematics,
and graphics in a single window. It supports proce-
dural, functional, rule-based, and pattern-based pro-
gramming paradigms. It is particularly popular in the
physics community.

R is a freely available PSE targeted at statistical com-
puting and data analysis. Many contributed R packages
are available on the Comprehensive R Archive Network
(CRAN).

Sageia an open-source, Python-based PSE that builds
on many other open-source packages. It has a browser-
based notebook.

Project Jupyter (formerly known as IPython) is an
open source project that includes a network proto-
col for interactive computing in any programming lan-
guage, a browser-based notebook interface, and tools
for sharing and converting these notebooks into mul-
tiple output formats, including HTML and PDF. This
makes the Jupyter Notebook a fully-fledged PSE for
Julia, Python, R, and other languages.

5 Programming Miscellany

We now focus on a variety of different aspects of pro-
gramming that have a particular relevance to applied
mathematics.

5.1 Pseudocode

In the early days of computing it was common to
include a complete program listing in an article, as can
be seen in the 1950s issues of the journal Mathemat-
ical Tables and Aids to Computation. This practice is
now uncommon, not least because of the ease of dis-
tributing code over the web. It is now usual to describe
in print the underlying algorithm in terms of a pseu-
docode that the author bases informally on the control
structures and other syntax of a particular program-
ming language (MATLAB being a common example).

A good pseudocode combines precision, brevity, and
readability. For examples of pseudocode see the article
on Algorithms.

5.2 Abstraction

The mathematical concept of abstraction has proved to
be important in programming, where it refers to sepa-
rating concepts from implementation details. Subpro-
grams take input arguments, carry out a computation,
then return output. How they do it need not be known
to the programmer who invokes them, so a subpro-
gram is an abstraction of the computation it carries out.
Abstraction applies to both procedures and data, and
is used to the full in object-oriented programming.

5.3 Influence on Mathematics

While mathematics has had a strong influence on pro-
gramming language design, programming languages
have also influenced mathematics. We already noted
that APL introduced the ceiling and floor notation. The
array subscripting (or slicing) notation A(i:j,p:q)—
used in Algol 68, MATLAB, and other languages to
denote the subarray comprising the intersection of
rows i to j and columns p to q of the two-dimensional
array A—is now widely used in numerical linear algebra,
especially in pseudocode.

In a 1928 paper, Kurt Hensel suggested the notation
A\Bfor A~1Band A/B for AB~1, but it did not catch on.
Cleve Moler independently introduced the notation in
MATLAB, and the term “backslash” is now commonly
used to mean solving a matrix equation.

5.4 Notation for Expressions

In mathematics we normally write expressions in the
conventional infix notation illustrated by a + b(c-d),
using parentheses and the usual precedence rules to
specify the order of operations. In Lisp and related
languages, the expression above is written

+a* (b (-cd) 1)

in which each arithmetic operator is followed by its two
arguments. This prefix notation (also called Polish nota-
tion) is easier for computers to parse. The evaluation
proceeds left to right, with the arguments of each oper-
ator evaluated recursively (in practice, using a stack),
and no knowledge of the precedence of the operators
is necessary.

The parentheses in (1) are not strictly necessary, but
they are required in Lisp because operators can take
multiple arguments: + 1 2 3 evaluates to 6.

In reverse Polish notation (RPN) the operator follows
rather than precedes the operands (as in the expression
n! for a factorial). The expression (1) is written

abcd-*+

which is again evaluated left to right, with the variables
a and b set aside until it is time to use them. An alterna-
tive way to write the expression that mingles the data
and the operands is

cd-b*a+

RPN is used in the languages Forth and PostScript, and
on HP pocket calculators.

5.5 Syntactic Peculiarities and Pitfalls

While there is much commonality between different
languages, certain differences can catch the unwary
programmer out. In most languages a single equals
sign denotes an assignment: x = 1. A test for equal-
ity is written with a double equals in C and MATLAB:
if (x == y). If the test is written if (x = y) then in
C this results in y being assigned to x and the if test
being passed if x is nonzero, because (x = y) evaluates
as a true Boolean expression. Algol and Pascal use :=
for assignment, but this is not common in modern lan-
guages. R has two assignment operators, <- and =, of
which only the former can be used anywhere in a pro-
gram. The test for “not equal” is even more varied: "=
in MATLAB, !'=in C, R, and Python, .NE. in Fortran 77,
/=1in Fortran 90, and <> in Basic and Pascal.

A common operation is to increment a variable,
which is typically done using a statement such as x = x
+ 1. Some languages provide a shorthand notation for
this operation: in Python itis x += 1 and in C, C++, and
Java, x++. A subtlety is illustrated by the C code

i=1; J=1; a=1++; b = ++];

which resultsina = 1and i = j = b = 2, because the
assignment is done before the incrementation with i++
and after for ++3.

Another aspect of syntax that varies among lan-
guages is operator precedence in expressions. An
expression a*b + c is interpreted as ab + ¢ in most
languages, but as a(b + c¢) in APL, which does not have
any operator precedence and always evaluates right
to left. However, it is for relational and logical oper-
ators that differences are most common. An expres-
sion of the form x or y and z (with symbols such as
| and & replacing or and and in many languages) can
mean x or (y and z) or (x or y) and z depending

on the language. In Lisp, expressions must be fully
parenthesized, so they always have an unambiguous
mathematical meaning.

5.6 Booleans

A Boolean, or logical, data type contains two possible
values: true and false. Many languages denote these val-
ues true and false. Exceptions include Lisp (t and
nil) and Fortran (. true. and .false.).

C does not have a Boolean data type and instead
regards any nonzero numerical value as representing
true and zero as representing false. In MATLAB, logi-
cal values are converted to O (for false) or 1 (for true)
in numerical expressions, and this can be useful in a
one-line expression such as

(exp(x) - 1+ (x == 0)) /(x + (x == 0))

which evaluates to (eX —1)/x whenx # Oand to 1 =
limy_o(e* — 1)/x when x = 0, avoiding what would
otherwise be a division by zero.

5.7 Array Storage and Array Indexing

Fortran stores arrays in column major order, meaning
that a two-dimensional array is stored sequentially in
memory with the elements of the first column being
followed by those of the second, and so on. C and many
other languages store arrays in row major order. This
difference is inconvenient when calling Fortran codes
from other languages. Knowledge of the storage format
is crucial, because for efficiency it is important to access
elements of arrays in the order in which they are stored.
Programming languages differ as to the starting
index for arrays. In Fortran and MATLAB, for example,
arrays start at index 1 (a(1), a(2), ...), whereas in
C and Python the first index is 0 (a[0], a[1], ...).
Note that the type of brackets used for array indices,
round or square, also varies, as illustrated. Mathemati-
cal descriptions of an algorithm may use O or 1 as the
starting index, depending on the notation in effect.
The syntax for array slices also differs between lan-
guages. While in Fortran and MATLAB a (i :j) extracts
a(i), a(i+l), ..., a(j), in Python a[i:j] extracts
ali], a[i+1], ..., a[j-1], so a[j] is omitted. These
differences can be a cause of confusion and bugs. One
needs to be aware of them and program with care.

5.8 Complex Arithmetic

Computations with complex numbers are ubiquitous
in applied mathematics. From its earliest versions For-
tran has had a complex data type that can be used in

expressions such as a + b*c, just like the real and dou-
ble precision data types. In some other languages func-
tions implementing complex arithmetic can be written,
but then expressions must be converted to a sequence
of function calls, such as cadd(a,cmult(b,c)). The
PSEs mentioned above all support complex arithmetic,
as do C (introduced in the 1999 standard), C++, Julia
(which uses im rather than i for the imaginary unit),
and Python (which uses j for the imaginary unit).

It cannot necessarily be assumed that the compiler
or interpreter implements complex arithmetic in the
most accurate and robust way. For example, if the mod-
ulus of a complex number is computed as |a + ib| =
(a? + b?)1/2 then the intermediate sum of squares can
overflow even when |a + ib| is representable as a finite
floating-point number. The possibility of overflow is
easily avoided by evaluating |a|(1 + (b/a)?)!/2 when
la| > |b| and an analogous expression when |b| > |a].
Operations such as complex division and evaluation
of complex elementary functions are more difficult to
implement reliably.

5.9 Variable Names

In mathematics, variable names are usually one let-
ter: Greek or Roman, in lower case or upper case.
Since Fortran introduced the possibility of variable
names having more than one letter (albeit limited to
six letters in Fortran 77 and earlier versions), multi-
letter names have been common. Due to the use of
long variable names comprising several words joined
together, several naming conventions have been intro-
duced, illustrated by endOfFile or EndOfFile (camel
case), end-of-file, and end_of_file (pothole case).
Of course, which characters are allowed in variable
names depends on the language. The use of long vari-
able names is facilitated by text editors that allow
autocompletion.

5.10 Floating-Point Semantics

Many mathematical relations fail to hold in floating-
point arithmetic because of the effects of rounding
errors. For example, (a + b) + cand a + (b +) will
in general evaluate to results differing at the round-
off level. Unfortunately, much more subtle issues can
cause mathematical relations to break down. Intel x86
chips have 80-bit registers whose precision exceeds
that of 64-bit double precision variables. After the
assignment x = 1.0/3.0 to a double precision variable
X, a test if x == 1.0/3.0 can return false with some

optimizing compilers if 1.0/3.0 is temporarily stored
in an extended precision register.

Some processors offer a fused multiply-add (FMA)
instruction that evaluates an expression x*y + z with
just a single rounding error, that is, the result is the
exact value of x*y + z rounded to the target precision.
The behavior of a program can then depend on the
compiler in subtle ways. For example, the discriminant
b? — 4ac of a quadratic equation can evaluate as nega-
tive when b? > 4ac if an FMA is used. These kinds of
behavior make it very difficult to prove rigorous cor-
rectness results for computer programs executed in
floating-point arithmetic.

5.11 Floating-Point Parameters

Programs that perform floating-point computation
often need to use parameters of the floating-point arith-
metic, such as the unit roundoff (typically in a con-
vergence test) or the overflow level. Some languages,
such as Fortran, provide direct access to these parame-
ters via intrinsic functions. For those that do not, there
are ways to compute them at run time, though these
may not be entirely reliable when used with optimizing
compilers.

5.12 High Precision Computations

The IEEE floating-point arithmetic standard defines sin-
gle and double precision formats corresponding to
about 8 and 16 significant decimal digits, respectively.
Most programming languages support two floating-
point data types that map onto these formats. A 2008
revision of the IEEE standard added a 128-bit quadruple
precision format, which corresponds to about 32 sig-
nificant decimal digits. Quadruple precision is not yet
available in hardware, so arithmetic of precision higher
than double must currently be provided in software.

In Fortran 90 and later versions of Fortran the avail-
ability of different precisions can be queried, through
the selected_real_kind function. This allows access
to quadruple precision if it is supported by the com-
piler.

A number of open source libraries are available
that implement arbitrary precision floating-point arith-
metic. The GNU MPER library is a C library that provides
correctly rounded arithmetic and mathematical func-
tions, and it is used by Julia’s BigFloat data type. The
GNU MPC library builds on MPFR to handle complex
arithmetic. Mpmath is a Python library for arbitrary
precision floating-point arithmetic.

High precision arithmetic has many uses, including in
experimental mathematics and for obtaining accurate
solutions to ill conditioned problems. For a researcher
developing or testing a numerical algorithm high pre-
cision provides a way to compute reference solutions
that allow the accuracy of the algorithm to be tested.

5.13 Types

A number of subtle issues in programming languages
revolve around the data type of a variable or expres-
sion: integer, floating-point, logical, string, and so on.
Some languages, such as C and Java, require the type
of a variable to be explicitly declared before an assign-
ment is made to that variable. For example, in C the
statement double x = 1.1 both declares x to be a
double precision variable and gives it the value 1.1.
Some languages make specifying the type of a variable
optional or not possible at all. Fortran uses implicit typ-
ing: if the type is not specified then a default type is
assigned based on the first letter of the variable (integer
for i to p and real otherwise). However, it is regarded
as good practice to turn off this implicit typing with the
statement imp1icit none. PSEs tend to determine the
type at the point of assignment.

The type of a variable or expression might be fixed
or it might be able to change during the execution of
a program. For example, some languages allow a string
to be added to a number and define the result to be
either a string or a number. The terms weakly typed and
strongly typed are often used in this context to charac-
terize a language’s type system, but these terms have
no commonly agreed definition.

Type systems have an important influence on pro-
grams in at least two main ways. First, many program-
ming errors are caused by variables (or constants) hav-
ing an incorrect type. An apocryphal story tells of the
loss of a 1960s NASA rocket due to the Fortran 66
software controlling the rocket having a line of the
form DO 10 k = 1.3 instead of the intended DO 10 k
= 1, 3, which starts a loop. The mistyping of a period
for a comma in the former statement causes the For-
tran compiler to interpret it as the assignment of 1.3
to the variable DO10k, since spaces are unimportant in
Fortran 66 source code, and the implicit typing of For-
tran causes the variable DO10k to be created with real
type.

The second influence of a type system is on efficiency,
since the speed at which a code executes will depend on
how much the compiler or interpreter knows about the

types of the variables. The computation of x*y will run
much slower than it might if at run-time the types of x
and y must be checked to decide whether to issue an
integer multiplication or a floating-point multiplication
instruction. Figure 3 illustrates the point, but in this
instance the decision is made at compile time, with no
loss of efficiency.

5.14 Complexity Analysis

Several measures of the complexity of a code have been
proposed. They can be used to estimate the probability
of bugs, the difficulty of testing, and the cost of main-
tenance of the code. The metrics apply to individual
components such as functions, subroutines, and proce-
dures, and a large complexity measure can be reduced
by breaking the component into smaller pieces.

The simplest metric is the number of executable lines
of source code. The cyclomatic complexity, or McCabe
complexity, of a code is defined in terms of the directed
graph that has nodes given by blocks of code contain-
ing no decisions or branches and edges corresponding
to branches between nodes. The cyclomatic complexity
is given by the formula edges —nodes + 2, and turns out
to be equal to one plus the number of predicates (log-
ical tests). The Npath metric is the number of possible
execution paths through the code, which can be much
larger than the cyclomatic complexity.

Tools are needed to compute these metrics. In MAT-
LAB the function checkcode computes the cyclomatic
complexity.

5.15 Formatting of Source Code

Mathematicians are used to having complete freedom
in how they lay out their written mathematics on the
page. Programming languages vary in their prescrip-
tiveness of the layout of the source code. Most impose
few restrictions and allow one to collapse a program
block onto a single, very long line provided comments
are removed and (if necessary) statement separators
are added. When computers had small memories such
a transformation would sometimes be done in order
to save having to store the carriage return and line
feed characters. Sometimes further code obfuscation
is done in order to conceal the purpose of a code, for
security reasons.

Fortran 77 requires code to lie between columns 7
and 72, with columns 1-5 reserved for statement num-
bers and column 6 for indicating a continuation line.
These restrictions stem from the punched cards used to

10

enter programs into early computers and were removed
in Fortran 90.

Some text editors provide automatic indentation tai-
lored to the language being edited, and various pretty
printing tools are available to format code for readabil-
ity or to impose a particular house style. The use of
such tools can aid debugging and make it simpler to
compare different versions of a program with a diff
command. Python is unusual in that it uses indenta-
tion to define if statements, for loops, while loops, and
so on, whereas most languages use braces, brackets, or
keywords to delimit code blocks.

5.16 Readability

Often there are several ways to write a piece of code.
A balance needs to be struck between length of code,
efficiency, and understandability. In C++, for an integer
variable n one can compute the expression 2*n+1 as
n << 1 | 1, where << is the bit-shift left operator and
| is the bitwise or. The latter version is, however, rather
inscrutable and may not be any faster than the former
under a good compiler.

Sometimes one needs to make a variable cycle
between several values. If the values are 0 and 1 then
the assignment n = 1 - n flips between them and the
purpose of the assignment is reasonably clear. Sup-
pose, though, that we wish to make n take on the val-
ues 1, 2, 3, repeatedly. If we can find a polynomial p
such that p(1) = 2, p(2) = 3, and p(3) = 1 then the
assignment n = p(n) will do the trick. Such a p is a
polynomial interpolant to the given data and the p of
lowest degree is the quadratic p(x) = —%X‘? + %x - 2.
However, the purpose of the assignment with p is not
obvious and its correctness is not trivial to check. An
if statement of the form

if n =
n=2
elseif n ==
n=3
else
n=1
end

does the job in a more transparent fashion. Alterna-
tively, an assignment replacing n by (n mod 3) +1 could
be used, supplemented by a comment explaining its
purpose.

5.17 Structured Programming

In Fortran a go to statement causes a jump to a labeled
statement anywhere in the program. In 1968 Edsger
Dijkstra wrote a letter to the editor of the journal Com-
munications of the ACM in which he claimed that the
use of go to statements, which were very common
in Fortran 66 programs, represented poor program-
ming practice. The letter was published with the title
“Go to statement considered harmful”. The notion of
structured programming subsequently became popu-
lar. Structured programming enforces a logical struc-
ture on the program that makes it easier to under-
stand and modify, through the use of certain canon-
ical control structures together with modular com-
position of programs. A long 1974 paper by Don-
ald Knuth titled “Structured programming with go to
statements” presents a balanced analysis of the pros
and cons of go to statements.

5.18 Literate Programming

In the 1980s Knuth championed the idea of literate pro-
gramming, in which a document contains a combina-
tion of source code and documentation for the code
(in TgX format) and both the code and the documenta-
tion can be generated from it. He used this approach
to great effect in writing TgX and associated programs
using his WEB system (which has no connection with
the worldwide web, which it predates). Nowadays, lit-
erate programming is mainly used in two forms. In the
first, documentation is embedded in comment lines of
a program’s source code and documentation genera-
tion tools are used to extract it to HTML, PDF, etc. In
the second form, a document contains code that car-
ries out the computational experiments needed for a
paper, and a separate “preprocessor” executes the code
and inserts its output (numeric or graphical) back into
the source document. This approach facilitates repro-
ducible research and is typically done with “weave”
tools available for R and Python or in Emacs Org mode.

5.19 Interoperability

Interoperability refers to the ability to call a program
written in one language from a program written in a
different language. Historically, the degree of interop-
erability that is available has depended on which oper-
ating system and compiler is in use, as well as on the
languages themselves. Even when cross-language calls

are possible there are pitfalls to watch out for, such
as the potentially different ways in which multidimen-
sional arrays are stored in different languages (see sec-
tion 5.7). There is a strong trend to mixed language pro-
gramming, encouraged by languages such as C++, Julia,
and Python that have been designed with interoperabil-
ity in mind, by the support provided in PSEs for calling
or being called by another language, and by languages
that are built on the same virtual machine (such as Java,
Scala, and Clojure).

5.20 Domain-Specific Languages

A domain-specific language (DSL) is a language focused
on a particular problem domain, examples being HTML
for web pages, SOL for databases, and TgX for math-
ematical typesetting. An important benefit of a DSL
is that it can allow programming at a high level of
abstraction that fully exploits knowledge of the prob-
lem domain and thereby reduces the total time to
deliver a solution to a problem.

Applied mathematics has a variety of DSLs, and these
often involve symbolic manipulation as part of the
code generation process. The General Algebraic Mod-
eling System (GAMS) is a high-level modeling system
for mathematical optimization. It includes a DSL in
which optimization problems of several different types
can be specified. A number of DSLs are associated
with software for solving partial differential equations.
For example, the Unified Form Language in the FEn-
iCS project is a DSL for finite element discretizations,
implemented as a Python module.

DSLs for plotting graphics are plentiful, even being
built on top of other DSLs (for example, the various
graphics packages for KIgX).

5.21 Translation Between Languages

In mathematics we are used to translating between dif-
ferent notations, and moving from one space or basis
to another. It is natural to ask whether a program can
be transformed from one language to another with-
out any change in its behavior. One reason for want-
ing to do so is to convert programs that were written
many years ago but are still used today (legacy codes)
into a more modern language. Such translation tools
are available, but they are used out of necessity rather
than as a standard tool. A tool called f2c written at Bell
Labs in the 1990s could convert Fortran 77 codes to C,
though the resulting code was not meant to be readable

11

Table 1 Extract from the TIOBE Programming Community
Index for February 2015. Clojure, Forth, Mathematica, and
OpenCL are all ranked in the range 51-100.

C 1 Pascal 19

Java 2 PostScript 24

C++ 3 Fortran 31

Python 8 Lisp 32
Visual Basic 9 Scheme 38
MATLAB 17 Scala 41

R 18 PL/T 45

by humans. There are more recent tools for converting
Fortran to C++ that produce more readable code.

5.22 Popularity of Languages

An interesting question is which are the most popu-
lar programming languages. This question is both hard
to define precisely and hard to answer. One attempt is
provided by the TIOBE Programming Community Index
("www.tiobe.com"), which is produced once a month
based on “the number of skilled engineers world-wide,
courses and third party vendors”, as found via popu-
lar search engines. Table 1 shows a ranking of most
of the languages mentioned in this article. These rank-
ings are quite volatile and should not be taken too seri-
ously, but an interesting implication is that old lan-
guages such as Fortran and Lisp continue to compete
with their younger counterparts.

5.23 Language of the Future

An old joke goes “I don’t know what language we’ll be
using in 50 years time, but it will be called Fortran.” For-
tran has been under attack since the 1960s but shows
no signs of dying, as noted in the previous subsection.
The frequent revisions to the Fortran standard have
kept the language up to date, while the huge amount of
legacy code means that in many applications it is dif-
ficult or impossible to switch to alternative languages.
The improved interoperability of languages and com-
pilers enables binaries of compiled Fortran libraries
such as LAPACK and the commercial NAG Library to
be readily called from other languages and even Excel
spreadsheets. Perhaps the future is inherently multilin-
gual, with programs being written in a modern language
such as C++ or Python and calling kernels written in
C, Fortran, or assembly language tuned for particular
processors by the manufacturer.

One thing we can be sure of is that new languages
will continue to be developed, each trying to combine
the best features of existing languages with new ideas

"

12

that resonate with developments in hardware and soft-
ware. However, it is important that language designers
remember the lessons of the past and contemplate the
comment of Tony Hoare about Algol 60: “Here is a lan-
guage so far ahead of its time, that it was not only an
improvement on its predecessors, but also on nearly all
its successors.”

6 Further Reading

The following list is very selective and merely provides
a starting point for further exploration.

Abelson and Sussman (1996) is a classic introduc-
tion to programming based on Scheme that empha-
sizes ideas such as abstraction and recursion over syn-
tax. It has many interesting mathematical examples,
including symbolic differentiation.

The longevity of Fortran, with its multiple revisions,
is such that its history, as told by Metcalf (2011),
provides a prism into the history of programming
languages.

The Turing Award of the Association for Computing
Machinery (ACM) is an annual award that is to computer
science what the Fields Medal is to mathematics. The
book of lectures from the first twenty years of awards is
full of insights into programming languages. It includes
lectures by, among those mentioned in this article,
Backus, Dijkstra, Iverson, Knuth, McCarthy, Ritchie, and
Wirth.

An excellent source for the history of programming
languages (and computing) is the journal IEEE Annals
of the History of Computing.

[1] Harold Abelson and Gerald Jay Sussman. Structure
and Interpretation of Computer Programs. Second
edition, The MIT Press, Cambridge, MA, USA, 1996.
ISBN 0-262-51087-1.

[2] ACM. ACM Turing Award Lectures: The First Twenty
Years, 1966-1985. Addison-Wesley, Reading, MA,
USA, 1987. xviii+483 pp. ISBN 0-201-54885-2.

[3] Jon L. Bentley. More Programming Pearls: Confes-
sions of a Coder. Addison-Wesley, Reading, MA, USA,
1988. viii+207 pp. ISBN 0-201-11889-0.

[4] Brian W. Kernighan and P. J. Plauger. The Elements
of Programming Style. Second edition, McGraw-Hill,
New York, 1978. xii+168 pp. ISBN 0-07-034207-5.

[5] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Second edition, Prentice-
Hall, Englewood Cliffs, NJ, USA, 1988. xii+272 pp.
ISBN 0-13-110362-8.

[6] Donald E. Knuth. Selected Paper on Computer Lan-
guages. CSLI Lecture Notes Number 139. Center for
the Study of Language and Information, Stanford
University, Stanford, CA, USA, 2003. xvi+594 pp.
ISBN 1-57586-382-0.

[7] Michael Metcalf. The seven ages of Fortran. Jour-
nal of Computer Science and Technology, 11(1):1-8,
2011.

[8] Bjarne Stroustrup. The C++ Programming Lan-
guage. Fourth edition, Addison-Wesley, Upper Sad-
dle River, NJ, USA, 2013. xiv+1346 pp. ISBN
978-0-321-56384-2.

