
Max-Plus Singular Values

Hook, James

2014

MIMS EPrint: 2014.7

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


MAX-PLUS SINGULAR VALUES

James Hook1

School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
james.hook@manchester.ac.uk

Abstract

In this paper we prove a new characterization of the max-plus singular values

of a max-plus matrix, as the max-plus eigenvalues of an associated max-plus

matrix pencil. This new characterization allows us to compute max-plus singu-

lar values quickly and accurately. As well as capturing the asymptotic behavior

of the singular values of classical matrices whose entries are exponentially pa-

rameterized we show experimentally that max-plus singular values give order

of magnitude approximations to the classical singular values of parameter inde-

pendent classical matrices.

We also discuss Hungarian scaling, which is a diagonal scaling strategy for

preprocessing classical linear systems. We show that Hungarian scaling can

dramatically reduce the 2-norm condition number and that this action can be

explained using our new theory for max-plus singular values.

Keywords: tropical algebra, max-plus algebra, singular values, diagonal

scaling, condition number, optimal assignment problem

Introduction

Max-plus algebra concerns the semiring Rmax = R ∪ {−∞} with addition

and multiplication operations

a⊕ b = max{a, b}, a⊗ b = a+ b, a, b ∈ Rmax.

1This work was supported by Engineering and Physical Sciences Research Council (EP-

SRC) grant EP/I005293 ’́Nonlinear Eigenvalue Problems: Theory and Numerics”.
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More generally tropical algebra is the study of any semiring in which the addition

operation is max or min, for example max-times, min-max and max-average.

Max-plus algebra naturally describes certain dynamical systems and opera-

tions research problems [1, 2]. Max-plus algebra can also be used to approximate5

or bound the solutions to certain classical algebra problems, which is the topic

of this paper.

An n ×m max-plus matrix G ∈ Rn×mmax is simply an n ×m array of entries

from Rmax. The max-plus Singular Value Decomposition (SVD) of a max-plus

matrix was introduced by De Schutter and De Moor in [3]. They work in the

symmetrized max-plus algebra, which is an extension of the max-plus semi-ring

including a max-plus analogue of the subtraction operation. In this setting

equalities are replaced with weaker relations, which they call balances. Their

main result is proving the existence of a max-plus SVD which looks exactly

as the classical SVD but with max replacing sum, sum replacing times and

balancing replacing equality. The max-plus SVD is useful for analyzing certain

max-plus linear systems. De Schutter and De Moore also use the decomposition

to introduce a definition of the rank of a max-plus matrix, which is useful

in max-plus linear signal processing problems. However they do not provide

a polynomial time algorithm for computing the max-plus SVD of a max-plus

matrix G ∈ Rn×nmax and the method that they describe requires one to solve a

difficult classical algebra problem, namely to find the asymptotic behavior of

the analytic SVD of a matrix whose entries are exponentials with exponents

given by the entries of the max-plus matrix, A(t) = (aij(t)) with

aij(t) = bij exp(gijt),

for generic B = (bij) ∈ Cn×n. In this paper we take the opposite approach! We

want to use the max-plus singular values of G = (gij) to tell us something about

the classical singular values of A, rather than the other way around. As well as10

enabling us to compute the asymptotics of the singular values of a matrix whose

entries are exponentials, we show that max-plus singular values can be used to

approximate the log of classical singular values of a fixed matrix M ∈ Cn×m.
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The theory we develop also explains the action of Hungarian scaling, which is

a diagonal-scaling/balancing technique for classical linear systems.15

Using our new characterization, the max-plus singular values of an n × m

max-plus matrix G can be computed in a numerically stable way with O(kτ)

complexity, where k = min{n,m} and τ is the number of non-zero elements in

the matrix. We perform these computations using our own algorithm, which is

loosely based on the max-plus eigensolver algorithm of Gassner and Klinz [4]. In20

this paper we focus on computing the max-plus singular values rather than the

max-plus SVD decomposition, but it is possible to use our results to compute

the singular vectors in polynomial time using our matrix pencil description of

the problem, the max-plus eigensolver algorithm and through repeated use of

the max-plus algebra of pairs Cramer’s rule [5, Chapter 3.5].25

This paper is organized as follows. In Section 1 we introduce all of the im-

portant definitions and recall some background results. In Section 2 we prove

our main result that the max-plus singular values of a max-plus matrix can be

computed as the max-plus eigenvalues of an associated max-plus pencil. In sec-

tion 3 we discuss valuation of classical matrices, which is a way of transforming30

a classical matrix into a max-plus one - so that the valuation of a classical ma-

trix is amenable to max-plus techniques. In Section 4 we use our new theory to

explain the action of Hungarian scaling, which can reduce the 2-norm condition

number of badly scaled matrices. Finally in Section 5 we illustrate our theory

with some examples, including one from a “real life” fluid dynamics problem.35

1. Background

For q0, . . . , qd ∈ Rmax, let

q(z) =

d⊕
k=0

z⊗k ⊗ qk = max{kz + qk : k = 0, 1, . . . , d},

be a max-plus polynomial. A max-plus polynomial is a convex, piecewise-affine

function whose max-plus roots are the points at which it is non-differentiable.

The multiplicity of a root is the change in derivative at that root. Equivalently
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q’s roots are the values at which the maximum expression for q is attained more40

than once and the multiplicity of a root is equal to the maximum difference in

index between two terms that attain this maximum.

We also include −∞ as a root with multiplicity k, whenever q0, . . . , qk−1 are

all equal to −∞.

Theorem 1.1 (Ostrowski [6]). Let p(z) =
∑d
k=0 pkz

k ∈ C[z] be a classical

polynomial with roots |z1| ≥ · · · ≥ |zd| and define q(z) to be the max-plus poly-

nomial

q(z) =

d⊕
k=0

z⊗k ⊗ log |pk|,

with max-plus roots r1 ≥ · · · ≥ rd. Then

1
2 exp(r1) < |z1| ≤ d exp(r1),

[1− ( 1
2 )

1
k ] exp(rk) ≤ |zk| ≤ exp(rk)[1− ( 1

2 )
1

d−k+1 ]−1, for k = 2, . . . , d− 1,

1
d exp(rd) ≤ |zd| < 2 exp(rd).

These sharpness of these bounds can be improved in cases where there the45

max-plus roots are well separated from each other [7]. The max-plus roots

of a max-plus polynomial can be computed exactly in linear time using the

Graham scan algorithm [8] and the approximation log |zi| ≈ ri can then be

used as an initial guess for iterative polynomial root finders such as the Aberth

Ehrlich method [9]. The max-plus roots of a max-plus polynomial can also be50

used to compute the exact asymptotic growth rates of the classical roots of

a parameterized classical polynomial, which we explain after this supporting

result.

Lemma 1.2. Let R : Rd+1
max 7→ Rdmax be the function that maps the coefficiants

q0, . . . , qd of a max-plus polynomial q(z) = q0 ⊕ · · · ⊕ qd ⊗ z⊗d to its roots55

r1, . . . , rd. Then, R is multiplicatively homogeneous and uniformly continuous.

Proof Let F : Rd+1
max 7→ Rd+1

max be the function that takes the coefficients

(q0, . . . , qd) of the max-plus polynomial q(z) to the coefficients (q̂0, . . . , q̂d) of
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the max-plus polynomial q̂(z), with

q̂i = max{a ∈ Rmax : q(z)⊕ a⊗ z⊗i︸ ︷︷ ︸ = q(z)},

where in standard notation the underbraced term is given by

q(z)⊕ a⊗ z⊗i = max{q(z), a+ iz}.

Since q(z) is convex q̂i = min{q(z) − iz : z ∈ Rmax}, and by construction

q̂(z) = q(z) for all z, also for all i there exists z with q̂(z) = q̂i + iz. Thus

R(q0, . . . , qd) = R̂ ◦ F (q0, . . . , qd),

where R̂ is R restricted to the image of F , and is given by

R̂(q̂0, . . . q̂d) = (q̂d − q̂d−1, . . . , q̂2 − q̂1),

which is clearly homogeneous and uniformly continuous. It should also be clear

that F is homogeneous, so all that remains is to show that F is uniformly

continuous. Let q̃ = qi + ∆i be a perturbation of q, with |∆i| ≤ ε for all i, then

|F (q̃0, . . . , q̃d)−F (q0, . . . , qd)|∞ = max
i
|min{q̃(z)−iz}−min{q(z)−iz}| ≤ ε. �

Corollary 1.3. Let pt(z) =
∑d
k=0 z

kpk(t) be a parameterized polynomial with

roots |z1(t)| ≥ · · · ≥ |zd(t)| then for each i the limit

ri = lim
t→∞

1

t
log |zi(t)|,

exists and is equal to the ith max-plus root of the max-plus polynomial

q(z) =

d⊕
k=0

z⊗kqk,

where

qk = lim
t→∞

1

t
log |pk(t)|.

Proof Let qt be the parameterized max-plus polynomial with

qt(z) =
d⊕
k=0

z⊗k log |pk(t)|.
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The roots r1(t), . . . , rd(t) of qt are given by

(rk(t))dk=1 = R[(log |pk(t)|)dk=0],

so by homogeneity (
rk(t)

t

)d
k=1

= R

[(
log |pk(t)|

t

)d
k=0

]
,

and by uniform continuity

lim
t→∞

(
rk(t)

t

)d
k=1

= R

[
lim
t→∞

(
log |pk(t)|

t

)d
k=0

]
.

Finally each sandwich inequality in Theorem 1.1 is of the form

ckrk(t) ≤ log |zk(t)| ≤ Ckrk(t),

with finite non-zero ck, Ck ∈ R, so that

lim
t→∞

log |zk(t)|
t

= lim
t→∞

rk(t)

t
= rk,

where r1, . . . , rd are the roots of q as in the statement of the Corollary. �

We can also use max-plus polynomial roots to define the max-plus eigenval-

ues of a max-plus matrix. Let G ∈ Rn×nmax be a max-plus matrix. The max-plus

eigenvalues µ1 ≥ · · · ≥ µ1 of G are the max-plus roots of the max-plus charac-

teristic polynomial

χG(z) = perm(G⊕ z ⊗ I),

where

perm(M) = max
π∈Pn

n∑
k=1

mπ(k),k,

is called the max-plus permanent, where Pn is the set of all permutation on

{1, 2, . . . , n}, and I is the n × n max-plus identity matrix with zeros on the

diagonal and −∞ off the diagonal.60

Proposition 1.4. Let E : Rn×nmax 7→ Rnmax be the function that maps the max-plus

matrix G = (gij) to its max-plus eigenvalues µ1, . . . , µn. Then, E is uniformly

continuous.
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Proof Let χG(z) be the max-plus characteristic polynomial of G. The coeffi-

cients of χG(z) are maximums of sums of entries in G and as such are uniformly65

continuous in G. Since the eigenvalues of G are the roots of the characteristic

polynomial, uniform continuity of E follows from Lemma 1.2. �

Remark The uniform continuity of max-plus eigenvalues with respect to the

matrix entries means that max-plus eigenvalues are always very well conditioned

i.e. not sensitive to small perturbations to the matrix.70

The max-plus eigenvalues of an n × n max-plus matrix can be computed

with cost O(nτ), where τ is the number of finite coefficients in the matrix (the

−∞ entries play the role of zero in max-plus algebra since a ⊕ −∞ = a for all

a ∈ Rmax). Just like the max-plus roots of a max-plus polynomial the max-plus

eigenvalues of a max-plus matrix tell us about the asymptotic behavior of an75

associated classical system.

Theorem 1.5 (Akian, Gaubert, Bapat [10]). Let G = (gij) ∈ Rn×nmax be a

max-plus matrix and let B = (bij) ∈ Cn×n be a complex matrix. Now let

A(t) = (aij(t)) be the parameterized matrix with

aij(t) = bij exp(gijt),

where by convention exp(−∞) = 0. Let λ1(t), . . . , λn(t) be the analytic eigen-

values of A, with λn−k+1(t), . . . , λn(t) ≡ 0. For all G and generic B, including

generic symmetric B, and for i = 1, · · ·n− k

µi = lim
t→∞

log |λi(t)|
t

,

exists and is independent of B.

Moreover these limits are equal to the finite max-plus eigenvalues of G,

while the full spectrum of max-plus eigenvalues is given by µ1, . . . , µn, with

µ1, . . . , µn−k defined as above and µn−k+1, . . . , µn = −∞.80

In both Corollary 1.3 and Theorem 1.5 the asymptotic behavior of the solu-

tion to a classical problem whose coefficients/entries are exponentials is shown
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to be determined by the solution to an associated max-plus problem. These

associated max-plus problems are called valuations. There are many different

possible valuations of classical algebra problem; we examine a different method85

for valuating parameter independent classical matrices in Section 3.

A major drawback to the theory of max-plus eigenvalues is that the max-plus

characteristic polynomial of the valuation of a classical matrix is not necessarily

equal to the valuation of the classical characteristic polynomial of that ma-

trix. So that while there is a very strong relationship between a classical scalar90

polynomial and its valuation, the relationship between a classical matrix and

its valuation is not always so strong and there are degenerate cases where the

max-plus valuation tells us very little about the original system. This is why we

needed the genericicity conditions on B in Theorem 1.5 and why, when we con-

sider valuation of parameter independent classical matrices in Sections 3 and 4,95

we cannot apply the bounds of Theorem 1 to show that the classical eigenvalues

of a matrix are always close to the exponentials of the max-plus eigenvalues of

its valuation.

As we will illustrate in the example below, this drawback also means that

we are not able to define the max-plus singular values of a max-plus matrix G100

in terms of the max-plus eigenvalues of G⊗GT .

Unlike max-plus eigenvalues, which are defined in a max-plus way, and then

turn out to give us information about an associated classical algebra system;

the established definition of the max-plus singular values of a max-plus matrix

are given directly in terms of an associated classical algebra system. Theorem105

2.1, which is the main result of this paper, works backwards to give a max-plus

characterization of the max-plus singular values, which allows us to compute

them using max-plus techniques/algorithms.

Theorem 1.6 (De Schutter, De Moor [3]). Let G = (gij) ∈ Rn×nmax be a

max-plus matrix and let B = (bij) ∈ Cn×n be a complex matrix. Now let

A(t) = (aij(t)) be the parameterized matrix with

a(t)i,j = bi,j exp(gijt),
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where by convention exp(−∞) = 0. Let A(t) = U(t)Σ(t)V (t) be the analytic

SVD of A, with Σ = diag(σ1(t), . . . , σn(t)), and suppose that σn−k+1(t), . . . σn(t) ≡

0. For all G, generic B and i = 1, . . . , n− k the limits

si = lim
t→∞

log σi(t)

t
,

exist and is independent of the choice of B.

The max-plus singular values of G are defined by s1, . . . , sn, with s1, . . . , sn−k110

defined as above and sn−k+1, . . . , sn = −∞.

Like the max-plus eigenvalues, the max-plus singular values of G give the

asymptotics of a related classical algebra system. However, even though The-

orem 1.5 is valid for generic symmetric matrices, it is not valid for matrices of

the form AAT for generic A - as we demonstrate in the following example.115

Example 1. Consider

A(t) =

 α exp(at) β exp(bt)

γ exp(ct) δ exp(dt)

 ,
with α, β, γ, δ ∈ C and a, b, c, d ∈ Rmax with b > a > d > c and a + d > b + c.

We can compute the singular values σ1(t), σ2(t) of A(t) as the square roots of

the eigenvalues λ1(t), λ2(t) of

A(t)A∗(t) =

 αα exp(2at) + ββ exp(2bt) αγ exp(at+ ct) + βδ exp(bt+ dt)

γα exp(at+ ct) + δβ exp(bt+ dt) γγ exp(2ct) + δδ exp(2dt)

 ,
which has characteristic polynomial of the form

χAAT (z) = z2 + p1(t)z + p2(t),

with

p1(t) = αα exp(2at) + ββ exp(2bt) + γγ exp(2ct) + δδ exp(2dt),

which for β 6= 0, has asymptotic growth

lim
t→∞

log |p1(t)|
t

= 2b,
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and

p2(t) = [αα exp(2at) + ββ exp(2bt)][γγ exp(2ct) + δδ exp(2dt)]

− [αγ exp(at+ ct) + βδ exp(bt+ dt)][γα exp(at+ ct) + δβ exp(bt+ dt)]

= F (t) + ααδδ exp(2at+ 2dt) + ββγγ exp(2bt+ 2ct)− (αβγ + αβγδ) exp(at+ bt+ ct+ dt),

where

F (t) = ααγγ exp(2at+2ct)−ααγγ exp(2at+2ct)+ββδδ exp(2bt+2dt)−ββδδ exp(2bt+2dt) ≡ 0.

For αδ 6= 0, p2(t) has asymptotic growth

lim
t→∞

log |p2(t)|
t

= 2a+ 2d.

Therefore, for α, δ, β 6= 0, i.e. generic α, β, γ, δ ∈ C, by Corollary 1.3 we have

lim
t→∞

log |λi(t)|
t

= ri,

where r1, r2 are the max-plus roots of the max-plus polynomial

q(z) = z⊗2 ⊕ 2b⊗ z ⊕ 2a+ 2d = max{2z, z + 2b, 2a+ 2d}.

These roots are given by r1 = 2b and r2 = 2a+ 2d− 2b. Finally

lim
t→∞

log σi(t)

t
= lim
t→∞

log
√
λi(t)

t
=
ri
2
,

where these limits are given by s1 = b and s2 = a+ d− b. These exponents are

therefore the max-plus singular values of the max-plus matrix

G =

 a b

c d

 .
However the max-plus eigenvalues of

G⊗GT =

 a b

c d

⊗
 a c

b d

 =

 a⊗ a⊕ b⊗ b a⊗ c⊕ b⊗ d

a⊗ c⊕ b⊗ d c⊗ c⊕ d⊗ d

 =

 2b b+ d

b+ d 2d

 ,
do not agree with this calculation. The max-plus eigenvalues µ1, µ2 of G⊗GT

are the max-plus roots of the max-plus characteristic polynomial
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χG⊗GT (z) = perm

 2b⊕ z b+ d

b+ d 2d⊕ z


= (2b⊕ z)⊗ (2d⊕ z)⊕ (b+ d)⊗ (b+ d)

= z⊗2 ⊕ 2b⊗ z ⊕ 2b+ 2d = max{2z, z + 2b, 2b+ 2d}.

Therefore the eigenvalues of G ⊗ GT are µ1 = 2b and µ2 = 2d. This would

suggest that the max-plus singular values of G should be s1 = b and s2 = d,

which does not agree with the previous calculation.120

The second coefficient in the max-plus characteristic polynomial of G⊗GT

is not equal to the exponent of the highest order term in the corresponding

coefficient of the classical algebra characteristic polynomial of A⊗ AT and be-

cause of this the two different the calculations for the singular values of G do

not agree. This situation cannot be avoided as generically matrices of the form125

AAT contain different permutations with the same weight but opposite signa-

ture. The terms associated with these permutations cancel out in the classical

algebra characteristic polynomial but not in the max-plus one. This is why the

max-plus singular values can not be calculated from the max-plus eigenvalues

of G⊗GT .130

2. Max-Plus Singular Values

In this section we introduce our new max-plus characterization of max-plus

singular values. We first need to define the max-plus eigenvalues of a max-plus

pencil.

Let G,H ∈ Rn×nmax be max-plus matrices. The max-plus eigenvalues of the

max plus pencil

Q(z) = G⊕ z ⊗H,

are the max-plus roots of the max-plus characteristic polynomial

χQ(z) = perm(G⊕ z ⊗H).
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Just like the max-plus eigenvalues of a matrix, the max-plus eigenvalues of a135

pencil or more generally a max-plus matrix polynomial can be shown to capture

the asymptotic growth rates of the classical eigenvalues of an associated classical

algebra system [11]. This is our main result.

Theorem 2.1 (Max-Plus Singular Values). Let G ∈ Rn×nmax be a max-plus

matrix. The max-plus singular values of G are given by the max-plus eigenvalues

of the max-plus pencil,

Q(z) = G⊕ z ⊗O,

where O is an n× n matrix of zeros.

Example 2 Before the proof of Theorem 2.1 we return to the matrix G ∈ R2×2
max

of Example 1

G =

 a b

c d

 ,
with b > a > d > c and a+ d > b+ c.140

Using our new characterization we calculate the max-plus singular values of

G as the max-plus roots of the max-plus characteristic polynomial

χQ(z) = perm

 a b

c d

⊕ z ⊗
 0 0

0 0

 = perm

 a⊕ z b⊕ z

c⊕ z d⊕ z


= (a⊕ z)⊗ (d⊕ z)⊕ (b⊕ z)⊗ (c⊕ z)

= z⊗2 ⊕ b⊗ z ⊕ a+ d = max{2z, z + b, a+ d},

which gives s1 = b and s2 = a + d − b, which agrees with the calculation in

Example 1.

Proof of Theorem 2.1 We start by finding the leading order terms in the

coefficients of A(t)A(t)T ’s characteristic polynomial,

det[A(t)A(t)T − λI] =

n∑
m=0

(−λ)mpn−m(t),

where

pm(t) =
∑
Im

∑
π∈Pm

sgn(π)

m∏
k=1

[A(t)A(t)T ]iπ(k)ik ,

12



where first sum is taken over all m-subsets Im = {i1 < i2 < · · · < im} ⊂

{1, 2, . . . , n}. Expanding the A(t)A(t)T product gives

pm(t) =
∑
Im

∑
π

sgn(π)

m∏
k=1

n∑
j=1

aiπ(k)j(t)aikj(t),

=
∑
Im

∑
f :Im 7→{1,2,...,n}

∑
π

sgn(π)H(Im, f, π),

where the second sum is taken over all functions f : Im 7→ {1, 2, . . . , n} and

H(Im, f, π) =

m∏
k=1

aiπ(k)f(ik)(t)aikf(ik)(t).

Now suppose that f is such that there exist k1 6= k2 with f(ik1) = f(ik2).

Let g be the permutation that just switches k1 and k2, then H(Im, f, π ◦ g) =

H(Im, f, π), but sgn(π ◦ g) = −sgn(π). Therefore the contribution to pm from

all non-injecting f sums to zero and we need only consider injective f , which

can all be expressed as

f(ik) = jς(k),

for some Jm = {j1 < j2 < · · · < jm} ⊂ {1, 2, . . . , n} and some ς ∈ Pm. Now

pm(t) =
∑
Im

∑
Jm

∑
π

∑
ς

sgn(π)W (Im,Jm, π, ς)W (Im,Jm, id, ς),

where id is the identity permutation and the weight terms are given by

W (Im,Jm, π, ς) =

m∏
k=1

a(t)iπ(k)jς(k) .

Since

W (Im,Jm, π, ς) = W (Im,Jm, id, π−1 ◦ ς),

we can make the substitution η = π−1 ◦ ς to obtain

pm(t) =
∑
Im

∑
Jm

∑
η

∑
ς

sgn(ς ◦ η−1)W (Im,Jm, id, η)W (Im,Jm, id, ς),

Now, either all of these weight terms are identically zero in which case pm = 0

and we set qm = −∞, or there are some nonzero terms, which we now assume

to be the case. Each weight term is of the form

W (Im,Jm, id, ς) = Θ(Im,Jm, ς) exp[R(Im,Jm, ς)t],
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where

Θ(Im,Jm, ς) =

m∏
k=1

bikjς(k) ,

and

R(Im,Jm, ς) = lim
t→∞

1

t
log |W (Im,Jm, ς)| =

m∑
k=1

gikjς(k) .

Now we set

qm = max
Im

max
Jm

max
ς
R(Im,Jm, ς),

so that

pm(t) = cm exp(2qmt) + lower order terms,

where

cm =
∑
Im

∑
Jm

∑
η∈Pm:R(Im,Jm,η)=qm

∑
ς∈Pm:R(Im,Jm,ς)=qm

sgn(η◦ς−1)Θ(Im,Jm, η)Θ(Im,Jm, ς).

The coefficient cm is a polynomial in some of the entires of B so it must either

be identically equal to zero or only zero for a lower dimensional (non-generic)

subset of possible B. We will show that the coefficient cm is non-zero for generic

B by showing that it has a non-zero derivative. Choose any (I∗m,J ∗m, ς∗) triple

that appears in the expression for cm and let I∗m = {i1, . . . , im} and J ∗m =

{j1, . . . , jm}. We have

d2mΘ(Im,Jm, η)Θ(Im,Jm, ς)
d2bi1jς∗(1)

. . . d2bimjς∗(m)

= 0,

unless each B entry that we differentiate with appears twice in total between the

two terms Θ(Im,Jm, η) and Θ(Im,Jm, ς). However no such entry can appear

twice in the same Θ term because η and ς have to be permutations. Therefore

the only term with non-zero derivative in (1) is

Θ[I∗m,J ∗m, ς∗]Θ[I∗m,J ∗m, ς∗] = [bi1jς∗(1)
× · · · × bimjς∗(m)

]2,

and its derivative is 2m, and the sign preceding it in the sum is positive. There-

fore
d2mcm

d2bi1jς∗(1)
. . . d2bimjς∗(m)

= 2m, (1)
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so that cm can not be identically equal to zero and must be non-zero for generic145

B.

Thus for generic B we have

lim
t→∞

1

t
log |pm| = 2R(I∗m,J ∗m, s) = 2qm.

So by Corollary 1.3 the eigenvalues λ1(t), . . . , λn(t) of A(t)A(t)T , satisfy

lim
t→∞

1

t
log |λi(t)| = 2ri,

where 2r1, . . . , 2rn are the max-plus roots of the max-plus polynomial

q̃(z) =

n⊕
k=0

z⊗k ⊗ 2qn−k.

By the homogeneity result of Lemma 1.2 the singular values of A(t), σi(t) =√
|λi(t)|, i = 1, . . . , n satisfy

lim
t→∞

1

t
log σi(t) = ri,

where r1, . . . , rn are the max-plus roots of the max-plus polynomial

q(z) =

n⊕
k=0

z⊗k ⊗ qn−k,

and these roots are equal to the max-plus singular values of G.

All that remains is to show that this polynomial is equal to the max-plus

characteristic polynomial of the pencil in the statement of the theorem. The

characteristic polynomial is

χQ(z) = perm(G⊕ z ⊗O) =

d⊕
k=0

z⊗k ⊗ hn−k,

where the coefficients hm are given by

hm = max
π

max
Im

m∑
k=1

gik,π(ik),

where the second maximum is taken over all m-subsets Im = {i1 < · · · < im} ⊂

{1, 2, . . . , n}. The action of π restricted to Im is simply an injective function.

15



So like before we can express it using π(ik) = jς(k) for some Jm = {j1 < j2 <

· · · < jm} ⊂ {1, 2, . . . , n} and some ς ∈ Pm. Thus

hm = max
Im

max
Jm

max
ς∈Pn

m∑
k=1

gikjς(k) = max
Im

max
Jm

max
ς∈Pn

R(Im,Jm, ς) = qm,

where R(Im,Jm, ς) is as defined in (1). These coefficients are exactly those

of the max-plus polynomial q(z) derived in the first part of the proof. Hence

χQ(z) = q(z), and the max-plus eigenvalues of the matrix pencil Q are equal to150

the max-plus singular values of the matrix G, as required. �

Theorem 2.2 (Rectangular Case). Let G ∈ Rn×mmax be a rectangular max-

plus matrix, let k = max{n,m} and let G̃ be the k × k square max-plus matrix

obtained by “padding out” G with minus infinity entries

[G̃]ij =

gij for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

−∞ otherwise,

let s1 ≥ · · · ≥ sn be max-plus singular values of G̃. Then,

• if n > m (tall skinny case), then the max-plus singular values of G are

given by s1, . . . , sm;

• if n < m (short fat case), then the max-plus singular values of G are given155

by s1, . . . , sn.

Proof This follows from the classical case. Choose generic B = (bij) ∈ Rn×m

and set B̃ = (b̃ij) ∈ Rk×k by padding B out with zeros. Consider the n ×m

classical parameterized matrix A(t) = ((aij(t)) with aij(t) = bij exp(gijt) and

also the k × k matrix Ã(t) = ((ãij(t)) with ãij(t) = b̃ij exp(g̃ijt). In the tall160

skinny case Ã(t)’s singular values are A(t)’s as well as n−m zeros. In the short

fat case Ã(t)’s singular values are equal to those of A(t).

The classical singular values of the matrices A and Ã therefore match up in

this way and since the max-plus singular values of G and G̃ are defined as the

asymptotic growth rates of these classical singular values, they must also agree165

and we are done. �
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Theorem 2.3 (Symmetric Case). Let G ∈ Rn×nmax be symmetric. Then the

max-plus singular values and max-plus eigenvalues of G are equal.

Proof Theorem 1.5 is valid for generic B and generic symmetric B but Theorem

1.6 is only valid for generic B. Therefore we can not prove this result by using170

the analogy with the classical case, as we would need to reason about the singu-

lar values of a parameterized matrix A(t) = (aij(t)) with aij(t) = bij exp(gijt),

for generic symmetric B. Instead we will show directly that the max-plus eigen-

values and singular values are equal in the symmetric case. The validity of

Theorem 1.6 for generic symmetric B then follows from this theorem as a corol-175

lary.

Recall that the max-plus eigenvalues of G are the roots of

χG(z) = perm(G⊕ z ⊗ I),

and that the max-plus singular values of G are the roots of

χQ(z) = perm(G⊕ z ⊗O).

Since O ≥ I in every component, we have χQ(z) ≥ χG(z) for all z.

For fixed z, it follows from the strong duality principle for linear program-

ming problems that

min{
∑
i

ui+vi : u, v ∈ Rn, [G⊕z⊗I]ij−ui−vj ≤ 0 for all i, j} = perm(G⊕z⊗I),

(2)

which is discussed in more detail in Section 4. Now let (u, v) ∈ Rn be optimal

solutions to (3) and define

ai =
ui + vi

2
.

Then

2
∑
i

ai =
∑
i

ui + vi = perm(G⊕ z ⊗ I) = χG(z),

and

[G⊕ z ⊗ I]ij − ai − aj =
[G⊕ z ⊗ I]ij − ui − vj

2
+

[G⊕ z ⊗ I]ji − uj − vi
2

≤ 0.

17



In particular, [G⊕ z ⊗ I]ii − 2ai ≤ 0 so that ai ≥ z/2. Therefore

[G⊕ z ⊗O]ij − ai − aj = max{[G⊕ z ⊗ I]ij − ai − aj , z − ai − aj} ≤ 0.

So (a, a) is a feasible solution to

min{
∑
i

ci + di : [G⊕ z ⊗O]ij − ci − dj ≤ 0 for all i, j},

and

χG(z) = perm(G⊕ z ⊗ I) = 2
∑
i

ai

≥ min{
∑
i

ci + di : [G⊕ z ⊗O]ij − ci − dj ≤ 0 for all i, j}

= perm(G⊕ z ⊗O) = χQ(z).

Thus we have χQ(z) = χG(z) for all z, which means that the max-plus180

eigenvalues and singular values of G must be equal as they are each the non-

differentiability points of the same function. �

3. Valuation

The results stated so far only tell us about the asymptotics of exponentially

parameterized systems. It is obvious that max-plus algebra has a strong rela-185

tionship with these systems, but we really want to be able to say things about

parameter independent classical matrices.

The following is a heuristic derivation for such a technique.

Let M = (mij) ∈ Cn×n have singular values σ1, . . . , σn. If M ’s entries

vary a lot in magnitude then it might resemble one of our previously discussed

exponentially parameterized matrices evaluated at a large value of t. Let A(t) =

(aij(t)) with

aij(t) = bij exp(gijt),

for some B = (bij) ∈ Cn×n and for some G = (gij) ∈ Rn×nmax and suppose that

for some large value of t, t = t∗ we have M = A(t∗). The singular values

18



σ1(t), . . . , σn(t) of A(t) satisfy

lim
t→∞

log σi(t)

t
= si,

where s1, . . . , sn are the max-plus singular values of the max-plus matrix G.

This gives us the approximation

log σi ≈ sit∗.

The reason that this argument is only a heuristic is that the rate of convergence

of the limits in Theorems 1.5 and 1.6 are not independent of the matrix G, and

as such there is no absolute scale for determining what values of t∗ are actually

‘large’. Indeed, we can rescale G (and correspondingly t∗) by any factor we like!

In particular we can rescale G and t∗ so that t∗ = 1. This is equivalent to taking

B to be the classical matrix with entries

bij =


mij
|mij | for mij 6= 0,

1 otherwise,

and also setting G to be the max-plus matrix with entries

gij = log |mij |, (3)

which we call G = V(M), the valuation of M . Then the same approximation

gives

log σi ≈ si,

where s1, . . . , sn are the max-plus singular values of G defined in (4).190

We therefore expect the log of the singular values of M to be approximated

by the max-plus singular values of V(M) = G. Likewise we expect the log-

of-absolute value of the eigenvalues of M to be approximated by the max-plus

eigenvalues of G. Bounding the error in this approximation is equivalent to

bounding the rate of convergence in the different limit theorems presented ear-195

lier. Upper bounds for the eigenvalues of M based on max-plus eigenvalues of

G are derived in [12] but lower bounds are much harder to derive as there are

degenerate and close to degenerate systems with very small or zero eigenvalues,

which are not detected by the tropical eigenvalues.
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Example 2. Consider the symmetric matrix M and its valuation G = V(M)

M =

 100 100

100 100 + ε

 , G =

 log(100) log(100)

log(100) log(100 + ε)

 .
The matrix M has eigenvalues ≈ 200 and ε, but G has tropical eigenvalues200

log(100+ε) and log(100). So that for small ε the tropical eigenvalues do not even

capture the order of magnitude of the log-of-the-absolute-value of the classical

eigenvalues. However away from degenerate cases the approximation works

remarkably well, as we will show in the subsequent examples.

4. Hungarian Scaling205

The optimal assignment problem for G ∈ Rn×nmax is to compute

perm(G) = max
π∈Π(n)

n∑
i=1

gπ(i),i,

which can be expressed as a Linear Programming Problem (LPP)

perm(G) = max{
n∑

i,j=1

gijdij : D = (dij) ∈ Rn×n+ :

n∑
j=1

dij =

n∑
j=1

dji = 1, for all i},

this follows from the Birkhoff-von Neumann Theorem, which states that any

doubly stochastic matrix can be expressed as a stochastic combination of per-

mutation matrices [13]. In standard form this LPP is equivalent to

max{fTx : x ≥ 0 : Cx ≤ l},

where x ∈ Rn2

is a vectorized representation of D and f ∈ Rn2

, l ∈ R2n and

C ∈ R2n×n2

. This LPP has symmetric dual LPP

min{lT y : y ≥ 0 : CT y ≥ f}.

With some rearranging the dual LPP can be rewritten in a more convenient

form by splitting y ∈ R2n into a pair of shorter vectors u, v ∈ Rn

min{
n∑
i=1

ui + vi : u, v ∈ Rn : gij − ui − vj ≤ 0}.

20



An optimal solution (u, v) to the dual LPP is called a Hungarian pair after the

Hungarian algorithm, which is a widely used primal dual algorithm for solving

the optimal assignment problem. The Hungarian algorithm is so called because

its co-inventors Dénes Kőnig and Jenő Egerváry are both themselves Hungarian.

The strong duality principal (see e.g. [14, Chapter 5]) states that the optimal

values of a LPP and its dual LPP are equal. Therefore for any Hungarian pair

(u, v) of G we have
n∑
i=1

ui + vi = perm(G),

which is a fact that we used in the proof of Theorem 2.3.210

Hungarian pairs can be used to construct useful diagonal scalings. Suppose

that we want to solve Mx = b for some M = (mij) ∈ Cn×n. Let G = (gij) =

V(M) ∈ Rn×nmax be M ’s valuation with gij = log |mij |. Let π be an optimal

assignment for G and let (u, v) be a Hungarian pair for G. Now define L,R ∈

Rn×n to be diagonal matrices and P ∈ Rn×n to be a permutation matrix with

Lii = exp(−ui), Rii = exp(−vi), Pij = 1⇔ π(i) = j, for all i, j.

These matrices can then be applied to M to give

H = PLMR,

where H has entries of modulus one on the diagonal and modulus less than or

equal to one off the diagonal. We call H the Hungarian scaling and reordering

of M and without the application of P we call it the Hungarian scaling of

M . The Hungarian pairs of a max-plus matrix can be expressed as max-plus

subeigenvectors and there are many different applications for the Hungarian215

scaling in linear algebra (see e.g. [15]).

In some cases H is close to being diagonally dominant, as the diagonal

contains entries of modulus one and the off diagonal entries are all smaller. In

these cases the performance of iterative methods is dramatically improved by

applying the Hungarian scaling/reordering as a preprocessing step [16]. More220

generally the scaling/reordering can be shown to improve the speed of sparse
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direct linear system solvers through reduced need for pivoting [17]. Hungarian

scaling is a technique that is already widely used and is implemented in the

HSL-MC64 software package. We have found that the Hungarian scaling also

tends to significantly reduce the condition number of a matrix, which is the225

focus of the remainder of this paper.

The 2-norm condition number of a matrix M ∈ Cn×n is given by

κ(M) =
σ1

σn
,

where σ1 ≥ · · · ≥ σn are the singular values of M . The condition number of

a matrix measures the stability of the matrix inverse function at that matrix.

Therefore if M has a very large condition number then the solution to Mx = b

will be very sensitive to small perturbations, which can lead to major numerical230

inaccuracies. Techniques, including diagonal scalings, aimed at reducing matrix

condition number can therefore significantly improve the accuracy of subsequent

numerical linear system solves (see e.g. [18]).

Let M ∈ Rn×n be a classical matrix and let G = V(M) ∈ Rn×nmax be its

valuation. We have shown that the classical singular values σ1, . . . , σn of M can

be approximated by the max-plus singular values s1, . . . , sn of V using

log σi ≈ si.

We can therefore approximate M ’s condition number using

log[κ(M)] ≈ s1 − sn = κ̂(G),

which we call the max-plus condition number approximation. A classical matrix

is said to be perfectly conditioned if all of its singular values are equal to one,235

in analogy we define a max-plusly perfectly conditioned matrix to be a max-plus

matrix whose max-plus singular values are all equal to zero.

Theorem 4.1 (Max-plus conditioning of Hungarian scaled matrices).

Let M = (mij) ∈ Cn×nmax and let G = (gij) = V(M) ∈ Rn×nmax be its valuation.

Now let H = (hij) ∈ Cn×n be a (not necessarily Hungarian) diagonal scaling of
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M given by

H = LMR,

where

Lii = exp(−ui), Rii = exp(−vi),

for some u, v ∈ Rn. Now let W = (wij) = V(H) ∈ Rn×nmax be the valuation of the

scaled matrix H. The matrix W is max-plusly perfectly conditioned if and only

if (u, v) is a Hungarian pair of G.240

Proof The entries of the rescaled matrix H are given by

hij = mij exp(−ui − vj),

so that

wij = log |mij | − ui − vi = gij − ui − vj .

Suppose that W is a max-plus perfectly conditioned matrix, then the charac-

teristic polynomial

χQ(z) = perm(W ⊕ z ⊗O),

is differentiable everywhere except at z = 0, so it must be given by

χQ(z) =

 nz for z ≥ 0,

0 otherwise.

Now suppose that wij > 0 for some i, j. Then for any permutation π, with

π(i) = j, we have
n∑
k=1

[W ⊕O]i,π(i) ≥ wij ,

so that χQ(0) > 0, which is a contradiction. Therefore

gij − ui − vj = wij ≤ 0,

for all i, j. Also since

lim
z→−∞

χQ(z) = perm(W ) = max
π∈Π(n)

n∑
i=1

gi,π(i) + ui + vπ(i) = 0,
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we have
n∑
i

ui + vi = perm(G).

So that (u, v) is an optimal solution to

min{
n∑
i=1

ui + vi : u, v ∈ Rn : gij − ui − vj ≤ 0},

i.e. (u,v) is a Hungarian pair for G.

Conversely suppose that (u, v) is a Hungarian pair for G. Since wij =

gij − ui − vj ≤ 0 for all i, j, we have for all z ≥ 0

G⊕ z ⊗O = z ⊗O.

Also

lim
z→−∞

χQ(z) = perm(W ) = perm(G)−
n∑
i

ui − vi = 0.

So that χQ(z) is a convex piecewise-affine function with limz→−∞ χQ(z) = 0

and χQ(z) = nz for z ≥ 0. It is therefore differentiable everywhere except for

z = 0; equivalently W ’s max-plus singular values are all equal to zero and it is

tropically perfectly conditioned. �245

Thus Hungarian scalings are optimal at reducing the max-plus condition

number of the valuation. By the hypothesis that the max-plus singular values

of the valuation approximate the log of the of the classical singular values, we

can also expect Hungarian scalings to reduce the order of magnitude of the

classical condition number.250

5. Examples

Example 3. Classical matrix with exponential components We randomly

generate a 10× 10 parameterized matrix A(t) = ((aij(t)) with

aij = bij exp(gijt),
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where B = (bij) is a matrix of ones and G = (gij) is a randomly generated

max-plus matrix sampled using

gi,j =

−∞ with probability 0.5,

sampled from a standard Gaussian otherwise.

For t = 0.1, 0.2, . . . , 10 we compute the classical singular values σ1(t), . . . , σ10(t)

of A(t) using MATLAB svd.m. We also compute the max-plus singular values

s1, . . . , s10 of G using our own MATLAB routine mpsv.m. Figure 1 is a plot of(
log σi(t)

t

)10

i=1

against t. Notice that each of these quantities converges as t grows and that

the different limits are given by the max-plus singular values of G, which are

indicated with red lines. The tropical singular values of G have multiplicities2

1, 1, 2, 1, 1, 2, 2, these multiplicities also correspond to the number of different255

classical singular values whose log converges to that limit.

We also apply the Hungarian scaling to the same matrix for each value of

t and make the same plot for the rescaled matrices. After Hungarian rescaling

the max-plus singular values are all equal to zero, for all t. As before the log

of the classical singular values divided by t converges to the max-plus singular260

values. The condition number of the original matrix A grows exponentially with

t but the condition number of the rescaled matrix does not, moreover it can be

shown to converge.

Example 4. Sparse unsymmetric matrix from a fluid dynamics problem

We use the matrix M of the steam3.m problem from the University of Florida265

sparse matrix collection [19]. The unsymmetric 131 × 131 matrix M has 536

nonzero entries, which vary a lot in magnitude. Using MATLAB svd.m we

compute M ’s singular values. We then valuate M and compute G = V(M)’s

tropical eigenvalues using mpsv.m. We also apply the Hungarian scaling to M

2The multiplicity of a max-plus eigenvalue of singular value is defined as its multiplicity

as a root of the appropriate characteristic max-plus polynomial.

25



0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

t

lo
g
[σ

i(
t)
]/
t

Singular Values of A(t)

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Singular Values of H (t)

lo
g
[σ

i(
t)
]/
t

t

Figure 1: Log of classical singular values divided by t (blue dots) and tropical singular values

(red lines). Left, original system; right, Hungarian scaled.

and compute the classical singular values of the rescaled matrix H = LMR.270

Figure 2 shows the classical and max-plus singular values of the original matrix

M and the Hungarian scaled matrix H. Figure 2 also shows the magnitude of

the entries in M and H.

Table 1: Results for Example 4

original matrix Hungarian scaled

classical condition number 1.28× 1015 15.17

max-plus condition number of valuation 14.52 0

max{ 10si

σi
, σi

10si : i = 1, . . . , 131} 2.59 21.27

Table 1 summarizes the results of this experiment. Notice that the tropical

condition number and the log of the classical condition numbers roughly agree275

for the two matrices, that the condition number is significantly reduced by

Hungarian scaling and that for both matrices the max-plus singular values give

good order of magnitude approximations of the classical singular values.
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Figure 2: Left and middle left: classical singular values (blue circles) and exponential of max-

plus singular values of valuation (red crosses) for M and H respectively. Middle right and

right: magnitude of entries (black diamond) of M and H respectively.

Discussion

We have given the max-plus singular values of a max-plus matrix a new280

characterization as a the eigenvalues of a max-plus matrix pencil. This then

enables us to compute max-plus singular values using fast and accurate network

flow algorithms. We have demonstrated experimentally that the distribution

over the log scale of the classical singular values of a classical matrix is approx-

imated remarkably well by the max-plus singular values of the valuation. Also,285

we have shown that Hungarian scaling can dramatically reduce the condition

number of a matrix and that this action can be explained with our new theory

for max-plus singular values.
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