
Efficient block preconditioning for a C1 finite
element discretisation of the Dirichlet biharmonic

problem

Pestana, Jennifer and Muddle, Richard and Heil,
Matthias and Tisseur, Francoise and Mihajlovic, Milan

2015

MIMS EPrint: 2015.23

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


EFFICIENT BLOCK PRECONDITIONING FOR A C1 FINITE
ELEMENT DISCRETISATION OF THE DIRICHLET BIHARMONIC

PROBLEM

J. PESTANA†§ , R. MUDDLE†‡ , M. HEIL† , F. TISSEUR†§ , AND M. MIHAJLOVIĆ‡

Abstract. We present an efficient block preconditioner for the two-dimensional biharmonic
Dirichlet problem discretised by C1 bicubic Hermite finite elements. In this formulation each node
in the mesh has four different degrees of freedom (DOFs). Grouping DOFs of the same type together
leads to a natural blocking of the Galerkin coefficient matrix. Based on this block structure, we
develop two preconditioners: a 2 × 2 block diagonal preconditioner (BD) and a block bordered
diagonal (BBD) preconditioner. We prove mesh-independent bounds for the spectra of the BD-
preconditioned Galerkin matrix under certain conditions. The eigenvalue analysis is based on the
fact that the proposed preconditioner, like the coefficient matrix itself, is symmetric positive definite
and is assembled from element matrices. We demonstrate the effectiveness of an inexact version of
the BBD preconditioner, which exhibits near-optimal scaling in terms of computational cost with
respect to the discrete problem size. Finally, we study robustness of this preconditioner with respect
to element stretching, domain distortion and non-convex domains.

Key words. biharmonic equation; Hermite bicubic finite elements; block preconditioning; con-
jugate gradient method; algebraic multigrid

AMS subject classifications. 65F08, 65F10, 65N22

1. Introduction. The biharmonic operator is a key component in mathematical
models of a number of important physical problems. It arises in plane strain and plane
stress elasticity problems, where the solution is expressed in terms of an Airy stress
function [32, p. 79], [37, p. 288], and in plate bending problems. It also occurs in the
stream-function-vorticity formulation of two-dimensional Stokes flow [27].

The strong formulation of the Dirichlet biharmonic problem seeks the function
u ∈ C4(Ω) that satisfies

∇4u = f (1.1)

in the domain (x1, x2) ∈ Ω ⊂ R2 with piecewise smooth boundary ∂Ω and source
function f ∈ L2(Ω) subject to the Dirichlet boundary conditions

u = g1,
∂u

∂n̂
= g2 on ∂Ω, (1.2)

where ∂u
∂n̂ denotes the outward normal derivative and g1 and g2 are given functions.

In the context of the plate bending problem the case g1 = g2 = 0 corresponds to a
clamped boundary.

Numerical schemes for solving (1.1)–(1.2) either approach the problem directly,
or reformulate it as a mixed formulation (i.e., solve a system of two second-order
problems). The advantages of using the former approach include better asymptotic
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accuracy for the same level of grid resolution [1, Theorem 5.4], [10, Theorems 6.1.6
and 7.1.6 and p. 392], and a symmetric positive definite coefficient matrix for the
discrete problem. Conversely, for the mixed formulation, discretisation (by a finite
difference or finite element method, for example) results in a linear algebraic system
that is symmetric, but indefinite.

In this paper we consider a conforming C1 finite element approach [26], for which
the standard weak form is to find u ∈ H2(Ω) satisfying (1.2) such that∫

Ω

∇2u∇2v dΩ =

∫
Ω

fv dΩ (1.3)

holds for all test functions v ∈ H2
0 (Ω), where H2

0 (Ω) = {v ∈ H2(Ω) | v = ∂v
∂n̂ =

0 on ∂Ω}. The discrete weak formulation is obtained by restricting (1.3) to a finite
dimensional space S(Ω) ⊂ H2(Ω), for which we adopt a basis associated with the
bicubic Hermite (Bogner-Fox-Schmit) finite elements [6, p. 72]; these are formed from
a tensor product of one-dimensional Hermite polynomials. The C1 continuity across
element boundaries is ensured by assigning four degrees of freedom (DOF) to each
node, corresponding to four different basis functions.

The finite element approximation of (1.3) is then obtained by solving a linear
system Ax = b, where A ∈ RN×N is a large, sparse and symmetric positive definite
(SPD) matrix and b ∈ RN . Such systems are usually solved by iterative methods,
with the conjugate gradient (CG) method a popular choice [16, Ch. 2]. Grouping
together the unknowns corresponding to the same DOF type leads to the following
natural 4× 4 blocking of the coefficient matrix

A =


A11 A12 A13 A14

AT
12 A22 A23 A24

AT
13 AT

23 A33 A34

AT
14 AT

24 AT
34 A44

 , (1.4)

where Aij ∈ Rn×n, i, j = 1, . . . , 4, and N = 4n, where n is the number of interior
nodes. Since the biharmonic operator is fourth order, the two-norm condition number
of the matrix A behaves as κ(A) = O(h−4), where h is the mesh parameter (assuming
uniform discretisation) and we find that mesh refinement generally has a detrimental
effect on the convergence speed of the CG method. This problem can be rectified by
effective preconditioning.

There are a number of preconditioning strategies for conforming C1 discretisations
of (1.1)–(1.2). The proposed methods include additive Schwarz methods [15], [40],
[41], BPX preconditioning [26], Steklov-Poincaré operator-based preconditioning [23],
problem-specific multigrid methods, [7], [9], [19], [33], [38] and fast auxiliary space
(FASP) preconditioning [39].

Block preconditioners with multigrid components have also been considered. Ak-
soylu and Yeter [2] develop preconditioners with blocks based on regions of high and
low bending while Bjørstad [3] uses blocks arising from a separation of variables of a
related problem. Peisker and Braess [29] use a blocking based on basis function types,
as we do, but their preconditioner is based on a mixed formulation of the biharmonic
problem. Other preconditioners for the mixed formulation use blocks associated with
different differential operators and efficient preconditioners of this sort apply multigrid
to the Dirichlet Laplacian blocks [31], or the Schur complement system [17].

In this paper we propose two novel preconditioners that are fully algebraic and
are assembled from the element matrices in an analogous manner to the matrix A,
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making them easy to implement. The first of these preconditioners is a 2 × 2 block
diagonal (BD) matrix. The positive definiteness of A and the assembly of the pre-
conditioner from element matrices means that analysis based on the general ideas of
Wathen [34], [35], [36] can be applied to demonstrate that mesh-independent conver-
gence is guaranteed in certain cases.

The second preconditioner introduced in this paper is a computationally cheaper
block bordered diagonal (BBD) approximation of the block diagonal preconditioner,
that is feasible for larger problems, and that can be implemented in a cost-effective
manner. For this second preconditioner we provide some spectral analysis. We then
employ numerical experiments to demonstrate mesh independent convergence rates
and show that it is possible to deploy off-the-shelf multigrid approximations for certain
matrix blocks.

The paper is organised as follows. In Section 2 we discuss the finite element as-
sembly process of the matrix A in (1.4) and relevant aspects of the conjugate gradient
method. Section 3 describes the new block diagonal preconditioner. We characterise
the eigenvalues of the preconditioned matrix and give conditions for mesh-independent
convergence. However, the preconditioner is costly to apply. We therefore introduce
a more practical block bordered diagonal preconditioner in Section 4, and provide an
eigenvalue analysis. We propose an inexact version of the BBD preconditioner, which
involves matrix lumping and algebraic multigrid approximation. Finally, we present
numerical experiments in Section 5 that verify the effectiveness of the inexact BBD
preconditioner and investigate its robustness with respect to changes in the domain
and element shape.

2. Preliminaries. In this section we describe the details of the finite element
assembly process for the biharmonic problem and introduce the preconditioned con-
jugate gradient (PCG) method.

2.1. The finite element assembly process. The analysis of the spectra of
the preconditioned matrices in later sections will be based on the fact that the finite
element matrix A in (1.4) is assembled from element contributions. In this section we
describe this assembly process.

We discretise (1.3) using C1 Hermite finite elements, defined in a reference domain
with local co-ordinates (s1, s2) ∈ Ω = [−1, 1]2. The solution within the element is
represented as

u(s1, s2) =

4∑
j=1

4∑
k=1

Ujk ψ̄jk(s1, s2),

where Ujk are the unknown coefficients and ψ̄jk are the reference Hermitian basis
functions. The subscript j represents the node number and k enumerates the DOF

type, such that at node j, Ujk interpolates u, ∂u
∂s1

, ∂u
∂s2

and ∂2u
∂s1∂s2

for k = 1, . . . , 4,
respectively. The same basis functions are used to isoparametrically map the reference
element to the actual element Ωe.

Consider now a finite element discretisation of the domain Ω consisting of M
elements and let Ae ∈ R16×16, e = 1, . . . ,M , be the biharmonic element matrices
associated with these elements. The matrices Ae are symmetric positive semidefinite
and each entry is of the form

(Ae)ij =

∫
Ω

∇2ψ̄i1i2∇2ψ̄j1j2 |Je| dΩ,
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where i = 4(i2−1)+i1, j = 4(j2−1)+j1 and Je is the element Jacobian. Consequently,
multiplying Ae by a vector u ∈ R16, with elements uj = uj1j2 , is equivalent to
computing integrals of linear combinations of basis vectors, that is,

(Aeu)i =

∫
Ω

∇2ψ̄i1i2

 4∑
j1,j2=1

∇2
(
uj1j2 ψ̄j1j2

) dΩ.

Thus, the nullspace vectors of Ae can be thought of in terms of linear combinations of
certain basis functions. These nullspace basis functions are harmonic functions, i.e.,
functions for which the Laplacian is zero (see (1.3)). It is straightforward to verify
that a basis for these harmonic functions is

1, s1, s2, s1s2, s
2
1 − s2

2, s2(s2
1 − s2

2/3), s2(s2
1/3− s2

2) and s1s2(s2
1 − s2

2), (2.1)

from which the nullspace of Ae can be computed.
Now let us describe the assembly process of (1.4) mathematically. We introduce

the matrix Le ∈ R16×N that maps the entries of Ae to entries of A. Then

A =

M∑
i=1

LT
e AeLe = LT diag(Ae)L ∈ RN×N , (2.2)

where

L =
[
LT

1 LT
2 . . . LT

M

]T ∈ R16M×N (2.3)

and diag(Ae) is a block diagonal matrix of element matrices Ae, i = 1, . . . ,M . The
matrix diag(Ae) is related to the differential operator and the choice of basis functions,
while L provides information about the geometry and boundary conditions.

During this assembly process, unknowns corresponding to the same DOF type
are grouped together and this leads to the natural blocking of the coefficient matrix
as:

A =


A11 A12 A13 A14

AT
12 A22 A23 A24

AT
13 AT

23 A33 A34

AT
14 AT

24 AT
34 A44

 .
u
∂u
∂s1
∂u
∂s2
∂2u

∂s1∂s2

(2.4)

The unknown vector x and the right-hand side b are blocked accordingly.

2.2. The conjugate gradient method. The conjugate gradient method (CG)
is perhaps the best known Krylov subspace method for solving sparse linear systems,
and is suitable for systems with an SPD coefficient matrix. The relative error after k
iterations of CG is bounded by [16, p. 51]

‖e(k)‖A
‖e(0)‖A

≤ 2

(√
α(A)− 1√
α(A) + 1

)k

,

where e(k) = x− x(k) and α(A) = λmax(A)/λmin(A). Since A is symmetric positive
definite α(A) corresponds to the 2-norm condition number κ(A). As mentioned in
the introduction and verified numerically in Table 2.1, κ(A) = O(h−4). Although this
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Table 2.1
Extremal eigenvalues and 2-norm condition number of A for uniform meshes as a function of

the problem size N .

Elements 4× 4 8× 8 16× 16 32× 32 64× 64
N 36 196 900 3844 15876
λmin 56.20 18.45 4.94 1.26 0.32
λmax 1287 5705 23399 94179 377295
κ(A) 23 309 4735 74912 1.20× 106

bound may be pessimistic, we do see a deterioration in convergence speed of the CG
solver as the mesh is refined (see the computations in Section 5).

The effective condition number [4], [30]

κeff =
‖b‖2

λmin(A)‖x‖2
can better describe the effect of perturbations of A and the right-hand side b on
the solution x, but does not describe the convergence rate of the conjugate gradient
method (which is determined by a complex interaction between the spectrum of A and
the right-hand side). Li, Huang and Huang [24] have shown that for the biharmonic
equation and Hermite elements the effective condition number is O(h−3.5) for general
problems but can be as low as O(1) for certain boundary conditions. We observe this
O(1) behaviour for the homogeneous Dirichlet biharmonic problem (1.1) with f = 1
when square, stretched or deformed elements are used (see Figure 5.2).

The problem of slow convergence rates can be alleviated by solving an equivalent
preconditioned system P− 1

2AP− 1
2y = P− 1

2 b with x = P− 1
2y, where P ∈ RN×N is

SPD. Note that the CG algorithm itself requires only a linear system solve with P
at each iteration, i.e., the matrix P− 1

2 is never explicitly formed. The error of the
preconditioned CG iterates can be bounded by

‖e(k)‖A
‖e(0)‖A

≤ 2

(√
α(P−1A)− 1√
α(P−1A) + 1

)k

.

The error bound shows that the convergence of the CG method is accelerated
when the condition number of the preconditioned matrix P−1A is small. It can
also be shown that fast convergence rates are achieved when the eigenvalues belong
to a small number of tightly bounded clusters (see, for example, [16, Section 3.1]).
If the eigenvalues of P−1A can be bounded independently of the mesh size h (and
possibly other problem parameters) then P is an optimal preconditioner, in the sense
of convergence of the conjugate gradient method. If, in addition, linear systems
involving P can be solved in a manner that scales linearly with the problem size then
we have an optimal solver.

3. An ideal preconditioner. We first consider the block diagonal precondi-
tioner

PBD =


A11 A12 A13

AT
12 A22 A23

AT
13 AT

23 A33

A44

 . (3.1)

Since any principal submatrix of an SPD matrix A is itself SPD [21, p. 397], the
preconditioner PBD ∈ RN×N is also symmetric positive definite. Additionally, PBD
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is formed from a subset of the block matrices Aij of A and so it is possible to assemble
PBD from the element matrix contributions in a manner analogous to that described
in Section 2.1. Thus,

PBD = LT diag(Pe)L, (3.2)

where Pe is obtained from Ae, with values that would be assembled into Ai4 or AT
i4

set to zero for i = 1, 2, 3. The element contribution to the preconditioner (henceforth,
the element preconditioner) Pe, like Ae, is symmetric positive semidefinite, but it has
rank 11 rather than 8. Straightforward computation shows that the nullspace of Pe

is spanned by vectors corresponding to 1, s1, s2, s2
1 − s2

2 and s3
1(2s2 − 1) + s3

2(1 −
2s1) + 3s1s2(s2 − s1). Note that the last of these functions is a combination of the
last three functions in (2.1). Consequently, the nullspace of diag(Pe) is contained in
the nullspace of diag(Ae) as stated in the following lemma, which will be relevant in
the subsequent analysis.

Lemma 3.1. Let diag(Pe) be as in (3.2) and diag(Ae) be as in (2.2). Then
null(Pe) ⊂ null(Ae) and null(diag(Pe)) ⊂ null(diag(Ae)).

We investigate analytically the spectral properties of P−1
BDA. For convenience we

introduce the notation

A =


A11 A12 A13 A14

AT
12 A22 A23 A24

AT
13 AT

23 A33 A34

AT
14 AT

24 AT
34 A44

 =

[
A B
BT A44

]
, PBD =

[
A

A44

]
. (3.3)

Then the eigenvalues of P−1
BDA are characterised by the following theorem.

Theorem 3.2. Assume that rank(B) = r in (3.3). Then P−1
BDA ∈ RN×N , with

A and PBD given by (1.4) and (3.1), respectively, has N − 2r unit eigenvalues. The
remaining 2r eigenvalues λ satisfy

0 < 1−√µmax ≤ λ ≤ 1 +
√
µmax < 2,

where µmax ∈ (0, 1) is the largest eigenvalue of A−1
44 B

TA−1B .

Proof. Since P−1
BDA is similar to P−

1
2

BDAP
− 1

2

BD, which is symmetric positive definite,
any eigenvalue λ of P−1

BDA is real and positive. Using (3.3), we see that λ satisfies

Au +Bv = λAu, (3.4)

BTu +A44v = λA44v, (3.5)

where u ∈ R3n and v ∈ Rn are not simultaneously zero and N = 4n.
If λ = 1 then (3.4) implies that Bv = 0, i.e., that v = 0 or v ∈ null(B). We

can find n − r linearly independent vectors in null(B) for which (3.4) and (3.5) are
satisfied with u = 0. Otherwise, v = 0 and it follows from (3.5) that u ∈ null(BT ).
Since we can find 3n − r linearly independent vectors in null(BT ), we have that one
is an eigenvalue of P−1

BDA with multiplicity 4n− 2r = N − 2r.
If λ 6= 1 then (3.4) implies that (λ − 1)−1A−1Bv = u and substituting for u

in (3.5) gives that

A−1
44 B

TA−1Bv = (λ− 1)2v.

From this we see that non-unit eigenvalues λ of P−1
BDA are given by λ = 1 +

√
µ and

λ = 1−√µ, where µ is a nonzero eigenvalue of A−1
44 B

TA−1B . Also, since A is positive
definite, 0 < µ < 1 [21, Theorem 7.7.7]. The result follows.
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The rank of B is at most n, so at least 2n eigenvalues are equal to one, while the
largest non-unit eigenvalue is less than two, regardless of the mesh size. The focus of
the remainder of this section is to bound the smallest non-unit eigenvalue, since doing
so ensures mesh-independent convergence.

To bound the smallest eigenvalue of P−1
BDA we adapt the analysis of Wathen [34],

[35], [36] to our case. The basic idea is to determine the eigenvalues of the precon-
ditioned element matrix diag(Pe)

−1 diag(Ae) and to then obtain mesh-independent
bounds using Rayleigh quotients. In our case this approach is complicated by the
fact that the singular matrices diag(Ae) and diag(Pe) have nullspaces of different di-
mensions. However, we can still apply the general methodology since we know from
Lemma 3.1 that null(diag(Pe)) ⊂ null(diag(Ae)) ⊂ R16M .

To deal with the different nullspaces involved it is useful to introduce certain
subspaces of R16M . Specifically, we define:

R := range(diag(Ae)), Z := null(diag(Ae)),

N := null(diag(Pe)), M := Z ∩N⊥,
(3.6)

where N⊥ is the space of all vectors orthogonal to vectors in N . With these spaces,
R16M = R + N +M, with N ⊂ Z. Furthermore, since the matrices diag(Ae) and
diag(Pe) are block diagonal, the basis vectors of R, N , Z andM can be constructed
from their element contributions.

In addition to the spaces defined above, we require the following lemma that shows
that nonzero vectors in RN cannot be mapped to Z by the connectivity matrix.

Lemma 3.3. If x ∈ RN is a nonzero vector then Lx 6∈ Z, where L, diag(Ae),
diag(Pe) and Z are defined by (2.3), (2.2), (3.2) and (3.6), respectively.

Proof. Both A and PBD are positive definite, which implies that for any x 6= 0,

Ax = LT diag(Ae)(Lx) 6= 0 and PBDx = LT diag(Pe)(Lx) 6= 0.

We know from Lemma 3.1 that null(diag(Pe)) ⊂ null(diag(Ae)) = Z, so Lx 6∈ Z.
Both A and PBD are positive definite and so λmin(P−1

BDA) has the variational
characterisation [28, Chapters 1 and 15]

λmin(P−1
BDA) = min

x 6=0

xTAx
xTPBDx

= min
y=Lx,
x 6=0

yT diag(Ae)y

yT diag(Pe)y
.

Let y = yR + yM + yN , where yR ∈ R, yN ∈ N , and yM ∈ M with R, N and M
defined in (3.6). Lemma 3.3 shows that yR 6= 0 and so

λmin(P−1
BDA) = min

y=yR+yM
yR 6=0

yT
R diag(Ae)yR

(yR + yM)T diag(Pe)(yR + yM)
. (3.7)

This appears problematic because, without any restriction on the size of yM, the
smallest eigenvalue λmin(P−1

BDA) could asymptotically tend to zero. To prevent this,
we must somehow bound the size of the denominator of (3.7). This is achieved by the
next result, provided that yT

R diag(Pe)yR ≥ δ yT
M diag(Pe)yM for some δ ≥ δ∗ > 0, a

condition that we verified numerically in Table 3.3 for the regular and stretched grids
depicted in Figure 3.1.

Lemma 3.4. Let y = Lx, x ∈ RN , x 6= 0 be decomposed as

y = yR + yM + yN , (3.8)
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where yR ∈ R, yN ∈ N and yM ∈M with R, N and M defined in (3.6). Addition-
ally, assume that

yT
R diag(Pe)yR ≥ δ yT

M diag(Pe)yM (3.9)

for some δ ≥ δ∗ > 0. Then

(yR + yM)T diag(Pe)(yR + yM) ≤ ζyT
R diag(Pe)yR, (3.10)

where ζ = 2 (1 + 1/δ) .
Proof. From Lemma 3.3 we know that yR 6= 0. Since diag(Pe) is symmetric

positive semidefinite it has a semidefinite square root and there are vectors a ∈ R16M

and b ∈ R16M for which (yR + yM)T diag(Pe)(yR + yM) = (a + b)T (a + b).
Now, for any vectors a and b of the same dimension

0 ≤ ‖a− b‖22 = (a− b)T (a− b) = 2(aTa + bT b)− (a + b)T (a + b)

or (a + b)T (a + b) ≤ 2(aTa + bT b). Thus,

(yR + yM)T diag(Pe)(yR + yM) ≤ 2(yT
R diag(Pe)yR + yT

M diag(Pe)yM). (3.11)

Combining (3.11) with (3.9) gives (3.10).
We have been unable to prove that (3.9) holds for all meshes for the Dirichlet

biharmonic problem, since it does not appear straightforward to remove the influence
of the connectivity matrix L. However, there is strong numerical evidence to suggest
that the assertion holds. In particular, let PR and PM be orthogonal projectors onto
R and M, respectively. Then for any vector y = Lx, x 6= 0,

yT
R diag(Pe)yR

yT
M diag(Pe)yM

=
xTLTPT

R diag(Pe)PRLx

xTLTPT
M diag(Pe)PMLx

≥ δmin,

where

δmin = λmin

(
(LTPT

M diag(Pe)PML)−1(LTPT
R diag(Pe)PRL)

)
. (3.12)

The value of δmin is tabulated for different uniform meshes in Table 3.1. From
this we see that for square elements δmin appears to tend to 1.05, so that (3.9) is
satisfied for uniformly refined meshes of square elements with δ > 1.05.

With these results in hand, we now bound the smallest eigenvalue of P−1
BDA.

Under the assumption (3.9), we combine the decomposition (3.8) with Lemma 3.4 to
give that, for any y = Lx, x 6= 0,

yT diag(Ae)y

yT diag(Pe)y
=

yT
R diag(Ae)yR

(yR + yM)T diag(Pe)(yR + yM)
≥ 1

ζ

yT
R diag(Ae)yR

yT
R diag(Pe)yR

, (3.13)

where by Lemma 3.3, yR 6= 0. It follows from (3.7) that

λmin(P−1
BDA) ≥ θ

ζ
, θ := min

yR∈R
yR 6=0

yT
R diag(Ae)yR

yT
R diag(Pe)yR

. (3.14)

Since diag(Pe), diag(Ae) and the projector PR onto R are block diagonal, the above
minimisation over all nonzero yR can be carried out using individual element matrices.
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Table 3.1
Smallest (λmin) and largest (λmax) eigenvalues of the preconditioned operator P−1

BDA, rank(B)
from Theorem 3.2 and δmin from (3.12) for a sequence of uniformly refined grids and square ele-
ments.

Elements 4× 4 8× 8 16× 16 32× 32 64× 64
N 36 196 900 3844 15876
λmin 0.72 0.64 0.61 0.60 0.60
λmax 1.28 1.36 1.39 1.40 1.40

rank(B) 9 49 225 961 3969
δmin 1.17 1.06 1.05 1.05 1.05

We computed the minimum for our element matrices and found that θ in (3.14)
is larger than 0.046 for square elements. Since ζ < 3.91 for square elements, we have
that λmin(P−1

BDA) > 0.0118. Combining (3.9) with Theorem 3.2 gives the following
bounds on the eigenvalues of P−1

BDA.
Corollary 3.5. Let A and PBD be as in (1.4) and (3.1) and assume that (3.9)

holds. Then for square elements the eigenvalues λ of P−1
BDA satisfy 0.0118 < λ ≤ 2

and κ2(P−1
BDA) < 170 independently of the mesh spacing parameter h.

Comparison with Table 3.1 shows that the bounds in Corollary 3.5 are pessimistic.
However, combined with the high multiplicity of the unit eigenvalue, they show that
we can expect fast convergence of preconditioned CG whenever (3.9) is satisfied.

We also tested assumption (3.9) for meshes of elements stretched in the x1 di-
rection, with a denoting the ratio of the length of the horizontal side to the length
of the vertical, as shown in Figure 3.1. We see from Table 3.2 that δmin decreases as
the aspect ratio increases but that, for a fixed aspect ratio, δmin seems to tend to a
constant as the mesh is refined. On the other hand, θ in (3.14) actually increases with
a (see Table 3.3). The net result is the eigenvalue bound θ/ζ in Table 3.3 that slowly
decreases as the aspect ratio increases but is asymptotically independent of the mesh
width, and that qualitatively captures the behaviour of the smallest eigenvalue.

x1

x2

a = 1 a = 1.5 a = 2

Fig. 3.1. Stretched elements. The domain is stretched in the x1 direction and the deformation
is described by the aspect ratio a.

4. A practical preconditioner. Although the preconditioner PBD in (3.1) has
favourable spectral properties, it is prohibitively expensive to apply for large problems,
since it requires the solution of linear subsystems involving the 3n×3n matrix A. We
will now investigate the block bordered diagonal (BBD) preconditioner

PBBD =


A11 A12 A13

AT
12 A22

AT
13 A33

A44

 (4.1)

that is formed by omitting A23 and AT
23 from PBD. Unlike PBD, the symmetric

positive definiteness of A is not enough to guarantee that PBBD is positive definite.
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Table 3.2
Smallest (λmin) and largest (λmax) eigenvalues of the preconditioned operator P−1

BDA and δmin

from (3.12) for stretched grids with different aspect ratios a.

Elements 4× 4 8× 8 16× 16 32× 32 64× 64
N 36 196 900 3844 15876

a = 1.5
λmin 0.62 0.52 0.50 0.49 0.49
λmax 1.38 1.48 1.5 1.51 1.51
δmin 0.85 0.59 0.52 0.51 0.50

a = 2
λmin 0.47 0.38 0.35 0.34 0.34
λmax 1.53 1.62 1.65 1.66 1.66
δmin 0.58 0.34 0.28 0.27 0.27

a = 2.5
λmin 0.36 0.27 0.25 0.24 0.24
λmax 1.64 1.73 1.75 1.76 1.76
δmin 0.41 0.22 0.18 0.17 0.16

Table 3.3
The values of δ∗ and ζ in Lemma 3.4, θ in (3.14) and the lower bound θ/ζ on λmin(P−1

BDA)
for stretched elements with different aspect ratios a.

a 1 1.5 2 2.5
δ∗ 1.05 0.50 0.27 0.16
ζ 3.9 6.0 9.5 14
θ 0.047 0.053 0.062 0.068
θ/ζ 0.011 0.008 0.006 0.004

However, PBBD was found to be positive definite in all the numerical experiments
(performed with square, stretched and deformed meshes) presented in Section 5 below.
Compared to the even simpler block Jacobi preconditioner

PJ =


A11

A22

A33

A44

 , (4.2)

PBBD retains the coupling between u and both first derivative ( ∂u
∂s1

and ∂u
∂s2

) DOFs.
We will see in Section 5 that this is essential to obtaining low and asymptotically
constant iteration counts as the mesh is refined.

The action of P−1
BBD on a vector can be computed by means of the unsymmetric

UL decomposition

PBBD = UL =


I A12A

−1
22 A13A

−1
33

I
I

I



S11

AT
12 A22

AT
13 A33

A44

 , (4.3)

where

S11 = A11 −A12A
−1
22 A

T
12 −A13A

−1
33 A

T
13. (4.4)

Note that the solve Uw = v can be performed in a block parallel manner.

The remainder of this section is devoted to understanding the spectral properties
of P−1

BBDA and deriving an approximation that can be implemented in a cost-optimal
manner.
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4.1. Eigenvalue analysis. The block structure of PBBD and, in particular, the
indefiniteness of the element matrices used in its assembly prevent us from applying
the previously introduced analysis to bound the spectrum of P−1

BBDA. Instead, we
consider the eigenvalues of P−1

BBDPBD and then apply the bounds

λmin(P−1
BBDPBD)λmin(P−1

BDA) ≤ λ(P−1
BBDA) ≤ λmax(P−1

BBDPBD)λmax(P−1
BDA),

(4.5)
which follow from the Courant-Fischer theorem [21, Theorem 4.2.11], in conjunction
with the bounds in Corollary 3.5. The eigenvalues of P−1

BBDPBD are given in the
following lemma.

Lemma 4.1. Let rank(A23) = s. Then 1 is an eigenvalue of P−1
BBDPBD with

multiplicity N − 2s while the remaining 2s eigenvalues η satisfy

(G− FA−1
11 F

T )v = η(G̃− FA−1
11 F

T )v, (4.6)

where v 6= 0,

FT =
[
A12 A13

]
, G =

[
A22 A23

AT
23 A33

]
and G̃ =

[
A22

A33

]
. (4.7)

Proof. In the notation of (3.3)

PBBD =

[
Ã

A44

]
, Ã =

A11 A12 A13

AT
12 A22

AT
13 A33


and

P−1
BBDPBD =

[
Ã−1A

In

]
,

where In is the identity matrix of dimension n. This shows that 1 is an eigenvalue of
P−1
BBDPBD with multiplicity at least n.

To obtain the remaining 3n eigenvalues let us further partition Ã and A as

Ã =

[
A11 FT

F G̃

]
, A =

[
A11 FT

F G

]
,

where F and G are as in (4.7). Then, the result is obtained by a straightforward
extension of Theorem 3.1 of Dollar et al. [13] to the case of rank-deficient F , which
we sketch out for completeness.

The eigenvalues η of Ã−1A satisfy

A11u + FTv = ηA11u + ηFTv, (4.8)

Fu +Gv = ηFu + ηG̃v, (4.9)

where u ∈ Rn and v ∈ R2n are not simultaneously zero. From (4.8) we see that either
η = 1 or A11u + FTv = 0. If η = 1 then, letting v = [vT

1 vT
2 ]T with v1,v2 ∈ Rn, we

find that there are n − s linearly independent vectors v1 ∈ null(A23) for which (4.8)
and (4.9) are satisfied with v2 = u = 0. Similarly, there are n−s linearly independent
vectors v2 ∈ null(AT

23) for which (4.8) and (4.9) are satisfied with v1 = u = 0.
Otherwise, v = 0 and we can find n linearly independent vectors u 6= 0. Combining
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Table 4.1
Computed smallest (λmin) and largest (λmax) eigenvalues of the preconditioned operator

P−1
BBDA as well as rank(A23) for a sequence of uniformly refined grids of square elements.

Elements 4× 4 8× 8 16× 16 32× 32 64× 64
N 36 196 900 3844 15876
λmin 0.72 0.62 0.58 0.56 0.55
λmax 1.27 1.38 1.40 1.41 1.41

rank(A23) 8 48 224 960 3968

these results shows that η = 1 with multiplicity 3n−2s. If η 6= 1 then u = −A−1
11 F

Tv
and substituting into (4.9) gives (4.6).

Similarly to Theorem 3.2 we see that λ = 1 is an eigenvalue of P−1
BBDPBD with

high multiplicity. However, we have been unable to bound the remaining 2s eigenval-
ues. In spite of this, combining Lemma 4.1 with Corollary 3.5 and (4.5) shows that
most of the eigenvalues of P−1

BBDA lie in a bounded interval.
Corollary 4.2. When square elements are used and (3.9) is satisfied at least

N − 2s eigenvalues of P−1
BBDA lie in (0.0118, 2). Any remaining eigenvalues lie in

(0.0118ηmin, 2ηmax), where ηmin and ηmax are the smallest and largest eigenvalues of
the generalised eigenvalue problem (4.6).

Remark 1. Analogous results hold for stretched elements if we replace 0.0118 in
Corollary 4.2 by the appropriate bound θ/ζ on λmin(P−1

BDA) in Table 3.3.
The extreme eigenvalues of P−1

BBDA are given in Table 4.1 as a function of the
problem size N . From this we see that these eigenvalues do not differ greatly from
the extreme eigenvalues of P−1

BDA (see Table 3.1), and in practice little is lost in terms
of the asymptotic convergence speed by using a more practical preconditioner. The
numerical evidence in Table 4.1 suggests that the extreme eigenvalues of P−1

BBDA
appear to be bounded under mesh refinement, although we have been unable to prove
this analytically.

4.2. Further simplifications. Although the block decomposition (4.3) allows
the efficient application of PBBD, to achieve a preconditioner with optimal cost we
require optimal solvers for linear systems involving the principal diagonal blocks S11,
A22, A33 and A44.

First, we consider spectrally equivalent approximations of A22, A33 and A44.
Lemma 4.3. Let

L22 = lump(A22), L33 = lump(A33), (4.10)

where lump(H) = {hij} with

hij =


n∑

k=1

hik, i = j,

0, i 6= j.

Then for uniformly refined meshes of square elements the eigenvalues of L−1
22 A22 and

L−1
33 A33 are contained in [1/3, 1] while the eigenvalues of diag(A44)−1A44 are contained

in [0.43, 1.24].
Proof. The matrices A22, A33 and A44 are assembled from 4 × 4 submatrices

A
(22)
e , A

(33)
e and A

(44)
e of the element matrix Ae. Additionally, the approximations

L22 and L33 are assembled from lumped versions of A
(22)
e and A

(33)
e , while diag(A44)

is assembled from the diagonal of A
(44)
e . All six of these element matrices are SPD.
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As a result, we can use the approach of Wathen [34] to prove the result. (Recall that
a similar result was used in Section 3, where we had to deal with singular element
matrices.)

Remark 2. This result is not surprising since the spectrum of A22 = A33 resem-
bles that of a scaled mass matrix, and for such matrices lumping often gives spectrally
equivalent operators. In particular, for our problem λ(A22) = λ(A33) ∼ O(h−4)λ(M),
where M is a mass matrix; for uniform grids this can be verified using Fourier anal-
ysis, similarly to the approach in [14, Section 1.6]. Additionally, on a uniform mesh
all entries of A22 and A33 are nonnegative.

Remark 3. For the stretched grids used in the numerical experiments in Section 5
below, L22, L33 and diag(A44) are still spectrally equivalent to A22, A33 and A44.
However, the spectral equivalence bounds deteriorate as the aspect ratio increases.
For example, when a = 2.5 the eigenvalues of L−1

22 A22 lie in [0.04, 1], the eigenvalues
of L−1

33 A33 lie in [0.21, 1] and the eigenvalues of diag(A44)−1A44 lie in [0.28, 2.4]. Some
off-diagonal elements of A22 and A33 were found to be negative even for an aspect
ratio of a = 1.5.

Using (4.3) and Lemma 4.3 we approximate PBBD by

P̃BBD =


I A12L

−1
22 A13L

−1
33

I
I

I



S11

AT
12 L22

AT
13 L33

diag(A44)

 , (4.11)

where

S11 = A11 −A12L
−1
22 A

T
12 −A13L

−1
33 A

T
13. (4.12)

The block S11 in (4.12) is a sparse approximation of the Schur complement S11 from
(4.4), owing to the diagonal approximations (4.10), and can be assembled cheaply.

To apply the preconditioner P̃BBD within the preconditioned CG algorithm we
must solve systems with S11, L22, L33 and diag(A44). The last three matrices are di-
agonal, and hence trivial to invert. For systems with S11 we consider two approaches:
an LU factorisation, which yields an exact solution but is not computationally optimal,
or two V(2,2)-cycles of classical algebraic multigrid (AMG) with point Gauss-Seidel
smoothing and Ruge-Stüben coarsening [25], which has optimal cost but leads to
an inexact solution (cf. Table 5.1). Using these approximations for the Schur com-

plement subsystem, we obtain the preconditioners P̃ [LU ]
BBD and P̃ [AMG]

BBD in which the
Schur complement subsidiary system is solved using an LU factorisation and AMG,
respectively. In Table 4.2 we present the spectral properties of the preconditioned

operators
(
P̃ [LU ]
BBD

)−1

A and
(
P̃ [AMG]
BBD

)−1

A. These results suggest that the spec-

trum of
(
P̃ [LU ]
BBD

)−1

A is bounded under mesh refinement, as we might expect from

the spectral equivalence bounds in Lemma 4.3, although the eigenvalues are not as
tightly clustered as those of P−1

BBDA in Table 3.1. However, the smallest eigenvalue

of
(
P̃ [AMG]
BBD

)−1

A decreases with mesh refinement; that is, the AMG approximation

is not spectrally equivalent to S11.

5. Numerical experiments. In this section we examine the effectiveness of the
preconditioners PBD, PBBD and P̃BBD at reducing the number of conjugate gradient
iterations and the computational time. Additionally, we investigate the robustness of
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Table 4.2

Smallest (λmin) and largest (λmax) eigenvalues of
(
P̃ [LU ]
BBD

)−1
A and

(
P̃ [AMG]
BBD

)−1
A for a

sequence of uniformly refined grids. For the AMG solver we use the HSL routine MI 20 [5, 22].

Note that we were unable to obtain the eigenvalues of the largest P̃ [AMG]
BBD preconditioned matrix

because of memory constraints.

Elements 4× 4 8× 8 16× 16 32× 32 64× 64
N 36 196 900 3844 15876(

P̃ [LU ]
BBD

)−1
A

λmin 0.40 0.33 0.30 0.29 0.28
λmax 1.25 1.30 1.31 1.32 1.32(

P̃ [AMG]
BBD

)−1
A

λmin 0.40 0.31 0.21 0.13 —
λmax 1.25 1.30 1.31 1.32 —

their performance with respect to stretching of the finite elements as well as defor-
mations and non-convexity of the domain. Throughout, we choose the homogeneous
Dirichlet boundary conditions g1 = g2 = 0 in (1.2). Our default domain is the unit
square domain Ω = [0, 1]2 discretised by a uniform grid of square elements. Although
we note that for finite element problems the stopping criterion for CG should be tied to
the discretisation error, to demonstrate mesh independence we terminate the precon-
ditioned CG method when the residual decreases in norm by six orders of magnitude,
that is, ‖r(k)‖2 ≤ 10−6‖r(0)‖2.

All AMG results in this section are obtained with two V(2,2)-cycles using Ruge-
Stüben coarsening and point Gauss-Seidel smoothing. We note that different AMG
methods may give different results. However, our aim is to develop an effective precon-
ditioner that is easy to implement, and so we choose off-the-shelf codes that generally
work well for finite element problems [5]. Thus, for the smaller experiments in Ta-
bles 5.1 and 5.2 we use the HSL code MI20 [5, 22] with default options, except that we
change the coarsening criterion c fail from 1 to 2 (and alter the number of V-cycles).
For all the other experiments we use Hypre’s BoomerAMG [20].

We first compare preconditioned CG iterations for PBD, PBBD, P̃ [LU ]
BBD and P̃ [AMG]

BBD

for smaller problems using Matlab. For comparison, we also present iteration counts
for the block Jacobi preconditioner (4.2) and AMG applied as a preconditioner to the
entire block re-ordered matrix A from (1.4). We stress that preconditioners PBBD

in (4.3) and P̃BBD in (4.11) are parallelisable, like the block Jacobi preconditioner
PJ in (4.2), as discussed in Section 4. Since the problems considered here are of
relatively small dimension, in addition to measuring the norm of the residual we com-
puted the relative error ‖x−x(k)‖A/‖x‖A in the energy norm at termination, which
we found to be uniformly smaller than 1.8 × 10−7. Computations were performed
with different right-hand-sides b: we used the right-hand-side from the finite element
discretisation of (1.1) for f = 1 and a random right-hand side b. Both choices result
in similar behaviour, which shows that the convergence behaviour does not depend on
the regularity of the forcing term. Consequently, only results for f = 1 are presented.

The results are given in Table 5.1, from which we see that without precondition-
ing the number of CG iterations increases rapidly, and appears to grow as O(h−2).
The application of the AMG and block Jacobi preconditioners reduces the number of
iterations somewhat, but convergence is still mesh dependent. This is not surprising
since the condition numbers of these preconditioned matrices increase as the mesh is
refined, as shown in Table 5.2. (Note that we were unable to obtain the eigenvalues
of the largest AMG preconditioned matrix because of memory constraints.) Con-

versely, the number of iterations required for PBD, PBBD and P̃ [LU ]
BBD do not increase
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Table 5.1
CG iteration counts for the unpreconditioned system, and preconditioned CG iterations counts

for several different preconditioners: AMG applied to the whole matrix A in (1.4), PJ , PBD, PBBD

and the two inexact versions P̃ [LU ]
BBD,and P̃ [AMG]

BBD .

Elements 4× 4 8× 8 16× 16 32× 32 64× 64 128× 128
N 36 196 900 3844 15876 64516

Unpreconditioned 6 29 74 216 741 2741
AMG 3 9 27 82 272 864
PJ 6 19 51 113 232 480
PBD 3 9 10 11 11 11
PBBD 4 10 11 12 13 14

P̃ [LU ]
BBD 5 14 16 17 18 19

P̃ [AMG]
BBD 8 14 18 24 33 46

Table 5.2
Smallest (λmin) and largest (λmax) eigenvalues of the AMG and Jacobi preconditioned matrices.

Elements 4× 4 8× 8 16× 16 32× 32 64× 64
N 36 196 900 3844 15876

P−1
AMGA

λmin 0.92 0.17 0.01 0.0008 —
λmax 1.00 1.00 1.00 1.00 —

P−1
J A

λmin 0.18 0.04 0.009 0.002 0.0005
λmax 1.80 2.02 2.07 2.09 2.10

markedly with mesh refinement, and our experiments later in this section for larger
problems indicate asymptotically mesh-independent convergence. This is in line with
the spectral analysis in previous sections and the computed eigenvalues in Tables 3.1,
4.1 and 4.2.

To explore the asymptotic behaviour of P̃BBD for larger problems, Figure 5.1
shows the number of iterations required for convergence of preconditioned CG, and
solution times, for PBD and the three block bordered diagonal preconditioners (PBBD,

P̃ [LU ]
BBD and P̃ [AMG]

BBD ). These results were obtained using a C++ implementation in
oomph-lib [18] with SuperLU [12] for the direct solver. Note that times for the
unpreconditioned system, and for the block Jacobi and full AMG preconditioned
systems, were similar to or larger than those of the direct method, and had poor
asymptotic behaviour. For this reason timings for these preconditioners are not shown
in Figure 5.1.

We see from Figure 5.1 that PBD and PBBD give mesh independent convergence
and that for both preconditioners the time to solution is lower than for the direct

method. The use of P̃ [LU ]
BBD instead of PBBD leads to a slight increase in iteration

counts but mesh independence is retained. Furthermore, the solution times in Fig-
ure 5.1 show that this increase in iterations is more than compensated for by the
drastically reduced computational cost of applying the preconditioner. A further im-

provement can be achieved by replacing P̃ [LU ]
BBD by P̃ [AMG]

BBD – Figure 5.1 shows that
although the iteration count increases significantly, as expected from the eigenvalue
computations in Table 4.2, using AMG still reduces the solution times. This is due

to the optimal cost of the AMG solver. Moreover, the solution times for P̃ [LU ]
BBD and

P̃ [AMG]
BBD scale approximately linearly with the problem size.

5.1. Robustness of the preconditioner. So far we have shown that the block

bordered diagonal preconditioners P̃ [LU ]
BBD and P̃ [AMG]

BBD are nearly optimal in terms of
wall clock time for a simple test problem. We will now evaluate the robustness of our
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PBD

PBBD

P̃ [LU]
BBD

P̃ [AMG]
BBD

Direct solver

Fig. 5.1. Number of preconditioned CG iterations (left) and solution times (in seconds). The
execution time of the direct method SuperLU applied to the system with coefficient matrix (1.4) is
presented for comparison. The legend applies to both plots.

a

1

Stretched
1

1
b

Distorted Non-convex

Fig. 5.2. Robustness tests. Stretched elements (left): the domain is stretched in the x1 direction
and the deformation is described by the aspect ratio a. Distorted domain and elements (middle): the
top right corner is stretched upwards in the x2 direction with the ratio of the heights of the vertical
boundaries parameterised by b. Curved non-convex domain (right).

preconditioners for problems with stretched grids and domains that are non-square
and non-convex. Stretched grids are needed, for example, for accurate computations
of biharmonic eigenfunctions near the corners of the domain (see [8]). Figure 5.2
illustrates the three tests considered:

1. Stretched Elements. The domain is stretched in the x1 direction and the
deformation is described by the aspect ratio a.

2. Distorted Elements. The top right corner is stretched upwards in the x2

direction; the ratio of the heights of the vertical boundaries is parameterised
by b.

3. Curved Domain. The rectangular domain is isoparametrically deformed to
form a non-convex curved domain.

In all tests we used the same number of elements in each coordinate direction.

We start by examining the effect of stretching the grid, as in the left of Figure 5.2,
on the preconditioners. The analysis in Section 3 (for PBD and PBBD) suggests that
an increase in the element aspect ratio is likely to have a detrimental effect on the
effectiveness of the preconditioners. This is confirmed by Figure 5.3 which shows the
iteration counts and solution times for a stretch ratio of a = 2.5. Element stretching
leads to a slight increase in the iteration counts and the solution times for PBD and
PBBD, though the asymptotic convergence rates obtained with these preconditioners
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PBD

PBBD

P̃ [LU]
BBD

P̃ [AMG]
BBD

Direct solver

Fig. 5.3. Number of CG iterations (left) and solution time in seconds (right) for robustness test
1 (stretched elements) with aspect ratio a = 2.5. The execution time of the direct method SuperLU
applied to the system with coefficient matrix (1.4) is presented for comparison. The legend applies
to both plots.

remain mesh independent. As expected, the two inexact implementations of the

block-bordered preconditioner, P̃ [LU ]
BBD and P̃ [AMG]

BBD , are affected more strongly. We
attribute this to the fact that for sufficiently large stretch ratios A22 and A33 have
negative entries, which implies that the use of lumping and diagonal approximations

in these preconditioners is less effective (cf. Remark 3). P̃ [AMG]
BBD is most sensitive

because this preconditioner is also affected by the behaviour of AMG on stretched
meshes [11]. However, despite the noticeable increase in iteration counts, the plot
of the solution times shows that the two inexact preconditioners remain significantly
faster and scale better than the two exact preconditioners or the direct solver. In fact,

over the range of problem sizes considered here, P̃ [AMG]
BBD performs best.

Figure 5.4 illustrates the effect of element stretching on the CG convergence his-
tories. For all four preconditioners, an increase in the element aspect ratio can be
seen to lead to a decrease in the convergence rates (again consistent with the eigen-
value computations in Sections 3 and 4). In all cases the norm of the scaled residual
starts with a value of one but jumps to a much larger value during the first CG it-
eration. Subsequently it decreases approximately linearly on a semi-log scale as the
CG iteration proceeds. This implies that a reduction in the CG convergence tolerance
will result in a controlled increase in the number of iterations required to achieve a
solution of the desired accuracy.

Figure 5.5 shows the iteration counts and solution times for the deformed domain

shown in the middle of Figure 5.2 (b = 1.5). In this case PBD, PBBD, and P̃ [LU ]
BBD

yield mesh independent convergence rates, whereas the number of iterations obtained

with P̃ [AMG]
BBD appears to increase linearly with the problem size. While P̃ [AMG]

BBD is still

much faster than the exact preconditioners and the direct solver, P̃ [LU ]
BBD now yields

the shortest execution times.
Finally, Figure 5.6 illustrates the performance of the preconditioners for the case

of the curved, non-convex domain shown in Figure 5.2. Here the trends are similar
to those observed for the case of stretched grids. In particular, we observe mesh-

independent convergence for P̃ [LU ]
BBD but with higher iteration counts than for square

elements. This again suggests issues with lumping/diagonal approximations for the

matrix blocks A22, A33 and A44. The iteration counts obtained with P̃ [AMG]
BBD show
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PBD

PBBD

P̃ [LU]
BBD

P̃ [AMG]
BBD

Fig. 5.4. Convergence histories for the various preconditioners for stretch ratios a = 1.0, 1.5, 2.0
and 2.5, increasing in the direction of the arrow. In all cases, the domain was discretised with
400× 400 elements.

PBD

PBBD

P̃ [LU]
BBD

P̃ [AMG]
BBD

Direct solver

Fig. 5.5. Number of CG iterations (left) and solution time in seconds (right) for robustness
test 2 (distorted elements) with b = 1.5. The execution time of the direct method SuperLU applied
to the system with coefficient matrix (1.4) is presented for comparison. The legend applies to both
plots.

some signs of saturation, and this preconditioner leads to the shortest execution times

overall, closely followed by P̃ [LU ]
BBD.

6. Conclusions. We have presented effective preconditioners for the C1 finite
element discretisation of the Dirichlet biharmonic problem using Hermitian bicubic
elements. The preconditioners are easy to set up as they only involve operations
on blocks that are readily extracted from the full system; these blocks can also be
computed from element matrices. On uniform meshes both the block diagonal and
block bordered diagonal preconditioners appear to give mesh independent conver-
gence. Moreover, we analysed the spectrum of block diagonal and block bordered
diagonal preconditioners and showed that, under a certain condition, the block diag-
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PBD

PBBD

P̃ [LU]
BBD

P̃ [AMG]
BBD

Direct solver

Fig. 5.6. Number of CG iterations (left) and solution time in seconds (right) for robustness test
3 (curved non-convex domain). The execution time of the direct method SuperLU applied to the
system with coefficient matrix (1.4) is presented for comparison. The legend applies to both plots.

onal preconditioner PBD gives mesh independent convergence; the required condition
holds for the uniform and stretched meshes tested here. Our analysis of the block di-
agonal preconditioner uses the approach of Wathen [34], [35], [36], which assumes that
the coefficient matrix and preconditioner are symmetric positive definite and are as-
sembled from element matrices. As such, Wathen’s appealing technique is applicable
to other finite element discretisations, differential operators and preconditioners.

To obtain a cost-optimal implementation, we further simplified the block bordered
diagonal preconditioner PBBD by lumping certain block matrices and using AMG for
the approximate solution of a sparse Schur complement subsidiary linear system. We
tested this approximate preconditioner on square, stretched and distorted elements
and on non-convex domains. In all cases we observed mesh-independent convergence

for PBD, PBBD and P̃ [LU ]
BBD. Although P̃ [AMG]

BBD does not give mesh independent con-
vergence, in many cases it gives the fastest execution time. However, stretching or
distorting elements increased both the iteration counts and wall clock times, particu-
larly for the AMG version of the preconditioner. An alternative to the current AMG
solver could alleviate this issue. For example, in geometric multigrid, line smoothing
is known to improve performance in the case of stretched or distorted meshes. It
would be interesting to investigate this issue further.
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