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Abstract

Efficient analysis and simulation of multiscale systems of chemical kinetics is
an ongoing area for research, and is the source of many theoretical and compu-
tational challenges. In this paper, we present a significant improvement to the
constrained approach, which allows us to compute the effective generator of the
slow variables, without the need for expensive stochastic simulations. This is
done through finding the null space of the generator of the constrained system.
For complex systems where this is not possible, the constrained approach can
then be applied in turn to the constrained system in a nested manner, mean-
ing that the problem can be broken down into solving many small eigenvalue
problems. Moreover, this methodology does not rely on the quasi steady-state
assumption, meaning that the effective dynamics that are approximated are
highly accurate, and in the case of systems with only monomolecular reactions,
are exact. We will demonstrate this with some numerics, and also use the
effective generators to sample paths which are conditioned on their endpoints.

Keywords: Stochastic, multiscale, chemical kinetics, constrained dynamics

1. Introduction1

Understanding of the biochemical reactions that govern cell function and2

regulation is key to a whole range of biomedical and biological applications and3

understanding mathematical modelling of gene regulatory networks has been an4

area of huge expansion over the last half century. Due to the low copy numbers5

of some chemical species within the cell, the random and sporadic nature of6

individual reactions can play a key part in the dynamics of the system, which7

cannot be well approximated by ODEs[7]. Methods for the simulation of such a8

system, such as Gillespie’s stochastic simulation algorithm (SSA)[11] have been9

around for some decades. Versions which are more computationally efficient10

have also been developed in the intermediate years[10, 3].11
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Unfortunately, their application to certain systems can be computationally12

intractable. The algorithms simulate every single reaction individually. If the13

system is multiscale, i.e. there are some reactions (fast reactions) which are14

happening many times on a timescale for which others (slow reactions) are15

unlikely to happen at all, then in order for us to understand the occurrences of16

the slow reactions, an unfeasible number of fast reactions must be simulated.17

This is the motivation for numerical methods which allow us to approximate18

the dynamics of the slowly changing quantities in the system, without the need19

of simulating all of the fast reactions.20

For systems which are assumed to be well-mixed, there are many different21

approaches and methods which have been developed. For example the τ -leap22

method[13] speeds up the simulation by timestepping by an increment within23

which several reactions may occur. This can lead to problems when the copy24

numbers of one or more of the species approaches zero, and a number of different25

methods for overcoming this have been presented[20, 1].26

Several other methods are based on the quasi steady-state assumption (QSSA).27

This is the assumption that the fast variables converge in distribution in a time28

which is negligible in comparison with the rate of change of the slow variable.29

Through this assumption, a simple analysis of the fast subsystem yields an ap-30

proximation of the dynamics of the slow variables. This fast subsystem can31

be analysed in several ways, either through analysis and approximation[2], or32

through direct simulation of the fast subsystem[22].33

Another approach is to approximate the system by a continuous state-space34

stochastic differential equation (SDE), through the chemical Langevin equation35

(CLE)[12]. This system can then be simulated using numerical methods for36

SDEs. An alternative approach is to approximate only the slow variables by an37

SDE. The SDE parameters can be found using bursts of stochastic simulation38

of the system, initialised at a particular point on the slow state space[8], the39

so-called “equation-free” approach. This was further developed into the con-40

strained multiscale algorithm (CMA)[5], which used a version of the SSA which41

also constrained the slow variables to a particular value. Using a similar ap-42

proach to [2], the CMA can similarly be adapted so that approximations of the43

invariant distribution of this constrained system can be made without the need44

for expensive stochastic simulations[6]. However, depending on the system, as45

with the slow-scale SSA, these approximations may incur errors.46

Analysis of mathematical models of gene regulatory networks (GRNs) is47

important for a number of reasons. It can give us further insight into how im-48

portant biological processes within the cell, such as the circadian clock[21] or49

the cell cycle[16] work. In order for these models to be constructed, we need50

to observe how these systems work in the first place. Many of the observation51

techniques, such as the DNA microarray[18], are notoriously subject to a large52

amount of noise. Moreover, since the systems themselves are stochastic, the53

problem of identifying the structure of the network from this data is very diffi-54

cult. As such, the inverse problem of characterising a GRN from observations55

is a big challenge facing our community[14].56

One popular approach to dealing with inverse problems, is to use a Bayesian57
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[1] Define a dominating process to have transition rates given by the matrix
M = 1

ρG + I.

[2] This process has uniformly distributed reaction events on the time interval
[t0, t1]. The number r of such events is given by (1).

[3] Once r = r̂ has been sampled, the type of each event must be decided,
by sampling from the distribution (2), starting with the first event. An
event which corresponds to rate mi,i indicates that no reaction event has
occurred at this event.

[4] Once all event types have been sampled, we have formed a sample from
the conditioned path space.

Table 1: A summary of the methodology presented in [9], for sampling paths of Markov-
modulated Poisson processes, conditioned on their endpoints.

framework. The Bayesian approach allows us to combine prior knowledge about58

the system, complex models and the observations in a mathematically rigorous59

way[19]. In the context of GRNs, we only have noisy observations of the concen-60

trations of species at a set of discrete times. As such, we have a lot of missing61

information. This missing data can be added to the state space of quantities that62

we wish to infer from the data that we do have. This complex probability distri-63

bution on both the true trajectories of the chemical concentrations, and on the64

network itself, can be sampled from using Markov chain Monte Carlo (MCMC)65

methods, in particular a Gibb’s sampler[9]. Within this Gibb’s sampler, we66

need a method for sampling a continuous path for the chemical concentrations67

given a guess at the reaction parameters, and our noisy measurements. Exact68

methods for sampling paths conditioned on their endpoints have been developed69

[9, 17].70

The problems become even more difficult when, as is often the case, the71

systems in question are also multiscale. This means that these inverse problems72

require a degree of knowledge from a large number of areas of mathematics.73

Even though many of the approaches that are being developed are currently74

out of reach in terms of our current computational capacity, this capacity is75

continually improving. In this paper we aim to progress this methodology in a76

couple of areas.77

1.1. Conditioned path sampling methods78

We will briefly review the method presented in [9] for the exact sampling79

of conditioned paths in stochastic chemical networks. Suppose that we have a80

Markov jump process, possibly constructed from such a network, with a gener-81

ator G. We wish to sample a path, conditioned on X(t0) = x0 and X(t1) = x1.82

Such a path can be found by creating a dominating process (i.e. a process whose83

rate is greater than the fastest rate of any transitions of the original system)84

with a uniform rate.85

3



We define the rate to be greater than the fastest rate of the process with
generator G, so that

ρ > max
i
Gi,i.

Then we define the transition operator of the dominant process by:

M =
1

ρ
G + I.

We can then derive the number of reaction events NU of the dominating process86

in the time interval [t0, t1] by:87

P(NU = r) =
exp(−ρt)(ρt)r/r![Mr]x0,xt

[exp(Gt)]x0,xt

. (1)

A sample is taken from this distribution. The times {t∗1, t∗2, . . . t∗r} of all of the88

r reaction events can then be sampled uniformly from the interval [t0, t1]. The89

only thing that then remains is to ascertain which reaction has occurred at each90

reaction event. This can be found by computing, starting with X(t0) = x0, the91

probability distribution defined by:92

P(X(t∗j ) = x|X(t∗j−1 = x∗j−1, X(t1) = x1) =
[M]x∗

j−1,x
[Mr−j ]x,x1

[Mr−j+1]x∗
j−1,x1

. (2)

This method, summarised in Table 1 exactly samples from the desired distri-93

bution, but depending on the size and sparsity of the operator G, it can also94

be very expensive. In the context of multiscale systems with a large number of95

possible states of the variables, the method quickly becomes computationally96

intractable. For numerical examples of this method, see Section 5.97

1.2. Summary of Paper98

In Section 2, we introduce a version of the Constrained Multiscale Algo-99

rithm (CMA), which allows us to approximate the effective generator of the slow100

processes within a multiscale system. In particular, we explore how stochastic101

simulations are not required in order to compute a highly accurate effective gen-102

erator. In Section 3, we aim to compare the accuracy of the effective generators103

arrived at through the QSSA and CMA approaches. In Section 4, we describe104

how the constrained approach can be extended in a nested structure for systems105

for whose constrained subsystem is itself a large intractable multiscale system,106

By applying the methodology in turn to the constrained systems arising from107

the constrained approach, we can make the analysis of highly complex and high108

dimensional systems computationally tractable. In Section 5, we present some109

numerical results, including some examples of conditioned path sampling using110

effective generators approximated using the CMA. Finally, we will summarise111

our findings in Section 6.112
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[1] Calculate propensity functions αi(t), i = 1, 2, . . . ,M .

[2] Next reaction time is given by

τ = − log (u)

α0(X(t))
, where α0(X(t)) =

M∑
k=1

αk(X(t)). (3)

[3] Choose one j ∈ {1, . . . ,M}, with probability αj/α0, and perform reaction
Rj .

[4] If S 6= s due to reaction j occurring, then reset S = s while not changing
the value of F.

[5] If Xi < 0 for any i, then revert to the state of the system before the
reaction j occurred.

[6] Continue with step [1] with time t = t+ τ .

Table 2: The Constrained Stochastic Simulation Algorithm (CSSA). Simulation starts with
S = s where s is a given value of the slow variable.

2. The Constrained Multiscale Algorithm113

The Constrained Multiscale Algorithm was originally designed as a mul-114

tiscale method which allowed us to compute the effective drift and diffusion115

parameters of a diffusion approximation of the slow variables in a multiscale116

stochastic chemical network. The idea was simply to constrain the original dy-117

namics to a particular value of the slow variable. This can be done through a118

simple alteration of the original SSA by Gillespie[11]. As shown in [5], the SSA119

is computed as normal, until one of the slow reactions occurs. After the reaction120

has occurred, the slow variable is then reset to its original value, in such a way121

that the fast variables are not affected. The constrained SSA is given in Table122

2.123

Let us illustrate this using an example which we shall be using also later in124

the paper.125

R1 : ∅ k1−→ X1

R2 : X2
k2−→ ∅ (4)

R3 : X1
K−→ X2

R4 : X2
K−→ X1.

In certain parameter regimes, for example where K � k1V + k2, this system126

is multiscale, with reactions R3 and R4 occurring many times on a time scale127

for which reactions R1 and R2 are unlikely to happen at all. The variable128

S = X1+X2 is unaffected by these fast reactions, and as such is a good candidate129

for the slow variable which we wish to analyse. We have two choices for the fast130

variable, either F = X1 or F = X2. As detailed in [5], it is preferable to pick131
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fast variables, where possible, that are not involved in zeroth order reactions.132

Therefore, in this case, we choose F = X2. Therefore, the constrained system133

can be written in the following way:134

C1 : X1 +X2 = S,

R2 : X2
k2−→ X1

R3 : X1
K−→ X2 (5)

R4 : X2
K−→ X1.

Note that reaction R1 has disappeared completely, since when we reset the slow135

variable for this reaction, we simply reset X1 back to its previous value (as it is136

not our chosen fast variable) and as such there is no net effect of the reaction137

on either the fast or slow variables. Similarly, reaction R2 has been altered. If138

this reaction occurs, the slow variable is reduced by one. We are not permitted139

to change the fast variable X2 in order to reset the slow variable to its original140

value, and therefore we must increase X1 by one, giving us a new stoichiometry141

for this reaction.142

In the original CMA, statistics were taken regarding the frequency of the143

slow reactions, at each point of the slow domain, and were used to construct144

the effective drift and diffusion parameters of an effective diffusion[5, 4] process.145

However, this constrained approach can also be used to compute an effective146

generator for the original discrete slow process, as we will now demonstrate. The147

CMA can be very costly, due to the large computational burden of the stochastic148

simulations of the constrained system. In this section, we will also introduce149

a method for avoiding the need for these simulations, whilst also significantly150

improving accuracy.151

The constrained systems can often have a very small state space (which152

we will denote Γ(s)), since they are constrained to a single value of the slow153

variables. For example, for the constrained system (5), there are only
⌊
S
2

⌋
154

possible states. Such a system can easily be fully analysed. For example, the155

invariant distribution can be found by characterising the one-dimensional null156

space of the generator matrix of the constrained process. For small to medium-157

sized systems, this is far more efficient than exhaustive Monte Carlo simulations.158

For other systems with larger constrained state spaces, stochastic simulation159

may still be the best option, although in Section 4 we show how the constrained160

approach can be applied iteratively until the constrained subsystem is easily161

analysed.162

Suppose that we have a constrained system withNF fast variables, F1, F2, . . . , FNF
.

The generator for the constrained system with S = s is given by GF (s). Since
the system is ergodic, there is a one-dimensional null space for this genera-
tor. This can be found by using standard methods for identifying eigenvectors,
by searching for the eigenvector corresponding to the eigenvalue equal to zero.
Krylov subspace methods allows us to find these eigenvectors with very fast
convergence rates. Suppose we have found such a vector v, such that

GF (s)v = 0.
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[1] For each value of the slow variable S = s ∈ Ω, compute the generator of
the constrained subsystem, Gs.

[2] Find the zero eigenvector v of Gs, and let p(s) = v∑
vi

.

[3] Approximate the effective propensities at each point s ∈ Ω using (6).

[4] Construct an effective generator G of the slow processes of the system
using these effective propensities.

Table 3: The CMA approach to approximating the effective generator G of the slow variables,
without the need for stochastic simulations.

Then our approximation to the invariant distribution of this system is given by
the discrete probability distribution represented by the vector

p(s) =
v∑
vi
.

Our aim is now to use this distribution to find the effective propensities of the163

slow reactions of the original system.164

Suppose that we have MS slow reactions in the original system. Each has165

an associated propensity function α1(S, F ), α2(S, F ), . . . , αMS
(S, F ). We now166

simply want to find the expectation of each of these propensity functions with167

respect to the probability distribution p(s):168

EF∼p(s)αi(S, F ) =
∑

f∈Γ(s)

pf (s)αi(S, f). (6)

Having computed this expectation for all of the slow propensities, over all re-169

quired values of the slow variable, then an effective generator for the slow vari-170

able can be constructed.171

3. Comparing the CMA and QSSA approaches172

A very common approach to approximating the dynamics of slowly changing173

quantities in multiscale systems, is to invoke the quasi steady-state assumption174

(QSSA). The assumption is that the fast and slow variables are operating on175

sufficiently different time scales that it can be assumed that the fast subsystem176

enters equilibrium instantaneously following a change in the slow variables. This177

assumption means that if the fast subsystem’s invariant distribution can be178

found (or approximated), then the effective propensities of the slow reactions179

can be computed. However, as demonstrated in [4], this assumption incurs an180

error, and for systems which do not have a large difference in time scales between181

the fast and slow variables, this error can be significant.182

The CMA does not rely on the QSSA, which is a strong assumption that183

we can assume that no slow reactions occur on the timescale of relaxation of184

the fast variables. Therefore, the CMA is able to take into account the effect185
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that the slow variables has on the invariant distribution of the fast variables,186

conditioned on a value of the slow variables. In a true fast-slow system, this187

will yield the same results as the QSSA, but for most systems of interest, the188

constrained approach will have a significant increase in accuracy. A difference189

in time scales is still required for the algorithm to make any sense, but there190

are not large extra errors incurred when the time scale gap is smaller, (again191

see [4]). The assumptions for the CMA are weaker than the QSSA, namely192

that we assume that the dynamics of slow variable(s) can be approximated by193

a Markov-modulated Poisson process, independently of the value of the fast194

variables. This means that we have made the assumption that the current value195

of the fast variables has no effect on the transition rates of the slow variables196

once a slow reaction has occurred. This is subtly weaker than the QSSA, and197

importantly the effect of the slow reactions on the invariant distribution of the198

fast variables is accounted for.199

If we follow the approach outlined in Table 3, we don’t even need to conduct200

any stochastic simulations to approximate the effective dynamics, and the CMA201

becomes the preferred choice for estimation of effective dynamics.202

3.1. A Linear Example203

Let us illustrate this by returning to the example given by the linear system204

(4), first by using the QSSA. The QSSA tells us that the fast subsystem (made205

up of reactions R3 and R4) reaches probabilistic equilibrium on a timescale206

which is negligible in comparison with the timescale on which the slow reactions207

are occurring. Therefore we may treat this subsystem in isolation with fixed S:208

X1

k3−→←−
k4

X2, S = X1 +X2.

This is a very simple autocatalytic reaction system, for which a great deal
of analytical results are available. For instance, we can compute the invariant
distribution for this system[15], which gives us that X2 is a binomial random
variable

X2 ∼ B
(
·, S, k3

k3 + k4

)
.

Therefore, we can compute the conditional expectation E(X2|S) = k3S
k3+k4

in this209

fast subsystem, and use this to approximate the effective rate of reaction R2.210

Therefore, the effective slow system is given by the reactions:211

∅ k̂1−→ S
k̂2−→ ∅, (7)

where212

k̂1 = k1, k̂2 =
k2E(X2)

S
=

k2k3

k3 + k4
.

Again, we can compute the invariant distribution for this effective system[15],213

which in this instance is a Poisson distribution:214

S ∼ P
(
k1V (k3 + k4)

k2k3

)
. (8)
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We can quantify the error we have made in using the quasi-steady state as-215

sumption by, for example, comparing this distribution with the true invariant216

distribution. Once again, using the results of [15], we can compute the invariant217

distribution of the system (4), which is a multivariate Poisson distribution:218

[X1, X2] ∼ P(λ̄1, λ̄2),

where λ̄1 = k1V (k2+k4)
k2k3

, and λ̄2 = k1V
k2

. Trivially one can compute the marginal219

distribution on the slow variable S:220

P(S = s) =

s∑
n=0

λ̄n1
n!

λ̄s−n2

(s− n)!
exp(−(λ̄1 + λ̄2),

=
(λ̄1 + λ̄2)s

s!
exp(−(λ̄1 + λ̄2).

Therefore S is also a Poisson variable with intensity λ = λ̄1+λ̄2 = k1V (k2+k3+k4)
k2k3

,221

which differs from the intensity approximated invariant density (8) by k1V
k3

.222

Note that k3 is one of the fast rates, and k1V is one of the slow rates, and223

therefore as the difference in timescales of the fast and slow reactions increases,224

this error decreases to zero, so that the QSSA gives us an asymptotically exact225

approximation of the slow dynamics.226

For comparison, let us compute approximations of the effective slow rates by
using the CMA. The CMA for this system tells us that we need to analyse the
constrained system (5). The constrained system in this example only contains
monomolecular reactions, and as such can be analysed using the results of [15].
The invariant distribution for this system is a binomial, such that

X2 ∼ B
(
·, S, k3

k2 + k3 + k4

)
.

Using this, we can compute the effective propensity of reaction R2,

ᾱ2(S) = k2E(X2|S) =
k2k3S

k2 + k3 + k4
,

giving us the effective rate k̄2 = k2k3
k2+k3+k4

. The invariant distribution of (7)

with this effective rate for k̄2 is once again a Poisson distribution with intensity

λ =
k1V (k2 + k3 + k4)

k2k3
,

which is identical to the intensity of the true distribution on the slow variables.227

In other words, for this example, the CMA produces an approximation of the228

effective dynamics of the slow variables for this system, whose invariant distri-229

bution is identical to the marginal invariant distribution of the slow variables230

in the full system. The constrained approach corrects for the effect of the slow231

reactions on the invariant distribution of the fast variables. In this and other232
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examples of systems with monomolecular reactions, the constrained approach233

gives us a system whose invariant distribution is exactly equal to the marginal234

distribution on the slow variables for the full system. Another example is pre-235

sented in Section 5.3, for which the constrained system is itself multiscale, and236

requires another iteration of the CMA to be applied.237

For this example, we did not even need to compute the invariant distri-238

butions of the constrained systems numerically. In Section 5.2, we will come239

across a system for which it is necessary to numerically compute the invariant240

distribution of the constrained system.241

The approaches described in Section 1.1 hit problems when the system for242

which you are trying to generate a conditioned path is multiscale. In a multiscale243

system, the rate ρ of the dominating process will be very large, and as such244

the number of reaction events will be large, even if the path we are trying to245

sample is short. Therefore Mr is likely to be a full matrix, and the number of246

calculations of (2) will be large. Moreover, the size of M is also likely to be247

large, since for each value S = s of the slow variable, there are many states,248

one for each possible value of the fast variable. All of these factors make the249

problem of computing a conditioned path in such a scenario computationally250

intractable.251

For example, let us consider the system (4). Naturally we cannot store252

the actual generator of this system, since the system is open and as such the253

generator is an infinite dimensional operator. However, the state space can254

be truncated carefully in such a way that the vast majority of the states with255

non-negligible invariant density are included, but an infinite number of highly256

unlikely states are presumed to have probability zero. Note that this means that257

we are effectively sampling paths satisfying S(t0) = s1, S(t1) = s2 conditioned258

on S(t) ∈ Ω∀t. However, even with careful truncation the number of states can259

be prohibitively large.260

Suppose we consider system (4) with parameters given by261

k1 = k2 = 1, K = 200, V = 100. (9)

Suppose that we truncate the domain for this system to

Ω = {[X1, X2]|S = X1, X2 ∈ {0, 1, . . . , 200} .

This truncated system has 2012 = 40401 different states, and therefore the gen-262

erator G ∈ R40401×40401. Although this matrix is sparse, the matrix exponential263

required in (1) is full, as is Mr for moderate r ∈ N. A full matrix of this size264

stored at double precision would require over 13GB of memory. So even for this265

system, the most simple multiscale system that one could consider, the problem266

of sampling conditioned paths is computationally intractable.267

In comparison, suppose that we use a multiscale method such as the CMA to268

approximate the effective rates of the slow reactions. Then, for the same Ω, we269

only have 401 possible states of the slow variable, a reduction of 99.25%. The270

effective generator G ∈ R401×401 would then only require 1.29MB to be stored271

as a full matrix in double precision. The dominating process for this system272
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must now have rate ρ > 299.25, instead of ρ > 40300, which is over 130 times273

bigger. This means far fewer calculations of (2). What is more, as we saw in274

Section 2, for some systems the CMA exactly computes the effective dynamics275

of the slow variables, with no errors.276

Naturally, this approach only allows us to sample the paths of the slow277

variables. However, the fast variables, if required, can easily be sampled after278

the fact, using an adapted Gillespie approach which samples the fast variables279

given a trajectory of the slow variables.280

4. The Nested CMA281

There will be many systems for which the constrained subsystem is itself a282

highly complex and multiscale system. In this event, it will not be feasible to find283

the null space of a sensibly truncated generator for the constrained subsystem.284

Therefore, we need to consider how we might go about approximating this.285

Fortunately, we already have the tools to do this, since, we can iteratively apply286

the CMA methodology to this subsystem. This is analogous to the nested287

strategy proposed in the QSSA-based nested SSA[22].288

This nested approach allows us to reduce much more complex systems in289

an accurate, computationally tractable way. The problem of finding the null290

space of the first constrained subsystem is divided into finding the null space of291

many small generators, through further constraining. An example of this nested292

approach will be demonstrated in Section 5.3.293

5. Numerical Results294

In this section we will present some numerical results produced using the295

CMA approach.296

5.1. A Simple Linear System297

First we will consider the system (4), with parameters (9). As we demon-298

strated in Section 2, the CMA can be used to compute an effective generator for299

the slow variable S = X1 + X2, whose invariant distribution is exactly that of300

the slow variable in the full system without the multiscale reduction. Moreover,301

this can be achieved with no Monte Carlo simulations, since the constrained302

subsystem contains only monomolecular reactions, and as such its invariant303

distribution can be exactly computed[15].304

At this juncture, we simply need to apply the method of Fearnhead and305

Sherlock[9] in order to be able sample paths conditioned on their endpoints.306

Suppose we wish to sample paths conditioned on S(t0 = 0) = 0 and S(t1 =307

10) = 200. The invariant distribution of this system, as shown previously in308

this paper, is a Poisson distribution with mean λ = k1V (k2+k3+k4)
k2k3

= 200.5.309

Therefore, we are attempting to sample paths which start in the tails of the310

invariant distribution, and end up close to the mean, in a timeframe for which311

an unconditioned path would easily be able to achieve the same feit.312
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Since the system is open, we are required to truncate the domain in order
to be able to store and manipulate the effective generator. We truncate the
domain to Ω = {[X1, X2]|S = X1 + X2 ≤ 400}. Therefore we aim to sample
paths

{S(t), t ∈ [0, 10] |S(0) = 0, S(10) = 200, S(t) ∈ Ω ∀t ∈ [0, 10]}.

As the number of possible states of the slow variable is relatively small, it313

was possible to compute and store full matrices for Mr as required in (1) and314

(2) for r ∈ 1, 2, . . . , 3420. r has an upper bound of 3420 as the cumulative mass315

function for the probability distribution (1) is within machine precision of one316

at r = 3420. Storing all powers of the matrices is clearly not the most efficient317

way to implement this algorithm, but for this example was possible without any318

intensive computations, and with minimal numerical error. We will present a319

more efficient approach in the next section.320
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Figure 1: (a) 10 trajectories of the slow variable S = X1 + X2 sampled conditioned on
S(0) = 0, S(10) = 200, S(t) ∈ Ω∀t ∈ [0, 10] for the system (4) with parameters (9), using the
CMA approximation of the effective generator. (b) A heat map of the trajectories plotted in
(a).

Figure 1 (a) shows the results of 10 sampled paths using this approach, and321

(b) shows a heat map of 1000 trajectories. As expected, the trajectories start at322

S(0) = 0, but quickly enter probabilistic equilibrium in a Poisson distribution323

centered around S = 200.5. In the last 2 time units of the simulations, the324

effect of the conditioned endpoint begins to take effect, and soon all of the325

trajectories converge to S = 200 at time t = 10. Note that the length of the326

paths is much longer than the average relaxation time of the slow variables, and327

as such, the paths that we are sampling are not exhibiting rare behaviour. We328

will see an example of forcing paths to exhibit rare behaviour through endpoint329

conditioning in the next section.330

We can be reasonably sure that the presented trajectories are samples from331

the space of conditioned paths, since they were formed using an effective gen-332

erator whose invariant distribution would be exactly the same as the marginal333
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distribution on the slow variables of the full system, if it weren’t for the nec-334

essary truncation of the domain. Moreover, since the invariant distributions of335

the constrained subsystems were solved analytically, the only numerical errors336

are those that are incurred when computing (1) and (2).337

Previous papers have also shown the CMA to be highly accurate in more338

complex systems[5, 4], in the context of approximating the slow process by339

a diffusion. We will now use the CMA approach presented in this paper to340

generate an effective generator for the slow variable in a system which exhibits341

bistability.342

5.2. A Bistable Example343

Sampling of conditioned paths of this nature is an integral part of the ap-344

proach of Bayesian inversion of biochemical data. A Gibb’s sampler is used345

to alternately update the network structure and system parameters, and the346

missing data (i.e. the full trajectory), sampled for example using the method347

found in [9]. However, efficient methods to sample paths of multiscale systems348

may also be useful in other areas. For instance, it may allow us to sample paths349

which make rare excursions, or large deviations from mean behaviour.350

Let us consider the following chemical system, which in certain parameter351

regimes exhibits bistable behaviour.352

R1, R2 : X2

k1−→←−
k2

X1 +X2,

R3, R4 : ∅
k3−→←−
k4

X1, (10)

R5, R6 : X1 +X1

k5−→←−
k6

X2,

In particular, we consider parameter regimes where the occurrence of reactions353

R5 and R6 are on a relatively faster timescale than the other reactions. The354

following is just such a parameter regime:355

k1 = 123.0, k2 = 1.0, k3 = 66.0, (11)

k4 = 9.4, k5 = 10.0, k6 = 4000.0.

The fast reactions in this example are reactions R5 and R6, and as such,356

S = X1+2X2 is a good choice of slow variable, since this quantity is invariant to357

these fast reactions. Figure 2 shows a plot of an approximation of the invariant358

distribution of the slow variable for this system. This approximation was found359

by constructing the full generator for the system, on a truncated domain, Ω =360

{(x1, x2) ∈ {0, 1, . . . , 500} × {0, 1, . . . , 250}. This domain is sufficiently big that361

any increases lead to negligible changes in the computed invariant distribution362

on S ∈ {0, 1, . . . , 200}, where the vast majority of the invariant probability mass363

is located, as we verified numerically. The zero eigenvector of this generator364

was then found, normalised, and then plotted. Since this system has 2nd order365
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Figure 2: Approximation of the invariant distribution on the slow variable S = X1 + 2X2

of system (10) with parameters (12), demonstrating the bistable nature of the system. Ap-
proximation was computed by finding the null space of the full generator of the system on the
truncated domain {0, 1, . . . , 500} × {0, 1, . . . , 250}.

reactions, its invariant density cannot currently be written in closed form, and366

as such, we could use this approximation on the truncated domain in order367

to quantify the accuracy of the CMA approach. This plot demonstrates the368

bistable nature of this system, which can take a long time to switch between369

the two favourable regions.370

First, we will use the CMA to approximate the effective generator of the371

slow variable. We will then find the invariant distribution arising from that372

generator, and compare it with the distribution shown in Figure 2.373

There are two choices for the fast variable, but as explained in detail in [5],374

F = X2 is the best choice, since there is a zeroth order reaction involving X1.375

This leads to the following constrained system:376

C1 : X1 + 2X2 = S, (12)

R5, R6 : X1 +X1

k5−→←−
k6

X2.

This system is an interesting example, since X2 is not affected by any of the377

slow reactions. This means that the constrained version of this system is made378

up only of the fast reactions, and therefore the CMA and QSSA-based methods379

are in complete agreement. However, the methodology we outlined in Table 3380

allows us to approximate the effective generator arising from these approaches381

without either the need for expensive stochastic simulations, or errors incurred382

through various approximations of the invariant density of the constrained (or383

equivalently for this system, fast) subsystem.384

Following this methodology, an effective generator G can be computed. The385

null space of this generator gives us an approximation of the invariant distri-386

bution. We can quantify the error we have incurred in our approximation by387
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comparing this density with the marginal density that we computed and plotted388

in Figure 2.389
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Figure 3: Plots to show approximation of the invariant distribution of the slow variable
S = X1 + 2X2 of system (10) with parameters (12), through computing the null space of the
truncated generator of the full system (blue), and of the effective generator computed using
the CMA.

The two distributions, as can be seen in Figure 3, are indistinguishable by
eye, and the relative l2-error, given by

‖pCMA − papprox‖l2
papprox‖l2

,

was equal to 3.215 × 10−3. The size of this discrepancy is very small, and390

what is more since we were comparing to another approximation (since this391

was all that we were able to do), it is not clear where this error was incurred,392

or which method is more accurate. However, the difference is small enough to393

indicate that the effective generator that we have computed using the CMA is394

a highly accurate representation of the dynamics of the slow variables within395

this system. Therefore, it is entirely reasonable to use this approximation of the396

effective generator in order to attempt to sample conditioned paths of the slow397

variable.398

Given an approximation of the effective generator of the slow variables, com-399

puted using the CMA, we can now employ the methodology of [9], as summarised400

in Section 1.1, to sample paths conditioned on their endpoints. This time, a401

full eigenvalue decomposition of the matrix M = 1
ρG + I was computed, so402

that matrices V and D could be found with V unitary and D diagonal, with403

M = V −1DV . Then rows of Mr = V −1DrV can be efficiently and accurately404

computed, as required in (1) and (2).405

Figure 4 presents results using this approach. An effective generator for the406

system (10) was computed for the domain X1 + 2X2 = S ∈ Ω = {0, 1, . . . , 500},407

and then fed into the conditioned path sampling algorithm. Figure 4 (a) shows408
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Figure 4: (a) 10 trajectories of the slow variable S = X1 + 2X2 sampled conditioned on
S(0) = 10, S(10) = 150, S(t) ∈ Ω = {0, 1, . . . , 500}∀t ∈ [0, 10] for the system (10) with
parameters (12), using the CMA approximation of the effective generator. (b) A heat map of
a set of 1000 trajectories.

10 samples of conditioned paths. Notice that as the transition time between409

the two favourable regions is relatively short compared with the length of the410

simulation, the time of the transition varies greatly between the different trajec-411

tories. This indicates that we are producing trajectories with a fair reflection of412

what happens in a transition between these regions. Figure 4 (b) shows a heat413

map of 1000 sampled paths. As time progresses, more of the trajectories make414

the transition from the lower stable region to the higher stable region, finally415

all converging to S(t1) = 150.416

5.3. An Example of the Nested CMA Approach417

In this section, we will illustrate how the nested approach outlined in Section418

4 can be applied. We will consider an example, that as before, we know what419

the invariant distribution of the slow variables should be. This gives us a way420

of quantifying any errors that we incur by applying the nested CMA approach.421

R1 : ∅ k1−→ X1

R2 : X3
k2−→ ∅

R3 : X1
κ−→ X2 (13)

R4 : X2
κ−→ X1.

R5 : X2
γ−→ X3

R6 : X3
γ−→ X2.

We will consider the following parameter system:422

k1 = k2 = 1, κ = 2000, γ = 200, V = 100. (14)

16



In this regime, there are multiple different time scales on which the reactions423

are occurring. This is demonstrated in Figure 5, where there is a clear gap in424

the frequency of reactions R1 and R2 (the slowest), R5 and R6 (fast reactions)425

and R3 and R4 (fastest reactions).
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Figure 5: Relative occurrences of the reactions R1-R6, for the system (13) with parameters
(14). The most frequent reactions are reactions R3 and R4, reactions R4 and R6 are the next
most frequent, with reactions R1 and R2 being the least frequent.

426

Suppose that we wish to use the CMA approach to reduce the dimension of427

this problem to a one dimensional system, with S1 = X1 + X2 + X3 being the428

slow variable. We wish to approximate the effective generator for the resultant429

reduced system.430

Firstly, we apply the CMA as we have done previously. There are 3 choices431

for the fast reactions, each involving two out of X1, X2 and X3. Since X1 is432

the product of a zeroth order reactions, it is preferable not to include this as433

one of the fast variables, and so we pick F1 = [X2, X3]. We then construct the434

constrained subsystem for this choice of slow and fast variables:435

C1 : X1 +X2 +X3 = S,

R2 : X3
k2−→ X1

R3 : X1
κ−→ X2

R4 : X2
κ−→ X1. (15)

R5 : X2
γ−→ X3

R6 : X3
γ−→ X2.

Note that R1 is removed, since it does not change the fast variables. R2 is the436

only other reaction which has changes. We have reduced the dimension of the437

system (due to the constraint X1 + X2 + X3 = σ for some σ ∈ N), but we are438

still left with a multiscale system, which in theory could be computationally439

intractable for us to find the invariant distribution for, through funding the null440
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space of its generator. Therefore, we can apply another iteration of the CMA441

to this constrained system.442

Reactions R3 and R4 are the fastest reactions in the system, and therefore443

we pick our next slow variable that we wish to constrain to be S2 = X1 + X2,444

which is invariant with respect to these reactions. Due to the previous constraint445

S1 = X1 + X2 + X3, we are only required to define one fast variable for this446

system. All three choices F2 = X1, X2, X3, are essentially equivalent, and so we447

pick F2 = X3. These choices lead us to this further constrained system:448

C1 : X1 +X2 +X3 = S1,

C2 : X1 +X2 = S2,

R2 : α2(X) =

{
k2X3, if X2 > 0,

0 otherwise.
(16)

ν2 = [1,−1, 0]T

R3 : X1
κ−→ X2

R4 : X2
κ−→ X1.

Notice that we now have two separate constraints, and as such reactions R5449

and R6 now have zero stoichiometric vectors. Moreover, these constraints lead450

us to a somewhat unphysical reaction for R2. The reactant for this reaction451

is X3, but only X2 and X3 are affected by this reaction. When reaction R2452

happens, we lose one X3, and gain X1. Therefore, both constraints have been453

violated. In order to reset these constraints, without changing the fast variable454

F = X3, we arrive at the stoichiometry presented in (16). Note that we add455

the condition that this reaction can only happen if X2 > 0, as we cannot have456

negative numbers of this species.457

This is a closed system, with a very limited number of different states. There-458

fore, it is computationally cheap to construct its generator, and to find that459

generator’s null space. Our aim with this system, is to find the invariant distri-460

bution of the fast variable given particular values for the constraints C1 and C2.461

This distribution will then allow us to compute the expectation of the reaction462

R4 within the constrained system (5), which is the only reaction in which is de-463

pendent on the results of the second constrained system (since X3 = S1 − S2).464

Once the invariant distribution has been found, this can be used to find the465

effective propensity of reaction R5 given a values of S1 = X1 + X2 + X3 and466

S2 = X1 +X2. In turn, the constrained system (15) can then be solved to find467

the invariant distribution on X3 given a value of S1. Finally, this leads us to468

the construction of an effective generator for the slow variable S1.469

The MATLAB code that was written to implement this process is provided
in the electronic supplementary material*****. This system was chosen as we
are able to, using the results in [15], find the exact invariant distribution of
the slow variable S1. In this instance, it is a Poisson distribution with mean
parameter

λ = k1V

(
2(κ+ 1)

κ
+

1 + γ

γ

)
= 301.05.
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The invariant distribution of the approximated effective generator of S1 was470

identical to this distribution up to machine precision.471

In comparison, if we had taken a nested QSSA-based approach, such as472

the nested SSA, we would have converged to a Poisson distribution with mean473

λ = 300, which gives a relative error of 4.285 × 10−2. This demonstrates the474

improvement that can be made by taking a constrained approach to the charac-475

terisation of conditional distributions of fast variables, as opposed to the QSSA476

approach. What is more, this can be achieved without the need for any expen-477

sive stochastic simulations.478

6. Conclusions479

In this paper, we presented a significant improvement and extension to the480

original constrained multiscale algorithm (CMA). Through constructing and481

finding the null space of the generator of the constrained process, we can find482

its invariant distribution without the need for expensive stochastic simulations.483

The CMA in this format can also be used not just to approximate the param-484

eters of an approximate diffusion, but to approximate the rates in an effective485

generator for the slow variables.486

Through iterative nesting, the CMA can be applied to much more complex487

systems, as it can be applied repeatedly if the resulting constrained system is488

itself multiscale. This makes it a viable approach for a bigger family of (possibly489

biologically relevant) systems. This nested approach breaks up the original task490

of solving an eigenvalue problem for one large matrix per row of the effective491

generator, down into many eigenvalue solves for significantly smaller generators492

for smaller dimensional problems, making the overall problem computationally493

tractable.494

It was shown that for two examples which contained only monomolecular495

reactions, that the effective generator produced by the CMA had a null space496

which was exactly equal (up to machine precision) to the true invariant dis-497

tribution of the slow variable for those systems. This was in contrast to the498

generators computed using the QSSA, which exhibited significant errors, which499

will be bigger the smaller the gap in timescales between the different reactions500

is. This demonstrates the clear advantage of the constrained approach over the501

QSSA-based approaches. The second of these systems required the use of the502

nesting structure.503

A more complex bistable system was also analysed using the CMA, and the504

invariant distribution of the computed effective generator was shown to be very505

close to the best approximation that we could make of the invariant distribution506

of the slow variables, using the null space of the original generator with as little507

truncation as we could sensibly manage with our computational resources.508

We showed how these effective generators can be used in the sampling of509

paths conditioned on their endpoints. Such an approach could be employed as510

a method to sample missing data within a Gibb’s sampler when attempting to511

find the structure of a network that was observed[9]. This approach could also512
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be used simply to simulate trajectories of the slow variables, in the same vein as513

[2] or [22]. In this instance, it would only be necessary to compute the column of514

the effective generator corresponding to the current value of the slow variables.515

We also intend to explore how similar ideas could be used in the context of516

multiscale SDEs, as an alternative method for homogenisation.517
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