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Anderson Acceleration of the Alternating Projections
Method for Computing the Nearest Correlation Matrix∗

Nicholas J. Higham, Nataša Strabić†

Abstract

In a wide range of applications it is required to compute the nearest correlation

matrix in the Frobenius norm to a given symmetric but indefinite matrix. Of the avail-

able methods with guaranteed convergence to the unique solution of this problem the

easiest to implement, and perhaps the most widely used, is the alternating projec-

tions method. However, the rate of convergence of this method is at best linear, and

it can require a large number of iterations to converge to within a given tolerance.

We show that Anderson acceleration, a technique for accelerating the convergence

of fixed-point iterations, can be applied to the alternating projections method and

that in practice it brings a significant reduction in both the number of iterations and

the computation time. We also show that Anderson acceleration remains effective,

and indeed can provide even greater improvements, when it is applied to the variants

of the nearest correlation matrix problem in which specified elements are fixed or a

lower bound is imposed on the smallest eigenvalue. Alternating projections is a gen-

eral method for finding a point in the intersection of several sets and ours appears

to be the first demonstration that this class of methods can benefit from Anderson

acceleration.

Key words. nearest correlation matrix, indefinite matrix, positive semidefinite matrix,

Anderson acceleration, alternating projections method, Dykstra’s correction
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1 Introduction

In many data analysis applications one must construct a correlation matrix from empirical

or experimental data. A correlation matrix is symmetric, has unit diagonal, and is posi-

tive semidefinite. Frequently, asynchronous or missing observations lead to the obtained

matrix being indefinite. Furthermore, in some applications, such as stress testing and
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risk aggregation in finance [2], [18], [40] or large-scale resource assessment [6], individual

elements of a valid correlation matrix are set or modified by expert judgment, which can

again result in an indefinite matrix.

A standard way to correct an invalid correlation matrix, by which we mean a real,

symmetric indefinite matrix with unit diagonal, is to replace it by the nearest correlation

matrix in the Frobenius norm, that is, by the solution of the problem

min{ ‖A−X‖F : X is a correlation matrix },

where ‖A‖2F =
∑

i ,j a
2
i j . Other norms could be used, but almost all existing research treats

the Frobenius norm (possibly weighted), for which the problem has a unique solution.

The first method for computing the nearest correlation matrix with guaranteed con-

vergence was the alternating projections method proposed by Higham [24]. Although a

faster Newton algorithm was subsequently developed by Qi and Sun [39], and practical

improvements to it were made by Borsdorf and Higham [8], the alternating projections

method remains widely used in applications. Major reasons for its popularity are its ease

of coding and the availability of implementations in MATLAB, Python, R, and SAS [25].

Recent examples of applications in which the alternating projections method is being used

include probabilistic forecasts of streamflows [51], prediction of electricity peak-demand

during the winter in England and Wales [34], analysis of wind farms [19], modeling public

health [13], simulation of wireless links in vehicular networks [52], the analysis of carbon

dioxide storage resources in the US [6], and a modeling framework that combines different

sources of variability in biological systems [45]. As well as being easy to understand and

easy to implement, the alternating projections method has the attractive feature that it

is easily modified to incorporate additional constraints on the matrix, in particular to fix

certain elements or to compute a strictly positive definite solution with a lower bound on

the smallest eigenvalue. Both of these problem variants commonly appear in practice.

Since each iteration of the alternating projections method requires a full eigenvalue

decomposition and the rate of convergence is at best linear, the method can potentially be

very slow. The aim of this work is to reduce the number of iterations required. We attempt

to accelerate the alternating projections method by employing Anderson acceleration [1],

[33, sec. 1.1.4] also known as Anderson mixing, which is designed for fixed-point problems.

While fixed-point iteration uses only the current, kth, iterate to define the next one,

Anderson acceleration uses the additional information from the mk previous iterations and

computes the new iterate as a specific linear combination of these mk + 1 quantities. The

selected history length mk is usually small. A discussion that puts Anderson acceleration

in context with other acceleration methods can be found in [50].

In quantum chemistry Anderson acceleration is known as Pulay mixing or direct inver-

sion in the iterative subspace (DIIS) [38] and it has been widely used in electronic structure

computations; see [43] and the references therein. Anderson acceleration is related to

multisecant methods (extensions of quasi-Newton methods involving multiple secant con-

ditions); in fact, Eyert [16] proves that it is equivalent to the so-called “bad” Broyden’s

method [11], [28], and a similar analysis is done by Fang and Saad [17] and Rohwedder

and Schneider [43]. For linear systems, if mk = k for each k then Anderson acceleration

is essentially equivalent to the generalized minimal residual (GMRES) method [44], as

shown by Potra and Engler [36], Rohwedder and Schneider [43], and Walker and Ni [50].
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For nonlinear problems Rohwedder and Schneider [43] show that Anderson acceleration

is locally linearly convergent under certain conditions. Adding to the above convergence

analysis is the recent work by Toth and Kelley [46] concerning Anderson acceleration with

mk = min(m, k), for a fixed m, applied to contractive mappings.

Even though there are no general guarantees of its convergence, Anderson acceleration

has a successful record of use in electronic structure computations. Furthermore, it sig-

nificantly improved the performance of several domain decomposition methods presented

in [50] and has proved to be very efficient on various examples in the above references.

Hence Anderson acceleration has great potential for enhancing the convergence of the

alternating projections method for the nearest correlation matrix.

Recently, López and Raydan [29] have proposed a geometrically-based acceleration

scheme for the alternating projections method that builds a new sequence from the original

one by taking linear combinations of successive pairs of iterates. The new sequence is

tested for convergence and the original iteration remains unchanged. We compare this

method with Anderson acceleration in section 4 (Experiment 9).

The paper is organized as follows. We present the Anderson acceleration scheme in

section 2. In section 3 we recall the necessary results on the alternating projections method

with Dykstra’s correction for computing the nearest correlation matrix and the problem

variants in which some elements remain fixed or the smallest eigenvalue of the solution

must be above a given threshold, and we explain how to apply Anderson acceleration

to these problems. Numerical experiments presented in section 4 show that Anderson

acceleration at least halves the number of iterations required by the alternating projections

method for the nearest correlation matrix problem, which results in a significant reduction

in computation time for large problems. The experiments also show that even greater

improvements can be achieved for the problem variants, which is especially important for

the fixed elements constraint since in this case there is no available Newton method.

Concluding remarks are given in section 5.

2 Anderson acceleration for fixed-point iteration

A basic method for the solution of the fixed-point problem g(x) = x for g : Rn → Rn is

fixed-point iteration, also known as the (nonlinear) Richardson iteration, Picard iteration,

or the method of successive substitution. It has the form

xk+1 = g(xk), k ≥ 1, x0 ∈ Rn given. (1)

To guarantee convergence of (1) assumptions must be made on the function g and

the starting vector x0, and in general convergence is at a linear rate [26, Chap. 4.2]. A

method that attempts to encourage or accelerate convergence is Anderson acceleration,

which redefines xk+1 to make use of the information from the mk previous steps. We first

briefly outline the original method derived by Anderson [1].

Algorithm 2.1 (Original Anderson acceleration) Given x0 ∈ Rn and an integer m ≥ 1

this algorithm produces a sequence xk of iterates intended to converge to a fixed point of

the function g : Rn → Rn.
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1 x1 = g(x0)

2 for k = 1, 2, . . . until convergence

3 mk = min(m, k)

4 Determine θ(k) = (θ
(k)
1 , . . . , θ

(k)
mk )T ∈ Rmk that minimizes ‖uk − vk‖22, where

uk = xk +

mk∑
j=1

θj(xk−j − xk), vk = g(xk) +

mk∑
j=1

θj
(
g(xk−j)− g(xk)

)
.

5 Set xk+1 = vk using the parameters from θ(k).

6 end

In [1] the final step is xk+1 = uk + βk(vk − uk), where uk and vk are defined from the

computed θ(k), and βk > 0 is empirically determined. The usual choice in the literature

is βk ≡ 1, which we use here. We have also taken the history length parameter mk to be

fixed, at m, once the first m iterations have been taken.

We can give some insight into Algorithm 2.1 by writing

uk =

(
1−

mk∑
j=1

θ
(k)
j

)
xk +

mk∑
j=1

θ
(k)
j xk−j =

mk∑
j=0

wjxk−j ,

vk =

(
1−

mk∑
j=1

θ
(k)
j

)
g(xk) +

mk∑
j=1

θ
(k)
j g(xk−j) =

mk∑
j=0

wjg(xk−j),

where
∑mk

j=0 wj = 1. Algorithm 2.1 minimizes ‖uk − vk‖22 subject to
∑mk

j=0 wj = 1. If g

is linear then the objective function is ‖uk − g(uk)‖22 and so vk = g(uk) is the vector

from the affine subspace spanned by the current iterate and the previous mk iterates that

minimizes the residual of the fixed-point equation.

We will use an equivalent form of the method that stores in two matrices the differences

of the successive iterates and their function values. These matrices are related by simple

update formulae that can be exploited for an efficient implementation. This variant is given

by Fang and Saad [17], Plasse [35], Walker [49], and Walker and Ni [50]. Here, Anderson

acceleration is applied to the equivalent problem f (x) = 0, where f (x) = g(x)−x , instead

of the fixed-point problem g(x) = x .

Algorithm 2.2 (Anderson acceleration) Given x0 ∈ Rn and an integer m ≥ 1 this al-

gorithm produces a sequence xk of iterates intended to converge to a zero of the func-

tion f : Rn → Rn. The following notation is used: mk = min(m, k), ∆xi = xi+1 − xi ,
Xk =

[
∆xk−mk . . . ∆xk−1

]
, fi = f (xi), ∆fi = fi+1 − fi , and Fk =

[
∆fk−mk . . . ∆fk−1

]
.

1 x1 = x0 + f (x0)

2 for k = 1, 2, . . . until convergence

3 mk = min(m, k)

4 Compute γ(k) = (γ
(k)
k−mk , . . . , γ

(k)
k−1)

T ∈ Rmk that solves min
γ∈Rmk

‖fk −Fkγ‖22.

5 xk = xk −
k−1∑

i=k−mk

γ
(k)
i ∆xi = xk −Xkγ(k)

6 f k = fk −
k−1∑

i=k−mk

γ
(k)
i ∆fi = fk −Fkγ(k)
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7 xk+1 = xk + f k
8 end

Line 4 of Algorithm 2.2 consists of the following major computations. We assume

that Fk has full rank and that the least squares problem is solved using a QR factorization

of Fk .

1. Compute fk = f (xk).

2. Obtain a QR factorization of Fk from that of Fk−1. Since Fk is just Fk−1 with

the first column removed (for k ≥ m) and a new last column added this is a QR

factorization updating problem.

3. Solve the least squares problem using the QR factorization.

Assume that k ≥ m. Since Fk−1 is n×m and its first column is removed in passing to

Fk , to update the R factor we need m2/2 flops and to update Q an additional 6mn flops

[21, p. 28]. Updating the QR factors after the last column has been added to the matrix

costs 4mn + 3n flops [21, sec. 2.5.1]. Hence the total cost for step 2 above is at most

m2/2 + 10mn+ 3n flops. The cost of step 3 (which forms and solves by back substitution

a triangular system involving R) is 2mn + m2 flops. Therefore, Anderson acceleration

takes an additional 3m2/2 + 12mn + 3n flops per step compared with the unaccelerated

iteration.

More details of the updating scheme, as well as a strategy that removes more than

one leading column of Fk , if necessary, in order to ensure that it does not become too ill-

conditioned are given in [49], [50, sec. 4]. A MATLAB implementation of Algorithm 3.2,

which we use in our numerical experiments, is given in [49].

3 Accelerating the alternating projections method for

the nearest correlation matrix

We now summarize the method to which we wish to apply Anderson acceleration: the

alternating projections method for computing the nearest correlation matrix in the Frobe-

nius norm. In its basic form the alternating projections method attempts to find a point

in the intersection of two closed subspaces that is nearest to a given point by iteratively

projecting onto each subspace. This simple idea is motivated by the fact that it is often

easier to compute the individual projections onto the given subspaces than the projec-

tion onto their intersection. A detailed exposition of the origins and generalizations of

alternating projections methods is given by Escalante and Raydan [15].

Let A be a given symmetric matrix of order n and define the sets

Sn = {X ∈ Rn×n : X is symmetric positive semidefinite }, (2)

Un = {X = XT ∈ Rn×n : xi i = 1, i = 1: n }. (3)

For the nearest correlation matrix problem, we are looking for the closest matrix to A that

lies in the intersection of Sn and Un. Since these are convex sets rather than subspaces the
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alternating projections method has to be used in a modified form proposed by Dykstra [14],

in which each projection incorporates a correction; each correction can be interpreted as

a normal vector to the corresponding convex set. This correction is not needed for a

translate of a subspace [9], so is only required for the projection onto Sn.

Denote the projections of a symmetric matrix X onto Sn and Un by PSn(X) and PUn(X),

respectively. The projection PSn(X) is computed from an eigenvalue decomposition of X

by setting all the negative eigenvalues to zero and leaving the eigenvectors unchanged [23]

(see also Theorem 3.4 below), while PUn(X) is obtained by setting the diagonal elements

of X to 1.

The use of alternating projections for computing the nearest correlation matrix was

proposed by Higham [24, Alg. 3.3] in the following form.

Algorithm 3.1 Given a symmetric matrix A ∈ Rn×n this algorithm computes the nearest

correlation matrix Y to A by alternating projections. It requires a convergence tolerance

tol.

1 ∆S0 = 0, Y0 = A

2 for k = 1, 2, . . .

3 Rk = Yk−1 − ∆Sk−1
4 Xk = PSn(Rk) % Project onto Sn.

5 ∆Sk = Xk − Rk % Dykstra’s correction.

6 Yk = PUn(Xk) % Project onto Un.

7 if ‖Yk −Xk‖F ≤ tol‖Yk‖F , Y = Yk , quit, end

8 end

It is known that Xk and Yk both converge to the nearest correlation matrix as k →∞,

with a convergence rate that is linear at best [24]. The termination criterion on line 7 is

a simplification of the criterion

max

{
‖Xk −Xk−1‖F
‖Xk‖F

,
‖Yk − Yk−1‖F
‖Yk‖F

,
‖Yk −Xk‖F
‖Yk‖F

}
≤ tol (4)

used by Higham [24], who notes that the three terms inside the max are usually of similar

size. We use only the last term, since the test on line 7 is equivalent to the robust stopping

criterion for Dykstra’s algorithm proposed by Birgin and Raydan [5] and this choice works

well in all our experiments.

Aitken extrapolation (see, for example, [10]) cannot be used to accelerate Algo-

rithm 3.1 because it requires the underlying sequence to be linearly convergent, which

is not guaranteed here. We therefore turn to Anderson acceleration. To use it we must

recast Algorithm 3.1 as a fixed-point method, that is, define the function g for the itera-

tion (1). We do this as follows, noting that two matrices are recurred: Yk and ∆Sk , while

Xk is only used for the convergence test.

Algorithm 3.2 (Fixed-point form of Algorithm 3.1) Given a symmetric matrix A ∈ Rn×n
this algorithm computes the nearest correlation matrix Y to A. It requires a convergence

tolerance tol.
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1 ∆S0 = 0, Y0 = A

2 for k = 1, 2, . . .

3 [Xk , Yk , ∆Sk ] = g(Yk−1, ∆Sk−1)

4 if ‖Yk −Xk‖F ≤ tol‖Yk‖F , Y = Yk , quit, end

5 end

where the computation of [Xk , Yk , ∆Sk ] = g(Yk−1, ∆Sk−1) is effected by

5 Rk = Yk−1 − ∆Sk−1
6 Xk = PSn(Rk)

7 ∆Sk = Xk − Rk
8 Yk = PUn(Xk)

To apply Anderson acceleration (Algorithm 2.2) we write the matrices in terms of

vectors via the vec operator, which stacks the columns of a matrix one on top of the

other. We denote by unvec the inverse operation to vec. The complete algorithm is then

as follows.

Algorithm 3.3 Given a symmetric matrix A ∈ Rn×n this algorithm attempts to compute

the nearest correlation matrix Y to A by alternating projections with Anderson accelera-

tion. It requires a convergence tolerance tol.

1 Run Algorithm 2.2 on the function f :R2n2 → R2n2 given by f (z) = vec(g̃(Z)− Z),

where zk = vec(Zk), Zk = (Yk , ∆Sk) ∈ Rn×2n and [Xk , g̃(Zk)] = g(Zk)

for the function g defined by Algorithm 3.2.

Terminate the iteration when ‖Yk −Xk‖2/‖Yk‖2 ≤ tol.

Denote the result by x∗.

2 Y = unvec(x∗)

Note that the convergence criterion in Algorithm 3.3 is equivalent to that in Algo-

rithm 3.2. Note also that, unlike Algorithms 3.1 and 3.2, Algorithm 3.3 is not guaranteed

to converge, since there are no suitable convergence results for Anderson acceleration.

Whether convergence can be proved under reasonable assumptions is an open question.

The cost per step of the standard alternating projections method (Algorithm 3.1)

is dominated by the cost of computing PSn(Rk), which is 10n3 flops if we compute a

full eigendecomposition, or 14n3/3 flops if we use tridiagonalization followed by bisec-

tion and inverse iteration (computing just the eigenpairs corresponding to the positive

eigenvalues or the negative ones, depending which are fewer in number). One step of

Anderson acceleration applied to the alternating projections method in the fixed-point

form (Algorithm 3.2) uses 2n2-sized vectors, so the method takes at most an additional

3m2/2 + 24mn2 + 6n2 flops per step. Since we find experimentally (see section 4) that

taking m ≤ 5 (say) is sufficient, the additional cost of Anderson acceleration is O(n2)

flops, which is negligible for large n. Anderson acceleration also incurs an increase in

storage of 2n2m elements.

We next consider two modifications of the alternating projections method for com-

puting the nearest correlation matrix. The first is the problem variant in which specified

elements of A have to remain fixed and the second requires the correlation matrix to have

smallest eigenvalue bounded below by a positive tolerance δ.
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3.1 Fixing elements

The nearest correlation matrix problem with fixed elements was previously investigated by

Borsdorf [7, Chap. 7] and Lucas [30]. We first give some motivation for fixing elements.

In statistical applications the data from ` observations of n random variables is collected

in an `× n matrix and it is often the case that some of the observations are missing. We

may assume that the missing entries do not occur in the first n1 columns, since we can

permute the columns if necessary. One way to form correlations is via the pairwise deletion

method [30, sec. 2.2]. It calculates the correlation coefficient between a pair of vectors

by using only the components available in both vectors simultaneously and the result is a

unit diagonal symmetric matrix C of the form

C =

[ n1 n2

n1 A Y

n2 Y T B

]
∈ Rn×n.

The leading block A is positive semidefinite (hence, a correlation matrix) because it is

constructed from the columns of X that have no missing values, but there is no guarantee

that the matrix C is positive semidefinite as well. Since the correlations in A are considered

exact we wish to compute the nearest correlation matrix to C with this block unchanged.

In correlation stress testing [18], [40] the assets are split into two groups. Their

correlation matrix can then be block-partitioned as

C =

[
C11 C12
CT12 C22

]
∈ Rn×n,

where the inter-group correlations correspond to the diagonal blocks C11 and C22 and the

off-diagonal block C12 carries the cross-group correlations. To see the effect of pushing

risk parameters toward extreme levels the block C22 is replaced with a new correlation

matrix Ĉ22 that reflects the changes to the second group of assets. If this results in an

indefinite modified matrix we can again compute its nearest correlation matrix, but the

C11 block should remain unchanged since the first group of assets was not affected.

In risk aggregation [2], [27] and large scale resource assessment [6] we have a general-

ization of the above constraint. Here, due to the methodology, we have a large correlation

matrix with block structure, where the diagonal blocks represent individual groups, for ex-

ample markets or geographical regions. Correlations in each group can be updated with

more refined analysis locally and then the old diagonal blocks are replaced with the new

ones. This might destroy the definiteness of the global matrix which we must then restore

while keeping the new diagonal blocks unchanged.

In all of the above applications we are looking for the closest matrix in the Frobenius

norm to a matrix A that lies in the intersection of the set Sn from (2) and

En = {X = XT ∈ Rn×n : xi i = 1, i = 1, . . . , n and xi j = ai j for (i , j) ∈ N },

where N denotes the index set of the fixed off-diagonal elements. Clearly, for (i , j) ∈ N
we have (j, i) ∈ N . The intersection Sn ∩ En is nonempty, which is equivalent to the

problem having a unique solution, if N is chosen such that there exists a correlation

matrix with the prescribed fixed elements. This need not be true for every N , as the
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following simple example shows. Take

A =


1 0 0 0

0 1 1 0

0 1 1 1

0 0 1 1

 (5)

and N = {(2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)}. We cannot replace A with a valid

correlation matrix while keeping the elements prescribed by N fixed, since they correspond

to the trailing 3× 3 block of A, which is indefinite.

The Newton algorithm of [39] which solves the original nearest correlation matrix

problem does not generalize to the fixed elements variant. According to Qi and Sun

[41, p. 509], the Newton method that solves the so-called H-weighted nearest correlation

matrix problem

min{ ‖H ◦ (A−X)‖2F : X is a correlation matrix }, (6)

where ◦ is the Hadamard (elementwise) matrix product and H a symmetric element-

wise nonnegative matrix, could be extended to fix elements but the details are not

provided. Moreover, the documentation for the NAG [32] code g02aj/nag˙nearest˙

correlation˙h˙weight, which solves (6), notes that the algorithm might not converge

if the weights vary by several orders of magnitude.

The alternating projections method trivially generalizes to incorporate the fixed ele-

ments constraint: we simply need to replace the projection PUn by the projection PEn onto

the set En. For a symmetric matrix X this projection is given by

PEn(X)i j =


1, i = j,

ai j , (i , j) ∈ N ,
xi j otherwise.

Since we have assumed that N does not contain any indices corresponding to diagonal

elements, PEn remains well-defined even if A does not have unit diagonal. Algorithm 3.1

can now be used to solve this problem with a trivial modification of step 6, where PUn is

replaced with PEn . The extensive numerical experiments in [7, sec. 7] show that having

the additional constraint can result in a significant increase in the number of iterations

compared with solving the original problem, so using an acceleration method becomes

even more appealing. The details of applying Anderson acceleration are the same as in

the original problem.

The possible non-existence of a solution of this variant of the nearest correlation matrix

problem must be reflected in the convergence test. For the matrix (5) it is easy to see

that Xk and Yk are both constant for k ≥ 1, so the first two terms in (4) are zero. The

last term of (4) is, however, of order 1 for all k . The convergence test on line 7 of

Algorithm 3.1 is hence suitable both for the original problem and for variants that may

not have a solution.

3.2 Imposing a lower bound on the smallest eigenvalue

For an invalid correlation matrix A with t nonpositive eigenvalues, from [24, Cor. 3.5]

it follows that the nearest correlation matrix to A will have at least t zero eigenvalues.
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Singularity is an issue in applications where the inverse of a correlation matrix is needed,

for example in multivariate data analysis [42] or regression [22], [37]. Hence, a common

requirement in practice is to compute the nearest correlation matrix X to A with λmin(X) ≥
δ, where λmin(X) denotes the smallest eigenvalue of X and δ is a given positive tolerance.

Since for a correlation matrix trace(X) =
∑

i λi(X) = n, it follows that we must take

δ ≤ 1.

The Newton algorithm [39] for the original nearest correlation matrix problem can be

used to compute the solution to the problem with the constraint on λmin. We discuss this

modification of the alternating projections method because it further demonstrates the

flexibility of the method, which can easily incorporate both the fixed elements constraint

and the eigenvalue constraint, unlike the existing Newton methods.

For a given 0 ≤ δ ≤ 1 we define the set

Sδn = {X = XT ∈ Rn×n : λmin(X) ≥ δ }. (7)

Clearly, S0n is the original Sn from (2). We are looking for the nearest matrix in the

Frobenius norm to A from the intersection of Sδn and Un, where Un is defined in (3).

The set Sδn is closed and convex for each δ and since In ∈ Sδn for every 0 ≤ δ ≤ 1

the closed convex set Sδn ∩ Un is nonempty, which implies that this modification of the

nearest correlation matrix problem has a unique solution. A formula for the projection

PSδn of a symmetric matrix onto the set Sδn is given by the following result of Cheng and

Higham [12, Thm. 3.1].

Theorem 3.4 Let the symmetric matrix X ∈ Rn×n have the spectral decomposition X =

Q diag(λi)Q
T and let δ ≥ 0. Then for the Frobenius norm the unique matrix nearest to

X with the smallest eigenvalue at least δ is given by

PSδn(X) = Q diag(τi)Q
T , τi =

{
λi , λi ≥ δ
δ, λi < δ.

Hence, to solve this version of the nearest correlation matrix problem we simply replace

the projection PSn in Algorithm 3.1 with PSδn . If, in addition, some elements of A must

remain fixed, we replace PUn with PEn as well. However, note that the latter problem

variant does not have a solution for all possible sets N of fixed positions.

Finally, we briefly discuss how the use of the λmin(X) ≥ δ constraint can address

a subtle issue concerning methods for computing the nearest correlation matrix. The

resulting matrix is expected to be a positive semidefinite matrix with unit diagonal closest

to A. The Newton algorithm of [8] computes a positive semidefinite solution, but to

guarantee a unit diagonal the computed matrix is diagonally scaled, which slightly increases

the optimal distance to A. In the alternating projections method (Algorithm 3.1) the

diagonal elements of the returned matrix are exactly 1 but this computed matrix might be

indefinite since it is obtained by modifying the diagonal (as well as any other fixed elements)

of the positive semidefinite projection. We could swap the order of the projections so that

the result is a positive semidefinite matrix, up to roundoff, but then this matrix will not

have an exactly unit diagonal. Probably the best solution to these problems is to impose

a lower bound on λmin sufficiently large that changes of order the convergence tolerance,

tol, will not affect the definiteness. For example, if tol ≈ 10−16 then δ ≈ 10−8 would be

adequate.
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4 Numerical experiments

Now we present experiments that explore the effectiveness of Anderson acceleration at

reducing the number of iterations, and the overall execution time, of the alternating

projections method for computing the nearest correlation matrix.

Our experiments were carried out in MATLAB R2014a on a machine with an Intel

Core i7-4910MQ 2.90GHz processor and 16GB RAM. We use the following algorithms.

1. nearcorr: the alternating projections method for the nearest correlation matrix,

Algorithm 3.1, modified to incorporate both the fixed elements constraint and the

lower bound δ on the smallest eigenvalue by replacing PUn with PEn and PSn with

PSδn , as described in sections 3.1 and 3.2. The number of iterations for nearcorr

is denoted by it. Our code is based on that from [25].

2. nearcorr AA: Algorithm 3.3 applied to nearcorr. We use the Anderson accelera-

tion implementation from [49], which employs QR factorization with updating, as

described in section 2. The number of iterations is denoted by itAA.

The convergence tolerance tol is set to nu, where n is the order of the matrix and

u ≈ 1.1× 10−16 is the unit roundoff.

Convergence is guaranteed for the alternating projections algorithm assuming there

are no fixed off-diagonal elements, but could potentially be destroyed by Anderson accel-

eration, for which we have no convergence guarantees. However, in every test Anderson

acceleration and the corresponding unaccelerated algorithm produced computed matri-

ces X with values of ‖A − X‖F agreeing to within a small multiple of the convergence

tolerance.

In the first three experiments, we have no fixed elements and set δ = 0, that is, we

are solving the standard nearest correlation matrix problem.

Experiment 1. We first compare the number of iterations for nearcorr and nearcorr AA

as we vary the parameter m on four small examples of invalid correlation matrices found

in the literature. They are a matrix of order 4 from Turkay, Epperlein, and Christofides

[47], a matrix of order 5 from Bhansali and Wise [4], a matrix of order 6 constructed from

foreign exchange trading data supplied by the Royal Bank of Scotland [31], and a matrix

of order 7 from Finger [18], all of which are listed in the appendix. The results are given

in Table 1.

Clearly, using Anderson acceleration leads to a significant decrease in the number of

iterations, even for m = 1, with a 25-fold decrease achieved for the n = 6 matrix with

m = 6. The number of iterations begins to stagnate as m grows, which is consistent with

the reported behaviour of Anderson acceleration in the literature.

Experiment 2. Now we compare the iteration count and the computation time for

nearcorr and nearcorr AA with m = 2 for six matrices from the RiskMetrics database,

as used in [8]. The documentation says that the underlying data sets “contain consistently

calculated volatilities and correlation forecasts for use in estimating market risk. The

asset classes covered are government bonds, money markets, swaps, foreign exchange

and equity indices (where applicable) for 31 currencies, and commodities.” Each matrix

has dimension 387.
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Table 1: Iteration counts for four small examples for nearcorr and nearcorr AA, for

varying m (Experiment 1).

n it
itAA

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

4 39 15 10 9 9 9 9

5 27 17 14 12 11 10 10

6 801 305 212 117 126 40 31

7 33 15 10 10 10 9 9

Table 2: Iteration counts and computation times in seconds for nearcorr and

nearcorr AA with m = 2 for six RiskMetrics matrices of order 387 (Experiment 2).

Matrix nearcorr nearcorr AA

it t itAA t t apm t AA

1 26 0.46 15 0.45 0.26 0.12

2 50 0.83 24 0.73 0.41 0.19

3 24 0.43 13 0.38 0.23 0.09

4 47 0.88 22 0.68 0.40 0.17

5 34 0.56 18 0.53 0.30 0.14

6 20 0.33 12 0.35 0.20 0.09

In Table 2 we report the number of iterations along with t, the total run time in seconds

for each algorithm, and t apm and t AA for nearcorr AA, which are the total time taken

in calls to the function g from Algorithm 3.2 and in computing the quantities for the

convergence test, and the time taken to solve the least-squares problems, respectively.

Anderson acceleration roughly halves the number of iterations and the total computation

time for nearcorr AA is a little less than for nearcorr in the first 5 examples.

The missing time t− t˙apm− t˙AA for nearcorr AA represents MATLAB overheads,

such as in the vec and unvec conversions of Algorithm 3.3. Computing the eigenvalue

decomposition, which is the dominant cost for the alternating projections method, remains

the main contributing factor to the computation time of nearcorr AA, with the least-

squares update and solve taking less than half as much time.

Experiment 3. In the previous experiments our test matrices were small and the total

computation time was not an issue. In order to illustrate the dramatic improvement An-

derson acceleration can bring to nearcorr we next compare nearcorr and nearcorr AA

with m = 2 on two large invalid correlation matrices of stock data provided by a fund

management company. The first of order 1399 is highly rank-deficient and the second

of order 3120 is of full rank. The results are presented in Table 3. We again see a very

sharp drop in the number of iterations, with nearcorr AA taking less than a third of the

iterations for nearcorr. This results in a significant reduction in the computation time,

with a speedup of as much as 2.9. Comparing the times for the alternating projections

part and the least-squares part of nearcorr AA we see that the former heavily dominates

the latter.

We next focus on the nearest correlation matrix problem variant with some fixed off-

12



Table 3: Iteration counts and computation times for nearcorr and nearcorr AA with

m = 2 for cor1399 and cor3120 (Experiment 3).

n
nearcorr nearcorr AA

speedup
it t itAA t t apm t AA

1399 476 219.0 124 75.0 49.6 16.0 2.9

3120 559 2746.4 174 999.5 778.5 137.7 2.7

Table 4: Iteration counts for nearcorr, nearcorr with fixed elements, and Anderson

acceleration of the latter with varying m (Experiment 4).

n it it fe
itAA fe

m = 1 m = 2 m = 3 m = 4 m = 5

7 33 34 14 11 10 9 9

90 29 169 93 70 55 45 39

94 18 40 15 14 12 12 12

diagonal elements (δ = 0).

Experiment 4. We compare the performance of the methods on the following three

examples. The first is the matrix of order 7 that we have used in our first experiment.

The original requirement in [18] was to compute the nearest correlation matrix having

the same leading principal 3× 3 submatrix. The second example is a symmetric indefinite

block 9× 9 matrix with each block of order 10, provided by a finance company. We need

to compute the nearest positive semidefinite matrix to it while preserving the (positive

definite) (1,1) block, the (positive) diagonal, and the diagonals in each of the remaining

blocks in the first block-row and block-column. The large matrix does not have a unit

diagonal but this makes no difference to the methods since these elements are fixed. In

our third example, we have an invalid correlation matrix of order 94 for carbon dioxide

storage assessment units for the Rocky Mountains region of the United States that was

generated during the national assessment of carbon dioxide storage resources [48]. Due

to the aggregation methodology construction, the matrix has a natural block structure.

Its twelve diagonal blocks, with respective sizes 12, 5, 1, 14, 12, 1, 10, 4, 5, 9, 13, and

8, correspond to individual basins in the region and are all positive definite. We wish

to compute the nearest correlation matrix to the large matrix while keeping all diagonal

blocks unchanged.

Table 4 reports the number of iterations for nearcorr with no fixed elements (it),

the number of iterations for nearcorr with the required elements fixed (it fe) and the

number of iterations for Anderson acceleration applied to the latter (itAA fe) with m

varying from 1 to 5 for our three examples. Table 5 presents the computation time in

seconds, time fe and time fe AA, for the latter two algorithms. We include nearcorr

with no fixed elements only to demonstrate the effect on the number of iterations of

including this constraint, and as this method does not solve our problem we do not run

Anderson acceleration on it. The second and third examples show that the constraint of

having fixed elements can significantly increase the number of iterations for the alternating

projections method compared with the standard nearest correlation matrix problem. From

13



Table 5: Computation times for nearcorr with fixed elements and Anderson acceleration

applied to it, with varying m (Experiment 4).

n time fe
time fe AA

m = 1 m = 2 m = 3 m = 4 m = 5

7 3.40e-3 2.51e-3 2.20e-3 2.11e-3 1.20e-3 1.14e-3

90 1.71e-1 1.33e-1 1.14e-1 9.06e-2 7.93e-2 8.02e-2

94 5.21e-2 2.06e-2 1.98e-2 1.87e-2 2.54e-2 2.19e-2

Table 6: Computation times for nearcorr and nearcorr AA with varying m for four

examples where the leading n/2 × n/2 block of a random matrix of size n remains fixed

(Experiment 5).

n time fe
time fe AA

m = 1 m = 2 m = 3 m = 4 m = 5

200 6.41 4.42 2.77 2.67 2.29 2.45

400 18.53 13.44 9.35 8.10 6.91 7.35

600 59.47 47.51 28.15 32.04 26.25 31.50

800 136.12 82.23 53.76 63.77 47.61 51.35

the number of iterations for nearcorr with fixed elements and the accelerated algorithm

we see that using Anderson acceleration reduces the number of iterations by a similar

factor as in the experiments for accelerating the original nearcorr. Hence while the

additional constraint makes the problem harder to solve by alternating projections it does

not affect the speedup of the Anderson acceleration scheme.

Experiment 5. In our second experiment with fixed elements we generate random

invalid correlation matrices of order n, with n equal to 200, 400, 600, and 800 and compare

the computation time of nearcorr and nearcorr AA for varying m, where for each matrix

a leading block of size n/2 is kept fixed in computing the nearest correlation matrix. We

generate the leading block by the MATLAB function call gallery(’randcorr’,n/2) and

embed it into an indefinite unit diagonal matrix of size n where the off-diagonal elements

are taken from the uniform distribution on [−1, 1]. The results reported in Table 6 show

that the time decreases for m up to 2, but for m = 4 or 5 we have an increase in the

computation time, which further confirms the merit of keeping m very small. In each

example Anderson acceleration achieves a significant reduction in computation time.

Our third set of experiments concerns the nearest correlation matrix problem with a

lower bound on the smallest eigenvalue and no fixed elements.

Experiment 6. We first run nearcorr on the four small test matrices already used

in Table 1 for δ = 10−8 and δ = 0.1. The results, reported in Table 7, show that for

the smaller value of δ = 10−8 the number of iterations is almost identical to the data in

Table 1, but here the positive definiteness of the solution is guaranteed. For the larger

value δ = 0.1, the number of iterations is increased compared with δ = 0. As with the

fixed elements constraint, we see that Anderson acceleration again reduces the iteration

number by a similar factor as in the unconstrained case, that is, its performance is not

affected by including the bound on the smallest eigenvalue.
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Table 7: Iteration counts for four small examples for nearcorr and nearcorr AA, for

varying m and two values of δ. (Experiment 6)

δ = 10−8

n it
itAA

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

4 39 15 10 9 9 9 10

5 27 17 14 12 11 10 10

6 802 280 177 114 58 39 30

7 33 15 10 10 10 9 9

δ = 0.1

n it
itAA

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

4 66 31 19 16 13 14 13

5 34 23 15 14 12 12 12

6 895 269 216 127 59 48 41

7 54 31 24 15 15 14 14

Table 8: Iteration counts and computation times in seconds for nearcorr with δ = 0.1

and nearcorr AA with m = 2 for six RiskMetrics matrices of order 387 (Experiment 7).

nearcorr nearcorr AA

Matrix it t itAA t t apm t AA

1 1410 20.50 383 10.77 5.70 3.12

2 2100 33.93 513 15.83 8.52 4.56

3 1900 31.14 414 11.58 5.97 3.54

4 1586 29.06 369 12.83 7.09 3.54

5 1812 31.30 400 12.99 7.16 3.62

6 1794 29.08 393 11.63 6.20 3.40

Experiment 7. The benefits of Anderson acceleration in the positive definite case are

even more evident if we reproduce Experiment 2, now using nearcorr with δ = 0.1 and

compare the results in Table 8 with those in Table 2. Computing the positive definite

solution takes between 30 and 90 times more iterations than computing the semidefinite

nearest correlation matrix but Anderson acceleration now reduces the number of itera-

tions by a factor between 3.6 and 4.6, compared with halving the iterations in the original

experiment, which shows that Anderson acceleration can be even more effective for con-

strained nearest correlation matrix problems than for the original problem. We also see

that nearcorr AA requires approximately half the time of nearcorr.

We now combine the constraints of keeping elements fixed and of positive definiteness.

Experiment 8. We take the three matrices from Experiment 4 with fixed elements

and run nearcorr and nearcorr AA with δ = 0.1, with varying m. Note that in this

case we have no guarantee of the existence of a feasible point and in fact for the second

matrix (n = 90) the algorithms do not converge within 100,000 iterations for the default
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Table 9: Iteration counts and computation times in seconds for nearcorr and

nearcorr AA with with δ = 0.1 and varying m for two examples with fixed elements

(Experiment 8).

nearcorr nearcorr AA

m = 1 m = 2 m = 3 m = 4 m = 5

n t it t it t it t it t it t it

7 2.98e-3 54 4.95e-3 31 4.57e-3 25 2.59e-3 16 2.74e-3 15 2.75e-3 15

94 1.25e-1 128 5.24e-2 36 4.10e-2 25 4.32e-2 24 3.91e-2 20 3.93e-2 19

Table 10: Iteration counts for four small examples for nearcorr, nearcorr AA withm = 2

and the acceleration scheme from [29] (Experiment 9).

n it itAA it 2

4 39 10 39

5 27 14 27

6 801 212 725

7 33 10 33

tolerance and hence we exclude this example and present in Table 9 only the results for

the test matrices of order n = 7 and n = 94. We note the increase in the number of

iterations compared with the data in Table 4 where we only fixed the elements. Anderson

acceleration (with m = 5) reduces the iterations by a factor of 3.6 for the smaller matrix

and 6.7 for the larger, while in the original experiment the factors were 3.8 and 3.3.

Experiment 9. As a final experiment we use the four matrices from Experiment 1 to

compare Anderson acceleration with the acceleration scheme from [29]. Table 10 shows

the number of iterations, it 2, for that scheme, in which we set its safeguard parameter ε

to 10−14 and use the same convergence tolerance as in all our experiments. The number

of iterations for the acceleration scheme is the same as for the unaccelerated method in

each case except for the matrix with n = 7, and in that case we see a reduction in the

number of iterations by a factor 1.1 versus 3.8 for Anderson acceleration. In all test cases,

after a few initial iterations the mixing parameter αk needed for the scheme [29] could

not be computed because the safeguard was triggered. We conclude that the acceleration

scheme of [29] is not competitive with Anderson acceleration on this class of problems

because it displays the “orthogonality property” discussed in [29, Rem. 1].

To summarize, in these experiments we have found that Anderson acceleration of

the alternating projections method for the nearest correlation matrix, with an appropriate

choice of m ∈ [1, 6], results in a reduction in the number of iterations by a factor of at

least 2 for the standard algorithm and a factor at least 3 when additional constraints are

included. The factors can be much larger than these worst-cases, especially in the experi-

ments with additional constraints, where we saw a reduction in the number of iterations by

a factor 21.8 in Table 7. Acceleration therefore tends to produce the greatest benefits on

the problems that alternating projections finds the hardest. Moreover, the reduction in the

number of iterations is generally reflected in the run times, modulo MATLAB overheads.
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5 Conclusions

Although Anderson acceleration is well established in quantum chemistry applications and

has recently started to attract the attention of numerical analysts, the method is still not

well known in the numerical analysis community. Indeed it has not, to our knowledge,

previously been applied to alternating projections methods. The main contribution of this

work is to show that Anderson acceleration with history length m equal to 2 or 3 works

remarkably well in conjunction with the widely used alternating projections method of

Higham [24] for computing the nearest correlation matrix, both in its original form and in

the forms that allow elements of the matrix to be fixed or a lower bound to be imposed

on the smallest eigenvalue. This is particularly significant for the nearest correlation

matrix problem with fixed elements because no Newton method is available for it. Our

recommendation for m is based on the balance between the reduction in both the number

of iterations and the computation time: even though larger values of m in some examples

lead to a further decease in the number of iterations the computation time sometimes

increases for m larger than 2 or 3. MATLAB implementations of the algorithms can be

found at https://github.com/higham/anderson-accel-ncm.

The success of Anderson acceleration in the nearest correlation matrix context sug-

gests the possibility of using it in conjunction with other projection algorithms, such as

those for feasibility problems, that is, finding a point (not necessarily the nearest one)

in the intersection of several convex sets. Such algorithms include the (uncorrected) al-

ternating projections method and the Douglas–Rachford method [3]. Gould [20, p. 10]

states that an efficient acceleration scheme is needed for projection methods if they are

to be successfully applied to real-life convex feasibility problems. Our work suggests that

Anderson acceleration could make projection methods competitive in this context, and in

future work we intend to investigate this possibility.
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Appendix A

We list the four invalid correlation matrices used in Experiment 1.

1. Turkay, Epperlein, and Christofides [47]:

A =


1 −0.55 −0.15 −0.10

−0.55 1 0.90 0.90

−0.15 0.90 1 0.90

−0.10 0.90 0.90 1

 .
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2. Bhansali and Wise [4]:

A =


1 −0.50 −0.30 −0.25 −0.70

−0.50 1 0.90 0.30 0.70

−0.30 0.90 1 0.25 0.20

−0.25 0.30 0.25 1 0.75

−0.70 0.70 0.20 0.75 1

 .

3. Minabutdinov, Manaev, and Bouev [31]: D−1/2AD−1/2, where D = diag(A) with

A =



0.010712 0.000654 0.002391 0.010059 −0.008321 0.001738

0.000654 0.000004 0.002917 0.000650 0.002263 0.002913

0.002391 0.002917 0.013225 −0.000525 0.010834 0.010309

0.010059 0.000650 −0.000525 0.009409 −0.010584 −0.001175

−0.008321 0.002263 0.010834 −0.010584 0.019155 0.008571

0.001738 0.002913 0.010309 −0.001175 0.008571 0.007396

 .

4. Finger [18]:

A =



1 0.18 −0.13 −0.26 0.19 −0.25 −0.12

0.18 1 0.22 −0.14 0.31 0.16 0.09

−0.13 0.22 1 0.06 −0.08 0.04 0.04

−0.26 −0.14 0.06 1 0.85 0.85 0.85

0.19 0.31 −0.08 0.85 1 0.85 0.85

−0.25 0.16 0.04 0.85 0.85 1 0.85

−0.12 0.09 0.04 0.85 0.85 0.85 1


.
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