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In Pure Inductive Logic, the rational principle of Predicate Exchangeability
states that permuting the predicates in a given language L and replacing
each occurrence of a predicate in an L-sentence ϕ according to this permuta-
tion should not change our belief in the truth of ϕ. In this paper we study
when a prior probability function w on a purely unary language L satisfy-
ing Predicate Exchangeability also satisfies the principle of Unary Language
Invariance.
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1 Introduction

In the study of logical probability in the sense of Carnap’s Inductive Logic programme,
[1], [2], the notion of symmetry plays a leading role. In the prior assignment of beliefs, as
subjective probabilities, it seems logical, or rational, to observe prevailing symmetries,
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a typical example being the perceived fairness of a coin toss, at least in the absence of
any inside knowledge to the contrary. For this reason a number of rational principles
have been proposed in Inductive Logic which are based on invariance under various
notions of symmetry, principles which it is argued a choice of logical or rational (we use
these two words synonymously) prior probability function should satisfy. I.e. a choice
of probability function prior to the acquisition of any evidence, knowledge or intended
interpretation. The most prevailing of these principles, accepted by both the founding
fathers of Inductive Logic, W.E. Johnson [10], and Rudolf Carnap [3], is that the names
we give things, in particular constants and predicates, should not matter when it comes
to assigning probabilities. Thus, since interchanging which side of the coin we call
heads and which we call tails does not change what we understand by a coin toss, both
outcomes should rationally receive the same probability.

A second, ubiquitous, rational principle is that when assigning rational probabilities
‘irrelevant information’ can be disregarded. Indeed the central principle of Johnson and
Carnap, the so called Johnson’s Sufficientness Postulate, is just such an example. Just
as with saying what exactly we might mean by a ‘symmetry’ this directive does of course
raise the question of what exactly we mean by an ‘irrelevant information’, and numerous
interpretations have been mooted, generally based on the idea that such information is
expressed in a disjoint, or partially disjoint language.

A third, more recent and rather overarching, rational principle is the requirement of
language invariance. By that we mean that to be rational a probability function should
not be restricted to one special language but be extendable to larger languages, and
furthermore that those additional rational principles which we imposed in the context
of the original language should also be satisfied by these extensions.

In this paper we shall study two symmetry principles, Constant Exchangeability1 and
Predicate Exchangeability, in the presence of language invariance with the main goal
of providing a representation theorem along the lines of de Finetti’s Representation
Theorem for Constant Exchangeability alone, see for example [5], [11]. Although rather
technical, at least in relation to the seemingly elementary mathematics at the heart of
Inductive Logic, such results have, starting with Gaifman [6] and Humburg [9], been
an extremely powerful tool in our understanding of the interrelationship between the
various rational principles which have been proposed. Hopefully the results given here
will also find similar applications in the future.

The structure of this paper is as follows. In Section 2 we shall introduce the notation and
give precise formulations of the main principles we shall be studying. In Section 3 we shall
provide a representation theorem for probability functions satisfying language invariance
with Constant and Predicate Exchangeability assuming a particularly strong irrelevance
condition, the Constant Irrelevance Principle, and in the next section show a similar
result without this assumption. This latter representation theorem shows that all such

1Johnson’s Permutation Postulate and Carnap’s Axiom of Symmetry.
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probability functions are in a sense convex mixtures of probability functions satisfying
the so called Weak Irrelevance Principle, and conversely. Finally in Section 5 we will
give a general representation theorem for probability functions satisfying Constant and
Predicate Exchangeability alone, showing that they are mixtures (not necessarily convex)
of such probability functions which additionally satisfy language invariance.

The philosophical standpoint of this paper is Pure Inductive Logic, see [11], [12], a
branch of Carnap’s Inductive Logic which he already described in [3]. Thus we shall be
interested in studying the (prior) assignment of logical probability in the absence of any
acquired evidence or knowledge and without relation to any specific interpretations. Of
course the rational principles that one might consider imposing on this assignment may
have their genesis in real world examples but once a principle is formulated it is studied
in Pure Inductive Logic through the agency of mathematics. The subsequent value to
philosophy lies, we would opine, mainly in the philosophically interesting conclusions
that this mathematical investigation engenders. In other words the aim is to explicate
the philosophical consequences of making certain philosophically motivated assumptions
via the method of rigorous mathematical proof. The fact that the necessary mathematics
linking two philosophically approachable assertions may be rather technical is clearly not
ideal but nevertheless that currently seems on occasions to be unavoidable.

2 Notation and Principles

We will be working in the usual context of (unary) Pure Inductive Logic. Thus the
first order languages we will be concerned with consist only of finitely many unary
predicate symbols Pi and countably many constant symbols2 a1, a2, . . . , am, . . . , which
should be thought of as exhausting the universe. We will write Lq to indicate the
language containing just the predicates P1, . . . , Pq. Let SL denote the set of sentences
of the language L, QFSL the set of quantifier-free sentences of L.

An atom α(x) of L is a formula

P ε1
1 (x) ∧ P ε2

2 (x) ∧ · · · ∧ P εq
q (x),

with εi ∈ {0, 1} and P 1
i (x), P 0

i (x) standing for Pi(x), ¬Pi(x), respectively.3 Note that
for L containing q predicates there are 2q atoms, which we shall denote α1, . . . , α2q .

A state description of L for4 ai1 , . . . , ain is a sentence

Θ(ai1 , . . . , ain) =
n∧
j=1

αhj(aij),

2For convenience, we shall henceforth refer to these just as ‘predicates’ and ‘constants’.
3In the literature, the notation ±Pi(x) is more common; however, in the scope of this paper, the

notation P εi
i (x) is more convenient.

4The entries in such lists will be taken to be distinct unless otherwise stated.
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where hj ∈ {1, . . . , 2q} for j = 1, . . . , n.

A probability function on L is a function w : SL → [0, 1] satisfying the following condi-
tions for all ϑ, ϕ,∃xψ(x) ∈ SL:

(P1) If |= ϑ, then w(ϑ) = 1.

(P2) If ϑ |= ¬ϕ, then w(ϑ ∨ ϕ) = w(ϑ) + w(ϕ).

(P3) w(∃xψ(x)) = limn→∞w(
∨n
j=1 ψ(aj)).

The following theorem will allow us to restrict our studies to quantifier-free sentences.

Theorem 1 (Gaifman, [7]). Let w : QFSL→ [0, 1] be a function satisfying (P1), (P2)
for all ϑ, ϕ ∈ QFSL. Then there exists a unique w′ : SL → [0, 1] satisfying (P1)-(P3)
extending w.

Since any quantifier-free sentence of L is logically equivalent to a disjunction of state
descriptions, by (P2) and Theorem 1 a probability function is determined by its values
on the state descriptions. Let ~x ∈ D2q , where

D2q :=

{
〈x1, . . . , x2q〉 |xi ≥ 0,

2q∑
i=1

xi = 1

}
.

Noticing that atoms instantiated by different constants are logically independent we can
obtain an example of a probability function w~x by treating them as even stochastically
independent and defining w~x on state descriptions via

w~x(Θ(ai1 , . . . , ain)) :=
2q∏
i=1

xnii ,

where ni = |{j |hj = i}|.

These functions are quite important examples, as they form the building blocks in de
Finetti’s Representation Theorem. Before stating this theorem, we need to introduce
the Principle of Constant Exchangeability:

The Principle of Constant Exchangeability, Ex
A probability function w on SL satisfies Constant Exchangeability if for each
ϕ(a1, . . . , an) ∈ SL, and σ a permutation of N+ (= {1, 2, 3, . . .}),

w(ϕ(a1, . . . , an)) = w(ϕ(aσ(1), . . . , aσ(n))).

The justification for Ex as a principle of rationality is based on a symmetry argument.
That there is complete symmetry between the constants and hence that to ascribe dif-
ferent probabilities to w(ϕ(a1, . . . , an)) and w(ϕ(aσ(1), . . . , aσ(n))) would therefore be ir-
rational.
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Notice that the w~x satisfy Ex. Ex is such a well accepted principle in Inductive Logic that
we shall henceforth take it as a standing assumption throughout that all the probability
functions we consider satisfy it.

We shall therefore not mention the particular constants whenever they are understood
from the context.

Theorem 2 (de Finetti’s Representation Theorem). Let L = Lq and w be a prob-
ability function on SL satisfying Ex. Then there exists a normalized, σ-additive measure
µ on the Borel subsets of D2q such that

w

(
n∧
j=1

αhj(aj)

)
=

∫
D2q

w~x

(
n∧
j=1

αhj(aj)

)
dµ(~x). (1)

Conversely, given such a measure µ, the function w defined by (1) is a probability func-
tion on SL satisfying Ex.

It is straightforward to show (see [12]) that these w~x are characterized as those probab-
ility functions which satisfy Ex together with

The Principle of Constant Irrelevance, IP
A probability function w on SL satisfies Constant Irrelevance if for ϑ, ϕ ∈ QFSL
with no constants in common,

w(ϑ ∧ ϕ) = w(ϑ) · w(ϕ).

Thus de Finetti’s Representation Theorem can be alternately stated as saying that every
probability function satisfying Ex is a convex mixture of probability functions satisfying
IP, and conversely.

The principles that are of particular interest to us in this paper are:

The Principle of Predicate Exchangeability, Px
A probability function w on SL satisfies Predicate Exchangeability if whenever ϕ ∈ SL
and ϕ′ is the result of replacing the predicates5 Pi1 , . . . , Pim in ϕ by Pk1 , . . . , Pkm, then

w(ϕ) = w(ϕ′).

The justification for this principle is just the same as for Constant Exchangeability, as
in presence of no prior knowledge of the universe a rational agent should not favour any
particular predicate in her language from the start.

5In such lists we shall always assume that the members are distinct.
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As a motivational example6 suppose a rational agent is picking (with replacement) balls
from an urn, these balls being either black or white and either shiny or matt, and she
is asked about her subjective probabilities concerning the distribution of colours and
textures of balls in this urn. Interpreting the constants of the language as the balls
being picked from the urn and two predicate of the language as describing a ball’s colour
and texture, it would seem irrational that in the absence of any prior knowledge of the
urn the agent should assign a higher probability to ‘white’ than to ‘shiny’, say.

The Principle of Unary Language Invariance, ULi
A probability function w on SL satisfies Unary Language Invariance if there exists a
family of probability functions wL, one for each finite (unary) language L, satisfying
Px (and by standing assumption Ex), such that w = wL and whenever L′ ⊆ L, then
wL
′
= wL � SL′, the restriction of w to the sentences of L′.

We say that w satisfies ULi with P (for some principle P), if each of the functions wL

satisfy P.

This principle allows a rational agent to extend her language should the situation require
it. For instance, suppose that in the aforementioned urn example the agent were to find
that after picking a number of balls and noting their colours and textures she was to
discover that some of the balls were magnetized and others not. She might not already
have a predicate interpreted as ‘is magnetized’ in her language, and so might want to
add one in order to further distinguish the balls. However, upon learning that some balls
were magnetized it would surely be irrational to discard all the properties noted about
the previously selected balls. If the agent’s probability function satisfies ULi she will
be able to just extend the language to include an additional ‘is magnetized’ predicate,
which by Px would initially have had precisely the same status as the colour and texture
predicates, and consequently she could just continue without having to start over again.
After all, just because some balls are magnetized does not mean the agent has reason to
change her belief about the colour and texture distribution of the balls in the urn.

The ‘rationality’ of ULi is based on two considerations. Firstly the idea that if the agent
chooses probability functions wL and wL

′
on languages L,L′ respectively and L ⊂ L′

then wL
′
restricted to SL should agree with wL, otherwise she would be in the seemingly

irrational position of giving different probabilities to the same sentence simply on account
of their being other unmentioned predicate symbols in the language. Put another way
her choice wL would depend on the particular set of predicates in L, and she would be
imposing some a priori semantics on the languages.

The second consideration is that if our agent subscribes to some principles P as rational
obligations then this should not be a function of the particular language under consid-

6We need to be constantly on our guard with such examples. It is crucially important to appreciate
that they are intended only to motivate an underlying arguably rational principle, in this case
Predicate Exchangeability, not to propose a practical rule applicable to all interpretations of the
language. The widespread failure to appreciate this point has proved the bane of this subject.
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eration, so that the agent should be subscribing to P for any language. Taking P to be
Px (and the standing Ex) these two considerations give ULi.7,8

Notice that if wL, wL
′

are members of a language invariant family and L,L′ have the
same number of predicates then wL is the same as wL

′
up to renaming predicates. For

that reason it will, for the most part, be enough for us to focus our attention on the
members wL of the family when L = Lq for some q.

Given a permutation σ of the predicates of L, there is a unique permutation of the atoms
of L that is induced by σ: For α(x) =

∧q
i=1 P

εi
i (x) an atom of L, let σα(x) be the atom

given by

σα(x) =

q∧
i=1

σ(Pi)
εi(x).

This now in turn induces a permutation on SL in the obvious way. Abusing notation,
we identify these permutations of atoms and L-sentences with σ. We shall write σ is
induced by Px to indicate that σ arises from a permutation of predicates.

3 A First Representation Theorem

Since the w~x are the building blocks for probability functions satisfying Ex (see de
Finetti’s Theorem above), these functions are of special interest to us. We will there-
fore begin by studying when they satisfy ULi, equivalently when probability functions
satisfying Ex and IP satisfy ULi.

Suppose a probability function w on some language L satisfies Predicate Exchangeability.
Then the probability that w assigns any atom α of L only depends on the number of
predicates in α that occur negated.9 To see this notice that if α, α′ are atoms then α′

can be obtained from α by a permutation of predicates just if both atoms have the same
number of negated predicates.

It is thus convenient to introduce a function assigning each atom the corresponding
number of predicates:

Definition 3:
Let L = Lq. Define γq : {1, . . . , 2q} → {0, . . . , q} by

γq(i) = k ⇔ αi contains k negated predicates.

7In fact, as one easily checks, without Px, any probability function w can be arbitrarily extended to
obtain a language invariant family, which makes Language Invariance in this form a trivial statement.

8It is interesting to note, as pointed out by one of the referees, that language invariance is a wholly
unobjectionable feature of logical consequence so it’s continued acceptance for our more general
form of reasoning would seem in the first instance entirely natural.

9This is an arbitrary choice. One could also count the number of predicates that occur positively in
α, as the argument is symmetrical.
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We shall drop the index q whenever it is understood from the context.

Now considering ~c ∈ D2q it follows that w~c satisfies Predicate Exchangeability if and only
if ci = cj whenever γ(i) = γ(j). With this in mind we shall assume that our enumeration
of the atoms is such that the number of negated predicates is non-decreasing as we move
right through α1, α2, . . . , α2q . Since for each i ∈ {0, . . . , q} there are

(
q
i

)
atoms of Lq

with i predicates occurring negatively we therefore have that for w~c satisfying Px

~c = 〈C0, C1, . . . , C1, C2, . . . , C2, . . . , Cq−1, . . . , Cq−1, Cq〉,

i.e. ci = Cγ(i) for i = 1, 2, . . . , 2q, and

q∑
i=0

(
q

i

)
Ci = 1.

Thus any such ~c gives us a unique ~C = 〈C0, C1, C2, . . . , Cq〉 with the properties

∀i ∈ {0, . . . , q} Ci ≥ 0 and 1 =

q∑
i=0

(
q

i

)
Ci.

Conversely, any ~C with these properties provides a unique ~c ∈ D2q such that w~c satisfies
Px, giving us a 1-1 correspondence between these ~c ∈ D2q and the elements of

D̂q :=

{
~C = 〈C0, C1, C2, . . . , Cq〉 | ∀i ∈ {0, . . . , q} Ci ≥ 0 and 1 =

q∑
i=0

(
q

i

)
Ci

}
. (2)

We shall refer to elements of the set above as the alternative notation for such a ~c ∈ D2q .

Given an atom α of Lq, we can view this atom as a quantifier-free sentence in the
extended language Lq+1, and obtain

α(x) ≡ α+(x) ∨ α−(x) = (α(x) ∧ Pq+1(x)) ∨ (α(x) ∧ ¬Pq+1(x)) .

Now suppose ~c ∈ D2q , ~d ∈ D2q+1 are such that w~d � SLq = w~c and both satisfy Px. Then
by the logical equivalence given above, we must have

w~c(α) = w~d (α) = w~d (α+) + w~d (α−).

Suppose ~C ∈ D̂q, ~D ∈ D̂q+1 are the corresponding alternative notations for ~c and ~d. Then
we obtain for each i ∈ {0, . . . , q},

Ci = Di +Di+1.

The following proposition generalizes this to ULi families.
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Proposition 4. Let w~c be a probability function on Lq. Suppose w~c is a member of a
ULi with IP family W and assume w~d ∈ W is a probability function on Lr for some

r > q. Let ~C, ~D be the corresponding alternative notations for ~c, ~d. Then for each
j ∈ {0, . . . , q}, we have

Cj =

r−q+j∑
k=j

(
r − q
k − j

)
Dk.

Proof: We show this by induction on s := r − q. In case s = 1, we have for each
j ∈ {0, . . . , q},

Cj = Dj +Dj+1,

since for α an atom of Lq with j negated predicates, we have in Lr (= Lq+1)

α = α+ ∨ α−,

where α+, α− are atoms of Lr with j, j + 1 negated predicates, respectively.

Now let s = p + 1 and assume the result holds for p. Let D′i denote the corresponding
values for the atoms of Lq+p. By the inductive hypothesis we have

Cj =

(q+p)−q+j∑
k=j

(
(q + p)− q
k − j

)
D′k.

Just as in the case s = 1 we have D′k = Dk +Dk+1 for each 0 ≤ k ≤ q + p, so we obtain

Cj =

p+j∑
k=j

(
p

k − j

)
(Dk +Dk+1) =

p+1+j∑
k=j

(
p+ 1

k − j

)
Dk =

r−q+j∑
k=j

(
r − q
k − j

)
Dk,

as required. a

With this proposition in mind, we are ready to proceed to our first Representation
Theorem.

Theorem 5. Let ~c ∈ D2q and w~c be a probability function satisfying Px. Then w~c is a
member of a ULi with IP family W = {w~dr

| ~dr ∈ D2r} if and only if each entry ci of ~c
is of the form

ci =

∫
[0,1]

xγ(i)(1− x)q−γ(i) dρ(x) (3)

for some normalized σ-additive measure ρ on [0, 1].

9



Proof: We will use methods from Nonstandard Analysis working in a suitable non-
standard universe ∗V , see for example [4]. The key idea to the proof is to marginalize
some w~c on some infinite language to finite languages, rather than constructing exten-
sions of some w~d on a finite language to each finite level. Suppose we have such a ULi
with IP family W of probability functions, so for each r ∈ N, we have some w(r) on Lr
in this family. By the Transfer Principle this holds for each r ∈ ∗N, so we can pick some
nonstandard natural number ν ∈ ∗N \ N and consider w(ν). Now w(ν) � SLr = w(r) for
each r < ν, as these are members of the same ULi family and we can retrieve our original
familyW by looking at functions of the form w(ν) � SLr for r ∈ N, taking standard parts
– denoted as usual by ◦ – where necessary.

In more detail let ∗V be a nonstandard universe that contains at least D2q for finite
q ∈ N, all probability functions w~b satisfying Px and everything else needed in this

proof. Let ν ∈ ∗N be nonstandard and consider ~b ∈ D2ν such that w~b on Lν satisfies Px.

Assume that ~B is the alternative notation for ~b given by (2). For each q < ν, we can
define a probability function on Lq in ∗V satisfying Px by letting

Cj =

ν−q+j∑
κ=j

(
ν − q
κ− j

)
Bκ

for j = 0, . . . , q. In general, this gives ~c ∈ ∗D2q , so we need to take the standard part of
~c, denoted ◦~c, to get a probability function w◦~c in V .

We will first look at ~B when all weight is concentrated on a single Bκ, 0 ≤ κ ≤ ν. Since
we need to have

∑ν
κ=0

(
ν
κ

)
Bκ = 1, we obtain

Bκ =

(
ν

κ

)−1

.

Then we get for 0 ≤ j ≤ q

Cj =

(
ν − q
κ− j

)
Bκ =

(
ν − q
κ− j

)
·
(
ν

κ

)−1

=
(ν − q)! · κ! · (ν − κ)!

(κ− j)! · (ν − q − κ+ j)! · ν!

=
κ · (κ− 1) · · · (κ− j + 1) · (ν − κ) · · · (ν − κ− q + j + 1)

ν · (ν − 1) · · · (ν − q + 1)
, (4)

thus leading to the standard part being

◦Cj =
◦((κ

ν

)j
·
(

1− κ

ν

)q−j)
=
◦ (κ
ν

)j
·
(

1−
◦ (κ
ν

))q−j
. (5)

Now consider an arbitrary ~B = 〈B0, . . . ,Bν〉. Then for each 0 ≤ κ ≤ ν there exists
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γκ ∈ ∗[0, 1] such that we can write

Bκ = γκ ·
(
ν

κ

)−1

.

Note that since
ν∑
κ=0

(
ν

κ

)
Bκ = 1

we must have

ν∑
κ=0

γκ = 1.

Then using (4) we see that each summand in Cj will be of the form

γκ ·
(
ν − q
κ− j

)(
ν

κ

)−1

,

thus ◦Cj will become

◦Cj =

◦(ν−q+j∑
κ=j

γκ ·
(
ν − q
κ− j

)(
ν

κ

)−1
)
.

Since we are only interested in the standard part, we can add the finitely many summands
for κ = 0, . . . , j− 1, ν− q+ j+ 1, . . . , ν without changing ◦Cj (assuming that 0 < j < q),
as we have

◦( ν∑
κ=0

γκ ·
(
ν − q
κ− j

)(
ν

κ

)−1
)
− ◦Cj

=

◦( j−1∑
κ=0

γκ ·
(
ν − q
κ− j

)(
ν

κ

)−1
)

+

◦( ν∑
κ=ν−q+j+1

γκ ·
(
ν − q
κ− j

)(
ν

κ

)−1
)

=

j−1∑
κ=0

◦(
γκ ·

(
ν − q
κ− j

)(
ν

κ

)−1
)

+

◦( ν∑
κ=ν−q+j+1

γκ ·
(
ν − q
κ− j

)(
ν

κ

)−1
)

= 0 + 0,

because for κ ∈ {0, . . . , j−1, ν−q+j+1, . . . , ν}, either ◦(κ/ν) = 0 or ◦(1−κ/ν) = 0, so
the first and last sum vanish as each consists of finitely many terms. Note that in case
j = 0, q, either the first or the second summand is empty, and therefore we can apply
the same argument for j = 0, q as well, giving

◦Cj =

◦( ν∑
κ=0

γκ ·
(
ν − q
κ− j

)(
ν

κ

)−1
)

(6)
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for j ∈ {0, . . . , q}.

Now let N = {0, . . . , ν} and (in ∗V of course) let µ be the Loeb counting measure on N
(see example (1), section 2 in [4]). Then we can write (6) as

◦Cj =

◦ ∫
N

γκ ·
(
ν − q
κ− j

)(
ν

κ

)−1

dµ(κ). (7)

Let µ′ be the discrete measure on ∗[0, 1] which for κ ∈ N gives the point κ/ν measure
γκ. Then we get∫

N

γκ ·
(
ν − q
κ− j

)
·
(
ν

κ

)−1

dµ(κ) =

∫
∗[0,1]

(
ν − q
x · ν − j

)
·
(

ν

x · ν

)−1

dµ′(x). (8)

Now let ρ be the measure in V on [0, 1] which for a Borel subset A of [0, 1] gives

ρ(A) = ◦µ′(∗A). (9)

By well known results from Loeb Measure Theory, see for example [4],

◦ ∫
∗[0,1]

(
ν − q
x · ν − j

)
·
(

ν

x · ν

)−1

dµ′(x) =

∫
[0,1]

◦((
ν − q
x · ν − j

)
·
(

ν

x · ν

)−1
)
dρ(x). (10)

Combining (5),(7),(8),(10) now gives that

◦Cj =

∫
[0,1]

xj · (1− x)q−j dρ(x) (11)

We obtain a ~c ∈ D2q by letting

~c = 〈◦C0,
◦C1, . . . ,

◦C1, . . . ,
◦Cq−1, . . . ,

◦Cq−1,
◦Cq〉.

As we can marginalize ~b in the above way to any r ∈ N, we obtain that given a family of
functions {w~dr

| ~dr ∈ D2r} such that each ~dr is obtained by marginalizing some ~b ∈ D2ν

and therefore satisfies (3), this family satisfies Unary Language Invariance.

For the converse it is straightforward to check that any w~c for which all the ci in ~c are of
the form (11) does satisfy ULi, the required family member on Lr being obtained simply
by changing q to r with the same measure ρ. a

However, as the following example will show, the probability functions of the form w~c
satisfying ULi with IP are not the building blocks that generate all probability functions
satisfying ULi:

12



Example 6. Let cL2
0 be the probability function on L2 given by

cL2
0 =

1

4

(
w〈1,0,0,0〉 + w〈0,1,0,0〉 + w〈0,0,1,0〉 + w〈0,0,0,1〉

)
.

Then cL2
0 satisfies ULi as it is a member of Carnap’s Continuum of Inductive Methods

(see e.g. [12]). However, both 〈0, 1, 0, 0〉 and 〈0, 0, 1, 0〉 are not of the form (3), and thus
cL2

0 shows that we cannot have a Representation Theorem for w satisfying ULi of the
form

w =

∫
D2q

w~x dµ(~x)

with µ giving all weight to ~c of the form (3).

4 The Representation Theorem for w satisfying ULi

In the previous section, we used a probability function satisfying Px + IP on the infinite
language Lν to construct a language invariant family by marginalizing to each finite
level. In turn this gave us our first Representation Theorem, Theorem 5.

In this section we shall instead derive a representation theorem for just ULi by using
an arbitrary state description Υ of Lν to construct a probability function satisfying Px
by averaging over all permutations of predicates, similarly to the definition of cL2

0 in
Example 6. We first introduce some notation and a related result, Theorem 8, which is
of interest in its own right.

Let Υ(P1, . . . , Pν , a1, . . . , aν) be the state description of Lν given by

Υ(P1, . . . , Pν , a1, . . . , aν) =
ν∧
i=1

ν∧
j=1

P
εi,j
i (aj).

Then we can represent Υ by the ν × ν - matrix
ε1,1 ε1,2 · · · ε1,ν

ε2,1 ε2,2 · · · ε2,ν
...

...
. . .

...
εν,1 εν,2 · · · εν,ν

 .

Now consider the q × ν - matrix Ψ where the j’th row of Ψ is the ij’th row of Υ, for
some i1, . . . , iq ∈ {1, . . . , ν}, not necessarily distinct. Then we can similarly think of Ψ
as a state description Ψ(a1, . . . , aν) of Lq. So each column of Ψ represents an atom of
Lq, and we obtain ~c ∈ ∗D2q by letting

ci =
|{j |Ψ |= αi(aj)}|

ν
.

13



We thus obtain for each 〈i1, . . . , iq〉 with 1 ≤ i1, . . . , iq ≤ ν some w~c for ~c ∈ ∗D2q , which
we shall denote by wΥ

〈i1,...,iq〉.

We can now define the functions that we will then use to prove the representation
theorem for general ULi functions.

Definition 7:
Let Υ(P1, . . . , Pν , a1, . . . , aν) be a state description of Lν for ν distinct constants. Let
L = Lq for some finite q. For i1, . . . , iq ∈ {1, . . . , ν}, not necessarily distinct, let wΥ

〈i1,...,iq〉
be given as above.

Define the function ∇L
Υ on SL by

∇L
Υ =

∑
e:{1,...,q}→{1,...,ν}

1

νq
wΥ
〈e(1),...,e(q)〉.

Instead of just marginalizing to the first q rows, as we did in the case of w~c, ∇L
Υ now also

averages over all permutations of the predicates. One can think of this as picking q rows
from the matrix representing Υ with replacement to obtain the predicates P1, . . . , Pq of
Lq.

Before our next result we need to recall another principle, see [8], [12].

The Weak Irrelevance Principle, WIP
A probability function w on SL satisfies Weak Irrelevance if whenever ϑ, ϕ ∈ QFSL have
no constants nor predicates in common then

w(ϑ ∧ ϕ) = w(ϑ) · w(ϕ).

Notice that this is a weakening of the Constant Irrelevance principle, IP, where we
required only that ϑ, ϕ have no constants in common.

Theorem 8. Let Υ(P1, . . . , Pν , a1, . . . , aν) be a state description of Lν and let L = Lq.
Then the function ◦∇L

Υ is (can be extended to) a probability function on SL satisfying
ULi + WIP.

Proof: From the definition of ∇L
Υ it is obvious that ◦∇L

Υ is a probability function sat-
isfying Ex.

For Px, let σ be a permutation of the predicates of L. Then we obtain

◦∇L
Υ(σΘ) =

◦  ∑
e:{1,...,q}→Υ

1

νq
· wΥ
〈e(1),...,e(q)〉(σΘ)


=

◦  ∑
e:{1,...,q}→Υ

1

νq
· wΥ
〈e(σ−1(1)),...,e(σ−1(q))〉(Θ)

 ,
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since σ permutes the predicates of L,

=

◦  ∑
e◦σ−1:{1,...,q}→Υ

1

νq
· wΥ
〈e◦σ−1(1),...,e◦σ−1(q)〉(Θ)


=

◦  ∑
e′:{1,...,q}→Υ

1

νq
· wΥ
〈e′(1),...,e′(q)〉(Θ)

 = ◦∇L
Υ(Θ).

To show that ULi holds, notice that for Θ(a1, . . . , an) the state description

Θ(a1, . . . , an) =
n∧
j=1

αhj(aj),

we obtain on Lq+1,

Θ(a1, . . . , an) =
∨

ε1,...,εn∈{0,1}

n∧
j=1

α
εj
hj

(aj),

where

α
εj
hj

(x) = αhj(x) ∧ P εj
q+1(x).

We obtain

◦∇Lq+1

Υ (Θ)

=
∑

ε1,...,εn∈{0,1}

◦∇Lq+1

Υ

 ∨
ε1,...,εn∈{0,1}

n∧
j=1

α
εj
hj


=

∑
ε1,...,εn∈{0,1}

◦  ∑
e:{1,...,q+1}→{1,...,ν}

1

νq+1
wΥ
〈e(1),...,e(q+1)〉

 ∨
ε1,...,εn∈{0,1}

n∧
j=1

α
εj
hj


=

◦  ∑
e:{1,...,q+1}→{1,...,ν}

1

νq+1

∑
ε1,...,εn∈{0,1}

wΥ
〈e(1),...,e(q+1)〉

 ∨
ε1,...,εn∈{0,1}

n∧
j=1

α
εj
hj


=

◦  ∑
e′:{1,...,q}→{1,...,ν}

1

νq
·

∑
f :{1}→{1,...,ν}

1

ν

∑
ε1,...,εn∈{0,1}

wΥ
〈e′(1),...,e′(q),f(1)〉

 ∨
ε1,...,εn∈{0,1}

n∧
j=1

α
εj
hj

 ,
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where

e(i) =

{
e′(i) if i ∈ {1, . . . , q},
f(1) if i = q + 1.

It now remains to show that

∑
f :{1}→{1,...,ν}

1

ν

∑
ε1,...,εn∈{0,1}

wΥ
〈e′(1),...,e′(q),f(1))〉

 ∨
ε1,...,εn∈{0,1}

n∧
j=1

α
εj
hj

 = wΥ
〈e′(1),...,e′(q)〉(Θ)

(12)

for arbitrary e′ : {1, . . . , q} → Υ̂. There are ~c ∈ ∗D2q , ~d ∈ ∗D2q+1 such that

wΥ
〈e′(1),...,e′(q)〉 = w~c,

wΥ
〈e′(1),...,e′(q),f(1)〉 = w~d.

Given βj an atom of Lq+1, there is a unique atom αi of Lq and a unique ε ∈ {0, 1} such
that

βj = αεi .

Thus, we can unambiguously write dj = cεi for these i, ε. We then obtain

∑
ε1,...,εn∈{0,1}

wΥ
〈e′(1),...,e′(q),f(1))〉

 ∨
ε1,...,εn∈{0,1}

n∧
j=1

α
εj
hj

 =
∑

ε1,...,εn∈{0,1}

n∏
j=1

c
εj
hj

=
n∏
j=1

(c0
hj

+ c1
hj

). (13)

Since by picking row f(1) as the q+1’st row we partition the occurrences of the atom αj
of Lq obtained by picking rows e′(1), . . . , e′(q) into occurrences of the atoms α1

j and α0
j of

Lq+1, and this is the only way in which we obtain these atoms, we must have c0
i + c1

i = ci
for each i ∈ {1, . . . , 2q}. Thus (13) gives

n∏
j=1

(c0
hj

+ c1
hj

) =
n∏
j=1

chj = w〈e′(1),...,e′(q)〉(Θ).

The equation (12) now follows.

It remains to show that Weak Irrelevance holds for ◦∇L
Υ. Let ϑ(a1, . . . , am),

ϕ(am+1, . . . , am+n) be state descriptions of L having no constant or predicates in com-
mon. We can assume that ϑ ∈ QFSL1, ϕ ∈ QFSL2, where L1∩L2 = ∅ and L1∪L2 = L.
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Let αi range over the atoms of L1, βj over the atoms of L2. Then we obtain in L1 and
L2, respectively,

ϑ(a1, . . . , am) =
m∧
i=1

αhi(ai),

ϕ(am+1, . . . , am+n) =
n∧
j=1

βgj(am+j).

Suppose that L1 = {P1, . . . , Pp}, L2 = {Pp+1, . . . , Pp+r}. Then we obtain in L

ϑ(a1, . . . , am) =
∨

1≤s1,...,sm≤2r

m∧
i=1

αhi(ai) ∧ βsi(ai),

ϕ(am+1, . . . , am+n) =
∨

1≤t1,...,tn≤2p

n∧
j=1

αtj(am+j) ∧ βgj(am+j),

and by ULi for ◦∇L
Υ,

◦∇L1

Υ (ϑ) = ◦∇L
Υ

( ∨
1≤s1,...,sm≤2r

m∧
i=1

αhi ∧ βsi

)
, (14)

◦∇L2

Υ (ϕ) = ◦∇L
Υ

( ∨
1≤t1,...,tn≤2p

n∧
j=1

αtj ∧ βgj

)
. (15)

Now for ϑ ∧ ϕ, we obtain in L

◦∇L
Υ(ϑ ∧ ϕ)

= ◦∇L
Υ

( ∨
1≤s1,...,sm≤2r

∨
1≤t1,...,tn≤2p

(
n∧
i=1

αhi ∧ βsi

)
∧

(
n∧
j=1

αtj ∧ βgj

))

=
∑

1≤s1,...,sm≤2r

∑
1≤t1,...,tn≤2p

◦  ∑
e:{1,...,q}→{1,...,ν}

1

νq
·

wΥ
〈e(1),...,e(q)〉

((
n∧
i=1

αhi ∧ βsi

)
∧

(
n∧
j=1

αtj ∧ βgj

))]

=
∑

1≤s1,...,sm≤2r

∑
1≤t1,...,tn≤2p

◦  ∑
e:{1,...,q}→{1,...,ν}

1

νq
· wΥ
〈e(1),...,e(q)〉

(
n∧
i=1

αhi ∧ βsi

)

·wΥ
〈e(1),...,e(q)〉

(
n∧
j=1

αtj ∧ βgj

)]
,
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by IP for wΥ
〈e(1),...,e(q)〉,

=

 ∑
1≤s1,...,sm≤2r

◦  ∑
e:{1,...,q}→{1,...,ν}

1

νq
· wΥ
〈e(1),...,e(q)〉

(
n∧
i=1

αhi ∧ βsi

)
·

 ∑
1≤t1,...,tn≤2p

◦  ∑
e:{1,...,q}→{1,...,ν}

1

νq
· wΥ
〈e(1),...,e(q)〉

(
n∧
j=1

αtj ∧ βgj

)
=

( ∑
1≤s1,...,sm≤2r

◦∇L
Υ

(
m∧
i=1

αhi ∧ βsi

))
·

( ∑
1≤t1,...,tn≤2p

◦∇L
Υ

(
n∧
j=1

αtj ∧ βhj

))
= ◦∇L

Υ(ϑ) · ◦∇L
Υ(ϕ),

by (14) and (15). a

We are now set up to prove the main result of this section:

Theorem 9 (The Representation Theorem for ULi). Let w be a probability func-
tion on L = Lq. Then w satisfies ULi if and only if there exists some normalized
σ-additive measure ρ such that

w =

∫
◦∇L

Υ dρ(Υ). (16)

Proof: By Theorem 8, it is straightforward to see that any w in the form (16) satisfies
ULi, as it is a convex combination of ULi functions.

For the other direction, suppose w satisfied ULi. Then there is an extension wLν of w
to Lν and we obtain for Θ(a1, . . . , an) a state description of L,

w(Θ) =
∑

Φ(a1,...,aν)
Φ|=Θ

wLν (Φ), (17)

where Φ ranges over the state descriptions of Lν . For a state description
Υ(P1, . . . , Pν , a1, . . . , aν), let

Ῡ = {Υ(Pσ(1), . . . , Pσ(ν), aτ(1), . . . , aτ(ν) |σ, τ are permutations of {1, . . . , ν}}.

Note that the sets Ῡ partition the set of state descriptions of Lν . We can now write (17)
as

w(Θ) =
∑

Ῡ

∑
Φ∈Ῡ
Φ|=Θ

wLν (Φ)

=
∑

Ῡ

|{Φ ∈ Ῡ |Φ |= Θ}|
|Ῡ|

wLν
(∨

Ῡ
)
,
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as wLν is clearly constant on Ῡ since it satisfies Px (and Ex).

Now the ratio

|{Φ ∈ Ῡ |Φ |= Θ}|
|Ῡ|

is equal to the probability that by randomly picking distinct predicates Pi1 , . . . , Piq and
constants aj1 , . . . , ajn , we have that

Υ |= σΘ(aj1 , . . . , ajn),

where σ is (an initial segment of) the permutation of predicates of Lν with σ(k) = ik
for k ∈ {1, . . . , q}.

Note that with our definition of ∇L
Υ, we allow the same row to be picked multiple

times, so not all picks of rows represent a permutation of the predicates. Thus the
difference between the probabilities given by ∇L

Υ and the above ratio is the difference
between picking rows of Υ with and without replacement. However, since the probability
of picking the same row twice is infinitesimal, it will disappear when taking standard
parts.

Thus we obtain

◦( |{Φ ∈ Ῡ |Φ |= Θ}|
|Ῡ|

)
= ◦∇L

Υ(Θ).

Now taking µ to be the measure on the Ῡ given by wLν , we obtain∑
Ῡ

|{Φ ∈ Ῡ |Φ |= Θ}|
|Ῡ|

wLν
(∨

Ῡ
)

=

∫
|{Φ ∈ Ῡ |Φ |= Θ}|

|Ῡ|
dµ(Ῡ).

Taking standard parts, we obtain

◦ ∫ |{Φ ∈ Ῡ |Φ |= Θ}|
|Ῡ|

dµ(Ῡ) =

∫ ◦( |{Φ ∈ Ῡ |Φ |= Θ}|
|Ῡ|

)
dρ(Ῡ)

=

∫
◦∇L

Υ dρ(Ῡ),

where ρ is the Loeb measure given by the nonstandard measure µ. a

Since ◦∇L
Υ satisfies WIP we obtain the following theorem.

Theorem 10. The ◦∇L
Υ are the only functions satisfying ULi with WIP.
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Proof: We follow essentially the proof for the analogous theorem for Atom Exchange-
ability.10

Let w be a probability function satisfying ULi with WIP. Let ϑ ∈ QFSL. Extend w
to w′ on some language L′ large enough so that we can permute the predicates and
constants in ϑ to obtain ϑ′ with no predicates nor constants in common with ϑ. We can
achieve this by picking w′ on L′ in the same ULi family as w, giving w′ � SL = w and
guaranteeing WIP for w′. By Px for w′ we then have w′(ϑ) = w′(ϑ′). Now we clearly
obtain

0 = 2(w′(ϑ ∧ ϑ′)− w′(ϑ) · w′(ϑ′))

=

∫
◦∇L′

Ψ (ϑ ∧ ϑ′) dµ(Ψ)− 2

∫
◦∇L′

Ψ (ϑ) dµ(Ψ) ·
∫
◦∇L′

Φ (ϑ′) dµ(Φ)

+

∫
◦∇L′

Φ (ϑ ∧ ϑ′) dµ(Φ)

=

∫ ∫ (
◦∇L′

Ψ (ϑ)2 − 2◦∇L′

Ψ (ϑ) · ◦∇L′

Φ (ϑ) + ◦∇L′

Φ (ϑ)2
)
dµ(Ψ) dµ(Φ)

=

∫ ∫ (
◦∇L′

Ψ (ϑ)− ◦∇L′

Φ (ϑ)
)2

dµ(Ψ) dµ(Φ),

using the Representation Theorem. Certainly, since the function under the integral is
non-negative, there must be a measure 1 set such that ◦∇L′

Ψ is constant on this set for
each ϑ ∈ QFSL, giving w′ = ◦∇L′

Ψ for any Ψ in this set. Since w′ � SL = w, i.e.
w = ◦∇L′

Ψ � SL, marginalizing w′ to L yields w = ◦∇L
Ψ, as required. a

With Theorem 9, we have shown that the building blocks for probability functions
satisfying Unary Language Invariance all satisfy Weak Irrelevance, and that in fact
these are the only ones that satisfy this principle. This is analogous to the situation
with Atom Exchangeability and its generalization to Polyadic Pure Inductive Logic,
Spectrum Exchangeability, see [12, Chapter 32].

5 A General Representation Theorem

In the case of Atom Exchangeability, Ax, we have a theorem stating that each w satisfy-
ing Ax can be represented as a difference of scaled ULi functions with Ax (see e.g. [12,
chapter 33]). In this section, we will prove an analogous result for Px. For the remainder
of this section we assume that L = Lq for some q ∈ N.

10The principle of Atom Exchangeability is a strengthening of Px stating that a probability function
w should be invariant under permutations of the atoms of the language L (see e.g. [12, Chapter
14]). For the purposes of this paper however it is not necessary to know anything more about Atom
Exchangeability.
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Definition 11:
Let ~c ∈ D2q . Let Σ be the set of all permutations of atoms of L that are induced by Px.
Define the probability function y~c on QFSL by

y~c(Θ(a1, . . . , an)) =
1

|Σ|
∑
σ∈Σ

wσ~c(Θ(a1, . . . , an))

for state descriptions Θ(a1, . . . , an) of L.

Note that by definition, y~c satisfies Px. By a straightforward argument we obtain the
following variation on de Finetti’s Theorem:

Theorem 12. Let w be a probability function on SL satisfying Px. Then there exists a
normalized, σ-additive measure µ on the Borel sets of D2q such that

w

(
n∧
j=1

αhj(aj)

)
=

∫
D2q

y~c

(
n∧
j=1

αhj(aj)

)
dµ(~c). (18)

Conversely, given such a measure µ, the function w defined by (18) satisfies Px.

The key to obtaining the desired General Representation Theorem will therefore involve
finding a uniform representation of the building blocks y~c in terms of a difference of ULi
functions. The ◦∇L

Υ functions used for this proof will have a specific characterization
that deserves a slightly different notation. Since at this point, we will be working in
the usual standard universe again, we will drop the standard part symbol ◦ from the
notation and assume that all ∇L

Υ from now on are given in their standard form.

Recalling the definition of∇L
Υ note that for fixed e : {1, . . . , q} → {1, . . . , ν}, the function

wΥ
〈e(1),...,e(q)〉 is given by the q×ν - matrix with the i’th row identical to the e(i)’th row of

Υ. Also, since with wΥ
〈e(1),...,e(q)〉 we also have all the wΥ

〈σ(e(1)),...,σ(e(q))〉 for σ ranging over

the permutations of the predicates of L occurring in ∇L
Υ, we see that this function is a

convex combination of functions of the form y~c.

We can now arrange ∇L
Υ to contain a copy of y~c for a given ~c ∈ D2q as follows: Let Φ be

the state description represented by the matrixα1 · · · α1 α2 · · · α2 · · · α2q · · · α2q

 ,

where αi occurs [ci · ν] times. Now let p1, . . . , pq ≥ 0 be such that
∑q

i=1 pi = 1 and let
Υ be the ν × ν - matrix containing [pi · ν] copies of the i’th row of Φ, for each i, and fill
the remaining rows with arbitrary copies of rows from Φ. Then ∇L

Υ certainly contains a
copy of y~c.
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With this in mind, we can modify the notation of ∇L
Υ to

~p∇L
Υ

for ~p = 〈p1, . . . , pq〉 to indicate that Υ contains only q distinct rows, occurring with the
frequency given by ~p. We will write ~p∇L

Υ(~c) to indicate that Υ arises from ~c ∈ D2q in this
manner.

We can represent ~p∇L
Υ(~c) in terms of y~c as follows. Let K = {~n ∈ Nq |

∑q
i=1 ni = q}, so

~n ∈ K represents the choices of picking rows from Υ. Then we obtain the representation

~p∇L
Υ(~c) =

∑
~n∈K

q∏
i=1

pnii (n1, . . . , nq)! y~c~n , (19)

where ~c~n results from picking rows according to ~n and (as standard)

(n1, . . . , nq)! =
(n1 + n2 + . . .+ nq)!

n1!n2! . . . nq!
=

(
q

n1, . . . , nq

)
.

Note that we need this multinomial coefficient here since ~p∇L
Υ(~c) is in fact a sum of w~e,

and although each of the w~e occurring in y~c occurs, the normalizing constant exists only
implicitly in ~p∇L

Υ(~c). With this notation in mind, we can prove the first step needed to
show the desired theorem.

Lemma 13. Let ~c ∈ D2q . Then there exist λ ≥ 0 and probability functions w1, w2

satisfying ULi such that

y~c = (1 + λ)w1 − λw2.

Proof: Fix ~c ∈ D2q . As demonstrated in the discussion above, we can easily find ∇L
Υ

with y~c occurring in it, amongst other instances of y~e. Thus, the problem reduces to
finding a way to remove all of these other instances via ULi functions.

To this end, suppose that for each ~m ∈ K we have ~p~m∇L
Υ(~c) such that Υ is the state

description obtained from w~c by the method discussed above. Then, since the represent-
ations of the form (19) of these functions only differ in the coefficients of the y~e occurring
we obtain the equation

...
~p~m∇L

Υ(~c)
...

 = A ·


...

(m1, . . . ,mq)! y~c~m
...

 , (20)

where A is the K×K-matrix with entry 〈~m,~n〉 being
∏q

k=1 p
nk
~m,k. It suffices now to show

that we can pick the ~p~m such that A is regular. For suppose this is the case. Then we
obtain from (20) the equation

A−1


...

~p~m∇L
Υ(~c)

...

 =


...

(m1, . . . ,mq)! y~c~m
...

 .

22



Suppose A−1 = (b~n,~m)~n,~m∈K . Then for ~n = 〈1, 1, . . . , 1〉 we obtain

y~c =
1

(n1, . . . , nq)!

∑
~m∈K

b~n,~m~p~m∇L
Υ(~c) =

1

q!

∑
~m∈K

b~n,~m~p~m∇L
Υ(~c),

and by collecting the functions with positive coefficients in the linear combination on
the right-hand side, we obtain constants γ, λ ≥ 0, independent of ~c, such that11

1

q!

∑
~m∈K

bk,~m~p~m∇L
Υ(~c) = γw1 − λw2,

with w1, w2 convex combinations of ULi functions. Since this gives the probability
function y~c, we must have

1 = y~c(>) = γw1(>)− λw2(>) = γ − λ,

and thus γ = 1 + λ.

It remains to show that the ~p~m can be chosen such that A is regular. For this, we will
show the following by induction on j:
Let 1 ≤ i1 < i2 < · · · < ij ≤ r and let A〈i1,...,ij〉 be the j × j sub-matrix of A obtained
by taking the i1, . . . , ij’th rows and columns of A. Then there is a choice of the ~p~mk ,
k = i1, . . . , ij such that A〈i1,...,ij〉 is regular.

For j = 1, this is trivial. Suppose j = n+ 1 for some n ≥ 1 and consider A〈i1,...,ij〉. For a
given ~m ∈ K, the polynomial

∏q
j=1 x

mj
j takes its maximum value on D2q at xj = mj/q.

Fix an enumeration of K. There exists ~mik = 〈mik,1, . . . ,mik,q〉 such that

q∏
s=1

(
mik,s

q

)mik,s
>

q∏
s=1

(
mik,s

q

)mij ,s
for all j 6= k. For if not, then

q∏
s=1

(
mik,s

q

)mik,s
≤

q∏
s=1

(
mik,s

q

)mij ,s
<

q∏
s=1

(
mij ,s

q

)mij ,s
for some j 6= k, and continuing in this way we arrive at a contradiction.

By the inductive hypothesis, there exists a choice of the ~p~ms , s ∈ {i1, . . . , ij} \ {ik} such
that the sub-matrix A〈i1,...,ik−1,ik+1,...,ij〉 is regular. Thinking of the p~mik ,s for the moment
as unknowns we obtain for the determinant of A〈i1,...,ij〉 an expression of the form

det(A〈i1,...,ij〉) =

±
q∏
s=1

p
mik,s
~mik ,s
· det(A〈i1,...,ik−1,ik+1,...,ij〉) +

∑
t∈{i1,...,ij}\{ik}

q∏
s=1

p
mt,s
~mik ,s
· (± det(At)) , (21)

11Note that we can safely assume λ 6= 0, since if λ = 0, then the y~c in question would already satisfy
ULi, and therefore already has the desired representation by the Representation Theorem for ULi.
We also trivially have γ 6= 0, since y~c is a probability function for any ~c ∈ D2q .
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(for some choices of ±) where the At are the corresponding sub-matrices of A〈i1,...,ij〉.
Now picking p~mik,s = (mik,s/q)

g for large enough g > 0, the term

q∏
s=1

p
mik,s
~mik ,s
· det(A〈i1,...,ik−1,ik+1,...,ij〉)

becomes the dominant term of (21), giving that det(A〈i1,...,ij〉) 6= 0, as certainly∏q
s=1 p

nik,s
~mik,s

> 0 and det(A〈i1,...,ik−1,ik+1,...,ij〉) 6= 0 by the inductive hypothesis.

Note that using this procedure we in general obtain ~p~m with entries p~mi,j not summing

to 1. In that case, we can pick ~p′ ~m such that

p′~mi,j =
p~mi,j∑q
s=1 p~mi,s

for each ~m ∈ K. Then the matrix A′ with entries
∏q

s=1 p
′nj ,s
~mi,s

is regular just if A is, and

the ~p′ ~m have the desired properties. a

Using this lemma, we can now prove the desired theorem.

Theorem 14 (The General Representation Theorem for Px). Let w
be a probability function on SL satisfying Px. Then there exist λ ≥ 0 and probability
functions w1, w2 satisfying ULi such that

w = (1 + λ)w1 − λw2.

Proof: Let w be a probability function on SL satisfying Px. By the Representation
Theorem for Px, we have that w has a representation

w =

∫
D2q

y~c dµ(~c) (22)

for some measure µ, and by Lemma 13, we have, for a fixed λ ≥ 0, a representation

y~c = (1 + λ)w1~c − λw2~c

for each ~c ∈ D2q . Now applying this to the representation (22), we obtain

w =

∫
D2q

(1 + λ)w1~c − λw2~c dµ(~c)

=

∫
D2q

(1 + λ)w1~c dµ(~c)−
∫
D2q

λw2~c dµ(~c)

= (1 + λ)w1 − λw2,

for

w1 =

∫
D2q

w1~c dµ(~c), w2 =

∫
D2q

w2~c dµ(~c),

as required. a
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Theorem 14 might initially suggest that if our agent chooses a probability function w on
a language L then she can express w in the form (1 + λ)w1 + λw2, where w1, w2 satisfy
ULi, and hence extend w to a larger language by using this form with w1, w2 extended
to this larger language. The flaw in this argument is that for ϑ from a larger language
there is no longer any guarantee that

(1 + λ)w1(ϑ) ≥ λw2(ϑ).

In other words such an attempt to extend w can (in fact has to) lead to ‘negative
probabilities’.

Again, as with Theorem 9, an analogous General Representation Theorem to Theorem
14 has been proved for Atom Exchangeability and its generalization to Polyadic Pure
Inductive Logic, Spectrum Exchangeability, see [12, Chapter 34].

6 Conclusion

The three main results in this paper are the Representation Theorems 5 and 9 for ULi
+ IP and ULi respectively and the General Representation Theorem 14. In the process
we also obtained a complete characterization of the probability functions satisfying ULi
with Weak Irrelevance, Theorem 10. Mathematically such representation theorems are
valuable because they tell us how probability functions satisfying, for example ULi, are
made up of simple building block functions satisfying ULi and as a result it is often the
case that to prove some property holds of all probability functions satisfying ULi it is
enough to show it for these simple building blocks, for which we usually have a much
clearer grasp. Whilst the mathematics may be somewhat technical at times there are
numerous examples where this has led to results which are philosophically interesting,
particular examples of this being Humburg’s use of de Finetti’s Representation Theorem
to prove that Ex implies the Principle of Instantial Relevance, see [9], and the recent
use of the polyadic version of de Finetti’s Theorem to refine the Counterpart Principle
of Analogy, see [12, Chapter 22].

In particular in this paper we have obtained results characterizing the probability func-
tions satisfying Px and relating this principle to ULi, IP and WIP, all four principles
which are directly accessible to philosophical consideration. Indeed it seems to us hard
not to grant Px the same degree of acceptance as Ex commonly now enjoys within
the context of Pure Inductive Logic, and in which case investigating its properties and
relationships with other purportedly rational principles is central.

Throughout this paper we have worked in the conventional Unary Pure Inductive Logic.
Over the past decade however there has been a rapid development of Polyadic Pure
Inductive Logic (again see [12]) and we anticipate that the Representation Theorem
for ULi functions can be extended to the polyadic case, using the same methods as
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demonstrated above. A classification for probability functions on polyadic languages
satisfying Language Invariance would give rise to the question whether we can find a
corresponding General Representation Theorem for the polyadic case as well.
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