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Abstract

We propose two principles of inductive reasoning related to how
observed information is handled by conditioning, and justify why they
may be said to represent aspects of rational reasoning. A partial
classification is given of the probability functions which satisfy these
principles.
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Introduction

Each time we consider the question of how likely some event is to occur (or have
occurred), we surely go through some process of weighing any relevant information
we possess to assist us in reaching a conclusion. In the absence of any relevant
experience we may, for example, employ symmetry principles to try to establish
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the number of apparently equally likely cases and reason from there. However,
where experiential data are available we would surely want to examine these to
help inform our prediction.

For example, presented with an untested coin I would assign a probability of one
half to its landing heads, based on symmetry and supported by observations of
previous tosses of similar coins. However, if a sequence of tosses of this particular
coin provides a frequency very different from one half, I would probably reconsider
my assignment at some stage and adjust it to correspond more closely with my
observations.

The use of probability functions and conditioning to model belief and learning
are important techniques in Inductive Logic, (see [5] or [19] for discussion and
justification of this approach). There have been several principles proposed in
Inductive Logic which are intended to capture some aspect of this idea that the
probabilities one assigns should be informed in some way by one’s experiences. For
example, Carnap’s Principle of Instantial Relevance [2, Chapter 13], Reichenbach’s
Axiom, see [3, p120], and the Unary Principle of Induction (see [19, Chapter 20]
for this and a host of related principles). The first and third of these express the
notion that the more times one has seen something in the past, the more likely
one is to see it in the future, while the second asserts more strongly that the
probability one assigns to an event should shadow its observed frequency (whether
or not this converges to a single value). Whichever of these or other formulations
is preferred, it seems to be widely accepted that it is rational to be prepared to
alter the probabilities one assigns in light of acquired knowledge or observations.

This raises the question of how fine such adjustment should be. In other words,
how different should two experiences (i.e. sequences of observations1) need to
be before they result in different probability functions? Any choice of a numerical
measure of ‘difference’ would seem to be rather arbitrary, but such a choice may be
avoided by requiring that any difference in experience should result in a different
probability function.

This idea forms the basis of the Elephant Principle, named after the saying that
‘an elephant never forgets’. This requires that a probability function should, after
conditioning on different past observations, result in different predictions for future
observations. This ensures that all learning is ‘remembered’ by being uniquely
incorporated into the resulting assignment.

On the other hand, it would seem unreasonable that two sequences of observations
which are essentially very similar could result in wildly different probabilities being
assigned to possible future observations. Rationality would seem to require us

1We shall make clear precisely what we mean by an ‘observation’ in the next section.
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to keep our adjustments proportionate somehow, which idea forms the basis of
the Perspective Principle. Here also, an arbitrary numerical measure of ‘likeness’
or ‘difference’ between two experiences is avoided, using the requirement that,
whenever different finite experiences are each followed by identical and arbitrarily
long sequences of observations, the difference between the two resulting conditional
probability functions concerning possible future observations, eventually becomes
arbitrarily small.

In fact the standing assumption of Constant Exchangeability, introduced in the fol-
lowing section, ensures that the order of observations is irrelevant. Therefore, the
somewhat far-fetched scenario described is actually just one example of the more
general situation where two sequences of observations of equal but arbitrary length
eventually contain so many matched pairs of outcomes compared to unmatched
ones that the resulting conditional probability functions should, according to the
Perspective Principle, become arbitrarily similar.

While the Perspective Principle was developed as a counterbalance to the Elephant
Principle, it may also be considered in its own right without reference to the
latter. And, by the above arguments, both may be considered as requirements of
rationality.

Context and Notation

The context here is the one common to a number of recent accounts of unary
Pure Inductive Logic by the authors et al., see for example [17], [19]. Thus we
assume that we are working in a first order language L with finitely many unary
predicate symbols, P1, P2, . . . , Pq say, countably many constants a1, a2, a3, . . . and
no equality or other relation, function or constant symbols. The intention here
is that these constants ai exhaust the universe, that is between them they name
all individuals in the universe. Let SL and QFSL denote respectively the set
of sentences and the set of quantifier-free sentences of L and let T denote the
set of structures for L with universe { ai | i ∈ N+ } (and each constant symbol ai
interpreted as ai).

A function w : SL → [0, 1] is a probability function on SL just if it satisfies that
for all θ, φ, ∃xψ(x) ∈ SL :

(P1) If � θ then w(θ) = 1

(P2) If � ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ)

(P3) w(∃xψ(x)) = limm→∞w(
∨m
i=1 ψ(ai))
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where |= is the semantic consequence relation for the logic of L.

We now ask how a supposedly rational agent inhabiting a structure in T , but
having no prior knowledge concerning which such structure, should assign proba-
bilities w(θ) to the sentences θ ∈ SL. Or putting it another way, to what extent
does the requirement of rationality limit the agent’s choice of probability function?

A standard procedure for investigating this question is to propose purportedly
rational principles which one may feel the agent should observe and then investigate
their consequences, typically, as in this paper, by characterizing the probability
functions which satisfy them. Amongst such principles are some which seem so
reasonable that they are frequently taken as given.

The first of these principles which we shall assume herein is:

Constant Exchangeability, Ex

If σ is a permutation of 1, 2, . . . and θ(a1, . . . , an) ∈ SL mentions at most the
constants a1, . . . , an then w(θ(aσ(1), . . . , aσ(n))) = w(θ(a1, . . . , an)).

The argument for this principle is that there is complete symmetry between the
constants, and hence between θ(a1, . . . , an) and θ(aσ(1), . . . , aσ(n)), so it would be
irrational to assign these two sentences different probabilities. All the probability
functions we shall consider will be assumed to satisfy Ex.

A second symmetry based principle which we shall be assuming later requires us
to first introduce some notation.

By the atoms2 α1(x), α2(x), . . . , α2q(x) of L we mean the 2q formulae obtained by
going through all combinations of ε1, . . . , εq ∈ {0, 1} in

P1(x)ε1 ∧ P2(x)ε2 ∧ . . . ∧ Pq(x)εq

where for a sentence θ, θ1 = θ, θ0 = ¬θ.
Then, based on the idea that, in terms of assigned probability, there is no reason
to treat one atom any differently from any other, we have the principle of:

Atom Exchangeability, Ax

For τ a permutation of { 1, 2, . . . , 2q },

w

(
m∧
r=1

αgr(asr)

)
= w

(
m∧
r=1

ατ(gr)(asr)

)
.

2Not to be confused with ‘atomic formulae’, which for this language would be the
formulae Pj(xi). Our ‘atoms’ correspond to what Carnap et al. dubbed ‘molecular Q-
predicates’, this alternative nomenclature the result of us arriving here via a different route
(Nonmonotonic Logic).
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A state description for (distinct) as1 , as2 , . . . , asm is a quantifier free sentence
Θ(as1 , as2 , . . . , asm) of the form

m∧
r=1

αgr(asr).

As here, upper case Greek letters will always be used to denote state descriptions.
Regarding the discussion in the Introduction, we shall identify state descriptions
with ‘observations’ which our agent may make, or more reasonably given his/her
situation, imagine making.

It follows immediately from Ex that the probability assigned to a state descrip-
tion Θ depends only on its signature: 〈m1, . . . ,m2q〉 where mi = |{r | gr = i}|,
the number of times that atom αi features in Θ, regardless of which constants
instantiate which atoms. Therefore, the alternative notation

2q∧
i=1

αmi
i

may be used for state descriptions when the (distinct) instantiating constants are
sufficiently clear from the context.

By the Disjunctive Normal Form Theorem every φ(as1 , as2 , . . . , asm) ∈ QFSL
is logically equivalent to a disjunction of (necessarily pairwise disjoint) state de-
scriptions, from which we can show that the probability of φ is the sum of the
probabilities of these state descriptions. (For this and similar basic facts about
probability functions used in this paper we refer the reader to [16, page 162] or
[19, Proposition 3.1].) Indeed by Gaifman’s Theorem [6], a probability function is
completely determined on the whole of SL, not just on QFSL, by its values on
state descriptions.

In what follows we shall assume that we have fixed some particular ordering,
α1(x), α2(x), . . . , α2q(x), of the atoms of L. With this in place we can define an
important family of probability functions on SL as follows. Let

D2q = {〈x1, x2, . . . , x2q〉 ∈ R2q |x1, x2, . . . , x2q ≥ 0 and
2q∑
i=1

xi = 1}

and for ~c ∈ D2q define

w~c

(
m∧
r=1

αgr(asr)

)
=

m∏
r=1

cgr =

2q∏
i=1

cmi
i (1)
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where, as above, mi = |{r | gr = i}|. Then w~c extends to a probability function on
SL. Clearly w~c satisfies Ex, though not Ax unless all the ci are equal, i.e. have
value 2−q.

The w~c are important in Inductive Logic because of the following Representation
Theorem of de Finetti, see [5] or, in the notation of this paper, [19, Theorem 9.1],
which we shall be using frequently in what follows.

Theorem 1. Let w be a probability function on SL satisfying Ex. Then there is
a measure 3 µ on the Borel 4 subsets of D2q such that

w

(
m∧
r=1

αgr(asr)

)
=

∫
D2q

w~x

(
m∧
r=1

αgr(asr)

)
dµ(~x),

=

∫
D2q

2q∏
i=1

xmi
i dµ(~x) (2)

where mi = |{r | gr = i}|.

Conversely, given a measure µ on the Borel subsets of D2q the function w defined
by (2) extends (uniquely) to a probability function on SL satisfying Ex.

The measure µ is known as the de Finetti prior of the function w.

The two main results of this paper, Theorems 2 and 5, give respectively a char-
acterization of the Elephant Principle in the presence of Ax and a partial charac-
terization the Perspective Principle. The value of such results is twofold. Firstly
they can help us to locate a principle within the general landscape of putatively
rational principles, indeed this will be the case for the second of our theorems.
Secondly they may enable us to quickly deduce whether or not a particular prob-
ability function satisfies the characterized principle, which may help to elucidate
the extent to which this choice of function may be considered ‘rational’.

We apply our characterization results in this way to two families of probability
functions, namely Carnap’s well known Continuum of Inductive Methods and the
somewhat recent Nix-Paris Continuum. Each consists of a continuum of probabil-
ity functions, characterized up to a real parameter as satisfying certain somewhat
attractive rational principles: Johnson’s Sufficiency Postulate in the case of Car-
nap’s Continuum (for q > 1), see [11], [12] or [4], and the Generalized Principle

3All measures in this paper will be taken to be normalized and countably additive.
4In other words the closure under complement and countable unions of the open subsets

of, in this case, the relativized topology on D2q ⊆ R2q

. This is sufficient to ensure that
the functions ~x 7→ w~x(θ) are indeed integrable with respect to µ for θ ∈ SL.
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of Instantial Relevance (plus Language Invariance), see [14], in the case of the
Nix-Paris Continuum.

In more detail, Carnap’s Continuum, for our specific language L with q predicates,
consists of the probability functions cLλ for 0 ≤ λ ≤ ∞ specified5 for λ > 0 by

cLλ

(
αj(am+1) |

m∧
i=1

αhi(ai)

)
=
mj + λ2−q

m+ λ
, (3)

where mj = |{i |hi = j}|, the number of times the atom αj(x) occurs amongst the
αhi(x) and we identify (2−q · ∞)/∞ with 2−q, and for λ = 0 by

cL0

(
m∧
i=1

αhi(ai)

)
=

{
2−q if h1 = h2 = . . . = hm,

0 otherwise.

Note that cL∞ is just Carnap’s probability function m∗ which gives all the Pj(ai)
probability 1/2 and treats them as stochastically independent – and so is totally
devoid of any ‘learning by induction’.

In terms of de Finetti’s Theorem

cLλ =

∫
D2q

w~x dµ(~x),

for 0 < λ <∞, where

dµ(~x) = κ
2q∏
i=1

xλ2−q−1
i dρ(~x), (4)

ρ is Lebesgue measure and κ is a normalizing constant.

The Nix-Paris continuum for L is made up of the probability functions wδL for
0 ≤ δ ≤ 1 given by

wδL = 2−q
2q∑
j=1

w~ej(δ) (5)

where ~ej(δ) = 〈γ, . . . , γ, γ + δ, γ, . . . , γ〉 ∈ D2q , with γ + δ in the jth position and,
necessarily, γ = 2−q(1− δ). This also covers the two remaining cases λ = 0,∞ of
Carnap’s Continuum, since cL0 = w1

L and cL∞ = w0
L.

5It is straightforward to show that this determines the value of cLλ on every state
description, hence on every quantifier free sentence, and finally on all of SL by Gaifman’s
Theorem [6].
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Clearly the de Finetti prior of wδL is just the point measure which places measure
2−q on each of the 2q points ~ej(δ) (or measure 1 on the single point 〈2−q, 2−q, . . . , 2−q〉
if δ = 0).

These two continua agree at their end points, precisely cL0 = w1
L and cL∞ = w0

L, but
not anywhere else. Both satisfy Ex and Ax, though in general they have rather
different properties (for a comparison see [20]) as indeed we shall see in the case
of the two principles investigated in this paper.

The Elephant Principle

In this section we define the Elephant Principle and present a representation the-
orem for probability functions which satisfy the Elephant Principle together with
Ax. We apply this theorem to show that members of Carnap’s Continuum of
probability functions, cLλ , satisfy the Elephant Principle except at the endpoints
λ ∈ {0, 1}, while members of the Nix-Paris continuum of probability functions,
wδL, fail to satisfy it.

As discussed in the Introduction, the motivation for the Elephant Principle is the
idea that the probabilities assigned by a rational agent to future events should
reflect its observations of past events, which surely means that, in come cases,
different observations should result in different assignments. If this notion is taken
to its extreme, to avoid any arbitrary measure of when two observations are ‘suf-
ficiently different’, the resulting principle is that any difference in observations
should result in some difference in assignments. It could also be argued that
such perfect recall is ‘rational’ is based on the tenet that information is valuable
and should never be discarded; that you cannot do better by knowing less.6,7 We
formalize this idea using conditional probabilities, as follows.

Given a probability function w on SL and φ ∈ SL, we define the conditional
probability function w(. | φ) : SL→ [0, 1] to be a function which satisfies

w(θ | φ)w(φ) = w(θ ∧ φ),

so w(· | φ) is a probability function if w(φ) > 0. In what follows we will identify,
e.g.,

w(θ | φ) = w(θ′ | φ′)
6For an interesting justification of this see [8].
7On the other hand there are several ‘rational principles’ in Inductive Logic which work

on the basis of prescribing certain sorts of information ‘irrelevant’, for example Johnson’s
Sufficientness Principle, JSP. The fact that Carnap’s Continuum satisfies both JSP and
EP however shows that in this case they touch on differing forms of ‘information’.
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with
w(θ ∧ φ) · w(φ′) = w(θ′ ∧ φ′) · w(φ), (6)

which will hold automatically if either w(φ) = 0 or w(φ′) = 0.

Now imagine our agent, who had initially adopted a probability function w, making
(or imagining making) an observation Γ about a1, . . . , ag and consequently condi-
tioning on this evidence to form w(· | Γ(a1, . . . , ag)). Because Γ is a state descrip-
tion the agent is now in no doubt about the properties of a1, . . . , ag, so we are really
only concerned with how the agent’s updated probability function w(· | Γ) assigns
probabilities to state descriptions involving constants from ag+1, ag+2, ag+3, . . ..

For this reason we define, for a given state description Γ(a1, . . . , ag) and a proba-
bility function w on SL such that w(Γ) > 0, a function w∗Γ on state descriptions8

Θ(a1, . . . , an) of L by

w∗Γ(Θ(a1, . . . , an)) = w(Θ(ag+1, . . . , ag+n) | Γ(a1, . . . , ag)).

Notice that because of our standing assumption that w satisfies Ex, w∗Γ will also
satisfy Ex.

We now define the Elephant Principle to formalize the idea that w∗Γ should reflect
or ‘remember’ the information Γ(a1, . . . , ag), or putting it another way that w∗Γ
and w fixes Γ(a1, . . . , ag) (up to the orders of the atoms and the constants).

The Elephant Principle, EP

For Γ =
∧2q

i=1 α
gi
i and Γ′ =

∧2q

i=1 α
hi
i state descriptions of a unary language L, a

probability function w on SL satisfies EP if

w∗Γ = w∗Γ′ ⇐⇒ gi = hi for i = 1, 2, . . . , 2q.

So if w satisfies EP, then w∗Γ = w∗Γ′ just if Γ and Γ′ have the same signature, so
that any acquired information is uniquely reflected in the way in which the agent
assigns probability to possible future observations.

We now give a representation theorem characterizing those probability functions
on SL which satisfy Ax + EP, after introducing some notation.

8In fact, see [15], w∗Γ extends to probability function on SL and continues to satisfy
the identity

w∗Γ(θ(a1, . . . , an)) = w(θ(ag+1, . . . , ag+n) | Γ(a1, . . . , ag))

even for θ simply a sentence of L. We will not need this however in what follows.

9



Let Nn denote {1, 2, . . . , n}. For S ⊂ N2q let

NS = {~x ∈ D2q | xi = 0 ⇐⇒ i ∈ S},

and note that these NS partition D2q .

Theorem 2. Suppose that w is a probability function satisfying Ax with de Finetti
prior µ, and let z = min{|S| such that µ(NS) > 0}. Then w fails EP just if there
is some X ∈ R such that

µ({~x ∈ NS |
∏
i/∈S

xi = X}) = µ(NS),

for every S ⊂ N2q such that |S| = z.

In other words, if z is the size of the smallest S ⊂ N2q such that µ(NS) > 0, then w
satisfies EP just if for every S ⊂ N2q of size z, all the measure in NS is concentrated
on those ~x for which the product of the coordinates,

∏2q

i=1 xi, equals some fixed
X. It is not clear (at least to the authors) that there is any worthwhile intuitive
interpretation of this result, its use is to provide a necessary and sufficient criterion
to aid the classification of which probability functions do and do not satisfy EP
with Ax.

The proof of this theorem, as with all subsequent results in this paper, is given in
the Appendix.

We now apply this theorem to our two continua:

Corollary 3.

• Members of Carnap’s Continuum of Inductive Methods, cLλ , satisfy EP for
0 < λ <∞, and fail to satisfy EP at the endpoints λ ∈ {0,∞}.

• Members of the Nix-Paris continuum, wδL, fail to satisfy EP for 0 ≤ δ ≤ 1.

Of course it is well known that cL∞ fails totally to learn from experience, so its
not satisfying EP is hardly a surprise. That cL0 fails EP is rather for the opposite
reason, that it is too ready to jump to the conclusion that all the individuals
will be the same as the first one observed. In consequence the corresponding w∗Γ
‘keeps no record’ of the gi, the numbers of each atom instantiated by individuals
so far observed, it has no need to because all possible observations are already
determined, seen or not seen.

The failure of EP for the wδL for 0 ≤ δ ≤ 1 is really no surprise given that
these probability functions possess the property of Recovery (indeed it character-
izes them, see [21], [19, Chapter 19]) whereby new observations can effectively

10



erase previous observations. Nevertheless it is strange that this must follow from
their characterizing property of satisfying (essentially) Generalized Instantial Rel-
evance, see [14], though the link seems currently explicable only via the underlying
mathematics.

The Perspective Principle

In this section we define the Perspective Principle, in contrast to the Elephant
Principle a principle of forgetting, and show that the wδL fail to satisfy it for
0 < δ < 1. We show that satisfying Reichenbach’s Axiom is a sufficient condition
for a probability function to satisfy the Perspective Principle, from which it follows
that the cLλ satisfy it for 0 < λ <∞. The converse fails, a counter-example is cL∞,
however we would hazard that it does hold under the additional assumption of EP.
We refer the reader to [10] for a proof that this does hold in the case that q = 1.

As remarked in the introduction, the Perspective Principle was originally conceived
as a counter-balance to EP, to ensure that where different observations lead to
different probability assignments these differences are somehow ‘proportional’. The
principle is defined, again to avoid any arbitrary measure of similarity, as follows.

The Perspective Principle, PP

Given ε > 0 and state descriptions Θ(a1, . . . , an),Φ(a1, . . . , an),Ψ(a1, . . . , ar), there
is an m such that for all state descriptions Ξ(an+1, . . . , ak) with k ≥ n+m,

|w(Ψ(ak+1, . . . , ak+r) | Ξ ∧Θ)− w(Ψ(ak+1, . . . , ak+r) | Ξ ∧ Φ)| < ε. (7)

Note that in this principle there is the implicit assumption that the probability
function w is Regular, i.e. w(θ) > 0 for all consistent θ ∈ QFSL9, in order that
the inequality in (7) makes sense. The cLλ and the wδL satisfy Regularity except at
the common end point cL0 , w

1
L and for this reason this particular member of the

continua will not be considered in the remainder of this section.

In essence then, the Perspective Principle says that no matter what observations
Θ,Φ we start with, subsequently receiving a sufficiently long stream of common
observations Ξ will almost eradicate the significance of this initial difference, at
least as far as the probability given to any particular state description Ψ involving
just unseen individuals is concerned.

9Regularity has long been considered to be a rationally desirable property though its
strengthening to Super Regularity, where we only require θ ∈ SL, is considerably more
contentious, see for example [19, Chapter 10].
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The argument for the rationality of this principle is based on the idea that pre-
dictions about future events should be continuous functions of past observations;
in that agents who initially adopt the same probability function on the basis of
no information should continue to assign similar probabilities if their subsequent
observations are sufficiently similar. Put another way it would seem unduly risky
(and hence arguably irrational) to adopt a probability function on the basis of no
knowledge which could subsequently be critically dependent for all time on the
particular properties of a relatively small number of previously observed individu-
als.

Despite its conception as the twin of EP, PP may be considered a desirable property
for the reasons given above, regardless of whether or not the function satisfies EP.
We therefore consider the question of whether the wδL satisfy PP, and find on the
contrary that

Proposition 4. For 0 < δ < 1, wδL fails to satisfy PP.

In order to present the corresponding classification for the cLλ , we need to refer to
Reichenbach’s Axiom10.

Reichenbach’s Axiom, RA

For w a probability function satisfying Reg,

lim
m→∞

(
w

(
αj |

m∧
i=1

αhi

)
−
uj (
∧m
i=1 αhi)

m

)
= 0 (8)

where uj (
∧m
i=1 αhi) = |{i | hi = j}|.

In the appendix we give a proof of the following theorem:

Theorem 5. If w is a probability function satisfying Reg and RA then w satisfies
PP.

It follows from (3) and (8) that for 0 < λ <∞ the cLλ satisfy Reg and RA, which
leads to the result (with λ =∞ a trivial case) that

Corollary 6. For 0 < λ ≤ ∞, cLλ satisfies PP.

10See [1] or [19, Chapter 15].
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Conclusion

In this paper we have proposed arguably rational principles of probability as-
signment based on considerations of never forgetting past observations viz-a-viz
predictions about future observations (EP) but at the same time not allowing any
such observation to crucially affect these future predictions (PP). These are rather
different in nature from the stock symmetry, relevance, irrelevance and analogy
considerations which form the basis of most current rational principles in Pure
Inductive Logic. Whether they can, or should, have the same force as these stock
notions remains open to debate.

We have shown that, for 0 < λ <∞ the members cLλ of Carnap’s Continuum satisfy
both principles, while all members wδL of the Nix-Paris Continuum for 0 < δ ≤ 1
(which includes cL0 = w1

L), satisfy neither, and cL∞ = w0
L satisfies PP without EP.

Therefore, if one agrees that these principles are desirable in probability functions
used to model rational belief, these results provide support for the choice of the
non-extreme (i.e. λ 6= 0,∞) cLλ over the possible alternatives wδL for such a model.

In this paper we have focused on EP and PP entirely within the classical context of
Unary Inductive Logic. However these principles would seem to be just as rational
(or not) within the more recently developed and wider ambit of Polyadic Inductive
Logic, where we allow the language to also contain binary, ternary etc. relation
symbols. In this case we do have a generalization of de Finetti’s Theorem, see
[13], [19, Chapter 25] (de Finetti’s Theorem is crucial for the proofs in this paper),
could this be applied in characterizing EP and PP in non-unary languages?

In addition there remain questions to be answered concerning natural generaliza-
tions of EP and PP to all sentences rather than just state descriptions. For example
does Theorem 5 continue to hold if we replace the state descriptions Θ(~a),Φ(~a) by
just sentences θ(~a), φ(~a) (and use the convention detailed at (6))? For now, these
questions remain in the ‘in tray’.
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[18] Paris, J.B. & Vencovská, A., Reichenbach’s Axiom – For the record. Available
at http://www.maths.manchester.ac.uk/∼jeff/papers/jp140708.pdf
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Appendix

We prove Theorem 2 via a sequence of lemmas and intermediate discussion.

Recall that Nn denotes {1, 2, . . . , n} and for S ⊂ N2q ,

NS = {~x ∈ D2q | xi = 0 ⇐⇒ i ∈ S}.

Note that these NS partition D2q . We shall use S′ to denote N2q\S. For ~x ∈ D2q ,
let S~x denote the unique S such that ~x ∈ NS , so S~x = {i ∈ N2q | xi = 0}.
Let w be a probability function on SL with de Finetti prior µ, so w =

∫
D2q

w~x dµ.

If w does not satisfy EP, there must exist Γ(a1, . . . , ag) =
∧2q

i=1 α
gi
i and Γ′(a1, . . . , ah) =∧2q

i=1 α
hi
i such that w(Γ), w(Γ′) > 0 (otherwise EP holds trivially by our convention

(6)) and by de Finetti’s Theorem 1∫
D2q

∏2q

i=1 x
gi+ni
i dµ∫

D2q

∏2q

i=1 x
gi
i dµ

=

∫
D2q

∏2q

i=1 x
hi+ni
i dµ∫

D2q

∏2q

i=1 x
hi
i dµ

(9)

for any n1, n2, . . . , n2q ∈ N.

Let M ⊆ D2q be the set of support points of µ. In other words

M = {~x ∈ D2q | µ(Bε(~x)) > 0 for all ε > 0},
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where Bε is the ε neighbourhood {~y ∈ D2q | |~x − ~y| < ε} of ~x. Let G,H be the
sets of indices of atoms mentioned in Γ,Γ′, respectively, so G = {i ∈ N2q | gi > 0}
and H = {i ∈ N2q | hi > 0} and let G′, H ′ be the complement in N2q of G,H
respectively, so G′ = {i ∈ N2q | gi = 0} etc..

Lemma 7. If w fails EP with Γ =
∧
i∈G α

gi
i ,Γ

′ =
∧
i∈H α

hi
i then

µ

 ⋃
S⊆G′∩H′

NS

 > 0.

Proof. Suppose, on the contrary, that w fails EP with Γ,Γ′ as described and
µ(NS) = 0 for all S ⊆ G′ ∩ H ′. Then by (9), since

∏
i∈S 0gi+ni = 0 whenever

S ∩G 6= ∅ and
∏
i∈S 0gi+ni = 1 whenever gi = ni = 0,∫

D2q

2q∏
i=1

xgi+ni
i dµ =

∑
S⊂N2q

∫
NS

∏
i∈S∩G

0gi+ni
∏

i∈S∩G′
00+ni

∏
i∈S′∩G

xgi+ni
i

∏
i∈S′∩G′

x0+ni
i dµ

=
∑

S∩G=∅

∫
NS

∏
i∈S∩G′

00+ni
∏
i 6∈S

xgi+ni
i dµ

=
∑

S∩G=∅
S∩H 6=∅

∫
NS

∏
i∈S∩G′

00+ni
∏
i 6∈S

xgi+ni
i dµ,

by our assumption that µ(NS) = 0 for all S ⊆ G′ ∩H ′. Using the corresponding
result for H we obtain from (9) that

w(Γ′)

 ∑
S∩G=∅
S∩H 6=∅

∫
NS

∏
i∈S∩G′

00+ni
∏
i 6∈S

xgi+ni
i dµ



= w(Γ)

 ∑
S∩G 6=∅
S∩H=∅

∫
NS

∏
i∈S∩H′

00+ni
∏
i 6∈S

xhi+ni
i dµ

 . (10)

Furthermore, it must be the case that

µ

 ⋃
S∩G6=∅
S∩H=∅

NS

 > 0,
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since otherwise

w(Γ′) =
∑
S⊂N2q

∫
NS

∏
i∈S∩H

0hi
∏

i∈S∩H′
00

∏
i∈S′∩H

xhii dµ

=
∑

S∩H=∅

∫
NS

∏
i∈S′∩H

xhii dµ

=
∑

S∩H=∅
S∩G 6=∅

∫
NS

∏
i∈S′∩H

xhii dµ = 0

(again by the assumption that µ(NS) = 0 for all S ⊆ G′ ∩ H ′), contradicting
w(Γ′) > 0.

Therefore, letting ni > 0 for all i ∈ H ∩ G′ and ni = 0 for all i ∈ G ∩H ′ gives a
value of 0 on the left of (10) with a positive value on the right, contradicting (9).
The result follows.

Lemma 8. If w fails EP with Γ =
∧
i∈G α

gi
i ,Γ

′ =
∧
i∈H α

hi
i , then for any ~d ∈ M

such that S~d ⊆ G
′ ∩H ′, and any ~c ∈M

2q∏
i=1

cgii d
hi
i =

2q∏
i=1

chii d
gi
i . (11)

Proof. Suppose ~d = 〈d1, d2, . . . , d2q〉 ∈ M is such that S~d ⊆ G′ ∩ H ′ and ~c =
〈c1, c2, . . . , c2q〉 ∈ M . Let n ∈ N be large, then letting ni in (9) take values [n ci],
[ndi] in turn, where [x] denotes the integer part of x ∈ R, and dividing the first
equation obtained by the second obtained gives∫

D2q

∏2q

i=1 x
gi+[n ci]
i dµ∫

D2q

∏2q

i=1 x
gi+[ndi]
i dµ

=

∫
D2q

∏2q

i=1 x
hi+[n ci]
i dµ∫

D2q

∏2q

i=1 x
hi+[ndi]
i dµ

. (12)

Since ~d ∈ M , µ(Bε(~d)) > 0 for any ε > 0. Let 0 < ε < min{di | di > 0} and
let ~x ∈ Bε(~d). Then S~x ⊆ S~d, for otherwise there must exist some i such that

xi = 0 < di, giving |~x − ~d| ≥
√
d2
i > ε, a contradiction. Therefore, if ~d ∈ M then

µ
(⋃

S⊆S~d
NS

)
> 0, so for T =

⋃
S⊆S~d

NS ,

∫
D2q

2q∏
i=1

x
gi+[ndi]
i dµ ≥

∫
T

∏
i∈S~d

xgi+0
i

∏
i 6∈S~d

x
gi+[ndi]
i dµ > 0
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since di = 0 for all i ∈ S~d. Likewise
∫
D2q

∏2q

i=1 x
hi+[ndi]
i dµ > 0, so (12) is well-

defined.

Dividing both sides of (12) by∫
D2q

2q∏
i=1

x
[ndi]
i dµ ·

∫
D2q

2q∏
i=1

x
[n ci]
i dµ,

which is similarly well-defined, and rearranging gives∫
D2q

∏2q

i=1 x
gi+[n ci]
i dµ∫

D2q

∏2q

i=1 x
[n ci]
i

·
∫
D2q

∏2q

i=1 x
hi+[ndi]
i dµ∫

D2q

∏2q

i=1 x
[ndi]
i dµ

=

∫
D2q

∏2q

i=1 x
gi+[ndi]
i dµ∫

D2q

∏2q

i=1 x
[ndi]
i dµ

·
∫
D2q

∏2q

i=1 x
hi+[n ci]
i dµ∫

D2q

∏2q

i=1 x
[n ci]
i

.

By [9, Lemma 7], taking the limit as n→∞ then gives

2q∏
i=1

cgii d
hi
i =

2q∏
i=1

chii d
gi
i .

Furthermore, whenever S~c ⊆ G′ ∩ H ′, both sides of (11) are positive, and it is
equivalent to

2q∏
i=1

ckii =

2q∏
i=1

dkii . (13)

where ki = gi − hi. (If S~c 6⊆ G′ ∩H ′ then both sides of (11) are zero).

Let Sn denote the set of permutations of Nn.

Lemma 9. If w satisfies Ax and fails EP with Γ =
∧
i∈G α

gi
i ,Γ

′ =
∧
i∈H α

hi
i , then

for any S ⊂ N2q such that |S| ≤ |G′ ∩H ′|, there is some constant XS such that

µ{~x ∈ NS |
∏
i 6∈S

xi = XS} = µ(NS). (14)

Proof. Let w, S be as described and assume that µ(NS) > 0, since otherwise (14)
holds trivially. Note that for w satisfying Ax µ will be invariant under permuta-
tions of the 2q coordinates (see [19, Chapter 14]), so that for τ a permutation of
{1, . . . , 2q} and A a Borel subset of D2q

µ(A) = µ(τ(A)) = µ({τ(~x) | ~x ∈ A})
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where τ(~x) = 〈xτ(1), xτ(2), . . . , xτ(2q)〉.
If |S| = 2q − 1, then NS is a singleton and the result follows. Otherwise by Ax,
since µ is invariant under permutations of co-ordinates, as |S| ≤ |G′ ∩H ′|, there
must exist T ⊆ G′ ∩H ′ with |T | = |S| and µ(NT ) = µ(NS) > 0. Let ~d ∈M ∩NT .
Let r, s ∈ T ′ with r 6= s and let σ ∈ S2q be the permutation which exchanges r and
s and leaves all other values unchanged. Then σ(~d) = 〈dσ(1), . . . , dσ(2q)〉 is also in
M ∩NT by the symmetry of µ. Since w does not satisfy EP then by (13),

dkrr d
ks
s

∏
i 6=r,s

dkii = dkrs d
ks
r

∏
i 6=r,s

dkii

and therefore (
dr
ds

)kr
=

(
dr
ds

)ks
giving either dr = ds or kr = ks. For each pair of co-ordinates in T ′, the permu-
tation exchanging these while leaving all others unchanged may be used similarly
to show that, for all r, s ∈ T ′, either dr = ds (so di = 0 for i ∈ T and di = |T ′|−1

for i ∈ T ′ is the sole support point of µ in NT ) or kr = ks and hence for all
~c, ~d ∈M ∩NT ∏

i 6∈T
ci =

∏
i 6∈T

di.

In either case, (14) holds for NT . Let τ ∈ S2q be a permutation such that τ(i) ∈
T ⇐⇒ i ∈ S. Then by Ax

~x ∈M ∩NS =⇒ τ(~x) ∈M ∩NT =⇒
∏
i 6∈T

xτ(i) = XT =
∏
i 6∈S

xi.

and so, again by the symmetry of µ and since µ(M ∩NS) = µ(NS),

µ({~x ∈ NS |
∏
i 6∈S

xi = XT }) = µ({τ(~y) | ~y ∈ NT ,
∏
i 6∈T

yi = XT }) = µ(NT ) = µ(NS).

We are now in a position to prove:

Theorem 2. Suppose that w is a probability function satisfying Ax with de Finetti
prior µ, and let z = min{|S| such that µ(NS) > 0}. Then w fails EP just if there
is some X ∈ R such that

µ({~x ∈ NS |
∏
i/∈S

xi = X}) = µ(NS),
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for every S ⊂ N2q such that |S| = z.

Proof. Suppose w, µ and z are as described. Suppose firstly that there is some
X ∈ R such that µ({~x ∈ NS |

∏2q

i=1 xi = X}) = µ(NS) for every S ⊂ N2q such that
|S| = z. Let T ⊂ N2q with |T | = z, so that µ(NT ) > 0 while µ(NS) = 0 whenever
|S| < |T |, and for all ~d ∈ M ∩NT ,

∏
i 6∈T di = X. Let Γ =

∧
i 6∈T α

g
i , Γ′ =

∧
i 6∈T α

h
i

for some g, h ∈ N with g, h,> 0, g 6= h. Then∫
D2q

∏2q

i=1 x
gi+ni
i dµ(~x)∫

D2q

∏2q

i=1 x
gi
i dµ(~x)

=

∫
NT

∏
i∈T 00+ni

∏
i 6∈T x

g+ni
i dµ(~x)∫

NT

∏
i∈T 00

∏
i 6∈T x

g
i dµ(~x)

=
Xg
∫
NT

∏2q

i=1 x
ni
i dµ(~x)

Xg
∫
NT

1 dµ(~x)

=
1

µ(NT )

∫
NT

2q∏
i=1

xni
i dµ(~x)

since for every S ⊂ T , µ(NS) = 0 and for every S 6⊆ T , each ~x ∈ NS has some zero
co-ordinate xi = 0 with i 6∈ T , so that

∏
i 6∈T x

g
i = 0. Substituting h for g shows

that ∫
D2q

∏2q

i=1 x
hi+ni
i dµ(~x)∫

D2q

∏2q

i=1 x
hi
i dµ(~x)

takes the same value, so w fails EP.

In the other direction, suppose w fails EP with Γ =
∧
i∈G α

gi
i ,Γ

′ =
∧
i∈H α

hi
i . By

Ax (and the associated symmetry of µ), µ(NS) > 0 for every S ⊂ N2q of size z,
and by Lemma 7, z ≤ |G′ ∩H ′|, so there is some such S ⊆ G′ ∩H ′. Therefore, by
Lemma 9, the result follows.

2

This result gives a complete characterization of the probability functions satisfying
Ax with EP, from which we obtain the following

Corollary 3.

• Members of Carnap’s Continuum, cLλ , satisfy EP for 0 < λ < ∞, and fail
to satisfy EP at the endpoints λ ∈ {0,∞}.

• Members of the Nix-Paris continuum wδL fail to satisfy EP for 0 ≤ δ ≤ 1.

Proof. That the cLλ satisfy EP for 0 < λ < ∞ follows from Theorem 2 using the
fact that, from (4), every point in D2q is a support point of cLλ for 0 < λ < ∞.
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So for ~x = 〈2−q, 2−q, . . . , 2−q〉, ~y ∈ N∅ with ~y 6= ~x, both ~x, ~y ∈ M ∩ N∅ but their
co-ordinate products are not equal, since

∏2q

i=1 zi has a strict maximum at ~x for
~z ∈ D2q .

That EP fails to hold for the wδL for 0 ≤ δ ≤ 1 (which includes cL0 = w1
L and

cL∞ = w0
L) follows from Theorem 2 using the observation that by (5), in each case,

the support points of the de Finetti prior are all permutations of each other:

M = {~e1(δ), ~e2(δ), . . . , ~e2q(δ)} = {σ(~e1(δ)) | σ ∈ S2q},

so all have the same co-ordinate product.

Proposition 4. For 0 < δ < 1, wδL fails to satisfy PP.

Proof. From the definitions given above in (5) and (1), it follows that

wδL

(
m∧
i=1

αhi

)
= 2−q

2q∑
j=1

γm−mj (γ + δ)mj (15)

where, as before, mj = |{i | hi = j}|.

Let n ∈ N+ and let Θ(a1, . . . , an) =
∧2q

i=1 α
ti
i , and Φ(a1, . . . , an) =

∧2q

i=1 α
pi
i be

state descriptions for a1, . . . , an. For any m ∈ N, choose h ≥ m such that h =
g2q for some g ∈ N. Let Ξ(an+1, . . . , an+h) =

∧2q

i=1 α
g
i . Let r ∈ N+ and let

Ψ(an+h+1, . . . , an+h+r) =
∧2q

i=1 α
ri
i be a state description for an+h+1, . . . , an+h+r.

Then by (15)

|wδL(Ψ | Ξ ∧Θ)− wδL(Ψ | Ξ ∧ Φ)|

=

∣∣∣∣∣
∑2q

i=1 γ
r+h+n−(ri+g+ti)(γ + δ)ri+g+ti∑2q

i=1 γ
h+n−(g+ti)(γ + δ)g+ti

−
∑2q

i=1 γ
r+h+n−(ri+g+pi)(γ + δ)ri+g+pi∑2q

i=1 γ
h+n−(g+pi)(γ + δ)g+pi

∣∣∣∣∣
=

∣∣∣∣∣
∑2q

i=1 γ
r+n−(ri+ti)(γ + δ)ri+ti∑2q

i=1 γ
n−ti(γ + δ)ti

−
∑2q

i=1 γ
r+n−(ri+pi)(γ + δ)ri+pi∑2q

i=1 γ
n−pi(γ + δ)pi

∣∣∣∣∣
=|wδL(Ψ | Θ)− wδL(Ψ | Φ)|.

For δ > 0, Θ,Φ and Ψ may be chosen such that this last value is greater than
0. Therefore, the value of |wδL(Ψ | Ξ ∧ Θ) − wδL(Ψ | Ξ ∧ Φ)| is fixed, positive and
independent of the value of h, which may be arbitrarily large, and wδL fails PP.
(For δ = 0 the value will always be zero so w0

L(= cL∞) trivially satisfies PP.) 2

Theorem 5. If w is a regular probability function satisfying RA then w satisfies
PP.
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Since both RA and PP seem to capture in some sense the idea of the probability
function following, and ultimately converging to, the objective frequencies in the
observations, one might have hoped that Theorem 5 would have a fairly elementary
and transparent proof. However we currently know of no such proof, the one
we present depends on the following technical characterization of the probability
functions satisfying RA due to Haim Gaifman [7].

Theorem 10. Let w satisfy Reg. Then w satisfies RA if and only if every point
in D2q is a support point of the de Finetti prior of w.

Proof of Theorem 5. It follows from the proof of Theorem 10 given in [19, Chapter
15] (or see [18, Corollory 2]) that if RA holds then it holds uniformly, so that for any
ν > 0 there is some t ∈ N such that for any sequence of atoms αgi for i = 1, . . . ,m
with m ≥ t, ∣∣∣∣∣w

(
αj |

m∧
i=1

αgi

)
−
uj (
∧m
i=1 αgi)

m

∣∣∣∣∣ < ν. (16)

We shall need this ‘stronger version’ of RA in what follows.

Suppose w is a regular probability function which satisfies RA. Let n ∈ N+ and
let Θ(a1, . . . , an),Φ(a1, . . . , an) be arbitrary fixed state descriptions for a1, . . . , an.
Let r ∈ N+ and Ψ(a1, . . . , ar) =

∧r
i=1 αsi be an arbitrary fixed state description

for a1, . . . , ar. Let m ∈ N and let k = n+m. Then for any Ξ(an+1, . . . , ak)

|w(Ψ(ak+1, . . . , ak+r) | Ξ ∧Θ)− w(Ψ(ak+1, . . . , ak+r) | Ξ)|

=

∣∣∣∣∣w
(

r∧
i=1

αsi | Ξ ∧Θ

)
− w

(
r∧
i=1

αsi | Ξ

)∣∣∣∣∣
=

∣∣∣∣∣
r∏
b=1

w

(
αsb |

b−1∧
i=1

αsi ∧ Ξ ∧Θ

)
−

r∏
b=1

w

(
αsb |

b−1∧
i=1

αsi ∧ Ξ

)∣∣∣∣∣ . (17)
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For any fixed b ∈ {1, . . . , r},∣∣∣∣∣w
(
αsb |

b−1∧
i=1

αsi ∧ Ξ ∧Θ

)
− w

(
αsb |

b−1∧
i=1

αsi ∧ Ξ

)∣∣∣∣∣
≤

∣∣∣∣∣∣w
(
αsb |

b−1∧
i=1

αsi ∧ Ξ ∧Θ

)
−
usb

(∧b−1
i=1 αsi ∧ Ξ ∧Θ

)
k + b− 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣w
(
αsb |

b−1∧
i=1

αsi ∧ Ξ

)
−
usb

(∧b−1
i=1 αsi ∧ Ξ

)
m+ b− 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
usb

(∧b−1
i=1 αsi ∧ Ξ ∧Θ

)
k + b− 1

−
usb

(∧b−1
i=1 αsi ∧ Ξ

)
m+ b− 1

∣∣∣∣∣∣ . (18)

By (16) and since

usb

(
b−1∧
i=1

αsi ∧ Ξ ∧Θ

)
= usb

(
b−1∧
i=1

αsi ∧ Ξ

)
+ usb(Θ)

where usb(Θ) ≤ n, (18) is smaller than any given δ > 0, provided that m is taken
sufficiently large.

Let Pb = min{w
(
αsb |

∧b−1
i=1 αsi ∧ Ξ

)
, w
(
αsb |

∧b−1
i=1 αsi ∧ Ξ ∧Θ

)
} ≤ 1, then if δ

is an upper bound for (18), the value of (17) is less than

r∏
b=1

(Pb + δ)−
r∏
b=1

Pb ≤ δr + δ2

(
r

2

)
+ · · ·+ δr.

Given any ε > 0, δ may be chosen such that the above is less than ε/2. The same
argument may also be used with Φ in place of Θ to finally obtain

|w(Ψ(ak+1, . . . , ak+r) | Ξ(an+1, . . . , ak) ∧Θ(a1, . . . , an))

− w(Ψ(ak+1, . . . , ak+r) | Ξ(an+1, . . . , ak) ∧ Φ(a1, . . . , an))| < ε

for any Ξ(an+1, . . . , ak) where k is sufficiently large. Therefore, w satisfies PP.
2
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