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TOPICS IN FINITE GROUPS: HOMOLOGY GROUPS, ~-PRODUCT GRAPHS,
WREATH PRODUCTS AND CUSPIDAL CHARACTERS

This thesis was submitted by David Ward to The University of Manchester for the degree of Doctor
of Philosophy on Friday 24" July, 2015.

Abstract: In this thesis we consider four topics relating to finite groups; homology of presheaves
of abelian groups, m-product graphs, wreath products of cyclic p-groups and p-cuspidal characters.

Let G be a finite group, p a prime divisor of the order of G and k := GF(p) - the field of p
elements. In a series of papers in the 1980s, Mark Ronan and Stephen Smith formed the notion
of a presheaf of abelian groups for G. This mirrored the topological definition of a presheaf and
was built on an arbitrary simplicial complex having associated G-action. They then proceeded
to define a chain complex on a presheaf such that the corresponding homology groups were kG-
modules. We consider this theory and investigate if every irreducible kG-module can be achieved
as a quotient of the zero-homology group of a universal panel-irreducible presheaf defined on the
simplicial complex of parabolic subgroups of GG. In general, we see that this is not the case. We
also explicitly calculate the zero-homology groups of universal panel-irreducible presheaves defined
on Sym(6), M11 and Mo over GF'(2), together with the irreducible quotients of the zero-homology
groups of universal panel-irreducible presheaves defined on My, M3 and May over GF(2).

Suppose that G is a group, X is a subset of G and 7 is a set of natural numbers. The 7-
product graph Pr(G,X) has X as its vertex set and distinct vertices are joined by an edge if
the order of their product is contained in 7. If X is a set of involutions, then P, (G, X) is called
a m-product involution graph. We study the connectivity and diameters of P (G, X) when G is
a finite symmetric group and X is a G-conjugacy class of involutions, and fully determine when
Pr(G, X) is connected. In the case that m = {4}, the diameter of all connected graphs P, (G, X) is
shown to equal 2. The connectivity of Pr(G, X) is also determined in the cases that X is a class
of involutions with support of order 2% for some a > 3 and © = {2%}, X is a class of involutions
having support of order p* — 1 for some odd prime p, some a > 1 and 7 = {p*} and in the more
general case that X is a class of involutions and 7 = {b} where b is closely related to the order
of the support of the involutions in X. Bounds on the diameters of the connected graphs are also
obtained. In the case that X is the conjugacy class of involutions with support of order 8 and
G := Sym(n) for n > 10, the diameter of P (G, X) is explicitly determined.

The m-product involution graph P{4}(G, X) may also be viewed as a graph having vertex set
X, and with two involutions x,y € X joined by an edge precisely when they generate Dih(8) - the
dihedral group of order 8. A natural generalisation of the results for {4}-product involution graphs
is to consider p-elements in place of involutions and the wreath product Cp!C), in place of Dih(8).
Indeed, when do two conjugate p-elements of a given symmetric group generate a wreath product
of two cyclic groups of order p? We give necessary and sufficient conditions for this in the case that
our p-elements have full support. These conditions relate to given matrices that are of circulant or
permutation type, and corresponding polynomials that represent these matrices. We also consider
the case that the elements do not have full support, and see why generalising our results to such
elements would not be a natural generalisation.

The concluding topic of this thesis is p-cuspidal characters of finite groups. Given a finite group
G containing a subgroup X, an X-parabolic system of G may be defined. This consists of pairs of
subgroups (Py, Q) s) for all subsets J of a given indexing set such that certain conditions hold. These
X-parabolic systems mirror some of the properties of parabolic subgroups and unipotent radicals
for groups of Lie type, and allow an analogue of cuspidal characters to be defined for an arbitrary
finite group. Such cuspidal characters are dependant on the choice of X-parabolic system. We
consider systems defined by p-minimal parabolic systems, and hence obtain p-cuspidal characters
of G for each prime divisor of the order of G. Theoretical results are developed reflecting known
results for groups of Lie type. For each sporadic group G and each prime divisor of the order of G,
we then calculate the p-cuspidal characters of G (with the exception of G = B and p = 2).
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Chapter 1

Overview

Since the axiomatisation of the abstract group in the late nineteenth century, mathematicians have
used many methods for studying groups. The axiomatisation brought the areas of permutation
groups, abelian groups and classical groups under a universal umbrella from which universal prop-
erties could be established in the greatest of generality. In subsequent years, the individual areas of
group theory have been treated in both universal and individual contexts. Properties and notions
readily evident in one area could then be considered in other areas, with varying degrees of success.
This is especially evident in the generalisation of ideas concerning groups of Lie type to arbitrary
finite groups and vice versa. In this thesis, we consider two such notions; presheaves of abelian
groups and cuspidal characters. We also see how considering a specific graph-theoretic approach
to involutions in symmetric groups leads to a matrix-orientated approach to p-elements.

The thesis has four main chapters, which are preceded in Chapter 2] by a summary of the
mathematical background material on which the subsequent chapters build, together with a re-
view of the notation used throughout the thesis. In Chapter [3| we consider the work of Mark
Ronan and Stephen Smith on the homology groups of presheaves of abelian groups [RS85)], [RS86],
[RS89], [Ron89]. Ronan and Smith were motivated by the topological definition of a presheaf, and
used parabolic subgroups in place of open sets. They further required an associated group action.
Equipped with such an action, their presheaves had nice combinatorial properties which allow a
homological approach to be used in considering them. With such an approach, the homology groups
are modules for the given group. Moreover, Ronan and Smith were able to define the notion of a
universal presheaf, such that any “nice” presheaf could be considered as a quotient of a universal
presheaf.

Full details of the work of Ronan and Smith is given in Sections All results in these
sections, except for Corollary [3.6.8/and Theorem[3.6.9] are due to Ronan and Smith. Corollary[3.6.8]
is an easy deduction from previous results, whilst Theorem [3.6.9|is a corrected version of a comment
appearing in [RS89]. In Sections (3.1 we direct the reader to the literature for proofs of known
results where possible. However, we provide proofs for results when no such references exist.

Having given a survey of the work of Ronan and Smith, we pose a question about irreducible
quotients of zero-homology groups of universal panel-irreducible presheaves in Section[3.7] A partial

answer is given in this section, and the question is reconsidered in Section 3.9 These sections
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sandwich our main work in this area, which is given in Section [3.8] namely the calculation of the
zero-homology groups of universal panel-irreducible presheaves of the symmetric group Sym(6) and
the Mathieu groups Mi; and Mso together with calculations of the irreducible quotients of such
zero-homology groups for Mis, Mg and Mayy all over the field of two elements, GF(2). The zero-
homology groups of universal panel-irreducible presheaves of My over GF'(2) were considered by
Ronan and Smith in [RS89, Section 4]. However, this was over a different geometry to that used in
this thesis. For the sake of brevity, some calculations of vertex terms of universal panel-irreducible

presheaves appear separately as Appendix [A]

In Chapter [3| our universal panel-irreducible presheaves are defined on the simplicial complex
of parabolic subgroups of a given group. However, presheaves may be defined on any simplicial
complex with associated group action. One such simplicial complex is given by the Brown complex
|Sp(G)| of a group G, which for a given prime p consists of all chains of non-trivial p-subgroups
of G, ordered by inclusion. Let G be the symmetric group of degree n and suppose that X is
the conjugacy class of all involutions in G whose support have order 2m for some m < n/2. We
may consider all simplices of |S2(G)| consisting of a single subgroup isomorphic to the dihedral
group, Dih(8), of order 8 together with all simplices consisting of a single subgroup generated by
an element of X. A natural question to ask is when do two such subgroups of order 2 generate
a subgroup isomorphic to Dih(8) (or equivalently when does the product of the two generating

involutions have order 4)?7 This is the main topic of chapter
Generalising these ideas, we may define the m-product graph, P,(G, X), for an arbitrary group

G, asubset X € G and for 7 a set of positive integers to be the graph having vertex set X and with
two vertices joined by an edge precisely when the order of their product is contained in 7. In all
of the cases that we consider, our vertex set X will consist of involutions, and hence the resulting
m-product graph (also know as a m-product involution graph) is undirected. Taking 7 to be the set
of all odd natural numbers and X a G-conjugacy class, Pr(G, X) becomes the local fusion graph
F(G, X) which has featured in [Ball3] and [BGR13].

Chapter [4] contains a survey of m-product graphs of symmetric groups in the case that X is a
conjugacy class of involutions and 7 is a singleton set and is heavily based on the preprint [RW14].
The work relies heavily on the notion of an z-graph, a computationally-pleasing graph introduced by
Bates, Bundy, Parker and Rowley whilst considering the commuting involution graphs of symmetric
groups in [BBPRO3b]. We see that m-product graphs are one of a bountifulness of graphs that may
be associated to groups. Further examples are given by local fusion graphs, power graphs and
commuting graphs.

The main result of Chapter [4]is that if G is a symmetric group and X is a conjugacy class of
involutions of G, then the {4}-product graph P{4}(G,X ) is either disconnected or it is connected
and has diameter equal to 2. The proof of this result involves a large number of xz-graphs and these
appear as Appendix

The contents of Chapter [4| may be generalised in a number of different ways, and one such way
is considered in Chapter Indeed, rather than taking X to be a conjugacy class of involutions

within a given symmetric group, we consider the case that X is a conjugacy class of elements of
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order p. In such a situation, we no longer have the versatile z-graph at our disposal. Generalising
x-graphs from a graph-theoretical viewpoint is impractical and would result in weighted directed
graphs. In Chapter [5| we see that we can define certain matrices to be - in some senses - the
analogue to z-graphs in this more general setting.

The matrices defined may be used in computations, and by considering the dihedral group
Dih(8) to be the wreath product, CyCs, of cyclic groups of order 2, we may generalise the results
of Chapter |4l In the case that X contains elements of full support, we ask when do two elements
of X generate the wreath product Cp1C,? We see that in such cases, the aforementioned matrices
take the form of block matrices involving both permutation and circulant matrices. A definitive
answer to our question may then be given by considering these matrices, the determinants of their
blocks and the representer polynomials of the circulant blocks. We also see that considering such
an approach when elements of X do not have full support is unrealistic.

To gain a greater understanding of the matrices and associated polynomials arising in Chapter
the computer algebra system MAGMA may be used. Further information about MAGMA can be
found in the online handbook |[Coml| or in [BCO6], [CPBO08] or [CP08]. MAGMA code that may be
beneficial to the reader is given in Appendix [C]

We note that Chapter [5[ has appeared in its entirety in the preprint [Warl4] and an abridged
version is also available as [Warar]

The final main chapter is of a slightly different sapidity. In a style mirroring that of Chapter
we take a concept from groups of Lie type and seek to form an analogue in a more general setting.
The concept in question is that of being a cuspidal character. This is a property that a character
of a group of Lie type in characteristic zero may satisfy, and in that setting, cuspidal characters
may be seen - in some senses - as the building blocks which contain all irreducible characters.

We begin Chapter [6] by formulating an X-parabolic system of a group G having subgroup X.
We see that these X-parabolic systems are the cognate of the building of a group of Lie type,
upon which the cuspidal property is based, and hence they allow us to define cuspidal characters
in a more general setting. This is followed by a brief résumé of some elementary definitions and
properties of cuspidal characters of groups of Lie type.

Having established the corresponding properties of cuspidal characters in the finite setting,
we then proceed to give a full survey of the p-cuspidal characters for each of the 26 sporadic
simple groups and for each prime divisor, p, of the group order. These results are obtained via
assimilating known knowledge about the fusion within subgroups of each of the sporadic groups
and combining this with information from the ATLAS and direct calculations involving MAGMA.
We fully determine all p-cuspidal characters of each sporadic group G, with the exception of the
case when (G,p) = (B,2). In this case, it is likely that there are no 2-cuspidal characters of B.
However, at the time of writing, we have been unable to prove this.

The thesis concludes in Chapter [7] with a few comments on possible extensions of and future

areas of research related to the topics contained in Chapters [3H6]






Chapter 2

Background Material

The aim of this chapter is to introduce the general background material that is required in sub-
sequent chapters. For general group-theoretic definitions and results, we refer the reader to [Asc00],
[Gor80], [Isa08] or [Suz82|.

We begin by introducing some general notation in Section that will be used throughout
the thesis. Further notation from the ATLAS of Finite Groups [CCNT09| (subsequently referred
to as the ATLAS) is introduced in Section together with a summary of the required results on
finite simple groups. This is preceded in Section with background material on p-groups and is
followed in Sections and with material on buildings, minimal parabolic systems and
geometries.

Throughout the thesis, there are many references to the computer algebra system MAGMA.
Further information about MAGMA can be found in the online handbook [Com] or in [BCO6,
[CPBO8] or [CPO§|. In a number of places throughout this thesis we have also used information

contained in the ATLAS. Such information has been used without proof.

2.1 General Notation and Conventions

Throughout the thesis, unless otherwise stated, G will denote a finite group and k will denote a
field of characteristic char k. The Galois field of order p™ is denoted by GF(p™). We will use the
notation |G| and ord(g) for the order of G and the order of the element g € G respectively. If H is a
subgroup, proper subgroup or normal subgroup of GG, then the respective notation H < G, H < G
and H < G is used. The index of H in G is denoted by [G : H|. If p is a prime, we denote the
set of Sylow p-subgroups of G by Syl,(G). The trivial group is denoted by 1, the cyclic group of
order r is denoted by C, and the symmetric and alternating groups on n symbols are denoted by
Sym(n) and Alt(n) respectively.

Given elements g,h € G, we use g" to denote the conjugate of g by h and ¢ to denote the
G-conjugacy class of g. The commutator of g with & is given by [g, h] := g 'h~'gh. The centralizer
of g in G is denoted by Cg(g) whilst if H is a subgroup of G, the normalizer of H in G is denoted
by Ng(H). If G acts on a set A and o € A, we denote the stabilizer in G of o by Stab(c) and the
G-orbit of o by @,
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For a given group G, we denote the center of G and the derived subgroup of G by Z(G) and
G’ =[G, G] respectively.

For a ring R, if M is an R-module and N is an R-submodule of M, we use the notation N < M.
If S is a subring of R, we denote the restriction of M to S by Mg. Conversely, if L is an S-module,
then we denote the induction of L to R by Ind Lg or LIS%. Similarly, if x¥ and v are characters of
H and G respectively with H < G, then we denote the restriction of ¢ to H and the induction of
X to G by ¥|g or ¢y and Xf], xu 19, X¢ or x 19 respectively. The set of all irreducible complex
characters of G is denoted by Irr(G), and the inner product on complex characters is denoted (-, -).

For a given group G and field k, if there is a unique irreducible kG-module of dimension 7, then
we shall denote this by ixq, or simply i¢g if k£ is clear from the context. The zero kG-module will

be denoted by Org or 0. Given a reducible kG-module M having composition series
O=Myp1 <M, < - <My<Mi=M

and composition factors N; := M;/M;;1, we shall sometimes denote M by Nyi/Na/---/Np,.
The notation X := ... should be read as X is defined to be ... . Finally, throughout the thesis
we shall use the convention that functions are composed from left to right. Thus for functions

f: X —>Yand g:Y — Z, we denote the image of x € X under the successive actions of f and g

by zfg.

2.2 p-Groups

Let p be a prime. A group P is called a p-group if every element of G has order p” for some r > 0.
For finite groups this is equivalent to saying that P has order p” for some r > 0. An abelian
p-group, P, of exponent p is called an elementary abelian p-group and we call log, |P| the rank of
P. We write p® for the elementary abelian p-group of rank a, namely C7. An arbitrary p-group of
order p® will be denoted by [p®]. For the rest of this section, we will assume that P is finite.

For an arbitrary p-group, P, we will often use the notation of [RS84]. Thus we assume that P

has a composition series
1=FR <P ---<a9P,=P

having elementary abelian quotients (also known as sections) P;/P,_; of rank r; for i = 1,...,n.
The notation p™ ™" is then used to represent P.

An important class of p-groups are the extra-special p-groups. Before describing these, we recall
that the Frattini subgroup, ®(G), of a finite group G is the intersection of all maximal subgroups
of G.

Definition 2.2.1. [Gor80] A p-group P is called special if either P is elementary abelian or P
is of milpotency class 2 and P' = Z(P) = ®(P) is elementary abelian. A special p-group, P, of

nilpotency class 2 satisfying |P’| = p is called extra-special.

There are two isomorphism classes of extra-special groups of order p3.
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Theorem 2.2.2. [Gor80, Theorem 5.5.1] A non-abelian p-group P of order p? is extra-special and
18 isomorphic to one of the following groups if p = 2:
(i) D :=Dih(8) = (x,ylz* = y?> = 1,29 = 23) - the dihedral group of order 8; or

1

(ii) Q :={x,y,z|z? =y?> = 2,22 = 1,y lay = 1) - the quaternion group.

Meanwhile, if p > 2, then P is isomorphic to one of:
(Z) M = <:c,y,z|:c7’ = yp =2 = ].,[.’E,Z] = [y,Z] = 17 and [‘Tay] = Z>; or
(ii) N :=(x,yla?’ = yP = 1,29 = 217,

We see that when p = 2, all extra-special groups of order 8 have exponent 4, whilst if p > 2,
then the group M has exponent p and the group N has exponent p?. The groups D, M, N and Q

may be used to classify all extra-special p-groups. To do so, we require a further definition.

Definition 2.2.3. [Suz82] The group G is called the central product of two subgroups H and K if

H and K commute element-wise and G = HK .

The central product of H and K is denoted H o K. However, for the sake of brevity, we shall
denote the central product of i copies of N (respectively D) and j copies of M (respectively @) by
NiMI (respectively D'Q7).

Theorem 2.2.4. [Gor8(, Theorem 5.5.2] An extra-special p-group P is the central product of r = 1

nonabelian subgroups of order p3. Moreover, we have

(i) If p is odd, P is isomorphic to N* M™% while if p = 2, P is isomorphic to DFQ™* for some

k. In either case, |P| = p**1.

(ii) If p is odd and k = 1, N*M"=* is isomorphic to NM"™, and the groups M" and NM"!

are not isomorphic.

(iii) If p = 2, then DFQ"* is isomorphic to DQ"" if k is odd and to Q" if k is even, and the

groups Q" and DQ"! are not isomorphic.

We follow the conventions of [CCN¥09] and denote the extra-special 2-groups DQ"~! and Q"
by 2?27" and 21727 if 7 is odd and by 2'*?" and 2?27" if r is even. We also denote M" by p}r”r
and NM"1 by pi*+?r.

For any group G and any prime p, we may construct a p-group.

Definition 2.2.5. [DH92] Let G be a group and p be a prime. The p-core of G, O,(G), is defined
to be

Op(G) :==(N|N < G, N is a p-group).
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Clearly, O,(G) is the largest normal p-subgroup of G. In Chapters and@ we shall use the p-cores
of the parabolic subgroups of an arbitrary group (defined in Section as the analogue of the
unipotent radicals of the parabolic subgroups of a finite group of Lie type. Indeed, in Chapter
we shall refer to the p-cores of certain groups as unipotent radicals (as this mirrors the motivating
examples of presheaves from [RS85]).

Another tool that we shall use in Chapter [3]is that of local subgroups.

Definition 2.2.6. [[sa08] Let G be a group and p be a prime. A subgroup H of G is called p-local
if H is of the form H = Ng(P), where P is some nonidentity p-subgroup of G. A subgroup is called

local if it is p-local for some prime p

We shall see that one can use representations on a local level for a given group G - representations

that are already known - to obtain representations for the group G itselfﬂ

2.3 Finite Simple Groups and ATLAS Notation

2.3.1 Finite Simple Groups

A group G is called simple if it has no non-trivial proper normal subgroups. Simple groups are
seen as the building blocks of finite group theory, since every finite group admits a composition
series, which - by the Jordan-Holder Theorem - has unique composition factors up to reordering. It
follows that an understanding of finite simple groups is crucial to an understanding of many areas
of finite group theory.

During the twentieth century, a project aimed at classifying all finite simple groups was under-

taken, and this resulted in the Classification Theorem for Finite Simple Groups.

Theorem 2.3.1 (The Classification Theorem for Finite Simple Groups). [Wil0d] Every finite

simple group is isomorphic to one of the following:
(i) a cyclic group Cy, of prime order p;
(ii) an alternating group Alt(n), for n = 5;

(iii) a classical group:

linear: PSL,(q), n =2, except PSL2(2) and PSL2(3);
unitary: PSU,(q), n = 3, except PSU3(2);
symplectic:  PSpan(q), n = 2, except PSpy(2);
orthogonal:  PQan+1(q), n = 3, q odd;
PQ3 (q), n = 4;
PQ; (q), n=4

where q is a power p® of a prime p;

! As an aside, we note that a subgroup P of G for which P = O,(Ng(P)) is called a radical subgroup or a p-radical
subgroup.
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(iv) an exceptional group of Lie type:
G2(q):q = 3; Fa(); Eo(9); *Eo(q); *Da(a); Er(q); Es(q)
where q s a prime power, or
2B,(2271) 1 > 1;2Go (327 Y), 0 = 1,2 By (22 ) 0 > 1
or the Tits group 2Fy(2);

(v) one of 26 sporadic simple groups:

the five Mathieu groups: M1, Myo, Mog, Mg, Moy;

the seven Leech lattice groups: Coy, Cos, Cos, McL, HS, Suz, Jo;
the three Fischer groups: Fig, Fisg, Fiby;

the five Monstrous groups: M, B, Th, HN, He;

the six pariahs: Ji, J3, Jy, O'N, Ly, Ru.

The only repetitions within the groups in Theorem [2.3.1] are defined by the following six iso-
morphisms (see [Wil09]):

PSLy(4) =~ PSILy(5) = Alt(5);
PSLy(7) =~ PSLs(2);
PSLy(9) = Alt(6); (2.3.1)
PSLy(2) = Alt(8);
PSUL(2) =~ PSps(3).

A good overview of the finite simple groups listed in Theorem and in may be found
in [Wil09].

The study of finite simple groups is an ongoing area of active research, and the quest to gain a
greater understanding of certain groups or families of groups continues. The methods of Chapter
will hopefully allow a greater understanding of the representation theory of the sporadic groups
over finite fields to be achieved, whilst analysis of the p-cuspidal characters of these groups found

in Chapter [6] may lead to a greater understanding of certain geometries associated to these groups.

2.3.2 ATLAS Notation

To an arbitrary finite group GG, we may associate a shape. This gives certain information about G
via extensions of groups, and is the notation used throughout this thesis and in the ATLAS. As we
shall see, a shape of a group does not define the group up to isomorphism. However, it does give
useful information about the group’s structure. We begin by defining the two types of extensions

that we will encounter.

Definition 2.3.2. [Isa08] Let G, H and N be groups. If there exists a subgroup Ny < G with
No = N and G/Ny = H, then we call G an extension of H by N, denoted G = N.H or G = NH.

A special type of extension is a split extension.
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Definition 2.3.3. [Isa08] Let G, H and N be groups. If there exist subgroups Ny, Hy < G with
No = N, Hy ~ H, G/Ny =~ H and Ny n Hy = 1, then we call G a split extension of H by N,
denoted G = N : H.

If G=N: H, then we also call H a complement to N in G.
Another way to view extensions is via the corresponding short exact sequence. Indeed, we have

that G = N.H if there exists a short exact sequence
l1—Ny—G-LH—1 (2.3.2)

for some normal subgroup Ny = N of G. The extension is then a split extension if the exact
sequence is right split (that is there exists a homomorphism r : H — G such that rq = idp).

If G is a split extension of H by N, then we also refer to G as the (internal) semidirect product
of N with H. An alternative formulation of the semidirect product may be produced using a group

of operators.

Definition 2.3.4. [DH92] Let G and H be groups, and suppose that for each g € G and h € H an
element g" € G is defined such that:

(i) the map g — g" is an automorphism of G; and

(ii) 9" = (g")*
for allge G and all h,k € H. Then we say that H is a group of operators for G, or that G is an

H-group. If a homomorphism ¢ : H — Aut(G) is specified and an action of H on G is defined by
" = g(ho), we call H a group of operators for G via ¢.

The aforementioned alternative formulation of the semidirect product is called the (external) semi-

direct product.

Definition 2.3.5. [DH92] Let H be a group of operators for a group G, and define a binary
operation on the Cartesian product X = G x H by:

(91, 1) (g2, ha) = (g1(g2)" , haha) for all (g1, h1), (g2, h2) € G x H.

We call X the (external) semidirect product of G with H via ¢ (where ¢ : H — Aut(G) determines
the H-action on G). When the H-action (and hence ¢) is clear from the context, we suppress

reference to ¢.

It is easily shown that external semidirect products are internal semidirect products and vice
versa. Thus we can use whichever formulation is most amiable for a given situation. We also use
the notation G := N x H in the case that G is the semidirect product of N with H.

A specific type of semidirect product is given by the wreath product.

Definition 2.3.6. [DM96] Let K and H be groups and suppose H acts on the nonempty set T
Then the wreath product of K by H with respect to this action is defined to be the semidirect
product Fun(', K') x H where H acts on the group Fun(l', K) via

() = f('yxil) for all f e Fun(I', K),ye I and z € H.
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We denote this group by K wrrH (or KU H ), and call the subgroup
B:={(f,1)|f € Fun(T', K)} =~ Fun(T', K)
the base group of the wreath product.

Since all the sets that we encounter are finite, we will usually identify Fun(I', K) with [ [ cp K -
the direct product of [I'| copies of K - with (ky,, ...,k ) € [ [,cp Ky corresponding to the function
f:I'— K given by f:v; — k.

In the case that I' is infinite, the above construction is known as the unrestricted wreath product
of K by H. If the functions in Fun(T', K) are taken to have finite support (or equivalently, we take
the direct sum @+er K, instead of the direct product), then we obtain a different group known as
the restricted wreath product of K by H. In the case that the set I' in Definition [2:3.6] is equal to
H, and the action of H on I is given by the reqular action (so for x, h € H the action of h on x is
given by = - h = xh), then the resulting wreath product is known as the regular wreath product of

K by H.

Example 2.3.7. Let G be the regular wreath product of C, by C,. The base group of G consists

of p copies of Cp,, which we may generate by the elements

ai:=((GF—Dp+1,...,(i—Dp+p eSym{(i—Dp+1,....,(i — 1)p+p})

fori=1,...,p. Thus we may embed the base group within Sym(p?). The action of the second cyclic
group on this base group is given by the reqular action, and hence may be given by conjugation by

the element

z:=1Lp+1,...,pp—D)+D2,p+2,....pp—1) +2)---(p,2p,...,p(p — 1) + p) € Sym(p?).
Thus we see that
G = {as,z)i=1,...,p) = {a,z) < Sym(p?).
This is the representation of Cp C) that we will use frequently in Chapter @ .

We now return to the notion of the shape of a group G. The aim is to describe some of the

structure of G, and is best illustrated with an example.

Example 2.3.8. Let G := Sym(6) and let S be a self-normalizing Sylow 2-subgroup of G. By
using MAGMA, we see that there are two isomorphic subgroups of G containing S as a maximal
subgroup (see Example . Let P be one of these subgroups. We see that - using the notation
of Section - O9(P) = 23. Moreover, the quotient P/Oo(P) is isomorphic to Sym(3). Thus we
say that P has shape 23. Sym(3). o

If the group G has shape X, then we write G ~ X. Thus in the above example, P ~ 23. Sym(3).
We conclude this section by noting that we will also follow ATLAS-notation when referring to
characters of finite groups over the complex numbers in Chapter [6} Indeed, for a given group G the

character x; will equal the corresponding character of G given in the character table in [CCNT(9].
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2.4 Complexes and Buildings

Let G be a group of Lie type defined over a field k. There is a natural module V associated to G,
and we may consider this to be a vector space of dimension n over k. The (non-zero) subspaces
of V have dimensions 1,...,n, and we may construct a flag of subspaces of V' of rank r for each

1<r<n:

F: 0V, cV,c- 2V

e

By constructing the stabilizer of all such flags, we obtain a structure known as a building, first
introduced by Jacques TitsE| Before giving the definition of a building as formulated by Tits, we

first recall a few basic ideas relating to complexes and simplexes. We begin by defining a simplex.

Definition 2.4.1. [Suz82] A partially ordered set X is called a simplex of rank d if X is isomorphic
to the partially ordered set formed from all the subsets of a set of d elements with respect to the

containment relation.
Closely related to simplexes are complexes.

Definition 2.4.2. [Suz82] Let A be a set endowed with a partial order which will be denoted by

A D B. The set A is said to be a complex if the following two conditions are satisfied:

(a) For any two elements A and B of A, there is a greatest lower bound (an element C such that
C c A,C < B, and C is the largest element which satisfies these conditions - C is denoted
An B).

(b) For any A € A, the subset of A which consists of the elements contained in A forms a simplez.

For example, let V' be any vector space of dimension d + 1 over a field k, and let A denote the

set of all subspaces of V. Define a partial order < on A as follows; for all A, B € A,
A< B<= BcC A

Given two elements A, B € A, the subspace of V' generated by A and B is the greatest lower bound
of A and B. Moreover, since A consists of all subspaces of V', the subset of A consisting of the
elements contained in some A € A (with respect to <) is naturally isomorphic to the partially
ordered set on dimg V' — dimj A elements. Thus A is a complex.

As with most mathematical structures, we have the concept of a subcomplex, and for certain

complexes we may also associate a rank.

Definition 2.4.3. [Suz89] (i) A subset T’ of a complex A is said to be a subcomplex of A if
Ael,Bc A= BeTl

(7i) Given a compler A and d € N, if any element is contained in a mazimal element which is a

simplex of rank d, then we call A a complex of rank d.

2Tits gave a rigorous introduction to buildings in his book Buildings of Spherical Type and Finite BN-pairs [Tit86]
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Returning to our example, where A consisted of the complex of subspaces of a given vector
space V partially ordered by reverse inclusion, we see that for any two maximal elements «, 5 of A
- 80 two subspaces of V' of dimension 1 over k - there is an element of A of rank d — 1, namely the
subspace 7 such that v < a and v < 8. We conclude that in some sense o« and 3 are close. This

idea is made rigorous by defining adjacency and connectivity within a complex.

Definition 2.4.4. [Suz82] Let A be a complex of rank d. Two mazximal elements A and B are said
to be adjacent if A # B and if there is an element, C, of rank d — 1 such that C € A and C < B.
If A’ and B’ are arbitrary elements of A, then we say that A’ and B’ are connected if there is a
finite sequence {C;} of mazimal elements C; of A such that A’ < Cy, B' < Cy,, and C; and Ci4q

are adjacent for each i. We say that A is connected if any A’, B’ € A are connected.
Before defining a building, we must first give one final technical definition.

Definition 2.4.5. [Suz82] Let " be a complex of rank d. If any element A of rank d—1 is contained
i exactly two maximal elements, then I' is said to be a thin complex. If there are at least three

mazimal elements containing any element of rank d — 1, then I is called a thick complez.
We are now in a position to define a building.

Definition 2.4.6. [Suz82] A complex A of rank d is said to be a building of rank d if there is a
collection A of subcomplexes of A such that (A, A) satisfies the following conditions:

(B1) A is a thick complex.
(B2) Every element of A is a connected, thin complex of rank d.
(B3) For any two elements A and B of A, there is an element of A which contains both A and B.

(B4) Let A and A" be two elements of A. If ¥ and ¥/ are elements of A which contain both A and
A’, then there is an isomorphism ¢ from 3 onto X' which satisfies ¢(B) = B for all B < A
as well as ¢(B') = B for all B' < A’.

A subcomplex of A which is a member of A is called an apartment. A maximal element of A is

called a chamber.

Let us consider again the case of a finite group G of Lie type, with natural module V of
dimension d + 1 over some field k. For the sake of example, we consider G := GLg4+1(k). Let P(V)
denote the set of all subspaces of VE| and let A(P) denote the set of all flags of subspaces of V.
Let ¥ = {ag, a1, ...,aq} denote a basis for V. If

is a flag of subspaces of V' such that for each V; there is a subset ; of 3 such that ¥; is a basis for
Vi, then we say that 3 supports F. Let X5 (p) denote the set of all flags of subspaces of V' supported

3Previously we had denoted this set by A. However, it actually corresponds to the projective geometry, P(V), of
V.
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by ¥. Then it can be proved that A(P) forms a complex under inclusion, which has the structure
of a building, whose apartments are the complexes Y5 (p) for each basis ¥ of V' (see [Suz82] for full
details).

For each flag F in A(P), let Gr := Stabg(F). Let A := {Gr|F € A(P)}, and partially order

A by reverse inclusion, denoted =. If

e Vi and

}'1:0g1/¢0gv;1g... V;J
Fr0cViyeVic eV, gV

..
j—1 = Vijp1 =

n

SV

n

are elements of A(P), then F3 is contained in Fj. It follows that
Gr, = Stabg(F1) € Stabg(F2) = Gx,,

and hence that Gr, © Gr,. It follows that A and A(P) are isomorphic as complexes. For an
apartment A of A(P), let G4 denote the subcomplex of A corresponding to the stabilizers in G
of elements of A. Since properties (B1)-(B4) hold for the building A(P), they also hold for the
isomorphic complex A, with apartments given by the G4 where A is an apartment for A(P). We
call A the building of G.

We conclude this section with a brief aside relating to abstract simplicial complexes.

Definition 2.4.7. [AB0§] An (abstract) simplicial complex with vertex set V is a nonempty col-
lection A of finite subsets of V (called simplices) such that every singleton {v} is a simplex and
every subset of a simplex A is a simplezx (called a face of A). The cardinality r of A is called the
rank of A, and r —1 is called the dimension of A. A subcomplex of A is a subset A’ that contains,
for each of its elements A, all the faces of A; thus A’ is a simplicial complex in its own right, with

verter set equal to some subset of V.
We will also require the following associated definition in Chapter

Definition 2.4.8. [AB0S] Let A be a simplicial complex, and let o be a simplex of A. We define
the star of o, denoted Sto, to be the subset of A consisting of the simplices of A having o as a

face.

If A is the building of a group G of Lie type with natural module V' of dimension n over &, then
we set V := {Stabg(F)|F € A(P) has rank 1} to be our vertex set, stabilizers of flags of rank 2 to
be edges,. .., and stabilizers of flags of rank n to be chambers. For simplices 0,7 € A, we define 7
to be a face of ¢ if ¢ € 7. With this convention, we see that the building A has the structure of a

simplicial complex.

2.5 Minimal Parabolic Systems

In Chapter [3|we shall see how Mark Ronan and Stephen Smith used the building of a finite Chevalley
group G to construct representations for G over a finite field k£ using structures known as presheaves.

Naturally, they wished to construct such presheaves for more general groups as indicated in [Ron84]
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and |[RS85]. They proceeded to formulate a construction on an arbitrary simplicial complex with
associated G-action (full details of which are given in Chapter[3). If G is a finite group, then a rich
source of such simplicial complexes arise from minimal parabolic systems.

The theory of minimal parabolic systems was first introduced by Ronan and Stroth [RS84] and
was later considered by Lempken, Parker and Rowley [LPR9§|. Throughout this section, we assume

that G is a finite group, p is a prime and that p divides |G|.

Definition 2.5.1. [LPRIS] Let S € Syl,(G) and let B := Ng(S). A minimal parabolic subgroup
of G is a subgroup P < G such that B is contained in a unique mazimal subgroup of P. We denote

the set of all minimal parabolic subgroups of G with respect to B by M(G, B) .

We note that Ronan and Stroth imposed the additional requirement that O,(P) # 1. However -
like Lempken, Parker and Rowley - we do not require this.

Given such a set of minimal parabolic subgroups for G, it is natural to consider certain subsets
of M(G, B) that generate G.

Definition 2.5.2. [LPRIS]

(i) A setS ={Py,...,P,} € M(G, B) is called a minimal parabolic system for G of rank n or a
p-minimal parabolic system for G of rank n if G = (S) and no proper subset of S generates

G.

(i) We call subgroups of the form P :={(P;,, ..., P; ) parabolic subgroups of G and denote them
by P; The rank of P is defined to be the minimal such m.

1 m
A full exposition of the p-minimal parabolic systems of the sporadic groups is given in [RS84].

Example 2.5.3. Let G := Sym(6) and let S ~ 23%1 be a self-normalizing Sylow 2-subgroup of G.
There are two isomorphic (but not conjugate) proper subgroups of G containing S, having shape
23.Sym(3). It follows that G has a unique 2-minimal parabolic system consisting of these two

subgroups. .

The parabolic subgroups associated to a minimal parabolic system of GG are self-normalizing as

we Now prove.

Lemma 2.5.4. Let G be a finite group, S € Syl,(G), B = Ng(S) and let S = {P1,...,P,} be a
minimal parabolic system for G with respect to B. Then the parabolic subgroups of G formed from

S are self-normalizing.

Proof. Let P be a parabolic subgroup of G formed from S, and let g € Ng(P). As P contains S
and PY = P, we deduce that S9 < P9 = P, and hence SY9 € Syl,(P). By Sylow’s Theorems, the
Sylow p-subgroups of P are conjugate to S in P. Thus there exists h € P such that S9 = S*, and
hence S9 ' = §. Consequently gh™! € Ng(S) = B< P. As h e P, it follows that g € P and
so Ng(P) < P. Since the reverse inclusion clearly holds, we deduce that P = Ng(P) and P is

self-normalizing. O
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Parabolic Rank Shape of
Subgroup, P of P |02(P)] O2(P) P/0x(P)
Ps . 24 24 Sym(5)
Ps, 24 24 Sym(5)7
Prig := (P1, Pra) 2 23+2 Sym(3) x Sym(3)
P12 = <P1, P2> 24 24 L3(2)
Pi3:= (P, P3) 24 24 L3(2)
Py :={Py,Py) 24 24 Alt(6)
Piaza = (Pia; Paa) 2 24 2* Ls(2)7
Pia3 := (Pra, Ps) 24 24 L3(2)°
Piay i= (Pra, Py) 24 24 Alt(6)”
Pooazs = (P2, Paq, P3, Py) 26 24+2 (3 x 3)2
Pssq := (Ps, Ps,) 1 1 M2
Pr924345 = (P1, P2, Pag, Ps, Py, Ps) 2t 21 2% Alt(7)
Piysq := (P1, Py, Pso) 1 1 Moo
Pr1g3 := (P1, Pra, Ps3) 5 2 2 2 Alt(8)
Pr1ag := {P1, Pra, Py) 1 1 Us(3)
Prags = (Pira, P1, P5) 1 1 Mg,
Pra22a3450 := {P1a; P2y Poa; Ps, Py, Psa) 24 24 24 Alt(7)”

Table 2.1: The shapes of the 2-parabolic subgroups of McL that do not contain a Sylow 2-subgroup
as a maximal subgroup.

By considering the parabolic subgroups associated to given minimal parabolic systems, we see
that the set of all minimal parabolic systems for G can be partitioned into two sets; geometric

minimal parabolic systems and non-geometric minimal parabolic systems.

Definition 2.5.5. [RS84] A minimal parabolic system S is called geometric if for any two associ-
ated parabolic subgroups P and QQ, P n Q is also a parabolic subgroup. If S is not geometric, then

we call it non-geometric.

Example 2.5.6. Let G := McL and let S be a self-normalizing Sylow 2-subgroup of G. There
are eight 2-minimal parabolic subgroups of G, which we denote by Py, P, := Py, P», Py, := PJ,
P3, Py, Ps and Psq := P, where o is the non-trivial outer-automorphism of G. We see that S
is mazimal in all 2-minimal parabolic subgroups excluding Ps and Psq. These latter two subgroups
have a unique maximal subgroup containing S, namely Py.

The Hasse diagram of the associated parabolic subgroups is presented in [RS84, p79]. The 2-
minimal parabolic subgroups Pi and Pi, both have shape 24%2.Sym(3), whilst the other 2-minimal
parabolic subgroups containing S as a maximal subgroup are pairwise isomorphic and also have

24%2 Sym(3) (although they are not isomorphic to Py). We summarise the shapes of the

shape
other parabolic subgroups of G in Table [2.1]

associated to the given minimal parabolic subgroups. Of these, 9 are geometric minimal parabolic

There are 16 minimal parabolic systems for G

systems and 7 are non-geometric. We summarise these systems in Table[2.2, .

, P} for a group G with respect to the

P} is a

For a given p-minimal parabolic system S := {Py,...

normalizer, B, of a Sylow p-subgroup and for any g € G, we see that S = {P{,..
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Geometric Minimal Parabolic Systems | Non-Geometric Minimal Parabolic Systems
{P1, Pra, P2} {P1, Paq, Psa}
{P1, Pra, P2} {P1, P5, Ps5,}
{P1, Pra, P5} {Pira, P, P5}
{P1, Pra, Ps.} {Pia, P5, Ps,}
{P1, Py, Psq} {P,, P5, Psq}
{Pia, Poa, Ps} {Psq, Ps5, Ps,}
{P1, P3, Pso} {Ps, P5, Psq}
{P1a, P3, P5}
{P1, P1o, P3, Py}

Table 2.2: The geometric and non-geometric 2-minimal parabolic systems for the McLaughlin
group, McL.

p-minimal parabolic system for G' with respect to BY. Define Py := B and

A= P T2l m}
9eG

We see that A is a simplicial complex. Indeed, to mirror the setting of buildings, we define the
vertices of A to be parabolic subgroups of the form P for some g € G and some J < {1,...,m} of
cardinality m — 1 and use reverse inclusion. Thus edges are parabolic subgroups Pf]] corresponding
to some J < {1,...,m} of cardinality m — 2, and so on. Finally, we define conjugates of Py = B
to be the chambers of A.

The group G has a natural action on A given by conjugation. We shall see in Chapter [3] that

we are able to define presheaves on A, and thus obtain representations for G.

2.6 Geometries and their Diagrams

In many areas of mathematics, we may partition a given set of elements into subsets, each subset
containing elements that are in some sense of the same type. For example, if we consider the set
of simplices of a 3-dimensional Euclidean tetrahedron, 7', then we naturally partition the set into
0-, 1- and 2-dimensional simplices known as vertices, edges and faces of T. These ideas lead to the

concept of an incidence geometry.

Definition 2.6.1. [BueS81)] Let A be a set. An incidence geometry I over A is a triple I' = (S, *,t),
where S is a set (the elements of T'), # is a symmetric and reflexive relation defined on S (the

incidence relation of T') and t is a mapping of S onto A (the type function of T') such that:

(TF) The restriction of t to every mazimal set of pairwise incident elements is a bijection onto A

(transversality property ).

For brevity, when the incident relation and type function are clear from the context we will
simply refer to the geometry S . The transversality property (TF) is sometimes relaxed and replaced

by the property:

(TF")If 2,y € S (x #y) with z =y, then t(z) # t(y).
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Clearly (TF) implies (TF’), however the converse is not true in general. Indeed we can easily
extend any geometry I' by adding a single element « to the set S and defining the type of a to be
an element not contained in A. Moreover, we may define « in such a way that it is not incident to
any other element of S. Then clearly (TF’) will still hold, however (TF) will not hold. Indeed, any
maximal set, M, of pairwise incident elements of S U {a} will either be {a} or will not contain «,
and hence the restriction of ¢ to M will not be a bijection onto A U {t(«)}.

An important property of a geometry is its rank. If I' = (S, ,¢) is a geometry over A, then the
rank of I" is defined to be |A|. Property (TF) illustrates the importance of sets of pairwise incident
elements of a geometry, and we define a flag, F, of T' to be a (possibly empty) set of pairwise
incident elements of S. Moreover, the type of F' is defined to be the image of F' under ¢, whilst the
cotype of F is defined to be A\t(F'). Clearly a flag, F', together with the restriction of = and ¢ to
F forms a geometry over ¢(F'). The rank of this geometry is just |F|.

Given a flag of a geometry, we may construct a further geometry in the following way:

Definition 2.6.2. [Bue81] The residue of a flag F' in a geometry I' = (S, *,t) (over A) is the
geometry U'p = (Sp,xp,tp) over t(Sp) = A\t(F) defined by

e Sp is the set of all elements of I' not in F, incident with all elements of F';
e =p s the restriction of = to Sp;
e tp is the restriction of t to Sp.

Returning to our example of the Euclidean tetrahedron, 7', if we set F' to be a flag consisting of
an incident face and vertex, then S consists of the two edges of T' that are incident to the given
face and vertex.

Given a geometry I' = (S, *,t) over a set A, we may construct the incidence graph of I' whose
vertex set is S and where x,y € S are joined by an edge if and only if x * y. This is an easy graph
to construct from a theoretical point of view, but it can be computationally cumbersome. It is
standard to represent a geometry by the diagram of the geometry. This is constructed as follows;
for each pair of distinct elements 7,5 € A, let F' be a flag of T' with residue I'r of type {i,j}.
Construct the incidence graph G of I'r. We define the i-diameter of G, denoted d; ;, to be the
maximal diameter at an element of type ¢, the j-diameter of G, denoted d;;, to be the maximal
diameter at an element of type j, and the girth of Gp to be 2g;; (so gi; = gj,:). The diagram of
the geometry I' has vertex set A, and between each pair of incident vertices 7,j € A, there is an

undirected edge from i to j labelled d; ;, g; ;, d; ;.

Example 2.6.3. Let I' be the geometry of vertices, edges and faces of the Euclidean tetrahedron,
T, as described above. By labelling the vertices of T by vy, ..., vy, the edges by eq,...,eg and the
faces by fi,..., f4 we may represent T diagrammatically as in Figure Let F' = F,, be a flag
consisting of a single vertex. The residue I'p consists of the three edges and three faces incident
to v;, and the incidence graph of I'r can be seen to have edge-diameter and face-diameter equal
to 3, and girth equal to 6. In a similar way if F' = F,, is a flag consisting of a single edge, then

the incidence graph of I'r has vertex-diameter and face-diameter equal to 2, and girth equal to
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V1 €1 ()

Figure 2.1: The Euclidean tetrahedron T from Example [2.6.3

Figure 2.2: The diagram of the geometry defined on the Euclidean tetrahedron 7' from Ex-

ample [2.6.3]

4. Finally if F' = F}, is a flag consisting of a single face, then the incidence graph of the residue
I'r has vertex-diameter and edge-diameter equal to 3, and girth equal to 6. The diagram of the
geometry " is given in Figure [2.2] where we use v, e and f to represent the three types of elements

of T'; vertex, edge and face respectively. .

Example [2.6.3 illustrates a common situation. If for each pair of distinct types i,j € A, we
have d; ; = dj; = g; j, then we may simplify the diagram of our geometry to create the Buekenhout
diagram of the geometry as follows; we represent each type in A by a circle, and we join 7,5 € A
by gi; — 2 edges if g;; < 4 (noting that 2 < g; ; by definition), and if g; ; > 4, we join ¢ and j by
a single edge and label the edge (n) where n = g; ; — 2. Using this convention, we see that the
Buekenhout diagram of the tetrahedral geometry from Example [2.6.3] is much simpler, and takes
the form shown in Figure

Our motivation for considering geometries arises from minimal parabolic systems. Indeed, given
a minimal parabolic system S = { Py, ..., P,} for a group G with respect to a Sylow normalizer B,
then we may form a geometry as follows; take S to be the set containing all G-conjugates of the
maximal parabolic subgroups Py .y, A :={1,...,n}, definet: S — A by t: P{gl,...,n}\{z'} — 1,
and define the incidence relation * by P{gl’.__’n}\{i} s P{hl’._.’n}\{j} precisely when 7 # j and there exists

some k € G for which BF < P{gl,...,n}\{i} N P{h17._"n}\{j}. Since the transversality property clearly
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Figure 2.3: The Buekenhout diagram of the geometry defined on the Euclidean tetrahedron 7" from
Example [2.6.3]

holds, we conclude that (S, #,t) is a geometryﬁ The rank of the resulting geometry is equal to
the rank of the minimal parabolic system S. In Chapter [3| we shall consider rank 2 and rank 3

geometries arising from 2-minimal parabolic systems for the Mathieu Groups.

“We note that our formulation of the geometry S differs from that used in [RS84]. Ronan and Stroth defined
two maximal parabolic subgroups of differing types to be incident if their intersection was also a parabolic subgroup.
Thus they only considered the geometries defined by geometric minimal parabolic systems. We have chosen a broader
formulation of our geometries to allow all minimal parabolic systems to be considered.



Chapter 3

Homology of Presheaves of Abelian

Groups

The subject of representation theory for finite groups has a long and rich history stretching back
to the nineteenth century. One of the first mathematicians to consider the subject was William
Burnside (although we note that he referred to a representation of a group as a group of linear
representations in has famous treatise Theory of Groups of Finite Order [Burb5]). By the begin-
ning of the twentieth century representation theory was starting to be seen as a powerful tool in
proving group-theoretic results, such as Burnside’s p®g’-Theorem. Further applications came to
fruition later in the century, and representation theory lies at the heart of parts of the proof of the
classification theorem for finite simple groups. This led to a comprehensive study of representations
of finite groups over the complex numbers, and the publication of the ATLAS of character tables
for many finite groups. [CCN*09]

Whilst considerable focus was paid to representation theory over the complex numbers, much
time and effort was also devoted to modular representation theory. As early as 1902, Leonard Dick-
son had published a paper considering modular representations [Dic02], and over the course of the
twentieth century, much work was undertaken on the subject. However, although many results have
been formulated about modular representations and a modular atlas has been published [ABL™],
the exact structure of many of the irreducible kG-modules for a given finite group G and finite field
k remain unknown.

The theory of modular representations has been well developed for finite Chevalley groups. For
such a group, GG, we have already seen that it is possible to define a simplicial complex consisting
of the parabolic subgroups of G, known as the building of G. This simplicial complex can then
be used to determine the irreducible kG-modules for a finite field k. In the 1980s, a number of
mathematicians considered how the idea of the building of a group could be extended from the
Chevalley groups to an arbitrary finite group. This led to the 1984 paper of Mark Ronan and
Gernoth Stroth [RS84], where they defined the notion of minimal parabolic subgroups and minimal
parabolic systems of a finite group G with respect to the normalizer of a given Sylow p-subgroup
of G. They considered such a situation for each of the 26 sporadic simple groups, and for the

fields GF(p) where p = 2,3,5. Mark Ronan and Stephen Smith then used such minimal parabolic

43
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systems to define a presheaf of abelian gr’oupsﬂ By defining chain spaces and boundary maps
on such presheaves, they were then able to form homology groups. These homology groups are
kG-modules, and via their construction, considerable information is known about their structure.
The two mathematicians published a series of three joint papers on the subject between 1985 and
1989 ([RS85], [RS86], [RS&9]), in addition to a further paper in 1989 published by Ronan ([Ron89]).
Their work culminated in the calculation of the zero-homology groups of presheaves defined over the
field GF(2) for the groups L4(2), Alt(7) and the triple cover of Sp4(2) in addition to calculations
of quotients of the zero-homology groups for presheaves of Moy.

Ronan and Smith went on to prove that for a finite Chevalley group G, there is a 1-1 corres-
pondence between irreducible kG-modules V' and presheaves Fy -, known as the fized-point presheaf
of the module V' [RS85l, Section 3].

We begin this Chapter in Section by introducing the basic motivation behind the subject
and the underlying definitions introduced by Ronan and Smith. This is followed in Section
by a brief discussion about two important classes of presheaves; constant presheaves and fized-
point presheaves and in Section by the formulation of the homology and cohomology groups
of a given presheaf. The Euler characteristic is also introduced here. In Section [3.4] we consider
the universal construction of a presheaf, from a minimal substructure known as a Il-stalk. Such
presheaves admit all other chamber-generated presheaves as quotients, and hence they are of great
interest. Closely connected to universal presheaves are dual presheaves, and these are introduced
in Section These were first introduced by Ronan in [Ron89], and their importance lies in a
theorem of Ronan relating the homology groups of a presheaf to the cohomology groups of the
dual presheaf. This result is given - in addition to many other known results - in Section as
Theorem In Section we briefly consider the question of whether for a finite group G and
finite field k, every irreducible kG-module can occur as the quotient of the zero-homology group
of a universal panel-irreducible presheaf. We see that in general this does not occur. The focus of
the chapter then changes in Section from theoretical to computational, as the zero-homology
groups over GF'(2) of presheaves of the symmetric group Sym(6) and the Mathieu groups Mj; and
Moo are explicitly calculated, whilst those of the Mathieu group M;is are partially calculated. In
addition, the irreducible quotients of the zero-homology groups of presheaves of the Mathieu groups
Mbss and My over GF(2) are determined. These calculations are preceded by a discussion of a
method known as geometric spanning, which can be used to obtain upper bounds on the dimensions
of zero-homology groups. The chapter concludes in Section [3.9] with a few final remarks on the
aforementioned question concerning irreducible kG-modules arising as quotients of zero-homology

groups of universal panel-irreducible presheaves.

3.1 Presheaves and Coordinate Systems

Let X be an arbitrary topological space. Denote by 2" the category of open subsets of X with

morphisms consisting of inclusion maps, and let Ab denote the category of abelian groups.

'Ronan and Smith referred to presheaves as sheaves throughout their papers [RS85], [RS86] and [RS89)].
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Definition 3.1.1. [Bre97] A presheaf % (of abelian groups) on X is a contravariant functor from
2 to Ab. Thus for each U an open subset of X, we associate an abelian group F(U), and for each
inclusion map i : U — V we associate a homomorphism of abelian groups tyy : F (V) — F(U)

such that
1. Tyu =idy for all open subsets U < X; and
2. forU <V < W open subsets of X, we have Tyw = Ty,w o Ty,v -

An example of a presheaf on X is given by the constant presheaf. Let A be an arbitrary abelian
group. The constant presheaf of A on X is defined by setting .#(U) = A for all open subsets
U < X, and for open subsets U < V, define 77y = id4. It is clear that this satisfies the given
conditions, and hence .# is a well-defined presheaf.

Ronan and Smith extended this notion of presheaf from topological spaces to simplicial com-

plexes. First they defined a coefficient system as follows:

Definition 3.1.2. [RS85] Let A be a simplicial complex. A coefficient system .Z for A is a set of
abelian groups {F, | o is a simplex of A} together with connecting homomorphisms pgr : Fo — Fr

whenever T is a face of o, such that if v is also a face of T, then

Poy = Por © Pry- (3'1'1)

Since the parabolic subgroups associated to a geometric minimal parabolic system of a group G
form a simplicial complex A, Ronan and Smith imposed further conditions on a coefficient system
& for A, mirroring those properties found in such a minimal parabolic system. They required that
each %, is a vector space over a finite field k, and that there exists a G-action on the formal direct
sum of the terms of .%, corresponding to a permutation action of G on A. For g € G, the restriction
of the g-action to .%,, denoted gg, is a k-homomorphism from %, to F4,4 (the term at the simplex
0g). The focus of Ronan and Smith’s work was on kG-modules, so it is natural to further assume

that the G-action commutes with the connecting maps. This means that the following diagram

commutes
F, — 7,
j [ (3.1
7z, Frg

whenever 7 is a face of 0. In such a situation, we call the coefficient system .# a presheaf on AE|
If for each simplex o € A, the presheaf term .%, is spanned by the images of the presheaf terms of

the chambers of A containing ¢ under the corresponding connecting maps,
Fo = {Fcpeo|c is a chamber and o is a face of ¢) for all o € A,

then we call % a chamber-generated presheaf.

2We note that for the sake of brevity, Ronan and Smith referred to presheaves as sheaves. However, we will not
be adopting this convention.
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Let A be a simplicial complex with associated G-action for some group G, and let % be a
presheaf defined on A. If o € A is a simplex, then we denote the stabilizer of ¢ in G by G,. For
g € Gy, we have g, : F5 — Foq = F,. It follows that %, has a kG,-module structure. We call a
presheaf .% irreducible if the terms of .% at every simplex of A are irreducible modules. Similarly,
we call F panel-irreducible if the terms of .% at every panel and every chamber of A are irreducible
modules.

By defining connecting maps ¢,, = id, for all simplices o € A, we see that a coefficient system
% on A with G-action satisfying does indeed generalise the notion of a presheaf for a
topological space.

As with most algebraic structures, we may define subpresheaves and quotient presheaves in the
natural way. Let .% be a presheaf defined on a simplicial complex A , with connecting maps ¢s-
whenever 7 is a face of 0. A presheaf 4 on A is called a subpresheaf of F if 4, < %, for each
simplex o € A, and whenever 7 is a face of o, the connecting map in ¥ is given by ¢s-|g, . Given
a subpresheaf ¢ of .%, we then define the quotient presheaf % /4, whose term at the simplex o
is the quotient space .%#,/9,, and whose connecting maps are given by the corresponding quotient
maps.

It is also natural to consider mappings between presheaves. Let .% and ¢ be two presheaves
defined on a simplicial complex A, with connecting maps ¢,r and 6, respectively (whenever 7 is
a face of ¢), and with G-actions denoted by g and ¢ respectively (for each g in the defining group
G). A morphism from .7 to ¢ is a set of k-linear maps m := {m, : %, — ¥,} for each simplex

o € A, such that the following two diagrams commute:

(i) if 7 is a face of o, then

Ty —— Y,
%T[ lew ; and (3.1.3)
z —m g
(ii) for each o € A and each g € G,
Fy —— 4,
] A a1
F g _ Moy | -

We call the morphism m : % — ¥ injective if each k-linear map m, is injective, surjective if
each m, is surjective, and we call m an isomorphism if it is both injective and surjective. From
a categorical point-of-view, we see that morphisms of presheaves generalise the notion of natural
transformations between presheaves (when viewed as functors). We note that if m : % — ¥ is a
morphism of presheaves, then each m, € m is a kG,-homomorphism.

Before continuing with the theory of presheaves, we consider the notion of isomorphic presheaves

further. If m : % — ¢ is an isomorphism of presheaves, then using the commutativity of (3.1.3))



3.2. CLASSES OF PRESHEAVES 47

(resp. (3-1.4)), we see that the connecting maps (resp. G-action) in ¢ are uniquely determined by
the connecting maps (resp. G-action) in .#. The fact that commutativity holds in is crucial
to the notion of an isomorphism. Indeed, let A be the simplicial complex of parabolic subgroups of
some group G. For each parabolic subgroup o = P, € A, define %, = ¥, = kP,. Define connecting
maps in .# by setting ¢, to be the inclusion map, and in ¢ by setting 0, to be the zero map,
whenever 7 is a face of 0. It is easy to check that .% and ¢ with their connecting maps ¢, and
0, respectively are presheaves (where the G-action in each presheaf is given by multiplication in

kG). However, . and ¢ are clearly not isomorphic presheaves.

3.2 Classes of Presheaves

We now consider two important classes of presheaves that we will use frequently throughout our
subsequent work; constant presheaves and fixed-point presheaves. We define constant presheaves
for arbitrary simplicial complexes. However, we will only define fixed-point presheaves on the
simplicial complex of parabolic subgroups of a group G defined by a given geometric minimal
parabolic system. Unless otherwise stated, for the rest of this chapter k£ will denote a finite field of

characteristic p.

3.2.1 Constant Presheaves

Let V be a kG-module. In Section [3.1| we saw how to define the constant presheaf of V on a
topological space X. Given a simplicial complex A (with associated G-action) we can follow a

similar construction.
Definition 3.2.1. [RS8J] The constant presheaf of V' on A, denoted Ky, is the presheaf on A
with

(i) (Kv)o :=V for every simplex o € A;

(ii) for T a face of o we define vy to be the identity map on V; and

(iii) the G-action in Ky is defined by the G-action in the module V.

It is clear from the definition that constant presheaves are chamber-generated.
Suppose that n : V — W is a kG-module isomorphism. By setting m, = n for each 0 € A we
see that m := {m,|oc € A} is an isomorphism of presheaves from Ky to Kyy. Hence isomorphic

kG-modules give rise to isomorphic constant presheaves.

3.2.2 Fixed-Point Presheaves

Let G be a group and let A be the simplicial complex of parabolic subgroups of G defined by a
geometric minimal parabolic system. Let V be a kG-module. For each parabolic subgroup o € A
we may consider the unipotent radical U, := O,(G,) of G, (as defined in Chapter . Let V, be
the fixed-point subspace of V under U,:

Vo i={veV|vxu=wfor all ue U,}.
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Since U, is a normal subgroup of G,, it follows that V, is a kG,-module (more precisely, it is a
kG ,-submodule of V|, ). Moreover, if o € 7, then G, < G-. Since U,, U, are normal p-subgroups
of each Sylow p-subgroup of G, it follows that U, is a normal p-subgroup of G,. Since U, is the

largest such subgroup, we have that U, < U, and hence V, < V..

Definition 3.2.2. [RS85] The fixed-point presheaf of V' on A, denoted Fy, is defined by setting:
(i) (Fv)o := V5 for each o € A;
(ii) for T a face of o, setting pyr to be the inclusion map from V, to V;; and

(iii) for g € G, define the action of g on Fy to be the action defined within V.

Since the connecting maps in Fy are inclusion maps, properties and clearly hold,
and we have a well-defined presheaf. Clearly for a kG-module V', we have Fyy € Ky and equality
holds when V is the trivial kG-module.

When G is a finite Chevalley group, we have the following result.

Theorem 3.2.3. [Smi82] Let G be a finite Chevalley group over the finite field k, let P be a parabolic
subgroup of G having unipotent radical U and complement L and let V' be a finite-dimensional

irreducible kG-module. Then the fized-point subspace VYU affords an irreducible kL-module.

An immediate consequence of this is that for finite Chevalley groups, the fixed-point presheaf
Fv is irreducible.
We note that fixed-point presheaves are not-necessarily chamber-generated, as illustrated by

the following example.

Example 3.2.4. Let G := McL. The 2-minimal parabolic subgroups and systems of G were
introduced in Example . We note that the 22-dimensional irreducible GF(2)McL-module V
gives rise to a fixed-point space Fp = 1@ 1@ 1. From this, we deduce that the kP-modules

(Fepeple is a chamber of P)

for P = Pi144, Pi5a, Pras, Pssa have dimensions 21, 21, 21 and 20 respectively over GF(2). However,
the 2-cores of each of these mazimal 2-parabolic subgroups is trivial. Hence the presheaf terms
FPiross FPisas FPras and Fp,,, are all equal to V, and thus have dimension 22 over GF(2). It
follows that for any 2-minimal parabolic system of McL containing Pi1a4, Pisa, Plas 07 Pssa, the

fixed-point presheaf Fy is not chamber-generated. °

3.3 Homology of Presheaves

A simplicial complex, A, consists of simplices, which we may partition into sets according to their
rank. If a group G acts on A naturally, then it will preserve the rank of simplices. Hence for a
presheaf defined on A, we may think of the presheaf terms at simplices of equal rank to be - in some

senses - similar. We make this idea precise through the notion of chain spaces for a presheaf, from
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which we may define homology groups. These homology groups will turn out to be kG-modules

and are of great interest.

For the remainder of this chapter, we will assume that each simplicial complex A has a natural

G-action for some group G.

3.3.1 Homology Groups

Let A be a simplicial complex of dimension n having underlying vertex set {v;}I", for some m € N
and let .# be a presheaf defined on A. For each r = 0,...,n denote by C,(A,.%) the formal
direct sum of the presheaf terms at r-simplices. As the action of G on % preserves the simplicial
dimension, each C,.(A, .F) is a kG-module. We call C,.(A, %) the r-th chain space of F with respect
to A.

The connecting maps in .# map direct summands of C.(A,.Z) into Cr_1(A,.F) for each r =
1,...n. We use these maps to define boundary maps 0, : C,.(A, #) — C,_1(A,.%). Indeed, let

o be an r-simplex. Then o = {v;y,...,v;.} < {vo,...,vn} with i; < i;4q forall j =0,...,7 — 1.
Define the type of o to be vy, < -+ < v;,. and define o := {viy,...,vi;_;,Vij\y,--., 0.} for each
J =0,...,7. Thus o; is a maximal face of o of type v, < -+ < w;;_; <wj;,, < - <wv;,. We
define dyq; 1= (1) $oo; and then define 0, := Zg:o Ovo;- Finally, summing over all simplices of

dimension r, we obtain a map 0, := Y 4 . 0o : Cp(A,.F) — Cr_1(A,.F). We define 0y to be the
zero map on Cy(A,.7).

Since each 0, is a linear combination of connecting maps of the presheaf .%, and these connecting
maps commute with the G-action on .%, we see that ¢, commutes with the G-action. Moreover,
since the connecting maps are homomorphisms, each map ¢, is a kG-homomorphism. We call the
maps 0, (for r =0,1,...,n) boundary maps. The kernel of 0, is called the space of r-cycles and is
denoted Z,(A,.#). The image of 0, denoted B,_1(A,.7), is called the space of r-boundaries. We
set B, (A, .%) to be the 0-space.

Lemma 3.3.1. The chain spaces and boundary maps as defined above form a chain complex

0

0 0 ’Cn(Avy) — n—l(Aﬂg\) = a

Co(A, Z) —2 0

Proof. Let v € {2,...n}. It suffices to show that (0,0,_1)|#, = 0 for an arbitrary r-simplex
o € A. Indeed, assume that ¢ has type ag < --- < a,. Let o; denote its maximal face of type
ag < -+ < aj—1 < aj41 < --- < a, and for i # j let 0;; denote the maximal face of o; of type

ap < - < Qi1 < Qg1 < <A1 < Q1 << Ap Orap < v < Q-1 < Ajpl < v < @-1 <
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a;+1 < -+ < a, depending on whether ¢ < j or i > j respectively. It follows that o;; = 0. Thus

(ararfl) ’ﬁo = aaarfl

T T T
= Z (_1)Z90c‘mi Z(_l)]soffio'ij - Z(_l)](po'idij
i=0 =0 j=0
j<t 7>t
T ) T T ) T .
= Z (_1)290001‘ Z(_l) Poioij - Z (_1)190001' Z(_l)jwomu
i=0 j=0 i=0 j=0
Jj<t 7>t
T T T T
- Z 2( 1)Z+j(p001§0010”- - Z Z(_l)“ﬂgpaaﬁpamij
i=075=0 1=035=0
Jj<i 7>
T T T T
= Z Z(_l)ZJr](PGUiSOUiUz‘j - Z Z(_l)lJrJQOUJjSOUjUij
i=035=0 Jj=01:=0
j<i 1>]
T T T T
= Z Z(_1)2+J<PUU¢SOU¢Uij - Z Z(_l)l—i_](pagjspﬂ'jo'ij
i=0j=0 j=0i=0
Jj<t J<t
T T T T
= Z Z(_l)z—w‘pdai]‘ - Z Z(_l)H—]@UJij =0,
i=0j=0 j=04=0
Jj<i J<t

where we have used property (3.1.1)) to deduce that Yoo, 9o01; = Poo;Po,01; = Pooi;- Thus by our
comments above the result holds. O

Definition 3.3.2. [RS85] Let .F be a presheaf defined on A. We define the homology groups,
H,.(A,.7), of Z to be

H. (A, %) :2?“22’:2 forr=20,...n.

These homology groups are well-defined by Lemma When the simplicial complex A is
understood, we drop all references to A, and denote our chain spaces, cycle spaces, boundary spaces
and homology groups by C,(.%), Z,(#), B,(:#) and H,(.#) respectively.

It is natural to consider presheaves up to isomorphism. To do so, the following result will be

useful:

Lemma 3.3.3. Let F and & be isomorphic presheaves defined on a simplicial complex A. Then
Ho(#) and Hy(¥) are isomorphic kG-modules.

Proof. Assume that .# and ¢ are isomorphic via an isomorphism m := {m, : %, — 9,|oc € A}.
Since m is a presheaf morphism it commutes with the connecting maps of .# and ¢. The boundary
maps 0; and ¢; (of # and ¥ respectively) are linear combinations of connecting maps, hence also

commute with m. Moreover, if we consider m as acting on the chain spaces C;(.%#), we have a chain
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map between the chain complexes (C;(F), d;) and (C;(9¥), d;):

s (P -2 (P) -2 () —2 0

O

— s (9 -2 @) 2 9) —2 0

By diagram chasing in (3.3.5) we see that m maps im d; bijectively onto to im ;. Moreover, as
m is a presheaf morphism, it commutes with the action of the group algebra kG, and hence is a
kG-isomorphism from Cy(.-#) to Cp(¥) which restricts to a kG-isomorphism from im ¢; to imd;.
It follows that m induces a kG-isomorphism from Hy(%#) to Hy(¥) as required. O

The argument above can evidently be generalised to show that if .% and ¢ are isomorphic
presheaves, then H;(.%) and H;(%¥) will be isomorphic kG-modules for all i. We also note that this
is a necessary but not sufficient condition. Indeed, let A be the simplicial complex of parabolic
subgroups associated to the unique 2-minimal parabolic system of Sym(6) given in Example m
Define the presheaf .% on A to have 0-dimensional terms at simplices of type P; and P, and a
1-dimensional irreducible module at presheaf terms of type B. Then clearly Hy(.%#) =~ Hy(Ky) =~ 0,
but F % K.

We conclude this subsection by considering a presheaf .% defined on A. For each vertex o € A,
let ¢, denote the restriction of the quotient map ¢ : Co(-F) — Ho(.¥) to .%#,. For a simplex 7 € A,
if v is not a vertex, then choose a vertex o of v. We define ¢ := ¢y5¢,. The definition of ¢,
appears to depend on the choice of vertex o, but this is not the case. Indeed, let 7 be another
vertex of . Since A is a simplicial complex, the vertices ¢ and 7 lie in a common 1-simplex
where d3 = £(¢g, — ¢s-). Since 3 is a 1-simplex, the image of dg is contained in the image of 01,
which in turn is contained in the ker ¢. We deduce that ¢g,ps — @gr0r = 0. Consequently, using
property for connecting maps we have

o © Po = (P48 0 PBs) © Po = (P8 0 PBr) © Pr = Pryr O Pr,

and our maps ¢~ for v € A are well-defined. We will use these maps to define universal presheaves
in Section [3.4]

3.3.2 Cohomology Groups

For a presheaf .# defined on a simplicial complex A over the field k, the chain spaces C;(A,.%)
may be used to define a co-chain complex. Indeed we take C*(A,.#) := Hom(C;(A, %), k) and for
feCYA,.F), define f6' := 0;11f. This gives rise to the co-chain complex

0— A, 72) L ol 2) L Y oA, 7)) — 0.

It follows that we may define the r-th cohomology group of a given presheaf.
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Definition 3.3.4. [Ron89] Let . be a presheaf defined on A. We define the r-th cohomology
group, H"(A,.Z), of F to be

ker 69 if r = 0;

H"(A, F) := i;egffl ifr=1,...n—1; and
C"(A,F .
im((S”*l) ifr=mn.

As with homology groups, when the simplicial complex A is clear, we will suppress it in our notation
and we shall respectively write C"(.#) and H"(#) for C"(A,.#) and H" (A, 7).

We shall see in Section that there is a close relation between the zero-th and n-th homology
groups of a presheaf .# and the respective n-th and zero-th cohomology groups of its dual presheaf

F* (as defined in Section [3.5)).

3.3.3 Euler Characteristic

Closely associated to chain spaces and homology groups is the notion of the FEuler characteristic
of a presheaf. We assume that a geometric minimal parabolic system of rank n + 1 for a group G

(and hence a simplicial complex A) has been fixed.

Definition 3.3.5. The Euler characteristic of the presheaf 7, denoted x(F), is the alternating

sum
n

X(F) = 3 (=1)' dim H(F)

i=0
The Euler characteristic can also be defined in terms of dimensions of the chain spaces of the

presheaf .% as we now prove.

Lemma 3.3.6. For a presheaf F we have

X(F) = Y (=) dim Hy(.F) = Y (~1)" dim C;(.F).
=0 i=0
Proof. This is a simple calculation. We note that dim H;(.%#) = dim Z;(.%) — dim B;(.%) for all
i =0,...,n. Moreover, as each boundary map 0; : C;(.#) — C;_1(.¥) is a kG-homomorphism, we

have C,-( #)/ker 0; ~ im 0; and hence
dim C;(.7) = dimim ¢; + dimker ¢; = dim B;_1(.%) + dim Z;(.7).

It follows that

1=0
= dim Zy(.F) + (-1)"" dim B, (F) + i( )" (dim Z;(F) + dim B;_1 (%))
=1
= dim Co(F) + 0 + i(—l)idim Ci(F) = i(—l)idim Ci(F)
i=1 1=0

as required. O
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As the chain spaces C;(.%#) are formal direct sums of presheaf terms, their dimensions are easily
determined. Lemma [3.3.6] allows us to effortlessly calculate the Euler characteristic of .%, and thus
we obtain a useful relationship between the dimensions of the homology groups of .%. This is a
method we will use frequently in Section [3.8] and is very powerful when used in conjunction with
the dual presheaf .#7™* of a given presheaf .# (as defined in Section .

3.4 Universal Presheaves

So far we have considered presheaves which are characterised by explicitly defining all terms and
connecting maps. However, it is possible to construct a presheaf from a minimal amount of data,
namely the presheaf terms at a chamber B and at given panels of each type that are faces of B.
This leads to the notion of universal presheaves, which as their name suggests satisfy a universal
property.

Our motivating simplicial complexes arise from geometric minimal parabolic systems. Con-
sequently we will assume that A is the standard n-simplex, having vertices {vy, ..., v,} and we set
I ={0,...,n}. For the sake of brevity, if J = {ig,...,i,} < I, with i; < i;41 for all j, then we say
that the simplex {vj,,...,v;,} has type J. Let II be a subset of the power set of I that is closed
under taking subsets; if J & K € II, then J € II.

Definition 3.4.1. [RS86] A II-presheaf is a collection of k-vector spaces %, for each o of cotype

J € 11, connecting maps psr whenever T is a face of o, and g-action for each g € G on the %, such

that conditions (3.1.1) and (3.1.2)) hold for all simplices of A of cotype J € 1.

There may be many presheaves ¢ whose terms at simplices of cotype J € II form the same
IT-presheaf .%. We call such presheaves extensions of %, and for each such 4 we call # the II-
restriction of 4. Ronan and Smith proved that all extensions of a II-presheaf .% that are generated

by the terms at simplices of cotype J € II are quotients of some universal extension.

Theorem 3.4.2. [RS86, Theorem 2.1] If 11 is a non-empty subset of the power set of I that is
closed under taking subsets, then each Il-presheaf % admits an extension F' with the following

universal property. Suppose ¢4 is a presheaf on A (with connecting maps r) satisfying:
(i) the -restriction of 4 is isomorphic to #; and
(ii) if cotype T ¢ 11, then 4. is generated by the (9, ).

Then 4 is a quotient of F'.

We call the presheaf .#’ from Theorem a universal presheaf. Below we describe the presheaf
terms, connecting maps and G-action for .#’. We refer the reader to [RS86, p141] for a proof of
Theorem (that is a proof that these terms, maps and actions give a well-defined presheaf .#’
and that %’ is indeed universal). The presheaf .#' is defined inductively.

Let J be a subset of I not contained in II such that every proper subset of J is contained in

II. Let o be a simplex of cotype J. By assumption for each simplex p having o as a face, the
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presheaf term .%, has been defined. Thus .#|Sto is a well-defined presheaf on the star of o. We
define #) := Hy(.F|Sto). If o is a face of p, then we have a map

¢y F, = (F|Sto), — Ho(F|Sto) = .7,

o

as defined in Section and this map satisfies ¢, = ¢ ¢, Whenever p is a face of 7. We define
©Ypo = ¢,. Finally for each g € G, the presheaves .#|s;, and 7| St(og) are isomorphic via the action

of g in .%. This induces an action g : %, — %, _, which we take to be the action of g on Z..

og>
Continuing in this way, we define the presheaf .7’.
It is possible to generalise the construction above by considering only terms .%, defined at
certain faces of single (fixed) chamber c¢. We then extend these terms to a full II-presheaf .%, using
multiplication within G to define the other II-presheaf terms. In such a case, condition is

not relevant, since we only have a single chamber c. It is replaced by the following condition:

( 3.4.3. )|RS86, Hypothesis 2.2] If J < K € Il and o5, ok are faces of ¢ of cotype J and K

respectively, then Z,, is a kG j-module and o 0y is a kG j-module homomorphism.
We now give an analogue of Definition in this more general setting.

Definition 3.4.4. [RS86] A Il-stalk at ¢ is a system of coefficients F,, for J € Il satisfying the
composition property (3.1.1) and property (3.4.3)).

We note that a II-presheaf .7, will restrict to a II-stalk at any one of its chambers, by considering
only the presheaf terms corresponding to faces of that chamber. In fact the converse also holds, as

proved by Ronan and Smith:

Theorem 3.4.5. [RS86, Theorem 2.3] Every ll-stalk is the restriction (to the faces of ¢) of a
unique I1-presheaf.

An immediate consequence of this theorem is that every Il-stalk can be extended to a unique
II-presheaf, which in turn may be extended to a universal presheaf. As with Theorem [3.4.2] we
illustrate the construction of such a Il-presheaf, and refer the reader to [RS86l, ppl42-144] for a
proof that this construction is well-defined and unique.

Continuing the notation of property , assume that {%,,|J € II} is a Il-stalk with con-
necting maps @, ;5. . Let T denote a right transversal of G; in G. We may choose a transversal
such that the elements of T'; are indexed by the coefficient spaces of cotype J, so that for each oh
of cotype J, there is a unique element g, 5, € Ty such that 059, ,, = osh. For 0;1 = 0, we take
go,1 = 1. Having obtained such a transversal, we define each .%, corresponding to a simplex of
cotype J to be a space k-isomorphic to .#,, via a given isomorphism g, : %#,, — %#,. For ease of
notation, we take g,, = id(gzUJ.

To define the G-action on the direct sum of these coefficient spaces, we use the isomorphisms
above to map each coefficient space .%#, of cotype J back to .%,,, apply a G-action on .%,,, and

then apply an isomorphism to the resulting image. More precisely, if a € G and ¢ is a simplex of
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cotype J, then we have a k-homomorphism g, : #,, — #,. Since T} is a right transversal of G;
in G, there exists a unique element h € G satisfying
9o a=h"Ggea- (3.4.6)

As h e G, and %, is a kG j-module (by (3.4.3))), we have a well-defined action of h on .%,,. It
follows that we may define the action, @, of a on the direct sum of our coefficient spaces of cotype

J, so that a completes the following commutative diagram:

g
Fo, = Fo

h[ [a : (3.4.7)

Fy, —2 s 7,
Thus the action of a € G on %, is given by @ := (§,) ' hisa-

To define the connecting maps of the Il-presheaf .%, we use a similar approach as above; we
map everything back to our Il-stalk and use the G-action we have just defined. Indeed let ¢ € 7 be
simplices of cotypes J < K € Il respectively, and let o7 S 7x be faces of ¢ of cotypes J € K € 11
respectively. Take any a € G such that a : #,, — %, and a : F#,, — F,. As above, we define

Yor : Fo — F- to be the homomorphism that completes the commutative diagram

a
j\aj > ycr
SOO'JTK J J Por 9
a
T —2 7,

meaning that ¢y, 1= (@) Lo, = (a71) 0o, .
Theorems [3.4.2] and illustrate why it suffices to restrict our attention to universal
presheaves. This will be the main focus of our attention in Sections [3.7
We conclude this section by reconsidering chamber-generated presheaves. As mentioned in
Section [3.1] a presheaf .# is called chamber-generated if for each o € A, the presheaf term %, is
spanned by the images .Z.p., for all chambers ¢ containing o. Clearly such presheaves are nice to
work with. Indeed, since the connecting maps of a presheaf .# are k-homomorphisms that commute

with the G-action, we see that there is a homomorphism

@ Socaz(ﬁcg_’gﬂ'

c a chamber containing o

Thus .%, is a quotient of the induced module (.%#.)7.
If we form the universal presheaf from a chamber-generated II-presheaf or Il-stalk, it follows
that the terms of the universal presheaf, not defined by the II-presheaf/stalk, are homology groups.

Hence we obtain the following result:

Lemma 3.4.6. If .7 is a Il-stalk or a Il-presheaf, and each term %, of % is spanned by the

images Fepeo for all chambers ¢ containing o, then the universal presheaf obtained using Theor-

ems|3.4.2 and|3.4.5 will be a chamber-generated presheaf.




56 CHAPTER 3. HOMOLOGY OF PRESHEAVES OF ABELIAN GROUPS

3.5 Dual Presheaves

In Section [3.4| we saw how one could define a presheaf inductively using the presheaf terms at a single
chamber, a single panel of each type contained in this chamber and the associated connecting maps.
We shall now see that given a panel-irreducible chamber-generated universal presheaf .% defined
on the simplicial complex A of parabolic subgroups of some group G with respect to some prime
divisor p of the order of G, we may construct a dual presheaf as originally introduced in [Ron89).
Throughout this section we will set k := GF(p).

Consider the panel-terms of % and appealing to Lemma [2.5.4] we see that chamber-
generatedness ensures that for a fixed panel P € A, the panel term .%p will be generated by

the set
{ZFpappap|lg € P} = {Fpappaplg € T for T a transversal of B in P}.

It follows that #p will be a quotient of the induced module (#5)%, and hence we have a short

exact sequence
0— Mp - (Fp)k 28 2p —0, (3.5.8)

for some kP-module Mp. Applying Hom(—, k) to (3.5.8]), we obtain the short exact sequence
ot 0"
0 — Hom(Zp, k) — Hom((Fp)5, k) -2 Hom(Mp, k) — 0. (3.5.9)
Denote the rank of A by n.

Definition 3.5.1. Let % be a universal panel-irreducible presheaf constructed on A from a
{#,{0},{1},...,{n — 1}}-stalk #. The dual presheaf is the universal presheaf F* constructed
from the {&,{0},{1},...,{n — 1}}-stalk F* having chamber term (F*)p := Hom(Fg, k) and panel
terms (F*)p, := Hom(Mp,, k) and having connecting maps 0 (as defined in (3.5.9)).

We illustrate this with an example.

Example 3.5.2. As seen in Ezample the symmetric group Sym(6) admits a unique 2-minimal
parabolic system given by {P; ~ 23.Sym(3), Py ~ 23.Sym(3)}. Let k := GF(2). There are two non-
isomorphic irreducible kP;-modules for i = 1,2 having dimension 1 and 2 over k. We denote these
by 1; and 2; respectively. In addition, we have a unique irreducible kB-module, 15, of dimension 1
over k. These modules give rise to four universal panel-irreducible presheaves. We denote by A; ;
the universal panel-irreducible presheaf satisfying (Ni;)p, = i1, (Nij)p, = j2 and (Aij)B = 1. The
presheaf terms of the dual presheaves Af,j fori,7 =1,2 are given in Table . °

We conclude this section by considering the case that G is a finite group, p is a prime divisor of
|G| and k := GF(p). Given an irreducible kG-module M, we see that every element of Hom(M, k)
is uniquely defined by the preimage of 1 € k. Thus for m € M\{0} we may define ¢,, € Hom(M, k)
by @m : m — 1, whilst taking ¢g := 0 € Hom(M, k). This gives a well-defined epimorphism from
M to Hom(M, k) and hence M =~,c Hom(M, k). We shall use this fact without further mention
when explicitly calculating homology groups in Section
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Presheaf, A} (Nij)5 (Nij) P, (Xij)p,
T Hom(1p,k) | Hom(21,k) Hom(29,k)
TQ Hom(lB, k‘) HOIH(21, k’) HOHl(lQ, k)
51 Hom(1p,k) | Hom(11,k) Hom(29,k)
59 Hom(1p, k) | Hom(1y,k) Hom(lg,k)

Table 3.1: The dual presheaves of the universal panel-irreducible presheaves over GF'(2) defined on
the unique 2-minimal parabolic system of Sym(6).

3.6 Summary of Known Results

Ronan and Smith first defined a presheaf of abelian groups on the building A of a finite Chevalley
group in their 1985 paper [RS85|. In this paper, they looked at basic properties of such presheaves.
They proceeded this paper with a further paper on universal presheaves [RS86] in 1986, before using
their results to calculate/partially calculate the zero-homology groups for presheaves associated to
L4(2), the C3 geometry of Alt(7), the triple cover of Sym(6) and the Mathieu group Ma4, which
they published in 1989 (see [RS89]). In this section we present many of the results from these
papers.

We give all results for the simplicial complex A of parabolic subgroups arising from a minimal
parabolic system of a given group G (mirroring the notion of a building). However, we note that

many of the results hold in a more general setting.

Lemma 3.6.1. [RS8Y, (1.1)] If W is a kG-module, and Ky is the constant presheaf on W, then
Ho(’C[/V) ~ W.

Proof. As A is connected, the copies of W in Ky at the vertices of A are all identified in Ho(Kyy).
O

When H is a subgroup of GG, Frobenius-Nakayama reciprocity relates the restriction of kG-

modules to the induction of kH-modules.

Theorem 3.6.2. [Ben91, Frobenius-Nakayama Reciprocity, 2.8.3] If k is a field, H < G are groups,

M is a kG-module and N is a kH-module, then there is a natural isomorphism
Homy (N, M|pg) = Homy (N, M).

When considering presheaves on our simplicial complex A, we consider all parabolic subgroups.

It follows that the process of induction is replaced by taking the zero-homology group.
Theorem 3.6.3. |[RS85, (1.2)] Let W be a kG-module, and % a presheaf. Then
Homy (Z, Kw) =~ Homyg(Ho(F), W).
For a presheaf .%#, this result allows us to determine certain irreducible quotients of Hy(.%).

Theorem 3.6.4. [RS8, (1.3)] Let W be a kG-module, and suppose F is a subpresheaf of Ky,
whose terms generate W. Then W is a quotient of Ho(.7).
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If W is an irreducible kG-module, then the terms of any non-zero subpresheaf of Ky will

generate W. Thus we obtain the following result.

Corollary 3.6.5. If .F is a subpresheaf of Ky for some irreducible kG-module W, then W is a
quotient of Ho(F).

Conversely, if W is not irreducible, then the terms of any non-zero subpresheaf % of Ky will
generate a submodule V of W. Since all modules we encounter are finite-dimensional k-vector

spaces, we may extend V to form a composition series for W, in which V' will be one of the terms:
0O=WycW)c-..cW,=VcWyc..cW, =W

By Theorem V is a quotient of Ho(.%#). It follows that V /W;_; is also a quotient of Hy(.%).
Thus we have the following corollary to Theorem

Corollary 3.6.6. If # is a subpresheaf of Ky for some kG-module W, then there is a composition
factor V' of W which is a quotient of Ho(F).

There is also a relationship between surjections of presheaves and surjections of the homology

groups of presheaves.

Proposition 3.6.7. [RS86, (1.4)] A surjection p : F — &4 of presheaves induces a surjection
p: Hy(F) — Ho(¥) in homology groups.

Combining Proposition [3.6.7] and Theorem [3.4.2] we obtain the following result.

Corollary 3.6.8. Let % be the universal presheaf defined by a I-presheaf or 1-stalk %, whose
existence is asserted by Theorem . If 4 is a presheaf (with connecting maps ¥y, ) satisfying:

(i) the M-restriction of & is isomorphic to F; and
(ii) if cotype T ¢ 11, then 94, is generated by the (9,)or,
then Ho(¥) is a quotient of Ho(% ).

Proof. By Theorem the presheaf ¢ is a quotient of %/, and thus there is a surjection p :
% — ¢. This surjection of presheaves induces a surjection in homology p : Ho(%Z) — Ho(¥) by
Proposition and hence Hy(¥) is a quotient of Hyo(%). O

This corollary illustrates the importance of universal presheaves in determining the zero-
homology groups of arbitrary presheaves.

A final application of Proposition [3.6.7]is found in the proof of the following result:

Theorem 3.6.9. E|Let F be a presheaf. An irreducible module V is a quotient of Ho(%) if and

3Theorem is a variation on a remark made by Ronan and Smith in their 1989 paper [RS89]. In the intro-
duction to that paper they stated that

The analogue of Frobenius reciprocity [11; (1.2)] asserts that a module V' is a quotient of Ho of a presheaf
F precisely when F is a subsheaf of the constant sheaf Kv .

This statement is actually incorrect, and a counterezample to this situation arises in the presheaf As of Table (2.1) in
the same paper. The presheaf A3 has a 5-dimensional term at vertices of a given type, but Ho(\3) is a 4-dimensional
module. However, Stephen Smith has kindly confirmed the correct formulation of the result as found in Theorem[3.6.9,
which we have then been able to prove [Smil2]. The presheaf s mentioned above does satisfy the hypothesis of the
theorem, as there is a map into the constant presheaf of the 4-dimensional irreducible module. However, this map is
not faithful.
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only if there is a surjective morphism of presheaves from F onto a (non-zero) subpresheaf of the

constant presheaf, Ky, of V.

Proof. Let % be a presheaf defined on a simplicial complex A and suppose that V' is a quotient of
Hy(7) via a quotient map q : Ho(#) — V. For each o € A, there is a map ¢, : ¥, — Ho(F)
(as described in Section . Set my 1= @sq for each 0 € A. Since the map ¢, is the composition
of a connecting map in the presheaf .# and the quotient map Cy(.%#) — Ho(F), it commutes with
the G-action. The map ¢ also commutes with the G-action, and thus so does the map m,, for each
o€ A. If 7 is a face of o, then the connecting map 6, in the constant presheaf Iy is the inclusion

map. It follows that

PorMr = PorPrqd = Pod = Mg = moeaﬂ'-

We conclude that m := {m, : 0 € A} is a morphism from .Z into the constant presheaf Ky, and
hence .% is mapped onto a subpresheaf of Ky, namely the image of m.

Conversely, suppose that % is mapped surjectively onto a subpresheaf, ¢, of the constant
presheaf ICy,. Since V is irreducible, Corollary asserts that V' is a quotient of Hy(%). Moreover,
as .7 is mapped surjectively onto ¢, the homology group Hy(¥) is a quotient of Hy(.%#) by Pro-
position It follows that V' is a quotient of Hy(.%). O

The final results that we give in this section were formulated by Ronan in his paper on dual

presheaves [Ron&9].

Theorem 3.6.10. Let .F be a presheaf defined on the simplicial complex of parabolic subgroups
associated to a minimal parabolic system of rank n+1 of a group G, and let F* be the dual presheaf
of #. Then

(i) [Ron89, Theorem 2] Hy(F) and H"(F*) are isomorphic as kG-modules.
(ii) [Ron89, Corollary] H,(F) and H°(F*) are isomorphic as kG-modules.

We shall sometimes refer to Theorem |3.6.10] as Ronan’s Duality Theorem.
Since the dimension of the i-th cohomology group and the corresponding i-th homology group
are equal as k-vector spaces (as they are dual vector spaces), we see that for a given presheaf .#

we have

dimy Ho(F) = dimy, H" (") = dimy, H,,(F¥); and (3.6.10)
dimy, H,(.F) = dimy, H°(F*) = dimy, Hy(F*). (3.6.11)

We will use (3.6.10) and (3.6.11)) in conjunction with the Euler characteristic of a given presheaf
(as formulated in Section [3.3)) to obtain bounds on the possible dimensions of our homology groups.
This is a very effective way to obtain such bounds when the rank of the minimal parabolic system

is small.
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3.7 Homology Groups of Universal Presheaves

We have previously seen in Theorem that if G is a finite Chevalley group over the finite
field k£, and V is a finite-dimensional irreducible kG-module, then the fixed-point presheaf Fi, is
irreducible. It follows from Corollary that V is a quotient of Hy(Fy ). In particular, every
irreducible kG-module is the quotient of the zero-homology group of a universal panel-irreducible

presheaf. We might hope that this generalises and ask the following question:

Question 3.7.1. If G is a group, p a prime dividing |G|, k = GF(p), A is the simplicial complex
of parabolic subgroups associated to a p-minimal parabolic system of G and V is an irreducible
kG-module, then does there exist a universal panel-irreducible presheaf % defined on A such that

V is a quotient of Hy(F)?
In general, there is no guarantee that such a presheaf .# will exist, as we now illustrate.

Example 3.7.2. Let G := Sym(10) and let B = S ~ 25721 € Syly(GQ) be a self-normalizing
Sylow subgroup. There is a unique 2-minimal parabolic system of G with respect to S, given by
{P1 ~ 25.Sym(5), P, ~ 25.32.Dih(8)}. Taking V to be the 26-dimensional irreducible GF(2)G-
module, we see that there is no v € V' such that the kB-module {v)ip and the kPi-module {v)p,
are both irreducible. It follows that the presheaf ICyy does not admit an irreducible subpresheaf, and
hence there does not exist a panel-irreducible presheaf F for which V is a quotient of Hy(.7).

We note that in this case B is a mazximal subgroup of Pa, but it is not maximal in P;. Indeed
we may take B < Hy < Py with Hy ~ 252.Sym(3). We see that there is a unique element v € V
such that the modules {v)ip, {vV)rm, and {v)rp, are all irreducible. Hence, considering the minimal
parabolic system {Hy, Po} of Sym(8) x 2 =~ (Hy, Py), we may form a panel-irreducible presheaf F

on this system for which a composition factor of V' is a quotient of Hy(.F). °

In the above example, to prove that no such panel-irreducible presheaf existed, we considered
subpresheaves of the constant presheaf Ky whose panel and chamber terms were generated by a
given element of V. Clearly, panel-irreducibility means that it suffices to check subpresheaves of
the fixed-point presheaf Fy .

Although in Example the maximality of the chamber in the minimal parabolic subgroups
appeared to be the issue, we shall see in Section that maximality alone is not a sufficient
condition for Question to have an affirmative answer. Indeed, we shall exhibit two simplicial
complexes - namely Aq 3 and Ag 3 - of 2-parabolic subgroups associated to the Mathieu group My
for which there is no universal panel-irreducible presheaf, .%, having the irreducible GF'(2) M-

module 10,7, as a quotient of Hy(.%).

3.8 Calculation of Homology Groups

In Sections [3.113.7] we looked at things from a purely theoretical viewpoint. In the current section,
we will explicitly calculate the zero-homology groups of some universal panel-irreducible presheaves.

In general this is extremely difficult, and at best we can hope to obtain bounds on the dimensions



3.8. CALCULATION OF HOMOLOGY GROUPS 61

and possible irreducible quotients of such homology groups. This mirrors the goals of Ronan and
Smith in [RS89]. Before giving explicit calculations in Subsection we describe the method

used throughout [RS89] known as geometric spanning.

3.8.1 Geometric Spanning

Given a simplicial complex of parabolic subgroups A associated to some minimal parabolic system
S ={Py,..., P11} of a finite group G, we recall that the vertices of A are the conjugates of the
parabolic subgroups of the form Py (;; for somei e I = {1,...,n+1}. We call a conjugate of Pp g,
a vertex of type i. Suppose we are given a vertex o = PIg\{j} of type j and let v := Pp; for some
i # j. Let % be a chamber-generated presheaf defined on A with connecting maps ., whenever

T is a face of . Thus
Foo =T pnppna| B" < a) for each av € A,

where B is the normalizer of the Sylow p-subgroup that defines the minimal parabolic system S.
For each chamber B" € o, we have B" < 4", Moreover, as ¥ (resp. o) is the unique vertex of
type i (resp. j) that is a face of B", and PIh\{ij} is the unique 1-simplex of type {i, 7} that is a face

of B", we have that both v" and o are faces of PIh

Mg}
Since % is chamber generated, there exists vy, ..., v, in chamber-terms %o, ..., %o respect-
ively (where B9 < o for each [ = 1,...,r) such that .%, is generated by vi¢pos,..., Vr@Bors.

Now setting ji; := Pj‘fl\l{ij}, we have that
VIPBIe = VPRI Pyo foreach [ =1,...,r.

Defining w; := vjppa,, € #,, for each [, the presheaf term .%, is generated by wipu,o,. .., WrPu,o-
Consider wy € #,,. As 1 = Pf\l{ij} is a 1-simplex of type {7, j}, it has precisely two faces, namely

o and y9'. Considering the image of w; under the boundary map 0; : C1(.#) — Co(#) we have

w101 = H(W1pp o — WP 91 ),

where the sign is positive if j < i and negative if i < j. As wip,, o and wip,,91 are both contained

in Co(F), their images in the homology group Hy(%#) are equal:
W1Pu o + Im a1 = W1Pu491 + Im 81.

We may use the same methodology for each [ = 1,...,7 to see that the image of the presheaf term
Z, in the homology group Hy(#) is contained in the span of the images of the presheaf terms of
Z at vertices of type i.

Repeating this process for all vertices of type j # i we see that Hy(.%) is spanned by the images
of all presheaf terms at vertices of type i. Since i was chosen arbitrarily, we see that Hy(%#) is
spanned by the images of presheaf terms of % at vertices of any given type.

Using further applications of this methodology, we can determine subsets of vertices of a given

type such that the images of the presheaf terms at these vertices generate the zero-homology group.
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O

Aog(Pr) Ay (Pr) Ay (P) Az(Pr) Ay(Pr)

Figure 3.1: The collapsed adjacency diagram of the graph I' from Example with respect to
Py.

This method is best illustrated by an example. For the sake of brevity, from this point forward we
will often talk about presheaf terms spanning the zero-homology group. However strictly speaking,

we mean that the images of the presheaf terms span the zero-homology group.

Example 3.8.1. Let G := Sym(6). We saw in Ezample that there is a unique 2-minimal
parabolic system of G given by {P; ~ 23.Sym(3), P, ~ 23.Sym(3)}, having associated simplicial
complex, A, of parabolic subgroups. Defining I' to be the graph having vertex set the minimal
parabolic subgroups of G, and with P} and ch incident if they share a common chamber, we may
calculate the collapsed adjacency diagram of I with respect to Py. This is given in Figure|3.1. The
girth of T is 8. We note that the collapsed adjacency diagram of I' with respect to P is identical
to the collapsed adjacency diagram with respect to Py.  Since I' may be seen to be an incidence
geometry, we will refer to conjugates of Py and Pa as points and lines respectively.

Let k = GF(2) and let F denote the universal panel-irreducible presheaf defined on A having
1-dimensional irreducible kB- and kPs-modules at the simplices B and P> and a 2-dimensional
1rreducible kPp-module at P1E| Define py := Py and denote the lines in Aq(po) by lo, 11,12, the
points in Aa(po) by p1,...,pe and the lines in As(po) by l3,...,l1a such that the subgraph of T’
spanned by these vertices is as giwen in Figure [3.3.  From Figures and we see that the
images of p1,...,pe in Ho(F) form a spanning set, since the images of all lines will be contained
in this span. It follows that the images of ls, ..., l14 also span Ho(F). Considering each point not
occurring in Figure (3.4, we note that as the girth of I' is 8, each point must be incident to one line
from each of the sets {ls,l4,15,l6}, {l7,18,1l9,l10} and {l11,l12,113,114}. Since the image of a point is
spanned by the images of any two of its incident lines, we conclude that the images of I3, ..., 1l
span Ho(F), and hence so do the images of p1,...,p4.

Finally, denote the non-zero vector in F, by v; fori=3,...,14 and let pj € Ay(po) be incident
to lg. Without loss of generality we may assume that p; is also incident to l3 and l11. Thus in

Hy(F) the relation
V9 = V3 + V11 (3.8.12)

holds. Let py be the other point of A4(po) that is incident to l11. Without loss of generality, py is

also incident to ls and l7. This gives

V11 = V5 + U7 (3813)

4 In Ezample we denoted F by Xa1.
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Figure 3.2: The subgraph of I" spanned by the points pg,...,ps and the lines ly,...,l14 from
Example

in Hy(Z). Combining (3.8.12) and (3.8.13) we obtain
Vg = V3 + U5 + vy

in Ho(.%) and hence F1, < span{.Z,, Fp,, Fpy}. An analogous argument may be used to show that
Flo S span{Fp,,, Fp,, Fps}- Thus Ho(F) is spanned by {Fp,, Fpo, Fps }-
We conclude by noting that

HO(g) = Span{ﬁpl"QPQ’gp:j} = Spa’n{yloa%p%g)‘%svyh}?

whence
dim(Ho(%#)) = dim(span{.%,, Z1,, P15, Fi5, F15}) < 5. (3.8.14)
We shall utilise the bound in (3.8.14) later, to explicitly determine the structure of Ho(%F). .

We conclude this subsection by noting that geometric spanning arguments are most powerful

when dealing with groups of small order.

3.8.2 Explicit Calculations

The explicit calculation of the zero-homology groups of universal panel-irreducible presheaves is
typically extremely complex. Often the best that we can hope to obtain is a bound on the dimension
of the homology group and/or a list of possible irreducible quotients. We illustrate this complex-
ity by calculating the zero-homology groups of the universal panel-irreducible presheaves of the
symmetric group Sym(6) and the Mathieu groups M7, and Mag and partially calculating the zero-

homology groups of the universal panel-irreducible presheaves of the Mathieu group Mis. All of
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these presheaves are defined on rank 2 minimal parabolic systems. We also calculate the irreducible
quotients of the zero-homology groups of the universal panel-irreducible presheaves defined on Mass
and My over GF'(2), noting that the minimal parabolic systems on which they are defined have
rank 3. Some of our calculations are heavily based on the geometric spanning method introduced

in Subsection |3.8.1], combined with the notion of the dual presheaf and Theorem [3.6.9

Sym(6)

We continue the notation of Example for the universal panel-irreducible presheaves of Sym(6)
over GF(2). There are four irreducible GF(2) Sym(6)-modules having dimensions 1, 4, 4 and 16.
We denote these by 1, 4,, 4, and 16 respectively.

AL,1

The presheaf A ; is precisely the constant presheaf K;. Thus Ho(.#) = 1 by Lemma [3.6.1]

A21
In Example we obtained the bound
dim(Ho()\gJ)) < 5. (3.8.15)

Since Hp(Ag,1) is spanned by the images at simplices of any given type, we see that Hp(A21) is
simultaneously a quotient of ((/\271)B)SBym(6), ((/\271)1:1)18[,}1“(6) and (()\271)]32)%2/111(6). There are three
such quotients of dimension at most 5, namely 0, 4, and 4;/1.

Consider the GF'(2) Sym(6)-module 4;/1. It contains two vectors v; and vy such that the
modules {(v;)rp, (vi)rp, and (v, kp, are all irreducible (for ¢ = 1,2). Of these vectors, one vec-
tor generates the universal panel-irreducible subpresheaf A1 1 of Ky, /1, whilst the other generates
the universal panel-irreducible subpresheaf As ;. Thus we obtain Ag; < IC4b N and since ()\2,1) P

is 2-dimensional, the terms of Ay ; must generate 4,/1. Thus 4;/1 is a quotient of Hyp(A2,1) by

Theorem Combining this with (3.8.15)) we obtain Hy(A21) = 4/1.

A12

)

As AT 5 = A21, Ronan’s Duality Theorem asserts that dim(Ho(A12)) = dim(H;(Ag,1)). Considering

the Euler characteristic of A2 ; we obtain
dim(Ho()\Lg)) = d1m(H1 ()\271)) = dlm(Ho()\QJ)) - X()\QJ) =5—-0=05.
Mirroring the approach for A2, we see that there is a unique 5-dimensional quotient of

((Al,g)B)SBym(ﬁ), ((Al,g)pl)%;m@ and (()\172)p2)§32m(6), namely 4,/1. Thus Ho(\12) = 44/1.

A22

)

The presheaves Ay 2 and Aq; are dual to each other. Thus by Ronan’s Duality Theorem

dim(H(]()\Qg)) = dim(Hl()\Ll)) = dim(Ho()\Ll)) — X()‘l,l) =1- (—15) = 16
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Ao(Pr) Ar(Pr) Ao (P1) Az(Pr) Ay(Pr) As(Pr) Ag(P1)
Ao(P) A1 (Po) Do (P) A3(P) Ay (P) Py)

Figure 3.3: The collapsed adjacency diagrams of I'15 with respect to P; (top) and P» (bottom).

Considering the irreducible GF'(2) Sym(6)-module of dimension 16, we see that it contains a vector
v satisfying (vyrp = 1p, (V)rp, = 2p, and (v)pp, = 2p,. Thus we may realise A2 2 as a subpresheaf
of K16 and so 16 is an irreducible quotient of Hp(A22) by Theorem We conclude that
Ho(A22) = 16.

My

We now consider the Mathieu group Mj;, which admits three 2-minimal parabolic systems, namely

81 = {Pl ~ 21:'_2. Sym(S),Pg ~ 325D16}, 82 = {Pl ~ 21:'_2. Sym(3),P3 ~ Alt(6)2} and
= {P, ~ 325D1g, P3 ~ Alt(6).2}.

Denote the simplicial complexes of parabolic subgroups associated to &1, So and Sz by Ay, A3
and Agj 3 respectively.

The self-normalizing Sylow 2-subgroup, B, of M;; admits a unique irreducible GF'(2) B-module
of dimension 1, whilst the minimal parabolic subgroups P, P» and P3 admit irreducible GF'(2) P;-,
GF(2)P»- and GF(2)Ps- modules of dimensions 1 and 2, 1 and 8 and 1, 8 and 16 respectively.
We denote by \;; the universal panel-irreducible presheaf defined on §; having an irreducible 1-
dimensional module at chambers, and irreducible i- and j-dimensional GF(2)P;- and GF'(2)P-
modules at simplices of type P; and P» respectively. Similarly, denote by p; ; (respectively «; ;)
the universal panel-irreducible presheaf defined on Sy (respectively S3) having irreducible i- and
j-dimensional GF'(2)P;- and GF(2)Ps-modules (respectively GF(2)P»- and GF(2)Ps-modules) at
simplices of type P} and Ps (respectively P and P3).

To apply geometric spanning arguments to calculate the zero-homology groups of the \; ;, j; ;
and 7; ;, we first define the graphs I'; ; for (4, j) = (1,2), (1,3), (2,3). Indeed we take the vertex set
of T'; ; to be the union of all conjugates of P; and all conjugates of P; in Mi1, and we join P{ and
Pjh precisely when they contain a common chamber. The collapsed adjacency diagrams of I'12, I'13
and T'a3 are given in Figures and The respective diameters of I'; 9, I'1 3 and I'g 3 are 6,
4 and 3, and the respective girths are 6, 4 and 4.

There are four isomorphism classes of irreducible GF'(2) M;;-modules, having dimensions 1, 10,

32 and 44. Clearly A1 1, p1,1 and 1,1 are the constant presheaves of the 1-dimensional irreducible



66 CHAPTER 3. HOMOLOGY OF PRESHEAVES OF ABELIAN GROUPS

AO(Pl) Al(Pl) Ag(Pl) AJ(P]) A4(]31)
@45 1 @ 2 9 @36 3 (90
Ag(Ps3) Ay (Ps) Aq(Ps) A3(Ps)

Figure 3.4: The collapsed adjacency diagrams of I';3 with respect to Py (top) and Ps (bottom).

9 144 7/82/1 45

Ao(P2) A () Ao(Py) A3z(P)
Ao(Ps) Aq(Ps) Ay (P3) As3(Ps)

Figure 3.5: The collapsed adjacency diagrams of I'a3 with respect to P» (top) and Ps (bottom).
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GF(2)Mj1-module and hence Ho(M,1) = Ho(pi,1) = Ho(y,1) = 1. Moreover, these are the only
universal panel-irreducible presheaves for which 1 can be an irreducible quotient.

Considering the 10-dimensional irreducible GF(2)M;i-module 10,7, , we see that there are two
vectors in 107, that generate irreducible kB-, kP;- and kPj-modules for distinct 7,j = 1,2, 3. The
first vector gives rise to irreducible kB-, kP;- and kP»-modules of dimension 1, 1 and 8, whilst the
second gives rise to irreducible kB-, kP;- and kP>-modules of dimension 1, 2 and 1. It follows from
Theorem that 10y, is an irreducible quotient of precisely Ho(A1g) and Ho(A21). Thus, as
stated in Section @ there are no universal panel-irreducible presheaves defined on A3 or Ag 3,
for which 10y, is a quotient of their zero-homology group.

In a similar way, calculations in MAGMA show that the 32-dimensional module, 32);,,, is
a quotient of the zero-homology group of precisely three universal panel-irreducible presheaves,
these being Ao g, 112,16 and 7g.16 (each arising from the unique element of 32,;,, that generates an
irreducible GF'(2) B-module). We note that such explicit calculations are not required in the case
of presheaves defined on Ay and A; 3 having a 1-dimensional term at panels of type P;. Indeed,
the zero-homology group of such presheaves would be a quotient of (1 pl)%“. However, no such
quotient has 32,7, as an irreducible quotient.

We now consider the \; ;, i j and ; j for (i,7) # (1,1) in turn.

Presheaves Defined on A

We note that A\7; = Ao and AT g = Ag1.

>\1,8 and )\271

The zero-homology group Hp(A21) is spanned by the images of the presheaf terms at vertices of
type P» and hence is a quotient of the induced module (1 pz)%“. It is clear from the collapsed
adjacency diagram of I'y o with respect to P, - seen in Figure - that dim(Hp(A2,1)) < 53 and
we have seen that 10y, is a quotient of Hy(A21). Considering the possible quotients of (1p2)%“
having dimensions between 10 and 53, we see that there are four such quotients, having dimensions
10, 11, 44 and 45. The quotients of dimension 11 and 45 have a 1-dimensional quotient, whilst the
44-dimensional quotient is irreducible. Thus by our knowledge of irreducible quotients of Hy(A2,1),
we deduce that Ho(A2,1) = 10as,, .

To calculate the dimension of Hp(A1g) we use the Euler characteristic and Ronan’s Duality

Theorem. Indeed

dim(Hg()\Lg)) = X()\l,S) + dim(Hl ()\1,8))
= x(A1,8) + dim(Ho(A]g))
=(1-165+8-55—1-495) + 10 = 120.

There are two isomorphism classes of 120-dimensional quotients of (1 B)g[“ that do not have 1y,

as a quotient. They have the structures

10/10/1/44/1/10/44 and 44 @ 10/1/10/44/1/10.
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Consideration of the elements of 44|p, which generate a copy of 8p,, we see that A;g may be
constructed as a subpresheaf of KCuq. It follows that Ho(\1g) =~ 44 @ 10/1/10/44/1/10.

A28

The Euler characteristic of Agg is
X(A2;8) = dim(Cp(A2,8)) — dim(C1(A2g)) = (2165 + 8- 55) — 1 - 495 = 275.
Appealing to Ronan’s Duality Theorem we see that
dim(Ho(A28)) = x(A2,8) + dim(H1(A28)) = x(A2;8) + dim(Ho()\5g)) = 275 + 1 = 276.

There is a unique isomorphism class of 276-dimensional quotients of (QPI)%“, and thus Ho(A23g)

must belong to this class. Hence

Ho(Mo.g) = 32 @ 44/1/44/10/1 @ 44/1/10/1/44/44.

Presheaves Defined on A3

H1,8 and H28

The zero-homology groups of 18 and psg are both quotients of the indecomposable induced
GF(2)Mj-module (8p,) 1 = 44/44.
Let T denote a transversal in My of Ny, (P3). From the collapsed adjacency diagram of I'y 3

with respect to P3 (given in Figure [3.4)), we see that

Ho(pa,s) = () py +1imart € T\{1}).

We also note that the images of any two presheaf terms at vertices of type Ps will have 9 non-zero
vectors in common. Finally, the image of any presheaf term in the second disc of the adjacency
diagram, will intersect the images of the other presheaf terms corresponding to the disc in 36
non-zero vectors. Enumerating the elements of T' by {0, ...,10} with ¢ := 1, we may assume that
dim((M]-,S)P;l +im 01) < 8, dim((uLg)PBtj +imd;) <4forj=2,...,9and dim((m,g)P;m +im ;) < 2.

Hence
dim(Ho(p1,8)) <8+ 8-4+42 =42,

Since Ho(p18) is a quotient of 44/44, we conclude that Ho(p1,8) = 0.
Calculations in MAGMA show that 44,;,, admits pog. We conclude that Ho(uog) = 44, ,
since clearly dim(Ho(p2,8)) # 88.

H1,16

As 17, 1047, and 32y, are not quotients of Ho(u1,16), it suffices to consider quotients featur-
ing 44ps,,. The restriction (44,7, )|p, decomposes as a direct sum of 16p, and a 28-dimensional

indecomposable module for which 16p, is not a submodule. Thus we may explicitly construct
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16p, within (44,s,,)|p,. Considering its elements, and the GF(2)B- and GF(2)P;-modules that
they generate, we see that there is a copy of j2 16 sitting inside K44, but there is no subpresheaf

isomorphic to 1,16. Hence 44, is not a quotient of Hy(u1,16), meaning that Ho(p1,16) = 0.

H21

The homology group Ho(p2,1) is spanned by the images of the 1-dimensional presheaf terms at
vertices of type P, meaning that dim(Ho(ue,1)) < [G : P3] = 11. Hence, as 1y, and 10j,, are
not quotients of Hy(pu2,1), it follows that Ho(uz1) = 0.

H2.16

We know that 327, and 44,/,, are both quotients of Hy(pu2,16), but that 1,7, and 10, are not.

Consider the induced module
(16p,)p't = 320 44/(44 @ 1/10/1)/44.

Here the summand 1/10/1 is a uniserial module There are nine quotients of (16 133)%[311 satisfying
our condition on irreducible quotients. Calculations in MAGMA show that of these quotients, only
32 @ 44 and 32 @ 44/1 have a generating element that also generates an isomorphic copy of p2 16.
It follows from Theorem that Ho(pz,16) = 32 @ 44/1.

Presheaves Defined on Aj 3

71,8 and 71,16

Considering the collapsed adjacency diagram of I'; 3 with respect to P - as given in Figure -

we see that the image of the presheaf terms in Ag(P2) span a space of dimension at most
2-dim((y14)p;) —1<2-16—1=31.

Consequently, the images of the presheaf terms in Ag(Ps) span a space of dimension at most 31.
However, the images of the presheaf terms in both A;(P) and As(P,) are contained in this span.
Thus as the images of all presheaf terms of type P3 are contained in this span, we conclude that
dim(Ho(y1,+)) < 31. Hence as 1ps,, and 10y, are not quotients of Hy(7y1 ), we deduce that
Ho(y1,8) = Ho(71,16) = 0.

8,1

Since Ho(vg,1) is spanned by the images of presheaf terms at vertices of type Ps, it follows that
dim(Ho(vys,1)) < [G : P3] = 11. Thus as 1y, and 10p,, are not quotients of Hy(7s1), we conclude
that HO('YS,l) =0

5We recall that a module is called uniserial if its submodules can be totally ordered. In our case the submodules
are given by 0, 1, 10/1 and 1/10/1.
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78,8
The Euler characteristic of ygg is 33. Appealing to Lemma it follows that Hy(vysg) is non-
~ 44/44 and

dim(Ho(ys,8)) < 88 clearly holds (for example using a geometric spanning argument), we deduce
that Ho(’}/g’g) ~ 44,

zero. Since it is also a quotient of the indecomposable induced module (8 p3)1]\p/£11

78,16

The Euler characteristic of 75 16 is 121. Consequently dim(Hy(ys,16)) = 121. There are 5-possible
quotients of (1(5133)%11 satisfying this dimensional bound. Their dimensions are 121, 131, 132, 144
and 176.

To obtain an upper bound for dim(Hp(7s,16)) we use a geometric spanning argument. Indeed,
let ¢1,...,t10 € M11 be such that the 2-disc, Ay(P3), in T'y3 is equal to {Pgl\z =1,...,10}. For
each i = 1,...,10, we consider the number of vectors in (s 16) Pl + im 07 that are contained in

U}O=i+1(78,16)Ptj + im ;. Since the image of each (vg16),t; contains 9 vectors in the image of
3

Pyi
presheaf terms of elements of the 3-disc of Ps, and these in turn each give rise to an additional

8 vectors in U;Ozm‘ ?Ei(’)/&]_ﬁ)P;j + im0, we see that there are 72 non-zero vectors in (g 16) pli +

im ¢y that are also contained in U;OZIJ ¢Z~(’}/8’]_6)P3tj + im ;. Thus a 7-dimensional subspace of
(78,16) pt: +1m J; is contained in Span{(’}’g,lﬁ)Ptj +imadi|j =1,...,10,j # i}. Working sequentially

3 3
from i = 1 to i = 10 to calculate the number of vectors in (s 16) pti Tim 01 that are contained in
3
U;O=z‘+1(78,16)P;j +im 01 we deduce that
dim(spanf(ys,16) prs +Imarli = 1., 10}) < (16 = 7) +4- (16— 6) + 2+ (16 = 5) + (16— 4) +2- 16

— 115. (3.8.16)

Defining ¢y := 1, we may repeat the above argument with P:,fl taking the role of P:,fo = P3, to

see that (7s,16)p, + im i contains 72 vectors contained in span{(ys16)pt; +imaili = 1,...,10}.
3

Combining this with (3.8.16]) we see that

dim(Ho(7s,16)) = dim(span{(ys,16) pi: +1imdi]i =0,...,10})

<115+ (16 —7) = 124
We conclude that Ho(vs 16) is the unique 121-dimensional quotient of (16 ps)]\é“, namely

H(](’)/g’lﬁ) ~328 44/1/44

Mo

The Mathieu group Mi2 admits a unique 2-minimal parabolic system, given by
(P, ~ 2", Sym(3), P, ~ 4%2.Sym(3)},

which has associated simplicial complex A. Both minimal parabolic subgroups give rise to two

classes of irreducible GF(2)P;-modules, having dimensions 1 and 2, whilst the self-normalizing
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Figure 3.6: The collapsed adjacency diagrams of the graph I" associated to Mi5 with respect to the
2-minimal parabolic subgroups P; (top) and P, (bottom).

Sylow 2-subgroups of Mo admit a unique class of irreducible modules having dimension 1 over
GF(2). Consequently, there are four universal panel-irreducible presheaves defined on A which we
denote by A; ; for 7, j = 1,2. Here the presheaf ); ; has i- and j-dimensional modules at the minimal
parabolic subgroups of type P, and P, respectively, and a 1-dimensional irreducible module at each

chamber.

Define the graph I' to have vertex set all vertices of A, and join a vertex P} of type P to a
vertex Py5 of type P» precisely when they intersect in a common chamber. The diameter and girth
of I are 12 and 16 respectively and the collapsed adjacency diagrams of I' with respect to P; and
P, are given in Figure (3.6l These will be utilised in the geometric spanning arguments used to

bound the dimensions of the homology groups Hy(A1,2) and Hy(A2,1) below.

A consequence of the 2-minimal parabolic subgroups having shape Oz (F;). Sym(3) is that the
4 universal panel-irreducible presheaves are in dual pairs. Indeed, AT | = Ag2 and A5 = Ag1. We
shall use this in our calculations below. We shall also utilise the fact that there are five classes of
irreducible GF(2) Mi2-modules, having dimensions 1, 10, 32, 44 and 144. Clearly the 1-dimensional
irreducible can only be a quotient of Hy(A11) by Theorem Indeed, Ho(A1,1) = 1ag, by
Lemma Moreover, applying the restriction methods used with presheaves of Mj; together
with Theorem [3.6.4] we may fully determine the irreducible quotients of the zero-homology groups

of the remaining presheaves. We see that 1057, is the unique irreducible quotient of Hp(A12),
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32n,, and 44,7, are both quotients of Hy(Ag,1) and 144, is the unique irreducible quotient of

HO()\Q’Q).
For the presheaf \; ;, we see from the collapsed adjacency diagrams in Figure that - irre-
spective of the values of ¢, j - the homology group Hy(\; ;) is spanned by

{()\ivj)P +im 51|P € Ag(Pl)}
It is also spanned by
{()\i,j)P + im 81|P € Ag(PQ) U Ag(PQ)}

We shall now apply geometric spanning arguments to obtain upper bounds for the dimensions of

the zero-homology groups of A1 2 and A2 in addition to commenting on the dimension of Hy(A2,2).

)\172 and )\271

The dual presheaves Aj2 and Ag; satisfy x(A12) = x(A2;1) = 0, and hence by Ronan’s Duality
Theorem we deduce that dim(Hp(A12)) = dim(Hp(A2,1)).

Consider the presheaf 1. As previously noted, by analysing the collapsed adjacency diagram
of T with respect to P, we see that Ho(A2,1) is spanned by

{(>\2,1)P +im 81|P € Ag(Pg) U Ag(PQ)}

For each P € Ag(P») there exists some ) € Ag(P,) which is adjacent to P in I'. It follows that
(A21)p +1md; € (Ag1)g + im 01, and hence Hy(A2,1) is spanned by {(A21)p + im 01 |P € Ag(P)}.
Since each @ € Ag(P,) is adjacent to two elements of Ajg(P») and the presheaf terms at elements
of Ag(P») and Ajg(P%) are 2- and 1-dimensional respectively, we conclude that Hy(A2 1) is actually
spanned by {(A21)p +im 01| P € Ao(FPe)}.

Define

Afo(Pe) :={P e A1o(P2) | A1(P) n A (P) # T},

and set Ab((Py) 1= Ajg(P2)\AYy(P2). We have that |[Afy(P2)| = 96 and |A}(P,)| = 64. The
image of the presheaf terms of Ay at elements of Afy(FP») are contained in the span of Dj; :=
{(A21)p+im 01| P € A11(P2)}. However, each element of D;; is spanned by the image of the presheaf
term at an element of Ajp(P;) and the image of a term at an element of A{,(P,). Consequently
dim(Dn) < |A11(P2)| + dim(span{()\g,l)p + im 61|P S A12(P2)})
<48 + 16 = 64.

We conclude that

dim(Hp(A2,1)) = dim(span{(Ag1)p +1im 01|P € Aqo(P2)})
< dim(span{(A2;1)p + im 1| P € Afy(P2)})
+ dim(span{(Ag,1)p + im 01| P € Ajy(P2)})
< dim(span D11) + }AI{O(PQ)’
< 64+ 64 = 128.
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Pre;jl;af, Irredg;:lll}ls(ij;))tlents Notes on Ho(As)
)\1,1 1 HO()\I,l) ~1
)\1,2 10 76 < dim(HQ()\Lg)) = dim(H()()\gJ)) < 128
A2,1 32, 44 76 < dim(Ho(A2,1)) = dim(Ho(A1,2)) < 128
)\272 144 dim(H()()\ZQ)) = 496

Table 3.2: Dimensional-bounds and irreducible quotients of the zero-homology groups of the uni-
versal panel-irreducible presheaves of Mjs over GF(2).

Finally, as 32y, and 44,,, are quotients of Hy(A2,1) we see that

76 < dim(H()()\LQ)) = dim(H()()\QJ)) < 128.

A2.2

)

As Mo = )\’1“71, Ronan’s Duality Theorem asserts that

dim(Ho(A22)) = x(Na2) + dim(H;(Na2))
= x(N22) + dim(Hp(A,1)) = 495 + 1 = 496.

Unfortunately, it is unrealistic to fully determine the structure of Hy(\;;) for (i,5) €
{(1,2),(2,1),(2,2)}. Obtaining bounds on the dimension and the irreducible quotients of the ho-
mology group is the best that one can usually hope for. We summarise our findings in Table

My
The unique 2-minimal parabolic system for Mss is given by
(P, ~ 22 Sym(3), P, ~ 2%.Sym(5)}.

There are six classes of irreducible GF'(2)Maa-modules which we denote by 1as,,, 10az,,, 10rn,,
340, 980r,, and 140y, (where the number denotes the dimension of the module). Further-
more, setting B to be a self-normalizing Sylow 2-subgroup, we note that there are one, two
and three classes of irreducible GF(2)B-, GF(2)P;- and GF(2)P>- modules. We denote these
by 1p, 1p, and 2p, and 1p,, 4p, and 1p2 respectively. It follows that there are six universal
panel-irreducible presheaves defined on My over GF(2), given in the usual notation by A; ; for
(i,5) € {(1,1), (1,4), (1,), (2,1), (2,4), (2, D)}.

For each irreducible GF'(2) Ma2-module V', we may - as in previous cases - consider the restriction
of V to P; and P» to allow us to determine those A;; for which V' is a quotient of Hy(); ;). The
modules 157,,, 1005,,, 1005, 9821, and 1404, are each quotients of the zero-homology group of
a unique presheaf, these being A1 1, A14, A2,1, A2 4 and )\2,1 respectively. Moreover, 34,s,, is not a
quotient of any zero-homology group. It follows that HO()‘LZ) = 0. In addition, we trivially have
that Ho(A1,1) = Lasn,-

To obtain upper bounds on the dimensions of the zero-homology groups of the remaining four

presheaves, we define I' to be the graph having conjugates of P; and P» as its vertices and with
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Ao(Pr) Aq(Pr) Aq(Pr) Asz(Pr) Ay(Pr) As(Pr) Ag(Pr)
1/3 2/0
15 1 e 2 1 14 / 210 0 3 @ 12 3 200
Ao(P2) Ay (Py) Ao (Py) Az(P) Ay(Py) As(P)

Figure 3.7: The collapsed adjacency diagrams of the graph I' associated to Mo with respect to the
2-minimal parabolic subgroups P; (top) and P, (bottom).

{Pfl,P§2} forming an edge of I' precisely when Plt1 N PS’Q = B'B for some tg € Mas. The diameter
and girth of I are both equal to 6 and the collapsed adjacency diagrams of I" with respect to P;
and P are given in Figure [3.7]

We now consider the four remaining presheaves in turn.

A4

By constructing quotients of the induced module (4 132)11\3/[222 in MAGMA, we obtain seven possibilities

for Hy(A1,4). Indeed, the homology group has 10,y,, as a unique irreducible quotient, and there are
seven isomorphism classes of quotients of (4 132)]\]34222 that do likewise. These are 10, 10/10, 10/10/1,
10/10/1/34, 10/10/1/34/1, 10/10/1/34/1/10 and 10/10/1/34/1/10/10, all of which are uniserial mod-
ules. Considering the restriction of each module to B, P; and P, we see that the only modules
whose constant presheaves admit panel-irreducible subpresheaves are 10, 10/10 and 10/10/1. Thus
by Theorem we conclude that Hy(\4) = 10/10/1.

A2.1

)

The induced module (1 pz)gﬂ is 231-dimensional, and hence its quotients may be explicitly con-
structed in MAGMA. The homology group Hp(A2,1) is one such quotient, having 10 as a unique
irreducible quotient. Considering all such quotients of (1 JDQ)J\P/[;’2 with this property, we see that there
are four possibilities for Hyp(A2 1), namely 10, 10/1, 10/10 and 10/10/1 all of which are indecom-
posable (with 10, 10/1 and 10/10 also being uniserial modules). Using elements of each module to
generate subpresheaves of the constant presheaves K15, K /10 KTo/lo and K5 /10/1 and appealing to
Theorem we see that 10 and 10/1 are quotients of Hy(A2,1), but 10/10 and 10/10/1 are not.

Consequently, Hy(A2,1) = 10/1.

)\274 and )\271

For the presheaves Az 4 and A,7 we begin by using a geometric spanning argument. From the

collapsed adjacency diagram of the graph I' associated to Mo with respect to P> we see that the
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image of each presheaf term is contained in Ay(P,) + im ¢ with the possible exception of the 40
elements of Az(P;) having no neighbour in A4(P»). The image of these latter terms will be at most
2-dimensional, whilst the images of the terms in Ay(P,) will be at most 4-dimensional. However,
the image of each element of A5(P;) gives rise to a relation between the images of three non-zero
vectors of the presheaf terms at elements of Ay(P2). At worst, these 800 relations would lead to
the images of 67 elements of Ay(P,) being zero. In practice, they will account for a much larger
decrease in the possible dimension of the zero-homology groups. We conclude that a rather crude

bound on the dimension of the zero-homology groups of A2 4 and A, 7 is given by

dim(Ho(A2,4)), dim(Ho(Ay 7)) < 200 -4 + 40 -2 — 67 - 4 = 612. (3.8.17)

The homology group Hp(A24) is a quotient of (4]32)%22, which has a unique irreducible quo-

tient, namely 98js,,. There are 481 classes of such quotients satisfying the dimensional bound
from . We may consider these classes in MAGMA and appeal to Theorem and Pro-
position[3.6.7} However, we do not need to consider all classes explicitly. Indeed for a given quotient
W, if we determine that it does admit A2 4 as a subpresheaf of Ky, then we may rule out all classes
for which W is a not a quotient. Conversely, if W does not admit A3 4, then we may rule out all

classes for which W is a quotient. We deduce that

34 _
Hoy(A24) = 98/1/ ((1/10) & (/) @(10/10/1)) /34/1.

We follow an analogous approach to calculate HO()\gg), which is by definition a quotient of
(ZPQ)%”. Using the bound from (3.8.17)) together with the fact that 1405y, is the unique irreducible
quotient of Ho(A,7), we are left with 38 possible classes for Ho(Ay 7). By using MAGMA as above,

we may calculate that
H[)()\zyz) ~ 140/(11/34/1/10/34).

As we have seen with Mag, even for small groups it is usually extremely difficult to determine the
exact dimension and structure of the zero-homology group of a universal panel-irreducible presheaf.
In the case of Ms3 and Msyy below, we merely determine the irreducible quotients of the homology

groups by considering the restriction of modules to minimal parabolic subgroups.

Mo

The second largest Mathieu group, Ms3, admits seven 2-minimal parabolic subgroups with respect
to a self-normalizing Sylow 2-subgroup B. In the notation of Ronan and Stroth (see [RS84]) these
are P; ~ 242 Sym(3) for i = 1,...,5 and P; ~ 2%.Sym(5) for j = 6,7, where Ps = Ps n Pr.
These minimal parabolic subgroups give rise to seven 2-minimal parabolic systems for Ms3, namely
{Py, P5, Pr}, {P, P3, Pr}, {Ps, Py, Pr} and {P;, Ps, P} for i = 1,2,3,4. The systems {P;, P3, Pr}
and {Ps, Py, P;} are geometric, whilst the remaining systems are non-geometric.

There are ten irreducible GF(2)Ms3-modules, which we denote by their dimensions as 1js,.,
s, 1 arnsy 440005y 440005, 120004, 22001055 220074, 25207, and 1792),,. For i = 1,2,3,4 there
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OO | Bement ol ks @l @l @l e @l Ol
10ts vy 1z 1p,  1p,  1p,  1p  1p  1p
11M23 V11 1B 1P1 1p2 1p3 1P4 1P6 4]37
ﬁM UTla 1p Lp, 1p, 2p, 1p, 4p, 1p,
* Uit I 2p, 2p, N/A 2p, 1p, 1p,
44M23 V44 1p 1p1 1p2 N/A 1p4 4p6 1p7
ﬂM Vg 1B 2P1 2P2 2P3 2P4 4P6 1P7
2 Vzap 1B 1p1 1p2 N/A 1p4 N/A 1]37
V120a lp 1p, 2p, N/A  2p, N/A 4p
120M23 V1206 1p 2P1 2P2 N/A 2p4 1p6 4P7
V120c 1p 1p, 1p, 2p, 1p, 4p, 4p,
V220a g N/A  2p 2p, N/A  dp, 4p,
220015 V2200 lp lp, 2p, 2p, 2p, N/A  dp
V220c 1p 2p 2p, 2p, lp, N/A  4p,
L V3904 1p 2P1 1p, N/A 2p4 N/A 1}37
2207, V350 1p 2p, 2p, N/A 2p, 4ps 1]37
U550c 1B 2p1 2p2 2p3 1p4 N/A 4p7
V2520 lp 1p, lp, N/A  1p,  N/A  1p
25211, V252h 1p 2p lp, N/A 2p  N/A 4dp
V252¢ lp 2p, 2p, 2p, 2p, 4p, 4p,
V252d 1p 1p, lp, N/A 1p, N/A  4p
1792154 V17924 1p 2p, 2p, N/A  2p, 4p, Ap,

Table 3.3: The elements of the irreducible GF(2)Mas-modules which admit universal panel-
irreducible presheaves.

are two classes of irreducible GF(2)P;-modules, 1p, and 2p,, whilst for j = 6,7 there are three
classes of irreducible GF(2) Pj-modules, namely 1p,, 4p, and 4p,.

Every 2-minimal parabolic system of Mas3 features P;. Consequently, for each irreducible
GF(2)Msys-module, V, we may consider the elements of V' which generate irreducible submod-
ules of the restriction of V' to Pr. For each such element, we may then consider the submodules of
V|p and V|p, that the element generates for ¢ = 1,2,3,4,6,7. In Table we list such elements
that generate irreducible GF(2) B-modules and irreducible GF(2) P;-modules for every P; featuring
in one of the 2-minimal parabolic systems of Ma3. Entries of the form “N/A” indicate that the
given module is reducible.

The seven 2-minimal parabolic systems give rise to an abundance of universal panel-irreducible
presheaves for M3 over GF(2). For ease of notation, we denote the presheaf defined on the
minimal parabolic system {P;, P;, P} having a #g;,-dimensional irreducible GF(2)P;-module at
panels of type P, by )\Z(ZTI? i K An analysis of the vertex terms of these presheaves is given in
Appendix [Al Using the information in Table we may fully determine the irreducible quotients
of the zero-homology group of each presheaf. We summarise our findings in Tables In
these tables, entries of the form “None” indicate that the given homology group is equal to Opz,,.

In most of the cases mentioned above, the irreducible quotients may be determined by taking an

irreducible GF'(2)Mas-module V' and finding the socle of its restriction to P7ﬁ By considering all

5We recall that the socle of a module V', denoted soc(V'), is the sum of all minimal submodules of V. [Lam99]
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Presheaf, \

Irreducible quotients of Hy(\)

/\Si? Lntys
Ag}izl) g,
/\?1371) None
)‘83,71) ﬁM23
/\823,1) 12011,
ALY 220114
)\gf 771) None
/\gll3 Zl) None
élf 2 None
Agg,? MMzs
A 25211,
Agljg) 22001, 220015,

Presheaf, \ | Irreducible quotients of Hy(\)
)\Si? Ly
)‘gf,zl) 11 psys

&62 None
ALY oz, 440,
ALY 12011,

Sf;) None
/\Sgl) None
)\&62 None
)\&62 None
Agf,? ﬁM23
AT 12011,
)\2162 None
Agf,? ﬂM%’ mMzs
S 2521105+ 17921,
/\gj;) None
/\;’16771) None
/\;16;) None
/\é § 71) None
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Table 3.4: The irreducible quotients of the zero-homology groups of the universal panel-irreducible
presheaves defined on the 2-minimal parabolic system {P;, Ps, P;} of Mas.

Table 3.5: The irreducible quotients of the zero-homology groups of the universal panel-irreducible
presheaves defined on the 2-minimal parabolic system {P;, Ps, P7} of Mos.



78

Table 3.6: The irreducible quotients of the zero-homology groups of the universal panel-irreducible
presheaves defined on the 2-minimal parabolic system {Ps, P3, P;} of Mas.

Table 3.7: The irreducible quotients of the zero-homology groups of the universal panel-irreducible
presheaves defined on the 2-minimal parabolic system {P,, Ps, P;} of Mos.
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Presheaf, A | Irreducible quotients of Hy(\)

\(237) 1

1,11 Mas
)‘5?13,1) 1 agy,
)\52?71) None
)‘5?23,71) ﬁM23
AT 12011,
)\52371) None
)\Si? None
Agf ZB None

52?71) None
)‘g?g,? ﬂM%
)‘5?23,1) 2525
Aras 220115, 22011,

Presheaf, A | Irreducible quotients of Hy(\)
>\§21671) Lo
ATY L agy,

fi? None
ALY Tat,, 4400,
A 120715,
fi?) None
A fg’? None
A %62 None
A %62 None
Morh RRv
ACTT 12041,
A ;2f 771) None
AEY 44055, 22001,
A 252015, 1792015,
)\;ii? None
)\é 716’71) None
)\é 716’1) None
A2 2201,
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Presheaf, \

Irreducible quotients of Hy(\)

A
AT
Mt
Aoy
Ao
Mo
Apy

1”&3
11z,
None
None
None
None
iiﬂbs
12041,5
220155, 27201\423
Zzﬂbs
25214
220 1,5
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Table 3.8: The irreducible quotients of the zero-homology groups of the universal panel-irreducible

presheaves defined on the 2-minimal parabolic system {Ps, Py, P;} of Mas.

Presheaf, A

Irreducible quotients of Hy(\)

1Nbs
11,4
None

None
None
None
None
None
None
None
None

None

Tiﬂbsvzzﬂbs
120154, 25275,

None
None
None

220p7,,

Table 3.9: The irreducible quotients of the zero-homology groups of the universal panel-irreducible

presheaves defined on the 2-minimal parabolic system {Ps, Ps, P7} of Mos.
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Presheaf, A | Irreducible quotients of H(\)
Ag‘}ffl) Lty
A 54:?71) 1 s
5%16 771) None
ALY T atys 4401,
ALY 120015,
f‘f’? None
)\S‘g’? None
)\%22 None
A 5%16’71) None
)‘g , 16,71) JaRY; 23
AT 120715,
)\;16 771) None
)\57271) ﬂM237 2720]\423
AT 2521105, 1792115,
A ;%271) None
A ;1271) None
)\;A"gl) None
)\;’271) None

Table 3.10: The irreducible quotients of the zero-homology groups of the universal panel-irreducible
presheaves defined on the 2-minimal parabolic system { Py, Ps, P} of Mas.



3.8. CALCULATION OF HOMOLOGY GROUPS 81

Presheaf, \ | Irreducible quotients of Hp(A)
A1, Lag,
A1,1,2 Mp,
A1,21 4400, 44005, 2200,
A2 22011, 3201,
A211 1as,,, 12011,
X212 12011,,, 220015,
A2 2521100 32000,0, 179211,
A22.2 12427, 179201,

Table 3.11: The irreducible quotients of the zero-homology groups of the universal panel-irreducible
presheaves defined on the unique 2-minimal parabolic system of Moy.

elements of soc(V|p,), we may then determine which universal panel-irreducible presheaves admit
V. In the case of 1792,,,, a more subtle approach is required as soc(1792jy,,|p,) is 32-dimensional.
However, we may decompose the socle as a direct sum of two semisimple submodules, the first
generated by all minimal submodules isomorphic to 4p, and the second generated by all minimal
submodules isomorphic to 4p,. The former is an 8-dimensional submodule, whilst the latter is

24-dimensional. By considering all elements of each of these summands, we then obtain the results.

Moy

The simple group Ms4 admits four 2-minimal parabolic subgroups. In the notation of Ronan and
Stroth these are P; ~ 26%3.Sym(3) for i = 1,2,3,4. Here P; ~ P, and P; =~ P;. These minimal
parabolic subgroups give rise to a unique 2-minimal parabolic system {P;, Ps, Py} of May, which
is geometric. Since each minimal parabolic subgroup, P;, has Sym(3) above its 2-core, there are
two classes of irreducible GF'(2) P,-modules, 1p, and 2p,. There is also a unique class of irreducible
GF(2)B-modules for a self-normalizing Sylow 2-subgroup B. These modules are 1-dimensional. Tt
follows that there are eight universal panel-irreducible presheaves for Myy. We denote the presheaf
having a 1-dimensional chamber term and i-, j- and k-dimensional panel terms at panels of type P,

P53 and Py by A; j . An exploration of the vertex terms of these presheaves is given in Section

Aside 3.8.2. We note that the presheaves \; j . differ from those considered by Ronan and Smith
in [RS89]. Indeed, since the minimal parabolic subgroup Ps does not feature in a minimal parabolic
system of May, Ronan and Smith defined Q; := {(P;, Po) for i =1,2,3,4 and considered presheaves
defined on the simplicial complex having conjugates of Qo as its chambers, and conjugates of Q;

fori=1,3,4 as its panels.

There are thirteen classes of irreducible GF(2)Mas-modules, denoted by their dimensions as
Wntoss nns, 1any, 440100, 440104, 12000, 22000, 22000, 252010, 32000, 3200s,, 1242,,, and
1792pr,,. For each such module, V, we mimic the calculations undertaken for M3 to determine
which homology groups Hy(); j 1) admit V' as a quotient. A summary of these calculations is given
in Table B.11]

To deduce that 1242)s,, admits a unique universal panel-irreducible presheaf, namely A2 22,

we note that the restriction 1242,,,|p,, has three minimal submodules, these being isomorphic to
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1p,,, 3p,, and 8p,,. The elements of 1242),, generating 3p,, do not give rise to a panel-irreducible
presheaf, whilst those generating 8p,, give rise to A2 2 2. Consequently, the only remaining presheaf
that may have 1242,/,, as a quotient of its zero-homology group will necessarily have 1-dimensional
terms at panels of type P3 and P;. The only such possibility is A2 11. However, consideration of
the elements of 1242),,, that generate 2-dimensional GF'(2)P;-modules proves that this possibility

cannot occur.

3.9 Homology Groups of Universal Presheaves Revisited

We saw in Section that the normalizer of a Sylow subgroup being maximal in each minimal
parabolic subgroup was not sufficient for an affirmative answer to Question Indeed, as
described in Subsection there does not exist a universal panel-irreducible presheaf, .%, defined
on the minimal parabolic systems Sz or Sz of Mj; for which 104, is a quotient of Hy(.%).

A natural evolvement is to ask if there are any types of p-minimal parabolic system, S, of a
group G for which every irreducible GF(p)G-module is admitted as a quotient of the zero-homology
group of some universal panel-irreducible presheaf? From our calculations in Section [3.8 we see that
this may be the case when p = 2, a Sylow 2-subgroup of G is self-normalizing and each 2-minimal
parabolic subgroup, P, of G is of shape O2(P).Sym(3). Indeed, we saw that this occurred for the
unique 2-minimal parabolic systems of Sym(6), M and May. It also occurs for the 2-minimal
parabolic systems of L4(2) and Alt(7), considered by Ronan and Smith in [RS89] and for the
parabolic subgroups Pj3 and P34 of Mss (considered in Appendix . This leads to the following

question.

Question 3.9.1. Suppose that G is a group of even order possessing a self-normalizing Sylow 2-
subgroup. Moreover, assume that G admits a 2-minimal parabolic system S := {P;|i = 1,...,n}

such that P; ~ Og(F;).Sym(3) for alli=1,...,n. For each GF(2)G-module V', does there ezist a
universal panel-irreducible presheaf, Fy, defined on S such that V' is a quotient of Ho(Fv)?

If Question has a positive answer, it would likely rely on the fact that if B is the self-
normalizing Sylow 2-subgroup of G and P is a 2-minimal parabolic subgroup containing B, then
there is a unique class of irreducible GF(2)B-modules and every non-trivial proper quotient of
(1) is irreducible. Thus it would suffice to prove that for every irreducible GF(2)G-module, V,
there exists a non-zero element v € V satisfying (v)rp = 15 and (vypp # (1p)% for every minimal

parabolic subgroup P.



Chapter 4

m-Product Graphs in Symmetric

Groups

There is a cornucopia of combinatorial and geometric structures which are associated with groups.
These range from graphs to posets and topological spaces such as simplicial complexes. An example
of the latter type arises in a finite group GG where for a prime p dividing the order of G we may define
the poset of all non-trivial p-subgroups of G, denoted S,(G), ordered by inclusion. This poset has
a rich structure, as has its associated order complex |S,(G)| known as the Brown complex, after
being studied by - among others - Brown in his paper [Bro75]. An analogous order complex, called
the Quillen complex, can be defined for the poset A,(G) of all non-trivial elementary abelian p-
subgroups of G. Indeed, Quillen showed in [Qui78] that the Brown and Quillen complexes are
G-homotopy equivalent. Thévenez and Webb later showed that the complexes consisting of chains
of normal series of p-subgroups, and chains of radical p-subgroups are also GG-homotopy equivalent
to the Brown and Quillen complexes (see [Thé87] and [TW91] for full details). In the case when G
is a group of Lie type, the order complex |S,(G)| is the same as the building of G.

The aforementioned subgroup complexes arise in many different areas. Brown was motivated by
cohomology and the calculation of cohomology groups for discrete groups - the subject of [Bro76].
The complexes are also closely related to fusion in finite groups and the existence of strongly p-
embedded subgroups in G is equivalent to the disconnectedness of A,(G) and S,(G) (further details
of which can be found for example in [Asc00]). It is also possible to build modular representations of
G by first defining such representations on stabilizers of the simplices of these complexes, following
the constructions of Ronan and Smith in [Ron89|, [RS85], [RS86] and [RS89]. A good survey of
the versatility of such complexes can be found in [Smili].

We mention a few graphs among the multitude of such structures that we may associate to a
given group G. Let X be a subset of G. The commuting graph C(G, X) has vertex set X and distinct
elements x,y € X are joined by an edge whenever xy = yx. The case when X = G\Z(G), first
studied in [BF55], has been the focus of interest recently - see [BG13|, [MP13] and [Par13]. When X
is taken to be a G-conjugacy class of involutions, we get the so-called commuting involution graph,
the subject of a number of papers (see [BBHR09], [BBPR03a], [BBPRO03b], [BBPRO4], [Evell],
[Per06] and [Sallll).

83
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If 7 is a set of natural numbers, then the m-product graph P,(G, X) again has vertex set X,
with distinct vertices x,y € X joined by an edge if the order of xy is in 7. In the case when X is
a G-conjugacy class of involutions, we note that Poy (G, X) is just a commuting involution graph.
Taking 7 to be the set of all odd natural numbers and X a G-conjugacy class, P (G, X) becomes
the local fusion graph F(G, X) which has featured in [Ball3] and [BGR13].

In the case when X is a set of involutions we refer to P, (G, X) as a m-product involution graph.
It is such graphs when X is a conjugacy class that we consider in this chapter for G = Sym(n), the
symmetric group of degree n. We use the standard distance metric on P, (G, X), which we denote
by d(-,-). For x € X and i € N we denote the set of vertices distance i from z in P(G, X) by
A;(x). We also denote by © := {1,...,n} the underlying set upon which Sym(n) acts.

We first consider the case when 7 = {4}. In other words, two distinct involutions z,y € X are
joined by an edge whenever (x,y) =~ Dih(8), the dihedral group of order 8. In considering this,
we are in effect looking at a section of the poset Sa(Sym(n)). Our first result determines when

Pi4y(G, X) is connected and in such cases, the diameter of Py (G, X) is also determined.
Theorem 4.0.1. Suppose G = Sym(n), t = (1,2)---(2m — 1,2m) € G, and let X denote the
G-conjugacy class of t.
(i) The graph Pi4y(G, X) is disconnected if and only if one of the following holds:
(a) n=2m+1;
() m=1;
(C) (n7m) = (41 2) or (6a 3)
(i) If Py (G, X) is connected, then Diam(Pyy (G, X)) = 2.
In of Theorem we observe that Py, (G, X) consists of n copies of Py (Sym(2m),Y’)

where Y consists of all involutions of cycle type 2. This corresponds to the n possible fixed points

of the involutions of X. Cases|(i)(b)| and |(i)(c)| result in totally disconnected graphs.

For symmetric groups, the diameters of the connected m-product involution graphs have been
determined when 7 = {2} - that is the commuting involution graphs - and m = Nygq (=the set of
all odd natural numbers) - the local fusion graphs. In the former case the diameter is bounded
above by 3 except for three small cases when the diameter is 4. Moreover, the diameter can be 3
infinitely often. In the latter case, the connected local fusion graphs for symmetric groups always
have diameter 2. So, from this perspective, Pr(G, X) for m = {4} and m = Nygq are bed fellows.
However, this apparent similarity does not extend to the case that = = {2%} for some a > 3. Indeed,

we shall derive the following result.

Theorem 4.0.2. Suppose that G = Sym(n), 2m = 2% < n for somea >3, t = (1,2)(3,4) --- (2m—
1,2m) and X is the G-conjugacy class of t. Then

(i) Piomy(G, X) is connected if and only if n = 2m + 2; and
(i3) if Piomy (G, X) is connected, then

min{m, [n/2 — m|} < Diam(Po,3 (G, X)) < 2m — 1
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(where [x] denotes the smallest integer greater than or equal to z). Taking n = 4m in this theorem
gives an infinite family of m-product involution graphs whose diameter is unbounded.
Specialising to the case m = 4 (so 2m = 8) we can give precise values for the diameter of

Pigy(G, X) in our next theorem.

Theorem 4.0.3. Suppose G = Sym(n), t = (1,2)(3,4)(5,6)(7,8) and let X be the G-conjugacy
class of t. Then

(i) for 10 < n < 14, Diam(Pg (G, X)) = 3; and
(ii) for n =15, Diam(P) (G, X)) = 4.
An analogous version of Theorem [4.0.2] also holds for any odd prime power.

Theorem 4.0.4. Suppose that G = Sym(n), p is an odd prime and q = p® for some a > 1. Let
t=(1,2)---(¢q—2,9—1) and X be the G-conjugacy class of t. Then

(i) Py (G, X) is connected if and only if n = q; and
(i) if Pigy(G, X) is connected, then

min{g — 1,n + 1 — ¢} < Diam(Py(G, X)) < ¢ — 1.

Our final result combines Theorems [£.0.2] and 4.0.4]

Theorem 4.0.5. Suppose that G = Sym(n), and p1,...,p, are distinct primes with p; < p;+1 for

i=1,...,r—1. Let ¢ = p{* ---p& for some ai,...,a, =1 with a; = 2 if p1 = 2 and set

P} if p; = 2; and
g = _
pi* —1 otherwise,

and 2m = qq -+ qr. Assuming 2m < n, let t = (1,2)---(2m — 1,2m) and X be the G-conjugacy

class of t.

(i) The graph Py (G, X) is connected if and only if

q+2 ifp1=2;and
q otherwise.
(i4) If Pigy(G, X) is connected, then
Diam(P, (G, X)) < maxg;
7
This chapter is arranged as follows. In Section we introduce the notion of the x-graph
of an element of X. These are graphs that encapsulate the Cg(z)-orbits of X and were first

introduced by Bates, Bundy, Perkins and Rowley in [BBPR03b]. We present a number of their

results, and relate the connected components of an x-graph to the disc Aq(¢) for a fixed involution
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t of X. Section begins by considering combinations of connected components of z-graphs,
and we show that Theorem holds when restricted to the supports of such components. In
particular we consider the case when our conjugacy class consists of elements of full support in
Lemma We then proceed to give a general proof of Theorem at the end of this section.
The chapter concludes in Sectionwith an analysis of m-product graphs when 7 # {4}. We begin
by considering the case when m = {2%} for some a > 3. Calculations of the sizes of discs A;(t) for
certain m-product involution graphs are given and these give a direct proof of Theorem This
is followed by constructive proofs of Theorems [£.0.2] [£.0.4] and [£.0.5] Finally, we consider some
smaller symmetric groups and calculate the sizes of discs of the m-product graphs P, (G, X) when
m = {6} or {8}.

4.1 Preliminary Results

Throughout this chapter, we set G = Sym(n) and consider G as acting on a set of n letters (or
points), 2 = {1,...,n}. Let t € G be a fixed involution and let X be the G-conjugacy class of
t. For an element g € G, we denote the set of fixed points of g on Q by fix(g) and define the
support of g to be supp(g) := Q\fix(g). For the sake of brevity, if x1,z2,...,2, € G we denote
supp(x1) U supp(z2) U - - - U supp(x,) by supp(x1,xa,..., ;).

To study the graph 73{4}(G, X), we first introduce another type of graph known as an x-graph.
Indeed, let € X. The z-graph corresponding to x, denoted G, has vertex set given by the orbits
of Q under (t). Two vertices o, are joined in G, if there exists og € o and 7 € vy such that {og, 70}
is an orbit of © under {(x). We call the vertices corresponding to transpositions of ¢ black vertices,
denoted @, and those corresponding to fixed points of ¢ white vertices, denoted O. As an example,
let n = 15, t = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12) and = = (1,7)(2,3)(4,10)(8,9)(11, 13)(12, 14).
The z-graph G, is given by

{7.8}

e % o o o 0 O,

{12} {34} {9,00}{5,6} {13} {11,12} {14} {15}

We note that we could swap the roles of ¢ and x to produce another z-graph which we denote by
GE. In general the z-graph G¥ has vertices the orbits of  under (y), and edges defined by the
orbits of © under {z).

The concepts of z-graphs were first introduced in [BBPRO3b] as a tool for studying the com-
muting involution graphs of the symmetric groups. More recently they have also been used in
the study of local fusion graphs for the symmetric groups (see [BGR13| for further details). The
versatility of x-graphs in calculations arises from the simple observation that each black vertex has
valency at most two and each white vertex has valency at most one. Consequently, we may fully

determine the possible connected components of a given z-graph.

Lemma 4.1.1. Let x € X. The possible connected components of G, are

(z‘)o/t.o\o,o | - QQQ-

) ) )
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(i) O— @  &—0O, 6—@  8—O; and
(iii) O—0, O.

In the subsequent discussion, we will consider z-graphs up to isomorphism. It is implicit that
such an isomorphism will preserve vertex colours. We also fix ¢t = (1,2)--- (2m — 1,2m) € G.
Bates, Bundy, Perkins and Rowley’s interest in z-graphs stemmed from the following elementary

result.

Lemma 4.1.2. (i) Every graph with b black vertices of valency at most two, w white vertices
of valency at most one and exactly b edges is the x-graph for some x € X (with m = b and

n=2>b+w).

(i1) Letx,y € X. Thenx andy are in the same Cg(t)-orbit if and only if G, and G, are isomorphic
graphs.

Proof. See Lemma 2.1 of [BBPRO3b)]. O

Part of Lemma is of particular interest, as it confirms that when employing a com-
binatorial approach using the connected components of z-graphs, we must consider all possible
connected components given in Lemma [£.1.1] This approach will be used repeatedly in the proof
of Theorem .01

An immediate consequence of the definition of G, is that the number of black vertices is
equal to the number of edges. Consequently the number of connected components of the form
®—©@ @ @ containing at least one black vertex must be equal to the number of connected
components of the form O—@- - @—O and O—=O.

Lemma [4.1.1] allows a combinatorial approach to be used when considering conjugate involu-
tions. Indeed, given a connected component C; of G,., we may define 2; to be the union of all
vertices of C;. We may then define the i-part of ¢, denoted ¢;, to be the product of those trans-
positions of ¢ that occur in Sym(€2;). We define z; similarly. By analysing the structure of the
connected components given in Lemma it is possible to relate the order of tx to the z-graph
G-

Lemma 4.1.3. Suppose that x € X and that C1,...,Cy are the connected components of G.
Denote the number of black vertices, white vertices and cycles in C; by b;, w; and ¢; respectively.
Then

(i) the order of tz is the least common multiple of the orders of t;x; (fori=1,...,k); and
(i) the order of t;x; is (2b; + w;)/(1 + ¢;) for each i =1,... k.
Proof. See Proposition 2.2 of [BBPRO3D]. O

We have the following immediate corollary to Lemmas and
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Corollary 4.1.4. For Py (G, X) the disc Aq(t) consists of all x € X whose x-graphs have at

least one connected component of the form @—@, O @ O or é:> and all other
components have the form O, ®, ® &—@, O—0O, 6—O©, O——@—CO or é:>

Proof. The element x lies in A;(t) precisely when tx has order 4. The result then follows from

Lemmas [4.1.1] and [4.1.3] O

We conclude this section by noting that we can define an z-graph for any two (not-necessarily
conjugate) involutions. This we will do frequently in Section However, in such a situation it is

no longer the case that the number of edges of G, is equal to the number of black vertices.

4.2 Proof of Theorem

In this section, we prove Theorem Note that for m > 2 and t = (1,2)---(2m — 1,2m), the
involution =z = (1, 3)(2,4)(5,6) - - (2m — 1,2m) € X satisfies d(¢,z) > 2. Thus it suffices to prove
when P4y (G, X) is connected, that for all z € X we have d(t,r) < 2. To do this we consider pairs
or triples of connected components C;, C; and Cj, of G, and the corresponding parts t;, t;, ti, =i, T;,
xy, of t and x. We then construct an element y;;, € H, where H := Sym(supp(t;, tj, tr, T4, 5, 1)),

which is H-conjugate to t;t;jtx and such that the z-graphs g;i;tk and Gy%' s, have connected

components featuring in Corollary

We begin by proving a few preliminary results, dealing with the case n = 2m.

Lemma 4.2.1. Let m > 5, n = 2m and suppose that x € X 1is such that G, is connected. Then
there exists y € X such that d(t,y) = d(y,z) = 1.

Proof. Without loss of generality we may assume that z = (1,2m)(2,3)---(2m — 2,2m — 1). If
m = 5, then taking y = (1,10)(2,6)(3,4)(5,8)(7,9) we see that G, and G¥ are given respectively by

{5,6}
« o e Q

{1,2} {9,10} {7.8} {3.4}

and
{7,9}

o W

{2,6} {34} {58} {1,10}

If m = 6, we take y = (1,3)(2,4)(5,7)(6,12)(8,9)(10,11). Then G, and G are, respectively

{11,12}

o o

{12} {34} {56} {7.8} {9,10}

and
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{6,12}

o W Y

{1,3} {24} {57} {89} {10,11}
In the general case when m > 7, we take
y=(1,3)(2,4)(5,7)(6,2m)(8,9)(10,2m — 1)(11,2m — 2) - - - (m + 4,m + 5).

The exact nature of the associated z-graphs is dependent on the parity of m. If m is even, then G,
is given by
{2m-1,2m}

{12} {34} {56} {78} {9,10} {11,12}{2m-3,2m-2} {m+3,m+4}{m+5m+6}

and GY is given by

{6,2m}
o W e —e ¥
{1,3} {24} {57} {8,9}{10,2m-1}{11,2m-2} {m+2,m+7}Hm+3,m+6} {m+4,m+5}

If m is odd, the graphs G, and G¥ are, respectively

{2m-1,2m}

oo o o

{1,2} {3,4} {56} {7,8} {9,10}

{11,12}{2m-3,2m-2} {m+2,m+3{m+6,m+7H{m+4,m+5}

and
{6,2m}
1,3} {24} {57} {8,9}{10,2m-1}{11,2m-2} {m+3,m+6} {m+4,m+5}

In all cases, the given graphs satisfy the conditions of Corollary whence d(t,y) = d(y,x) =
1. O

The proof of Lemma illustrates a general feature that the actual z-graphs constructed
may vary depending on the parity and values of the given parameters (such as the parameter m
above). However, in using Corollary we are only interested in the connected components of
the z-graph. Thus for the sake of brevity, in all future proofs we will only describe the connected

components of each x-graph, relegating the x-graphs themselves to Appendix

Lemma 4.2.2. Suppose that m =3, n =6 and x € X. If G, is connected, then there exists y e X

such that the z-graphs G, and G¥ are isomorphic to

oo
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Proof. Without loss of generality, we may assume that z = (1,6)(2,3)(4,5). Then y =
(1,2)(3,6)(4,5) is the required element. O

Lemma 4.2.3. Let m = 4 and n = 8. Suppose that x € X\{t} has a disconnected x-graph, G..
Then there exists y € X such that d(t,y) = d(y,z) = 1.

Proof. If G, has a connected component of the form A, then we may assume that x =
(1,6)(2,3)(4,5)(7,8). The element y = (1,8)(2,4)(3,6)(5,7) is then the desired y. The other
possibilities occur when G, has one or two connected components of the form @&——®, corresponding
respectively to x = (1,3)(2,4)(5,6)(7,8) and z = (1,3)(2,4)(5,7)(6,8). The y satisfying the lemma
for both such x is y = (1, 8)(2,3)(4,5)(6, 7). O
Lemma 4.2.4. Suppose that m = 5, n = 2m and that G, consists entirely of components of the
form A and @——@. Then there exists y € X such that d(t,y) = d(y,x) = 1.

Proof. We consider three separate cases. First assume that G, contains at least two com-

ponents, C; and Cj, of the form A Without loss, we may take t; = (1,2)(3,4)(5,6),
t; = (7,8)(9,10)(11,12), z; = (1,6)(2,3)(4,5) and z; = (7,12)(8,9)(10,11). Defining y;; €
Sym(supp(ti, tj, xi, ) to be

yi; = (1,2)(3,4)(5,7)(6,12)(8,9)(10,11),

we see that both g;ﬁf’ and ngm ; are isomorphic to

e VY

Denote the remaining parts of ¢t and = by t; and zp. Applying Lemmas [4.2.2] and [4.2.3| to tx and

xj, produces an element yy € Sym(supp(tg, xx)) such that y := y;;y, is the desired element of X.

In the case that G, contains a unique component, C;, of the form A, then there exists at
least one component, say C;, of the form @&——®. Taking ¢; = (1,2)(3,4)(5,6), t; = (7,8)(9, 10),
x; = (1,6)(2,3)(4,5) and x; = (7,9)(8,10), then the element y;; € Sym(supp(t;, t;, x;, ;) given by

yi; = (1,2)(3,10)(4,6)(5,8)(7,9)

. tit; i . . .
results in z-graphs G, ’ and gii;g;j which are isomorphic to

ot ¥

Denoting the remaining part of ¢ by t;, and setting y := y;;t; € X we have that d(t,y) = d(y,z) =1
as required.

Finally, assume that all connected components of G, are of the form @&——® and let C; and C;
be two such components. Without loss of generality we have that t; = (1,2)(3,4), t; = (5,6)(7,8),
z; = (1,3)(2,4) and x; = (5,7)(6,8), and as above denote the remaining part of ¢ by t;. Setting

tit;

yi; = (1,5)(2,7)(3,8)(4,6), we see that both G,,” and G3%, consist of a single connected component

of isomorphism type é:> Hence, y := y;;t), is our desired element of X. O



4.2. PROOF OF THEOREM 4.0.1 91

Lemmas [{.2.1], [.2.2] [£.2.3] and [£.2.4] combine to prove Theorem in the case when n = 2m.

Corollary 4.2.5. If n = 2m, then Theorem holds.

Proof. Let x € X. If G, has connected components containing precisely 4 black vertices then we
leave the parts of ¢ and x corresponding to such components alone. We then apply Lemma [4.2.1] to
any connected component containing at least 5 black vertices, and Lemma [£.2.2] to any connected
component containing 3 black vertices to obtain the desired result. Otherwise all connected com-
ponents have at most 3 black vertices. Applying Lemmas and to a pair of components
containing a total of 4, 5 or 6 black vertices, Lemma to any remaining connected compon-
ents containing 3 black vertices, and leaving all other connected components invariant gives the

result. O

Before presenting the proof of Theorem we give a further three intermediate results.

Lemma 4.2.6. Let x € X. Suppose that G, has connected components C; and C; of the given

forms. Then there exists y;; € H, where H := Sym(supp(t;,tj, xi,x;)), which is H-conjugate to

tit; and such that the connected components of the x-graphs g;iff and gi{j{,;] satisfy the conditions

of Corollary[{.1.7.
(i) Ci: @—@ - @—@ (with ¢ = 3 black vertices),
Cj: O—@ @O (with r = 0 black vertices);

(i) Cj: O—@ @O (with ¢ = 2 black vertices), C; : &;
(iit) Cj: @—@ @O (with ¢ = 2 black vertices), Cj: O;

(iv) C;: @—@ - @——O (with ¢ > 1 black vertices),
Cj: O—@ - @—0O (with r = 1 black vertices); and

(v) C; and C; are both of the form @—@ --@——O (with q,r =1 black vertices respectively).

Proof. For each case, without loss of generality we give explicit formulations of the ¢; and z;. For
ease of notation, where parameters ¢ and r have been defined we set v = 2(q + 7).

In case [(i)] assume that ¢; = (1,2)--- (2¢—1,2q), t; = (2¢+1,2¢+2) - (v =1L, v)(v+ 1) (v +2),
and x; = (1)(2,3)---(2¢ — 2,29 — 1)(2q). We now consider three possibilities. If r = 0, then we
may assume that z; = (2¢ + 1,2¢ + 2) and we take

yij = (1,2¢)(2)(2¢ = 1)(3,2¢ = 2) -+ (¢, ¢ + 1)(2¢ + 1,2q + 2).
If = 1, then taking z; = (2¢ + 1,v 4+ 1)(2¢ + 2,v + 2) we define
yij = (1,29)(2)(2¢ = 1)(3,2¢ = 2) - - (¢, + 1)(v + L,v + 2)(2¢ + 1,2¢ + 2).
Finally, if 7 > 1, then we assume that z; = (2¢ + 1,v +1)(2¢ +2,2¢+3) --- (v — 2,v — 1)(v,v + 2)
and define
yij = (1,29)(2)(2¢ — 1)(3,2¢ = 2) - (¢, ¢ + ) (v + 1,0 + 2)

(2¢+1,v)---(2¢+7r,2g+7r+1).
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We see that the x-graph Q;EJ has connected components of the form @&—@®, O——CO and - depend-

ing on the values of ¢ and r - also @&—® and Q Similarly G¥, ; has connected components of the

form O——@——-CO, ® and in some cases also @&——® and Q as required (see Figures |B.1 .
For [(ii)| we may set ¢; = (1,2) - - (2¢—1,2¢)(2¢+1)(2¢+2) and z; = (1,2¢+2)(2,3) - - - (2¢, 2¢+1).

Then the element

yi = (1)(2,2¢ —1)(3,2¢ = 2) - (¢, ¢ + 1)(20)(2¢ + 1,2¢ + 2)
results in the z-graph Q;}Z having connected components O——O, @&—® and in some cases &—@

and Q - depending on the value and parity of ¢. The graph G7' has connected components

O——@—0 and possibly @&——® and Q (see Figures [B.9| and [B.10)).
Considering case we take t; = (1,2)---(2¢ — 1,2¢)(2¢ + 1), x; = (1)(2,3)---(2¢,2q + 1)
and t; = x; = (2¢ + 2). If ¢ = 2, define

yij = (1,4)(2)(3)(5,6),
whilst if ¢ > 3 define
vij = (1,2¢)(2)(2¢ —1)(3,2¢ — 2) - - - (¢, + 1)(2¢ + 1,29 + 2).

Then the permutation y;; gives the desired x-graphs. Indeed, (]Z’ljj has connected components of
the form O——O and @—@®, G’ has components of the form @—® and O——@——O (with

the black vertex omitted if ¢ = 2) and both z-graphs may also have connected components of the

form @&——® and Q depending on the value and parity of ¢ (see Figures|B.111B.13).

Turning to |(iv)} if ¢ = 1, then without loss of generality we have that t; = (1,2)(v + 1),
ti=(3,4)--- (v—1,v)(v+2)(v+3), x; = (1)(2,v+1) and z; = (3,v+2)(4,5) - - (v—2,v—1)(v,v+3)
(take x; = (3,6)(4,7) if r = 1). When r = 1, define

yij = (1)(2)(3,5)(4,7)(6).

tit; y . .
The z-graphs G,;’ and Gai, ; are isomorphic to

O—e—CO @® O and O—@—=O Q O
respectively as required. If r > 1, then

vi; = ()(2)B,v—=2)---(r+1,r+2)(v—1,v+2)(v,v+1)(v+ 3)

is our desired element. Indeed in this case g?j;j has connected components of the form O, ® and

C—@—=0 in addition to components of the form Q and /or @&—® (depending on the value of
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r), whilst Ga'% ; has components of the forms O and O——@®——0 in addition to components of the

form Q and/or @@ (depending on the value of r - see Figures |B.141B.16| for full details).

If ¢ > 1, then we define t; = (1,2)---(2¢ — 1,2¢q)(v+ 1), t; = (2¢+ 1,2¢+ 2)--- (v — 1,v)(v +
2)(v+3), ;= (1)(2,3)---(2¢—2,2¢—1)(2q,v+ 1) and z; = (2¢+ 1,v +2)(2¢+2,2¢+3) - - - (v —
2,v —1)(v,v + 3). Our desired element is then

yij = (1)(2,2¢—=1) - (g, + 1)(2¢)(2¢ + 1,v = 2) -
o (2¢+r—1,2¢+7)(v—1,v+42)(v,v+ 1)(v + 3).

It follows that the connected components of g;ff and g},{;gc] have the form O——&——O and O and

possibly @&—@ and Q, whilst Qlt/i] has an additional connected component of the form @—@
(see Figures [B.17}B.20).

For casewe assume without loss of generality that ¢ > r. We consider the subcases g = r = 1,
g>r=1,g=r>1and ¢g>r>1inturn. If ¢ =r =1, then we take t; = (1,2)(5), t; = (3,4)(6),
z; = (1)(2,5) and z; = (3)(4,6). Defining

vij = (1,3)(5,6)(2)(4),

we see that QZ’Z? has isomorphism type @—@ O—O and G;i, has isomorphism type
O——@—0O @ as required (see Figure [B.21).

If ¢ > r = 1, then setting t; = (1,2)---(2¢ — 1,2¢)(v + 1), t; = (2¢ + 1,2¢ + 2)(v + 2),
i =(1)(2,3)---(2¢,v+ 1) and z; = (2¢ + 1)(2¢ + 2,v + 2) we define

vij = (1,2(¢—1))(2,2(¢ = 1) = 1)--- (¢ = 1,¢)(2¢ — 1,2¢ + 1)
(29)(2q + 2)(v + 1,v + 2).

Consequently Q’;ij has connected components of the form @&—®, O—0O and @&—® and/or Q

(depending on the value of ¢), whilst GJ% has components of the form O &—0O, 06— and

®—® and/or Q (see Figures |B.22| and [B.23]).

When r > 1 we may assume that ¢; = (1,2)---(2¢ — 1,2q)(v+ 1), t; = (2¢ +1,2¢ +2) - - - (v —
Lo)(v+2), 2z =(1)(2,3)---(2¢ —2,2¢ —1)(2¢,v+ 1) and z; = (2¢ +1)(2¢ +2,2¢ + 3)--- (v —
2,v—1)(v,v + 2). Define

yij = (1,2¢ +1)(2,2¢ +2) -+ (2¢ — Lv = 1)(2¢)(v)(v + 1,0 + 2)
if ¢ =r and

vij = (L,2(q —7))(2,2(¢—71)=1)---(g—7r,g—r+1)
(2(q—7)+1,2¢+1)---(2¢ — L,v—1)(2¢)(v)(v + 1,v + 2)

if ¢ # r. We see that g;jgf] has connected components O——CO, @—@® and @&——® in addition to Q

for some values of ¢ and r. The z-graph gi’j& ; also has the desired properties having a component of
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the form O——@——0O, some components of the form @&——® and possibly also ®, ®@—® and/or

Q depending on the values of ¢ and r and the parity of ¢ — r (see Figures [B.24HB.26)).

O

We note that in cases and above, t;t; and x;x; have different cycle types. This is a fact
which we will utilise in the proof of Theorem
In a similar vein to Lemma we next consider collections of three connected components

simultaneously.

Lemma 4.2.7. Let v € X. Suppose that G, has connected components C;, C; and Cy, of the

giwen forms and define H := Sym(supp(t;, t;,tg, xi, x5, xx)). Then there exists y;j € H which is

H-conjugate to t;tjt, and such that the connected components of the x-graphs Q;ﬁtk and g;’g;jxk

satisfy the conditions of Corollary[{.1.):

(i) Ci, Cj and Cy are each of the form @—@ --@—O (having q,r,s > 1 black vertices
respectively); and
(ii) C;: @—@ - -@—@ (with ¢ =1 black vertices),
Cj: @—@ - @—0O (with r > 1 black vertices), C: O—=0.
Proof. We follow the approach of the proof of Lemma and construct the appropriate ¢; and

x;. We alsoset v =2(¢+7r) and w =2(qg+ 1 + s).

For case |(i)| we may assume without loss of generality that ¢ = r > s > 1 and set

ti=(1,2)---(2¢—1,2q)(w+1), t; = (2¢+1,2¢+2)--- (v —1,v)(w + 2)
and tp=@w+1Lv+2) - (w—1,w)(w+3).

We also set

zj=2¢+1)(2¢+2,2¢+3) - (v—2,v—1)(v,w+2), and
=W+ 1)(v+2,v+3) - (w—2,w—1)(w,w+3),

taking z; = (1)(2,w + 1) in the case when ¢ = 1, 2; = (2¢ + 1)(2¢ + 2,w + 2) when r = 1 and
xzp = (v+ 1)(v + 2,w + 3) when s = 1. There are three subcases to consider. If ¢ = r = s = 1,
then taking y;;x = (1,4)(5,8)(6,7)(2)(3)(9) we see that the z-graphs gf,gjf’“ and G2 4, are both

isomorphic to

O—e—0O @& ® O

)

which has the desired form (see Figure [B.27)). If s = 1, but ¢ # 1, we set

yijk = (Lw +2)(2,w +1)(3,2¢)(4,2¢ - 1) --- (¢ + 1,g + 2)

(2¢+1,v)---(2¢+7r,2¢+7r+1)(v+1)(w)(w+ 3),



4.2. PROOF OF THEOREM 4.0.1 95

whilst if s > 1, we define

Yijk = (Lw +2)(2,w+1)(3,2¢9)(4,2¢ — 1) --- (¢ + 1,¢ + 2)
(2¢+1,v)---(2¢g+7,2¢+r+1)
w+2,w—=1)---(v+s,v+s+1)(v+1)(w)(w+ 3).

It follows that the z-graph gé@j{f’“ has connected components of the form O——&——O and O with

further components of the form @ (if s = 1), &—@ (if s > 1) and @&—® and/or Q depending on

Yijk

the values of ¢, r and s. Meanwhile, G;% e has connected components of the form &—@, O—O

and O, in addition to @&—@® and/or Q depending on the parameters ¢, r, s (see Figures |B.281B.39

for full details).

Finally, we consider casel(ii)|and note that in this case w = v+2. Assume that ¢; = (1,2)--- (2¢—
1,29),t; = (2¢+1,2¢+2)--- (v—1,v)(v+1), tr, = (v+2)(v+3), 2; = (1)(2,3) --- (2¢—2,29—1)(2q),
zj = (2¢+1)(2¢ +2,2¢+3)---(v,v+1) and zp = (v+2,0v+3). If ¢ =r =1, then z =
(1)(2)(3)(4,5)(6,7), and defining

we see that the x-graphs géﬁ?,jk and gi’zgfjxk are of isomorphism type

&0 O—O O and O—@—0O @ O

respectively (see Figure [B.40). Meanwhile, if ¢ = 1 and r > 1, then x = (1)(2)(3)(4,5) - - (v,v +
1)(v + 2,v + 3), and so setting

Yijk = (1)(2,v=3) -+ (r,r + 1)(v = 2)(v — 1L,v + 2)(v,v + 1)(v + 3)

itjte

results in the z-graph g;.jk having connected components O @ O, @—@, O and possibly

—® and Q Moreover, ng];ﬂxk has connected components O, O——@—O, Q and for some
values of r also @&—@ and/or @—@ (see Figures and [B.42)).
If ¢ = 2, then we take

Yijk = (Lo +1)(2,0+2)(3)(4)(2¢ + 1,v) --- (2¢ +7,2¢ + r + 1)(v + 3),
whilst if ¢ > 2 we take

Yijk = (Lo +1)(2,0+2)(3)(4,2¢ — 1) -~ (¢ + 1,q + 2)(2q)
(2¢+ 1,v)---(2¢ +7r,2¢+7r+1)(v+3).

itjtk

Consequently, the z-graph g;]. 7" has connected components O——@——C and O and possibly also

0,06 0 06— and Q Meanwhile, gﬁij@fjmk has connected components O L O, 00—

and O and in some cases also @&——@® and/or Q (see Figures [B.431{B.48| for full details). O




96 CHAPTER 4. m-PRODUCT GRAPHS IN SYMMETRIC GROUPS

Lemma 4.2.8. Suppose that m > 2, n = 7 with n # 2m + 1 and let x € X\{t} be such that
fix(t) = fix(z). Then there exists y € X such that d(t,y) = d(y,z) = 1.

Proof. By considering ¢,z € Sym(supp(t)) and appealing to Corollary we may assume that
m = 2 or 3 and hence that |fix(t)| = 2. If G, contains a connected component of the form &———@,

then without loss of generality we have
t= (17 2)(374)(57 6)(7) T (TL) and x = (17 3)<274)<57 6)<7) T (n>

(where the transposition (5,6) is replaced by (5)(6) if m = 2). We take y =
(1,4)(2)(3)(5,6)(7) - - (n — 2)(n — 1,n) (again replacing (5,6) by (5)(6) if m = 2). If m = 3

and G, contains a cycle of three black vertices, then we may assume that
t=(1,2)3,4)(5,6)(7) - (n) and =z = (1,6)(2,3)(4,5)(7) - (n).

In this case, we set y = (1)(2,3)(4)(5,6)(7,8)(9) - - (n). In all cases we have that G, has one con-
nected component of the form @—®, G2 has one connected component of the form O——@&——O

and all other connected components of these x-graphs are of the form O, ® O——CO and Q (see
Figures B.51)). Thus d(t,y) = d(y,xz) = 1 by Corollary O

We are now in a position to prove Theorem in the general case. For xz € X we proceed
by considering collections of connected components {C;};c; of G, for some set I, and then finding

an element y; € Sym(u;ersupp(C;)) that is conjugate to t; := [].,.;t; such that the connected

iel

components of G/7 and GY] satisfy the conditions of Corollary (where 7 := [[,c; ;). The

product of all such y; will then be our desired element of X.

Proof of Theorem [4.0.1k
Let z € X.

First assume that n = 2m + 1. We observe that the product of two elements of X that
fix distinct elements of €2 cannot have order 4. Thus P4 (G, X) consists of n copies of the {4}-
product involution graph Py (Sym(2m),Y’), where Y is the conjugacy class of Sym(2m) consisting
of elements of cycle type 2™.

If m =1, then 73{4}(G, X) is clearly totally disconnected.

In the case that (n,m) = (4,2) (respectively (n,m) = 6,3)), then any z-graph will contain 2
(respectively 3) black vertices and 2 (respectively 3) edges. It follows from Corollary that
Pi4y(G, X) is totally disconnected.

[(ii)] Assume that m # 1 and (n,m) # (4,2), (6,3) or (2m+1,m). We first consider the case that
(n,m) = (6,2). If distinct involutions ¢ = (1,2)(3,4) and z of cycle type 22 do not have product of
order 4, then the reader may check that the z-graph G, will be isomorphic to one given in Table
and that the given element y satisfies d(t,y) = d(y,r) = 1. Hence Py (G, X) is connected and
Diam(Pyy (G, X)) = 2.

By Corollary as n # 2m + 1, we may assume that |fix(¢)| > 2, and so G, contains at least
2 white vertices. Moreover, by Lemma[41.2.8| we only need to consider the case when fix(t) # fix(z).
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Representative x-graph, Representative
xe X\ (A(t) u{t}) G y € Ay(t) n Ar(x)
(1,2)(5,6) Q ® O0—O (3,6)(4,5)
(2,5)(4,6) e—O 6—O (1,3)(5,6)
(2,3)(4,5) e—0 O O (1,4)(5,6)
(2,5)(3,4) e—O Q O (1,5)(2,6)
(1,3)(2,4) e—® O O (1,4)(5,6)

Table 4.1: Representatives of X\ (A1(¢) u {t}) and their corresponding neighbours in A (t) N A (x)
forn =6, m = 2.

Let a, 3, v and § denote the number of connected components (containing at least 1 black vertex
and 1 edge) of G, of the form

and let € denote the number of connected components of the form O——-O. For ease of reading, we
shall refer to components of type « instead of components of the form @—@- - -@—@®. Similarly
for 3, v, 0 and e. Note that a < 8 + ¢, and as fix(¢) # fix(z) it follows that 3, v and € are not all
ZEro.

If v > 2, then partitioning the components of type v into pairs or triples we obtain a suitable yr

from Lemmas[4.2.6(v) and [4.2.7(i)} Indexing the remaining connected components by .J, a suitable
ys such that ¢t yy; and x sy 5 have orders 1, 2 or 4 may be constructed using Lemmas and
4.2.6(1)lf(i1)l In the forthcoming cases, when referring to the construction of y;, it will be implicit

that t;y; and zjy; have orders 1, 2 or 4.

If v =1 and 8 # 0, then we pair the unique component of type v with one of type 8 to obtain
an element y; via Lemma In the case that o = 5+ ¢, then consider one component of type
a. Without loss we may assume that this corresponds to some t; = (1,2)--- (2r — 1,2r) and some
zi = (1)(2,3) - (2r — 2,2r — 1)(2r). Setting y; = (1,2)(3,2r)(4,2r — 1)(5,2r —2)--- (r + 1,r + 2)
we have that ord(t;y;),ord(y;z;) € {1,2,4}. An element y; for the remaining components follows
from Lemmas [4.2.1} 4.2.2| and [4.2.6/(1)l(ii)|

Ify=1,6=0and > 1, then € = 1. Hence we may use Lemma to construct the
element y; and Lemmas [4.2.1] [4.2.2f and 4.2.6(1) to obtain a suitable y.

If vy =1and a = 8 = 0, then there must be a connected component of G, consisting of a single
vertex. Assume first that the connected component of type v contains at least two black vertices.
If there is an isolated white vertex in G,, then the existence of y; follows from Lemma
Conversely, if there is an isolated black vertex, then - as the number of black vertices equals the

number of edges - there must be a connected component of type e. Applying Lemma to
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this connected component, the connected component of type « and an isolated black vertex results
in our element y;. Applying Lemmas m and to our remaining components as appropriate
gives our desired element ;.

Now assume that our connected component of type v contains precisely one black vertex. If all
other white vertices are isolated, then G, contains a connected component consisting of a cycle of
u > 1 black vertices. We may consider one such cycle, an isolated white vertex and the connected
component of type v to correspond to those components indexed by I. Thus without loss of

generality

tr=(1,2)--(2u—1,2u)(2u + 1,2u + 2)(2u + 3)(2u + 4); and (42.1)

or = (1,2u)(2,3) - (2u — 2,20 — 1)(2u + 1)(2u + 2, 2u + 3)(2u + 4), -
unless v = 1 in which case we let t; = (1,2)(3,4)(5)(6) and z; = (1,2)(3)(4,5)(6). Taking
i = (1(2u)(2,2u — 1) (wyu + 1)(2u + 1,2u + 3)(2u + 2,2u + 4) (or y; = (1)(2)(3,5)(4,6) if
u = 1) it follows that g;g has one connected component of the form O——@&——0O, G¥! has one

connected component of the form @—® and the remaining components of these z-graphs are of

the form @, Q, ®—0 O—0O and &0, thus satisfying the conditions of Corollary [4.1.4] (see
Figures |B.521{B.54)).

Conversely, if there exists a white vertex that is not isolated, then it will be in a component of
type €. Again, as the number of edges and black vertices must be equal, there exists an isolated
black vertex. We take the connected component of type v along with one of type € and an isolated
black vertex to be those indexed by I. The existence of y; then follows from Lemma

Finally applying Lemmas |4.2.1] and [4.2.2| as appropriate to the remaining connected components,

we obtain an element y; as required.

If v = 0, but 8 # 0, then consider the connected components of type «. If there exist connected
components of type a containing at least 3 black vertices, then we may pair these up with connected
components of type 8 and € and apply Lemma to obtain our element y;. If all connected
components of type a contain at most 2 black vertices, then we simply apply Lemma (if
required) to the connected components of type 5 to obtain y;. Finally, applying Lemmas m
and to the remaining connected components ensures the existence of y ;.

If 3=+ =0 and a # 0, then we apply Lemma to the connected components of type «
and e (if required) to obtain y; and Lemmas and to the remaining connected components
to find a suitable y;.

If o =5 =+=0, then € > 1 as by assumption fix(t) # fix(z). As the number of edges of G,
equals the number of black vertices, there exists an isolated black vertex. Moreover, as m > 2, there
are two possible cases. If every black vertex is isolated, then there exists m connected components of
type €. Take two such components and two isolated black vertices as the components corresponding
to our indexing set I, and leave all other components of type € alone. Without loss of generality,

we may assume that the parts of ¢ and x corresponding to I are

t = (1,2)(3,4)(5)(6)(7)(8) and 7 = (1)(2)(3)(4)(5,6)(7, 8). (4.2.2)
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Let y7 = (1,5)(2,6)(3)(4)(7)(8). Then the connected components of G/ and G} satisfy the condi-
tions of Corollary (see Figure [B.55).

Conversely, if there is only one isolated black vertex, then there exists a connected component
which is a cycle of © > 1 black vertices. Thus taking the components indexed by I to be an isolated
black vertex, a cycle of u > 1 black vertices and a component of type €, and leaving all other
components of type € alone, we may take t; and z; to be

tr=(1,2) - (2u—1,2u)(2u + 1,2u + 2)(2u + 3)(2u + 4); and 193

wr = (1,2u)(2,3) - (2u — 2,2u — 1)(2u + 1)(2u + 2)(2u + 3, 2u + 4), 29

ortr =(1,2)(3,4)(5)(6) and x; = (1,2)(3)(4)(5,6) if u = 1. Taking yr = (1)(2u)(2,2u—1) - - - (u, u+
1(2u + 1,2u + 3)(2u + 2,2u + 4) (or yr = (1)(2)(3,5)(4,6) if u = 1), we see that the connected
components of QZ and ng satisfy the conditions of Corollary (for full details see Figures|B.56

B.58). Finally, applying Lemmas 4.2.1] and [4.2.2] to the remaining components of type § (that is

cycles of black vertices) gives the desired y.
Since all possible z-graphs have been analysed, this completes the proof of Theorem O

4.3 The cases 7 # {4} :

We illustrate the exceptional nature of Py (G, X) with a brief exploration of other m-product
involution graphs. We begin by considering the case that 7 = {2m} and 2m = 2% for some a > 3.
The simplest such case arises when a = 3. Thus for G = Sym(n), we consider the G-conjugacy
class of t = (1,2)(3,4)(5,6)(7,8), which we denote by X. As supp(t) has size 8, it suffices to
consider 8 < n < 16. We calculate the sizes of the discs A;(t) of Py (G, X) using the computer
algebra package MAGMA. Theorem is an immediate consequence of our calculations, which

are summarised in Table {2l  The situation observed is indicative of the situation which arises

no | (A0 [A@)] [As(®)] [Aq(t)] | |X] Diam(P(sy (G, X))
8 105 Totally Disconnected
9 945 Totally Disconnected
10 384 4308 32 4725 3

11| 1152 16076 96 17325 3

12 | 2304 49382 288 51975 3

13| 3840 123974 7320 135135 3

14 | 5760 267014 42540 315315 3

15| 8064 512630 154140 840 675675 4

16 | 10752 902012 431760 6825 | 1351350 4

Table 4.2: The sizes of the discs A;(t) for Pyg) (G, X ), where G := Sym(n) and X is the G-conjugacy
class of t := (1,2)(3,4)(5,6)(7,8).

when 7 = {2m} and 2m = 2% for some a > 3. This leads to the formulation of Theorem a

proof of which we now give.
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Proof of Theorem [4.0.2¢
We note that as the support of ¢ has size 2m, any = in X - the G-conjugacy class of ¢ - will have

an z-graph, G,, containing m black vertices. If the order of tx is 2m, then G, must be of the form

(1) O—ee—O @ or

2) —e o —@0O—o0,

(where additional isolated white vertices may be present). In both cases, we see that |supp(t) n
supp(x)| = 2m — 2. It follows that if n = 2m or 2m + 1, then Py,,1(G, X) is totally disconnected.
Thus assume that n > 2m + 2. Denote the m transpositions that x is comprised of by z1,...,zn,
where minsupp(z;) < minsupp(x;41) for all ¢ = 1,...,m — 1. We will construct elements y; € X

for i =1,...,m such that
Yi = X1 TjWi41 " Wiy (4.3.4)

for some transpositions w;41,...,w;, and such that y; is connected to t in P{Qm}(G,X ). At each
stage, if y; involves the transposition x;1 we are done, so we will assume that this is not the case.

Assume first that [supp(z1) nsupp(¢)| = 2. Then without loss we may assume that z; = (1, 3).
Define

y1 = (1,3)(4,5)(6,7) - (2m — 2,2m — 1)(2m + 1,2m + 2). (4.3.5)

Thus G,, has the form (as seen in Figure |B.59). If |supp(z1) n supp(t)| = 1, then we may
assume that z; = (1,2m + 1). Taking

y1 = (1,2m +1)(2,3)(4,5) - -- (2m — 4,2m — 3)(2m — 2,2m + 2), (4.3.6)

it follows that G,, is isomorphic to (see Figure B.60). Finally, if |[supp(z1) nsupp(t)| = 0, then

we assume that 1 = (2m + 1,2m + 2). The element
y1 =(2,3)(4,5)---(2m —2,2m — 1)(2m + 1,2m + 2) (4.3.7)

results in an z-graph G,, of type (as seen in Figure . In all cases we see that t and y; are
adjacent - and hence connected - vertices of Pyo,,1 (G, X).

Suppose that for some 1 < i < m an element y; of the form exists with y; connected to
t in Py (G, X). Note that y; fixes at least two elements of Q as n > 2m + 2. We denote these
elements by fi, fo. Define

xj1 = minsupp(z;) and x;2 := maxsupp(z;). (4.3.8)
for1<j<i+1and
wj1 = minsupp(w;) and wj2 := maxsupp(w;). (4.3.9)

fori+1<j<m. Seta=uxi11, ==Tiy12 and w = wiyy - Wy, Thus z;11 = (o, B).
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We follow an analogous approach to that used to define y;. If |[supp(x;+1) N supp(w)| = 2, then
without loss we have that w; 411 = @ and w;121 = 8. First we construct an element z; 11 € X given
by

ziv1 = (21,1, Wm 2) (21,2, T2,1) (T2,2, ¥31) * +* (Ti—1,2, Ti1) (43.10)
(w52, ) (Wir2,2, Wir31) - (Wm—1,2, Wm,1)(f1, f2)

for 2 > 1 and
2o = (21,1, Wm2) (21,2, @) (W32, wa,1) - (Win—1,2, Wm,1)(f1, f2)- (4.3.11)

Consequently G¥ | has the form given in (see Figures and [B.63]). The element
Yirl = T102 - Tin 1 (Wig1,2, Wig22)Wit3 - Wiy (4.3.12)

results in an z-graph Q;ZLI of isomorphism type (see Figures and . We deduce that
Yi+1 1s connected to y; and hence to t, and that d(y;, yi+1) < 2.

In the case that |supp(zit+1) Nnsupp(w)| = 1, we may assume that w;;11 = a and that 5 = f; €
fix(y;). Taking 20 = (8, wm2)(w2,2, w31) -+ (Wm—1,2, Wm1)(, f2),

zie1 = (B,221) (22,2, 23,1) - -+ (Tim1,2, %i,1) (Ti 25 Wi 2) (4.3.13)

(Wit1,2, Wit2,1) -+ (Wm—1,2, Wm 1) (v, fa)

for ¢ > 1 and
Yit1 = L1 Tip1Wit2 - Wi (4.3.14)

we see that G¥/, | is of isomorphism type m whilst G,/ 7} is of isomorphism type (see Figures
and . Thus d(y;, yi+1) < 2 and y;41 is connected to t.

The final possibility is that |supp(x;+1) N supp(w)] = 0. Consequently, defining zo =
(1,1, 2,1) (21,2, Wm,2) (22,2, w3,1) (W32, Wa,1) *  + (Win—1,2, Win,1),

Zit1 = (1,1, Tir1,1) (T1,2,2,1) -+ (Tim1,2, %4,1) (%42, Win 2) (4.3.15)

($i+1,2, wi+2,l)(wi+2,27 wz‘+3,1) T (’wm—l,z, ’wm,l)

for ¢ > 1 and

Yirl = T1 - Tip1Wip 1Wig2 -+ W1 (4.3.16)

we obtain z-graphs G¥',, and G,"] of types and respectively (see Figures and .

We conclude that d(yi, yi+1) < 2, and hence y;11 is connected to t in Py, (G, X) as required.

If Piomy (G, X) is connected, then n > 2m + 2 by Moreover, the above argument shows
that d(t,y1) < 1 and for 1 < i < m — 1 we have d(y;,yi+1) < 2. Thus as * = y,,, we conclude
that Diam(Pya,,)(G, X)) < 2m — 1. For the lower bound, we note that = € A;(t) precisely when
G is of type or In particular [supp(t) N supp(z)| = 2m — 2. Arguing iteratively we deduce
that if d(¢,x) < s, then |supp(¢) nsupp(x)| = 2m — 2s. Since X contains an involution x satisfying

|supp(t) N supp(z)| = max{0,4m — n} we deduce that

Diam(Pqo,y (G, X)) = min{m, [n/2 — m]}
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as required. 0

We note that it is also possible to define y; € X of the form (4.3.4) which is connected to ¢t by
a path of length 2 in Pyy,,) (G, X). Indeed, if 21 = (1,3), we set

z1 =(2,5)(4,2m)(6,7)--- (2m — 2,2m — 1)(2m + 1,2m + 2); and

(4.3.17)
Y1 :(173>(472m+ 1)(576)(77 8) (2m - 1a2m)'
If x1 = (1,2m + 1), then define
z1 =(2,3)(4,5)---2m —2,2m —1)(2m + 1,2m + 2); and
1=(2,3)(4,5) - ( ) ) (43.18)
y1 =(1,2m + 1)(2,2m + 2)(3,4) - -- (2m — 5,2m — 4)(2m — 3,2m).
Finally, if 21 = (2m + 1,2m + 2), then take
z1 =(1,2m +1)(2,3)(4,5)--- (2m — 4,2m — 3)(2m — 2,2m + 2); and
( )(2,3)(4,5) -+ ( ) ) (43.19)

y1 =(3,4)(5,6)--- (2m — 1,2m)(2m + 1,2m + 2).

In each case, the z-graphs G, and G;! are of isomorphism type or as required (see Fig-
ures for full details).

We now consider Theorem A non-constructive proof of the connectivity of Py, (G, X)
using Jordan’s theorem is contained in the proof of [BGRI3| Theorem 4.1]. Here we give a

constructive proof in a similar vein to the proof of Theorem above.

Proof of Theorem [4.0.4¢
We first note that the elements of the disc Aq(t) are precisely those elements x € X whose
z-graph, G,, is of isomorphism type @—@-- -@——0O. Consequently, P, (G, X) is totally dis-
connected if n = ¢ — 1. Thus assume that n > ¢ and hence that |fix(¢)| = 1.

We proceed as in the proof of Theorem [£.0.2]and set 2m = ¢—1. Let z € X be given and denote
the transpositions of x as * = x1x2---x,,. As in the proof of Theorem we will construct

elements y; € X for i = 1,...m such that
Yi = T1°* TiWit1 " Wy (4.3.20)

for some transpositions w; and such that y; is connected to ¢ in Py (G, X ). Mirroring the situation
of the proof of Theorem we may assume that x;,1 is not a transposition of y;. We continue
to use the notation x; 1, ;2 and w; 1, w;2 previously introduced in and respectively.
For convenience we define yp := t and for each y; we consider the cases supp(y;) = supp(z) and
supp(y;) # supp(x) separately.

Assume that supp(t) = supp(x). Thus |[supp(t) m supp(z1)| = 2 and without loss of generality
we may take 1 = (1,3). Define z; and y; by

z1 =(2,3)(4,5) -+ (2m,2m + 1); and

(4.3.21)
y1 =21(2,4)(5,6) -+ (2m — 1,2m).
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The z-graphs G,, and G;! are both of isomorphism type @—@---@——0O (see Figure [B.71) and
hence ¢ and y; are connected in Py (G, X) with d(t,y1) < 2.
When supp(t) # supp(z) we consider three subcases. If [supp(t) nsupp(z1)| = 2, then without

loss we have 21 = (1,3) and we take
y1 =21(4,5)(6,7) - (2m,2m + 1). (4.3.22)
If |supp(t) m supp(z1)| = 1, then we may assume that 21 = (1,2m + 1) and thus take

y1 = 21(2,3)(4,5) - (2m — 2,2m — 1). (4.3.23)

In both cases, Gy, is of the required form (see Figures [B.72| and |B.73). Consequently ¢ and 1

are adjacent in P{q}(G,X). Finally, suppose that |[supp(t) n supp(z1)| = 0 and hence that z; =
(2m + 1,2m + 2). Defining

z1=(1,2m +1)(2,3)---(2m —2,2m — 1); and
1 = (xl)(172)(374) e (Qm_ 3,2m — 2)7

(4.3.24)

we have that G, and G;! are of the aforementioned isomorphism type (see Figure , and so t
and y; are connected in Py, (G, X ). Moreover, d(t,y1) < 2.

Now suppose that a y; of the form has been defined for some i < m with y; con-
nected to t in Py, (G, X). First assume that supp(y;) = supp(x) and that o e fix(y;) n
fix(z). Without loss we may assume that z;111 = wijt11 and 2412 = wiq21. Define 2 =

(1,2, w2,1) (w22, ws31) - - (Wm—1,2, Wrn,1) (W2, @),

ziv1 =(T1,2,221) (T2,2, ¥31) -+ (Tim1,2, i 1) (Ti 2, Wig1,1)
(Wit12,Wit21)  (Wm—1.2, Wm1)(Wm2,a); and (4.3.25)
Yitl =122+ L1 (Wit1,2, Wit2,2)Wit3 ** W
for i > 1. We have that the z-graphs G¥/,, and G,/T] have the required form and hence d(y;, yi+1) <
2.
It remains to consider the case that supp(y;) # supp(x). Let f; € fix(y;)\fix(z) and f; €
fix(z)\ fix(y;). In the case when [supp(y;) N supp(xi+1)| = 2, assume that z;11 = (Wit1,1, Wit2,1)

and set 23 = (21,1, Wm,2) (21,2, w21) (w31, fi) (W32, wa,1) -+ (Win—1,2, W 1),
Zit1 =(z1,1, wm2) (@12, T21) - (Tim1,2, i) (Ti,2, Wit1,1) (Wit2,1, fi)
(wiy2,2,wit31)  (Wm—12,Wm,1); and (4.3.26)
Yi+1 =T122 " - $i+1(wz'+1,2, wi+2,2)wi+3 T Wi
for ¢ > 1. If [supp(y;) N supp(zit+1)| = 1, then without loss we have zj11 = (wit1.1, fi). Hence we
define 2o = (21,1, wm2) (21,2, x2,1) (w31, fi) (W32, wa1) - - (Wrn—1,2, Wn1),
Zit1 =(T1,1, Wi 2)(T1,2,021) -+ (Tim1,2, i1) (%42, Tit1,1)
(wir2,1, fi)(Witr2,2, Wit3,1) - (Wm—12,W,1); and (4.3.27)

Yirl =122+ - Lj41Wi42 "+ 'wmfl(wm,la wi+1,2)-
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for i+ > 1. Finally, if z;4; and y; are disjoint we set 2o = (z1,1,%2,1)(z1,2, w2,1) (w22, w31) - -
(Wm—1,2, Wm,1),
ziv1 =(T1,1, Tiv1,1)(T1,2,T2,1) - (Tim1,2, Ti1) (Ti25 Wit 1)
(Wit1,2, Wit21)  (Wm-1,2,Wm,1); and (4.3.28)
Yi+1 =T122 - Ti41Wi41 " " Wm—1-
for i > 1. For each pair (zi41,vi+1) the z-graphs G¥,  and G,/f! have isomorphism type
®— @ @ O (see Figures for details). Consequently d(y;,v;+1) < 2 and the ele-
ments ¢ and ;1 are connected in Py (G, X).
By part |(i)| we have that Diam Py, (G, r) < ¢ — 1. For the lower bound, we note that for
x € X to be adjacent to ¢t we have |supp(t) n supp(z)| = [supp(t)| — 1. Taking x € X such that
|supp(t) N supp(x)| is minimal we have that |supp(t) n supp(z)| = max{0,2¢ — 2 — n} and hence
d(t,x) = min{g — 1,n + 1 — ¢} as required. O

Following a similar approach to that used when p = 2, we define y; € X of the form
such that there is a path in Py, (G, X) from t to y; of length 2. These paths will be used in the
proof of Theorem Such paths were defined in the above proof except when supp(t) # supp(z)
and |supp(t) nsupp(z1)| = 1 or 2. In the latter case, we may assume without loss that z; = (1, 3)

and define
z1 =(2,3)(4,5) - (2m,2m + 1); and

(4.3.29)
Y1 :(17 3)(274)(57 6) T (2m -1 2m)
In the former case, we assume that x1 = (1,2m + 1) and set
z1 =(2,3)(4,5)---(2m,2m + 1); and
(2,3)(4,5) ) a0

y1 =(1,2m + 1)(3,4)(5,6) - - (2m — 1,2m).

Both cases give rise to z-graphs G, and G;! of the required form to show that there is a path from

t to y1 of length 2 in Py (G, X) (see Figures and [B.84)).
The proofs of Theorems [£.0.2 and [4.0.4] are utilised in the proof of Theorem

Proof of Theorem [4.0.5¢

The z-graph G, of any = € A;(t) must consist of a connected component of isomorphism type
®—©® @ O containing ¢;/2 black vertices for each i = 2,...,r. In addition, there will be
connected components of types or from the proof of Theorem if p; = 2, or a component
of type @—@- - -@——O containing ¢1/2 black vertices if p; # 2. It follows that

r+1 if py =2;and
| fix(t)] = (4.3.31)

T otherwise.
We conclude that if
q+2 ifp; =2;and

nz= (4.3.32)
q otherwise
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does not hold, then P{q}(G, X) is totally disconnected. Thus assume that (4.3.32)) holds.

Denote the the transpositions of x by

1 (2 ) ()R ()

xTr = xl e qu/2$1 oo xq2/2 xl q,r/2'

T . () R (/)
Moreover, if ¢ = max{g;}, define Toai1 = = o

permutations are not already defined.

= 1 for all j = 1,...,r where these

Using the proofs of Theorems [4.0.1], [4.0.2[ and [4.0.4] and the comments following the proofs, we

may construct y; € X for ¢ = 0,...,¢/2 with yo := ¢ satisfying

(i) there is a path in Py, (G, X) from y; to yi41 of length 2 for i = 0,...,¢/2 —1; and

() ()

(ii) v contains the transpositions x;"/,...,x;”" for j =1,... 7.
This is allowable as (4.3.31]) holds. The result now follows immediately. O

We briefly consider an example of a case when 7 consists of a composite number. The smallest
such situation arises when m = {6}. If t € G is an involution and X is the G-conjugacy class of t,
then any z € X will be adjacent to t in P (G, X) if the connected components of G, consist of

components of the form

(i) O, Q

)

(i) @ O—0O, —@;

(iii) @—0, A; and
(iv) 0—o—e—0O, 0—0—0 ./0.> (with 6 black vertices).

)

Moreover, either one component is of isomorphism type or there exists at least one component

of type and one component of type |(iii)|
Finally, Table gives the sizes of the discs A;(t) of Py (G, X) for the symmetric groups

G := Sym(n) (6 <n < 10), when X is the G-conjugacy class of an involution ¢t € G.
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n [m [1AO] B2(0] 8@ | [X] | Diam(Pyy(G, X))
6 2 45 | Totally Disconnected
3 15 | Totally Disconnected
7 2 12 38 54 105 3
3 12 60 32 105 3
2 48 158 3 210 3
8 |13 72 347 420 2
4 105 | Totally Disconnected
2 120 242 15 378 3
9 13 216 1043 1260 2
4 48 836 60 945 3
2 240 389 630 2
10 3 624 2525 3150 2
4 416 4308 4725 2
5 160 784 945 2

Table 4.3: The sizes of the discs A;(t) for Py (G, X), where X is the G-conjugacy class of t =
(1,2)---(2m —1,2m) € G := Sym(n).



Chapter 5

Conjugate p-elements of Full Support
that Generate the Wreath Product
CplCy

In Chapter 4 we saw how the rich structure of the poset S,(Sym(n)) could be used to character-
ise when two conjugate involutions generated the dihedral group Dih(8). There are two natural
generalisations of this result. The first would consider when two conjugate involutions generate
the dihedral group Dih(2™) for m > 3. An analysis of z-graphs would be fundamental in such an
approach, which would then become a case-by-case analysis of the possible situations that could
arise - similar to that given in the proof of Theorem [4.0.1]

An alternative generalisation involves considering Dih(8) as the wreath product, CoCs, of two
cyclic groups of order 2. From this viewpoint, a natural generalisation is to consider when two
conjugate p-elements of Sym(n) generate the wreath product C), ! C,. In this chapter, we consider
conjugate p-elements of full support in Sym(n) that generate this wreath product. To analyse such
situations, it would be desirable to form a generalisation of the z-graph. The natural generalisation
results in non-planar directed graphs and hence we consider the adjacency matrix of such a graph.
Indeed, given conjugate p-elements a and z of full support in Sym(n), we form suitable matrices A%
and A?. Here a will be the standard p-element of G namely a = (1,2,...,p)(p+1,...,2p) - ((r —
p+1,...,rp) where n = rp and we label the p-cycles forming a by a; = (p(i — 1) + 1,...,pi)
for ¢ = 1,...,r. Similarly if z is a G-conjugate of a, then we may label its disjoint p-cycles
by X1,...,Xxr. The matrices A and A? have (i,j) entries given by |supp(cy) nsupp(«;)| and
lsupp(x{) N supp(x;)| respectively.

Throughout this chapter, p will be an odd prime. Our first result considers the case that n = p?.
We see that the matrices A? and A? do indeed encode data which we may use to determine when
a and x generate the wreath product W, := C, 1 C,. This encoding involves circulant matrices

and their representer polynomials in addition to permutation matrices, all of which are defined in

Section (.11
Theorem 5.0.1. Let G = Sym(p?), a be the standard p-element of G and let x be a conjugate of

107
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a. Then {a,x) = W), precisely when the following two equivalent conditions hold.

(i) A% = p-Y, for some p-cycle o € Sym(p), AL = circ(0,c1,...,cp—1) for some ¢; € Z,, X =1
is a simple root of the representer polynomial fa:(X) € Z,[X] and [a,a”] = 1.

(i1) A2 = p - Y, for some p-cycle o € Sym(p), AL = circ(0,¢1,...,¢p—1) for some ¢; € Z,,
| det(A2)|, = p* and [a,a®] = 1.

(or (i) and (ii) hold with the roles of a and x interchanged).

The second result concerns the case when n = p®. It involves the notions of the block sum
matrix, BS(M), of a matrix M and of a reduced representer polynomial as given in Definitions
and

Theorem 5.0.2. Let G = Sym(p?), a be the standard p-element of G and let x be a conjugate of
a. Moreover, suppose that we cannot decompose a = a1---a, and x = x1---x, with a;,x; sitting
inside a copy of Sym(p?) for each i with one such pair satisfying the conditions of Theorem|5.0. 1.

Then {a,x) = W), precisely when up to a renumbering of the o the following conditions hold
(i) [a,a®] =1 foralli=1,...,(p—1)/2;

(ii) A% is a block matriz having p x p blocks, all of which are zero except for those immediately
above the leading diagonal. The non-zero p X p blocks are either equal to p - Y, for some
o € Sym(p) or have every entry equal to 1. Moreover, A% contains at least one block whose

entries are all equal to 1; and

(111) AZ is a block matriz having p x p blocks each of which is circulant and the diagonal blocks are

all equal. Moreover, either

(c1) X =1 s a root of multiplicity at least 2 of the representer polynomial fpg(az)(X) €
Z,[X] but is not a root of the representer polynomial ijS(Ag)(X) € Z,2[X]; or

(c2) X =1 is not a root of the reduced representer polynomial gy.(X) € Z,2[X];
(or (i), (i13) and (iii) hold - up to a renumbering of the x; - with the roles of a and x interchanged).

Our final result combines Theorems and to consider the most general setting. Since

Cp 1 Cp is not a subgroup of Sym(n) for n < p?, this occurs when G = Sym(rp) for some r > p.

Theorem 5.0.3. Let r = p, n = rp and G = Sym(n). If a is the standard p-element of G having
G-conjugacy class X and x € X, then {a,z) = W, precisely when for a suitable renumbering of the

a; and x; the following conditions hold
(i) [a,0"] =1 fori=1,....(p—1)/2;
(ii) A% is a block diagonal matriz having blocks D1, Do and D3, where

e D1 =p-1I for some identity matriz I;
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e Dy is a block diagonal matriz having p x p blocks, where each block has the form p-Y,

for some p-cycle o € Sym(p); and

e D3 is a block diagonal matriz having p* x p* blocks having the form of the matriz A%

from Theorem [5.0.3

(iii) AZ is a block diagonal matriz having blocks Ey, Eoy and E3, where

L El = Dl;

e I is a block diagonal matriz of the same size as Dy, where each block is a p x p circulant

matriz having row sum equal to p; and

e F3 is a block diagonal matriz of the same size as D3, where each block is a p? x p? block

matriz having p X p blocks each of which is circulant and the diagonal blocks are all equal.
(iv) One of the following holds

o The representer polynomial fp(X) € Zy[X] of at least one of the circulant blocks, B, of
FEs has a simple root at X = 1;

o There is at least one block, C, of E3 such that X =1 is a root of multiplicity at least 2
over Z, of the representer polynomial of the block sum matriz BS(C) but X =1 is not
a root of the representer polynomial fj’BS(C) (X) e Z,p[X];

o There is at least one block, C, of E3 such that X = 1 is not a root of the reduced
representer polynomial gi(X) € Z,2[X].

(or the conditions (i) — (iv) hold with the roles of a and x interchanged)

This chapter is arranged as follows. In Section we look at the matrices A and A7 and give
some basic results about the wreath product C), ¢ C),. We also introduce the notion of circulant
matrices and illustrate a number of properties that they satisfy, which will be used in our subsequent
work. Sections and consider the case that n = p%. The former section leads up to a proof of
the equivalence of (a, x) = W), and part|(i)|of Theorem whilst the latter proves the equivalence
of parts|(i)|and of the same theorem. The case that n = p3 is considered in Section in which
Theorem [5.0.2]is proved. Due to the technical nature of some of the proofs in Sections [5.2| and
both sections conclude with worked examples highlighting the key steps in the proofs. The chapter
concludes in Section [5.5], where Theorem [5.0.3]is proved.

5.1 Preliminary Results

Throughout this chapter we fix a prime p # 2 and set G := Sym(pr) for some r > p. We shall
also use the notation W), to denote the wreath product C, C, of two cyclic groups of order p.
We consider G to be acting on the set 2 := {1,...,pr} and fix an element a = ajag - - - o, where
a;=(piE—1)+1,p(i —1)+2,...,pi), which we will sometimes refer to as the standard p-element
of G. We denote the G-conjugacy class of a by X = a®. Given z € X, it will be useful to denote
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the disjoint p-cycles forming x by x1,..., x». The x; are defined recursively by setting 1 to be the
p-cycle for which the orbit of 1 under (x1) is non-trivial. Assuming that y; has been defined for

1 < ¢ < j we then define
tj := min {t € Q | the orbit of ¢t under {(xi,...,x;, is trivial}

and define x ;41 to be the p-cycle for which the orbit of ¢; under {x;1) is non-trivial.

In Chapter [4 it was seen that when X was an arbitrary conjugacy class of involutions, then to
determine when two conjugate involutions generate the wreath product Wy =~ Dih(8), we may use
graphs known as z-graphs. These graphs essentially considered the intersections of the supports
of the transpositions in the decomposition of the involutions. Generalising this from a strictly
graph-theoretic viewpoint is impractical. However, consideration of the adjacency matrix of such

a generalisation does yield results.

Definition 5.1.1. Let x € X be given. We define the r x r matrices A% and AL by

(A3);; := Isupp(ef) N supp(a;)|

and

(Ag);; = [supp(x7) N supp(x;)|-

As with z-graphs, since the element a is fixed, we suppress it in our notation and denote A% by
Ag. The determinant of a matrix B will be denoted by det(B) and the largest power of p dividing
it will be denoted | det(B)|,.

We illustrate these notions with an example. Let p = 5 and let a be the standard 5-element of
G := Sym(25). Taking

T=X1"X2 X3 "X4°X5
= (1,22,15,4,5)(2,8,7,19,9)(3,10, 14,24, 11)
(6,23,25,20,13)(12,18,16,21,17)

in the G-conjugacy class of a, we see that

af =(1,22,8,10,5), af =(2,14,23,19,7), of = (3,18,6,24,4),
af =(9,13,21,12,16) and of = (11,20,17,15,25).

Consequently

&
Il
S O N =N
O = = =N
NN O = O
N = = = O
— = = =
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Similarly

x¢ =(1,2,23,11,5), x§=1(3,9,8,20,10), x% = (4,6,15,25,12),
X% =(7,24,21,16,14), and x¢ = (13,19,17,22,18).

This gives rise to the matrix

o
8
|
= O N O N

1 1
2 1
0 2
1 0
1 1

S N O N
N NN= O O

In Section [5.2] we will be concerned with two specific classes of matrices; permutation matrices
and circulant matrices. Indeed, if 0 € Sym(n), then we denote by Y, the n x n permutation matrix
defined by

1 ifioc = j; and

(¥o)ij =

0 otherwise.
In the case that o = (1,2,...,n), we set 7 := Y,. For a given n x n-matrix A, multiplying A on the
left by 7 cyclically shifts the rows of A up by a row, whilst multiplying by 7 on the right cyclically
shifts the columns of A to the right by a column. Matrices that are invariant under conjugation by
7 are known as circulant matrices. Thus any circulant matrix C satisfies C; ; = Cj 1 j4+, for any
k =1,...,n (where we replace ¢ + k (respectively j + k) by i + k — n (respectively j + k —n) if
i+ k > n (respectively j + k > n)). Consequently a circulant matrix is uniquely determined by its

first row, and we denote the circulant matrix

€0 €1 €2 - Cp—l
Cn—1 €o Cl -+ Cp—2
C=| ¢th2 Cr1 ¢ -+ Cn-3 |,
c1 €2 €3 -+ 0
by C = circ(cg, €1y ..., Cp_1).
Associated to any circulant matrix C' = circ(cg, ¢1,...,¢n—1), iS the representer polynomial

fc(X) in the indeterminant X, given by
feX)=co+aX+cX?+ 4 XL

Strictly speaking this is a polynomial with coefficients in the underlying ring of C'. However, in
this chapter the underlying ring of our circulant matrices will be the integers, and it will sometimes
be preferable to consider fo(X) as an element of Z,[X] or Z,2[X]. The following result illustrates

this correspondence.

Lemma 5.1.2. Let X = circ(zo,...,zp—1) be an integer circulant matriz. Then det(X) = z¢ +

<-4 xp-1 (mod p).
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. . . ag a1 ap—1
Proof. Expanding det(X) gives a series of summands ..., ;2 T} R

ap—1 = p and a; € N. Clearly if a; = p for some i, then the coefficient ag...q,_, is equal to 1 and the

where ag + -+ +

. . . Ap— .
corresponding summand of det(X) is 2¥. Conversely, consider an occurrence of z(° - - x | in the

ap_1 .
p’l 1 occurs from the entries

of X. Due to the circular nature of entries of X, it will also occur from the entries

expansion of det(X) where no a; is equal to p. Suppose that zp®---x
Xivjire o Xipjp
Xis kit Xiptkjp+k for k=1,...,p—1 (where we set X;1p;, Xijp and X;ypj4p equal to

X, fori,j=1,...,p). Since each a; is not equal to p, and p # 2 we conclude that

{Xiytsitss o Xiptsgpts) Z AXigttjrtts s Xiptrtjp+t}
for any distinct s,t = 0,...,p— 1. Moreover, consideration of the signs of each of these occurrences
Qp— .
of zg° - z,” | shows that they must all be equal. Since there are p such occurrences, we conclude

that if a; # p for j = 0,...,p—1, then ag...q,_, is divisible by p. Consequently, applying Fermat’s

Little Theorem we obtain
det(X) =af +--- +m£71 =20+ +xp—1 (mod p).

O]

Next we consider the structure of W), =~ I' x C),, where I' is an elementary abelian p-group of

rank p.

Lemma 5.1.3. Let p be an odd prime and let G be a group having a normal elementary abelian
p-subgroup T' of index p in G. Suppose that T' has rank p. If a,x € G satisfy ord(a) = ord(x) = p

and {a,x) = G, then either a or x is contained in T

Proof. Let a,x € G\I satisfy the given properties. Since G/T" is a cyclic p-group, by replacing x by
an appropriate power, we may assume without loss of generality that al' = xI" and hence that the
action of @ on I' is equal to the action of x on I'.

Let A := (a7 12) x (a™22%) x --- x {az™'). We note that as al' = 2T each of a~‘z’ € T for
i=1,...,p— 1. Hence A < I'. Conversely, suppose that y € I'. As y € G = {(a,x), there exist

bi,...,bay € Z, (for some n) such that

y = abrgb2gbs b ... gban—1pb2n (5.1.1)

Note that as G/T' = {(al') = (aT"), we have the relation 2321 bi =0 (mod p).
We now proceed to build y recursively. We assume that y is written in the form (5.1.1]) such

that no b; is zero. In the case that by = 0 or by, = 0, an analogous argument holds. Define

b12=b1 Thus y; agrees with y in the first position. Now assume that we have defined y; € A

Yy :=a
b1 bg' d bl b2...

for some i < 2n such that y; = a® 2% .- bz or y; = a®x zba? depending on the parity of

i. Here d := —23':1 bj. Thus y; agrees with y on the first 7 entries. In the former case define
Yip1 = yixtt1 %4+ and in the latter case define ;i1 = yab 1 "zt Thus yipq € A
and y;+1 agrees with y in the first ¢ + 1 positions. Continuing in this way we may define y; for

i =1,...2n, where each y; € A. However,

2n .
Yon = a2 b3 04 L L. gben—1pban o~ 2o bi v,

and hence y € A. We conclude that I' = A, from which the result follows immediately. O
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Applying Lemma to W, we obtain the following result that we will use in Section

Corollary 5.1.4. Let p be an odd prime and let a,x € W, be elements of order p such that
{a,zy = W,. Then either [a,axi] =1 forallie{l,...,p} or [:E,x“i] =1 forallie{l,...,p}.

Proof. Since W), satisfies the hypothesis of Lemma either a or = is contained in the base

group of W), which is elementary abelian. O

We conclude this section with a remark.

Remark 5.1.5. We may construct the matrices Ay and A} in the computer algebra system
MAGMA. The appropriate code for doing so, together with code for constructing arbitrary circulant

matrices and for checking if a given matriz is circulant is given in Appendiz [Q

5.2 The n = p? Case

In the next two sections, we prove Theorem [5.0.1} This theorem reflects the fact that in the wreath
product Cy, 1 C), the p copies of C), are permuted in a p-cycle, and elements within each copy of C),
have a circular orbit.

The proof of Theorem [5.0.1] can be split into two separate cases. In Subsection we
will prove the equivalence of {a,z) =~ W, with part of Theorem m This is proved in
Proposition [5.2.2] Due to the technical nature of the proofs in this subsection, we follow this in
Subsection with a worked example mirroring the proofs. The equivalence of parts|(i)| and
of Theorem [5.0.1] is then proved in Section [5.3] as Theorem [5.3.2]

5.2.1 The Results

We begin by formulating a result relating the conjugation action of x on a to the rank of an

elementary abelian p-group.

Lemma 5.2.1. Let G = Sym(p?), a be the standard p-element of G and let x be a conjugate of
a. If offjil = ai;‘;ﬁl for some p-cycle o € Sym(p), some non-zero ey, ...,e, € Z, and for all

j=1,...,p, then the elementary abelian p-group T := {a® |7=0,...,p—1) has rank p if and only
if et +---4e,1 #0 (mod p).

Proof. For ease of notation we will assume without loss of generality that ¢ = (1,2,...,p).
Moreover, for simplicity of subsequent arguments we define e,,,,4; := €; for all m € Z. Let

dy,...,d, € Z, be such that

p

[ [ =1. (5.2.2)
=1

-1

€ €i+1

oi=l _ erodTt ey x _ TTP J
As of = o5 = o)t follows that a* = =105

—1 —1
e 1€ 41 . i € iy165+1 ~
Loy and in general a® = [[*_; o/ 7" . Thus we may write (5.2.2) as

. Iterating this we have that a®’ =

p P

(6'_1‘ 1ej+1)di b P e 165+1 .
[II e =[T{I]e =1 (52.3)
i=1 \j=1

i=1j=1 i
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It follows that for a fixed £ € {1,...,p}, the exponent of oy in ([5.2.3)) is congruent to 0 (mod p).

Thus we have
p
Z e, ler)d; =0 (mod p). (5.2.4)

The equations in give rise to a homogeneous system of linear equations in the d; with
coefficient matrix given by A = (as;), where a;; = ef_fieg. This matrix is invertible if and only if
the matrix B = (by;) is invertible, where b, ; = e[_li. We may conclude that there is a non-trivial
solution to (5.2.2) meaning that the group I' has rank less than p, precisely when det(B) = 0
(mod p). However, B = circ(e, L e, 11, ... ,61_1) and so appealing to Lemma we deduce that
1+~~—i—e;150(modp). O

this occurs precisely when e;
Lemma underpins the proof of the equivalence of (a, x) =~ W), and part of Theorem
as it allows us to relate the coefficients of the circulant matrix - A¥ or A, - with the base group of

the wreath product W),

Proposition 5.2.2. Let G = Sym(p?), a be the standard p-element of G and let = be a conjugate

of a. The following are equivalent

(1) {a,z) =Wy,

(it) Ay = p- Yy for some p-cycle o € Sym(p), AL = circ(0,¢1,...,¢cp—1) for some cie Z,, X =1
is a simple root of the representer polynomial fa:(X) € Z,[X] and [a,a”] = 1 (or with the

roles of a and x interchanged).

Proof. Throughout the proof we write a = o ---a;, and x = x1---Xp as in Section Assume
that (a,z) = W),. By Corollary either [a,axi] =1forallie{l,...,p}or [x,:v“i] =1 for all
i€ {l,...,p}. Without loss of generality assume that [a, af”i] =1foralli=1,...,p. An analogous
argument can be used in the case that [z,2%] = 1.

As [a, axi] = 1, either supp(af) = supp(wi,) for each i = 1,...,p and some p-cycle o € Sym(p),
or [supp(af) nsupp(e;)| = 1 for all 4,j. If the former case holds, then A, = p-Y,. If the latter
case holds, then in particular |supp(af) nsupp(ai)| = 1. It follows that in the disjoint cycle
decomposition of z, there exists a cycle whose support contains two elements of {1, ...,p}. By
taking appropriate powers of a and x, we deduce that ord(a‘z’) < p? for some 1 < i,j < p—1 and

hence as (a,z) =~ W, it follows that ord(a‘z?) = p. Hence

L= (a")- (@) (@) (@)

Thus as the a®" pairwise commute, they must form an elementary abelian subgroup of order at
most pP~!. Moreover, as  acts on this subgroup via conjugation, it would follow that |{a,z)| <
pP < pPT! = |W,| and hence {(a,z) & W,. We conclude that the latter of the two cases cannot hold,
and hence A, = p-Y,. Consequently supp(af) = supp(«;,) for each i € {1,...,p}.
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Define b; := minsupp(x;) and write z as a p X p array as

(b1, bix1, bixds - bixy )
b27 b2X27 b2X2) ey bQXp_l
( 2 2 ) , (5.2.5)

(bpa prpa pr;Qn ttt bpxgil)

As [a,axi] = 1for all i € {1,...,p}, we see that o € {a;,) for each i € {1,...,p} and hence the
columns of (5.2.5)) correspond to powers of the ;. Consequently, A7 = circ(0, ¢y, . .., cp—1) for some
c1,...,cp € N with the sum of the ¢;’s equal to p. In particular X = 1 is a root of the representer
polynomial f4:(X) € Z,[X].
Define T' := <axj\ j=1,...,p). Thus I' is an elementary abelian p-group of rank p. Moreover
a(lfj71 _ aelo'j71
1 T Qi

min{i | ¢; # 0} and

for some non-zero eq,...,e, € Z,. Define a; for ¢ = 1,...,p recursively by a; :=

a; := min {E
for i > 1.

To understand the correspondence between the a;, ¢; and e;, we again consider ((5.2.5)). We see
that the a; give the number of rows descended in ([5.2.5) to go from the entry in the first row of

a column to its image under a, while each ¢; gives the number of times that j rows are descended
within a column. Thus Zf:_ol i-c¢ =y _;a;. Meanwhile, the e; give the exponent to which «; is
raised under the image of successive powers of x, and hence these are precisely the inverses of the
aj.

Consequently, as multisets we have that

{ai\izl,...,p}z{e;l li=1,...,p}.

Appealing to Lemma we see that, as I" has rank p, then a1+ - -+a, # 0 (mod p). Consequently

p—1 P
f;lz(l) = chz = Zai #0 (mod p),
i=0 i=1

and the representer polynomial of A? has a simple root at X = 1 as required.

Conversely, assume that the conditions in hold. As A, = p- Y5, it follows that supp(af) =
supp(ais). Moreover, as [a,a”] = 1 we have af € (®j,). Defining I' := (@i =1,...,p) we deduce
that T' is an elementary abelian p-group upon which (z) acts, and I' n (x) = {1}. Thus it suffices
to prove that rank(I") = p. However, an analogous argument to that used above involving the a;,
¢; and e; shows that this is equivalent to proving that f;lg(l) # 0 (mod p), which holds as f4:(X)
has a simple root at X = 1.

O

We note that all of the conditions in Proposition [5.2.2| are necessary. Indeed, the necessity of
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the structure of A, and A? was evident in the proof of the proposition. However, if p = 5 and

x =(1,6,11,16,21)(2,7, 14, 18,25)(3,9, 15, 17, 23)
(4,8,12,20,24)(5,10, 13,19, 22),

then the matrices A, and A? are given by
Ay =57 and A% = cire(0,2,1,1,1)

both of which satisfy the conditions in the proposition. However, in this case [a,a”] # 1. Indeed,
{a,x) is a group of order 3,888, 000,000 and exponent 150.

5.2.2 A Worked Example

To illustrate what is happening in the proofs of Lemma [5.2.1] and Proposition we give an
explicit example. Indeed, let p = 5 and consider G = Sym(25), having standard 5-element a =
(1,2,3,4,5)---(21,22,23,24,25) € G. Using the computer algebra system MAGMA we may take

a random element, x, of the G-conjugacy class of a that satisfies (a, z) = W5, namely

x =(1,6,11,16,21)(2,9,12,19,22)(3,7,13,17, 23)
(4,10, 14,20, 24)(5, 8,15, 18, 25).

We now consider the methodology from the proofs of Lemma [5.2.1] and Proposition [5.2.2 in this

specific case.

Lemma [5.2.7]
We have that

of = (6,9,7,10,8) = a3, o = (11,12,13,14,15) = as,
o’ = (16,19,17,20,18) = a3, o = (21,22,23,24,25) = as,
o’ =(1,2,3,4,5) = ay.

Thus - using the notation from Lemmal5.2.1|- o = (1,2, 3,4,5) and (eq, €2, e3,¢e4,€5) = (1,3,1,3,1).

Conjugating a by successive powers of x gives

@ =of-af-af-af 0 =af o Foaf Ciaf il
0 =of-af-al-a}-al =afl “-aff af Coaf el
o —o}-ab-af-af-af —af e “iaf ool ool
@' =ad o} 03 0f-ad =af “Uaf g Caf a7
a®’ = o& . oz% . 04}3 . ai . a% = aiflel . oz;;leg . ag‘;l% . aizlm ~a§g1€5.
. -1 .
Hence we have confirmed the formula a® = ?:1 ailaf;j ~7 from the proof of the lemma. Con-

sequently, a non-trivial relation between that a® will give a non-trivial solution to Az =0 (mod p),
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where the matrix A = (A4y ;) has the form
eglel e;lel 63_161 62_161 el_lel
61_162 egleg e;leg 65162 62_162
A= eyles ejles esles ejles e3les
egle4 62_164 61_164 65_164 e;le4
62165 e§165 65165 efleg, 6g165
This has a non-trivial solution precisely when the matrix
egl 621 egl 62—1 61—1
efl egl 621 651 651
_ -1 -1 -1 _-1 -1
B=1| e e e e e -
egl 62_1 el_l egl e;l
i’ eyl eyl el ey
= circ(egl, 64_1, egl, 62_1, 61_1) = circ(1,2,1,2,1)
has zero determinant (as the e¢; € Z,, are invertible). However, by Lemma |5.1.2| we have that
P y DY
det(B)=e;' +e;t +egt +eyt +ef'=1+2+1+2+1=2 (mod5)
=¢5 4 3 2 1= = .
Thus there are no non-trivial solutions to Az =0 (mod 5) and hence (a*’|j = 0,...,4) has rank 5

- as can easily be verified.

Proposition

By the work above we have that [a,a”] = 1 and that <a$j |7 =0,...,4) is an elementary abelian

5-group of rank 5. Moreover

0 5
0 0
Az=10 0
00
5 0
0 3
0 0
Az=10 0
2 0
3 2

o O O ot O

S O O W N

o o ot o O
o o O O O

S O W N O
S W N O O

=5-Y(12345)

= circ(0, 3,2,0,0).

We define (c1,¢2,c3,c4) = (3,2,0,0), a1 = min{i|c; # 0} and

4 i—1
}:_j'cyi> }: aj}
j=1 j=1

a; = min {8

and
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for i =2,...,5. Thus (a1, a9, as,a4,as) = (1,1,1,2,2).
Finally, considering the representer polynomial of A? we have that

5

far(1)=(3+4X)|x=1=2= > a; #0 (mod 5)
i=1

and hence X = 1 is a simple root of fa:(X) € Z5[X] as required.

We note that by considering = as a 5 x 5 array of the form

(1, 6,11,16,21)
(2, 9,12,19,22)
= (3, 7,13,17,23) , (5.2.6)
(4,10, 14, 20, 24)
(5, 8,15,18,25)

the image of each entry in the first column of x under the action of a is in the same column, and
one row below the original entry. Similarly, for columns 2,3,4 and 5 the action of a corresponds
to “descending” by 2,1,2 and 1 rows respectively. Thus the image of 1 under (ax)® will be in the
first column of z in (5.2.6), but will have descended 2=1+2+1+2+1= Zle a; (mod 5) rows.

5.3 An Equivalent Formulation

Our characterisation of (a,z) in terms of the matrices A, and A? given in Section depended
on the representer polynomial of a given circulant matrix. However, we may also consider the
determinant of the circulant matrix. This characterisation relies on the following well known result

regarding the determinant of a circulant matrix.

Theorem 5.3.1. [KS12, Theorem 6] Let C = circ(cp,ci1,...,cn—1) be a circulant matriz with

complex coefficients. Then
n—1 /n—1 )
det(C) = H (Z clw9l> ,
§=0 \i=0

where w = exp(27i/n).
We now describe this approach using determinants.

Proposition 5.3.2. Let p > 3 be a prime and let c1,...,c,—1 be non-negative integers such that
SPle; = p. Let C = cire(0,¢1,...,¢p 1), and let fo(X) = Y07 e; X' € Z,[X] be the representer
polynomial of C. Then | det(C)|, is divisible by p*. Furthermore |det(C)|, is divisible by p? if and
only if fo(X) =0 or 1 is a root of fo(X) of multiplicity at least 2.

Before proceeding to prove Proposition we first give three general results that we will

require in the proof.

Lemma 5.3.3. Let p > 3 be a prime and w = exp(27i/p) be a primitive p* root of unity. Then
QN Z[w] = Z. In particular, 1/p* ¢ Z[w] fori > 1.
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Proof. We note that S = {1,w,...,wP™2} is a basis for both Q[w] over Q and Z[w] over Z. Suppose
that o € (Q N Z[w])\Z. Then « can be written as a Z-linear combination of elements of S, thus
giving two distinct ways of writing o as a Q-linear combination of elements of S in Q[w]. This

contradiction gives the result. O
Lemma 5.3.4. Let p > 3 be a prime and let w = exp(27i/p). Then

(Z)H (1—w ) = p; and

(ii) T (! —wiP=9) = p.

Proof. Set h(z) =2 —1 = z — w%). Differentiating h(z) with respect to z gives
j O
Pt = H( H (== 1) Z H

It follows that p = h/(1) = H (1 — w?) as required to prove (i).

Part (ii) then follows immediately since

ﬁ(wj — HwJ wP=2)7)
j=1
— PP—1)/2 H(l
j=1

Lemma 5.3.5. Let p = 3 be a prime. Then

1+ Z H 1-7H=0 (modp). (5.3.7)

1=2 j=2

Proof. As the elements (1 — j~!) for j = 2,...,p — 1 are the non-zero, non-identity elements of
Z,, it follows that ]_[971(1 —j 1) =p—1 (mod p). Thus (5.3.7) is equivalent to proving that
Zf:_; ; 5(1 =771 =0 (mod p). We will actually prove that

1+ [[@=5"=0 (modp) (5.3.8)
j=i+1
for all i = 2,...,(p —1)/2. This is sufficient to prove the result, since

[T+ [Ja-iY=]Ta-i™ (1 v Ila fl))

j=2 j=2 Jj=2 Jj=i+l

=0 (mod p),

from which the result follows immediately.
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We prove that (5.3.8)) holds by induction on ¢ = (p+1)/2—i. When £ = 1, theni = (p—1)/2 and
so (5.3.8) becomes 1+ (1—((p+1)/2)~1) =0 (mod p), which clearly holds since ((p+1)/2)"! =
(mod p). Assume that (5.3.8)) holds for £ = (p+1)/2 — k < (p + 1)/2. It follows that

p—k+1 p—k
1+ [Ja-iH=1+0-H0-@-k+1)) J] Q-4
j=k j=k+1

=1-(1-kHl-(p-k+1)™)

=k '+@p—k+D) 'kl p—k+1)!
=k 'p—k+D) ' p—k+1+k-1)
=0 (mod p).

Thus by induction (5.3.8) holds for all i = 2,..., (p — 1)/2, as required to complete the proof. [J

We are now in a position to prove Proposition [5.3.2]

Proof of Proposition If ¢; = p for some i, then C' = p - 7. Thus the result clearly holds
since |det(C)|, = pP so is divisible by p3, whilst fo(X) = 0 € Z,[X]. Conversely, if fo(X) =0¢€
Z,[X], then some ¢; must equal p, and hence | det(C')|, = pP. Consequently, we may restrict to the
case that fo(X) # 0 and hence that ¢; < p for each i =1,...,p— 1.

Consider the general form of the determinant of C' and define

qj = 1w’ +cow¥ 4+ cp_gw(p_2)j — (14 + cp_Q)w(p_l)j

=1 (w —wP™ ) 4 (¥ — P 44 Cp_z(w(p*2)j — @17,

where w = exp(2mi/p). As ¢1 + -+ ¢p—1 = p, applying Theorem to C = circ(0,¢1,...,¢p—1)

we have that

p—1
det(C) = H (cle + o 4+ cp_gw(p’z)J
j=0

—+ (p —Cl — — Cp_z)w(pil)j)
p—1
=p- (cle + cow® + - 4 cp_gw(pfz)J
j=1
+(p —Cl— = Cp_Q)(JJ(p_l)j>
p—1

1

<.
Il
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We now extract the terms in this expansion with a factor of p, p? and at least p3. Define

p—1p—1 p—1
a(C) = Z Wik H (Qj +p w(P 1)])
i=1 k=1 j=1
ki j#ik
p—1 p—1
ﬁ(C)=Zw Zqu, and
i=1 j=1
J#i
p—1
vC) =]
j=1

It follows that
det(C) = p* - (C) + p* - B(C) + p-7(C)

We now consider 3(C) and v(C) in turn.
Claim 1: j3(C) =p- 5'(C) for some §'(C) € Z[w].

Proof of Claim 1: Setting

we see that

Bi(C) =c1+ (1 +w? +wh ..+ wP=1I 4 )
+es(T4+w¥) + e+ w? + 0¥+ 0PIl 4 %)

+es(1+w? + )y 4.onnn +epo(l+w? + w4 P37,

Consider the formulation of 3(C) as:

p—1 p—1
BO) =Y w (c1 (@ —w®DI) ey (WP w(p—l)j))
o
p—1 p—1
=) Wt H(wj w(P—l)J)ﬁj(C)
=1 j=1
J#
p—1 p—1 p—1
= Do [ =) [T 8(C).
i=1 j=1 j=1
ji J#i

If k=—(j+1)"! (mod p), then 2k(j + 1) + 1 = —1 (mod p). Consequently

o 200+1)+1 4 L. 2k(G+1)+1 4 1
0i = w+w + +w +

j +w

has 1 — (j +1)~! (mod p) terms. As a consequence, we have the relation

WP — ) = (WP — T (w4 B QPRUHDFL g T

= (@I W

121

(5.3.9)

(5.3.10)

(5.3.11)
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forj=1,...,p—2.
Let i € {1,...,p —2}. By (5.3.11)) we have that

WPt —w =6 Gy (W — WP, (5.3.12)

Applying (5.3.12)) to (5.3.10) we obtained

p—2
B(C) =w] [ —wP1i HBJ Zw‘ﬂ I — =i Hﬁg
j=1

7j=1
j#i T
o[ =) []8(0) + Y w ity 8mima [ [ =) [T 85(C)
j=1 j=1 i=1 j=1 =1
J#i
p=2 '
- T(0) H(wj — =iy, (5.3.13)
j=1

where
p—2 p—2 p—1
C)i=w]|[Bi(C)+ D w61 6pia [ [ B(C)
j=1 i=1 J#
Define I'(C)(X) € Z,[X] to be the polynomial obtained by replacing every occurrence of w in I'(C')
by the indeterminant X. Similarly define 5;(C)(X),d;(X) € Z,[X]. Since 5;(C)(1) = 5;(C)(1) for

all 7,7 = 1,...,p — 1, we may denote this common value by £&. Moreover, our observation above

asserts that
s;()=1—-(G+1)"" (mod p).

It follows that

p—2
LEO)) =&+ Y 1-27)1-(p—i) H)e?
i=1

<1+22ﬁ 1—j5~ 1)

=17

where the last equivalence arises from Lemma Consequently, (X —1) is a factor of I'(C)(X) €
Z,[X] and hence evaluating I'(C')(X) at X = w yields

I(C) = (w=1F(w) + pG(w)

for some F(w), G(w) € Z|w]. Substituting into (5.3.13) gives

p—2
p(C) = <H(wj - w(”_l)j)> (W=D F(w) +pG(w)).

j=1
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Finally, as
w—1= (W' —w) W +uw+- +wP

we may appeal to Lemma [5.3.4{ii) to get

p—1
B(C) = (H(wj - w(p_l)j)> W+ W+ WP HF(W)

=1
J -
+p <H(wj - w<p—1>j)> G(w)
=1
J s
=pw? +wr+ - WP THF(W) +p (H(wj — w@—lh)) G(w)
j=1
=pB'(C)
as required. °

Now we consider v(C).
Claim 2: ~(C) =p-+/(C) for some v/ (C) € Z.
Proof of Claim 2: We may factorise v(C) as

—_

p—
Y(C) = H(wj —wP ) (¢ + a1+ w¥ + -+ WP 4w 4 e3(1 + w?)
j=

Fea(l+w? + -+ w0l 403 e (1 4w 4w

—_

ot eyl W 4 4w

p—1
= [T @ M9)8,(0)
j=1
p—1 p—1
= [T/ — @) []850)
J=1 J=1
p—1
=p-[[8;(C) (5.3.14)
j=1

where the last equality in ([5.3.14]) follows from Lemma ‘ If we consider ?;i B;(C), then

by taking s; to be the coefficient of w” in 3;(C) we see that the s; are non-negative integers and
Sp = c1+--+cp—2 = p—cp—1 is non-zero. Defining S = circ(so, s1,...,5p—1), we see that det(S) € Z

and so

p—1
Hﬂj((]) = ! det(S) € Q n Z[w].
j=1

So+ 81+ -+ Sp1

Appealing to Lemma we conclude that H?: B;(C) € Z as required to prove Claim 2. o
It follows from (5.3.9)) that

det(C) = 7 (pa(C) + pB'(C) +(C)) .
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Since pa(C) + pB(C) ++'(C) = det(C)/p? € Q n Z[w] = Z, we conclude that det(C) is divisible by
p%. To complete the proof of the proposition, we make one final claim:

Claim 3: +/(C) = p-~"(C) for some v"(C) € Z[w] if and only if X =1 is a root of fo(X) € Z,[X]
of multiplicity at least 2.

Proof of Claim 3: First note that X = 1 is a root of fo(X) of multiplicity at least 2 if and only
if X = 11is a root of the derivative f(,(X) of fc(X). This occurs precisely when ZZ 19-¢6=0

(mod p). Moreover

p—1 p—2 p—2
Zi~ci= Ei-cmt(p—l) (p—Zq)
! ; =1

= 2(i+1)~ci (mod p)

(p—3)/2
Z 2t -coi1 + (2i + 1) cCcoi | + (p — 1) ©Cp—2 (mod p).
=1

Thus it suffices to prove that 7/(C) has the desired factorisation precisely when

(r—3)/2
Z 2i-c1+(20+1)-co |+ (p—1) - cp—2=0 (mod p).
i=1

In fact we will prove that

-1
(p=3)/2 g
) . p+1 p—1
¥(C) = Z <z ccgi—1 + <z + 2) czi) 2 (mod p) (5.3.15)
i=1
We note that
pil . . . .
~(C) = H (14 ca(l+w? + -+ w7 400 + e5(1 + w?)
j=1
tea(l+w? 4+ wPI Ty )
tes(+w¥ +w) 4+ 4y ol +w¥ 4o 0P
p—1
= ((Cl+C3+"'+Cp_2+62+64+"'+cp_3)
j=1
+(c3+ - +epateateat ey 3w
t(cs+ - tepateateat o +epzwt (5.3.16)
Fot(cateat ot ep )P (et eq o A cpog)ed
+(eateg+ -t epg)w + o+ cp_gw(p_4)j> .
Now let €’ be the circulant matrix C" = cire(cp, ..., ¢,_1) where ¢; is the coefficient of w in
the j' factor of (5.3.16) and set A\ := Zf:—ol ¢i. Since v'(C) = }Zz o Ciw", we see that
det(C") = XA -+/(C). An alternative formulation of A is given by
(p—3)/2
. +1 -1
A= Z 1-C2%—1 t+ <Z + }72> coi | + b 5 “ Cp—2- (5.3.17)

i=1
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There are now two possible cases to consider. First suppose that A is divisible by p. Then an
analogous argument to that used for the matrix C' can be used to show that det(C”) is divisible by
p? (as the coefficient of wP~2)7 is zero, and so the matrix is of the required form). Since \ < p?, it
follows that 7/(C') is divisible by p, and hence Claim 3 holds.

Now suppose that X is not divisible by p. Then becomes +/'(C) = 1 (mod p) by
Fermat’s Little Theorem. Combining our formulation of det(C’) and Lemma we have that
A =det(C') = X -+/(C) (mod p), and hence as A # 0 (mod p) it follows that 4/(C) = 1 (mod p)
as required. This completes the proof of Claim 3. .

To complete the proof of Proposition we recall that we have already reduced to the case
that fo(X) # 0 € Zp[X]. Substituting the results of Claims 1 and 2 into (5.3.9)) we obtain

det(C) = p*(a(C) + B'(0)) +p*'(C).

If X = 1is aroot of fo(X) € Z,[X] of multiplicity at least 2, then by Claim 3 we obtain
det(C) = p3(a(C)+5'(C)+~"(C)), and hence appealing to Lemmawe obtain |det(C)|, = p3 as
required. Conversely, if X = 1 is not a root of multiplicity at least 2 of fo(X), then Claim 3 asserts
that there is no v”(C) € Z[w] such that 7/(C) = p-4"(C). Thus det(C) = p*(a(C)+5'(C))+p>*v'(C)
and as 7/(C) € Z, appealing to Lemma we obtain that det(C) = p3>m + p?n where p and n
are coprime. Thus |det(C)l, = p*.

O

Theorem [5.0.1] now follows immediately from Propositions and

5.4 The n = p® Case

To consider the case that G = Sym(p?), we follow a similar approach to that used in Section We
first develop the theoretical results in Subsections and before giving a worked example
for the case that p = 3 in Subsection

5.4.1 General Theory

In Section [5.3| we saw that the multiplicity of X = 1 as a root of the representer polynomial of
given circulant matrices was important. We begin by noting that the multiplicity is preserved under

cyclic shifts of our circulant matrix.
Lemma 5.4.1. Let p be a prime and C := circ(co, c1,...,cp—1) be an integer circulant matriz. If
X =1 1is a root of multiplicity i of fo(X) € Z,[X], then it is a root of multiplicity i of fric(X) €
Z,[X] for each j =0,...,p—1.
Proof. Define C; = 77C for each j = 0,...,p — 1. We shall prove that X = 1 is a root of
multiplicity ¢ of the representer polynomial of each C;. By assumption the result holds for j = 0
and hence assume it holds for j = k. We will prove the result holds for Cy_;. Indeed

fo(X)=cp+ X + -+ ep 1 XPF g oo XPF 4o g XPT!

= (X - 1)'g(X)
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for some g(X) € Z,[X] with ¢g(1) # 0 (mod p). Thus

fC’k,l(X) =cCp_1 +cp X+ + Cplep_k + Co)(p—i_l_lC + -+ Ck;_QXp_l
= fo,(X) - X + 1 (1 — XP)
= (X —1)'g(X) X +cp_1(1 — X)P.

Hence X = 1 is a root of multiplicity i of fc, ,(X), and thus by induction of fc,(X) for each
j=0,...,p—1. 0

We may use Lemma to consider quotients of W),

Lemma 5.4.2. Let N be a non-trivial normal subgroup of Wy and define QQ := Wp/N. Then
Exp (Q) <p.

Proof. Denote the base group of W), by I', so that W), = I x C}, where C), = {(z) - a cyclic group
of order p. Assume for sake of contradiction that Exp (Q) = p?, and let ¢ € Q satisfy ord(q) = p?.
We consider elements of W), to be ordered pairs of the form (v, c) for v € I" and c € C),. Thus there
exists v € I' such that ¢ = (v,2°)N for some i = 1,...,p — 1. Thus

¢ = (TN = (N, (5.4.18)

Moreover, 7% «--4% " ¢ N as ord(q) = p?.
If N ¢ T, then there exists 7o € ' such that (yp,7~%) € N. Consequently

a=(v,2")(v0,2 )N = (7§ ,1)N

contradicting the fact that ¢ has order p?. Thus N < T.

IfT = {aq) x (o) x - -+ x{oy) where of = ;1 fori =2,...,p and af = o, then from ([5.4.18)
we may deduce that
for some j =1,...,p — 1. Moreover, for any ¢ € I' we have that

56°6°° . 67 e danag - - o).

If there exists 6 € N such that 6626 - .. 57" % 1, then ¢? is trivial in Q. Thus every § € N must
satisfy 56557 . 57T = 1. Consequently, every § € N has the form

§=af'as? - ap (5.4.20)

with ¢; + -+ 4+ ¢, =0 (mod p).

Let § € N\{1}. Thus § has the form (5.4.20). Set C = circ(cy, ca, . .., ¢p) and let fo(X) € Z,[X]

be the corresponding representer polynomial. As ¢; + -+ + ¢, =0 (mod p) we have that X =1 is

a toot of fo(X). Assume that this root has multiplicity i. Thus X = 1 is a root of f5 *(X) but is
not a root of f4(X). Hence set

i! (e + 1) (p—1)!

)\;:fé,(l):ci_,’_l-—'—}—ci_,’_Q. 1 +otcpe

ol e Z*.

(p—1-0)t "
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Define d; for j =1,...,p by

g/ (G =9 ifj=i,...,p—1; and
0 otherwise,
so that A = Z?Zl cjd;.
Defining Cj = n'~7C for j = 1,...,p we have that f{, (1) = f&(1) = A. In fact ]”Ck(l) = )\ for
allk =1,...p. Indeed, by Lemma we have that fé;l(l) = 0 for each k. Moreover by iterating

the calculations in the proof of the lemma we obtain
fo (X) = fo, (X) - XPTH 4 (X = 1)Pgi(X)

for some g (X) € Z,[X]. Consequently, f’Ck(l) = fél(l) = \. We conclude that

clp Cp - Cp—1 Cp dl A
Cp Ccl - Cp_g Cp_l d2

C3 Cq4 - C1 (&) dp_l A
c2 €3 G c1 d, A

As ¢ has the form given in (5.4.20)) we see that

p )
(araz - ap) = [ J(6™ )% e .
=1

(2

Thus by (5.4.18) and (5.4.19)), ¢ = N, contradicting the fact that ord(q) = p?. Thus the result
holds. O

A presentation of W), was given by Drozd and Skuratovskii.
Theorem 5.4.3. [DS08] The wreath product C, Cy, has a presentation given by
CoCp = <a,x‘ap = 1,27 =1,[a,a” ] =1 for 1<k < (p—1)/2).
Combining Corollary Lemma and Theorem [5.4.3| we obtain the following result.

Corollary 5.4.4. Let G be a group and let a,z € G be elements of order p. Then {a,z) = W), if
and only if ord(ax) = p? and either

(i) [a,a®] =1 fori=1,...,(p—1)/2; or
(i) [z,2%] =1 fori=1,...,(p—1)/2.
Proof. Assume that {(a,z) = W,. By Corollary the desired commutator relations hold.
Without loss assume that [a,axi] =1fori=1,...,(p—1)/2. Thus a is in the base group of W,.
Moreover, the base group is defined by (a® | i = 0,...,p—1) and hence (az)? = a-a® " ---a® # 1.
Thus ord(ax) = p*.
Conversely, assume that the commutator relations hold. By Theorem we have that (a, z) is

isomorphic to a quotient of W,,. However, as ord(az) = p? this quotient must be W, by Lemmam
O



128 CHAPTER 5. CONJUGATE P-ELEMENTS GENERATING Cp ! Cp

To generalise the results of Sections and [5.3] we begin by considering conjugate elements of
full support in Sym(p?). Indeed, let G := Sym(p?), a € G be the standard p-element of G, X = a®
and let x € X'. In such a situation the matrices A, and A? are both p? x p? matrices. We make the

following definition.

Definition 5.4.5. Let r > 1 be an integer and let M be a pr x pr matriz. The block sum matrix
of M, denoted BS(M), is the p x p matrix given by

r—1
(BS(M));,j = Z My po jtpw-
v,w=0
Given a pr x pr matrix M, we see that BS(M) is the matrix obtained by partitioning M into
p x p blocks and then forming the formal sum of these blocks. Of particular interest is the case
when M can be partitioned into circulant blocks. In this case we see that BS(M) is a circulant
matrix.

We shall also consider a variant on the representer polynomial.

Definition 5.4.6. Let M be a pr x pr matriz having p x p circulant blocks. We define the reduced

representer polynomial of M to be the polynomial
gu(X)=go+ g1 X + -+ gra X'

where

r—

gz‘f=;

1 p
D My Gripek
7=0k=1

and M, 1 (j1iyp+k @5 replaced by My 1 (jrimryprr U JH1 2T

The reduced representer polynomial of the matrix M in some senses represents the matrix

formed by replacing each p x p circulant block of M by its row/column sum.

5.4.2 The Results

Before giving a characterisation of which elements of X" generate W), with a, we make the following
simple observation. If <axi | i=0,...,p— 1) is an abelian group that is closed under conjugation

by x, then

(az)’ =a-a® " - a - -d”.
In particular (az)?P is invariant under conjugation by both a and x and hence by (a, x).

We are now in a position to prove Theorem [5.0.2

Proof of Theorem Assume that {(a,z) = W), and denote the base group of W, by I'. By
Corollary we either have I' = <a’3i]i =0,....p—Lor = <x“1]z =0,...,p—1). Without
loss of generality assume the former case holds. We will prove that the given conditions hold (an

analogous argument may be used to show that in the latter case the conditions hold with the roles
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of a and z interchanged). By assumption the commutator relations hold and thus it remains to
prove the conditions on A, and A?.

For distinct 4,5 € {1,...,p?} such that supp(a?) n supp(aj) # &, we have that
|supp(ai) nsupp(ay;)| = 1 or p. In the latter case the commutator relations assert that of € {(«;)
and this contributes an entry of p in the (i,7) position of A, and zeros in all other entries
of the i*" row and j* column. In the former case, we see that there must be distinct j; =
3y72, - dp € {1,...,p*} such that [supp(a?) nsupp(a;,)| = 1 for all £ = 1,...,p. However, the
commutator relations then imply that there exist distinct iy = 4,42, ...,i, € {1,...,p?} such that
’supp(afk) N supp(ajm =1forall k,e{1,...,p}.

If every entry of A, is equal to 0 or p, then we may decompose a = a1 ---a, and x = x1--- 2,
with each pair (a;, z;) sitting inside a copy of Sym(p?). Our assumptions on a and  together with
the commutator relations assert that {a;, ;) is isomorphic to a proper quotient of W, for each
i =1,...,p, and hence the same is true of (a,x). We conclude that there is a block of A, in which
every entry is equal to one and up to a suitable renumbering of the «;, the matrix A, has the
required form.

Since A, has the given form, it follows that |supp(co;) nsupp(x;)| = Oor 1 for all i,j €
{1,...,p%}. Thus we see that w € supp(xw) for w € {1,...,p*}. Setting ¢ := p* — p, we con-

sider = as
L1 X1y, 1y ! g+1,(g+1) Xge1,---- (q+ 1) X0y
o 2;2'X27--.-,2'X§_1 q+2,(q+2)-Xq+2.,...,(q+2)-xf;; 1)
(,p~xp,---,p-x§3*1> (pz,(pQ)-Xp%---,(pQ)-xi{l)-

In the subsequent work, we shall refer to the columns of x according to . By this, we mean
that the first column of x is equal to {1, 2, ..., p}, the second column is equal to {1-x1,2-x2,...,P-Xp}
and so on. We will also refer to the permutation o; corresponding to column . This will be the
permutation defined on column i by a cyclic permuting of the entries. Thus o7 = (1,2,...,p),
o2 =(1-x1,2-Xx2,-.-,D" Xp), and so on.

We consider the structure of A? via the structure of A,. First suppose that supp(ozfz) =
supp(c;) for some i = 1,...,p, 5 = 1,...,p> and £ = 1,...,p. As noted above it follows that
afz € {a;), and hence the column of z in corresponding to afz will contribute a power of
m, say m", to one diagonal block of A?. Indeed, this is the only way that a diagonal block of A¥
can be constructed. Moreover, as there is at least one block of A, consisting of constant 1s, there
exits some ¢ € {1,...,p} such that none of the ¢, (¢ +p)™, ..., (¢ + (»* — p))" columns of z
are equal to the support of some «;. For each such set of columns, the commutator relations then
ensure that the combination of the columns add circulant blocks to the matrix A% corresponding
to the way that these columns are mapped onto one another by a. It follows that the matrix A? is
a block matrix with p x p circulant blocks. Finally, as there exists at least one set of p columns as
defined above, we may use these together with the commutator relations to see that the diagonal

blocks of A7 must be equal.
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It remains to prove that the block sum matrix or the reduced representer polynomial of A? has
the desired form. To do this we consider y := (ax)P. The commutator relations ensure that the
columns of z in (5.4.21]) are permuted under the action of a and hence the i*® column of z in
is mapped to the (pr+14)™ column of = under y for some value of 7. First assume that each column
of x is invariant under y. It follows from the commutator relations that y = ail 032 x ~a;’§2 for some
i1,...,0,2 € {0,...,p—1}. However, as y is invariant under conjugation by {a,z) we may conclude
that the ¢; are all equal.

We now construct polynomials f;(X) € Z,[X] for j = 1,...,p recursively. To do this initially
set fj(X) = 0 - the zero polynomial. Now consider ((j —1)p+1)-axz. Redefine f;(X) to be
fi(X) := f;(X) + X" where r is the number of rows descended in to go from the entry
((j —1)p + 1) to the entry ((j — 1)p + 1) - axz. Repeat this with ((j — 1)p + 1) replaced by
(j—Dp+1)-(ax)k for k =1,...,p— 1. Thus f;(X) encodes the circulant nature of the action
of a on z in the columns of corresponding to the orbit of the ((j — 1)p + 1)* column
under the action of (ax). We see that the contribution of these columns to BS(AZ?) is precisely the
p X p circulant matrix for which f;(X) is the representer polynomial. Moreover, a similar analysis
to that used in Section shows that X = 1 is a simple root of f;(X) € Z,[X] precisely when

i(j—1)p+1 £ 0 (mod p) since

0 if ij_1)p+1 =0 (mod p);

£1(1) = (5.4.22)

1

L G—1)p+1 otherwise.

Considering the representer polynomial of the block sum matrix BS(A%) we see that
P
[Bs(az)(X) = Z fi(X).
j=1

Since the ¢; are all equal, we see that f]’BS(Ag)(l) =0 (mod p) and X = 1 is a root of multiplicity
at least two of the representer polynomial of BS(AY).

To obtain the final conclusion we note that as the i; are all equal, we have that f{(1) = f5(1) =
-+ = fy(1). Combining this with we see that y = 1 precisely when f/(1) = pk for some
k€ N\{0} and for all i = 1,...,p. This occurs precisely when

p
Fhsan(D) = X (1) = kp*.
j=1

Thus X = 1 is a root of ijS(Ag)(X) € Z,2[X] precisely when y = 1. Hence as {a,z) = W, we
conclude that X = 1 is not a root of f/BS(Ag)(X) € Z,2[X]. Hence if the columns of z in (5.4.21)
are invariant under the action of y, then case (cl1) holds.

Now assume that the columns of x are not fixed by y. We shall prove that case (¢2) must be
true. Define block j of x to be the set of columns jp+1,...,jp+pof z in forj=0,...,p—1
and consider the matrix AY. Each entry of A? corresponds to the image of a column of z under
a. There are two possibilities; either the column 7 is left invariant under the action of a, or it is
mapped onto the column pr + ¢ for some 1 < r < p — 1. This corresponds to the column being

mapped from block j to block j + r (mod p). The former case occurs precisely when a power of
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7 is added to a diagonal block of A¥, whilst in the latter case, a power of 7 is added to an off

diagonal block of A? which is r blocks to the right of the leading diagonal. We see that the partial

representer polynomial gz (X) of A7 is of the form
gaz(X) =go+ g1 X"+ + gpo1 XP71,

where for each r = 0,...,p — 1 the coefficient g, is the number of columns ¢ of = in (5.4.21]) that

are mapped to the column ¢ + pr. Equivalently,

pill .| column ¢ is in block j and is mapped to a column in
gr = i .
' 20 block j + r (mod p) under the action of a

Consider the action of y on the column ¢ of z. This corresponds to applying ax to the column
p times. It follows that the action of y is determined by the p successive actions of a. Since each
column of x has an orbit of size p? under the action of az, we see that each of the actions of a on
the columns of z occurs p times in the action of y on the columns of x. Thus to obtain the number
of blocks that column 4 has passed through in reaching its image under the action of y, we need to
sum the number of blocks passed through for each successive action of a. It follows that the total
number of blocks passed through by all columns of  under the action of y is

p—1

P> Tgr=pgas(D). (5.4.23)
r=0

Since y is invariant under the action of x, we see that if column ¢ in block j is mapped to column
i+ pr in block j+r (mod p) under the action of y, then every column of block j will be mapped to
the corresponding column in block j + r (mod p) under the action of y. Hence y simply permutes
the blocks of z.

Suppose that block j of z passes through p - k; + £; blocks under the action of y for some
kj,¢; € {0,...,p — 1}. Since y is invariant under the action of a, we deduce that the k; are all
equal to some common value say k. It follows that the total number of blocks passed through by

all columns of  under the action of y is

p—1 p—1
dip-(p-k+4;)=p <p2k+ Z€j>. (5.4.24)
3=0 j=0

Combining ([5.4.23|) and (5.4.24)) we obtain

p—1
Ga(1)= D105 (mod p2)

j=0
Finally, we note that Z?;(l) ¢; = 0 (mod p?) precisely when ¢; = 0 for each j = 0,...,p — 1.
Hence g;‘g(l) = 0 (mod p?) precisely when the columns of z in are fixed by y. Since by
assumption the columns of x are permuted by y, we conclude that case (¢2) holds.

Conversely assume that the given conditions hold (again the argument for when a and x are

interchanged is analogous). By the above we see that (az)? # 1. Combining this with the com-
mutator relations and Corollary we obtain that (a,z) = W), as required. ]
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As in Section [5.2] we note that the conditions given in Theorem [5.0.2] are all required. As before
this is evident in the proof of the theorem for the conditions on the matrices A, and A%. To see that
the commutator relations are all necessary, we note that if G := Sym(125) and a is the standard

5-element of G, then we may take

,26,51,76,101)(2,27, 56,79, 106)(3, 28, 61,77, 111)(4, 29, 66, 80, 116)
6,41,54,91,117)(7, 42,59, 94, 122)(8, 43, 64, 92, 102)
)

x (
(
(10,45, 74,93,112)(11, 49, 72, 83, 110)(12, 50, 52, 81, 115)
)
)

=(1 )

(5,30,71,78,121)

(9,44, 69,95,107) (
(13,46,57,84,120)(14, 47, 62, 82, 125)(15, 48, 67, 85, 105)(16, 36, 68, 90, 118)
(17,37,73,88,123)(18, 38, 53, 86, 103)(19, 39, 58, 89, 108)(20, 40, 63, 87, 113)
(21, 32,70, 100, 119)(22, 33,75, 98, 124)(23, 34, 55, 96, 104) (24, 35, 60, 99, 109)
(

25,31,65,97,114).

The reader may check that A, and A? have the required form and [a, a*] = 1. However, [a,a® ] # 1.

5.4.3 A Worked Example

As in Section [5.2) we follow the technical steps of the proof of Theorem [5.0.2]in the case of a couple
of specific examples. Indeed, consider G := Sym(27) and the following G-conjugates of the standard

3-element a of G,

(1,10,20)(4, 14,22)(7, 18, 27)
x1 = (2,13,23)(5,17,25)(8,12,21) (5.4.25)
(3,16,26)(6,11,19)(9, 15, 24)

and

(1,10,22)(4, 14, 19)(7, 12, 25)
zo = (2,13,23)(5,17,20)(8,15,26) . (5.4.26)
(3,16,24)(6,11,21)(9, 18, 27)

It is easily seen that {(a,z1) = {(a,z2) =~ W3. We shall show that for the pair (a,x;) conditions (i),
(7i) and (i7i)(cl) of Theorem hold, whilst for the pair (a,z2) conditions (7), (i7) and (iii)(c2)
hold.

(a,x1) :

As in the proof of Theorem we consider the columns of z1 in ((5.4.25)) and note that columns
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2, 5 and 8 ensure that the matrix A,, has a block of constant ones. Indeed

0 00/1 1 1[0 00
0 00/1 1 1{000O0
0 00/1 1 1[0 00
00 0/00O0[3 00
Azy, =10 0 0/0 0 0[]0 3 0 [,
00 0/0O0O0[|0 0 3
1 1. 1{0 0 0/0 0 O
1110 0 0/0 0 O
11 1{0 0 0/0 0 O
whilst
01 0/00 1|0 10
00 1|1 0 0j0 01
10 0[O0 1 01 0O
01 0/0 1 0j0 01
A'=10 0 1|0 0 1|1 0 O
10 0[{1 0 0/0 10
00 1/0 1 0{0 10
10 0[O0 0O 1/0 0 1
01 0/1 001 0O

Consider the representation of x1 in (5.4.25) and the element

y1 = (az1)® =(1,2,3)(4,5,6)(7,8,9)(10,13,16)(11, 14, 17)
(12,15,18)(19, 22, 25)(20, 23, 26) (21, 24, 27).

Denoting the permutation corresponding to the i*' column of 21 by o; we see that
S 5 N R 7 SN ¥ S - S T & QR 1 S 1
Yr =0y ~ 0y *03 04 " 05 " 0g *07 " 0g 09,

where i1 =49 = -+ =19 = 1.

We now define the polynomials f;(X) € Z3[X] as described in the proof of the theorem. First set
f1(X) := 0 € Z3[X] and consider the orbit of 1 under az;. Since 14** = 13 and 13 is in the second
row of z1 in ([5.4.25), we have “descended” by 1 row. Hence we redefine f1(X) := f1(X)+ X' = X
As 13%1 = 22 and 22 is in the first row of 1 we have cyclically descended a further 2 rows, and so
we set f1(X) := f1(X) + X% = X + X2 Finally, 229%1 = 2 and 2 is in the second row of x1. Thus

we have descended by a further row, and our final polynomial is
fUX) = f1(X) + X! = 2X + X% € Z3[X].

By considering the images of the first column of 7 under the action of (ax1)!, (az1)? and (az1)?3
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we see that we have accounted for an entry of 1 in each of the circled entries of

o (1O oo o (Mo 1o0
o 0o (MW@ o o001
1 o o0 (1) o100
o (1) o0 1 0001
A= 0 o (|0 o 1|1 00 (5.4.27)
(1) o o1 0 01010
0 0 1,0 1 01010
1 0 0|0 0 1001
0 1 0|1 0 0100

Hence the contribution to the block sum matrix BS(AZ) from these columns is
0 21
1 0 2 |=circ(0,2,1).
210

This is the matrix for which f;(X) is the representer polynomial.
Similarly fo(X) = 2X 4+ X? € Z3[X], which accounts for additional entries of 1 in (5.4.27)). This

gives

o (1 oo o (MWlo 1 o0
o o W[@® o oo o 1
(1) o oo (1) o1 0 o0
o (1 oo (MW oo o (D
Ar=1 0 0o Mjo o WO o o (5.4.28)
(M) o o) o o]0 (1) o
o 0o 1[0 (O o]0 1 0
1 0 oo o (/o o 1
o 1 o|(® o o1 0 o0

Finally, f3(X) = 2X 4+ X? € Z3[X] which contributes a 1 to the remaining entries of (5.4.28). We
note that in general, it is not the case that the f;(X) € Z,[X] are all equal.

The final step of the proof of Theorem [5.0.2] considers the representer polynomials
f[1(X), f2(X), f3(X) € Z3[X] and fpgiaz)(X) € Zo[X]. We see that fi(1) = 1 = i;l € Z3 for
all j, as given in (5.4.22). Moreover, considering f7(X) € Zg(X) we have that fi(1) = 4 for all j.

Consequently
3
Fhgam)(1) = DA =3#0eZ
j=1

and case (cl) holds.
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(a,x2) :
As with x1, we see that columns 2, 5 and 8 of x5 in (5.4.26)) ensure that A,, has the desired form,

namely

00 0[1 1 1[0 00
00 0[1 1 1[0 00
00 0[1 1 1[0 00
00 0[0O0O0O[1 11
Az, = 0 0 0l0 001 1 1],
00 0[0O0O0O[1 11
03 0[00O0[0 00
300[000[0 00
00 3[(000[0O0O0
whilst
02 0[00 1[0 00
00 2(100[0 00
2 0 0[(010[0 00
00 0[020[0 10
A=10 0 0/0 0 2/0 0 1
00 0[200[1 00
1 00/00O0/0 20
01 0[00O0[0 0 2
00 1[0 00[2 00

In this case we see that

Y2 = (al‘2)3 :(1’ 57 8)(27 67 9)(37 47 7)(107 177 15)(113 187 13)
(12,16, 14)(19, 25, 24)(20, 26, 22) (21, 27, 23)

and so clearly yo does not fix the columns of x5 in . We thus consider the blocks of columns
of 29 in (5.4.26)), where block 0 is given by the first three columns, block 1 by the middle three
columns and block 2 by the final three columns. Denoting the columns of z9 by c1,...,c9 we see
that the action of a on the columns of xo is given by co — ¢5, ¢5 — c¢s, cg — co and ¢; — ¢; for
1 =1,3,4,6,7,9. It follows that there are six columns whose image under a stays in the same
block, meaning that go = 6. The remaining three columns are mapped from block i to block 7 + 1
(mod 3) for some i = 0,1,2. Hence g1 = 3 and g2 = 0.

Considering the reduced representer polynomial of A%? we have that

2
gaz2(X) = > g:iX" = 6+ 3X,
j=0
Moreover we see that the columns of o in (5.4.26) are permuted under the action of axs in the

following cyclic manner

ClF>CQr—>Cgr—>Cq4rH>C5H>C9gH—>Cy > Cg > C3+— (1.
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It follows that column i is mapped under y2 to column i + 3 (or i — 6 if i + 3 > 9) and in doing so
passes through a single block of x5. Thus using the notation of we have that k; = 0 and
f;j=1forall j =0,1,2.

Consequently the total number of blocks passed through by all columns of x5 under the action

of yo is
9=3- 91452 (1)

and
2
91422(1) =3= Z ¢; (mod9).
=0

In particular ¢’ .., (1) # 0 (mod 9) and case (¢2) holds.

5.5 The General Case

We now consider the most general setting that G := Sym(n) for some n > p? and let
a=(L2,....p)lp+L,p+2,....2p)---(p(r =)+ L,p(r—1)+2,...,pr) e G

for some r > p. As previously we set X := a“ and consider z € X. Denote the p-cycles forming
a (respectively z) by «q,...,q, (respectively xi,...,xr). We note that if {a,z) = W), then
|supp(c;) N supp(x;)| = 0,1 or p for each ¢, € {1,...,7}.

Before considering the most general situation, we look at the case that supp(a) = supp(z) and

prove Theorem [5.0.3

Proof of Theorem Assume that {(a,z) = W),. Without loss of generality assume that a
is in the base group of W,. We will show that the given conditions hold true (if = is in the base
group, then an analogous argument may be used to show that the conditions hold with the roles
of a and z interchanged). The commutator relations follow immediately.

First consider the case that supp(c;) = supp(x;) for some i,5 € {1,...,r}. This results in
matrix entries (Az)i; = (A%);; = p. By a suitable renumbering of the a; and x;, we may assume
that such a situation arises for pairs («;, x;) with i = 1,...,m for some m. This gives the diagonal
block Dq of A, and E; of A7. It follows that for all other o; we have supp(ay) nsupp(oy) = &.

If afz € {ay,) for £ =1,...,p and for some iy, then we may consider these a;, and the x; that
share their common support as lying inside a copy of Sym(p?). Thus we may apply the results
of Section to obtain the general structures of Dy and E5. In all other cases, we use a similar
approach to find a subset I < {1,...,r} of size p? such that [[,.; o; and [];.; x; are conjugate
elements of full support inside a copy of Sym(p?). The results of Section then give the structures
of D3 and E3. The final condition on one of the blocks of Fy or F3 then follows from the fact that
ax has order p? and the results of Sections and

Conversely, assume that the conditions in Theorem hold (again the argument for when a
and x are interchanged is analogous). By Corollary it remains to check that ax has order p?.
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Suppose that Dy is an m; x m; matrix, Do is a pmea x pme matrix and Ds is a p>ms x p>mg matrix

for some m1, mg and ms. Define a1 = a1 - - - s

azq; = am1+p(i_1)+1 ce am1+p(i_1)+p for i = 1, ...y MY, and
as.j = am1+pm2+p2(j_1)+1 ce am1+pm2+p2(j—1)+p2 for ] = 1, ...,Mm3.
Define 1,221,...,%2,my, 31, ..,23m, analogously. We see that the pair (a;,x1) corresponds

to the blocks D; and Ej of A, and AY, each pair (ag;,x2,;) corresponds to a block of Dy and
its associated block in FEp, whilst every pair (asj;,x3;) corresponds to blocks of D3 and FEs.
Moreover, since for each pair (a«, z«) we have supp(as) = supp(z,) and [ax, aii“] = 1, it suffices to
check that for one such pair, the element a4z, € Sym(supp(as)) has order p?. However, this fol-

lows immediately from condition and the results of Sections[5.2]and Thus (a,z) = W,. O

In the general setting, we note that by the preceding arguments we must have that
|supp(a) n supp(x)| is divisible by p. Thus the above result will still hold if n = pr + s for some
s < p. However this is not the case in general, since if we no longer require supp(a) = supp(z), the
condition that a and x are G-conjugate becomes weaker. Indeed, if we consider G’ = Sym(p?), we

have that W), is embedded into G using the generators a = (1,2,...,p) and

However, we may also use x and y to generate W), where

y:(172aap)(p+17p+2,,2p)
e(plp—=2)+1,p(p—2)+2,...,p(p—1)).

If we now relax our assumption that supp(a) = supp(z) and move into G := Sym(p(p + 1)), we see

that taking x € G as above and

7=y +1,p*+2,...,p(p+1)),

we have that (z,y) = W,,. However, it is clear that the generation of W), results from the elements
x,y € Sym(p?) — G. It follows that although 2 and ¥ are G-conjugate, this conjugation is in some
sense artificial. Consequently, producing a theorem such as Theorem [5.0.3| would not be realistic

in the most general setting.






Chapter 6
Cuspidal Characters of Finite Groups

Let G be a finite group of Lie type. In Chapters [2] and [3] we saw how the building, A, of G is
a rich structure which admits the construction of modules for G over finite fields from modules
defined on smaller subgroups known as parabolic subgroups. We then mirrored the structure
of a building in the form of minimal parabolic systems, with appropriate groups being known as
parabolic subgroups. Each parabolic subgroup, P, contained in A admits an amiable decomposition
as P = U - L, with unipotent radical U and Levi complement L. For an arbitrary finite group, we
saw how the p-core of a subgroup can in some senses replicate the role of the unipotent radical.
However, in general there will be no complement to the p-core of a parabolic subgroup. The
subsequent simplicial complex of parabolic subgroups then permitted the construction of modules
over finite fields in a comparable manner to the motivating case of groups of Lie type.

Stepping away from the building site of construction work, we may return to the familiar setting
of characters of finite groups defined over the complex numbers. Although a great knowledge of
such characters already exists, there is a natural desire to gain a deeper understanding of them.
One way to gain such insight is to classify the known characters of a given group, GG, dependant on
whether they satisfy certain pre-described properties. An example of such a property for a group
of Lie type is that of being a cuspidal character. This relies on the truncation of a character to
each parabolic subgroup P of G, which in turn depends on the unipotent radical of P.

In the case that G is a sporadic simple group, the complex characters of G are described in
full in [CCNT09]. Using the p-core of each parabolic subgroup of G, we may consider a notion of
cuspidal characters in this more general setting. Since such a notion depends on the p-core, we
obtain p-cuspidal characters for each prime divisor p of G. These p-cuspidal characters are the
primary focus of this chapter.

This chapter is arranged as follows. We begin in Section[6.I] by formally defining an X-parabolic
system for a group G with respect to a given subgroup X. Such systems are a natural general-
isation of the p-minimal parabolic systems introduced in Chapter This is followed by a brief
exposition of cuspidal characters of groups of Lie type. These motivate the subsequent definition
of cuspidal characters of finite groups with respect to X-parabolic systems, whose properties are
then investigated.

The subsequent four sections provide a full survey of the p-cuspidal characters of the sporadic
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simple groups, with 2-; 3- and 5-cuspidal characters being considered in Sections and
respectively. The remaining p-cuspidal characters for p > 5 are studied in Section With the
exception of the baby monster, B, for the prime p = 2, we fully determine the p-cuspidal characters
of each sporadic group in these sections. When G = B and p = 2 we make the assumption that Coy
has a unique 22-dimensional representation over GF'(2). With this assumption, our calculations
leave us with two potential 2-cuspidal characters, but at the time of writing we have been unable to
ascertain for definite whether or not they are indeed 2-cuspidal. For ease of reference, a summary
of the 2-minimal parabolic systems for each of the sporadic simple groups together with their
associated 2-cuspidal characters is given in Tables and A complete list of p-cuspidal
characters for the sporadic groups in the case that p > 2 is then given in Table In each table,
for a given group G the character y; will equal the corresponding character of G given in the
character table in [CCNT09).

The chapter concludes in Section [6.6] with a brief discussion on possible geometries arising from

the p-cuspidal characters summarised in Tables

6.1 Parabolic Systems and Cuspidal Characters

6.1.1 Parabolic Systems

Let G be a finite group and let X be a subgroup of G. Let I be an index set with |I| =n = 0.

Definition 6.1.1. An X-parabolic system, X, of G of rank n is a set of pairs of subgroups of G,
(P1,Qy), indezxed by subsets J of I such that

(i) for each J< I, X < Py, Q; 4 Py;
(i) for K< J< I, Qr < Qk;
(i) Pr =G and Qr = 1; and

(v) X = Py.

We shall write X = {(Py,Qs)|J < I} and note that by part of Definition that all @
are subgroups of Qg and that Qg I Py = X. We allow the possibility that (Py, Q) = (Pk,Qk)
with J # K, but this will not occur in most of the cases that follow.

For ease of notation, if our index set is I = {1,2,...,n} for some n > 1, then given a subset
{i1,42,.. .4} © I with i; < ;4 for all j, we denote the subgroups P, 4, i,y and Q4,43 DY

P iy, and Qj,4,...i, respectively.

Example 6.1.2. Let G = (r,s | r* = s2 = (rs)? = 1) be the dihedral group of order 8, X = {r)
and let I = {1,2}. Then defining

P12 = G, P1 = G, PQ = G, P@ = X; and
Q12 = 17 Ql = <T2>’ Q2 = X7 Q@ = X)

we have that X = {(Py,Q)|J < I} is an X -parabolic system of G of rank 2. .
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Given an X-parabolic system X = {(P;,Qy)|J S I} of G and J < I, we set P; := P;/Q}.
Furthermore, for any subgroup Q; <Y < Pj, we use the standard bar notation Y := Y /Q;. We

may use X to form an X-parabolic system, X, of rank |.J| for P; given by

X;={(P;n Pk,Qy)|(Pk,Qk) € X,K < J}.

For each prime p, taking S € Syl,(G) and B := N¢(S), we may define a B-parabolic system for
G. Indeed, we recall from Chapter [2| that a subgroup P of G is called p-minimal (with respect to
B) if B < P and B is contained in a unique maximal subgroup of P. We note that our definition
of p-minimality is slightly more general than that given in [RS84], where the subgroup P was also

required to have non-trivial p-core, O,(P). Defining
A (G, B) = {P|P is a p-minimal subgroup of G (with respect to B)},
then a set
My ={P|P; e #(G,B),icl}

is called a minimal parabolic system of characteristic p for G or a p-minimal parabolic system of
G,if G = (Pli € I) and G # (P;|j € I\{i}) for any ¢ € I. The rank of .4, is |I|. We call .4} a
geometric p-minimal parabolic system if for all J, K € I we have Pj~g = Py n Py. Otherwise .4
is called non-geometric.

The promised B-parabolic system, X = {(Py, Qy)|J < I}, is given by defining

(Pjljed) itg#J<I; and
B itJ = .

Py =

and Q7 = Op(Py) for all J < I. It follows that every group G has a p-minimal parabolic system,
and hence a B-parabolic system for each prime p (although this is not the case if the additional
condition on non-trivial p-cores is imposed). The minimal parabolic systems for the sporadic groups

(in the case that S is non-cyclic) are described in [RS84].

6.1.2 Cuspidal Characters

Given a finite simple group, G, of Lie type, having a Borel subgroup X, let P; be a standard
parabolic subgroup of GG and let U be the associated unipotent radical. For an irreducible character
x of G, we recall from [Car93] that the truncation, Tp, /7, (x), of x is the character of P; defined
by

1
(Tp, /v, X))(P) = 75 Z x(up)
’U‘]| ueU,
J
for p € P;y. The character y is then called cuspidal if for all standard parabolic subgroups P; # G,
the truncation Tp, i, (x) is zero. Equivalently, a character x is cuspidal if (x|u,, 1|v,) = 0 for all
Uj # X (see [Car93l, Proposition 9.1.1]).
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Cuspidal characters play an important role in determining the irreducible characters of finite
simple groups of Lie type, and an exposition of them may be found in [Car93, Chapter 9]. It
would be of interest to form an analogous definition of cuspidal characters for the sporadic simple
groups, and see whether any interesting properties arise. To do this, we note that for a finite simple
group, G, of Lie type as described above, taking () ; to be the unipotent radical of Py we obtain an
X-parabolic system of G given by X = {(Py,Qs)|J < I}. We may use this observation to define
a form of cuspidal characters in a more general setting. Indeed, let G be an arbitrary finite group

and denote by Irr(G) the set of all irreducible complex characters of G.

Definition 6.1.3. Let X be an X -parabolic system of G where X < G, and let x € Irr(G). Then
X 1s called X-cuspidal if for all (P;,Q) € X with Q; # 1 we have

> x(g) =0 (6.1.1)

9eQ s
The condition will be known as the cuspidal condition on (Q; and is equivalent to
(xq@,,1g,) = OH Clearly, when the index set I = (&, we have G = Py = X and Qg = 1, and hence
every irreducible character is vacuously X-cuspidal. When X is a B-parabolic system associated to
a p-minimal parabolic system of G, then any X-cuspidal character will also be called a p-cuspidal
character of G.

We recall the notion of the intertwining number of two modules.

Definition 6.1.4. [Kar9j] Let F be a field of characteristic 0, with algebraic closure F, let G be
a finite group and let V. and W be FG-modules. The intertwining number, denoted i(V, W), is
defined by

i(V,W) := dimp Homp(V, W)

The intertwining number of modules will be of importance due to its connection with the inner

product of the associated characters.

Theorem 6.1.5. [Kar94, Chapter 3, Theorem 1.1] Let F be an arbitrary field of characteristic 0
and let X and p be arbitrary characters of G afforded by FG-modules V and W respectively. Then

O\ ) = i(V, W),

We may use Theorem to prove an analogue of Proposition 9.1.3 of [Car93], the proof of

which is almost identical to that used in Carter’s Proposition.

Theorem 6.1.6. Let X be an X -parabolic system of G and x € Irr(G). Then there exists (Pr, Q) €
X and an X j-cuspidal character 1 of Py = P;/Q such that (x,¢%) # 0.

Proof. Let S = {J < I|(xq,,1q,) # 0}. Note that S # J as Q; = 1. Let J be a minimal element
of § and let V' be an irreducible CG-module that affords x. Define

Vi={veV]v-u=wvforal ueQy}.

n an abuse of terminology, we will also sometimes refer to the cuspidal relation holding for P; when (6.1.1))
occurs.
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By Theorem as (xqQ,,1g,) # 0, there exists a non-zero CQ j-homomorphism from the trivial
CQ j-module to V', and hence V' is non-empty.

Clearly V' is a linear subspace of V, and given g € P; and u € (Q; we have that

(vg)u = vgug g = vg,

as Q7 < Pj. Hence V' is a CPj-module.
Consider V' as a CP j-module, having associated character ¢ = > @i (with the ¢; irreducible
CP j-characters). So V' affords ¢p, = >,(¢;)p, and V affords the character xp,. Now V' is a

CPj-submodule of V', hence each (¢;)p, is a component of xp,. Consequently

((¢Z)G7X) = ((¢i)PJ7XPJ) #* 07

and y is a component of (¢;)“. Thus it remains to prove that ¢; is a cuspidal character.

If ¢; is not cuspidal, then ((¢;)gx,lgx) # 0 for some K & J. It follows that
dimc Homcg, (1,V) # 0 and hence (xQ,,lg,) # 0. Hence K € S, contradicting the minim-
ality of J. Thus the result holds true. O

We illustrate this behaviour with an example.

Example 6.1.7. G = Alt(7) has a rank 2 characteristic 2 minimal parabolic system {Pp, Py}
(c #(G,B)) with B ~ Dih(8), P, =~ Dih(8) : C3 and P, =~ Sym(4). Take B =
((1,2)(3,4),(1,3)(5,6)), P, =(B,(5,6,7)) and P» = (B, (1,2,5)(3,4,6)). Let X be the B-parabolic
system given by {(Py,Qs)|J < {1,2}} where Py = B. So Qg = B, Q1 = {(1,2)(3,4), (1,3)(2,4)),
Q2 = {(1,3)(5,6),(2,4)(5,6)) and Q1 2y = 1. It follows using [CCN™09] that for i = 1,2 we have

D7 x(9) = x(1) +3x(24) # 0
geQi
for any x € Irr(G). Thus G has no X-cuspidal characters.

For P, = P;/Q; =~ Sym(3) we have that Qg =~ Cs. It follows that there is one X;-cuspidal
character, namely the sign character. We denote this character by ¢; and also think of it as a P;
character. Using the notation from [CCNT09], calculations show that the constituent characters of
qZ)? are X3, X4, X7, X9- Meanwhile the constituent characters of ¢2G aTe X3, X4, X5 X7s X8> X9-

For% = 1 we note that trivial character will be %—cuspidal, and it lifts to the trivial character
1. We have that the constituent characters of 1% are X1,X2, X5, X6, X7, X8, X9- LThus we observe
- not very surprisingly - that Proposition 9.1.5 of [Car93] does not extend to our more general

situation, since (¢§,¢S) = 5, whilst ¢F # ¢S . .

Although by definition, to determine if a character is cuspidal we must check the cuspidal
condition for every subgroup in the X-parabolic system, we shall shortly see that this is not

actually necessary. First we give the analogue of [Car93l Proposition 9.1.2].

Proposition 6.1.8. Let G be a group, X < G and x € Irr(G). If X is an X-parabolic system of

G of rank n having underlying indexing set I, then the following are equivalent:
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(i) x is a X-cuspidal character of G.
(it) (xq,,1q,) =0 for all J < I such that Q; # 1.
(111) (x, ng) =0 for all J < I such that Qj # 1.
(iv) quQJ x(qg9) =0 for all J < I such that Q5 # 1 and all g € G.

(v) 2geq, X(9q) =0 for all J = I such that Q; # 1 and all g€ G.

Proof. (i) = (i7). Assume that x is a X-cuspidal character of G. Thus for each pair of subgroups
(Py,Qy) for J < I we have that either Q; =1 or
> x(g) =0.
q€Qs
In particular
> x(@)1g,(g) =0
q€Q
and hence (xg,,1g,) = 0 for all J < I such that Q; # 1.
(i) = (iv) Let @ be such that @ # 1 (if no such @Q; exists, the result is vacuously true). Let
p be an irreducible representation corresponding to x, let p’ be an irreducible constituent of p|g,
and let d denote the degree of p’. The module corresponding to p’ has basis {ej, ..., es} and hence

we may define coefficient functions p;j fori,j=1,...,d by

d
eig = Y, pii(9)ej.
j=1

By the orthogonality relations for the coefficient functions (as given in [Car93, Section 6.1}), it

follows that

(p;jv (1QJ)11) =0

forall 7,5 =1,...,d, as 1, is not an irreducible constituent of xqg,. Thus
Z ng (¢) =0
q€Qy

for all 7, 5 and hence
D (@) =0
q€Qy
for all 4, j. Since this holds for all irreducible components p’ of x¢g, we deduce that
> p(g) = 0. (6.1.2)
q€Q

Now let g € G be given. Multiplying (6.1.2]) on the right by p(g) gives

D, rlag) = ( > P(Q)> p(g) = 0.

q€Qy q€Qy
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Consequently, taking traces we obtain
> xlag) = 0.
qEQy

(iv) = (i) Taking g = 1 we see that x is a X-cuspidal character of G.
(71) = (v) = (i) This follows analogously by multiplying on the left by p(g) in (6.1.2)).

(741) This follows by Frobenius reciprocity. O

Proposition [6.1.8infers that we only have to check that the cuspidal condition holds for certain

“maximal” subgroups of a parabolic system to ascertain that a character is cuspidal.

Corollary 6.1.9. Let G be a group, X < G, I ={1,...,n} and let X = {(P;,Q)|J < I} be an
X -parabolic system of G. Define

D:={J<IQs#1 andif J < K < I, then Qg = 1}.
Then x € Irr(G) is cuspidal precisely when
> xlg) =0
€Qy
for all Q such that J €9).

Proof. The condition is clearly necessary. To see that it is sufficient, let J' < I be such that
Q@ # 1. We shall show that

> xlg) =0
q€Q yr

Since Qy # 1, we see that J' < I and there exists some J € 2) such that J' < J. Consequently
Q7 < Q. By assumption

> x(g) =0,
€Qy
and so (x|g,,1g,) = 0. The proof of Proposition asserts that
> xlag) =0
q€Qy

for all g € G.
Let T denote a right transversal of ()7 in Q) ;7. Then

> xle) =) (Z x(qt)> =0
GeQ g1 teT \qeQ s
as required. O

The final result that we will use in classifying the p-cuspidal characters of the sporadic simple

groups concerns irreducible characters of odd degree.
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Lemma 6.1.10. Let G be a finite group and p an odd prime such that |G| = p®m for some a > 1
with (p, m) = 1. Assume that G has a p-minimal parabolic system containing a parabolic subgroup
with non-trivial p-core. If for each G-conjugacy class, C, of elements of order p® for b < a and all

g € C we have that
(g)nf{ge G| ordg) =p"} = C, (6.1.3)
then every p-cuspidal character of G has even degree.

Proof. Assume that condition (/6.1.3) holds for all non-trivial powers of p. Then a non-trivial p-core,
Q, of a parabolic subgroup will intersect every conjugacy class of p-elements in a set of even order.

Thus if the degree of x € Irr(G) is odd, then the same is true of

> x(9);

geQ

and hence y is not a p-cuspidal character of G. O

6.2 2-Cuspidal Characters

We now work systematically through the sporadic simple groups, determining for each group G
and each 2-minimal parabolic system of G, which characters x € Irr(G) are 2-cuspidal. A summary
of our results is given in Tables and Throughout, the notation y; € Irr(G) is the same as
that used in [CCNT09|. We shall also use the standard notation from [CCNT09| for the conjugacy

classes of G.

6.2.1 The Mathieu Groups
My,

There are three 2-minimal parabolic subgroups of M, namely
Py ~ 22 .Sym(3), Py ~3%SDys, and P3~ Alt(6).2,

(where S D¢ is the semidihedral group of order 16) and these give rise to three 2-minimal parabolic
systems, each of rank 2. Since O2(P) = O2(P3) = 1, we must consider a Sylow 2-subgroup of
Mi1. Such a subgroup will intersect the M;i-conjugacy classes 14, 24, 4A, 8A and 8B in 1, 5, 6,
2 and 2 elements respectively. It follows that the cuspidal relation for a Sylow 2-subgroup holds
for x3, x4 € Irr(M11) (both of degree 10). Consequently, x3 and x4 are 2-cuspidal characters of
the minimal parabolic system {P», P3}. Finally, as O(P;) contains 1, 1 and 6 elements from the

classes 14, 2A and 4A respectively and
Xi(LA) + xi(24) + 6 - x;(4A) =8

for ¢ = 3,4, we see that the minimal parabolic systems containing P; admit no 2-cuspidal characters.
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Mo

There are no 2-cuspidal characters for the unique 2-minimal parabolic system of Mis given by
{P1 ~ 4%2.Sym(3), P> ~ 21*.Sym(3)}.

To see this, we observe that Oy(P;) intersects the Mjs-conjugacy classes 14, 2A, 2B, 4A and 4B
in 1, 4, 15, 6 and 6 elements respectively, whilst Oz (P,) intersects these classes in 1, 12, 7, 6 and 6
elements respectively. Consequently the only character satisfying the cuspidal relation for Oq(P;)

is x13 (of degree 120). However

X13(1A4) +12- x13(24) + 7- x13(2B) + 6 - x13(44) + 6 - x13(4B) = 64.

Moo

There is a unique 2-minimal parabolic system for Mso, namely
(P, ~ 272 Sym(3), P, ~ 2%. Sym(5)}.

The 2-cores Oz(P1) and O2(P») intersect the Mag-conjugacy classes 14, 24, 4A and 4B in 1, 27,
12, 24 and 1, 15, 0 and 0 elements respectively. The only elements x € Irr(Mag) satisfying

X(1A) +27 - x(24) +12- x(4A) + 24 - x(4B) = x(1A) + 15- x(24) =0

are the two characters of degree 45, x5 and x4.

Mos

The group Ms3 has seven conjugacy classes of 2-minimal parabolic subgroups, six of which feature

in 2-minimal parabolic systems of Ma3. Using the notation of [RS84], these subgroups are

Py ~ 2472 Sym(3), P, ~2*"2.Sym(3), P53 ~ 2**2. Sym(3)
Py ~ 2472 Sym(3), Ps ~2%.Sym(5), P;~ 2% Sym(5).

The 2-minimal parabolic systems are given by { Py, Ps, P;}, {Ps, Py, P;}, { P2, Ps, P;}, {P1, Ps, Pr},
{P», P, Pr}, {Ps, Ps, Pr} and {Py, Py, Pr}.

Considering the maximal 2-parabolic subgroups of these systems, we see that the maximal 2-
parabolic subgroups involving Ps and P; have trivial 2-cores. Thus we need to check sub-maximal
parabolics in order to apply Corollary The 2-cores O2(F;) for i = 1,2, 3,4 intersect the Mas-
classes 14, 2A and 4A in 1, 27 and 36 elements respectively. The remaining sub-maximal parabolics,
namely Pg, P7, P13 and P34, have rank 4 elementary abelian 2-groups for their 2-cores. Thus the
non-trivial elements of their 2-cores lie in the Moys-class 2A. For each sub-maximal parabolic, the
only irreducible Moss-characters satisfying the cuspidal relation are y3 and y4. Hence for each of

the 2-minimal parabolic systems, the characters y3 and x4 of degree 45 are 2-cuspidal characters.
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Parabolic 9 core Order of intersection with Mas-class
Subgroup 1A | 2A 2B | 4A 4B

Pio 20 1 |45 18| 0 0

Pi3 2602 11 | 57 54 | T2 72

Po3 2443 1 1 | 29 42 | 56 0

Table 6.4: The 2-cores of maximal parabolic subgroups of May.

Moy
The Mathieu group Ma4 has a unique 2-minimal parabolic system given by
{P; ~ 2073 Sym(3), Py ~ 2673, Sym(3), P; ~ 2673, Sym(3)}.

The maximal parabolic subgroups P2, P13 and P»3 all have non-trivial 2-cores, and their intersec-
tions with the May-conjugacy classes are summarised in Table It follows that the characters

X3, X4, X12, X13, X15 and x16 satisfy the cuspidal relation for P2, as do x3, x4, X5, X6, X125 X135
x15 and x1¢ for Pi3 and x3, x4, X5, X6 and xs for P»3. We conclude that 3 and x4 - both of degree
45 - are the only 2-cuspidal characters of Moy.

6.2.2 The Leech Lattice and Conway Groups

HS

The Higman-Sims group has a unique 2-minimal parabolic system of the form
(P ~ 4.2%.Sym(5), Py ~ 4322. Sym(3)}.

Considering O2(Py), we see that it intersects the HS-conjugacy classes 14, 2A, 2B, 4A, 4B and
4C in 1, 31, 0, 2, 30 and 0 elements respectively. Consequently, there are no 2-cuspidal characters

of HS, as the cuspidal relation does not hold for P;.

Jo
There is a unique 2-minimal parabolic system of Js given by
(P ~ 22T1.3Sym(3), P, ~ 2174 Ly (4)}.

The intersections of Oy(P;) with the Ja-classes 14, 2A, 2B and 4A have orders 1, 3, 24 and 36
respectively. Consequently, the cuspidal relation on P; holds for the irreducible characters x4,
X5, x14 and x15. Meanwhile, the 2-core O2(P,) intersects the given Jo-classes in 1, 11, 0 and 20
elements respectively, meaning that the cuspidal relation holds on P, for the characters xs, x9 and

x18- We conclude that Js admits no 2-cuspidal characters.

001

The largest Conway group, Co;, admits a unique 2-minimal parabolic system, having rank 4.
Its minimal parabolic subgroups are given by P; ~ [220].Sym(3) for i = 1,...,4 and the cor-

responding 2-maximal parabolic subgroups have the form Pz ~ 227123 (Sym(3) x L3(2)),
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Conjugacy Class | 1 | 2A 2B 2C | 4A 4B 4C 4D AE  AF
Pios 111095 1344 4984 | 336 22512 18816 38976 0 43008
Pioy 111095 576 6264 | 720 13680 17280 25920 0 0
P34 1| 759 0 1288 | 0 0 0 0 0 0
Py 1| 551 0 2520 | 240 15120 896 13440 O 0

151

Table 6.5: The intersections of the 2-cores of the maximal 2-parabolic subgroups of C'o; with the
Co1-conjugacy classes.

Parabolic Corresponding Characters
Subgroup (character degrees)
P123 X2 (276), X4 (1771), X5 (8855), X8 (37674), X11 (94875), X13 (345345),
X15 (483000), x21 (1434510), x23 (1771000), x27 (2464749), s (2464749)
Pioy X2 (276), xs (37674), x11 (94875), x21 (1434510), o7 (2464749), x28 (2464749)
P134 X2 (276), X4 (1771), X5 (8855), X8 (37674), X11 (94875), X13 (345345),
X15 (483000), x21 (1434510), x23 (1771000), x27 (2464749), xo2s (2464749)
P234 X2 (276), X4 (1771), X8 (37674), X9 (44275), X11 (94875), X13 (345345)

Table 6.6: The elements of Irr(Co;) satisfying the cuspidal relation for each maximal 2-parabolic
subgroup of Coy.

P124 ~ 24+12.(Sym(3) X 35])4(2)), P134 ~ 211.M24 and P234 ~ 21+8+6.L4(2). The orders of the
intersections of the 2-cores of the maximal parabolic subgroups with the C'o1-conjugacy classes are

given in Table
for each of the maximal parabolics is given in Table We conclude that Co; admits three

A summary of the elements of Irr(Co;) which satisfy the cuspidal relation

2-cuspidal characters, namely y2, xs and x11.

COQ

The group Cog has a 2-minimal parabolic system of the form { P}, P», P3}, where P; ~ [2!5]. Sym(5)
and P; ~ [2'7].Sym(3) for i = 2,3. This system has maximal parabolic subgroups Pz ~
24710 (Sym(3) x Sym(5)), Pig ~ 210. M2 and Py ~ 217876 15(2).
tions of the 2-cores of these maximal parabolics with the relevant Cos-conjugacy classes are given
in Table

X115 X125 X13; X165 X215 X22, X23, X31, X32 and x37, it holds on P13 for x3, X5, X9, X10, X11, X12;
X13, X165 X25, Xx31 and xs2, and the cuspidal relation holds on P»3 for the irreducible characters

The orders of the intersec-

It follows that the cuspidal relation holds on Pjs for the characters x2, x3, X10,

X2, X3, X5> X7> X8 X9 X10, X11, X12, X13, X165 X205 X21; X225 X23, X25, X31, X32, X36, X37 and X4o.
Consequently, C'oy admits eight 2-cuspidal characters namely ys (of degree 253), x10 (9625), x11

(9625), x12 (10395), x13 (10395), Y16 (31625), Y31 (239085) and Y32 (239085).

9 core Order of intersection with Cos-conjugacy class
1A | 2A 2B 2C | 4A 4B 4C 4D 4FE 4F 4G | 8A
O2(P2) | 1 | 125 490 2328 | 240 1440 2400 1680 1920 5760 0 0
O2(Pi3) | 1 | 77 330 616 0 0 0 0 0 0 0 0
O2(Pe3) | 1 | 141 634 1848 | 240 3808 2464 336 8064 8064 0 | 7168

Table 6.7: The 2-cores of the maximal parabolic subgroups of Cos.
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003

There is a unique 2-minimal parabolic system of Cos given by
(P ~ 2871 Sym(3), Py ~ 24741 Sym(3), Py ~ 217471 Sym(3)},

which has maximal parabolic subgroups P ~ 2276.3(Sym(3) x Sym(3)), Pi3 ~ 432.L3(2) and
Po3 ~ 4.2%.8p4(2). We have that Oq(Py3) intersects the Cos-conjugacy classes 14, 24, 2B, 4A and
4B in 1, 31, 0, 2 and 30 elements respectively, and hence the cuspidal condition does not hold for

P>3. Thus Coz admits no 2-cuspidal characters.

McL

The McLaughlin group has a multitude of 2-minimal parabolic systems comprising of the 2-minimal
parabolic subgroups P; and P for i = 1,...,5, where o is the non-trivial outer automorphism of
MecL (as seen in Example [2.5.6). Here P{ = P3, P{ = Py, P; ~ 2472.Sym(3) for i = 1,2,3,4 and

Ps ~ 2%.Sym(5). These subgroups give rise to the minimal parabolic systems

{Pr, Ps, P9}, PP, D5, P9}, P, Ps, P9}, {P5, P, Py},
{Ps, P5, P9}, {P, Py, Pg}, {PY, PP}, {P1, D3 PYY,
{P7,Ps, Ps}, {P1, Py, Pg}, {P7, Py, P}, {P, P, B},
{P, Py, PgY, (P, PP, R}, {P, PP Ps}, (P, P, Ps, Py}

Since the 2-cores of P5 and P¢ are elementary abelian of rank 4, we see that any minimal parabolic
system containing either of these minimal parabolics will not admit a 2-cuspidal character. Con-
versely, any 2-minimal parabolic system not containing these subgroups will contain the parabolic
subgroup Pjjo := (P1, P{). Since Oy(Pj1-) intersects the McL-conjugacy classes 14, 2A and 44
in 1, 19 and 12 elements respectively, we see that the cuspidal relation does not hold for Pjjo and

hence none of the 2-minimal parabolic systems of McL admit a 2-cuspidal character.

Suz

The group Suz has a unique 2-minimal parabolic system, which has rank 3. Its minimal parabolic
subgroups satisfy P; ~ 2461 [5(4), Py ~ 24%6+2 (3 x L[5(2)) and P3 ~ 26+4%2(3 x Ly(2)). The
maximal parabolic subgroups are given by P ~ 2!76.U,(2), Pi3 ~ 2278.(Sym(3) x Ly(4)) and
Pog ~ 24763.9p,4(2)". The 2-core O(P12) intersects the Suz-conjugacy classes 14, 2A and 44 in 1,

55 and 72 elements respectively. We deduce that there are no 2-cuspidal characters of Suz.

6.2.3 The Monster Group and its Subgroups
He

There are four 2-minimal parabolic subgroups of He given by Py =~ P; ~ 263, Sym(3) and P, =~
P3 ~ 26%3.Sym(3). These give rise to the 2-minimal parabolic systems {Py, Py, Py} and { Py, Ps, P4}.
Considering the maximal parabolic subgroups P14 and Pj3 =~ Pay we see that Og(Py4) intersects
the He-conjugacy classes 14, 24, 2B, 4A, 4B and 4C in 1, 18, 45, 0, 0 and 0 elements respectively,
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whilst Oy(P13) intersects the respective conjugacy classes in 1, 42, 29, 0, 56 and 0 elements. It
follows that the cuspidal relation for P4 holds for the characters x7,xs € Irr(He), whilst for
Py3 =~ Py the cuspidal relation holds for x4, x5 € Irr(He). Since each 2-minimal parabolic system

contains Pj4 and either Pi3 or Poy, we conclude that there are no 2-cuspidal characters of He.

HN

There is a unique 2-minimal parabolic system of HN given by
{Py ~ 2178 Alt(5)1Zy, Py ~ 22137023 Sym (3)}.

We consider the minimal parabolic subgroup P;, whose character table is given in [Har76)
TABLE IV], and we adopt the notation given in [Har76] for the Pj-conjugacy classes. We have

that each Pj-class is either contained in, or is disjoint from Oy(P). It follows that
OQ(Pl) = 11 U 21 U 22 U 23 U 41.

Considering the centralizer orders of 11, 21, 29, 23 and 4; in P; and the orders of the centralizers
of 2-elements in HN, we see that the P;-classes 21 and 29 are contained in the H N-class 2B, the
Pi-class 23 lies in either H N-class 2A or 2B, and the Pj-class 4; is contained in the H N-class 4A.
It follows that |O2(P1) n2A| = 0 or 120, |O2(P1) n 2B| = 151 or 271 and |O2(P1) n 4A| = 240. It
follows that the cuspidal relation on P; does not hold for any x € Irr(H N ), and hence there are no

2-cuspidal characters of HN.

Th

The 2-minimal parabolic system
{P; ~ 2178 A1t(9), Py ~ 25767271 'Qym(3)}

of Th is unique. Considering fusion within the maximal subgroup 2°.L5(2) > P, we find that
O2(P») intersects the T'h-conjugacy classes 14, 2A, 4A, 4B, 8A and 8B in 1, 687, 656, 7104, 4864
and 3072 elements respectively. It follows that the cuspidal relation holds on P» for x2, x¢ € Irr(Th).
Considering the normal subgroups of a Sylow 2-subgroup of 25.L5(2) having order 22 and exponent
4, we see that for each such subgroup the only element of Irr(T'h) for which the cuspidal relation

holds is x2 of degree 248. Thus 3 is the unique 2-cuspidal character of Th.

Fig

There is a unique 2-minimal parabolic system of Figy given by { Py, Py, P3} where P; ~ [2!6]. Sym(3)
for i = 1,2 and P; ~ [2'].Sym(5). This system has maximal parabolic subgroups Py ~
29+4+2 (Sym(3) x Sym(3)), P13 ~ 2278.U4(2)2 and Po3 ~ 2'0.Ms;. The 2-core Oz(Py3) inter-
sects the Fiso-conjugacy classes 1A, 24, 2B, 2C, 4A, 4B, 4C', 4D and 4F in 1, 2, 271, 270, 480, 0,
0, 0 and 0 elements respectively. We see that the cuspidal relation does not hold on Pj3 and hence

F'igo admits no 2-cuspidal characters.



154 CHAPTER 6. CUSPIDAL CHARACTERS OF FINITE GROUPS

Figs

The group F'iss has eight 2-minimal parabolic subgroups, seven of which feature in 2-minimal
parabolic systems. Using the notation of [RS84] these have the form P; ~ [2'7].Sym(3) for i =
1,...,5 and P; ~ [2'%].Sym(5) for i = 7,8. These give rise to the geometric 2-minimal parabolic
systems {Py, P3, P5, Pg} and {Pi, Py, Ps, Ps} and the non-geometric systems {P;, P», P5, Ps} and

{P1, P7, Pg}. The maximal parabolic subgroups of these systems are

Pios ~ 21074 Sym(3) x Alt(7), Piag = Pi3s = Puag ~ 22 x 2118(3 x Uy(2))2,

P135 ~ [214](Sym(3) X L3(2)), P145 ~ [214](Sym(3) X L3(2)),
Pisg ~ 2F9, P17 ~ [2M].(Sym(3) x Sym(5)),
Pig ~ [2M1].04(2)2, Pasg = Pssg = Pysg ~ 21 Mg,

Prg ~ 211 My 2.

It is easy to check that the cuspidal relation does not hold for Pj5g, and hence the three 2-minimal
parabolic systems of rank 4 do not admit any 2-cuspidal characters.

Finally, we consider the maximal parabolic subgroup Pig < Pi55. We see that the 2-core O (Pyg)
intersects the Fiss-conjugacy classes 14, 2A, 2B, 2C, 4A, 4B, 4C and 4D in 1, 3, 273, 811, 0, 960,
0 and 0 elements respectively. Consequently, the cuspidal relation does not hold for P;g, and hence

there are no 2-cuspidal characters of Flisgs.

-/
Figy

There is a unique 2-minimal parabolic system of Fij,, which has rank 4. The maximal parabolic
subgroups are P, ~ 2112,(3U4(3) - 2), P, ~ 231272 (Sym(3) x Spy(2)'), P. ~ 287643 (L3(2) x
Sym(3)) and Py ~ 2. Myy. Since Oz(Py) is elementary abelian, we consider the minimum value
that each x € Irr(F'i5,) takes on elements of order 2. We immediately deduce that the only possible
2-cuspidal character of F'i, is x2 of degree 8671. For x2 to be 2-cuspidal, we would require an

integer solution to
X2(14) +j - x2(24) + (2" = j — 1) - x2(2B) = 0.

Since no such solution exists, we conclude that there are no 2-cuspidal characters of F'i5,.

B

The baby monster has five conjugacy classes of 2-minimal parabolic subgroups having represent-
atives P; ~ [249].Sym(3) for i = 1,...,4 and P5 ~ [23¥].Sym(5). These give rise to a unique
2-minimal parabolic system {P;, P2, P3, Ps}. The maximal parabolic subgroups of this system are
given by Pioz ~ 29T16+6+4 [ 1(2) Pog ~ 23132(L3(2) x Sym(5)), Pig5 ~ 22710+20(Sym(3) x Mys2)
and Pags ~ 23r+22.002. All of these maximal parabolic subgroups are 2-radical. Indeed, from [Yos05]
we observe that all 2-parabolic subgroups generated by P, ..., Ps are 2-radical with the exception
of P3, Py and P34. The reader can find further information regarding the structure of the 2-radical

parabolic subgroups in [Yos05].
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Element, m; Im¢ Stabcg, (M) |Stabco, (M)]
my 2,049,300 | (2% x 217%). Sym(8) 20, 643,840 = 216.32.5.7
ma 1,619,200 Ui(3) : Dih(8) 26,127,360 = 210.36.5.7
ms 476,928 HS :2 88,704,000 = 210.32.53.7.11
my 46,575 210 Moy 1 2 908, 328,960 = 2'8.32.5.7.11
ms 2,300 Us(2) : 2 18,393, 661,440 = 21636 5.7.11

Table 6.8: The orbits of the 22-dimensional GF'(2)Coz-module, M.

Conjugacy class, * |C ()] Conjugacy class, * |CB(*)]
24 238 39.52.72.11.13.17.19 4D 2726 315.7
2B 241 36 53 7.11.23 AE 22534 5.7
2C 22736 52 72.13.17 AF 229325
2D 238 35 527 4G 227325
44 232 32 53.7.11 4H 225 32
AB 23236 5.7 471 214 33 52 13
4C 230 33 7 4. 22335

Table 6.9: The orders of centralizers of elements of order 2 and 4 in B.

Noting that Pass =~ Cg(2B), we focus on the 2-core @ := O2(Pa35) and we shall

~ gl+22
assume that Coy admits a unique class of 22-dimensional modules over GF'(2), namely that given
in [ABL™], having representative M. Consider the orbits of M under Cos. There are five such
orbits, represented by elements myq, ..., m5. Details of orbits and stabilizers of the m; under Coo
are given in Table whilst the orders of the centralizers of elements of order 2 and 4 in B are
given in Table As an aside, we note that the stabilizers of ms, mg, m4 and ms are all maximal

in Cos.

Let z denote the central involution of Z(Q). Thus each m; gives rise to a subgroup of @ of
order 4. Hence as each element of B of order 4 is conjugate to its cube, we see that each m; either
gives rise to two Coz-orbits of involutions or two C'og-orbits of elements of order 4, each having size
as given in Table Since @) contains 4,196, 351 elements of order 2 and 4,192, 256 elements of
order 4, we conclude that mq, my4 and ms correspond to orbits of involutions, whilst ms and mg
correspond to orbits of elements of order 4. Comparing the stabilizer orders in Table with the
centralizer orders in Table we conclude that both orbits arising from mso contain elements of

the B-class 4B, whilst both orbits arising from mg contain elements of the B-class 4A.

Let n; denote a non-central involution in the subgroup of ) that is the pre-image of m; in M for
eachi = 1,4,5. Since Q/Z(Q) is elementary abelian and |Z(Q)| = 2 we see that [Q : Co((z,n;))] =
2, and hence n; and z - n; are Pess-conjugate. Thus the Pags-orbits of ni, ng and ns have respective
orders 4098600, 93150 and 4600. Since |Stabco, (m4)| = 218.32.5.7.11, we have that |Stabp,,, (n4)| =
240 32 5.7.11, and hence elements of the orbit of ny lie in the B-class 2B. This leaves the elements
ny and ng for which [Stabp,,. (n1)| = 23%.32.5.7 and |Stabp,,, (n5)| = 238.36.5.7.11.

Let x be an element of the B-class 2A. By the ATLAS we have that there are five orbits of 2B
under the action of Cg(z) ~ 2.2E(2) : 2, as summarised in Table Let x,y € 2Ag be such that
zy = z € 2B. Thus (x,y) < Q. From Table[6.10] we see that [Cg(x) : Cg(x) n Cg(xy)] = 3,968,055
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Element, y; | y1 =« Y2 Y3 Y4 Ys
inB(x) 1 3,968,055 | 23,113,728 | 2,370,830,336 | 11,174,042,880
B-class of zy; 1A 2B 2C 3A 4B

Table 6.10: The orbits of elements of the B-class 24 under the action of Cg(x) for z € 2A.

and hence
|Cs(z) N Q| = |Ca(z) N Cg(zy)| = 77,148,607, 752,437,760 = 2°2.36.5.7.11.

It follows that ns is an element of the B-class 2A, and that the orbit of ns under Py35 accounts for
all elements of class 24 in Q.

Finally, consider the P»3s-orbit of ny. Consideration of the centralizer order and the preceding
paragraph allows us to deduce that n; is in 2Bg or 2Dg. If n; € 2Bg, then then there would exist an
element of 2Bg admitting a Ps35-orbit of size 4098600. However, the sizes of such orbits are given
in [RW04, Theorem 1] and none have this order. Hence n; € 2Dg. We conclude that @ = Oa(Pass)
contains 1, 4600, 93151, 4098600, 953856 and 3238400 elements of the B-classes 14, 24, 2B, 2D,
4A and 4B respectively, and thus the cuspidal relation on Pa35 holds for the characters yi9 and
x11 of respective degrees 1,407,126,890 and 3,214,743, 741.

At the time of writing, we have been unable to ascertain if the cuspidal relations for Pi23, Piaos

or Pi35 hold for either 19 or x11, and hence whether x19 and x11 are 2-cuspidal characters of B.

M

The monster group has a unique 2-minimal parabolic system, {Py, Py, P3, Py, Ps}, where P; ~
[245].L9(2) for 4 = 1,...,5. The maximal parabolic subgroups are given by Plasq ~
QFHSHIGHI0 [ (9)  Plouc o QAFIHRESEEHIZEA (1 (9) 5 Sym(3)), Prags ~ 23736.(L3(2) x 3Spa(2)),
P35 ~ 22411422 (Sym(3) x Myy) and Paggs ~ 21+24.Co;.

We observe that there is no x € Irr(M) that satisfies the cuspidal relation for Oz (Pa345). Indeed,
let z be an involution of M in class 2B and let A be the leach lattice as defined in [Asc94]. Moreover,

let A; be the set of all vectors in A of type i defined as
A = {veA|(v,v)/16 = i}.
Then calculations in [Asc94] show that

|A2| = 196,560 =24.3%.5.7.13,
|A3] =212(22-1) =212.32.5.7-13, and
|A4| = 398,034,000 =2%.37.5%.7.13.

Let G := -0 - the automorphism group of A, and let G := G/(ex) (where ex is the scalar map
defined on A by —1). Thus G is equal to Co;. Since ex acts trivially on A= A/2A, and G
acts transitively on the set Ag ([Asc94, Lemma 22.12(1)]) and on each of the sets Az, Ay ([Asc94]
Lemma 22.14(1)]), it follows that (@ acts transitively on the sets A3, A3 and Ay (where A; is the
image of A; in A).
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Without loss, we may assume that z is the central involution of the extra-special group O2(Pa345)

and we define Py3zs := Pasy5/(z). By considering the action of G on A we have that
‘StabG(E)’ —917.36.53.7.11.23,
‘StabG(X;)‘ —2°.37.5%.7.11- 23, and
‘StabG(X;)‘ —2l7.32.5.7.11.23

(where \; € A;). It follows that

‘Stab 2)] — o .36.53.7.11. 23,

P2345

‘Stab 3)’ —93.37.53.7.11. 23, and (6.2.4)

P2345

Nt 41 2
‘Stabpz345(/\4)‘=2 .3%.5.7-11-23.

The question remains, how does the element ); lift to the extra-special group 2'*2* = Oy(Pa345)?

Once this is established, we may then use the centralizer orders

|Cm(24)) = 242 .31 .55 .72.11.13-17-19- 23 - 31 - 47,
|Cm(2B)| = 2%6.39 . 5% . 72 . 11-13 - 23,
|Cm(4A)| =23 .37 .53 .7.11-23,

)
)
)
(6.2.5)
4B)| = 2%7.35.5% . 7% .13 .17,
)
)

(
IO (4C)| = 234 . 357, and
(4D)| = 2°7-3%.52.7-13

to determine the fusion within Og(Pss45). Indeed, we have that C%(X;) ~ 2% Co,, Com ()\3)
224 Cog and Chanz ()\4) ~ 224 (21 1 Myy).

There are two possible ways in which a )TZ can lift into 2124, namely to an abelian subgroup of
order 4 of the form (\;, z) having exponent 2 or 4. The former case occurs when ord()\;) = 2, whilst
the latter case occurs when ord();) = 4 and hence \? = 2. Since (4Ayn)> = 44w, (4Bu)> = 4B,
(4Cp)3 = 4Cy and (4Dy)? = 4Dy, we may use the centralizer and stabilizer orders from
and to see that the only possible elements of order 4 in Ps345 must lie in the M—conjugacy
class 4A. Since the exponent of 2'+24 is 4, we conclude that the elements of the orbit )\3 lift to

cyclic groups of order 4 containing 1, z and two elements from the M-class 4A. This means that
|0(Pagas) 44| = 2- ‘K;‘ — A = 2!2(212 1) = 2!2.32.5. 7. 13 = 16,773, 120.

Next we consider the lifts of 3\; and :\V4. We see that these must lift to the elementary abelian
subgroups (A2, z) and {4, z) respectively. Since there are only two M-classes of involutions, we
have that (A22)92 = A2 and (A42)% = A4 for some g9, g4 € M. To determine which element lifts to
class 2A and which element lifts to 2B, we note that by [MS02, Lemma 4.4] for  # z an involution
of Pay5, either Cp,,,. (z) ~ 21723.Coy (if 2 is not 2-central) or Cp,,,, (z) ~ 21723.(21 : Myy,) if z is

2-central. Here
’2”23.002’ =242 .36 . 53.7.11.23 and (6.2.6)
21423 (211 Myy)| =2%-3%.5.7-11-23. B
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Combining (6.2.6)) with (6.2.4)) and the fact that the 2-central elements of Pa345 lie in 2B, we have
that ,)\\2/ lifts to an elementary abelian subgroup generated by z and an involution of the M-class
2A, whilst 3\: lifts to a subgroup generated by z and an element of 2B. Since z also lies in 2B, we

conclude that

|09(Pasas) N 24| =2 |A, = |As| = 196, 560,
|09(Pa3as) n2B| =2-|Ag|+1 =|Ayg/24+1 =16,584,751 and
|02(P2345) M 414’ =2- /’_\\;’ = ‘Ag‘ = 16, 773, 120.

As there is no x € Irr(M) satisfying
X(LA) + 196560 - x(24) + 16584751 - x(2B) + 16773120 - y(4A4) = 0,

it follows that there are no 2-cuspidal characters of M.

6.2.4 The Pariahs
J1

The normalizer of a Sylow 2-subgroup of J; is maximal. Thus as the cuspidal relation does not

hold for such a Sylow subgroup, .J; has no 2-cuspidal characters.

O'N
The group O’N admits a unique 2-minimal parabolic system of the form
(P ~ 4322.Sym(3), Py ~ 4.13(4)2}.

The generators of Oy(P,) are elements of the O’ N-conjugacy class 4A. Thus we see that the cuspidal
relation does not hold on P, for any x € Irr(O’N). Hence O'N admits no 2-cuspidal characters.

J3
There is a unique 2-minimal parabolic system of Js3, given by
(P ~ 2273 x Sym(3)), P, ~ 2174 Ly (4)}.

Considering the 2-core O2(P,), it contains 1, 11 and 20 elements from the J3-conjugacy classes 14,

2A and 4A respectively. It follows that J3 does not admit any 2-cuspidal characters.

Ru

There are three 2-minimal parabolic subgroups of Ru given by P; ~ 2576.Sym(5) and P; ~
2516+2 Gym(3) for i = 2,3. Since P3 < P;, we obtain a unique 2-minimal parabolic system, namely
{Py, P,}. Considering the 2-cores of P; and P», we see that Oo(P;) intersects the Ru-conjugacy
classes 1A, 2A, 2B, 4A, 4B, 4C, 4D, 8A, 8B and 8C in 1, 271, 0, 512, 64, 240, 960, 0, 0 and 0
elements respectively, whilst Oy (P,) intersects the given Ru-classes in respectively 1, 367, 192, 608,
448, 1296, 1440, 1536, 768 and 1536 elements. It follows that the cuspidal relation holds on P; for
X2, X3 € Irr(Ru) and on P» for x2, x3, x4 € Irr(Ru). We conclude that the two characters xo and
x3 of degree 378 are the only 2-cuspidal characters of Ru.
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Jy-conjugacy class, C' | 1A | 2A 2B 4A 4B 4C
|O2(P12) N C| 1 | 3579 4868 | 22848 100800 72704
|O2(P13) N C| 1 | 3067 5892 | 21312 54720 46080
|02(Pa3) n C 1 | 1387 2772 | 4032 0 0

Js-conjugacy class, C' | 84 8B  8C
|O2(P12) N C| 0 57344 0
|OQ(P13) M C| 0 0 0
|02 (P23) M C| 0 0 0

Table 6.11: The intersections of the 2-cores of the maximal parabolic subgroups of Jy with the
Jy-conjugacy classes.

J4

There is a unique 2-minimal parabolic system of Jy given by {Py, P2, P3} where P; ~ [22°]. Sym(3)
for i = 1,2 and P3 ~ [2'®]. Sym(5). The maximal 2-parabolic subgroups of this system are given
by Pz ~ [2'8].L3(2), P13 ~ [2'7].(Sym(3) x Sym(5)) and Py3 ~ 2'7123M52. By considering
centralizer orders, powering up classes and conjugation of representatives of certain Pjs-, Pi3- and
Py3-conjugacy classes by random elements in J4, we may determine the fusion of Oz(Pi2)-, O2(P13)-
and Oz (Pa3)-classes in Jy. We detail the orders of the intersections of the 2-cores of the maximal
parabolic subgroups with the Jy-conjugacy classes in Table Consequently, the cuspidal
relation holds on Pjo for the characters xs, X3, x4 and s, it holds on Pi3 for x2, x3, X4, X5, X6,
X7, X9, X10, X12 and x13, whilst the cuspidal relation holds on P»3 for the irreducible characters yo

and y3. We conclude that J4 admits two 2-cuspidal characters, y2 and xs, both of degree 1333.

Ly

There are six 2-minimal parabolic subgroups of Ly, three of which feature in the two 2-minimal
parabolic systems of Ly. These are P; ~ [27]. Sym(3), P, ~ [2°]. Sym(5), P3 ~ 2. Sym(9) and they
give rise to the systems { Py, P»} and {P;, P3}. Since |O2(Py)| = 27, |Oo(P)| = 2° and |O2(P3)| = 2,
it is easy to see that the cuspidal relation does not hold for any of the 2-minimal parabolic subgroups

of Ly, and hence there are no 2-cuspidal characters of Ly.

6.3 3-Cuspidal Characters

We now describe the 3-cuspidal characters for each of the sporadic groups.

6.3.1 The Mathieu Groups
My

The normalizer of a Sylow 3-subgroup of M is the maximal subgroup My : 2 of M7;. Consequently,
we see that Mp; admits two 3-cuspidal characters, xg and y7, both of degree 16.
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M
The group Mj2 has a unique 3-minimal parabolic system
{P; ~ 32.GLy(3), P> ~ 32.GLy(3)}.

The non-trivial elements of the 3-cores O3(P;) and O3z(P%) lie in the Mjs-conjugacy class 3A. It
follows that the 3-cuspidal characters of My are x4 and x5, both of which have degree 16.

Mas
There is a unique 3-minimal parabolic system of Mo, namely
{Pl = Mlo,PQ = L3(4)}

Since O3(P;) = 1 for i = 1,2, an element x € Irr(Ma2) will be 3-cuspidal if and only if the cuspidal

relation holds for a Sylow 3-subgroup. Since this is never the case, Mo has no 3-cuspidal characters.

M3

The 3-cores of the two 3-minimal parabolic subgroups comprising the unique 3-minimal parabolic

System
{Pl = MH,PQ ~ L3(4) : 22}

of Moz are both trivial. Since the cuspidal relation does not hold for a Sylow 3-subgroup, we

conclude that Ms3 admits no 3-cuspidal characters.

Moy

There are three 3-minimal parabolic subgroups of My given by P; ~ 3.Sym(6), Py ~ 263?22?2
and P3 ~ Mjg : 2. These give rise to two 3-minimal parabolic systems of My, namely {P;, P3}
and {P», Ps}. It is easy to observe that there is no x € Irr(Msy4) satisfying the cuspidal relation for
a Sylow 3-subgroup of Msy. It follows that neither 3-minimal parabolic system of Msy admits a

3-cuspidal character.
6.3.2 The Leech Lattice and Conway Groups
HS
As a Sylow 3-subgroup of HS has order 9, it is easy to see that the cuspidal relation will not hold
for such a subgroup, and hence HS admits no 3-cuspidal characters.
Jo
There is a unique 3-minimal parabolic system of Jy given by
{Pl ~ 3. Alt(6)2, P2 = U5(3)}

The non-trivial elements of O3(P;) are contained in the Jo-conjugacy class 3A. We immediately

see that Jo has no 3-cuspidal characters.
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001

There is a solitary 3-minimal parabolic system of C'oq, which has rank 3. Its maximal parabolic
subgroups are Pia ~ 314.8py(3) - 2, Pi3 ~ 3374.GLy(3)? and Pag ~ 36.2M15.

The Co;-fusion of the 3-core of Pa3 is described in [Cur80]. We see that Os(Pe3) intersects
the Co-conjugacy classes 1A, 3A, 3B, 3C and 3D in 1, 24, 264, 440 and 0 elements respectively.
It follows that the cuspidal relation does not hold for P»3 and hence Co; admits no 3-cuspidal

characters.
COQ
The unique 3-minimal parabolic system of C'oo has the form
{Py ~ 317421 Sym(5), P, ~ 3%.Lo(9) Dih(8)}.
Since O3(Ps) intersects the respective Cos-conjugacy classes 14, 3A and 3B in 1, 20 and 60 ele-
ments, we see that there are no 3-cuspidal characters of Coo.
003

There are two 3-minimal parabolic subgroups of C'os and they form the unique 3-minimal parabolic

system
{Py ~ 3174 Sym(6), Py ~ 3°5.(My; x 2)}.

The 3-cores O3(P;) and Os(P2) intersect the Cos-classes 14, 3A, 3B and 3C in 1, 2, 240 and
0 and 1, 110, 132 and 0 elements respectively. It follows that the cuspidal relation holds on P;
for x6,x7 € Irr(Cos) and on Py for xig,x11 € Irr(Cos). Consequently, there are no 3-cuspidal

characters of Cos.

McL

The McLaughlin group has a unique 3-minimal parabolic system given by
{Pl ~ 34.M10, P2 ~ 3}i-+4'2 Sym(5)}

The 3-core O3(P;) intersects the McL-conjugacy classes 14, 3A and 3B in 1, 20 and 60 elements
respectively. It follows that no x € Irr(McL) satisfies the cuspidal relation for P; and hence McL

has no 3-cuspidal characters.
Suz
The unique 3-minimal parabolic system
{P; ~ 35. My, Py ~ 3°T1.2(Alt(4) x 22)2}

of Suz does not admit any 3-cuspidal characters. To see this, we note that the 3-core O3(FP;)
intersects the Suz-classes 14, 3A, 3B and 3C in 1, 22, 220 and 0 elements respectively, meaning
that the cuspidal relation does not hold on P; for any x € Irr(Suz).
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6.3.3 The Monster Group and its Subgroups

He

Since a Sylow 3-subgroup of He has order 27 and exponent 3, we easily observe that there are no
3-cuspidal characters of He.

HN

The unique 3-minimal parabolic system of HN is
{Py ~ 3174.2Sym(5), Pp ~ 3%.2(Alt(4) x Alt(4))4}.

The character table of the subgroup M = 3'74.5Ly(5) < HN is given as [Har76, TABLE II]. Since
M < Py, it follows that O3(M) = Os(P;). Moreover, every M-conjugacy class is either contained
in, or disjoint from Os(M). Using the notation from [Har76], we have that

O3(M) =103 U3? U3y U 3s.

Considering centralizer orders in M and HN, we see that 3; and 3% are contained in the H N-class
3B, whilst 32 and 33 lie in either 34 or 3B. It follows that |O3(P1) n 34| = |O3(M) n3A| =
0,120 or 240 and |O3(P1) n3B| = |O3(M) n3B| = 2,122 or 242. For each of these possibilities,
we see that the cuspidal relation would not hold for P;, and hence there are no 3-cuspidal characters
of HN.

Th

The Thompson group has a single 3-minimal parabolic system. It is of rank 2 and has the form
(P ~ 30F2+442 G10(3), Py ~ 3G GLy(3)).

The 3-cores O3(P;) and O3(P2) intersect the respective T'h-conjugacy classes 14, 3A, 3B, 3C, 9A,
9B and 9C in 1, 270, 2186, 4104, 2106, 5184 and 5832 elements and 1, 756, 2672, 4590, 648, 5184
and 5832 elements respectively. It follows that for both P; and P there is a unique element of
Irr(T'h) satisfying the cuspidal relation, namely y2 of degree 248. We conclude that x2 is the unique
3-cuspidal character of Th.

Fiog

There is a unique 3-minimal parabolic system of Figo, which has rank 3 and minimal parabolic
subgroups of the form P; ~ [3%].2.PGLy(3) for i = 1,2,3. The maximal parabolic subgroups of

this system are
P12 = P13 ~ 34+2.L3(3) and P23 ~ 35_6.22.5[/2(3). Sym(4).

The maximal parabolics Pjs and P53 are maximal subgroups of the maximal subgroups of F'igo

which are isomorphic to O7(3), and hence their 3-cores can be easily computed. Meanwhile,
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Conjugacy Class, C' | 1A | 34 3B 3C 3D
|03(Pr12) N C| 1 | 0 260 234 234
|O3(P13) N C| 1 | 0 260 234 234
|O3(Pa3) n C)| 1 |72 38 576 1152

Table 6.12: The orders of the intersections of the Fiso-conjugacy classes with the 3-cores of maximal
3-parabolic subgroups.

by [Asc97, (39.6)], the 3-core O3(Fa3) is isomorphic to the Fitting subgroup of the normalizer
in Fligy of an element of the Figg-class 3B. The orders of the intersections of the 3-cores of these
maximal parabolics with the Fige-conjugacy classes is summarised in Table [6.12

We see that the cuspidal relation holds on P and Pi3 for the characters ya, x5 € Irr(Fisg), and
it holds on Py3 for x3. Consequently, x2 (of degree 78) is the unique 3-cuspidal character of Fig.

Fig3
The group Fig3 has a unique 3-minimal parabolic system given by
(P ~ [3'%].22PG Ls(3), P, ~ [3'2].22PGLy(3), Ps ~ [3°].2L(3)32 Sym(3)}.
The corresponding 3-maximal parabolic subgroups are
Pig ~ 33T.GL3(3), Piz~3t8:21%0: 3142 9Qym(4)  and  Pasz ~ D4(3) Sym(3).

Using the information on Figs-fusion within Os(Pi3) given in [Wil87, Table 2], and the fact that
the non-trivial elements of Z(?ﬁfs) lie in the Figg-class 3B, we see that Os(Pj3) intersects the
Figs-classes 34, 3B, 3C and 3D in 864, 1538, 3456 and 13824 elements respectively. (We note that
the above fusion can also be calculated within Ps3. Indeed, there are nine Ps3-classes of elements of
order 3, say 3a, . .., 3%, having centralizer orders in Pa3 of 408146688, 37791360, 37791360, 12737088,
2834352, 944784, 314928, 78732 and 17496 respectively. It follows that the Ps3-classes satisfy the
following inclusions; 3¢,3d < 3A, 3a,3e < 3B, 3b,3g < 3C and 3f,3h,3i < 3D). Consequently,
the cuspidal relation does not hold on Pi3 for any x € Irr(Figs), and Figs admits no 3-cuspidal

characters.

-/
Fiy,

As with Figs we see that there is a unique 3-minimal parabolic system of F'i%,, namely
{P; ~ [3'°].22PG Ly (3), P» ~ [3'%].22 PG Ls(3), Ps ~ [3'%].2Sym(5)},

having maximal parabolics Pja ~ 33t7%3.13(3)2, Pj3 ~ 32448 (SLy(3) x Alt(5))2 and Py3 ~
31H10U5(2)2.

Consider the extra-special 3-core, O3(Pa3) =~ 33r+10. Since there is a unique irreducible 10-
dimensional GF'(3)Us(2)-module, M, we can explicitly determine the sizes of the orbits of elements
of this module. These are summarised in Table [6.13] We see that there are at most four classes

of non-central elements of 3}:’10.
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Element, m | Staby, (2)(m) | [Staby,2)(m)| ’me’(Q){
m 3%, Alt(5) 4,860 2,816
mo 3. Alt(6) 1,080 12,672
ms 21+6 3142 3 10, 368 1,320
my 33. Alt(4) 324 42,240

Table 6.13: The non-trivial orbits of the unique irreducible 10-dimensional GF'(3)Us(2)-module.

Let z € Z(3XMO\{1} and let 2 € 31T\ Z(31F19). Thus = represents a non-zero vector in M.
Then z, 22, zz, zx?, 2%z and 2222 are all Fil,-conjugate. Indeed, from the ATLAS we have that
for any 3-element w € F'ily,, the elements w and w? are Fil,-conjugate. Suppose that g € F'iy, is
such that 29 = 22. Then (22)9 = 22? as z is central. Thus zz and zz? lie in a common Fi,-class,
and are joined by (zx)? = 2222 and (222)? = 222. Finally, as zx and 2%z are Fib,-conjugate, there
exists h € Fib, satisfying 22z = (22)" = 22" and hence 2z = 2. We conclude that the orbits of
mi, ma2, mg and my give rise to orbits of 3171\ Z(3110) of respective sizes 8448, 38016, 3960 and
126720.

Label the orbit of 3}[”10 arising from m; by M; for ¢ = 1,...,4. Considering the orders of
stabilizers given in Table together with the centralizer orders of elements of order 3 in Fif,
given in the ATLAS, we deduce that My, Ms, M3 <€ 3A U 3B u 3C, whilst elements in My could
form a subset of 34, 3B, 3C, 3D or 3E. Since N(3B) = Ps3, it follows that the non-trivial central
elements of 3110 lie in the Fi,-class 3B.

The menagerie of information obtained above results in 135 different possibilities for the fusion
of 3-elements within O3(Pa3) = 3?10. Feeding each possibility into MAGMA and allowing it to
roam over all 108 complex characters of F'i,, we see that the cuspidal relation never holds for Py3,

and hence F'i5, admits no 3-cuspidal characters.

Aside 6.3.1. We note that the Fil,-fusion within the 3-core O3(Pa3) has previously been studied
by Wilson. Indeed, in [Wil87, Section 2.2] Wilson calculates that Os(Pa3) contains 3960, 8450,
38016 and 126720 elements from the respective Fib,-classes 3A, 3B, 3C and 3D. However, these

calculations are based heavily on an unpublished preprint, and we have been unable to verify them.

B

There is a unique 3-minimal parabolic system of B, which has rank 3. The maximal parabolic sub-
groups of this system are Pyy ~ 3377.GL3(3), Pi3 ~ 3273%6.G Ly (3)% and Py3 ~ 31 78.2146PSp,(3)-2.
Considering the minimum value that each x € Irr(B) takes on 3-elements, we see that the only
possible 3-cuspidal character of B is yo of degree 4371. However, as B satisfies the condition of
Lemma we see that x2 cannot be 3-cuspidal, and hence B admits no 3-cuspidal characters.

M

The monster group, M, has a unique 3-minimal parabolic system, which has rank 3. Its maximal

parabolic subgroups are given by

Prg ~ 33181624 15(3), P13 ~ 3275110 (GLy(3) x Myp) and Pas ~ 317122 Suz 2.
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By considering the 3-core O3(Pa3), we see that it has exponent 3. Moreover, appealing to [IM97,

Lemma 1.5] we see that
03(Ps3) A 3A| = 196,560 and  |O3(Pa3) n 38| = 1,397, 762.

It immediately follows that M admits no 3-cuspidal characters.

6.3.4 The Pariahs

Ji

The cuspidal relation does not hold for a Sylow 3-subgroup of J;. Hence there are no 3-cuspidal
characters for the unique 3-minimal parabolic system, {J;}, of J;.

O'N

A Sylow 3-subgroup of O’N has order 81. Moreover, since there is a unique O’ N-conjugacy class
of non-trivial 3-elements, we see that the cuspidal relation does not hold for a Sylow 3-subgroup of
O'N. Consequently, O'N admits no 3-cuspidal characters.

J3

The normalizer of a Sylow 3-subgroup of J3 is maximal. Moreover, such a Sylow subgroup intersects
the Js-conjugacy classes 14, 34, 3B, 9A, 9B and 9C' in 1, 18, 8, 72, 72 and 72 elements respectively.
Checking the cuspidal relation for each x € Irr(J3) for a Sylow 3-subgroup, we see that there are
no 3-cuspidal characters of Js.

Ru

Since a Sylow 3-subgroup of Ru has order 27 and there is a unique Ru-conjugacy class of non-trivial
3-elements, it is easy to see that Ru admits no 3-cuspidal characters.

Jy

The non-trivial elements of a Sylow 3-subgroup of Jy lie in the Jy-class 3A. Since such a subgroup
has order 27, it is easy to see that the cuspidal relation does not hold for a Sylow 3-subgroup of

Jy. Hence, Jy has no 3-cuspidal characters.
Ly
There is a unique 3-minimal parabolic system of Ly given by
{P; ~ 32T1.8Sym(5), Py ~ 3°.(My; x 2)}.

Considering the minimum value that each y € Irr(Ly) takes on elements of order 3, we see that
the only possible candidates for 3-cuspidal characters are y7 and xg of degree 120064. However,

these characters take strictly negative values on all 3-elements, and hence the cuspidal relation
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cannot hold for them for both O3(P,) and a Sylow 3-subgroup of Ly. We conclude that there are

no 3-cuspidal characters of Ly.

6.4 5-Cuspidal Characters

The groups Mi1, Mya, Mag, Mas, May, Suz, He, Fisa, Fiss, Fib,, Ji, O'N, J3, Ru and Jy have
Sylow 5-subgroups of exponent 5 and of order at most 53. Thus, considering the minimal values
that an irreducible character takes on elements of order 5 together with the character degree, we
see that none of these groups admit a 5-cuspidal character. We now consider the remaining eleven

sporadic groups in turn.

HS

A Sylow 5-subgroup of H.S intersects the HS-conjugacy classes 14, 5A, 5B and 5C in 1, 4, 40 and
80 elements respectively. It follows immediately that HS has no 5-cuspidal characters.

Jo

The normalizer in Jo of a Sylow 5-subgroup, 5, is maximal and S intersects each of the Js-conjugacy
classes 5A, 5B, 5C and 5D in 6 elements. From this we deduce that Jo has a unique 5-cuspidal
character given by g of degree 36.

C 01

There is a unique 5-minimal parabolic system of C'o; given by

{P; ~ 5%.(4 x Alt(5)) - 2, Py ~ 51"2.G Ly (5)}.

Considering the minimum value that each x € Irr(Co1) takes on elements of order 5, and the order
of the 5-cores of the minimal parabolic subgroups, we see that there are no 5-cuspidal characters
of Coy.

Coy, Cog, McL

If G € {Coy,Co3, McL}, then a Sylow 5-subgroup of G intersects the G-conjugacy classes 14, 5A
and 5B in 1, 4 and 120 elements respectively. It follows that the cuspidal relation does not hold

for a Sylow 5-subgroup for any x € Irr(G) and hence G has no 5-cuspidal characters.

HN

There is a unique 5-minimal parabolic system of HN given by
(P, ~ 514 (2171 5.4), Py ~ 5271F2 4. Alt(5)}.

The character table of P; is given as [Har76, Table III|, whilst a partial character table of P, -

featuring the conjugacy classes of elements of order 2 and classes contained in O5(F,) - is given in
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Class | 11 21 25 5 55 53 57 5 59 510 513
Size | 1 625 3750 24 50 50 600 600 600 600 600
Order | 1 2 2 5 5 5 5 5 5 5 5
X1 1 11 1 1 1 1 1 1 1
X2 o1 11 1 1 1 1 1 1 1
X3 2 2 0 2 2 2 2 2 2 2 2
Y4 2 2 0 2 2 2 2 2 2 2 2
X5 2 2 0 2 2 2 2 2 2 2 2
X6 2 2 0 2 2 2 2 2 2 2 2
7 3 3 103 3 3 3 3 3 3 3
X8 3 3 103 3 3 3 3 3 3 3
Xo 3 3 1 3 3 3 3 3 3 3 3
xo | 3 3 -1 3 3 3 3 3 3 3 3
x| 4 4 0 4 4 4 4 4 4 4 4
X2 | 4 4 0 4 4 4 4 4 4 4 4
xi3 | 4 4 0 4 4 4 4 4 4 4 4
x4 | 4 4 0 4 4 4 4 4 4 4 4
x5 | 5 5 1 5 5 5 5 5 5 5 5
X6 | 5 5 -1 5 5 5 5 5 5 5 5
X17 6 -6 0 6 6 6 6 6 6 6 6
xs | 6 6 0 6 6 6 6 6 6 6 6
X9 | 10 2 0 10 5w 4+5-w? —5-w —5-u 0 0 0 0 0
Xx20 | 10 2 0 10 —5-w-5-w-5 5w 45w 0 0 0 0 0
Xo1 | 20 -4 0 20 10w +10 - w? —10-w® — 10 - w? — 10 0 0 0 0 0
X22 | 20 4 0 20 —10-w®—10-w?—10 10 - w® +10 - w? 0 0 0 0 0
X2z | 20 4 0 20 —10-w®—10-w?—10 10 - w® +10 - w? 0 0 0 0 0
X214 | 20 -4 0 20 10 - w3 + 10 - w? —10-w® —10-w? — 10 0 0 0 0 0
Xos | 24 0 4 24 24 24 -1 -1 -1 -1 -1
X6 | 24 0 -4 24 24 24 -1 -1 -1 -1 -1
Xx2r | 30 6 0 30 —15-w—15-w?—15 15w +15- 0 0 0 0 0
Xes | 30 6 0 30 —15-w—15-w?—15 15w +15- 0 0 0 0 0
X290 | 30 6 0 30 15w + 15 - w? 15 w? —15-w? — 0 0 0 0 0
Xz | 30 6 0 30 15w 4 15 - w? —15-w® — 15 - v 0 0 0 0 0
X31 | 40 -8 0 40 —20-w®-20-w?-20 20 - w® + 20 - 0 0 0 0 0
X32 40 8 0 40 20 - w® + 20 - w? —20-w® —20- 0 0 0 0 0
X33 40 -8 0 40 20 - w? + 20 - w? —20-w?® —20- 0 0 0 0 0
X3 | 40 8 0 40 —20-w?—20-w?—20 20 - w® + 20 - w? 0 0 0 0 0
X35 | 48 0 0 48 48 48 -2 -2 -2 -2 -2
X3 | 48 0 0 48 48 48 -2 -2 -2 -2 -2
Xa7 | 50 10 0 50 25 - w® + 25 - w? —25 - w® — 25 - w? — 25 0 0 0 0 0
Xz | 50 10 0 50 —25-w’—25-w?-25 25 - w? + 25 - w? 0 0 0 0 0
Xz | 60 -12 0 60 30 - w? + 30 - w? 30 - w® — 30 - w? — 30 0 0 0 0 0
X0 | 60 -12 0 60 —30-w?—30-w?—30 30 - w® + 30 - w? 0 0 0 0 0
xa [120 0 -4 -5 0 0 -5 0 5 5
Xxa2 | 120 0 4 5 0 0 -5 0 5 -5
X3 | 120 0 4 5 0 0 0 5 —5-wP-5-w-5 0
Xa | 120 0 4 5 0 0 5-wP+5-w?+5 -5 0 —5-w® —5-w?
X45 120 0 4 -5 0 0 0 5 5w +5-w? 0
X46 120 0 -4 -5 0 0 —5-wd —5-w? -5 5w +5-w?+5
xa7 | 120 0O -4 -5 0 0 5.wd4+5-w?+5 -5 —5-w® —5-w?
xsas | 120 0 4 -5 0 0 0 5 0
X9 | 120 0 4 5 0 0 0 5 0
Xs0 | 120 0O 4 -5 0 0 —5-w —5-w? -5 5.wd4+5-w?+5

Table 6.14: A partial character table of the 5-minimal parabolic subgroup Py ~ 52172 4, Alt(5) of
HN (where w = exp(27i/5)).
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Table By considering the restriction of x2 € Irr(HN) to P; and P,, we may calculate the
H N-fusion within O5(P;) and O3(P,). We see that O5(P) intersects the H N-classes 14, 5A, 5B,
5C, 5D and 5F in 1, 400, 324, 800, 800 and 800 elements respectively, whilst O5(P,) intersects
the given classes in 1, 0, 624, 650, 650, and 1200 elements respectively. Consequently, the cuspidal
relation holds on P; for x4 € Irr(HN) and on P, for x4, x5 € Irr(HN). We conclude that x4 (of
degree 760) is the unique 5-cuspidal character of HN.

Th

The normalizer of a Sylow 5-subgroup of T'h is a maximal subgroup. Thus a character y € Irr(Th)
will be 5-cuspidal precisely when the cuspidal condition holds for the Sylow subgroup. Since Th
has a unique conjugacy class of elements of order 5, we observe that there is a unique 5-cuspidal

character of Th, namely 2 of degree 248.

B

There is a unique 5-minimal parabolic system of B given by
(P ~ 51421 Sym(5)2, Py ~ 52112 .G Ly (5)}.

Considering the minimum value that each x € Irr(B) takes on B-classes of 5-elements, we see that
the only possible 5-cuspidal character of B is y2. However, deg(x2) = 4371, and B satisfies the
conditions of Lemma [6.1.10] Thus there are no 5-cuspidal characters of B.

M

The monster has a unique 5-minimal parabolic system, namely
{P) ~ 51%0.2(J5 x 2)2, P, ~ 52724 Sym(3).G Ly (5)}.

Using a similar approach to that used for the baby monster, with the 5-core Os(P;), we deduce

that there are no 5-cuspidal characters of M.

Ly

From [RS84] we see that there is a unique 5-minimal parabolic system of Ly, having rank 3. Its min-
imal parabolic subgroups are Py ~ 517 4PGLy(5), Py ~ 5372.4PGLy(5) and P3 ~ 517 4PG Ly (5).

The maximal 5-parabolic subgroups are given by
Py ~ 53.SL3(5), Pi3 ~ 5}:_4.2 Alt(6)4 and Pog =~ G2(5).

By considering the elementary abelian subgroup Os(Pj2) = 53, we see that the only possible 5-
cuspidal characters of Ly are xo and x3 (both of degree 2480), and that for these characters to
be 5-cuspidal, we must have that the non-trivial elements of O5(Pj2) are contained in the Ly-
conjugacy class 5A. Defining S to be our given Sylow 5-subgroup of Ly, we see that S has a unique

normal elementary abelian 5-subgroup of order 53. Considering this within the maximal subgroup
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G2(5) < Ly, we see that the non-trivial elements of O5(Pj2) are indeed contained in the Ly-class
5A. It remains to check the cuspidal relation for y2 and x3 for the extra-special 5-core O5(Pi3) of
order 5°.

By constructing Os(P;3) within both Pj3 and P3 we may deduce that it intersects the Ly-
conjugacy classes 14, bA and 5B in 1, 724 and 2400 elements respectively. It follows that the
cuspidal relation holds on Os(P;3) for both x2 and ys, and hence we see that y2 and ys3 are

5-cuspidal characters of Ly.

6.5 p-Cuspidal Characters (p > 5)

In the case that p > 5, most sporadic groups with order divisible by p have a cyclic Sylow p-
subgroup of order p. The exceptions are (Co1,p = 7), (He,p = 7), (Th,p = 7), (Fiy,p = 7),
(B,p=T7), M,p=17,11,13), (O'N,p =T7) and (J4,p = 11).

The normalizer of a Sylow 7-subgroup, S, of He is maximal in He, and hence there is a unique
7-minimal parabolic system given by { He}. Consequently, an element x € Irr(He) will be 7-cuspidal
precisely when the cuspidal condition holds for S. We have that S contains 1, 42, 42, 132, 63 and
63 elements from the He-classes 14, TA, 7B, 7C, 7D and TFE respectively. It follows that the
7-cuspidal characters of He are x2 and y3 of degree 51.

In all other cases, since the sporadic group in question contains no elements of order p® for
a > 1, we may consider the minimum value that each irreducible character takes on elements of
order p, to conclude that there are no p-cuspidal characters.

We conclude by considering the p-cuspidal characters arising from sporadic groups having a
cyclic Sylow p-subgroup of order p. Since such a subgroup will necessarily be the p-core of its
normalizer, it is easy to see that the cuspidal relation must hold for the Sylow subgroup. Moreover,
a character will be cuspidal precisely when this is true. This gives an additional four cuspidal
characters for the sporadic groups; the 10-dimensional characters yz,xs,xs € Irr(Miy) are 11-

cuspidal and the 22-dimensional character xo € Irr(Mas) is 23-cuspidal.

6.6 Possible Connections with Geometries

In Section we saw how geometries could be used to classify characters. Indeed, the definition
of p-cuspidal characters is entirely dependant on a given p-minimal parabolic geometry. Having
classified the p-cuspidal characters of the sporadic groupsﬂ we may now turn the situation on its

head and ask the following question.

Question 6.6.1. Let G be a group, p a prime divisor of |G| and suppose that x is a p-cuspidal

character of G. Are there any “nice” geometries arising from x ?

For the tuples (G, p) given by (Mi1,11) and (Mas, 23), it is unlikely that the p-cuspidal charac-

ters of GG will give rise to any interesting geometries. Indeed, in both cases a Sylow p-subgroup of G

2with the exception of the 2-cuspidal characters of B
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is cyclic of order p, and the resulting p-cuspidal characters have degree p— 1. Similarly, when (G, p)
is (M11,3) or (Th,5), there is a unique class of elements of order p, and a Sylow p-subgroup has
exponent p. Hence it is improbable that the resulting p-cuspidal characters lead to interesting geo-
metries. Finally, as the maximal 3-parabolic subgroups of Mo are both normalizers of elementary
abelian subgroups of rank 2 generated by elements of the Mjs-class 34, we shall not examine these
3-cuspidal characters any further. Thus we consider the remaining p-cuspidal characters given in
Tables [6.1}6.3] with the caveat that - at the time of writing - our subsequent comments are purely
speculative and serve more as a survey of literature that may be related to the remaining p-cuspidal
characters.

In the early 1990s, Margolin looked at a geometry for the Mathieu group Mys [Mar93]. Mar-
golin’s interest stemmed from the two 1333-dimensional irreducible GF'(2).Jy-representations. Since
21 My, is a maximal subgroup of Jy, Margolin considered the restriction of these representations
to 21 : Myy, namely as a faithful 1288-dimensional representation and a 45-dimensional representa-
tion having kernel 2!!. Hence Margolin sought to find a simple explanation for this 45-dimensional
representation and this resulted in the construction of a geometry. We note that both 1333-
dimensional Jy-characters are 2-cuspidal, as are both of the resulting irreducible Ms4-characters of
degree 45, along with their irreducible restrictions to Mo and Mas.

Considering the 3-cuspidal character of T'h, we note that Th is a subgroup of the exceptional
group Eg(q) when ¢ = 3 (see for example [Wil09]). The lowest character degree of Eg(3) is 248.
Thus it would be worth considering whether this subgroup inclusion is related to the fact that this
character of lowest degree is 3-cuspidal, and if so, is there an amiable geometry arising from this
character?

The existence of the geometry constructed by Margolin and the subgroup inclusion of Th in
Eg(3) may be completely unrelated to the existence of the aforementioned p-cuspidal characters.
Indeed, there do not appear to exist publications on geometries related to the other p-cuspidal char-
acters described in Sections [6.2{6.5] However, it would be worth investigating these two situations
further. Moreover, it would be worth considering the p-cuspidal characters from Tables
from a general geometric viewpoint, and thus looking at answering Question [6.6.1 However, such

consideration is far beyond the scope of this thesis.



Chapter 7

Conclusions and Future Work

We conclude the thesis by briefly summarising our findings and suggesting prospective areas of
further study for the interested reader. For ease of reading, we break this down under the four

main chapter headings.

7.1 Homology of Presheaves of Abelian Groups

In Chapter 3] our main contribution to the subject area was the calculation of the zero-homology
groups of universal panel-irreducible presheaves of the symmetric group Sym(6) and the the Mathieu
groups Mi1; and Moy together with calculating the irreducible quotients of the zero-homology
groups of such presheaves for Mio, Moz and Moy. These presheaves were all defined over the finite
field, GF'(2). Further work would allow for the undetermined homology groups to be explicitly
constructed. However, describing their structure would be a complex affair.

The main aim in calculating these homology groups/quotients of these homology groups was to
try to ascertain the answer to Question namely for a given group G, a 2-minimal parabolic
system S := {P; | i = 1,...,n} for G such that P; ~ O(F;).Sym(3) for all i = 1,...,n and an
irreducible GF(2)G-module V', does there exist a universal panel-irreducible presheaf, A, for G
defined on S over GF(2) such that V is a quotient of Hy())? We saw in Section [3.8that the groups
Sym(6), M2 and Masy satisfied the given hypothesis and in each case and for every 2-minimal
parabolic system S of the given group, every irreducible module over GF(2) was indeed a quotient
of the zero-homology group of some universal panel-irreducible presheaf defined on S over GF(2).
Future research into this area would be of interest, to try and establish the answer to Question[3.9.1]

Further areas that we did not consider in Chapter |3 but that are large areas of potential future
research include presheaves defined over fields other than GF(2), and presheaves defined on the
order complex of simplicial complexes other than those defined by minimal parabolic systems. It is
likely that such areas would be of great interest and may well shed further light on the presheaves
defined on 2-minimal parabolic systems over GF'(2) that we have examined.

A final area of possible research in this area would be to try and develop the theoretical-side of
the subject further. During our work, we have focused predominantly on the computational-side

of things. However, we believe that further theoretical results, either expanding the results of
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Section [3.6] or taking a completely new approach to the subject, would be beneficial in developing

the field of study further.

7.2 m-Product Graphs in Symmetric Groups

The main result of Chapter [4 was Theorem [4.0.1] This concerned the case that G := Sym(n),
t=(1,2)---(2m — 1,2m) € G and X is the G-conjugacy class of ¢. The result fully classified
when the {4}-product graph P4 (G, X) was connected, and in the case that it was connected, the
diameter was shown to equal 2. The result followed by a combinatorial analysis of the possible
connected components of related z-graphs, and was constructive in nature. Indeed, given an element
x € X such that the order of tx does not equal 4, then by following the proof of Theorem the
reader may construct an element y € X such that d(t,y) = d(y,z) = 1.

The graph Py, (G, X) was chosen as two elements z,y € X are neighbours in Py (G, X)
precisely when (z,y) =~ Dih(8). A natural generalisation of this is to consider when the graph
P{Qu}(G,X ) is connected for a > 2, where x,y € X are neighbouring vertices precisely when
(x,y) = Dih(2%!). The connectivity of such graphs was determined in Theorem m where
crude upper and lower bounds were also obtained for the diameter in the case of connected graphs.
Explicit values of the diameters of the connected graphs Py (G, X) were obtained in Theorem W
in the case that the support of ¢ has order 8. However, we did not investigate the diameters of
the connected graphs from Theorem any further in the case that ¢ > 3. This is an area that
would be worth contemplating in the future, and a more general approach to that used in proving

Theorem might be worth considering in such future work.

The final two results of Chapter 4] namely Theorems [4.0.4] and [4.0.5] were in a similar vein to

Theorem m However, all three of these theorems concerned w-product graphs where 7 = {/}
and ¢ is closely related to |supp(t)|. We did not consider the situation when such a relation did not
hold. Since such a greater generality is in a similar vein to the greater generality of Theorem [4.0.1]
it may be worth looking at the possibility of generalising Theorems [.0.2], [4.0.4] and [£.0.5 in the

future.

7.3 Conjugate p-elements of Full Support that Generate the
Wreath Product C, C,

Motivated by the graph-theoretic approach of Chapter |4l we considered possible generalisations of
the z-graph in Chapter [p| resulting in matrices A% and A? being defined in Definition These
matrices encapsulated some of the information that a generalised z-graph would contain, whilst
losing other information. However, they proved to have adequate versatility for us to determine
when two conjugate elements of order p having full support in a given symmetric group generate
the wreath product Cy, C), of two cyclic groups of order p. In the case of z-graphs, the work of
Bates, Bundy, Perkins and Rowley [BBPRO3b]| illustrated that z-graphs may be applied to obtain

a number of different results. The matrices A? and AS lack the majority of this versatility and
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were defined specifically for our chosen line of research. However, it may be worth considering if
they have further applications. It is unlikely that the results of Chapter [5| can in themselves be

extended.

7.4 Cuspidal Characters of Finite Groups

The final chapter of the thesis considered cuspidal characters of finite groups. The idea was to
consider an analogue to cuspidal characters of groups of Lie type for an arbitrary finite group. Many
of the results presented in [Car93|] proved to have analogues in the finite setting and this enabled
p-cuspidal characters of finite groups to be considered. Moreover, we showed in Corollary
that it suffices to check the cuspidal relation for a certain subset of parabolic subgroups.

The main body of Chapter [6] was devoted to considering the p-cuspidal characters of each
sporadic simple group. All p-cuspidal characters were determined with the exception of the 2-
cuspidal characters of the baby monster, B. This is obviously an area that would warrant further
work, as would consideration of possible geometries associated to the other p-cuspidal characters
of the sporadic groups - a topic briefly mentioned in Section

The approach used throughout Chapter [6] involved p-minimal parabolic systems of groups. As
we saw, these were specific cases of X-parabolic systems as defined in Definition We did
not investigate these systems in greater generality. Further work could involve considering such
systems and contemplating if other forms of cuspidal characters could be defined for finite groups

using other X-parabolic systems.






Appendix A

Vertex Term Calculations for

Universal Panel-Irreducible
Presheaves of My3 and My, over GF'(2)

In Chapter [3| we calculated the irreducible quotients of the zero-homology groups of the univer-
sal panel-irreducible presheaves defined on the 2-minimal parabolic systems of Moz and Moy over
GF(2). These minimal parabolic systems all have rank 3, and thus the associated simplicial com-
plexes have chamber, panel and vertex terms. In this appendix, we give a full examination of the

vertex terms of these presheaves.

A.1 Vertex Term Calculations for Universal Panel-Irreducible
Presheaves of Ms; over GF'(2)

As seen in Chapter [3] there are seven 2-minimal parabolic systems of Moz, each of rank 3. We
denote these by S; := {P;, Ps, P;} for i = 1,2,3,4, S5 := {P1, P35, P;}, S¢ := {P, P3, P;} and
S7 := {Ps, Py, P;}. Here we are adopting the notation of [RS84, p77], and so P; ~ 24*2. Sym(3) for
i =1,2,3,4 and P; ~ 2*.Sym(5) for j = 6,7. The diagrams of the geometries arising from Sy, S
and Sy are given in Figure whilst the diagrams arising from Ss3, S5, S¢ and Sy are given in
Figures [A.2] [A.3] [A.4] and [A.5] respectively.

The minimal parabolic subgroups P; each admit two classes of irreducible GF(2)P;-modules,

for i = 1,...,4, denoted by 1p, and 2p,. For j = 6,7 there are three classes of irreducible
G F(2) Pj-modules, namely 1p,, 4p, and 4p,. Continuing the notation of Chapter |3, we denote
the presheaf defined on the minimal parabolic system {P;, P;, P} having a #g;,,-dimensional ir-

reducible GF'(2)P,-module at panels of type P, by ALik) (using the bar notation to dif-

Zdim:jdimvkdim
ferentiate between classes of 4-dimensional irreducibles in the case of Ps and P7). The vertex
/\EZZ:) i i A€ themselves zero-homology groups of presl'l'eaves defined on rank two
2-minimal parabolic systems of F;;, P, and Pj,. We denote by A1) the universal panel-

Ydim 7jdim

terms of

irreducible presheaf of P;; having a 1-dimensional irreducible module at its chambers and satisfying
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Piﬁ P67

Figure A.1: The diagram of the geometries arising from the 2-minimal parabolic systems S; of Ma3
fori=1,2,4.

P37

Figure A.2: The diagram of the geometry arising from the 2-minimal parabolic system S3 of Mas.

Pr3 Ps7

Figure A.3: The diagram of the geometry arising from the 2-minimal parabolic system S5 of Mas.
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Por

Py3 P37

Figure A.4: The diagram of the geometry arising from the 2-minimal parabolic system Sg of Mas.

Psy Py7

Figure A.5: The diagram of the geometry arising from the 2-minimal parabolic system &7 of Mas.



178 APPENDIX A. VERTEX TERM CALCULATIONS

Sfl?gf:f;c p S;lfage Irreducible GF(2) P-Modules
Pi3 24'L3(2) Lpy L3P13’ §P137 8Py
Pyg 24 Alt(7) 1py, 4Py, 4Pgs 6Py 14pP1, 20p,,
Py 24.(3 x Alt(5)).2 | 1py, 2P, 45, 4%, 4%, 4%, 8py;
Pog 24, Alt(7) 1Py, 4Pyss 4Pyss 6Pyss 14pys, 20p,,
Pog 24.A1t(7) 1pys 4Py Zp%, 6Py, 14,5, 20 Py
Pyy 24.(3 x Alt(5)).2 | 1py, 2Py, 4%, , 4%, 4%, , 4% 8p,;
Psy 24'L3(2> 1Py, 3ps; gP347 8Py
Psg 24 Alt(7) Lpys 4Py 4Psgs OPygy 14Pyg, 20py,
P37 M22 1P377 10P377 @Pf_wa 34P377 98P377 140P37
Py 24 Alt(7) 1Py, 4Py 4Pigs 6Py 14p4g, 20p,,
Py; 24.(3 x Alt(5)).2 | 1py, 2Py, 4,5 4%, 4%, , 4%, 8py;
P67 M21.2 1P67’ 9p67, §P677 161:'67, 641367

Table A.1: The irreducible modules over GF(2) of the 2-parabolic subgroups of Ms3 of rank 2.

(A'E;Lijlzm](izm)PZ = ()\EZ‘Zm)ajdimykdim)Pi and ()\Z(Zji‘zzna]dzm)PJ = ()\Z(':Zm)vjdimakdim)Pj Slmﬂarly fOI‘ Plk and
Pji,.. Consequently (/\ZZ: i gV Pig = HO(/\ZZL, i)+ 1t follows that we must consider the uni-

versal panel-irreducible presheaves of Pi3, Pig, P17, Pag, Pog, Por, P34, Psg, P37, Pig, Py7 and Pgr.
A summary of the irreducible modules over GF(2) admitted by each of these parabolic subgroups
is given in Table We note that Pig = Pos = Pog = P3¢ = Pyg and Pi7 = Pyy = Py7. However,
we will subsequently be considering presheaves for each group P;; defined on the minimal parabolic

system {P;, P;}. Thus, we have listed each of these labellings of the groups as separate entries in

Table [ATl

There are four universal panel-irreducible presheaves for each parabolic subgroup not containing
Ps or P7, six universal panel-irreducible presheaves for each parabolic subgroup containing either
Ps or P;, and nine universal panel-irreducible presheaves for Pg;. To calculate the zero-homology
groups of each of these presheaves, we use the methods described in Chapter [3], namely considering
possible quotients of induced modules, straightforward geometric spanning arguments and looking
at which irreducible modules admit certain presheavesﬂ In the case of presheaves defined on Pag,
we also use Ronan’s Duality Theorem to obtain the dimension of Ho()\g?g )). With the dimension
determined, the exact structure of the homology group may then be obtained by considering the pos-
sible quotients of induced modules. Details of the universal panel-irreducible presheaves of the para-
bolic subgroups Pi3, Pig, P17, Pos, Pog, Po7, P34, Pss, P37, Pig, Py7 and Pg7 are given in Tables

A.13] Using these tables and the observation above that (/\(ijk) )Py = HO(/\(.ij) ), the

idimsJdim Kdim tdimsJdim

reader can easily determine the vertex terms of the universal panel-irreducible presheaves of Mog.

We note that - due to the construction of the universal presheaf - this definition is independent of the values of
k and kgim.

2As Ps7 = My, a full discussion of the zero-homology groups of presheaves for P37 is given in Chapter (3| In that
discussion P3 and Py are labelled as P, and P> respectively.
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Presfeaf, Irredugifb]l;()((l;;tients Ho()\) | Notes about A
iR 1 L ()
AL 3 3| (M) =y
A g 3| () =
A ; s | () =AY

Table A.2: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system
{P1, P3} of the parabolic subgroup Pi3 of Mas.

Presheaf, | Irreducible quotients
A of Hg ()\)
Al 1 1

1,1
M o ()

Hy(N) Notes about Hy(\)

(=}

1,4

(16) a
)\1’1 4 4
6 6

(i6)

2.1

) 14 14/(14@1/20/1) | The submodule 1/20/1 is uniserial.
(19 4, 20 4@ 20

> > >

Table A.3: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system
{Py, Ps} of the parabolic subgroup Pjg of Mas.

Pres)l\leaf, Irredu(():;bllfeo?/l\l)oments Ho(\)
AP 1 1
)\SZ) e 4a
)\g) 4b 4b
ALY 2 2
Ay 8 8
)\217) 4c, 47 4¢ @ 44

Table A.4: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system
{P1, Pr} of the parabolic subgroup Pi7 of Mas.

Pres)l\leaf, Irredugifbjl;o?;l)otients Ho(\) Notes about \
A 1 1 (Aff))* SPYvs
AZ) 6, 14 6@ 14 (Afgﬂ)* ~ )
A% 4,1 4/6 ©1/6 (W89) =
A 14, 20 20/1/14/1/20 @ (14/1 @ 20/1)/14 (Ag?;”)) R

Table A.5: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system
{P,, P3} of the parabolic subgroup Pa3 of Mas.
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Presheaf, | Irreducible quotients
\ of Ho(\) Hp(N) Notes about Hy(\)
ALY 1 1
26 v
A 6 o/ (")
/\5216) None 0
Ay 6 6
A 14 14/(14@1/20/1) | The submodule 1/20/1 is uniserial.
ALY 4,74, 20 101®20/1

Table A.6: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system

{P,, Ps} of the parabolic subgroup Pag of Mas.

Table A.7: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system

Presheaf, | Irreducible quotients

A of HO?)\) Ho(A)
AP 1 1
)\g?z) 4& 4a
)\g?g) 4C 4C
A )
A ;
)\2217) 4127 4d 4b ® 4d

{Py, P;} of the parabolic subgroup Py; of Mas.

Table A.8: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system

Pres}l\leaf, Irredugifb};o?;\l)otients Ho(\) | Notes about A
A 1 L () e
A g 3| () =y
A 3 b () A
AG g s () =

{Ps, P;} of the parabolic subgroup P34 of Mas.

Table A.9: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system

Presheaf, | Irreducible quotients

A of Ho(\) Ho(A)
APY) 1 1
)\g?ff) None 0
AGD 4,1 ey
)\5316 ) None 0
)\(:’36)

5.4 6, 14 6@14/1

(36)
Aoy 20 20/1

{Ps, Ps} of the parabolic subgroup Psg of Mas.
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Presheaf, | Irreducible quotients

A of Ho(\) Ho(A)

AP 1 1

ACY 10 10/10/1

)\5317) None 0

ASY 0 10/1
37 —

A 98 98/1/ (ﬁ D 10/10/1) /34/1
(37)

AT 140 140/(1 @ 1/34/1/10/34)
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Table A.10: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system
{Ps, P;} of the parabolic subgroup Ps7 of Mas.

Pres}k\leaf, Irredu;b;;o?;\l)otlents Ho(\) Notes about Ho()\)
ALY 1 1
Ny 6 6/ (121)
A 1 1
S 6 6
S 14 14/(14@®1/20/1) | The submodule 1/20/1 is uniserial.
A9 4, 20 4@ 20

Table A.11: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system
{Py, Ps} of the parabolic subgroup Py of Mas.

Pres)l\leaf, Irredug;bjl;o?;)otlents Ho(\)
AP 1 1
)\g‘i) 40 Ja
)\g) 4b 4b
A )
Ay 8
)\%7) 4c, 47 4¢ @ 44

Table A.12: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system
{Py, Pr} of the parabolic subgroup Py; of Mas.
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Presheaf, | Irreducible quotients

\ of Ho(A) Hy(N) Notes about Hy(\)

ALY 1 1

)\fp 9 9/1/1 | The module 9/1/1 is uniserial.
)‘(1?17) None 0

)\5&7) 9 9/1/1 | The module 9/1/1 is uniserial.
ALY 64 64

)\5&7) None 0

Ag?: ) None

)\gj) None 0

A 16 16

Table A.13: The universal panel-irreducible presheaves defined on the 2-minimal parabolic system
{Ps, P;} of the parabolic subgroup Pgs; of Mas.

Psy

Pi3 Py

Figure A.6: The diagram of the geometry arising from the unique 2-minimal parabolic system of
M24.

A.2 Vertex Term Calculations for Universal Panel-Irreducible
Presheaves of M, over GF(2)

There is a unique 2-minimal parabolic system of My, given by S := {Pi, Ps, P4}, where each
P; has shape 2°73.Sym(3). The maximal parabolic subgroups are given by Pj3 ~ 2.3 Sym(6),
Pyy ~ 25%2 (Sym(3) x Sym(3)) and P34 ~ 24+3.L3(2). Calculations show that the incidence graph
of a residue of flag of cotype {1, 3} of the corresponding geometry has 1-diameter and 3-diameter
both equal to 8 and girth equal to 10. The corresponding graph of a residue of flag of cotype {1, 4}
has 1- and 4-diameter equal to 2 and girth equal to 4, whilst that of a residue of flag of cotype
{3,4} has 3- and 4-diameter equal to 3 and girth equal to 6. The diagram of the geometry arising
from S is given in Figure

Each minimal parabolic subgroup P; admits two classes of irreducible GF'(2)P;-modules, 1p,
and 2p,. Meanwhile, the maximal parabolic subgroups Pi3, P14 and P34 admit seven, four and four

classes of irreducible modules over GF'(2) respectively, given by 1p,,, 4p,,, 4p,4, 6P, 6p,5, 16p,
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Presheaf, Vertex Terms
ik ()‘i,]}k)Pl?, (>‘i7j7k)P14 (Ai,jvk)PM
YRR 1 1 1
AL,1,2 1 2 3
)\17271 1/1 &) 6 1 3
)\1,272 Z/l &) 6 2 8
Xoin | 4/1@6 2 1
X212 4/1®6 4 3
Doz | 16@ 55 2 3
Nogp | 168 o5 4 8

Table A.14: The vertex terms of the universal panel-irreducible presheaves for May over GF(2).

and 18p13, 1p14, 2p14, §p14 and 4p14 and 1p34, 31334, §p34 and 8p34.
We proceed by defining )\Z(CZLJ ;.b to be the universal panel-irreducible presheaf defined on the max-

imal parabolic subgroup P;; having a 1-dimensional chamber term, and a- and b-dimensional terms
at panels of type F; and P; respectively. Thus HO(/\(ij) ) = 1p,; for each (i, j) € {(1,3),(1,4), (3,4)}.

11,J1
Since [P;: B] = 3 for i = 1,3,4, we note that the duality relations (AE:JJ)1> ~ )\EZJJ)Q and
()\Z(jj]L) ~ )\1(;]])1 hold true. In particular, combining Ronan’s Duality Theorem with the Euler
(i7)

i we see that
2,2

characteristic of A

dim(HoA7) ) =y y 11 =[P, : P] + 1. (A.2.1)

i2,j2 12,J2

Presheaves defined on Pi3

The irreducible GF(2) Pis-modules 1p,,, 4p,,, 4ps, 6,5, 6p,4, 16p, and 18p,, each admit a unique
universal panel-irreducible presheaf, these respectively being /\glfgl, )\512:31, )\EZEQ, )\512??))1, )\glfgm,

/\3123%2 and A%})Q. By considering possible quotients of the induced modules (1 pl)g‘g, (2]31)11;13,

(1 pg)]];;3 and (2 p3)£;3 in conjunction with (A.2.1)) we see that

_ _ . 18
HoW) =4/1@6, Hy(\))=41®6 and  Hy(\)) =160 e
Presheaves defined on P, and Psy

Since [Pig : Pi] = [Pia: Py] = 3 and [P34 : P3] = [P34 : P4] = 7, the homology groups HO(/\gfib)
and H O(Agiﬁb) for a,b € {1,2} may be directly calculated and all turn out to be irreducible. We have

14 3 14 14 34 34 53
that HO(/\(ll,zig) = 2py, HO()‘gg,zL) = 2py, HO()\g27412) = 4py, HO()‘gl,ig) = 3py, HO(/\i(’%zil) = 3py,

and H()()\gziliQ) = 8p34.

Presheaves defined on My,

As in Chapter [3] we denote the presheaf for Ms4 having a 1-dimensional chamber term and -, j-
and k-dimensional panel terms at panels of type Pi, P3 and P, by A; ;5. Utilising the calculations

above, we detail the vertex terms of these presheaves in Table






Appendix B

r-Graphs Related to m-Product

Graphs in Symmetric Groups

We now present the various x-graphs that were omitted for the sake of brevity in Chapter

Gyl: @ ° ® ® -
{1,2} {2¢ — 1,2¢} {3,4} {2¢ 3,29 -2}
- e ® O O
{¢—1,4} {¢g+1,q+2} {2¢ + 1} {2q +2}
Grh: @ O ® O
{1,2q} {2} {3,2¢ — 2} {2¢ -1}
e ® e ®
{4,2q — 3} {5,2q — 4} {¢—2,9+3  {g—-1,9+2}

. .

{q,q+1} {2¢ +1,2¢ + 2}

Figure B.1: The z-graphs géﬁ? and Gy%, from Lemma M(l) in the case that » = 0 and ¢ is even.
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Gyl @ o ° ® -
{1,2} {2¢ — 1,24} {3,4} {29 —3,2¢ -2}
e ® Q
{¢—2,9q-1} {q¢+2,g+3} {¢,q+1}
O ®
{2q + 1} {2q + 2}
Y @ O ® O
{1,2¢q} {2} {3,2¢ — 2} {2¢ — 1}
® ® e ®
{4,2q - 3} {5,2q — 4} {¢—1,q+2} {¢q+1}

.

{29 +1,2q + 2}

Figure B.2: The z-graphs foj] and Gy%, from Lemma (1) in the case that r = 0 and ¢ is odd.

Gyl @ ° ° ® -
{1,2} {2¢ — 1,24} {3,4} {2¢ — 3,29 -2}
e ® Q
{¢—1,q} {g+1,g+2}  {2¢+1,2¢+2}
O ®
{v+1} {v+ 2}
Y @ O ® O
{1,2¢q} {2} {3,2¢ — 2} {2¢ — 1}
® ® e ®
{4,2q - 3} {5,2q — 4} {¢—2,9+3 {¢—1,¢+2}

Q @ ®

{q,9 + 1} {2¢+1,2¢g+2} {v+1,v+2}

Figure B.3: The z-graphs ngljj and Gy ; from Lemma (1) in the case that r = 1 and ¢ is even.



Gl e ° ° ® -
{1,2} {2¢ — 1,24} {3,4} {2q — 3,29 — 2}
e ® Q
{e—2,9-1}  {g+2,¢+3} {¢,9+ 1}
Q O O
{2¢ + 1,29 + 2} {v+1} {v+2}
Vi @ O ® O
{1,2q} {2} {3,2¢ — 2} {2¢ -1}
e ® e ®
{4,2q — 3} {5,2q — 4} {¢—1,¢+2} {¢q+1}
e ®
{2¢+1,2¢+2} {v+1,0+2}

187

Figure B.4: The z-graphs Q;ij and G from Lemma M(l) in the case that r = 1 and ¢ is odd.
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Gl e ° ° ® -
{1,2} {2¢ — 1,2¢} {3,4} {2¢ — 3,2¢ — 2}
® ®
{¢—1,q} {g+1,q+2}
® ® ® ®

{2¢ + 1,2q + 2} fv—1,v} {2¢+r—1,2¢+7r} {2¢+7r+1,2¢+7r+2}

O O
{v+1} {v+2}
R O ® O
{1,2q} {2} {3,2¢ — 2} {2¢ -1}
e ® e ®
{4,29 — 3} {5,2q — 4} {¢—2,¢+3}  {g—1,¢+2}
Q e ®
{¢,9+1} {2¢ + 1,0} {v+1,0+2}
e ®

{2¢+2,v—1} {2¢+3,v—2}

- @ ° Q

{2¢+7r—2,2¢g+r+3} {2¢+r—1,2¢+7+2} {2¢+7r2¢+7r+1}

Figure B.5: The z-graphs QZ;J and G2, from Lemma (1) in the case that » > 1 and ¢, r are
both even.
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Gl e ° ° ® -
{1,2} {2¢ — 1,2q} {3,4} {2¢ —3,2¢ — 2}
® ®
{a—1,q} {g+1,q+2}
® ® ® ®

{2¢ + 1,29 + 2} {fv—1v} {2¢+7r—2,2¢+7r—1} {2+ 7r+2,2q+7r + 3}

Q O O

{2¢ + 1,29+ r+1} {v+1} {v+2}
FESEE ) O ® O
{1,2q} {2} {3,2¢ — 2} {2¢ -1}
e ® e ®
{4,2¢ — 3} {5,2q — 4} {¢—2,¢+3} {g—1,¢+2}
Q ® ®
{¢,q+ 1} {2¢ + 1,0} {v+1,0+2}
e ®

{2¢+2,v—1} {2¢+3,v—2}

SRR °
{2¢+r—1,2¢g+r+2} {2¢+7r2¢+7r+1}

Figure B.6: The z-graphs g{,;jﬂ and Gy%, from Lemma (1) in the case that » > 1 and ¢ is even
and r is odd.
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Gy @ ° ° ® -
{1,2} {2¢ —1,2¢} {3,4} {29 — 3,29 — 2}
e ® Q
{¢—2,¢-1}  {g+2,9g+3} {q,q +1}
e ® e ®

{2¢+ 1,2q + 2} {fv—1,v} {2¢+r—1,2¢+7r} {2¢+r+1,2¢+7r+2}

O O
{v+1} {v+2}
[ O ® O
{1,2q} {2} {3,2q — 2} {2¢ -1}
e ® e ®
{4,2q — 3} {5,2q — 4} {¢—1,q+2} {g,q +1}
e ® e ®
{2¢ + 1, v} {fv+1,v+2} {2¢+2,v—1} {2¢+3,0v—2}

- @ ® Q

{2¢+7r—2,2qg+r+3} {2¢q+r—1,2¢+r+2} {29+ r,2¢+7r+1}

Figure B.7: The x-graphs g;jjﬂ and G7%, from Lemma M(l) in the case that r > 1 and ¢ is odd

and r is even.



Gyl @ ° ° ® -
{1,2} {2¢ —1,2¢} {3,4} {2¢ — 3,29 -2}
e ® Q
{¢—2,¢g-1}  {q¢+2,9+3} {¢,q+1}
e ® e ®

{2¢+1,2¢+2} {v—1,v} {2¢q+7r—2,2qg+r—1} {2g+7r+2,2qg+7r+ 3}

Q O O

{2¢ +r,2g +r + 1} {v+1} {v+2}
Gl . @ O ® O
{1,2q} {2} {3,29 -2} {2¢ — 1}
@ ® - @ ®
{4,29 - 3} {5,29 — 4} {a—1,q+2} {¢q +1}
@ ® @ ® -
{2¢+ 1, v} fv+1L,v+2}  {2¢+2,v—1} {2¢+3,v—2}
- e °

{2¢+7r—1,2g+r+2} {2¢+7r2q+r+1}

tit;

Figure B.8: The z-graphs G, and G7%, from Lemma (1) in the case that r > 1 and ¢,r are

both odd.
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Gy: @ ° ° o
{1,2} {2¢ — 1,24} {3, 4} {2¢ — 3,2¢ — 2}
e ®
{¢—1,q} {g+1,q+2}
O ®
{2¢ + 1} {2¢ + 2}
v O ° O
{1} {2¢+1,2¢ + 2} {24}
e ® e ®
{2,2¢ — 1} {3,2¢ — 2} {¢—2,9+3}  {¢—1,¢+2}
{¢,9+ 1}

Figure B.9: The z-graphs Gl¢ and G¥; from Lemma M(n) in the case that ¢ is even.

Gii ] ® ® ®
{1,2} {29 — 1,24} {3,4} {2¢ —3,2¢ - 2}
e ® Q
{¢—2,9-1}  {g+2,q+3} {g,q+1}
O ®
{2¢ + 1} {2q + 2}
o O ® O
{1} {2¢ +1,2¢ + 2} {24}
e ® e ®
{2,2¢ - 1} {3,2¢ — 2} {¢—1,q+2} {q,q +1}

Figure B.10: The z-graphs g;jzl and G¥' from Lemma (ii) in the case that ¢ is odd.
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tit;

W e ° O O
{1,2} {3,4} {5} {6}
V@ ® O O
{1,4} {5, 6} {2} {3}

tit;

Figure B.11: The z-graphs Gy’ and G7.%, from Lemma iii) in the case that q = 2.

Gyl e ° ° ® ----
{1,2} {2¢ — 1,2¢} {3,4} {2¢ —3,2¢ -2}
e ®
{¢—1,q} {g+1,q+2}
O O
{2¢ + 1} {2¢ + 2}
S ® O ® O
{1,2q} {2¢ +1,2q + 2} {2} {3,2¢ - 2} {2¢ - 1}
e ® e ®
{4,2q — 3} {5,2q — 4} {e—2,9+3}  {¢—-1,¢+2}
{¢,q +1}

Figure B.12: The z-graphs g;jif and gﬁi;gj from Lemma (iii) in the case that ¢ > 3 is even.
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Gyi: @ ° ® ® ----
{1,2} {2¢ — 1,2q} {3,4} {2¢ — 3,29 — 2}
- e ® §2
{¢—2,9-1}  {q¢+2,q+3} {¢,q+1}
O ®
{2¢ + 1} {2¢ +2}
Gih,: @ o O i O
{1,2q} {2¢ +1,2¢ + 2} {2} {3,2¢ — 2} {2¢ -1}
® ® - e ®
{4,2¢ — 3} {5,2q — 4} {g—1,q+2} {¢,q+ 1}

Figure B.13: The x-graphs Q;? and G7%, from Lemma M(iii) in the case that ¢ > 3 is odd.

o ) O ° O O

{1,2} {5} {3,4} {7} {6}

Vi, O O ® O 32
{1} {2} {3,5} {6} {4,7}

Figure B.14: The z-graphs géﬁj and G;%, from Lemma iv) in the case that ¢ = r = 1.



{r+1,r+2}
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Gyi: @ ® ® ----
{172} {374} {0_371)_2}
- e ° v
{r—1,r} {r+3,7r+4} {r+1,r+2}
O L O O
{v+1} {v—1,v} {v+2} {v+ 3}
i, O O ° O
{1} {2} {v,v+1} {v+ 3}
e ®
{3,v—2} {v—1,v+2}
o ® ---- @ ®
{4,'1)—3} {5,1)—4} {T,T+3} {T+17T+2}
Figure B.15: The z-graphs QZ’;] and Gy%, from Lemma M(IV) in the case that ¢ =1 and r > 1
is even.
Gyo: @ ® ® ----
{172} {374} {’U—3,’U—2}
- @ °
{r,r + 1} {r+2,7r+3}
O L O O
{v+1} {v—1,v} {v+2} {v+ 3}
Yij
Yii O o ° o
{1} {2} {v,v+1} {v+3}
e ®
{3,v—2} {v—1,v+2}
@ ® ---- @ ®
{4,v — 3} {5,v—4} {r—1,r+4} {r,r + 3}
tit;

Figure B.16: The z-graphs G,
is odd.

and Gy%, from Lemma M(IV) in the case that ¢ = 1 and r > 1
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G: e . . o
(1,2} {2¢ —1,2q} {3,4} {2¢ —3,2¢ — 2}
- @ ®
{a—1,4} {e+1,q+2}
° ® - e ®
{2¢+1,2¢+2} {v—3,v—2} {2¢+r—3,2¢+r—2} {2¢+r+1,2¢+r+2}
v o ° o ©
2g+7—-1,2g+7)  {v+1) {v—1v} {v+2} fo+3}
2a; 0 O ¢ * -
{1} {2,2¢ — 1} {3,2¢ — 2}
o [ ® Q
{¢—2,9+3} {g—1.q+2} {g,¢+ 1}
O ® O
{24} {v,v+ 1} {v+ 3}
° ° o ®

{2¢g+1,v—-2} {v—1,v+2} {2¢+2,v—3} {2¢+3,v—4}

SRR °
{2¢+7r—2,2g+r+1} {2¢+r—1,2¢+7}

Figure B.17: The x-graphs QZ? and G, from Lemma (iv) in the case that ¢ > 1 and ¢,r
are both even.
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Gyl: @ ° ® ®
{1,2} {2¢ — 1,2q} {3,4} {2¢ —3,2¢ — 2}
® ®
{¢—1,q} {g+1,q+2}
® ® ® ®

{2¢+1,2¢+2} {v—3,v—2} {2¢q+r—2,2¢q+r—1} {2¢+7r2q+r+1}

@; @ O @)
{v+1} {fv—1,v} {v+2} {v+ 3}
},{j{ﬁcj: O [ ® ----
{1} {2a2q_ 1} {37 2q_2}
- e ° v
{a—2q+3}  {q—1,0+2} {g,q +1}
@; @ O
{2¢} {v,v+ 1} {v+ 3}
@ ® @ ® ----

{2+ 1,v—2} {v—1,v+2} {2¢+2,v—3} {2¢+3,v—4}

e . .

{2¢+7r—=3,2¢+r+2} {2¢+7—-2,2¢+r+1} {2¢+r—1,2¢+7}

Figure B.18: The z-graphs QZ? and Gy%, from Lemma (iv) in the case that ¢ > 1 is even and
r is odd.
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Gyl: @ ® e ®
{1,2} {2¢ — 1,2¢} {3,4} {2¢ —3,2¢ — 2}
e ® Q
{¢-2,¢-1}  {g+2,g+3} {q,q+1}
e ® e ®
{2¢+1,2¢+2} {v—3,v—2} {2g+r—3,2¢+r—2} {2¢+r+1,2q+7r+2}
Q O o O O
{2¢+r—1,2g +r} {v+1} {v—1,v} {v+2} {v+3}
ah O [ ®
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Figure B.19: The z-graphs g{,;jﬂ and Gy%, from Lemma (iv) in the case that ¢ > 1 is odd and
r is even.
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Figure B.20: The z-graphs g;;jj and G, from Lemma (iv) in the case that ¢ > 1 and ¢,r
are both odd.
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Figure B.21: The z-graphs G,;’ and gzig] from Lemma (V) in the case that ¢ = r = 1.
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Figure B.22: The z-graphs Q;ﬁj and Gy ; from Lemma (V) in the case that ¢ > 1 is even and
r=1.
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Figure B.23: The z-graphs Q;? and G;%, from Lemma (V) in the case that ¢ > 1 is odd and
r=1.
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Figure B.24: The z-graphs gé;ﬁ] and Gy%, from Lemma (V) in the case that ¢ = r > 1.
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Figure B.25: The z-graphs G, ’ and G;%, from Lemma M(v) in the case that ¢ > r > 1 and ¢
and r have the same parity.
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Figure B.26: The z-graphs G, and G;%, from Lemma M(v) in the case that ¢ > r > 1 and ¢

and r have different parities.
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Figure B.27: The z-graphs G, 7" and Gy o, from Lemma (1) in the case that g =r = s = 1.
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Figure B.28: The z-graphs g;ﬁif" and gﬁj;g@mk from Lemma (1) in the case that ¢,r are both

even and s = 1.
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Figure B.29: The z-graphs G, 2 and Gy », from Lemma (1) in the case that ¢ is even, r is

ijk

odd and s = 1.
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Figure B.30: The z-graphs Gy, 7" and ngffjxk from Lemma (1) in the case that ¢ is odd, r is

even and s = 1.
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Figure B.31: The z-graphs g;j”jtk and G;7 5, from Lemma (1) in the case that ¢,r are both

ijk

odd and s = 1.



208 APPENDIX B. X-GRAPHS FROM CHAPTER 4

Gy*: O o O
{w+1} {1,2} {w + 2}
e ® e ®
{3,4} {2¢ — 1,2q} {¢—1,q} {q¢+3,q+4}

Q ° ® -

{g+1,q+2} {2¢+1,2¢+ 2} {v—1,v}

- e °
{2¢+7r—1,2¢+7r} {2¢+7r+1,2¢+7r+2}

L @ @ ® ----
{fv+1,0+2} {fw—1,w} {fv+3,v+4} {w-3,w-2}
- e ® ®

{fv+s—1Lv+s} {v+s+Lv+s+2} {w+3}

e @ ) e ®
{1,w+2} {2¢ +1,v} {2,w+ 1} {3,2¢}
® ® ® ®
{4,2¢ — 1} {5,2¢ — 2} {q,q+ 3} {g+1,q+2}
e ® ® ®

{2¢+2,0v—1} {2¢+3,v—2} {2q+r—2,2q+r+3} {2¢+r—1,2¢+7r+2}

Q e ® ® -

2q+r2+r+1)  {v+1) for2w—1}  fo+3w-2)

- e °
fv+s—2,v+s+3} {v+s—1Lv+s+2}

Q O O

{fv+s,v+s+1} {w} {w + 3}

Figure B.32: The z-graphs Q;ﬁif" and gﬁ;zggmk from Lemma (1) in the case that g > r > s> 1

are all even.
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Figure B.33: The z-graphs Gy, ;" and g‘gz?,szk from Lemma (1) in the case that g > r > s> 1

with ¢, even and s odd.
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Figure B.34: The z-graphs Q;ﬁtk and Gy 2, from Lemma M(l) in the case that ¢ > r > s >1

with ¢, s both even and r odd.
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Figure B.35: The z-graphs Gy, %" and Gy, from Lemma M(l) in the case that ¢ >r > s> 1

with ¢ even and r, s both odd.
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Figure B.36: The x-graphs Q;ﬁtk and gi’jg’;xk from Lemma M(l) in the case that g = r > s> 1

with ¢ odd and r, s both even.
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Figure B.37: The z-graphs Qtitjtk and gi’;g;xk from Lemma M(l) in the case that ¢ = r > s> 1

Yijk

with ¢, s both odd and r even.
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Figure B.38: The z-graphs g;jgj;f’“ and gi’gﬁ’;% from Lemma (1) in the case that g = r > s> 1
with ¢, both odd and s even.
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Figure B.39: The z-graphs Gy, %" and Gy, from Lemma M(l) in the case that ¢ >r > s> 1

all odd.
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Figure B.40: The z-graphs G, 2" and G7%' 4, from Lemma ii) in the case that ¢ = r = 1.
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- e °
{r—1,7} {r+1,r+2}
O @ O O
{v+1} {v—1,v} {v+2} {v+3}
Gidlar s O [ °
{1} {2,v — 3} {3,v—4}
@ ® ---- @ ® Q
{4,v — 5} {5,v— 6} {r—2,7r+3} {r—1,r+2} {r,r+1}
O L O Q
{v—2} {fv—1,v+2} {v+3} {v,v+ 1}

titjty

Figure B.41: The z-graphs G, ;" and g}v’ﬁ’jxk from Lemma (ii) in the case that ¢ = 1 and

r > 1 is even.



titjty |
giti . @ ° ® °

{1,2} {v—3,v—2} {3,4} {v—>5,v—4}

- @ ® Q

{r—2,r—1} {r+2,r+3} {r,r+ 1}
O o O O
{v+1} {v—1,v} {v+2} {v+ 3}
Gl O ® ®
{1} {2,v—3} {3,v—4}
@ ® ---- @ ®
{4,v — 5} {5,v — 6} {r—1,r+2} {r,r+1}

O L O Q

{v—2} {fv—1v+2} {v+ 3} {v,v+1}

titjty

217

Figure B.42: The z-graphs Gy, ] " and Qiﬁ]mk from Lemma (ii) in the case that ¢ = 1 and

r > 11is odd.

Git . o ® e °
{v+1} {1,2} {v+2} {3,4}
° ® -
{5,6} {v—1,v}
- e ® e
{2¢+r—1,2qg+r} {2¢+r+1,2¢+r+2} {v+3}
Gl @ ° O ® O
{1,v+1} {5,v} {3} {2,v+2} {v+3}
e ° ® -
(4} (6,0 — 1) (7,0 -2}

- @ ® Q

{2¢+7r—2,2qg+7r+3} {2¢+r—1,2¢+7r+2} {2¢+r2¢+r+1}

titjty

Figure B.43: The z-graphs Gy, " and Qf;/ffjmk from Lemma (ii) in the case that ¢ = 2 and

r > 1 is even.
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Gy O ° O °
{v+1} {1,2} {v+2} {3,4}
@ ® ---- [ ®
{5,6} fv—1,v} {2gq+r—22¢q+r—1} {2¢+7r+2,2¢+7r+ 3}

.

O

{2 +7r,2g +r+ 1} {v+ 3}

e @ ° O ° O
{Lv+1} {5,v} {3} {2,v+2} {v+ 3}
e ° * ----
{4} {6,v—1} {7,0—2}
- e °

{2g+r—1,2g+r+2} {2q+nr2q+r+1}

titjt,

Figure B.44: The z-graphs Gy, ;" and ggka]xk from Lemma M(u) in the case that ¢ = 2 and

r > 11is odd.



Gyt . O ! O
{v+1} {1,2} {v+2}
® ® e ®
{3,4} {29 —1,2¢} {5,6} {2¢ — 3,29 -2}
e ® Q
{¢—1,¢} {¢+3,9+4} {g+1,¢+2}
e ®

{2¢ + 1,29 + 2} {v—1,v}

® ® O
{2¢+7r—1,2¢g+7r} {2¢+r+1,2¢+r+2} {v+3}

Glifor: @ ° O ° O
{1,v+1} {2¢ + 1,v} {3} {2,v+2} {v+ 3}
® ® ® ®
{4,2¢ — 1} {5,2¢ — 2} {¢,q+ 3} {g+1,q+2}
O ® ®
{24} {2¢+2,v—1} {29+ 3,v—2}

- @ ® Q

{2¢+7r—2,2¢g+r+3} {2q+r—1,2¢g+r+2} {2q+r2¢q+r+1}

titjty
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Figure B.45: The z-graphs Gy, ;" and g}c’;?ggwk from Lemma ii) in the case that ¢ > 2, r > 1

and ¢ and r are both even.
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Gya®: O ° O
{v+1} {1,2} {v+2}
° ° ° ®
{3,4} {2¢ — 1,24} {5,6} {2¢ —3,2¢ — 2}
° ® Q
{g—1,q} {a+3,9+4}  {g+1,9+2}
° ® ° ®

{2¢ + 1,2q + 2} fv—1v} {2gq+r—22¢q+r—1} {2¢+7r+2,2¢+7r+ 3}

. 0

{2¢+r,2q +r+ 1} {v+3}

e @ ° O ° O
{1,v+1} {2¢ + 1,v} {3} {2,v+2} {v+ 3}
@ ® ---- @ ®
{4,2¢ — 1} {5,2¢ — 2} {g.q9+3} {g+1,q+2}
® ° ® -
{2q} {2¢+2,v—1} {2+ 3,v—2}
- e °

{2¢+7r—1,2g+r+2} {2¢+7r2q+r+1}

Figure B.46: The z-graphs g;iif’“ and Gy% ¢, from Lemma (ii) in the case that ¢ > 2 is even
and 7 > 1 is odd.
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Gyt O ° O
{v+1} {1,2} {v+2}
° ° ® ®
{3,4} {2¢ — 1,24} {5,6} {2¢ —3,2¢ - 2}
® ®
{a,9+1} {a+2,q+3}
® ®

{29+ 1,29 + 2} {v—1,v}

- e ° 0
{2¢+r—1,2¢g+7r} {2¢+r+1,2¢+r+2} {v+3}

Gl @ ° O | O
{1,v+ 1} {2¢ + 1,0} {3} {2,v+2} {v+3}
@ ® ---- @ ®
{4,2¢ — 1} {5,2¢ — 2} {g—1,q+4} {¢.q9+3}
Q @) @ ® ----
{g+1,q+2} {24} {2q +2,v—1} {2¢+3,v—2}

- @ ® Q

{2¢+7r—2,2g+7r+3} {2¢q+r—1,2¢+7r+2} {2¢+r2¢q+r+1}

Figure B.47: The z-graphs Q’;it.j " and Gy o, from Lemma (ii) in the case that ¢ > 2 is odd

ijk
and r > 1 is even.
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Gy . O ° ®)
{v+1} {1,2} {v+2}
® ® e ®
{3,4} {2¢ — 1,2¢} {5,6} {2¢—3,2¢ - 2}
e ®
{¢,9+1} {g+2,q+3}
e ® e ®

{2¢+1,2¢+2} {v—1,v} {2¢+r—2,2¢+r—1} {2q+r+2,2q+r+ 3}

. 0

{2¢ +7r,2¢+1r+1} {v+3}

Gl @ ° O ° o
{1,v+1} {29 + 1,0} {3} {2,v+2} {v+ 3}
® ® e ®
{4,2¢ — 1} {5,2¢ — 2} {g—1,q+4} {¢,q+ 3}
Q O e ®
{g+1,q+2} {2q} {2¢+2,v—1} {2¢+3,v—2}
e ®

{2¢+r—1,2¢g+r+2} {2¢+r2¢+r+1}

Figure B.48: The z-graphs gf,jj;f’“ and gi’jjz’;xk from Lemma (ii) in the case that ¢ > 2, r > 1

and ¢ and r are both odd.
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Gy : ® @ O B O
{1,2} {3,4} {5} {n—2}
O O
{n—1} {n}
G¥ O ° O
{2} {1,4} {3}
o ---- 0 °
{5} {n — 2} {n—1,n}

Figure B.49: The z-graphs G, and GJ from Lemma in the case that G, contains a cycle of
two black vertices and m = 2.

{1,2} {3,4} {5,6}
O ---- O O O
{7} {n—2} {n—1} {n}
G¥ O o O Q
{2} {1,4} {3} {5, 6}
o ---- O °
{7} {n —2} {n—1,n}

Figure B.50: The z-graphs G, and GY from Lemma in the case that G, contains a cycle of
two black vertices and m = 3.
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gy : ® L J Q
{1,2} {3,4} {5,6}
O O O O
{7} {8} {9} {n}
gy O ® O
{1} {5,6} {4}
Q ° O O
{2,3} {7,8} {9} {n}

Figure B.51: The z-graphs G, and GY from Lemma in the case that G, contains a cycle of
three black vertices and m = 3.

Gib ® O ® O
{1,2} {5} {3,4} {6}

ur O O ° °
{1} {2} {3,5} {4,6}

Figure B.52: The z-graphs G} and G¥] from (4.2.1)) when u = 1.

Gi: @ ° ® ®
(1,2} (2u — 1,2u} (3,4} {2u — 3,2u — 2}
- @ ®
{u—1,u} {u+1,u+2}
O L O
{2u + 3} {2u +1,2u + 2} {2u + 4}
[ O O e ®
(1) (2u} (2,20 — 1} (3,2u — 2}
- @ ®

{u—2,u+ 3} {fu—1,u+2}

Q ® |

{u,u+ 1} {2u+1,2u + 3} {2u + 2,2u + 4}

Figure B.53: The z-graphs G} and GY} from (4.2.1) when u > 1 is even.



g @ ° ° ®
{1,2} {(2u —1,2u} (3,4} {2u —3,2u — 2}
- @ ® Q
{u—2,u—1} {u+2,u+3} {u,u+1}
O @ O
{2u + 3} {2u +1,2u + 2} {2u + 4}
g O O ® ®
(1} {2u} (2,2u—1} {3,2u— 2}
---- @ ®
{u—1,u+2} {u,u+ 1}
L L

{2u+1,2u + 3} {2u+2,2u + 4}

Figure B.54: The z-graphs G, and G¥] from (4.2.1) when u > 1 is odd.

I
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Gir: 0O ® O
{5} {1,2} {6}
L O O
{3,4} {7} {8}
v ® ° O O
{1,5} {2,6} {3} {4}
O O
{7} {8}
Figure B.55: The z-graphs QZ{T and G¥} from (4.2.2)).
GiL: [ O ® O
{1,2} {5} {3,4} {6}
ur O O ° °
{1} {2} {3,5} {4, 6}

Figure B.56: The x-graphs QZ

! and G¥] from (4.2.3) with u = 1.

Gi: @ °
{1,2} {2u — 1, 2u}
o ® ---- @ ®
{3,4} {2u — 3,2u — 2} {u—1,u} {fu+1,u+2}
O L O
{2u + 3} {2u + 1,2u + 2} {2u + 4}
F O O
{1} {2u}
@ ® ---- o ®
{2,2u — 1} {3,2u — 2} {u—2,u+ 3} {fu—1,u+2}
Q o L
{u,u+1} {2u+1,2u + 3} {2u+2,2u + 4}

Figure B.57: The z-graphs G, and GJ] from (4.2.3) with u > 1 even.
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gi: @ °
{1,2} {2u — 1, 2u}
o ® ---- @ ®
{3,4} {2u—3,2u—2} {u—2,u—1} {u+2,u+3}
Q O @ O
{u,u+ 1} {2u + 3} {2u +1,2u + 2} {2u + 4}
v O O
{1} {2u}
e ® ---- @ ®
{2,2u — 1} {3,2u — 2} {u—1,u+2} {u,u+ 1}
® L

{20+ 1,2u + 3} {2u+2,2u+ 4}

Figure B.58: The z-graphs G, and Gy} from (4.2.3) with v > 1 odd.

Gy: @ o — —o °
{1,2} {3,4} {2m —3,2m —2} {2m —1,2m}
O O
{2m + 1} {2m + 2}

Figure B.59: The z-graph G, from (4.3.5)).

Gy, : O ® o— - —O O
{2m + 1} {1,2} {3,4} {2m — 3,2m — 2} {2m + 2}
)
{2m — 1,2m}

Figure B.60: The z-graph G, from (4.3.6]).

Gp: @ o— - —eo O O
(1,2} (3,4} {2m — 1,2m} (2m + 1} (2m + 2}

Figure B.61: The z-graph G,, from (4.3.7)).
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v, e ° o - —o
{wa,1,w2,2} {11, 21,2} {wim,1, W2} {ws,1, w32}
O O
{f1} {f2}
9t O ® ® o
{z22} {12,221} {z11,wm2} {wm—1,2, W1}
- e o °
{wsz 2, w41} {ws 1} {f1, f2}

Figure B.62: The z-graphs G, and G2 from (4.3.11]) and (4.3.12) respectively.

Gl : e o - —e °
{wit1,1, wit12} {zi1,2i2} {za1,222} {z11,212}
° o - —o

{wm,1, wm,2} {wm—l,la wm—l,z} {wi+271, wz’+2,2}

O O
{f1} {f2}
Gii: o o «
{wito,1} {xi2, wit1,1} {ri—12,7i1}
{371,2,332,1} {361,1,wm,2} {wm—l,Zawm,l}
- e o °
{wit22, wits 1} {wit12} {f1, fo}

Figure B.63: The z-graphs G, and G, 1} from ([4.3.10) and (4.3.12) respectively.



v, e o ° ~— -
{11,212} {f1} {z21, 222} {Wm,1, Wm2}
S — ° e
{ws,1, w32} {w2,1, w22} {f2}
G o o
{r1.1} {712}
° ° o — —eo
{z21, fo} {x22, W2} {Wm—12, W1} {wa 2, w31}

Figure B.64: The z-graphs G and G;2 from (4.3.13) and (4.3.14)) respectively.

v e o ° ~— -
{x1,1, 712} {f1} {21,222} {231,732}
{zi1,2i2} {wWm,1, wma2}t  {wm—11,Wm-12}
| ° e
{wite1, Wit22}  {wit1,1, wit1,2} {f2}
Gyli: O O
{z11} {212}
° ° o - e —
{zit11, fo} {Zit12,221} {z292, 231} {xi—12, i1}
° o - —o
{22, Wm2} {wm—12,Wm1} {Wit12, wit21}

Figure B.65: The z-graphs G¥,, and G,'f} from (4£.3.13) and (4:3.14) respectively.

229



230 APPENDIX B. X-GRAPHS FROM CHAPTER 4

%: O ® ® *o— -
{z21} {11,212} {wm 1, W2t  A{wm—11,Wm-12}
.- —e O °
{ws,1, w32} {22} {wa,1, w22}
Gz: e ° ° o— - —o
{712, W2} {r1,1, 22,1} {22, w31} {ws2, wq1} {wm-1,2, Wm,1}
O O
{wa,1} {w2,2}

Figure B.66: The x-graphs GZ, and G;2 from (4.3.15]) and (4.3.16) respectively.

£, o . — -
{l‘i+1,1} {$1,1,$1,2} {1‘2,1@2,2}
{zi1, 22} {Wm1, Wma2t  {Wm—1,1,Wm-1,2}
e ® °
{wit21, Wit2.2} {Tiy1,2} {wit1,1, Wit1,2}
Gl e o e .
{zi2, Wn o} {Ti—12,2i1} {z12, 221} {11, Tir11}
® — ---- —o

{ritz12,wis21}  {wiro2, wizsn}  {Wm—12,Wm1}

O O
{wiy1,1} {wit1,2}

Figure B.67: The z-graphs G¥', and G,/T} from (4.3.15) and (43.16)) respectively.
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G, : [ ® o - —e S
{1,2} {5,6} {7,8} {2m — 1,2m} {3,4}
O O
{2m + 1} {2m + 2}

Gl O O o ®

{1 {3} {2,5} {6,7}

e - —® ° °
{8,9} {2m —2,2m — 1} {4,2m} {2m + 1,2m + 2}

Figure B.68: The z-graphs G, and G;! from (4.3.17).

G..: @ o —— —o o o
{1,2} {3,4} {2m — 1,2m} {2m + 1} {2m + 2}
gil: O ° ° o
(1) {2m +1,2m + 2} (2,3} (4,5)
- e o °
{2m —4,2m — 3} {2m} {2m —2,2m — 1}

Figure B.69: The z-graphs G, and G;! from (4.3.18]).

G.: O ° o— -
{2m + 1} {1,2} {3,4}
- —e O °
{2m — 3,2m — 2} {2m + 2} {2m — 1,2m}
Gr: e ° o - —o

{1,2m+1} {2m—2,2m+2} {2m —4,2m — 3} {2,3}

@; O
(2m — 1} {2m}

Figure B.70: The z-graphs G, and G;! from (4.3.19).
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G @ o - —eo O
{1,2} {3,4} {2m — 1,2m} {2m + 1}
gn: O ® o — - —o
{1} {2, 3} {4,5} {2m,2m + 1}

Figure B.71: The z-graphs G, and G} from (4.3.21).

Gp: @ o - —e O
{1,2} (3,4} (2m — 1,2m} (2m + 1}

Figure B.72: The x-graph G,, from (4.3.22).

Gy: O ° o - —eo
(2m + 1} (1,2} (3,4} (2m —1,2m}

Figure B.73: The z-graph G,, from (4.3.23]).

G, O ° o— - —e
{2m + 1} {1,2} (3,4} {2m — 1,2m}
gi: O ®
{2m + 2} {1,2m + 1}
°® o— - —eo
(2,3} {4,5} {2m —2,2m — 1}

Figure B.74: The z-graphs G, and Gl from (4.3.24).

v ° ® o - —@ O
{z11, 212} {wa,1, w22} {ws 1, w32} {wm,1, Wm2} {a}
gz: O ° ° — ----
{11} {z1,2, w21} {wa2, w31} {ws32,wq,1}
R — °
{wm—l,Qawm,l} ‘{wm,2aa}

Figure B.75: The z-graphs GZ} and G,? from (4.3.25)).
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gii+1: @ o T ® ®
{r11,712} {221,722} {zi1,7i2} {wit1,1, wit1,2}
— e - —e o
{wi+2,1,wi+2,2} {wm,l,wm,g} {a}
Git: o . o«
{z1.1} {z12,221} {z29,231}
- e ° °
{Ti12, 21} {zig, w11} {wit12, wiv21}
— e - —e °
{wiye2, Witz 1}  {wWm—12,wWm1} {wm 2, a}

Figure B.76: The z-graphs G¥,, and G,'T} from (4.3.25).

L @ ® ® o -
{w2,1,w2,2} {$1,1,$1,2} {wm,l,wm,z} {wmfl,lawmfl,Z}
---- — @ O
{ws,1, w32} {fi}
953 : O @ ®*— ---- —@—
{w2,2} {w3,2,w4,1} {w4,2,w5,1} {wm—l,Qywm,l}
—@ @ o
{z1,1, Wm,2} {x12, w21} {ws 1, fi}

Figure B.77: The z-graphs G, and G;2 from ((4.3.26)).
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° o - —eo °
{wit1,1, Wit1,2} {zi1,7i2} {21, w22} {211, 21,2}
° o - —o o
{Wm,1, Wma2t  AWm—1,1, Wm-12} {Wiy2,1, Wit22} {fi}
o o - —o °
{wit12} {wito2, Witz 1} {Wm—22, Wm—11} {Wm-12,Wm 1}
° ° ~— -
{z1,1,wm 2} {z12,221} {xo2, 231}
- —e ° °
{951'71,27561',1} {$i,27wi+1,1} {wi+2,17fi}

Figure B.78: The z-graphs G, and G,'7} from (4.3.26).
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u. o ° o o
{fi} {ws,1, w32} {wa 1, wa2} {wm,1, w2}
L L ]
{z1,1, 212} {wa,1, w22}
G2 : ® ® °® o—
{z1,1, w2} {r12,22.1} {ws 1, fi} {ws3 2, w41}
o - —e o
{wa2, w51} {wm—1,2, W1} {wa 2}
Figure B.79: The z-graphs G and G2 from (4.3.27).
giiﬂ : O @ ®e— - —e
{fi} {wizo1, wiz22}  {wits 1, wirs2}  {wm1, wm 2}
e - —e °
{z11,212} {zi1, 22} {wit1,1, wit1,2}
Goli: @ ° *— - —o—
{11, wm 2} {z12,221} {w22, 231} {zi2, wit1,1}
° ° o -
{wz’+2,17 fi} {wi+2,27 wi+3,1} {wi+3,2, wi+4,1}
- e o
{wm—12,Wm1} {wis1,2}
Figure B.80: The z-graphs G¥',, and G,'T} from (4.3:27).
u. 0o ° ° o - —o
{21} {z11, 71,2} {wa,1, w22} {w3,1, w32} {wm,1, W2}
G2 O ® @ o ---- —O
{z22} {11,221} {z12, w21} {wo2, w31} {wm-12,wm1}

Figure B.81: The z-graphs G, and G2 from (4.3.28).
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giiﬂ: O ® ® T
{$i+1,1} {901,1,1?1,2} {1‘2,1@2,2}
{xig, zip} {wirt,,wir12) {wm1, Wm2}
Gt o . o« e —
{zit1,2} {z11, Tig1,1} {z12,221} {zi—12,2i1}
° o - —o
{Tio, wit1,1}  {wiy12,Wir21}  {Wm—1,2, W1}

Figure B.82: The z-graphs G¥,, and G,'f} from (4.3.28).

G.,: @ o - —e o
(1,2} (3,4} (2m —1,2m} (2m + 1}
G O ° o - —e
(1 (2,3} (4,5} (2m,2m + 1}

Figure B.83: The z-graphs G, and G;! from (4.3.29).

Go: @ o - —o O
{1,2} {3,4} {2m — 1,2m} {2m + 1}

p: O ® *— - —o
{1} {2m,2m +1}  {2m —2,2m — 1} {2,3}

Figure B.84: The z-graphs G, and G} from (4.3.30).



Appendix C

MAGMA Code

The following code may be used in the computer algebra system MAGMA (|[BC06], [CPBO0S]
and |[CP0§]) to generate the matrix A, for conjugate p-elements a and x in Sym(n) having full

support (see Chapter |5 for full details). Here p is a prime number.

function CreateMatrix(a,x)
Deca:=CycleDecomposition(a);
n:=#Deca-#Fix(a);
p:=0rder(a);
Ax:=Matrix(RationalField(),n,n,

[<i,j,#(Decali] "x meet Decal[jl)>:i,j in [1..n]l]1);
return Ax;

end function;
For a given matrix A, we can check if it is circulant using the code

function IsCirculant(A)

n:=#Rows(A);

I:=Matrix(RationalField(),n,n, [<i,i+1,1>:i in [1..n-1]])
+Matrix(RationalField() ,n,n, [<n,1,1>]);

B:=ZeroMatrix(RationalField(),n,n);

for i in {1..n} do

B:=B+A[1,i]*I"(i-1);

end for;

if A eq B then return true; else return false; end if;

end function;
For given p-elements a,x € Sym(n), we may check if {a,z) = C}, C, using the code

function IsIsomorphicWreath(a,x)
p:=0rder(a);
if Order(a) ne Order(x) then return false; else

Cp:=CyclicGroup(p);
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Wp:=WreathProduct (Cp,Cp) ;

if IsIsomorphic(sub<Parent(a)|a,x>,Wp) then return true;
else return false; end if;

end if;

end function;

We may also create the circulant nlatrb<(jrc(yo,...,yp_1) from the vector y = (yO>-~-7yp—1)
over the finite field GF(p)

function CreateCirculant(y)

p:=#y;

P:=Matrix(GF(p),p,p, [<i,i+1,1>: i in [1..p-111)
+Matrix(GF(p) ,p,p, [<p,1,1>]);

C:=y[1]1*P"p;

for i in {2..p} do

C:=C+y[i]l*P~(i-1);

end for;

return C;

end function;

or over the real numbers.

function CreateRealCirculant(y)

p:=#y;

P:=Matrix(RealField(),p,p, [<i,i+1,1>: i in [1..p-111)
+Matrix(RealField(),p,p, [<p,1,1>1);

C:=y[1]*P p;

for i in {2..p} do

C:=C+y[i]*P~(i-1);

end for;

return C;

end function;
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