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ARE RESULTANT METHODS NUMERICALLY UNSTABLE FOR
MULTIDIMENSIONAL ROOTFINDING?

VANNI NOFERINI∗ AND ALEX TOWNSEND†

Abstract. Hidden-variable resultant methods are a class of algorithms for solving multidimen-
sional polynomial rootfinding problems. In two dimensions, when significant care is taken, they are
competitive practical rootfinders. However, in higher dimensions they are known to miss zeros, cal-
culate roots to low precision, and introduce spurious solutions. We show that the hidden-variable
resultant method based on the Cayley (Dixon or Bézout) resultant is inherently and spectacularly
numerically unstable by a factor that grows exponentially with the dimension. We also show that the
Sylvester resultant for solving bivariate polynomial systems can square the condition number of the
problem. In other words, two popular hidden-variable resultant methods are numerically unstable,
and this mathematically explains the difficulties that are frequently reported by practitioners. Along
the way, we prove that the Cayley resultant is a generalization of Cramer’s rule for solving linear
systems and generalize Clenshaw’s algorithm to an evaluation scheme for polynomials expressed in
a degree-graded polynomial basis.

Key words. resultants, rootfinding, conditioning, multivariate polynomials, Cayley, Sylvester

AMS subject classifications. 13P15, 65H04, 65F35

1. Introduction. Hidden-variable resultant methods are a popular class of al-
gorithms for global multidimensional rootfinding [1, 17, 27, 35, 39, 40]. They compute
all the solutions to zero-dimensional polynomial systems of the form:p1(x1, . . . , xd)

...
pd(x1, . . . , xd)

 = 0, (x1, . . . , xd) ∈ Cd, (1.1)

where d ≥ 2 and p1, . . . , pd are polynomials in x1, . . . , xd with complex coefficients.
Mathematically, they are based on an elegant idea that converts the multidimensional
rootfinding problem in (1.1) into one or more eigenvalue problems [6]. At first these
methods appear to be a practitioner’s dream as a difficult rootfinding problem is
solved by the robust QR or QZ algorithm. Desirably, these methods have received
considerable research attention from the scientific computing community [10, 18, 30,
46].

Despite this significant interest, hidden-variable resultant methods are notoriously
difficult, if not impossible, to make numerically robust. Most naive implementations
will introduce unwanted spurious solutions, compute roots inaccurately, and unpre-
dictably miss zeros [8]. Spurious solutions can be removed by manually checking that
all the solutions satisfy (1.1), inaccurate roots can usually be polished by Newton’s
method, but entirely missing a zero is detrimental to a global rootfinding algorithm.

The higher the polynomial degree n and the dimension d, the more pronounced
the numerical difficulties become. When d = 2 and real finite solutions are of interest,
a careful combination of domain subdivision, regularization, and local refinement has
been successfully used together with the Cayley resultant (also known as the Dixon
or Bézout resultant) for large n [35]. This is the algorithm employed by Chebfun for
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bivariate global rootfinding [45]. Moreover, for d = 2, randomization techniques and
the QZ algorithm have been combined fruitfully with the Macaulay resultant [27].
There are also many other ideas [4, 33]. However, these techniques seem to be less
successful in higher dimensions.

In this paper, we show that any plain vanilla hidden-variable resultant method
based on the Cayley or Sylvester resultant matrix is a numerically unstable algorithm
for solving a polynomial system. In particular, we show that the hidden-variable
resultant method based on the Cayley resultant matrix is numerically unstable for
multidimensional rootfinding with a factor that grows exponentially with d. We show
that for d = 2 the Sylvester resultant matrix leads to a hidden-variable resultant
method that can also square the conditioning of a root.

We believe that this numerical instability has not been analyzed before because
there are at least two other sources of numerical issues: (1) The hidden-variable resul-
tant method is usually employed with the monomial polynomial basis, which can be
devastating in practice when n is large, and (2) Some rootfinding problems have inher-
ently ill-conditioned zeros and hence, one does not always expect accurate solutions.
Practitioners can sometimes overcome (1) by representing the polynomials p1, . . . , pd
in another degree-graded polynomial basis1 such as the Chebyshev or Legendre poly-
nomial basis [8]. However, the numerically instability that we identify can be observed
even when the solutions are well-conditioned and for degree-graded polynomial basis.

We focus on the purely numerical, as opposed to symbolic, algorithm. We take
the view that every arithmetic operation is performed in finite precision. There are
many other rootfinders that either employ only symbolic manipulations [9] or some
kind of symbolic-numerical hybrid [19]. Similar careful symbolic manipulations may
be useful in overcoming the numerical instability that we identify. For example, it
may be possible to somehow transform the polynomial system (1.1) into one that the
resultant method treats in a numerical stable manner.

This paper may be considered as a bearer of bad news. Yet, we take the opposite
and more optimistic view. We are intrigued by the potential positive impact this
paper could have on rootfinders based on resultants since once a numerical instability
has been identified the community is much better placed to circumvent the issue.

Our setup is as follows. First, we suppose that a degree-graded polynomial basis
for Cn[x], denoted by φ0, . . . , φn, has been selected. All polynomials will be repre-
sented using this basis. Second, a region of interest Ωd ⊂ Cd is chosen such that
Ωd, where Ωd is the tensor-product domain Ω × · · · × Ω (d times), contains all the
roots that would like to be computed accurately. The domain Ω ⊂ C can be a real
interval or a bounded region in the complex plane. Throughout, we suppose that
supx∈Ω |φk(x)| = 1 for 0 ≤ k ≤ n, which is a very natural normalization.

We use the following notation. The space of univariate polynomials with complex
coefficients of degree at most n is denoted by Cn[x], the space of d-variate polynomials
of maximal degree n in the variables x1, . . . , xd is denoted by Cn[x1, . . . , xd], and if V
is a vector space then the Cartesian product space V × · · · × V (d-times) is denoted
by (V)d. Finally, we use vec(V) to be the vectorization of the matrix or tensor V to
a column vector (this is equivalent to V(:) in MATLAB).

Our two main results are in theorems 3.7 and 4.6. Together they show that there

1A polynomial basis {φ0, . . . , φn} for Cn[x] is degree-graded if φk(x) is of degree exactly k for
0 ≤ k ≤ n.
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exist p1, . . . , pd in (1.1) such that

κ(x∗d, R)︸ ︷︷ ︸
Cond. no. of the eigenproblem

≥ ( ‖J(x∗)−1‖2︸ ︷︷ ︸
Cond. no. of x∗

)d,

where R is either the Cayley (for any d ≥ 2) or Sylvester (for d = 2) resultant matrix.
Such a result shows that in the absolute sense the eigenvalue problem employed by
these two resultant-based methods can be significantly more sensitive to perturbations
than the corresponding root. Together with results about relative conditioning, we
conclude that these rootfinders are numerically unstable (see Section 5).

In the next section we first introduce multidimensional resultants and describe
hidden-variable resultant methods for rootfinding. In Section 3 we show that the
hidden-variable resultant method based on the Cayley resultant suffers from numer-
ical instability and in Section 4 we show that the Sylvester resultant matrix has a
similar instability for d = 2. In Section 5 we explain why our absolute conditioning
analysis leads to an additional twist when considering relative conditioning. Finally,
in Section 6 we present a brief outlook on future directions.

2. Background material. This paper requires some knowledge of multidimen-
sional rootfinding, hidden-variable resultant methods, matrix polynomials, and con-
ditioning analysis. In this section we briefly review this material.

2.1. Global multidimensional rootfinding. Global multidimensional rootfind-
ing can be a difficult and computationally expensive task. Here, we are concerned
with the easiest situation where (1.1) has only simple finite roots.

Definition 2.1 (Simple root). Let x∗ = (x∗1, . . . , x
∗
d) ∈ Cd be a solution to

the zero-dimensional polynomial system (1.1). Then, we say that x∗ is a simple root
of (1.1) if the Jacobian matrix J(x∗) is invertible, where

J(x∗) =


∂p1
∂x1

(x∗) . . . ∂p1
∂xd

(x∗)

...
. . .

...

∂pd
∂x1

(x∗) . . . ∂pd
∂xd

(x∗)

 ∈ Cd×d. (2.1)

If J(x∗) is not invertible then the problem is ill-conditioned, and a numerically
stable algorithm working in finite precision arithmetic may introduce a spurious solu-
tion or may miss a non-simple root entirely. We will consider the roots of (1.1) that
are well-conditioned (see Proposition 2.9), finite, and simple.

Our primary focus is on the accuracy of hidden-variable resultant methods, not
computational speed. In general, one cannot expect to have a “fast” algorithm for
global multidimensional rootfinding. This is because the zero-dimensional polynomial
system in (1.1) can potentially have a large number of solutions. To say exactly how
many solutions there can be, we first must be more precise about what we mean by
the degree of a polynomial in the multidimensional setting [38].

Definition 2.2 (Polynomial degree). A d-variate polynomial p(x1, . . . , xd) has
total degree ≤ n if

p(x1, . . . , xd) =
∑

i1+···+id≤n

Ai1,...,id

d∏
k=1

φik(xk)
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for some tensor A. It is of total degree n if one of the terms Ai1,...,id with i1+· · ·+id =
n is nonzero. Moreover, p(x1, . . . , xd) has maximal degree ≤ n if

p(x1, . . . , xd) =

n∑
i1,··· ,id=0

Ai1,...,id

d∏
k=1

φik(xk)

for some tensor A indexed by 0 ≤ i1, . . . , id ≤ n. It is of maximal degree n if one of
the terms Ai1,...,id with max(i1, . . . , id) = n is nonzero.

Bézout’s Lemma says that if (1.1) involves polynomials of total degree n, then
there are at most nd solutions [29, Chap. 3]. For polynomials of maximal degree we
have the following analogous bound (see also [44, Thm. 5.1]).

Lemma 2.3. The zero-dimensional polynomial system in (1.1), where p1, . . . , pd
are of maximal degree n, can have at most d!nd solutions.

Proof. By [38, Thm. 8.5.2], the polynomial system (1.1) can have no more so-
lutions than the so-called mixed volume bound. For polynomials of maximal degree
this bound can be calculated as follows:

d∑
k=1

(−1)d−k
(
d

k

)
(kn)d = nd

d∑
k=1

(−1)d−k
(
d

k

)
kd = d!nd.

We have selected maximal degree, rather than total degree, because maximal
degree polynomials are more closely linked to tensor-product constructions and hence,
are easier to work with numerically in the multidimensional setting.

Suppose that the polynomial system (1.1) contains polynomials of maximal degree
n. Then, to verify that d!nd candidate points are solutions the polynomials p1, . . . , pd
must be evaluated, costing O(n2d) operations. Thus, the optimal worst-case complex-
ity is O(n2d). For many applications global rootfinding is computationally unfeasible
and instead local methods such as Newton’s method and homotopy continuation meth-
ods [3] can be employed to compute a subset of the solutions. Despite the fact that
global multidimensional rootfinding is a computationally intensive task, we still de-
sire a numerically stable algorithm. A survey of numerical rootfinders is given in [44,
Chap. 5].

When d = 1, global numerical rootfinding can be done satisfactorily even with
polynomial degrees in the thousands. Excellent numerical and stable rootfinders can
be built using domain subdivision [7], eigenproblems with colleague or comrade ma-
trices [23], and a careful treatment of dynamic range issues [7].

2.2. Hidden-variable resultant methods. The first step of a hidden-variable
resultant method is to select a variable, say xd, and regard the d-variate polynomials
p1, . . . , pd in (1.1) as polynomials in x1, . . . , xd−1 with complex coefficients that depend
on xd. That is, we “hide” xd by rewriting pk(x1, . . . , xd) for 1 ≤ k ≤ d as

pk(x1, . . . , xd−1, xd) = pk[xd](x1, . . . , xd−1) =

n∑
i1,··· ,id−1=0

ci1,...,id−1
(xd)

d−1∏
s=1

φis(xs),

where {φ0, . . . , φn} is a degree-graded polynomial basis for Cn[x]. This new point-of-
view rewrites (1.1) as a system of d polynomials in d − 1 variables. We now seek all
the x∗d ∈ C such that p1[x∗d], . . . , pd[x

∗
d] have a common root in Ωd−1. Algebraically,

this can be achieved by using a multidimensional resultant [20, Chap. 13].
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Fig. 1. Mathematically, the zeros of R(p1[xd], . . . , pd[xd]) are the dth component of the solutions
to (1.1). However, numerically the polynomial R(p1[xd], . . . , pd[xd]) can be numerically close to zero
everywhere. Here, we depict the typical behavior of the polynomial R(p1[xd], . . . , pd[xd]) when d = 2,
where the black dots are the exact zeros and the red dots are the computed roots.

Definition 2.4 (Multidimensional resultant). Let d ≥ 2 and n ≥ 0. A func-
tional R : (Cn[x1, . . . , xd−1])d → C is a multidimensional resultant if, for any set
of d polynomials q1, . . . , qd ∈ Cn[x1, . . . , xd−1], R(q1, . . . , qd) is a polynomial in the
coefficients of q1, . . . , qd and R(q1, . . . , qd) = 0 if and only if there exists an x∗ ∈ C̃d−1

such that qk(x∗) = 0 for 1 ≤ k ≤ d, where C̃ denotes the extended complex plane2.
Definition 2.4 makesR unique up to a multiplicative nonzero constant [11, Thm. 1.6.1(i)].

Moreover, in the monomial basis it is standard to normalizeR so thatR(xn1 , . . . , x
n
d−1, 1) =

1 [11, Thm. 1.6.1(ii)]. For nonmonomial bases, we are not aware of any standard nor-
malization.

Assuming (1.1) only has finite solutions, if R is a multidimensional resultant then
for any x∗d ∈ C we have

R(p1[x∗d], . . . , pd[x
∗
d])=0 ⇐⇒ ∃(x∗1, . . . , x∗d−1) ∈ Cd−1 s.t. p1(x∗)= · · ·=pd(x

∗)=0,

where x∗ = (x∗1, . . . , x
∗
d) ∈ Cd. Thus, we can calculate the dth component of all the

solutions of interest by computing the roots of R(p1[xd], . . . , pd[xd]) and discarding
those outside of Ω. In principle, since R(p1[xd], . . . , pd[xd]) is a univariate polynomial
in xd it is an easy task. However, numerically, R is typically near-zero in large
regions of C, and spurious solutions as well as missed zeros plague this approach in
finite precision arithmetic (see Figure 1). Thus, directly computing the roots of R
is spectacularly numerically unstable for almost all n and d. This approach is rarely
advocated in practice.

Instead, one often considers an associated multidimensional resultant matrix
whose determinant is equal to R. Working with matrices rather than determinants is
beneficial for practical computations, especially when d = 2 [17, 35, 39]. Occasionally,
this variation on hidden-variable resultant methods is called numerically confirmed
eliminants to highlight its improved numerical behavior [38, Sec. 6.2.2]. However, we
will show that even after this significant improvement the hidden-variable resultant
methods based on the Cayley and Sylvester resultant matrices remain numerically
unstable.

2To make sense of solutions at infinity one can work with homogeneous polynomials [11].
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Definition 2.5 (Multidimensional resultant matrix). Let d ≥ 2, n ≥ 0, N ≥ 1,
and R a multidimensional resultant. A matrix-valued function R : (Cn[x1, . . . , xd−1])d →
CN×N is a multidimensional resultant matrix associated with R if for any set of d
polynomials q1, . . . , qd ∈ Cn[x1, . . . , xd−1] we have

det (R(q1, . . . , qd)) = R(q1, . . . , qd).

There are many types of resultant matrices including Cayley (see Section 3),
Sylvester (see Section 4), Macaulay [27], and others [18, 28, 32]. In this paper we only
consider two of the most popular choices that are the Cayley and Sylvester resultant
matrices.

Theoretically, we can calculate the dth component of the solutions by finding all
the x∗d ∈ C such that det(R(p1[x∗d], . . . , pd[x

∗
d])) = 0. In practice, our analysis will

show that this dth component cannot always be accurately computed.
Each entry of the matrix R(p1[xd], . . . , pd[xd]) is a polynomial in xd of finite

degree. In linear algebra such objects are called matrix polynomials (or polynomial
matrices) and finding the solutions of det(R(p1[xd], . . . , pd[xd])) = 0 is related to a
polynomial eigenproblem [5, 31, 43].

2.3. Matrix polynomials. Since multidimensional resultant matrices are ma-
trices with univariate polynomial entries, matrix polynomials play an important role
in the hidden-variable resultant method. A classical reference on matrix polynomials
is the book by Gohberg, Lancaster, and Rodman [22].

Definition 2.6 (Matrix polynomial). Let N ≥ 1 and K ≥ 0. We say that P (λ)
is a (square) matrix polynomial of size N and degree K if P (λ) is an N ×N matrix
whose entries are univariate polynomials in λ of degree ≤ K, where at least one entry
is of degree exactly K.

In fact, since (1.1) is a zero-dimensional polynomial system it can only have a
finite number of isolated solutions and hence, the matrix polynomials we consider are
regular [22].

Definition 2.7 (Regular matrix polynomial). We say that a square matrix
polynomial P (λ) is regular if det(P (λ)) 6= 0 for some λ ∈ C.

A matrix polynomial P (λ) of size N and degree K can be expressed in a degree-
graded polynomial basis as

P (λ) =

K∑
i=0

Aiφi(λ), Ai ∈ CN×N . (2.2)

When the leading coefficient matrix AK in (2.2) is invertible the eigenvalues of P (λ)
are all finite, and they satisfy det(P (λ)) = 0.

Definition 2.8 (Eigenvector of a regular matrix polynomial). Let P (λ) be a
regular matrix polynomial of size N and degree K. If λ ∈ C is finite and there exists
a non-zero vector v ∈ CN×1 such that P (λ)v = 0 (resp. vTP (λ) = 0), then we say
that v is a right (resp. left) eigenvector of P (λ) corresponding to the eigenvalue λ.

For a regular matrix polynomial P (λ) we have the following relationship between
its eigenvectors and determinant [22]: For any finite λ ∈ C,

det(P (λ)) = 0 ⇐⇒ ∃v ∈ CN×1 \ {0}, P (λ)v = 0.

In multidimensional rootfinding, one sets P (λ) = R(p1[λ], . . . , pd[λ]) and solves
det(P (λ)) = 0 via the polynomial eigenvalue problem P (λ)v = 0. There are various
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algorithms for solving P (λ)v = 0 including linearization [22, 31, 43], the Ehrlich–
Aberth method [5, 21, 41], and contour integration [2]. However, regardless of how
the polynomial eigenvalue problem is solved in finite precision, the hidden-variable
resultant method based on the Cayley or the Sylvester resultant matrix is numerically
unstable.

For the popular resultant matrices, such as Cayley and Sylvester, the first d− 1
components of the solutions can be determined from the left or right eigenvectors of
R(p1[x∗d], . . . , pd[x

∗
d]). For instance, if linearization is employed, the multidimensional

rootfinding problem is converted into one (typically very large) eigenproblem, which
can be solved by the QR or QZ algorithm. Practitioners often find that the computed
eigenvectors are not accurate enough to adequately determine the d− 1 components.
However, the blame for the observed numerical instability is not only on the eigen-
vectors, but also the eigenvalues. Our analysis will show that the dth component may
not be computed accurately either.

2.4. Conditioning analysis. Not even a numerically stable algorithm can be
expected to accurately compute a simple root of (1.1) if that root is itself sensitive
to small perturbations. Finite precision arithmetic almost always introduces roundoff
errors and if these can cause large perturbations in a root then that solution is ill-
conditioned.

The absolute condition number of a simple root measures how sensitive the loca-
tion of the root is to small perturbations in p1, . . . , pd.

Proposition 2.9 (The absolute condition number of a simple root). Let x∗ =
(x∗1, . . . , x

∗
d) ∈ Cd be a simple root of (1.1). The absolute condition number of x∗

associated with rootfinding is ‖J(x∗)−1‖2, i.e., the matrix 2-norm of the inverse of
the Jacobian.

Proof. See [35].
As a rule of thumb, a numerically stable rootfinder should be able to compute a

simple root x∗ ∈ Cd to an accuracy of O(max(‖J(x∗)−1‖2, 1)u), where u is the unit
machine roundoff. In contrast, regardless of the condition number of x∗, a numerically
unstable rootfinder may not compute it accurately. Worse still, it may miss solutions
with detrimental consequences.

A hidden-variable resultant method computes the dth component of the solutions
by solving the polynomial eigenvalue problem R(p1[xd], . . . , pd[xd])v = 0. The follow-
ing condition number tells us how sensitive an eigenvalue is to small perturbations in
R [35, (12)] (also see [42]):

Definition 2.10 (The absolute condition number of an eigenvalue of a regular
matrix polynomial). Let x∗d ∈ C be a finite eigenvalue of R(xd) = R(p1[xd], . . . , pd[xd]).
The condition number of x∗d associated with the eigenvalue problem R(xd)v = 0 is

κ(x∗d, R) = lim
ε→0+

sup

{
1

ε
min |x̂d − x∗d| : det(R̂(x̂d)) = 0

}
, (2.3)

where the supremum is taken over the set of matrix polynomials R̂(xd) such that

maxxd∈Ω ‖R̂(xd)−R(xd)‖2 ≤ ε.
A numerical polynomial eigensolver can only be expected to compute the eigen-

value x∗d satisfying R(x∗d)v = 0 to an accuracy of O(max(κ(x∗d, R), 1)u), where u is
unit machine roundoff. We will be interested in how κ(x∗d, R) relates to the condition
number, ‖J(x∗)−1‖2, of the corresponding root.

It can be quite difficult to calculate κ(x∗d, R) directly from (2.3), and is usually
more convenient to use the formula below. (Related formulas can be found in [35,
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Thm. 1] for symmetric matrix polynomials and in [42, Thm. 5] for general matrix
polynomials.)

Lemma 2.11. Let R(xd) be a regular matrix polynomial with finite simple eigen-
values. Let x∗d ∈ C be an eigenvalue of R(xd) with corresponding right and left eigen-
vectors v, w ∈ CN×1. Then, we have

κ(x∗d, R) =
‖v‖2‖w‖2
|wTR′(xd)v|

,

where R′(xd) denotes the derivative of R with respect to xd.
Proof. The first part of the proof follows the analysis in [42]. Let R(xd) be a

regular matrix polynomial with a simple eigenvalue x∗d ∈ C and corresponding right

and left eigenvectors v, w ∈ CN×1. A perturbed matrix polynomial R̂(x) = R(x) +
∆R(x) will have a perturbed eigenvalue x̂d and a perturbed eigenvector v̂ = v + δv
such that R(x̂d)v̂ + ∆R(x̂d)v̂ = 0, where ‖∆R(x)‖2 ≤ ε.

Expanding, keeping only the first order terms, and using R(x∗d)v = 0 we obtain

(x̂d − x∗d)R′(x∗d)v +R(x∗d)δv + ∆R(x∗d)v = O(ε2).

Multiplying by wT on the left, rearranging, and keeping the first order terms, we
obtain

x̂d = x∗d −
wT∆R(x∗d)v

wTR′(x∗d)v
,

where the derivative in R′(x∗d) is taken with respect to xd. Thus, from (2.3) we see
that

κ(x∗d, R) ≤ ‖v‖2‖w‖2
|wTR′(x∗d)v|

. (2.4)

We now show that the upper bound in (2.4) can be attained. Take ∆R(xd) =
εwvT /(‖v‖2‖w‖2). Then, maxxd∈Ω ‖∆R(xd)‖2 = ε and

wT∆R(x∗d)v

wTR′(x∗d)v
= ε
‖v‖2‖w‖2
wTR′(x∗d)v

.

The result follows by Definition 2.10.
For the Cayley resultant matrix (see Section 3), we will show that κ2(x∗d, R) can

be as large as ‖J(x∗)−1‖d2 (see Theorem 3.7). Thus, there can be an exponential
increase in the conditioning that seems inherent to the methodology of the hidden-
variable resultant method based on the Cayley resultant matrix. In particular, once
the polynomial eigenvalue problem has been constructed, a backward stable numerical
eigensolver may not compute accurate solutions to (1.1).

We now must tackle the significant challenge of showing that the Cayley and
Sylvester resultant matrices do lead to numerical unstable hidden-variable resultant
methods, i.e., for certain solutions x∗ the quantity κ2(x∗d, R) can be much larger than
‖J(x∗)−1‖2.

3. The Cayley resultant is numerically unstable for multidimensional
rootfinding. The hidden-variable resultant method based on the Cayley resultant [12]
finds the solutions to (1.1) by solving the polynomial eigenvalue problemRCayley(xd)v =
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0, where RCayley(xd) is a certain matrix polynomial. To define it we follow the expo-
sition in [13] and first introduce a related Cayley function fCayley.

Definition 3.1 (Cayley function). The Cayley function associated with q1, . . . , qd ∈
Cn[x1, . . . , xd−1] is a multivariate polynomial in 2d−2 variables, denoted by fCayley =
fCayley(q1, . . . , qd), and is given by

fCayley = det


q1(s1, s2, . . . , sd−1) . . . qd(s1, s2, . . . , sd−1)

q1(t1, s2, . . . , sd−1) . . . qd(t1, s2, . . . , sd−1)

...
. . .

...

q1(t1, t2, . . . , td−1) . . . qd(t1, t2, . . . , td−1)


/

d−1∏
i=1

(si − ti). (3.1)

In two dimensions the Cayley function (also known as the Bézoutian function [34])
takes the more familiar form of

fCayley =
1

s1 − t1
det

(
q1(s1) q2(s1)

q1(t1) q2(t1)

)
=
q1(s1)q2(t1)− q2(s1)q1(t1)

s1 − t1
,

which is of degree at most n−1 in s1 and t1. By carefully applying Laplace’s formula
for the matrix determinant in (3.1), one can see that fCayley is a polynomial of degree
τk ≤ kn− 1 in sk and td−k for 1 ≤ k ≤ d− 1.

Note that fCayley is not the multidimensional resultant (except when τk = 0 for
all k). Instead, fCayley is a function that is a convenient way to define the Cayley
resultant matrix.

Let {φ0, φ1, . . . , } be the selected degree-graded polynomial basis. The Cayley
resultant matrix depends on the polynomial basis and is related to the expansion
coefficients of fCayley in a tensor-product basis of {φ0, φ1, . . . , }. That is, let

fCayley =

τ1∑
i1=0

· · ·
τd−1∑
id−1=0

τd−1∑
j1=0

· · ·
τ1∑

jd−1=0

Ai1,...,id−1,j1,...,jd−1

d−1∏
k=1

φik(sk)

d−1∏
k=1

φjk(tk) (3.2)

be the tensor-product expansion of the polynomial fCayley, where A is a tensor of
expansion coefficients of size (τ1 + 1)× · · · × (τd−1 + 1)× (τd−1 + 1)× · · · × (τ1 + 1).
The Cayley resultant matrix is the following unfolding (or matricization) of A [36,
Sec. 2.3]:

Definition 3.2 (Cayley resultant matrix). The Cayley resultant matrix asso-
ciated with q1, . . . , qd ∈ Cn[x1, . . . , xd−1] with respect to the basis {φ0, φ1, . . . , } is

denoted by RCayley and is the
(∏d−1

k=1(τk + 1)
)
×
(∏d−1

k=1(τk + 1)
)

matrix formed by

the unfolding of the tensor A in (3.2). This unfolding is often denoted by Ar×c, where
r = {1, . . . , d− 1} and c = {d, . . . , 2d− 2} [36, Sec. 2.3].

For example, when τk = kn−1 for 1 ≤ k ≤ d−1 we have for 0 ≤ ik, jd−k ≤ kn−1

RCayley

(
d−1∑
k=1

(k − 1)!ikn
k−1,

d−1∑
k=1

jd−k
(d− 1)!

(d− k)!
nk−1

)
= Ai1,...,id−1,j1,...,jd−1

.

Note that this is equivalent to N = factorial(d-1)*n^(d-1); R = reshape(A,N,N);

in MATLAB, except here the indexing of the matrix RCayley starts at 0.
For rootfinding, we set q1 = p1[xd], . . . , qd = pd[xd] (thinking of xd as the “hid-

den” variable). Then, RCayley = RCayley(xd) is a square matrix polynomial (see
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Section 2.3). If all the polynomials are of maximal degree n, then RCayley is of size
(d − 1)!nd−1 and of degree at most dn. The fact that (d − 1)!nd−1 × dn = d!nd is
the maximum number of possible solutions that (1.1) can possess (see Lemma 2.3) is
a consequence of RCayley being a resultant matrix. In particular, the eigenvalues of
RCayley(xd) are the dth components of the solutions to (1.1) and the remaining d− 1
components of the solutions can in principle be obtained from the eigenvectors.

It turns out that evaluating fCayley at t∗1, . . . , t
∗
d−1 is equivalent to a matrix-vector

product with RCayley. This relationship between RCayley and fCayley will be essential
in Section 3.2 for understanding the eigenvectors of RCayley.

Lemma 3.3. Let d ≥ 2, t∗ ∈ Cd−1, and fCayley and RCayley be the Cayley
function and matrix associated with q1, . . . , qd ∈ Cn[x1, . . . , xd−1], respectively. If V

is the tensor satisfying Vj1,...,jd−1
=
∏d−1
k=1 φjk(t∗k) for 0 ≤ jd−k ≤ τk, then we have

RCayleyvec(V ) = vec(Y ),

where Y is the tensor that satisfies

fCayley(s1, . . . , sd−1, t
∗
1, . . . , t

∗
d−1) =

τ1∑
i1=0

· · ·
τd−1∑
id−1=0

Yi1,...,id−1

d−1∏
k=1

φik(sk).

Proof. The matrix-vector product RCayleyvec(V ) = vec(Y ) is equivalent to the
following sums:

τd−1∑
j1=0

· · ·
τ1∑

jd−1=0

Ai1,...,id−1,j1,...,jd−1

d−1∏
k=1

φjk(t∗k) = Yi1,...,id−1

for some tensor Y . The result follows from (3.2).

3.1. The Cayley resultant as a generalization of Cramer’s rule. In this
section we show that for systems of linear polynomials, i.e., of total degree 1, the
Cayley resultant is precisely Cramer’s rule. We believe this connection is folklore, but
we have been unable to find an existing reference that provides a rigorous justification.
It gives a first hint that the hidden-variable resultant method in full generality may
be numerically unstable.

Theorem 3.4. Let A be a matrix of size d× d, x = (x1, . . . , xd)
T , and b a vector

of size d × 1. Then, solving the linear polynomial system Ax + b = 0 by the hidden-
variable resultant method based on the Cayley resultant is equivalent to Cramer’s rule
for calculating xd.

Proof. Let Ad be the last column of A and B = A−AdeTd +beTd , where ed is the dth
canonical vector. Recall that Cramer’s rule computes the entry xd in Ax = −b via the
formula xd = −det(B)/det(A). We will show that for the linear polynomial system
Ax + b = 0 we have fCayley = det(B) + xd det(A). Observe that this, in particular,
implies that (since fCayley has degree 0 in si, ti for all i) fCayley = RCayley = RCayley.
Hence, the equivalence between Cramer’s rule and rootfinding based on the Cayley
resultant.

First, using (3.1), we write fCayley = det(M)/ det(V ) where the matrices M and
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V are

V =



s1 t1 t1 . . . t1

s2 s2 t2 . . . t2
...

...
...

. . .
...

sd−1 sd−1 sd−1 . . . td−1

1 1 1 . . . 1


, M = BV + xdAde

T ,

where e is the d × 1 vector of all ones. (It can be shown by induction on d that

det(V ) =
∏d−1
i=1 (si − ti), as required.) Using the matrix determinant lemma, we have

det(M) = det(B) det(V ) + xde
T adj(BV )Ad,

where adj(BV ) is the algebraic adjugate matrix of BV . Now, recall that adj(BV ) =
adj(V ) adj(B) and observe that eT adj(V ) = det(V )eTd . Hence, we obtain

det(M)

det(V )
= det(B) + xd(e

T
d adj(B)Ad).

Using eTd adj(B)b = det(B) and the matrix determinant lemma one more time, we
conclude that

det(A) = det(B) + eTd adj(B)Ad − eTd adj(B)b = eTd adj(B)Ad.

Thus, fCayley = det(B) + xd det(A) and the resultant method calculates xd via
Cramer’s formula.

It is well-known in the literature that Cramer’s rule is a numerically unstable
algorithm for solving Ax = b [24, Sec. 1.10.1]. Thus, Theorem 3.4 casts significant
suspicion on the numerical properties of the hidden-variable resultant method based
on the Cayley resultant.

3.2. The eigenvector structure of the Cayley resultant matrix. Ulti-
mately, we wish to use Lemma 2.11 to estimate the condition number of the eigen-
values of the Cayley resultant matrix. To do this we need to know the left and right
eigenvectors of RCayley. The following lemma shows that the eigenvectors of RCayley
are in Vandermonde form3. To show this we exploit the convenient relationship be-
tween evaluation of fCayley and matrix-vector products with RCayley.

Lemma 3.5. Suppose that x∗ = (x∗1, . . . , x
∗
d) ∈ Cd is a simple root of (1.1). Let

V and W be tensors of size (τd−1 + 1)× · · · × (τ1 + 1) and (τ1 + 1)× · · · × (τd−1 + 1),
respectively, defined by

Vj1,...,jd−1
=

d−1∏
k=1

φjk(x∗k), 0 ≤ jk ≤ τd−k

and

Wi1,...,id−1
=

d−1∏
k=1

φik(x∗k), 0 ≤ ik ≤ τk.

3In one dimension we say that an N × 1 vector v is in Vandermonde form if there is an x ∈ C
such that vi = φi(x) for 0 ≤ i ≤ N − 1. In higher dimensions, the vector vec(A) is in Vandermonde

form if Ai1,...,id =
∏d

k=1 φik (xk) for some x1, . . . , xd ∈ C.
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Then, vec(V ) and vec(W ) are the right and left eigenvectors of RCayley(p1[x∗d], . . . , pd[x
∗
d])

corresponding to the eigenvalue x∗d.
Proof. Let fCayley = fCayley(p1[x∗d], . . . , pd[x

∗
d]) be the Cayley function associated

with p1[x∗d], . . . , pd[x
∗
d]. From (3.1) we find that fCayley(s1, . . . , sd−1, x

∗
1, . . . , x

∗
d−1) = 0

because the determinant of a matrix with a vanishing last row is zero. Moreover, by
Lemma 3.3 we have

0 = fCayley(s1, . . . , sd−1, x
∗
1, . . . , x

∗
d−1) =

τ1∑
i1=0

· · ·
τd−1∑
id−1=0

Yi1,...,id−1

d−1∏
k=1

φik(sk).

Since {φ0, φ1, . . . , } is a polynomial basis we must conclude that Y = 0, and hence,
RCayley(x∗d)v = 0 with v = vec(V ). In other words, v is a right eigenvector of RCayley
corresponding to the eigenvalue x∗d (see Definition 2.8).

An analogous derivation shows that vec(W ) is a left eigenvector of RCayley.

3.3. On the generalized Rayleigh quotient of the Cayley resultant ma-
trix. To bound κ(x∗d, RCayley) we need to bound the absolute value of the generalized
Rayleigh quotient of R′Cayley(xd) (see Lemma 2.11), whenever x∗ ∈ Cd is such that x∗d
is a simple eigenvalue of RCayley(xd), i.e., there are no other solutions to (1.1) with
the same dth component. In a similar style to the proof of Lemma 3.5 we show this by
exploiting the relation between evaluating the derivative of fCayley and matrix-vector
products with R′Cayley(xd).

Theorem 3.6. Let p1, . . . , pd be the polynomials in (1.1), x∗ ∈ Cd a solution
of (1.1), and fCayley(xd) the Cayley function associated with q1 = p1[xd], . . . , qd =
pd[xd]. We have

f ′Cayley(x∗d)
∣∣∣ sk=tk=x∗

k
1≤k≤d−1

= det(J(x∗d)),

where J(x∗) is the Jacobian matrix in (2.1). That is, f ′Cayley(x∗d) evaluated at sk =
tk = x∗k for 1 ≤ k ≤ d− 1 is equal to the determinant of the Jacobian.

Proof. Recall from (3.1) that fCayley(xd) is a polynomial in s1, . . . , sd−1, t1, . . . , td−1

written in terms of a matrix determinant, and set q1 = p1[xd], . . . , qd = pd[xd]. The
determinant in (3.1) for fCayley(xd) can be expanded to obtain

fCayley(xd) =
1∏d−1

i=1 (si − ti)

∑
σ∈Sd

(−1)σ
d∏
i=1

pσi [xd](t1, . . . , ti−1, si, . . . , sd−1),

where Sd is the symmetric group of {1, . . . , d} and (−1)σ is the signature of the
permutation σ. When we evaluate fCayley(xd) at sk = tk = x∗k for 1 ≤ k ≤ d − 1
the denominator vanishes, and hence, so does the numerator because fCayley(xd) is
a polynomial. Thus, by L’Hospital’s rule, f ′Cayley(x∗d) evaluated sk = tk = x∗k for
1 ≤ k ≤ d− 1 is equal to

∂d

∂s1 · · · ∂sd−1∂xd

∑
σ∈Sd

(−1)σ
d∏
i=1

pσi
[xd](t1, . . . , ti−1, si, . . . , sd−1) (3.3)

evaluated at sk = x∗k, tk = x∗k, and xd = x∗d. In principle, one could now apply the
product rule and evaluate the combinatorially many terms in (3.3). Instead, we note
that after applying the product rule a term is zero if it contains pσi

(x∗) for any σ ∈ Sd
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and 1 ≤ i ≤ d (since x∗ is a solution to (1.1)). There are precisely d partial derivatives
and d terms in each product so that any nonzero term when expanding 3.3 has each
pk differentiated precisely once. Finally, note that for each 1 ≤ k ≤ d − 1 only the
1 ≤ i ≤ k terms in the product depend on sk. Hence, from (3.3) we obtain

f ′Cayley(x∗d)

∣∣∣∣ sk=tk=x∗
k

1≤k≤d−1

=
∑
σ∈Sd

(−1)σ
d∏
i=1

∂pσi

∂xi
(x∗).

The result follows because the last expression is the determinant of the Jacobian
matrix evaluated at x∗.

As a consequence of Theorem 3.6 we have the following unavoidable conclusion
that mathematically explains the numerical difficulties that practitioners have been
experiencing with hidden-variable resultant methods based on the Cayley resultant.

Theorem 3.7. Let d ≥ 2. Then, there exist p1, . . . , pd in (1.1) with a simple root
x∗ ∈ Cd such that

κ(x∗d, RCayley) ≥ ‖J(x∗)−1‖d2
and ‖J(x∗)−1‖2 > 1. Thus, an eigenvalue of RCayley(xd) can be more sensitive to
perturbations than the corresponding root by a factor that grows exponentially with d.

Proof. Using Lemma 3.3, Theorem 3.6 has the following equivalent matrix form:

wTR′Cayley(x∗d)v = det(J(x∗)),

where v = vec(V ), w = vec(W ), and V and W are given in Lemma 3.5. Since φ0 = 1,
we know that ‖v‖2 ≥ 1 and ‖w‖2 ≥ 1. Hence, by Lemma 2.11

κ(x∗d, RCayley) ≥ |det(J(x∗))|−1.

Denoting the singular values [26, Sec. 7.3] of the matrix J(x∗) by σi , select p1, . . . , pd
and x∗ ∈ Cd such that |det(J(x∗))| =

∏d
i=1 σi = σdd . Such polynomial systems do

exist, for example, linear polynomial systems where Mx−Mx∗ = 0 and M is a matrix
with singular values σ1 = σ2 = · · · = σd. To ensure that ‖J(x∗)−1‖2 > 1 we also
require σd < 1. Then, we have

κ(x∗d, RCayley)−1 ≤ |det(J(x∗))| =
d∏
i=1

σi = σdd = ‖J(x∗)−1‖−d2 .

The result follows.
We emphasize that this numerical instability is truly spectacular, affects the ac-

curacy of x∗d, and can grow exponentially with the dimension d.
Moreover, Theorem 3.7 holds for any degree-graded polynomial basis selected

to represent p1, . . . , pd as long as φ0 = 1. In particular, the associated numerical
instability cannot be resolved in general by a special choice of polynomial basis.

Theorem 3.7 is pessimistic and importantly does not imply that the resultant
method always loses accuracy, just that it might. In general, one must know the
solutions to (1.1) and the singular values of the Jacobian matrix to be able to predict
if and when the resultant method will be accurate.

One should note that Theorem 3.7 concerns absolute conditioning and one may
may wonder if a similar phenomenon also occurs in the relative sense. In Section 5
we show that the relative conditioning can also be increased by an exponential factor
with d.
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4. The Sylvester resultant is numerically unstable for bivariate rootfind-
ing. A popular alternative in two dimensions to the Cayley resultant matrix is the
Sylvester resultant matrix [15, Chap. 3], denoted here by RSylv. We now set out to
show that the hidden-variable resultant based on RSylv is also numerically unstable.
However, since d = 2 the instability has only a moderate impact in practice as the
conditioning can only be at most squared. With care, practical bivariate rootfinders
can be based on the Sylvester resultant [39] though there is the possibility that a
handful digits are lost.

A neat way to define the Sylvester resultant matrix that accommodates nonmono-
mial polynomial bases is to define the matrix one row at a time.

Definition 4.1 (Sylvester resultant matrix). Let q1 and q2 be two univariate
polynomials in Cn[x1] of degree exactly τ1 and τ2, respectively. Then, the Sylvester
resultant matrix RSylv ∈ C(τ1+τ2)×(τ1+τ2) associated with q1 and q2 is defined row-by-
row as

RSylv (i, : ) = Y i,1, 0 ≤ i ≤ τ2 − 1,

where Y i,1 is the row vector of coefficients such that q1(x)φi(x) =
∑τ1+τ2−1
k=0 Y i,1k φk(x)

and

RSylv (i+ τ2, : ) = Y i,2, 0 ≤ i ≤ τ1 − 1,

where Y i,2 is the row vector of coefficients such that q2(x)φi(x) =
∑τ1+τ2−1
k=0 Y i,2k φk(x).

In the monomial basis, i.e., φk(x) = xk, Definition 4.1 gives the following Sylvester4

matrix of size (τ1 + τ2)× (τ1 + τ2) [15, Chap. 3]:

RSylv =



a0 a1 . . . aτ1
. . .

. . .
. . .

. . .

a0 a1 . . . aτ1

b0 b1 . . . bτ2
. . .

. . .
. . .

. . .

b0 b1 . . . bτ2



 τ2 rows

 τ1 rows

(4.1)

where q1(x) =
∑τ1
k=0 akx

k and q2(x) =
∑τ2
k=0 bkx

k.

4.1. A generalization of Clenshaw’s algorithm for degree-graded poly-
nomial bases. Our goal is to use Lemma 2.11 to bound the condition number of the
eigenvalues of the Sylvester resultant matrix. It turns out the right eigenvectors of
RSylv are in Vandermonde form. However, the left eigenvectors have a more peculiar
structure and are related to the byproducts of a generalized Clenshaw’s algorithm
for degree-graded polynomial bases (see Lemma 4.4). We develop a Clenshaw’s al-
gorithm for degree-graded bases in this section with derivations of its properties in
Appendix A.

4Variants of (4.1) include its transpose or a permutation of its rows and/or columns. Our
analysis still applies after these aesthetic modifications with an appropriate change of indices. We
have selected this variant for the convenience of indexing notation.
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The selected polynomial basis φ0, φ1, . . . , is degree-graded and hence, satisfies a
recurrence relation of the form

φk+1(x) = (αkx+ βk)φk(x) +

k∑
j=1

γk,jφj−1(x), k ≥ 1, (4.2)

where φ1(x) = (α0x + β0)φ0(x) and φ0(x) = 1. If φ0, φ1, . . . , is an orthogonal poly-
nomial basis, then (4.2) is a three-term recurrence and it is standard to employ Clen-
shaw’s algorithm [14] to evaluate polynomials expressed as p(x) =

∑n
k=0 akφk(x).

This procedure can be extended to any degree-graded polynomial basis.
Let p(x) be expressed as p(x) =

∑n
k=0 akφk(x), where φ0, . . . , φn is a degree-

graded polynomial basis. One can evaluate p(x) via the following procedure: Let
bn+1[p](x) = 0, and calculate bn[p](x), . . . , b1[p](x) from the following recurrence rela-
tion:

bk[p](x) = ak + (αkx+ βk)bk+1[p](x) +

n−1∑
j=k+1

γj,k+1bj+1[p](x), 1 ≤ k ≤ n. (4.3)

We refer to the quantities b1[p](x), . . . , bn+1[p](x) as Clenshaw shifts (in the monomial
case they are called Horner shifts [16]). The value p(x) can be written in terms of the
Clenshaw shifts5.

Lemma 4.2. Let n be an integer, x ∈ C, φ0, . . . , φn a degree-graded basis sat-
isfying (4.2), p(x) =

∑n
k=0 akφk(x), and bn+1[p](x), . . . , b1[p](x) the Clenshaw shifts

satisfying (4.3). Then,

p(x) = a0φ0(x) + φ1(x)b1[p](x) +

n−1∑
i=1

γi,1bi+1[p](x). (4.4)

Proof. See Appendix A.
Clenshaw’s algorithm for degree-graded polynomial bases is summarized in Fig-

ure 2. We note that because of the full recurrence in (4.3) the algorithm requires
O(n2) operations to evaluate p(x). Though this algorithm may not be of significant
practical importance, it is of theoretical interest for the conditioning analysis of some
linearizations from the so-called L1- or L2-spaces [31] when degree-graded bases are
employed [34].

There is a remarkable and interesting connection between Clenshaw shifts and the
quotient (p(x)−p(y))/(x−y), which will be useful when deriving the left eigenvectors
of RSylv.

Theorem 4.3. With the same set up as Lemma 4.2 we have

p(x)− p(y)

x− y
=

n−1∑
i=0

αibi+1[p](y)φi(x), x 6= y (4.5)

and

p′(x) =

n−1∑
i=0

αibi+1[p](x)φi(x). (4.6)

5Note that, although Lemma 4.2 is stated in a general form and holds for any degree-graded
basis, in this paper we fix the normalization maxx∈Ω |φj(x)| = 1, that implies in particular φ0 = 1
simplifying (4.2).
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Clenshaw’s algorithm for degree-graded polynomial bases

Let φ0, φ1, . . . , satisfy (4.2) and p(x) =
∑n
k=0 akφk(x).

Set bn+1[p](x) = 0.

for k = n, n− 1, . . . , 1 do
bk[p](x) = ak + (αkx+βk)bk+1[p](x) +

∑n−1
j=k+1 γj,k+1bj+1[p](x)

end

p(x) = a0φ0(x) + φ1(x)b1[p](x) +
∑n−1
j=1 γj,1bj+1[p](x).

Fig. 2. Clenshaw’s algorithm for evaluating polynomials expressed in a degree-graded basis.

Proof. See Appendix A.
The relation between the derivative and Clenshaw shifts in (4.6) has been noted

by Skrzipek for orthogonal polynomial bases in [37], where it was used to construct a
so-called extended Clenshaw’s algorithm for evaluating polynomial derivatives. Using
Theorem 4.3 and [37] an extended Clenshaw’s algorithm for polynomials expressed in
a degree-graded basis is immediate.

4.2. The eigenvector structure of the Sylvester resultant matrix. We
now set q1 = p1[x2] and q2 = p2[x2] (considering x2 as the hidden variable), and we
are interested in the eigenvectors of the matrix polynomial RSylv(x

∗
2), when (x∗1, x

∗
2)

is a solution to (1.1) when d = 2. It turns out that the right eigenvectors of RSylv(x
∗
2)

are in Vandermonde form, while the left eigenvectors are related to the Clenshaw
shifts (see Section 4.1).

Lemma 4.4. Suppose that x∗ = (x∗1, x
∗
2) is a simple root of (1.1) and that

p1[x2] and p2[x2] are of degree τ1 and τ2, respectively, in x1. The right eigenvec-
tor of RSylv(x

∗
2) corresponding to the eigenvalue x∗2 is

vk = φk(x∗1), 0 ≤ k ≤ τ1 + τ2 − 1,

and the left eigenvector is defined as

wi =

{
−αibi+1[q2](x∗1), 0 ≤ i ≤ τ2 − 1,

αi−τ2bi−τ2+1[q1](x∗1), τ2 ≤ i ≤ τ1 + τ2 − 1,

where qj = pj [x
∗
2] and bk[qj ](x

∗
1) are the Clenshaw shifts with respect to {φ0, φ1, . . . , }.

Proof. By construction we have, for 0 ≤ i ≤ τ2 − 1,

RSylv (i, :) v =

τ1+τ2−1∑
k=0

Y i,1k (x∗2)φk(x∗1) = q1(x∗1)φi(x
∗
1) = 0

and, for 0 ≤ i ≤ τ1 − 1,

RSylv (i+ τ2, :) v =

τ1+τ2−1∑
k=0

Y i,2k (x∗2)φk(x∗1) = q2(x∗1)φi(x
∗
1) = 0.

Thus, v is a right eigenvector of RSylv(x
∗
2) corresponding to the eigenvalue x∗2.
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For the left eigenvector, first note that for any vector Φ of the form Φk = φk(x)
for 0 ≤ k ≤ τ1 + τ2 − 1 we have by Theorem 4.3

wTRSylv(x
∗
2)Φ = −

τ2−1∑
i=0

αibi+1[q2](x∗1)φi(x)q1(x) +

τ1−1∑
i=0

αibi+1[q1](x∗1)φi(x)q2(x)

= −q2(x)− q2(x∗1)

x− x∗1
q1(x) +

q1(x)− q1(x∗1)

x− x∗1
q2(x)

= − q2(x)

x− x∗1
q1(x) +

q1(x)

x− x∗1
q2(x) = 0,

where the second from last equality follows because q1(x∗1) = q2(x∗1) = 0. Since (4.3)
holds for any x and {φ0, φ1, . . . , φτ1+τ2−1} is a basis of Cτ1+τ2−1[x], we deduce that
wTRSylv(x

∗
2) = 0, and hence, w is a left eigenvector of RSylv corresponding to the

eigenvalue x∗2.

4.3. On the generalized Rayleigh quotient of the Sylvester resultant
matrix. To bound κ(RSylv, x

∗
d) we look at the absolute value of the generalized

Rayleigh quotient of R′Sylv(x
∗
2), whenever x∗ is such that x∗2 is a simple eigenvalue

of RSylv(x2). Lemma 4.4 allows us to show how the generalized Rayleigh quotient of
R′Sylv(x

∗
2) relates to the determinant of the Jacobian.

Lemma 4.5. With the same assumptions as in Lemma 4.4, we have

|wTR′Sylv(x∗2)v|
‖v‖2‖w‖2

≤ |det (J(x∗)) |
‖w‖2

,

where w and v are the left and right eigenvectors of RSylv, respectively, and J(x∗) is
the Jacobian matrix in (2.1).

Proof. By Lemma 4.4 we know the structure of v and w. Hence, we have

wTR′Sylv(x
∗
2)v = −

τ2−1∑
i=0

αibi+1[q2](x∗1)φi(x
∗
1)
∂q1

∂x2
(x∗1) +

τ1−1∑
i=0

αibi+1[q1](x∗1)φi(x
∗
1)
∂q2

∂x2
(x∗1)

= − ∂q1

∂x2
(x∗1)

∂q2

∂x1
(x∗1) +

∂q1

∂x1
(x∗1)

∂q2

∂x2
(x∗1),

where the last equality used the relation in (4.6). The result now follows since this
final expression equals det (J(x∗)) and since φ0 = 1 we have ‖v‖2 ≥ 1.

Theorem 4.6. There exist p1 and p2 in (1.1) with a simple root x∗ ∈ C2 such
that

κ(x∗2, RSylv) ≥ ‖J(x∗)−1‖22
and ‖J(x∗)−1‖2 > 1. Thus, an eigenvalue of RSylv(x2) can be squared more sensitive
to perturbations than the corresponding root in the absolute sense.

Proof. We give an example for which ‖w‖2 ≥ 1 in Lemma 4.5. For some positive
parameter u and for some n ≥ 2 consider the polynomials

p1(x1, x2) = xn1x
n
2 + u1/2x1, p2(x1, x2) = α−1

n−1(xn1 + xn2 ) + u1/2x2.

It is trivial to verify that x∗ = (0, 0) is a common root6. Since |bn[q2](0)| = αn−1α
−1
n−1 =

1 we have ‖w‖2 ≥ 1. The result then follows from |det(J(x∗))| = ‖J(x∗)−1‖−2
2 and

Lemma 4.5.

6By a change of variables, there is an analogous example with a solution anywhere in the complex
plane.



18

Theorem 4.6 mathematically explains the numerical difficulties that practitioners
have been experiencing with hidden-variable resultant methods based on the Sylvester
resultant. There are successful bivariate rootfinders based on this methodology [39]
for low degree polynomial systems and it is a testimony to those authors that they
have developed algorithmic remedies (not cures) for the inherent numerical instability.

We emphasize that Theorem 4.6 holds for any normalized degree-graded polyno-
mial basis. Thus, the mild numerical instability cannot, in general, be overcome by
working in a different degree-graded polynomial basis.

The example in the proof of Theorem 4.6 is quite alarming for a practioner
since if u is the unit machine roundoff, then we have ‖J(0, 0)−1‖2 = u−1/2 and
κ(x∗2, RSylv) = u−1. Thus, a numerical rootfinder based on the Sylvester resultant
matrix may entirely miss a solution that has a condition number larger than u−1/2.
A stable rootfinder should not miss such a solution.

When d = 2, we can use Theorem 3.7 and Lemma 4.5 to conclude that the ratio
between the conditioning of the Cayley and Sylvester resultant matrices for the same
eigenvalue x∗2 is equal to ‖v‖2/‖w‖2, where v and w are the right and left eigenvector
of RSylv(x

∗
2) associated with the eigenvalue x∗2. This provides theoretical support

for the numerical observations in [35]. However, it seems difficult to predict a priori
if the Cayley or Sylvester resultant matrix will behave better numerically. For real
polynomials and d = 2, the Cayley resultant matrix is symmetric and this structure
can be exploited [35]. In the monomial basis, the Sylvester resultant matrix is two
stacked Toeplitz matrices (see (4.1)). It may be that structural differences like these
are more important than their relatively similar numerical properties when d = 2.

5. A discussion on relative and absolute conditioning. Let X(D) be the
solution of a mathematical problem depending on data D. In general, with the very
mild assumption that D and X lie in Banach spaces, it is possible to define the
absolute condition number of the problem by perturbing the data to D + δD and
studying the behaviour of the perturbed solution X̂(D + δD) = X(D) + δX(D, δD):

κabs = lim
ε→0

sup
‖δD‖≤ε

‖δX‖
‖δD‖

.

Similarly, a relative condition number can be defined by looking at the limit ratios of
relative changes.

κrel = lim
ε→0

sup
‖δD‖≤ε‖D‖

‖δX‖
‖δD‖

‖D‖
‖X‖

= κabs
‖D‖
‖X‖

.

In this paper, we have compared two absolute condition numbers. One is given
by Proposition 2.9: there, X = x∗ is a solution of (1.1) while D = (p1, . . . , pd) is the
set of polynomials in (1.1). The other is given by Lemma 2.11, where D is a matrix
polynomial and X = x∗d is the dth component of x∗.

To quote N. J. Higham [25, p. 56]: “Usually, it is the relative condition number
that is of interest, but it is more convenient to state results for the absolute condition
number”. This remark applies to our analysis as well. We have found it convenient to
study the absolute condition number, but when attempting to solve the rootfinding
problem in floating point arithmetic it is natural to allow for relatively small pertur-
bations, and thus to study the relative condition number. Hence, a natural question is
whether the exponential increase of the absolute condition number in Theorem 3.7 and
the squaring in Theorem 4.6 causes a similar effect in the relative condition number.
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It is not immediate that the exponential increase of the absolute condition number
leads to the same effect in the relative sense. We have found examples where the
exponential increase of the absolute condition number is perfectly counterbalanced
by an exponentially small Cayley resultant matrix. For instance, linear polynomial
systems, when the Cayley resultant method is equivalent to Cramer’s rule, seems to
fall into this category. In the relative sense, it may be possible to show that the
hidden-variable resultant method based on Cayley or Sylvester is either numerically
unstable during the construction of the resultant matrix or the resultant matrix has
an eigenvalue that is more sensitive to small relative perturbations than hoped. We
do not know yet how to make such a statement precise.

Instead, we provide an example that shows that the hidden-variable resultant
method remains numerically unstable in the relative sense. Let u be a sufficiently
small real positive parameter and d ≥ 2. Consider the following polynomial system:

p2i−1(x) = x2
2i−1 + u

(√
2

2 x2i−1 +
√

2
2 x2i

)
,

p2i(x) = x2
2i + u

(√
2

2 x2i −
√

2
2 x2i−1

)
, 1 ≤ i ≤ bd/2c,

where if d is odd then take pd(x) = x2
d + uxd. Selecting Ω = [−1, 1]d, we have that

‖pi‖∞ = 1 +
√

2u for 1 ≤ i ≤ d, except possibly ‖pd‖∞ = 1 + u if d is odd. It can be
shown that the origin7, x∗, is a simple root, det(J(x∗)) = ud, ‖J(x∗)−1‖2 = u−1, and
that

fCayley(s1, . . . , sd−1, t1, . . . , td−1) =

d−1∏
k=1

(sk + tk)x2
d +O(u).

Thus, neither the polynomials pi or the resultant matrix RCayley(xd) is small. In
such an example, the relative condition number will exhibit the same behavior as
the absolute condition number. In particular, the relative condition number of an
eigenvalue of RCayley(xd) may be larger than the relative condition number of the
corresponding solution by a factor that grows exponentially with d.

The same example (for d = 2), and a similar argument, applies to the Sylvester
resultant matrix showing the conditioning can be squared in the relative sense too.

6. Future outlook. In this paper we have shown that two popular hidden-
variable resultant methods are numerically unstable. We suspect that many more
variants of hidden-variable resultant methods are numerically unstable. In particular,
we hesitantly suggest that it could be the case that almost all practical resultants have
numerical issues. We do not know exactly how to formulate such a general statement,
but we note that practitioners are widely experiencing problems with hidden-variable
resultant methods. In particular, we do not know of a numerical multidimensional
rootfinder based on resultants that is robust for polynomial systems of large degree
and high d.

We would like to find a resultant matrix that can be constructed numerically
and that provably does not lead to a numerically unstable hidden-variable resultant
method. We do not know of one. In principle, this could be a breakthrough in
global rootfinding with significant practical applications as it might allow (1.1) to be
converted into a large eigenproblem without confronting conditioning issues. Solving

7By a change of variables, there is an analogous example with a solution anywhere in [−1, 1]d.
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high-dimensional and large degree polynomial systems would then be restricted by
computational cost rather than numerical accuracy.

Finally, we express again our hope that this paper, while appearing rather neg-
ative, will have a positive impact on future research into numerical rootfinders. We
believe that with care resultant-based methods can become a practical tool for mul-
tidimensional rootfinding.

Acknowledgments. We thank Yuji Nakatsukasa, one of our closest colleagues,
for his insightful discussions during the writing of [35] that ultimately lead us to con-
sider conditioning issues more closely. We also thank Anthony Austin and Martin
Lotz for carefully reading a draft and providing us with excellent comments. While
this manuscript was in a much earlier form Martin Lotz personally sent it to Gre-
gorio Malajovich for his comments. Gregorio’s comprehensive and enthusiastic reply
encouraged us to proceed with renewed vigor.

Appendix A. A generalization of Clenshaw’s algorithm for degree-
graded polynomial bases. This appendix contains the tedious, though necessary,
proofs required in Section 4.1 for Clenshaw’s algorithm for evaluating polynomials
expressed in a degree-graded basis.

Proof. [Proof of Lemma 4.2] By rearranging (4.3) we have ak = bk[p](x)− (αkx+

βk)bk+1[p](x)−
∑n−1
j=k+1 γj,k+1bj+1[p](x). Thus,

p(x) = a0φ0(x)+

n∑
k=1

bk[p](x)− (αkx+ βk)bk+1[p](x)−
n−1∑
j=k+1

γj,k+1bj+1[p](x)

φk(x).

Now, by interchanging the summations and collecting terms we have

p(x) = a0φ0(x) +

n∑
k=1

φk(x)bk[p](x)−
n∑
k=2

(αk−1x+ βk−1)φk−1(x)bk[p](x)

−
n−1∑
j=2

[
j−1∑
k=1

γj,k+1φk(x)

]
bj+1[p](x)

= a0φ0(x) + φ1(x)b1[p](x)

+

n−1∑
j=1

[
φj+1(x)− (αjx+ βj)φj(x)−

j−1∑
k=1

γj,k+1φk(x)

]
bj+1[p](x)

Finally, using (4.2) we obtain

p(x) = a0φ0(x) + φ1(x)b1[p](x) +

n−1∑
j=1

γj,1φ0(x)bj+1[p](x),

as required.
Section 4.1 also shows that Clenshaw’s algorithm connects to the the quotient

(p(x) − p(y))/(x − y). To achieve this we need an immediate result that proves
a different recurrence relation on the Clenshaw shifts to (4.3). The proof involves
tedious algebraic manipulations and mathematical strong induction.

Lemma A.1. Let n be an integer, φ0, . . . , φn a degree-graded basis satisfying (4.2),
and bn+1[p], . . . , b1[p] the Clenshaw shifts satisfying (4.3). Then, for 1 ≤ j ≤ n,

bj [φn+1](x) = (αnx+ βn)bj [φn](x) +

n∑
s=j+1

γn,sbj [φs−1](x).
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Proof. We proceed by induction on j. Let j = n. We have, by (4.3),

bn[φn+1](x) = (αnx+ βn)bn+1[φn+1](x) = (αnx+ βn)bn[φn](x),

where the last equality follows because bn+1[φn+1](x) = bn[φn](x) = 1 Now, suppose
the result holds for j = n, n − 1, . . . , k + 1. We have, by (4.3) and the inductive
hypothesis,

bk[φn+1](x) = (αkx+ βk)bk+1[φn+1](x) +

n∑
j=k+1

γj,k+1bj+1[φn+1](x)

= (αkx+ βk)

[
(αnx+ βn)bk+1[φn](x) +

n∑
s=k+2

γn,sbk+1[φs−1](x)

]

+

n−1∑
j=k+1

γj,k+1

(αnx+ βn)bj+1[φn](x) +

n∑
s=j+2

γn,sbj+1[φs−1](x)


+ γn,k+1bn+1[φn+1](x).

By interchanging the summations and collecting terms we have

bk[φn+1](x) = (αnx+ βn)

(αkx+ βk)bk+1[φn](x) +

n−1∑
j=k+1

γj,k+1bj+1[φn](x)


+

n∑
s=k+3

γn,s

(αkx+ βk)bk+1[φs−1](x) +

s−2∑
j=k+1

γj,k+1bj+1[φs−1](x)


+ γn,k+2(αkx+ βk)bk+1[φk+1](x) + γn,k+1bn+1[φn+1](x)

= (αnx+ βn)bk[φn] +

n∑
s=k+1

γn,sbk[φs−1],

where in the last equality we used (4.3), (αkx+ βk)bk+1[φk+1](x) = bk[φk+1](x), and
bn+1[φn+1](x) = bk[φk](x) = 1.

The recurrence from Lemma A.1 allows us to prove Theorem 4.3.

Proof. [Proof of Theorem 4.3]

Case 1: x 6= y. Since for a fixed y the Clenshaw shifts are linear, i.e., bj [c1φi +
c2φk](y) = c1bj [φi](y) + c2bj [φk](y) for constants c1 and c2, it is sufficient to prove
the theorem for p = φn for n ≥ 1.

We proceed by induction on n. For n = 1 we have

n−1∑
j=0

αjbj+1[φn+1](y)φj = α0b1[φ1](y) = α0 =
φ1(x)− φ1(y)

x− y
.

Assume that the result holds for n = 1, . . . , k−1. From the inductive hypothesis,
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we have

φk+1(x)− φk+1(y)

x− y
= αkφk(x) + (αkx+ βk)

φk(x)− φk(y)

x− y
+

k∑
j=1

γk,j
φj−1(x)− φj−1(y)

x− y

= αkφk(x) + (αkx+ βk)

k−1∑
j=0

αjbj+1[φk](y)φj(x)

+

k∑
j=1

γk,j

j−2∑
s=0

αsbs+1[φj−1](y)φs(x).

Moreover, by interchanging the summations and collecting terms we have

φk+1(x)− φk+1(y)

x− y
= αkφk(x) + (αkx+ βk)αk−1bk[φk](y)φk−1(x)

+

k−2∑
j=0

αj

(αkx+ βk)bj+1[φk](y) +

k∑
s=j+2

γk,sbj+1[φs−1](y)

φj(x).

Finally, since bk+1[φk+1](y) = 1, bk[φk+1](y) = (αkx+ βk)bk[φk](y), and by (4.3), we
have

φk+1(x)− φk+1(y)

x− y
= αkbk+1[φk+1](y)φk(x) + αk−1bk[φk+1](y)φk−1(x)

+

k−2∑
j=0

αjbj+1[φk+1](y)φj(x)

and the result follows by induction.
Case 2: x = y. Immediately follows from x 6= y by using L’Hospital’s rule

on (4.5).
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