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Abstract

We discuss matrix polynomials expressed in a Bernstein basis, and the associated polynomial eigenvalue
problems. Using Möbius transformations of matrix polynomials, large new families of strong linearizations
are generated. Matrix polynomials that are structured with respect to a Bernstein basis, together with
their associated spectral symmetries, are also investigated. The results in this paper apply equally well to
scalar polynomials, and include the development of new companion pencils for polynomials expressed in a
Bernstein basis.
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1. Introduction

The now-classical scalar Bernstein polynomials were first used in [4] to provide a constructive proof of
the Weierstrass approximation theorem, but since then have found numerous applications in computer-aided
geometric design [5, 15, 17], interpolation and least squares problems [14, 32, 33], and statistical computing
[34]. For additional applications of Bernstein polynomials, as well as for more on the historical development
and current research trends related to Bernstein polynomials, see [16, 19] and the references therein.

This paper focuses on matrix polynomials expressed in Bernstein bases, and the associated polynomial
eigenvalue problems. The classical approach for solving such eigenproblems is via a linearization, hence
that notion takes a central role in this paper. We provide a rich source of new (strong) linearizations for
matrix polynomials expressed in a Bernstein basis, and outline a simple procedure to easily generate them.
Further, we study the impact that various matrix polynomial structures have on its spectrum, the existence
of structured linearizations, and how existing structure-preserving algorithms can be applied. Along the
way, we also describe a method for generating a family of new companion pencils for scalar polynomials
expressed in a Bernstein basis. It is important to emphasize that even though all the results in this paper
are stated using the language of matrix polynomials, they also hold for the special case of scalar polynomials
expressed in a Bernstein basis. This could have numerical significance when computing with a Bernstein
basis at the scalar level [5, 37].

Following this introduction, some background on matrix polynomials and linearizations, as well as a brief
review of the classical (scalar) Bernstein polynomials is given in Section 2. Section 3 then introduces matrix
polynomials expressed in Bernstein bases, and describes a simple method for generating strong linearizations
of them. Finally, Section 4 describes some special spaces of linearizations for matrix polynomials in a
Bernstein basis, while in Section 5 we discuss matrix polynomials that are structured with respect to a
Bernstein basis.

IThe work of both authors is supported by National Science Foundation grant DMS-1016224.
∗Corresponding author
Email addresses: steve.mackey@wmich.edu (D. Steven Mackey), vasilije.perovic@wmich.edu (Vasilije Perović)



2. Preliminaries

Throughout this paper N denotes the set of non-negative integers, F is an arbitrary field, F denotes the
algebraic closure of F, and F∞ := F ∪ {∞}. The ring of all univariate polynomials with coefficients from F
is denoted by F[λ], and the field of rational functions over F by F(λ). The vector space of univariate scalar
polynomials of degree at most n is denoted by Pn, and the set M =

{
1, x, x2, . . . , xn

}
is referred to as the

monomial basis or the standard basis for Pn. The space of all n × n invertible matrices with entries in F
is denoted by GL(n,F).

The following notion is well known in the literature concerned with the computation of roots of scalar
polynomials.

Definition 2.1. (Companion pencil of a scalar polynomial)
For a scalar polynomial p(x) in Pn, any matrix pencil xC + D ∈ Fn×n[x] such that det(xC + D) = αp(x)
for some nonzero α ∈ F is called a companion pencil for p(x).

Remark 2.2. The notion of a companion pencil can be extended to any regular matrix polynomial. In
particular, a square matrix xC +D is a companion pencil for a regular matrix polynomial P (x) if det(xC +
D) = α det

(
P (x)

)
, where α is a nonzero scalar. While such matrix pencils have applications, see for

example [6], the focus in this paper will be on the class of companion pencils that have the stronger property
of being a linearization (see Definition 2.7 and the commentary following it).

The matrices

R = Rn :=

[
1

. .
.

1

]
n×n

and Ba,b :=

[
1 −a
−1 b

]
(2.1)

are used throughout the paper, where a, b ∈ F. When there is no risk of confusion, Ba,b will be abbreviated
to just B.

2.1. Linearizations and eigenvalues

An arbitrary m× n matrix polynomial of grade k can be expressed in the form

P (λ) =

k∑
i=0

λiAi ,

where A0, A1, . . . , Ak ∈ Fm×n. Here we allow any of the coefficient matrices, including Ak, to be the zero
matrix. In contrast to the degree of a nonzero matrix polynomial, which retains its usual meaning as the
largest integer j such that coefficient of λj in P (λ) is nonzero, having grade k indicates that the polynomial
P (λ) is to be interpreted as an element of the F-vector space of all matrix polynomials of degree less than
or equal to k. Note that by this convention the grade of a matrix polynomial is an integer at least as large
as its degree. Since a polynomial of grade k can also be viewed as a polynomial of any grade higher than
k, the grade under consideration must be chosen; the grade of a matrix polynomial P (λ) thus constitutes
a feature of P (λ) in addition to its degree. Throughout this paper, then, a matrix polynomial P is always
accompanied by a choice of grade, denoted grade(P ). In the context of this paper, where most polynomials
are expressed in a Bernstein basis, the choice of grade will be obvious, whereas the degree will not always
be so clear; see Example 3.1 for an illustration of this point. Note that throughout the paper we reserve the
word pencil to refer only to matrix polynomials of grade 1.

A matrix polynomial P (λ) is said to be regular if it is invertible when viewed as a matrix over the field
F(λ), equivalently, if it is square with detP (λ) 6≡ 0; otherwise it is said to be singular. The rank of P (λ),
sometimes called the normal rank, is the rank of P (λ) when viewed as a matrix with entries in the field
F(λ), or equivalently, the size of the largest nonzero minor of P (λ).

Definition 2.3. (Reversal)
Let P be a nonzero matrix polynomial of grade k ≥ 0. The reversal of P is the matrix polynomial revP
given by

(revP )(λ) := λkP (1/λ) . (2.2)
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The fact that grade(P ) ≥ deg(P ) plays a key role in Definition 2.3, since it guarantees that revP is
also a matrix polynomial. Further, if P is a matrix polynomial of grade k expressed in the standard basis,
i.e., P (λ) =

∑k
i=0Aiλ

i, then revP (λ) =
∑k
i=0Ak−iλ

i. Thus taking the reversal of a matrix polynomial
expressed in the standard basis has the effect of simply reversing the order of its coefficients. That is not
usually the case if a matrix polynomial is expressed in a non-standard basis.

Theorem 2.4. (Smith form (Frobenius, 1878) [18])
Let P (λ) be an m×n matrix polynomial over an arbitrary field F. Then there exists r ∈ N, and unimodular
(i.e., with nonzero constant determinant ) matrix polynomials E(λ) and F (λ) of size m × m and n × n,
respectively, such that

E(λ)P (λ)F (λ) = diag(d1(λ), . . . , dmin {m,n}(λ)) =: D(λ), (2.3)

where d1(λ), . . . , dr(λ) are monic, dr+1(λ), . . . , dmin {m,n}(λ) are identically zero, and d1(λ), . . . , dr(λ) satisfy
the divisibility chain property, that is, dj(λ) is a divisor of dj+1(λ) for j = 1, . . . , r− 1. Moreover, D(λ) is
unique.

The nonzero diagonal elements dj(λ), j = 1, . . . , r in the Smith form of P (λ) are called the invariant factors
or invariant polynomials of P (λ).

Observe that the uniqueness of the Smith form over a field F implies that the Smith form is insensitive
to field extensions. In particular, the Smith form of P over F is the same as that over F, the algebraic
closure of F. It is sometimes more convenient to work over F, since the invariant polynomials can then be
completely decomposed into a product of linear factors.

Definition 2.5. (Partial multiplicity sequence [31])
Let P (λ) be an m × n matrix polynomial over a field F with rank r and grade k. For any λ0 ∈ F, the
invariant polynomials di(λ) of P for 1 ≤ i ≤ r can each be uniquely factored as

di(λ) = (λ− λ0)αi pi(λ) with αi ∈ N , pi(λ0) 6= 0 .

The sequence of exponents (α1, α2, . . . , αr) satisfies the condition

0 ≤ α1 ≤ α2 ≤ · · · ≤ αr

by the divisibility chain property of the Smith form, and is called the partial multiplicity sequence of P at
λ0, denoted J (P, λ0). For λ0 =∞, the partial multiplicity sequence J (P,∞) is defined to be identical with
J (revP, 0). Since rank(revP ) = rank(P ), we see that the sequence J (P,∞) is also of length r.

Definition 2.6. (Eigenvalue)
An eigenvalue of P is an element λ0 ∈ F∞ such that J (P, λ0) does not consist of all zeroes. If an eigenvalue
λ0 has J (P, λ0) = (α1, α2, . . . , αr), then the algebraic multiplicity of λ0 is just the sum α1 + α2 + · · ·+ αr,
and the geometric multiplicity of λ0 is the number of positive αj’s in J (P, λ0).

It is worth noting that the sequence J (P, λ0) is nontrivial only for a finite subset of λ0’s in F∞. From the
Smith form the following properties of partial multiplicity sequences are easily deduced, and will be used
freely throughout the rest of the paper:

J (P , λ0) = J (PT , λ0)

and J (cP , λ0) = J (P , λ0) , for all λ0 ∈ F∞ and any c 6= 0. (2.4)

Now given a regular matrix polynomial P , we are interested in solving the associated polynomial eigen-
value problem P (λ)x = 0, that is, to find eigenpairs (λ, x) with x 6= 0 such that P (λ)x = 0 holds. The
classical approach to this is to first reduce the given polynomial eigenproblem to an equivalent eigenproblem
for a matrix pencil, i.e., to find a linearization for the polynomial P , as in the following definition.
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Definition 2.7. (Linearization [11])
Let P (λ) be an m × n nonzero matrix polynomial of grade k ≥ 1. A matrix pencil L(λ) = λX + Y is a
linearization of P (λ) if there exist unimodular matrix polynomials E(λ), F (λ) and s ∈ N such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 Is×s

]
. (2.5)

A linearization L(λ) is called a strong linearization if revL(λ) is also a linearization of revP (λ).

From Definition 2.7 it follows immediately that any linearization of a regular matrix polynomial P is
also a companion pencil for P . But the converse is not true. For example, consider the scalar polynomial
p(x) = (λ− 1)2 and the 2× 2 pencils

L1(λ) :=

[
λ− 1 0

0 λ− 1

]
and L2(λ) :=

[
λ− 1 1

0 λ− 1

]
.

Clearly both L1 and L2 are companion pencils for p(λ), but it can be shown that only L2 is a linearization for
p(λ). This example illustrates the fact that linearizations constitute a restricted class of companion pencils.
Just as for companion pencils, a linearization for a regular polynomial P always possesses the same finite
eigenvalues with the same algebraic multiplicities as P . But a linearization also has the same geometric
and partial multiplicities as P , which a companion pencil may not. In addition, a strong linearization for
P has the same infinite eigenvalues with the same algebraic, geometric, and partial multiplicities as P .
Furthermore, the concepts of linearization and strong linearization extend to singular matrix polynomials,
whereas that of a companion pencil does not. It is worth emphasizing that most of the results of this paper
hold for both regular and singular matrix polynomials.

2.2. Scalar Bernstein polynomials

For references on scalar Bernstein polynomials, see for example [3, 16, 35]. Here we only establish the
notation we will be using, and state some relevant properties of Bernstein polynomials.

Definition 2.8. For two distinct elements a, b of an arbitrary field F, we define the Bernstein polynomials
of grade n ≥ 1 to be of the form

βi,n(λ; a, b) :=
1

(b− a)n

(
n

i

)
(λ− a)i(b− λ)n−i , for i = 0, 1, . . . , n. (2.6)

The most interesting and familiar case of Bernstein polynomials is for F = R, which is the case originally
considered by Bernstein himself [4]. Note that there are n + 1 Bernstein polynomials of degree n. We will
often use the shorter notation βi,n(λ) instead of βi,n(λ; a, b), unless the truth of a statement depends on a
particular choice of a and b.

It is often convenient to consider the scaled Bernstein polynomials of degree n, denoted φi,n(λ; a, b), and
defined as

φi,n(λ; a, b) := (λ− a)i(b− λ)n−i . (2.7)

Again, we will often use the abbreviated notation φi,n(λ) instead of φi,n(λ; a, b). In particular, scaled
Bernstein polynomials of grade one will be used extensively in this paper, and so are highlighted here for
ease of reference:

φ0,1(λ; a, b) := b− λ and φ1,1(λ; a, b) := λ− a . (2.8)

Bernstein and scaled Bernstein polynomials have some nontrivial differences. For example, Bernstein
polynomials form a partition of unity over F, which is an important fact in applications where F = R. On
the other hand, when F is a field of finite characteristic, then Bernstein polynomials of grade n may no
longer form a basis for Pn, since some of the binomial coefficients

(
n
i

)
in (2.6) may be zero. By contrast,

scaled Bernstein polynomials of grade n always form a basis for Pn, over any field F. Thus we establish the
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following convention for the rest of the paper — any result stated for a Bernstein basis is to be understood
to be for an arbitrary field of characteristic zero, while results for a scaled Bernstein basis hold for every
field.

The following proposition gathers together some well known and easily proven facts about (scaled)
Bernstein polynomials that are important for this paper.

Proposition 2.9. (Properties of Bernstein polynomials [3, 16])

(a) For any field F and any choice of distinct a, b ∈ F, the scaled Bernstein polynomials φi,n(λ; a, b) of grade
n form a basis for the vector space Pn. When F has characteristic zero, then the Bernstein polynomials
βi,n(λ; a, b) also form a basis for Pn.

(b) The polynomials βi,n(λ; a, b) and βn−i,n(λ; a, b) are mirror images of each other about the midpoint
λ = b+a

2 , i.e., βn−i,n(b+ a−λ; a, b) ≡ βi,n(λ; a, b). The polynomials φi,n(λ; a, b) and φn−i,n(λ; a, b) also
have this mirror image property.

3. Matrix Polynomials and Linearizations in Bernstein Bases

An m× n matrix polynomial P (λ) of grade k expressed in a Bernstein basis is of the form

P (λ) =

k∑
i=0

Aiβi,k(λ) (3.1)

where Ai ∈ Fm×n for i = 0, 1, . . . , k. Equivalently, any matrix polynomial expressed as in (3.1) can be easily
rewritten in terms of scaled Bernstein polynomials; i.e.,

P (λ) =

k∑
i=0

Aiβi,k(λ) =

k∑
i=0

Âiφi,k(λ) , where Âi :=
1

(b− a)k

(
k

i

)
Ai . (3.2)

We will often use the phrase “matrix polynomial expressed in a Bernstein basis” to refer to either of the
two equivalent expressions for P (λ) in (3.2). It should be clear from context which of the two forms is being
referred to; indeed, often statements are valid for both forms of expression.

When a matrix polynomial is expressed in a Bernstein basis, it is important to keep in mind the distinction
between its grade and its degree. Note that the degree of a matrix polynomial is determined by finding the
first leading nonzero matrix coefficient when the polynomial is expressed in the standard basis. However, for
a matrix polynomial in a Bernstein basis, none of the individual matrix coefficients determines the degree
of the matrix polynomial.

Example 3.1. Consider the 2× 1 matrix polynomial G(λ) of grade 5 in a Bernstein basis with a = 0 and
b = 1, given by

G(λ) =

[
1
−14

]
β0,5(λ) +

[
1
−7

]
β1,5(λ) +

[
1
−2

]
β2,5(λ) +

[
1
1

]
β3,5(λ) +

[
1
2

]
β4,5(λ) +

[
1
1

]
β5,5(λ) .

Observe that all matrix coefficients of G(λ) in this Bernstein basis are nonzero, but when rewritten in the
standard basis we have

G(λ) =

[
0
0

]
λ5 +

[
0
0

]
λ4 +

[
0
0

]
λ3 +

[
0
−20

]
λ2 +

[
0
35

]
λ +

[
1
−14

]
,

so that deg(G) = 2 even though grade(G) = 5. This example clearly illustrates that the degree of a matrix
polynomial expressed in a Bernstein basis is not at all obvious from simply looking at the coefficient matrices.
Hence the use of the grade is fundamental when working in any Bernstein basis.
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3.1. Linearizations in Bernstein bases

The classical approach to solving a polynomial eigenvalue problem P (λ)x = 0 is to first find a (strong)
linearization for P (λ), and then do computations with the linearization. It is well known that if L is a strong
linearization for P , then L and P have the same finite and infinite elementary divisors including partial
multiplicities [12, 20, 21]. In many recently investigated examples of strong linearizations [9, 10, 11, 26],
eigenvectors and minimal bases of P are easily recoverable from L, and there is a simple relation between the
minimal indices of P and L. These concepts have been extensively studied when P is expressed in standard
basis.

By contrast, the situation is not nearly so well understood for polynomials expressed in a Bernstein
basis. The eigenvalue problem for companion pencils associated to scalar polynomials in a Bernstein basis
has been studied in [23, 37]; these results have been partially extended to matrix polynomials in [1]. In
this paper we not only show how to generate large families of companion pencils for scalar polynomials
in a Bernstein basis, but indeed how to characterize all strong linearizations for matrix polynomials in a
Bernstein basis. As a consequence we easily recover the results from [1, 23, 37] as special cases of the more
general construction provided here.

The following very simple procedure for producing strong linearizations for any matrix polynomial ex-
pressed in a Bernstein basis is the heart of this paper:

Linearization Procedure (for polynomials in a Bernstein basis):

1. Given a matrix polynomial P (λ) =
∑k
i=0Aiβi,k(λ) of grade k in a Bernstein basis, first rewrite it in

terms of the corresponding scaled Bernstein basis as in (3.2), i.e., P (λ) =
∑k
i=0 Âiφi,k(λ).

2. Define a new “partner” matrix polynomial P̂ (λ) of grade k in the standard basis, using the same

coefficients Âi as in Step 1, i.e., P̂ (λ) :=
∑k
i=0 Âiλ

i.

3. Find a strong linearization L̂(λ) = λX + Y for P̂ (λ) by any technique whatsoever, see for example
[2, 7, 8, 9, 10, 11, 21, 26, 27, 36].

4. Use exactly the same coefficients X and Y from Step 3 to build the new pencil

L(λ) := φ1,1(λ)X + φ0,1(λ)Y ,

expressed in a scaled Bernstein basis. By Theorem 3.3 the pencil L(λ) will be a strong linearization
for P (λ).

5. (Optional) Multiply the pencil L(λ) from Step 4 by the scalar
(

1
b−a
)

to obtain the pencil

β1,1(λ)X + β0,1(λ)Y

expressed in a Bernstein basis of grade 1, which is also a strong linearization for P (λ).

Remark 3.2. Several features of this procedure deserve special attention:

(a) Not only is the procedure simple and easy to apply, but more importantly, it leverages the large body
of existing knowledge about linearizations for matrix polynomials expressed in the standard basis.

(b) The strong linearizations obtained in Step 4 are expressed in a scaled Bernstein basis for P1, in contrast
to the usual practice of expressing linearizations only in the standard basis. The linearizations from
Step 4 can also be easily re-expressed in a Bernstein basis as in Step 5 of the Procedure. Since either
of these linearizations are equally adequate, in this paper we emphasize the use of strong linearizations
expressed in a scaled Bernstein basis, mainly for simplicity and ease of exposition.
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(c) From the point of view of doing computations on pencils, the linearizations from Step 4 (or Step 5) of
the procedure are just as good as pencils expressed in the standard basis. Indeed, any algorithm that
works by treating a pencil as a pair of matrices can be easily adapted to find the eigenvalues of any
regular pencil of the form L(λ) = φ1,1(λ)X + φ0,1(λ)Y . For example, if the QZ algorithm is used to
simultaneously reduce X and Y to upper triangular forms TX and TY , respectively, then the pencil
T (λ) = φ1,1(λ)TX + φ0,1(λ)TY has the same spectrum as L(λ). The eigenvalues of T (λ) are now readily
computed from the diagonal entries to be

λi =
a(TX)ii − b(TY )ii
(TX)ii − (TY )ii

, i = 1, . . . , ` .

If (TX)ii − (TY )ii = 0 for some i, then of course λi =∞.

To complete this section we state the theorem that justifies the Procedure, and then illustrate the
Procedure with several concrete examples. The proof of Theorem 3.3 (the main result of the paper) is
postponed until Section 3.2, so that all the necessary background can first be established.

Theorem 3.3. (Strong linearizations in Bernstein bases)
Let P (λ) be an arbitrary m× n matrix polynomial of grade k expressed in a Bernstein basis, i.e.,

P (λ) =

k∑
i=0

Aiβi,k(λ) =

k∑
i=0

Âiφi,k(λ) , where Âi :=
1

(b− a)k

(
k

i

)
Ai (3.3)

for i = 0, . . . , k. Then a pencil L(λ) = φ1,1(λ)X + φ0,1(λ)Y is a strong linearization for P (λ) if and only

if the pencil L̂(λ) := λX + Y is a strong linearization for the partner polynomial P̂ (λ) :=
∑k
i=0 Âiλ

i.

It is worth stressing that Theorem 3.3 establishes a bijection between the set of all strong linearizations
of P and the set of all strong linearizations of P̂ . This bijection is the basis for the Linearization Procedure,
which we now illustrate with several examples.

Example 3.4. Let P (λ) =
∑k
i=0 Âiφi,k(λ) be an m × n matrix polynomial of grade k, and consider the

partner matrix polynomial P̂ (λ) :=
∑k
i=0 Âiλ

i of the same grade. If

X1 = diag(Âk, I(k−1)n), X2 = diag(Âk, I(k−1)m),

Y1 =


Âk−1 Âk−2 · · · Â0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0

 , and Y2 =


Âk−1 −Im · · · 0

Âk−2 0
. . .

...
...

...
. . . −Im

Â0 · · · 0 0

 ,
(3.4)

then Ĉ1(λ) := λX1 + Y1 and Ĉ2(λ) := λX2 + Y2 are the first and the second Frobenius companion forms

for P̂ (λ), respectively. Since Ĉ1(λ) and Ĉ2(λ) are always strong linearizations, for regular or singular P̂ (λ)
[11, 20], then by Theorem 3.3 the pencils

φ1,1(λ)Xi + φ0,1(λ)Yi for i = 1, 2 (3.5)

are strong linearizations of P (λ).
Note that when m = n and k = 5, the pencil in (3.5) with i = 2 almost recovers the example appearing

in [1]. More precisely, the linearization L(λ) from [1] is simply related to the pencil in (3.5) by

L(λ) = (R5 ⊗ In) ·D ·
[
φ1,1(λ)X2 + φ0,1(λ)Y2

]
· (R5 ⊗ In) , (3.6)
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where R5 is the 5 × 5 reverse identity and D = diag(1, 15 ,
1
10 ,

1
10 ,

1
5 ) ⊗ In. The fact that L(λ) from [1] is

a strong linearization for P (λ) =
∑5
i=0Aiβi,5(λ) is now an easy consequence of Theorem 3.3; by contrast,

the argument in [1] requires some nontrivial special knowledge of the LU factors of L(λ). Furthermore,
Theorem 3.3 guarantees that L(λ) is a strong linearization for P (λ) over an arbitrary field, whereas in [1]
the underlying field is required to be algebraically closed, due to the use of the local Smith form as an
essential tool in the argument.

Finally we would like to note the importance for conceptual clarity in this example of expressing the
linearization L(λ) in a scaled Bernstein basis rather than in the standard basis (as was done in [1]). Doing this

reveals the connection between L and the second companion form for P̂ more transparently; together with
similar examples this helped lead us to the view that studying strong linearizations for matrix polynomials
in a Bernstein basis is most effective if the linearizations themselves are also expressed in a (scaled) Bernstein
basis.

Example 3.5. Consider a scalar polynomial of grade n on [0, 1], i.e.,

p(λ) =

k∑
i=0

aiβi,k(λ; 0, 1) =

k∑
i=0

âiφi,k(λ; 0, 1) , where âi =

(
n

i

)
ai ∈ R .

Jónsson and Vavasis in [23] and Winkler in [37] both provided the same companion pencil for p(λ) and
studied its properties. Using the notation in this paper the companion pencil in [23, 37] can be expressed as

L(λ) = Rn ·D1 ·
[
φ1,1(λ)X2 + φ0,1(λ)Y2

]
·D2 ·Rn ,

where X2 and Y2 are given by (3.4), Rn is the n× n reverse identity, and

D1 = diag
((

n
n−1
)
,
(
n
n−2
)
, . . . ,

(
n
0

))−1
and D2 = diag

((
n
n

)
,
(
n
n−1
)
, . . . ,

(
n
1

))
.

Note that det(D1 ·D2) = 1.
In contrast to [37], where a significant amount of work was needed to show that detL(λ) = p(λ), here

that fact is almost immediate from Theorem 3.3. On the other hand, the approach in [23] is similar to
the argument provided here, but it is only applied to an isolated case. Most importantly, though, using
the procedure described in this paper one can easily generate many more companion pencils for a scalar
polynomial expressed in a Bernstein basis, and study their numerical properties.

Example 3.6. Let W (λ) =
∑5
i=0Aiβi,5(λ) =

∑5
i=0 Âiφi,5(λ) be an n × n matrix polynomial of grade

five. Then applying the Linearization Procedure to Fiedler-related pencils expressed in the standard basis
from [2, 29], we see that the following Fiedler-related pencil is always a strong linearization of W (λ):

L(λ) = φ1,1(λ)


Â1 In
In 0 0

0 Â3 In
In 0 0

0 Â5

+ φ0,1(λ)


Â0 0
0 0 In

In Â2 0
0 0 In

In Â4

 . (3.7)

In general, for an arbitrary matrix polynomial of odd grade expressed in a Bernstein basis, we can always
find a strong linearization with a block-tridiagonal structure analogous to (3.7). If the grade of a matrix
polynomial V is even, analogous block-tridiagonal linearizations exist provided that the leading coefficient
is invertible [2]. For example, if V (λ) =

∑4
i=0Aiβi,4(λ) =

∑4
i=0 Âiφi,4(λ) and A4 is nonsingular, then a

variation of a pencil in [2] together with Theorem 3.3 gives a strong linearization for V (λ):

φ1,1(λ)


0 I

I Â3

0 I

I Â1

+ φ0,1(λ)


−Â−14

Â2 I
I 0

Â0

 . (3.8)
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On the other hand, even if the leading coefficient of an even grade matrix polynomial is singular, then a
strong linearization with block-pentadigonal structure can still be found [10].

Note that (3.7) and (3.8) are particularly suitable for scalar polynomials in a Bernstein basis, since the
invertibility of the leading coefficient is trivial to check. These low bandwidth linearizations not only are
aesthetically pleasing, but they also are closely connected to the construction of various types of structure-
preserving linearizations [29, 30]. In addition, they may have a significant computational payoff [13].

In the preceding examples we have seen how easy it is to apply Theorem 3.3 and the resulting Lineariza-
tion Procedure to find strong linearizations for matrix polynomials expressed in a Bernstein basis. Now that
we have a better feel for how to generate these strong linearizations, we turn next to the proof of Theorem
3.3. The next section begins by establishing the necessary background.

3.2. Möbius transformations and the proof of Theorem 3.3

Let P (λ) =
∑k
i=0Aiβi,k(λ) =

∑k
i=0 Âiφi,k(λ) be an m × n matrix polynomial of grade k, and consider

the partner matrix polynomial P̂ (λ) :=
∑k
i=0 Âiλ

i of the same grade, built using the same coefficients Âi as
appear in P (λ). The key ingredient in the Linearization Procedure for generating strong linearizations for

P turns out to be the relationship between P and P̂ . The most effective way to capture this relationship is
via a Möbius transformation of matrix polynomials, which we now recall.

Definition 3.7. (Möbius Function and Möbius Transformation [31])

Let V be the vector space of all m×n matrix polynomials of grade k over the field F, and let A =

[
a b
c d

]
∈

GL(2,F). Then

(a) the Möbius function on F∞ := F ∪ {∞} induced by A is the map mA : F∞ → F∞ defined by

mA(λ) :=
aλ+ b

cλ+ d
, (3.9)

(b) the Möbius transformation on V induced by A is the map MA : V → V defined by

MA

( k∑
i=0

Biλ
i
)

(µ) :=

k∑
i=0

Bi(aµ+ b)i(cµ+ d)k−i. (3.10)

Remark 3.8. Using a standard convention for working with the Möbius function mA, we set 1
0 = ∞ and

mA(∞) = a
c . Also notice that the relation between the Möbius function and the Möbius transformation

induced by A is given by
MA(P )(µ) = (cµ+ d)kP

(
mA(µ)

)
. (3.11)

It is worth emphasizing that a Möbius transformation acts on graded polynomials, returning polynomials
of the same grade (although the degree may increase, decrease, or stay the same, depending on the input
polynomial).

Example 3.9. As an example of a Möbius transformation consider the matrix R = [ 0 1
1 0 ], and let P be

any matrix polynomial of grade k expressed in the standard basis. Using (3.11) it is easy to see that
MR(P ) = revP , i.e., reversal is the Möbius transformation MR acting on the vector space of all matrix
polynomials of grade k.

The following proposition summarizes some of the fundamental properties of Möbius transformations;
proofs can be found in [31].

Proposition 3.10. Let V be the vector space of all m × n polynomials over F of grade k, and let A ∈
GL(2,F). Then
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(a) MA is an F-linear operator on V , i.e.,

MA(P +Q) = MA(P ) + MA(Q) , and MA(cP ) = cMA(P ) ,

for any c ∈ F and for all P,Q,∈ V .

(b) (MA)−1 = MA−1 , so MA is a bijection on V , indeed a linear isomorphism from V back into itself.

(c) Let P be any n × n matrix polynomial of grade k, and define the grade of the 1 × 1 polynomial det(P )
to be grade

(
det(P )

)
:= kn. Then det

(
MA(P )

)
= MA

(
det(P )

)
.

(d) For any P ∈ V , we have rank MA(P ) = rank(P ).

(e) Let P and Q be matrix polynomials of grades k and `, respectively, such that P · Q is defined. If the
grades of P ·Q and P ⊗Q are chosen to be k + `, then

MA(P ·Q) = MA(P ) ·MA(Q) , (3.12)

MA(P ⊗Q) = MA(P )⊗MA(Q) . (3.13)

The essential result needed to prove Theorem 3.3 is the following:

Theorem 3.11. ([31], Corollary 8.6)
Let P be any m × n matrix polynomial of grade k over an arbitrary field F, and let MA be the Möbius
transformation associated with A ∈ GL(2,F). Then L is a strong linearization for P if and only if MA(L)
is a strong linearization for MA(P ).

This now gives all the tools needed to prove Theorem 3.3.

Proof of Theorem 3.3: Let P (λ) be an m × n matrix polynomial of grade k expressed as in (3.3),

and consider the partner matrix polynomial P̂ (λ) =
∑k
i=0 Âiλ

i. Let B =
[

1 −a
−1 b

]
, and note that B is

nonsingular since a 6= b. Then using Definition 3.7(b) we have

MB(P̂ )(λ) =

k∑
i=0

Âi(λ− a)i(b− λ)k−i =

k∑
i=0

Âiφi,k(λ) = P (λ) . (3.14)

Now let L̂(λ) = λX + Y be any pencil expressed in the standard basis. By Theorem 3.11, L̂(λ) is a strong

linearization for P̂ (λ) if and only if

L(λ) := MB(L̂)(λ) = φ1,1(λ)X + φ0,1(λ)Y

is a strong linearization for P (λ) = MB(P̂ )(λ). This completes the proof of Theorem 3.3.

The proof of Theorem 3.3 makes it clear that the essential fact underlying the Linearization Procedure is
the relation of the monomial basis to any scaled Bernstein basis via a Möbius transformation. This relation,
under some mild assumptions, has already been exploited when studying scalar polynomials in Bernstein
bases, see [23, 37] and the references therein. One of the main contributions of this paper is the extension
of the use of Möbius transformations to the construction of strong linearizations for a matrix polynomial
P (λ) expressed in a Bernstein basis, with no assumptions on either the Möbius transformation being used,
the spectrum of P (λ), or whether P (λ) is a regular or a singular matrix polynomial.

One consequence of using Möbius transformations to study matrix polynomials in a Bernstein basis is
the need to first rewrite these polynomials in the corresponding scaled Bernstein basis. For achieving the
primary goal of this paper, i.e., providing a theoretical analysis of these matrix polynomials that leads
to a systematic procedure for constructing strong linearizations, there is no loss of generality in doing
this rewriting. Indeed, this approach leads to great conceptual clarity and simplicity in the statement of
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the central result, Theorem 3.3. However, it is known that the accuracy of numerical computations can
sometimes be significantly altered when working with a polynomial expressed in a scaled Bernstein basis,
versus the same polynomial expressed in an (unscaled) Bernstein basis [37]. Thus it may be preferable to
work with a strong linearization that is expressed directly in terms of the Bernstein matrix coefficients Ai
rather than the scaled Bernstein matrix coefficients Âi for a polynomial P (λ) as in (3.3). In principle this is
not a problem, since the Linearization Procedure provides a pathway to every possible strong linearization
for P , no matter how that linearization is expressed. In practice, though, it would be useful to be able to
systematically convert the linearizations produced most easily by the Linearization Procedure, i.e., those
built from the scaled Bernstein coefficients Âi, into ones expressed more directly in terms of the Bernstein
coefficients Ai. It is not obvious how to do this in general, but for the special class of strong linearizations
arising from Fiedler pencils [10], it is always possible to do this conversion in a straightforward way via a
diagonal scaling transformation. The following example illustrates such a conversion.

Example 3.12. Let P (λ) be an arbitrary n × n matrix polynomial of grade six expressed in a Bernstein
basis, so that

P (λ) =

6∑
i=0

Aiβi,6(λ; a, b) =

6∑
i=0

Âiφi,6(λ; a, b) , Âi := wiAi , (3.15)

where wi :=
(
6
i

)
(b−a)−6. Also, let P̂ (λ) :=

∑6
i=0 Âiλ

i be the partner polynomial expressed in the monomial
basis and of grade 6, as in Step 2 of the Linearization Procedure.

Now in Step 3 of the Linearization Procedure, choose the Fiedler pencil Fσ(P̂ ) = λMk −Mσ = λMk −
M0M1M3M5M2M4 as a strong linearization for P̂ [10, Thm. 4.6]; here the Mi’s are the Fiedler factors of

P̂ as in [10, Sec. 3]. Then the matrix pencil

K(λ) := (λ− a)Mk − (b− λ)M0M1M3M5M2M4 (3.16)

is a strong linearization for P (λ) by the Linearization Procedure. Note that each Fiedler factor Mi, and

consequently the pencil K(λ), is built using the Âi coefficients, and not the Ai coefficients.
Now let D1 and D2 be the two constant, invertible matrices defined by

D1 := diag

(
w3

w2w4
,
w3w5

w4w2
,

1

w2
,
w3

w2
,

1

w1
,

1

w0

)
⊗ In

and D2 := diag

(
w2w4

w3w5
,
w2

w3
,
w2w4

w3
, 1, w2 , w1

)
⊗ In .

Then it can be easily checked that the pencil L(λ) := D1 ·K(λ) ·D2 is given by

L(λ) = (λ− a)



w6

w5
A6

w5

w4
In

w4

w3
In

w3

w2
In

w2

w1
In

w1

w0
In



− (b− λ)


−A5 −A4 In 0 0 0
In 0 0 0 0 0
0 −A3 0 −A2 In 0
0 In 0 0 0 0
0 0 0 −A1 0 In
0 0 0 −A0 0 0

 .
(3.17)

The fact that L(λ) is strictly equivalent to K(λ) implies that L(λ) is also a strong linearization for P (λ)
[12]. But more significantly for the point of this example, we see that L(λ) is a strong linearization for P (λ)
that is expressed directly in terms of the Bernstein coefficients Ai from (3.15).
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Note that discovering the pencil L(λ), as well as proving that it is indeed a strong linearization for
P (λ), would be rather challenging without first observing its connection with the strong linearization K(λ)
produced easily by the Linearization Procedure.

Remark 3.13. Although the construction of L(λ) might seem to be somewhat ad hoc, it is in fact a special

case of a more general result. Suppose that Fσ(P̂ ) = λMk −Mσ is any Fiedler pencil for P̂ (λ), so that
S(λ) = (λ− a)Mk − (b− λ)Mσ is a strong linearization for P (λ) expressed in terms of the scaled Bernstein

coefficients Âi. Then with M̃i denoting a Fiedler factor with Âi replaced by Ai for i = 0, . . . , k, and the
diagonal matrix

Drat := diag( wk

wk−1
, wk−1

wk−2
, . . . , w2

w1
, w1

w0
)⊗ In

comprised of scaling factor ratios, it can be shown that the pencil

T (λ) = (λ− a)M̃kDrat − (b− λ)M̃σ (3.18)

is always strictly equivalent (via a diagonal scaling) to S(λ). Thus T (λ) is a strong linearization for P (λ)
constructed directly from the Bernstein coefficients Ai from (3.15). The general proof of the diagonal
equivalence of S(λ) and T (λ) is beyond the intended scope of this paper, but will appear in future work.

It is worth noting that the companion pencil discussed earlier in Example 3.5 is, modulo some row and
column permutations, just one particular case (for a very special σ) of the result described in this remark;
note also that this pencil was presented in [23, 37] only for the case of scalar polynomials p(λ).

To close this section, we briefly reconsider the proof of Theorem 3.3 to see how it may extend to other
bases. Observe that scaled Bernstein bases are not the only polynomial bases that can be related to the
standard basis via some Möbius transformation. In particular, if G = [ t uv w ] is any nonsingular matrix,
then the Möbius transformation MG applied to the space Pk of 1 × 1 polynomials of grade k implies by
Proposition 3.10(b) that the image of the monomial basis, i.e.,

G :=
{
γi(λ) := (tλ+ u)i(vλ+ w)k−i

}k
i=0

, (3.19)

is also a basis for Pk. Thus we have the following mild generalization of Theorem 3.3.

Corollary 3.14. Let G =
{
γi(λ) := (tλ+ u)i(vλ+ w)k−i

}k
i=0

with tw−vu 6= 0 be a polynomial basis for Pk,

and consider an m× n matrix polynomial P of grade k expressed in the G-basis, i.e, P (λ) =
∑k
i=0Aiγi(λ)

where Ai ∈ Fm×n for all i. Then a pencil L(λ) = (tλ+ u)X + (vλ+w)Y is a strong linearization for P (λ)

if and only if the pencil λX + Y is a strong linearization for the partner polynomial P̂ (λ) :=
∑k
i=0Aiλ

i.

Proof. Observe that we have MG(P̂ )(λ) =
∑k
i=0Ai(tλ+u)i(vλ+w)k−i = P (λ) and MG

(
λX+Y

)
= L(λ),

so the desired result follows from Theorem 3.11.

Remark 3.15. It is important to note that the Linearization Procedure described in Section 3.1 does
not work if a “weak” linearization (i.e., a linearization that is not strong) is used in Step 3. The essential
difficulty is the use of Theorem 3.11, which is only valid for strong linearizations, in the proof of Theorem 3.3.
Indeed, as a consequence of Theorem 8.7 in [31] and the fact that B is not upper triangular, it follows that

if L̂(λ) in Step 3 is a weak linearization, then L(λ) in Step 4 will never be even a linearization for P (λ), let
alone a strong linearization. Thus the necessity of using strong linearizations is the one “weak link” in the
Linearization Procedure.

4. Spaces of Strong Linearizations in Bernstein Bases

We have seen in Proposition 3.10 that for any fixed B ∈ GL(2,F), in particular for B =
[

1 −a
−1 b

]
, the

Möbius transformation MB defines a linear isomorphism from the space V of all m× n matrix polynomials
over a field F of fixed grade k back into itself. Thus the symbol MB actually denotes a whole family of
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isomorphisms, one for each choice of size, grade, and field. In the specific case of pencils, i.e., for k = 1, the
transformation MB is simply described by the formula

λX + Y
MB7−→ φ1,1(λ)X + φ0,1(λ)Y = (λ− a)X + (b− λ)Y , (4.1)

which defines a bijection between the space of all pencils and itself. For any partner polynomials

P̂ (λ) =

k∑
i=0

Âiλ
i and P (λ) =

k∑
i=0

Âiφi,k(λ) (4.2)

of grade k, Theorem 3.11 shows that the bijection (4.1) of pencil space restricts to a bijection between the

set of all strong linearizations of P̂ and the set of all strong linearizations of P .
Also associated to a square polynomial P̂ of grade k in the monomial basis are several well-studied

vector spaces of pencils; these spaces have proven to be fertile sources of strong linearizations [9, 26], and
are defined by

L1(P̂ ) :=
{
L̂(λ) : L̂(λ)(Λ⊗ I) = v ⊗ P̂ (λ) for some v ∈ Fk

}
,

L2(P̂ ) :=
{
L̂(λ) : (ΛT ⊗ I)L̂(λ) = wT ⊗ P̂ (λ), for some w ∈ Fk

}
, (4.3)

and DL(P̂ ) := L1(P̂ ) ∩ L2(P̂ ) ,

where Λ :=
[
λk−1 . . . λ 1

]T
is of grade k − 1. In this section we introduce some analogous pencil

spaces that are naturally associated to the partner polynomial P as in (4.2), and investigate the relationships
among these spaces using a different restriction of the Möbius transformation MB .

Letting Φ denote the k × 1 column matrix polynomial of grade k − 1 given by

Φ :=


φk−1,k−1(λ)

...
φ1,k−1(λ)
φ0,k−1(λ)

 ,
we define the following spaces of pencils associated with a matrix polynomial P (λ) of grade k expressed in
a scaled Bernstein basis as in (4.2):

B1(P ) :=
{
L(λ) : L(λ)(Φ⊗ I) = v ⊗ P (λ) for some v ∈ Fk

}
,

B2(P ) :=
{
L(λ) : (ΦT ⊗ I)L(λ) = wT ⊗ P (λ) for some w ∈ Fk

}
, (4.4)

and DB(P ) := B1(P ) ∩ B2(P ).

Note that the only change from (4.3) to (4.4) is that Λ has been replaced by Φ.
From basic properties of Kronecker product it is easy to see that B1(P ), B2(P ), and DB(P ) are all F-

vector spaces. Observe that while the definitions in (4.3) are well-adapted to having both L̂ and P̂ expressed
in monomial basis, the definitions in (4.4) are more readily understood if L and P are both expressed in
scaled Bernstein bases. The simple relationship between the spaces in (4.3) and those in (4.4) is revealed
by the following theorem.

Theorem 4.1. Let P (λ) =
∑k
i=0Aiβi,k(λ; a, b) =

∑k
i=0 Âiφi,k(λ; a, b) be an n × n matrix polynomial in a

Bernstein basis of grade k, and consider the partner polynomial P̂ (λ) :=
∑k
i=0 Âiλ

i. If B =
[

1 −a
−1 b

]
, then

(a) the restriction of the Möbius transformation MB to L1(P̂ ), i.e.,

MB : L1(P̂ ) −→ B1(P )

L̂(λ) = λX + Y 7−→ φ1,1(λ)X + φ0,1(λ)Y = L(λ)
(4.5)

is a vector space isomorphism.
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(b) the restriction of the Möbius transformation MB to L2(P̂ ) is a vector space isomorphism between

L2(P̂ ) and B2(P ).

(c) the restriction of the Möbius transformation MB to DL(P̂ ) is a vector space isomorphism between

DL(P̂ ) and DB(P ).

Proof. (a) That MB is linear and injective when restricted to L1(P̂ ) follows immediately from Proposition
3.10(a) and (b). What remains is to see why this restriction is well-defined as a map into B1(P ), and why
this map is an isomorphism.

Let L̂(λ) = λX + Y be a pencil in L1(P̂ ), and define L(λ) := MB(L̂(λ)) = φ1,1X + φ0,1(λ)Y . Then by

(4.3) there exists a right ansatz vector v ∈ Fk such that L̂(λ) (Λ⊗ I) = v ⊗ P̂ (λ). Applying MB to each
side of this equality and using properties of Möbius transformations from Proposition 3.10(e) gives

MB

(
L̂(λ)(Λ⊗ In)

)
= MB

(
L̂(λ)

)
MB

(
Λ⊗ In

)
= L(λ)

(
MB(Λ)⊗ In

)
= L(λ) (Φ⊗ I) (4.6)

on the left hand side and

MB

(
v ⊗ P̂ (λ)

)
= v ⊗MB

(
P̂ (λ)

)
= v ⊗ P (λ) . (4.7)

on the right. Note that in (4.6) we have used the easily checked fact that

MB(Λ) = Φ . (4.8)

The equality of L̂(λ)(Λ⊗In) and v⊗P̂ (λ) now implies that L(λ)(Φ⊗In) = v⊗P (λ), so L(λ) = MB(L̂)(λ) ∈
B1(P ); i.e., the restricted transformation MB is well defined as a map from L1(P̂ ) into B1(P ).

Next observe that if we apply (MB)−1 = MB−1 to the ends of (4.6) and (4.7) we obtain

MB−1

(
L(λ)(Φ⊗ I)

)
= L̂(λ) (Λ⊗ I) (4.9)

and
MB−1

(
v ⊗ P (λ)

)
= v ⊗ P̂ (λ) . (4.10)

Thus if L(λ) ∈ B1(P ), then L(λ)(Φ ⊗ I) = v ⊗ P (λ), which implies that L̂(λ) = MB−1(L) satisfies the

relation L̂(λ) (Λ⊗ I) = v⊗ P̂ (λ), that is, L̂(λ) ∈ L1(P̂ ). Consequently, we see that the restriction of MB−1

to B1(P ) gives a well-defined linear map from B1(P ) back to L1(P̂ ); this provides an inverse for the map in
(4.5), showing that it is indeed an isomorphism.

(b) The argument for this part is completely analogous to that given for part (a), and so is omitted.

(c) This follows immediately from parts (a) and (b).

Theorem 4.1 has some very useful consequences. It allows us to effectively work with matrix polynomials
expressed in a Bernstein basis via pencils from the B1, B2, and DB vector spaces, with essentially the same
ease as using pencils from the L1, L2, and DL vector spaces to handle matrix polynomials in the monomial
basis. In particular, it enables the immediate transfer of results already proved for the L1, L2, and DL
spaces over to the setting of the B1, B2, and DB spaces. For example, it is known [9, 26] that almost every1

pencil L̂(λ) = λX+Y ∈ L1(P̂ ) is a strong linearization for P̂ (λ). As a consequence of Theorems 3.3 and 4.1
we can now conclude that almost every pencil L(λ) = φ1,1(λ)X+φ0,1(λ)Y ∈ B1(P ) is a strong linearization
for P (λ).

The following example illustrates the fact that the B1, B2, and DB vector spaces are, in general, nice
sources of linearizations for matrix polynomials in a Bernstein basis.

1Here by “almost every” we mean for all but a closed, nowhere dense set of measure zero in L1(P̂ ).
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Example 4.2. Let P (λ) =
∑3
i=0Aiβi,3(λ) =

∑3
i=0 Âiφi,3(λ) be an n × n matrix polynomial of grade 3

expressed in a Bernstein basis, and consider the partner matrix polynomial P̂ (λ) :=
∑3
i=0 Âiλ

i. It is easy

to check [26] that the pencil L̂(λ) = λX + Y , where

X =

 0 Â3 0

Â3 Â2 0

0 0 −Â0

 and Y =

−Â3 0 0

0 Â1 Â0

0 Â0 0

 , (4.11)

is in DL(P̂ ) with the ansatz vector e2 = [0, 1, 0]T .

It was shown in [26] that a necessary and sufficient condition for L̂(λ) to be a strong linearization

for a regular P̂ is for Â3 and Â0 to both be nonsingular. Now by Proposition 3.10(d) we know that

P (λ) = MB(P̂ (λ)) is regular if and only if P̂ is regular. Thus we see from Theorem 4.1 that L(λ) =
φ1,1(λ)X + φ0,1(λ)Y is in DB(P ), and from Theorem 3.3 that L(λ) is a strong linearization for a regular

P (λ) if and only if Â3 and Â0, or equivalently A3 and A0, are both nonsingular.

In contrast to the situation described in Example 4.2 for regular polynomials, when P (λ) is singular the

space DB(P ) is not a good source of strong linearizations. It was shown in [9] that no pencil in DL(P̂ )

can ever be a strong linearization when P̂ is singular. But P̂ is singular if and only if P is singular by
Proposition 3.10(d), and Theorem 4.1 implies that a strong linearization in DB(P ) can only arise from some

strong linearization in DL(P̂ ). Thus there can not be any strong linearization in DB(P ) whenever P is
singular.

4.1. Eigenvalues

In this section we exploit the Möbius connection between partner polynomials P and P̂ as in (4.2)
to study the relationship between their eigenvalues. This simple relationship makes it possible to obtain
an analog of the Eigenvalue Exclusion Theorem [26] that is adapted to matrix polynomials expressed in
Bernstein bases; it also aids the study in Section 5 of matrix polynomials that are structured with respect
to a Bernstein basis.

The following theorem describes the fundamental connection between the partial multiplicity sequences
of two matrix polynomials related by a Möbius transformation.

Theorem 4.3. (Partial multiplicity sequences of Möbius transforms, [31])
Let P (λ) be an m× n matrix polynomial over F with grade k. Suppose A is any nonsingular 2× 2 matrix
over F, with associated Möbius transformation MA and Möbius function mA. Then for any µ0 ∈ F∞,

J
(
MA(P ), µ0

)
≡ J

(
P,mA(µ0)

)
.

From this theorem we immediately obtain a basic result about the nodes a and b as potential eigenvalues
of a matrix polynomial expressed in a Bernstein basis.

Corollary 4.4. Let P and P̂ be n× n matrix polynomials of grade k as in Theorem 4.1. Then

J
(
P, a

)
≡ J

(
P̂ , 0

)
and J

(
P, b
)
≡ J

(
P̂ ,∞

)
.

Proof. Recall from (3.14) that with B :=
[

1 −a
−1 b

]
, we have MB(P̂ ) = P . Then from Theorem 4.3 the

following equivalences are immediate:

J
(
P, a

)
≡ J

(
MB(P̂ ), a

)
≡ J

(
P̂ ,mB(a)

)
≡ J

(
P̂ , 0

)
, (4.12)

and

J
(
P, b
)
≡ J

(
MB(P̂ ), b

)
≡ J

(
P̂ ,mB(b)

)
≡ J

(
P̂ ,∞

)
. (4.13)
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Remark 4.5. From Corollary 4.4 it is clear that the numbers a and b play the same role for P as 0 and ∞
play for P̂ . Consequently, we see that b is an eigenvalue for P if and only if rankAk < rankP ; similarly, a
is an eigenvalue of P if and only if rankA0 < rankP .

Next we consider the question of determining when a pencil in DB(P ) is a strong linearization for a
given matrix polynomial P expressed in a Bernstein basis. Because of the isomorphism between DB(P ) and

DL(P̂ ), it is reasonable to expect that known results about DL spaces can be transferred over to analogous
results about DB spaces. In order to do this, we begin by briefly recalling the fundamental theorem about
pencils in DL spaces.

Definition 4.6. (v-polynomial, [26])
Let v = [v1, v2, . . . , vk]T be a vector in Fk. The scalar polynomial

p(x; v) = v1x
k−1 + v2x

k−2 + · · ·+ vk−1x+ vk ,

is referred to as the “v-polynomial” of the vector v. We adopt the convention that p(x; v) has grade k − 1,
and hence that p(x; v) has a root at ∞ whenever v1 = 0.

Theorem 4.7. (Eigenvalue Exclusion Theorem [26])
Suppose that Q(λ) is a regular matrix polynomial expressed in the standard basis, and L(λ) ∈ DL(Q) with
nonzero ansatz vector v. Then L(λ) is a (strong) linearization for Q(λ) if and only if no root of the v-
polynomial p(x; v) is an eigenvalue of Q(λ). (Note that this statement includes ∞ as one of the possible
roots of p(x; v) or possible eigenvalues of Q(λ).)

As a consequence of Theorem 3.3, an analog of Theorem 4.7 for matrix polynomials expressed in a
Bernstein basis can now be obtained.

Theorem 4.8. (Eigenvalue Exclusion Theorem for Polynomials in Bernstein Bases)

Suppose P (λ) =
∑k
i=0Aiβi,k(λ) =

∑k
i=0 Âiφi,k(λ) is a regular matrix polynomial of grade k expressed in a

Bernstein basis. For a given nonzero vector v ∈ Fk, let L(λ) = φ1,1(λ)X + φ0,1(λ)Y be the unique pencil
in DB(P ) with ansatz vector v. Then L(λ) is a (strong) linearization for P (λ) if and only if no root of
MB

(
p(x; v)

)
is an eigenvalue of P (λ).

Proof. Consider the partner matrix polynomial P̂ (λ) =
∑k
i=0 Âiλ

i, so that MB(P̂ ) = P (λ). Letting L̂(λ) =

λX+Y be the unique pencil in DL(P̂ ) with ansatz vector v, we also have MB(L̂) = L(λ). Then Theorem 3.3

implies that L(λ) is a strong linearization for P (λ) if and only if L̂(λ) is a strong linearization for P̂ (λ). By
the Eigenvalue Exclusion Theorem, that is equivalent to saying that no root of p(x; v) is an eigenvalue of

P̂ (λ). But this in turn is equivalent by Theorem 4.3 to saying that no root of MB

(
p(x; v)

)
is an eigenvalue

of MB(P̂ ) = P (λ), which completes the proof.

4.2. Eigenvector recovery

There are a number of ways to obtain eigenvectors of a regular matrix polynomial P expressed in a
Bernstein basis; in this section we describe two such methods. The first is based on the following result on
eigenpairs of Möbius -related matrix polynomials.

Proposition 4.9. ([31, Corollary of Theorem 6.11])

Let P (λ) =
∑k
i=0 Âiφi,k(λ) be a regular matrix polynomial of grade k, and consider the partner polynomial

P̂ (λ) :=
∑k
i=0 Âiλ

i. If (x, λ0) is an eigenpair for P̂ , then (x,mB−1(λ0)) is an eigenpair of P = MB(P̂ ).

This proposition enables us to leverage our knowledge of eigenvector recovery for matrix polynomials P̂ (λ)
in standard basis and apply it to matrix polynomials P (λ) expressed in a Bernstein basis. Choose any

strong linearization L̂(λ) = λX + Y for P̂ (λ) for which there is a known (preferably simple) way to recover

eigenvectors of P̂ from eigenvectors of L̂; e.g., one could employ any Fiedler pencil [10], or any strong
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linearization from L1(P̂ ), L2(P̂ ), or DL(P̂ ) [26]. Then by Proposition 4.9 any eigenpair (x, λ0) for P̂ that

is recovered from L̂ will induce a corresponding eigenpair (x,mB−1(λ0)) for P .

A second method is based on Theorem 3.1 in [22], which concerns any linearization L(λ) of a polynomial
P (λ) that satisfies an identity of the form

L(λ)F (λ) = G(λ)P (λ)

for some matrix functions F (λ) and G(λ) of full rank. Observe that for P (λ) in a Bernstein basis, any strong
linearization L(λ) = φ1,1X + φ0,1Y in the space B1(P ) satisfies just such an identity, namely

L(λ)(Φ⊗ In) = (v ⊗ In)P (λ) ,

a small variation of the defining equation (4.4). Applying Theorem 3.1 from [22] to this scenario then gives
the following eigenvector recovery result.

Proposition 4.10. Let P (λ) =
∑k
i=0 Âiφi,k(λ) be a regular n × n matrix polynomial in a Bernstein basis

over C, and let L(λ) = φ1,1X + φ0,1Y ∈ B1(P ) be a strong linearization with nonzero ansatz vector g ∈ Ck.
Then the following holds:

(a) x is a right eigenvector of P with eigenvalue λ0 if and only if Φ(λ0) ⊗ x is a right eigenvector of L

with eigenvalue λ0, where Φ(λ) =
[
φk−1,k−1(λ) · · · φ1,k−1(λ) φ0,k−1(λ)

]T
.

(b) If y ∈ Ckn is a left eigenvector of L with eigenvalue µ, then w = (g ⊗ In)∗y is a left eigenvector of P
with eigenvalue µ, provided that w is nonzero.

5. Structured Matrix Polynomials in Bernstein Bases

The matrix polynomials considered so far have been quite general in the sense that the only relevant
distinguishing features have been regularity/singularity and size (square or rectangular). However, matrix
polynomials that arise from applications often have additional structure, at least when expressed in the
monomial basis. In this section we extend classical definitions of structure to matrix polynomials expressed
in a Bernstein basis, and study the impact of those structures on eigenvalue pairings and the existence of
structured linearizations.

Definition 5.1. (?−Adjoint)

Let Π = {π0, π1, . . . , πk} be an ordered basis for Pk, and let P (λ) =
∑k
i=0Aiπi(λ) be an n × n matrix

polynomial of grade k over F, expressed in the Π-basis. Then

P?(λ) :=

k∑
i=0

A?i π
?
i (λ) (5.1)

defines the ?-adjoint P?(λ). Here ? is used as an abbreviation for transpose T when F is arbitrary, and

either T or conjugate transpose ∗ when F = C. For a scalar polynomial π(λ) =
∑k
j=0 αjλ

j of grade k over
F, we define

π?(λ) :=

{
π(λ) when ? = T ,

π(λ) :=
∑k
j=0 αjλ

j when F = C and ? = ∗ . (5.2)

Remark 5.2. Note that Definition 5.1 also applies to scalars, so that for any t ∈ F∞ we have

t? =

{
t when ? = T
t when F = C and ? = ∗ , (5.3)

where ∞ :=∞. Also when F = C and ? = ∗ we have

P?(λ) = P
T

(λ) where P (λ) :=

k∑
i=0

Aiπi(λ) . (5.4)
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With this definition of P (λ) we have the property P (λ) = P (λ). This property together with (2.4), (5.4),
and Lemma 4.5(c) from [31] then imply that

J (P , λ0) = J (P , λ0) = J (P
T
, λ0) = J (P?, λ?0 ) (5.5)

for any λ0 ∈ C∞ with ? = ∗ . Thus we see that J (P , λ0) = J (P?, λ?0 ) holds for any λ0 in any extended
field F∞, with any choice for ?.

Definition 5.3. Let Π = {π0, π1, . . . , πk} be an ordered basis for Pk, and consider an n×n matrix polynomial

P (λ) =
∑k
i=0Aiπi(λ) of grade k over F. Then P (λ) is said to be

(a) Π-Hermitian if F = C, ? = ∗, A∗i = Ai, and π∗i = πi = πi for i = 0, . . . , k , (the condition on the
πi polynomials just says that Π is a real basis for Pk.)

(b) Π-palindromic if A?i = ε · Ak−i for i = 0, . . . , k and ε = ±1 , (and when F = C and ? = ∗, then
also π∗i = πi = πi for i = 0, . . . , k )

(c) Π-alternating if A?i = ε · (−1)iAi for i = 0, . . . , k and ε = ±1 . (and when F = C and ? = ∗, then
also π∗i = πi = πi for i = 0, . . . , k )

Remark 5.4. Throughout the rest of this paper matrix polynomials with any of the structures described
in Definition 5.3 are collectively referred to as Π-structured. Now consider a polynomial P1 expressed in the
Π1-basis, and a P2 expressed in the Π2-basis. When we say that P1 is Π1-structured and P2 is Π2-structured
of the same type, then this is to be understood to mean that both are Hermitian, or both are palindromic,
or both are alternating, each with respect to their own basis.

In particular, we investigate matrix polynomials that are structured with respect to either a Bernstein
basis B = {β0,k(λ), β1,k(λ), . . . , βk,k(λ)}, a scaled Bernstein basis S = {φ0,k(λ), φ1,k(λ), . . . , φk,k(λ)}, or the
monomial basis M =

{
1, λ, . . . , λk

}
for Pk.

A few things are worth observing. First, a matrix polynomial might be structured when expressed in
one basis but need not be when expressed in another basis. For example, the pencil

L(λ) = (λ− a)

[
1 0
0 1

]
+ (b− λ)

[
0 1
−1 0

]
= λ

[
1 −1
1 1

]
+

[
−a b
−b −a

]
is B-alternating but not M-alternating. On the other hand, it is not hard to see that every B-palindromic
matrix polynomial is also S-palindromic, and vice versa. To see why, consider an n× n matrix polynomial
of grade k

P (λ) =

k∑
i=0

Ciβi,k(λ) =

k∑
i=0

Ĉiφi,k(λ) , where Ĉi =
1

(b− a)k

(
k

i

)
Ci .

(Note that if F = C and ? = ∗, then we will also assume a, b ∈ R so that B and S are real bases, as required
by Definition 5.3.) Then

C?i = ε · Ck−i ⇐⇒
1

(b− a)k

(
k

i

)
C?i = ε · 1

(b− a)k

(
k

i

)
Ck−i = ε · 1

(b− a)k

(
k

k − i

)
Ck−i

⇐⇒ Ĉ?i = ε · Ĉk−i , (5.6)

where the second line uses the fact that
(
k
i

)
=
(
k
k−i
)

for all i = 0, 1, . . . , k. The equivalence (5.6) shows
that P (λ) is B-palindromic if and only if P (λ) is S-palindromic. Similar relations hold for alternating and
Hermitian structures.

Proposition 5.5. A matrix polynomial P is B-structured if and only if it is also S-structured of the same
type.
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In order to more effectively study matrix polynomials that are structured with respect to an ordered
basis Π = {π0, π1, . . . , πk} for Pk, it is useful to introduce two mappings Ψ1,Ψ2 : V → V on the space V of
all n× n matrix polynomials of grade k. These mappings are defined by

Ψ1

(
k∑
i=0

Aiπi(λ)

)
:=

k∑
i=0

Aiπk−i(λ) and Ψ2

(
k∑
i=0

Aiπi(λ)

)
:=

k∑
i=0

Ai(−1)iπi(λ) . (5.7)

Then it is easy to see from Definition 5.3 that a matrix polynomial P is Π-palindromic if and only if
Ψ1(P ) = εP?, and Π−alternating if and only if Ψ2(P ) = εP?. Note that the definition and meaning of Ψ1

and Ψ2 are heavily dependent on the choice of the basis Π.
In the special case of the monomial basis Π = M the mappings Ψ1 and Ψ2 are well known; Ψ1 is the

same as the reversal mapping P 7→ revP , while Ψ2 is the map P (λ) 7→ P (−λ). Even more significant in
our context is the fact that these two mappings are Möbius transformations. In particular, Ψ1(P ) = revP
is MR(P ) and Ψ2(P ) is MS(P ), where R and S are the nonsingular matrices

R =

[
0 1
1 0

]
and S =

[
−1 0

0 1

]
. (5.8)

Thus we see that a polynomial P isM-palindromic if and only if MR(P ) = εP?, andM-alternating if and
only if MS(P ) = εP?.

The key observation for this paper is that for either a Bernstein basis B or a scaled Bernstein basis S,
the maps Ψ1 and Ψ2 can still be realized by Möbius transformations. This is the essential content of the
next result and its corollary.

Theorem 5.6. With distinct a, b ∈ F, let B = {β0,k(λ; a, b), . . . , βk,k(λ; a, b)} be an ordered Bernstein basis
and S = {φ0,k(λ; a, b), . . . , φk,k(λ; a, b)} be an ordered scaled Bernstein basis for Pk. Define

K :=

[
−1 a+ b

0 1

]
and A :=

1

a− b

[
a+ b −2ab

2 −(a+ b)

]
(5.9)

in GL(2,F). Then

MK

(
βi,k(λ)

)
= βk−i,k(λ) and MK

(
φi,k(λ)

)
= φk−i,k(λ) , (5.10)

while
MA

(
βi,k(λ)

)
= (−1)iβi,k(λ) and MA

(
φi,k(λ)

)
= (−1)iφi,k(λ) (5.11)

for all i = 0, 1, . . . , k.

Proof. The claims in (5.10) and (5.11) are easily established by straightforward computations starting from
Definition 3.7. For example, it is immediate from the definition that MK

(
βi,k(λ)

)
= βi,k(a + b − λ). But

then βi,k(a + b − λ) = βk−i,k(λ) by Proposition 2.9(b), which completes the verification of the first claim
in (5.10). The results in (5.11) require nothing more than Definition 3.7 followed by some straightforward
simplifications.

Remark 5.7. The idea that the matrix K in (5.9) will induce a Möbius transformation MK that satisfies
(5.10) is more or less obvious in light of the well known property βi,k(a+ b− λ) = βk−i,k(λ). On the other
hand, it is not so obvious at all that there is any Möbius transformation satisfying (5.11), and if there is
what the underlying matrix A might be. This question can be resolved by drawing an analogy to the case of
the monomial basis M, where the corresponding Möbius transformation is MS with S as in (5.8), and the
associated Möbius function is mS(λ) = −λ. For this function mS the numbers 1 and −1 are interchanged,
while 0 and ∞ are fixed. But recall from (4.8) that the monomial and scaled Bernstein bases are related
via the Möbius transformations induced by the matrix B =

[
1 −a
−1 b

]
and its inverse. Now by Definition 3.7

and Remark 3.8 we have

mB−1(1) =
a+ b

2
, mB−1(−1) =∞, mB−1(0) = a, and mB−1(∞) = b . (5.12)
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Thus by analogy with mS we should search for a Möbius function mA that interchanges a+b
2 and ∞, leaves

a and b fixed, and is an involution. Straightforward computations aimed at satisfying these requirements
now lead to the Möbius function induced by the matrix A in (5.9); note that A is indeed an involution, as
expected.

Based on Theorem 5.6, we now have the following characterizations of palindromic and alternating
structures with respect to the B and S bases.

Corollary 5.8. Let P (λ) be a square matrix polynomial over F of grade k. Then

(a) P is B-palindromic (and S-palindromic) if and only if MK(P )(λ) = εP?(λ),

(b) P is B-alternating (and S-alternating) if and only if MA(P )(λ) = εP?(λ),

where K and A are given by (5.9).

Proof. Both parts follow immediately from (5.7), Theorem 5.6, and the linearity of Möbius transformations
of matrix polynomials.

5.1. Spectral symmetry

It is well known that additional structure in a matrix polynomial often results in certain restrictions on
its spectrum, such as eigenvalue pairings. This phenomenon has been previously investigated for several
types of M-structured matrix polynomials in [27, 29, 30]. In this section we extend this investigation to
B-structured and S-structured matrix polynomials, and discuss the underlying geometry of the resulting
eigenvalue pairings.

Proposition 5.9. Let P (λ) =
∑k
i=0Aiβi,k(λ; a, b) with a, b ∈ R be a square matrix polynomial over C of

grade k that is B-Hermitian (or equivalently S-Hermitian). Then

J (P , λ) ≡ J
(
P , λ

)
. (5.13)

Proof. Since the bases B and S are real, from Definitions 5.1 and 5.3(a) we see that B-Hermitianness (or
S-Hermitianness) of P (λ) is equivalent to the condition P ∗(λ) = P (λ). Thus (5.5) implies that

J (P , λ) ≡ J (P ∗ , λ∗) ≡ J (P , λ) , (5.14)

as desired.

Remark 5.10. Observe that (5.13) is a statement about eigenvalue pairing ; whenever λ0 ∈ C\R is an
eigenvalue of a B-Hermitian P , then so is λ0, with exactly the same algebraic, geometric, and partial
multiplicities. In other words, eigenvalues of B-Hermitian polynomials come in (λ0, λ0) pairs. But this is
the same kind of eigenvalue pairing that is well known for M-Hermitian matrix polynomials. This is not a
coincidence, since the same argument used to prove Proposition 5.9 actually applies to Π-Hermitian matrix
polynomials for any real basis Π. A polynomial P (λ) being Π-Hermitian is equivalent to the condition
P ∗(λ) = P (λ), and the chain of equalities in (5.14) then follows.

A different kind of eigenvalue pairing holds for B-palindromic matrix polynomials.

Proposition 5.11. Let P (λ) be a square matrix polynomial over F of grade k that is B–palindromic (or
S-palindromic). Then

J
(
P , µ

)
≡ J

(
P , a+ b− µ?

)
.

Proof. Corollary 5.8(a) implies that MK(P )(λ) = εP?(λ), where K is given by (5.9). Applying Theorem
4.3 then gives the following chain of equivalences:

J (P, µ) ≡ J
(
P?, µ?

)
≡ J

(
εP?, µ?

)
≡ J

(
MK(P ), µ?

)
≡ J

(
P,mK(µ?)

)
≡ J

(
P, a+ b− µ?

)
,

where the first two equivalences follow from (5.5) and (2.4), respectively.
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Remark 5.12. Proposition 5.11 says that if µ is an eigenvalue of a B-palindromic matrix polynomial
P (λ), then so is a + b − µ?, and this pair of eigenvalues have identical algebraic, geometric, and partial
multiplicities. When F = C and a, b ∈ R, this eigenvalue pairing has a simple geometric interpretation,
illustrated in Figure 1. If ? = T and µ is an eigenvalue of P , then the eigenvalue a + b − µ? = a + b − µ
can be obtained by inverting µ through the midpoint t = (a + b)/2. On the other hand, if ? = ∗ then the
eigenvalue a+ b− µ? = a+ b− µ is simply the reflection of µ through the vertical line Re(z) = t.

0 a t b
R

t = a+b
2

µa+ b− µ

a+ b− µ

Re(z) = t

λ a+ b− λ

a+ b− λ

Figure 1: Eigenvalue pairing for B−palindromic matrix polynomials

Proposition 5.13. Let P (λ) be a square matrix polynomial over F of grade k that is B–alternating (or
S-alternating). Then

J
(
P, µ

)
≡ J

(
P,

(a+ b)µ? − 2ab

2µ? − (a+ b)

)
. (5.15)

Proof. Corollary 5.8(b) implies that MA(P )(λ) = εP?(λ), where A is given by (5.9). Then applying
Theorem 4.3, one easily obtains the following chain of equivalences:

J (P, µ) ≡ J
(
εP?, µ?

)
≡ J

(
MA(P ), µ?

)
≡ J

(
P,mA(µ?)

)
≡ J

(
P,

(a+ b)µ? − 2ab

2µ? − (a+ b)

)
,

as desired.

Remark 5.14. In contrast to the eigenvalue pairing for B−palindromic matrix polynomials, the meaning
of the eigenvalue pairing for B-alternating matrix polynomials described by (5.15) seems rather obscure, at
least at first glance. However, when F = C and a, b ∈ R this eigenvalue pairing also turns out to have a nice
geometric interpretation.

Let Γ be the circle with the interval [a, b] as one of its diameters. If ? = ∗ and µ is an eigenvalue
of a B−alternating matrix polynomial P , then the eigenvalue mA(µ?) = mA(µ) can be obtained by the
classical geometric operation of inverting µ through the circle Γ, as illustrated in Figure 2. On the other
hand, if ? = T then the eigenvalue mA(µ?) = mA(µ) is obtained by first inversion through Γ, followed by
conjugation. This second type of eigenvalue pairing from (5.15) is also illustrated in Figure 2.

In order to see why the eigenvalue pairings (5.15) truly have the claimed geometry, first observe that the
involution A (and its negative −A) from (5.9) is similar to the standard involution R; in particular we have
T−1(U−1RU)T = −A, where

T :=

[
1 −a+b2
0 1

]
, U :=

[
2
b−a 0

0 1

]
, and R :=

[
0 1
1 0

]
. (5.16)
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0−1 1 t
R

t = a+b
2

a b

Γ

λ

mA(λ)

mA(λ)

µ

mA(µ)

mA(µ)

Figure 2: Eigenvalue pairing for B−alternating matrix polynomials

Thus the Möbius function mA can be understood as the composition

mA = m−A = mT−1 ◦mU−1 ◦mR ◦mU ◦mT .

Now mT as a Möbius function on the complex plane simply translates points horizontally so that the center
t of Γ maps to the origin, then mU acts as a scaling transformation centered at the origin that takes the
radius (b−a)/2 of Γ to 1. Thus the combined effect of mUT = mU ◦mT is to map Γ to the unit circle centered
at the origin. The function mR is just the mapping λ 7→ (1/λ), which is well known to have the geometric
effect of inversion through the unit circle followed by conjugation. Finally, the remaining transformations
mT−1U−1 = mT−1 ◦mU−1 simply undo the scaling and translation, returning Γ back to its original position,
with the geometric effect of the inversion and conjugation left intact.

5.2. Structured linearizations in Bernstein bases

The classical approach to solving the polynomial eigenvalue problem is via a (strong ) linearization, i.e.,
by transformation to a matrix pencil with the same finite (and infinite) elementary divisors. For structured
matrix polynomials, as we have seen in the previous section, spectral symmetries are often present, and
when computing eigenvalues of such structured eigenproblems in finite precision, it is desirable to preserve
those spectral symmetries. One way to ensure that computed solutions have these symmetries is to first
find a structured linearization, and then apply a structure-preserving algorithm to that linearization.

In the case of M-structured matrix polynomials, the existence of structured linearizations and the
development of structure-preserving algorithms for computing eigenvalues of structured pencils have been
extensively studied [24, 25, 27, 28, 29, 30]. Ideally, one would like to leverage all of this existing theory for
M-structured matrix polynomials and somehow transfer it over to B-structured ones. Fortunately, this is
straightforward to do, using a strategy analogous to that described in Remark 3.2(c) for general pencils.
We start by considering a typical structure-preserving algorithm, and see how it can be easily adapted to a
different structured setting.

Example 5.15. Let L̂(λ) be an M-palindromic pencil, i.e., L̂(λ) = λW + WT , where W is an arbitrary
n× n matrix over C. It was shown in [28] that there always exists a unitary matrix U such that

UT L̂(λ)U = UT (λW +WT )U = λA+AT , (5.17)

where A = [wi,j ] = UTWU is anti-triangular, that is, Ai,j = 0 whenever i + j ≤ n. Furthermore, several
methods for computing this anti-triangular form were investigated in [28]. The eigenvalues of the pencil

Â(λ) = λA+AT are the same as those of L̂(λ), so once this anti-triangular form is achieved the eigenvalues

of a regular L̂(λ) can be readily obtained from the anti-diagonal entries of Â(λ), simply by solving scalar
equations of the type (λ · wj,n−j+1 + wn−j+1,j) = 0 for j = 1, . . . , n.
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Now consider the S-palindromic pencil L(λ) = φ1,1(λ)W + φ0,1(λ)WT . Using exactly the same unitary

matrix U as in (5.17) for theM-palindromic pencil L̂(λ) transforms the pencil L(λ) into the pencil A(λ) =
φ1,1(λ)A+φ0,1(λ)AT , which is again S-palindromic, and has the same eigenvalues as L(λ). But just as in the
M-palindromic case, the eigenvalues of the anti-triangular pencil A(λ) are readily obtained from the anti-
diagonal entries, this time by solving scalar equations of the type

(
φ1,1(λ)·wj,n−j+1+φ0,1(λ)·wn−j+1,j

)
= 0 .

Example 5.15 highlights two very important points. First, for pencils there is no particular disadvantage
in being expressed in a non-monomial basis. In fact, as we will see soon, for the special case of S and
B bases it allows us to readily find structured linearizations. Secondly, any structure-preserving eigenvalue
algorithm developed forM-structured pencils that just works on a pair of matrices, such as the algorithms in
[24, 25, 28], can be used without change on S and B-structured pencils as well. Consequently, the problem
of finding eigenvalues of a B-structured matrix polynomial essentially boils down to finding a structure-
preserving linearization.

Let P (λ) be an n× n matrix polynomial of grade k expressed as

P (λ) =

k∑
i=0

Aiβi,k(λ) =

k∑
i=0

Âiφi,k(λ) , where Âi :=
1

(b− a)k

(
k

i

)
Ai . (5.18)

For such a polynomial P (λ) we consider (as in Theorem 3.3) the associated partner polynomial P̂ (λ) =∑k
i=0 Âiλ

i in the monomial basis. Then using Proposition 5.5 and Definition 5.3, the following equivalences
are easily verified:

P is B-structured ⇐⇒ P is S-structured ⇐⇒ P̂ is M-structured , (5.19)

where all of the structures are of the same type.
Now Theorem 3.3 together with (5.19) implies that L̂(λ) = λX + Y is a strong M-structured lineariza-

tion for an M-structured matrix polynomial P̂ (λ) if and only if L(λ) = φ1,1(λ)X + φ0,1(λ)Y is a strong
S-structured linearization for S-structured P (λ), where all the structures are of the same type. Further,
Proposition 5.5 implies that finding a strong B-structured linearization for a B-structured polynomial P is
equivalent to finding a strong S-structured linearization for S-structured P . Hence the entire problem of
finding a strong B-structured linearization for P reduces to that of finding a strongM-structured lineariza-
tion for P̂ , a problem about which much is already known.

We now look at a few examples.

Example 5.16. Let P (λ) =
∑5
i=0Aiβi,5(λ) =

∑5
i=0 Âiφi,5(λ) be a square B-Hermitian (and S-Hermitian)

matrix polynomial, regular or singular, of grade five. Then the pencil given by (3.7) is a strong S-Hermitian
linearization for P , and by (5.19) it is also a strong B-Hermitian linearization for P .

Example 5.17. Let P (λ) =
∑3
i=0Aiβi,3(λ) =

∑3
i=0 Âiφi,3(λ) be a square regular B-palindromic (and

S-palindromic) matrix polynomial of grade 3, with ε = +1. Then the pencil

L(λ) = (R3 ⊗ I)
[
φ1,1(λ)X + φ0,1(λ)Y

]
with X,Y given by (4.11) and R3 as in (2.1) is a strong B-palindromic (and S-palindromic) linearization
for P if and only if A3 and A0 are nonsingular.

Examples 5.16 and 5.17 clearly illustrate the simplicity of finding a strong S-structured linearization for
an S-structured matrix polynomial. In fact, finding a strong S-structured linearization for an S-structured
matrix polynomial is almost identical to the Linearization Procedure described in Section 3.1, except that
at Step 3 we look for a strongM-structured linearization of P̂ of the same structure type. Hence we obtain
the following structured version of Theorem 3.3.

Theorem 5.18. Let P (λ) =
∑k
i=0Aiβi,k(λ) =

∑k
i=0 Âiφi,k(λ) be a square S-structured matrix polynomial

and define the M-structured partner matrix polynomial P̂ =
∑k
i=0 Âiλ

i, of the same structure type. Then
φ1,1(λ)X + φ0,1(λ)Y is a strong S-structured linearization for P if and only if λX + Y is a strong M-

structured linearization for P̂ .
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6. Conclusions

We have shown how to generate large new families of strong linearizations for matrix polynomials (regular
or singular) expressed in Bernstein bases, which recover as special cases all of the known examples currently
in the literature. In fact, we have shown in principle how to find all such strong linearizations, by establishing
a simple bijection between the set of all strong linearizations for a matrix polynomial expressed in a Bernstein
basis, and the set of all strong linearizations for an associated partner matrix polynomial expressed in the
monomial basis. As a consequence of an extensive use of Möbius transformations of matrix polynomials
throughout our analysis, we have seen that strong linearizations are most naturally expressed in a scaled
Bernstein basis. This small shift in emphasis turns out to be the essential ingredient for gaining insight into
working with matrix polynomials in Bernstein bases and their strong linearizations.

Matrix polynomials that are structured with respect to an arbitrary polynomial basis have also been
defined. In the specific case of Bernstein-structured matrix polynomials, we studied the various spectral
symmetries that result from these structures, and showed how to easily generate structured strong lineariza-
tions.

Finally, it is worth emphasizing that the entire theory in this paper applies equally well to scalar poly-
nomials expressed in a Bernstein basis. In particular, large families of new companion pencils for scalar
polynomials in Bernstein bases have been introduced, some of them having promising tridiagonal Fiedler-
like structure. The impact that these new companion pencils have on numerical properties is a subject for
future investigation.
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