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When do the iterative reconstruction methods
become worth the effort?

S.B. Coban∗, P.J. Withers†, W.R.B. Lionheart∗, S.A. McDonald†

Abstract—A driving force for the development of new recon-
struction algorithms is to achieve better quality images using
less information (lower dose, fewer projections, in less time), but
under what circumstances do iterative methods become worth the
effort? In this paper we propose a framework that enables the
performance of reconstruction algorithms to be mapped. Such
a framework allows fair comparisons to be made, providing
insights into experimental acquisition strategies and methods of
quantifying the quality of reconstructions, and identifying the
sweet spot for different algorithms.

In the CT imaging community, the challenge is to be able
to produce the best quality images with the least amount of
information. Depending on the application, this information
could be a series of quickly acquired projections if we wish
to capture rapid changes in the sample, or low dose exposures
given to a patient during the scans; or it could be a limited
angles of illumination due to the constraints of the hardware,
the sample, or restrictions to minimize the computational
memory requirements.

The science of reconstructing a 3D volume from 2D pro-
jections is a problem with many possible solutions. Even
in the case of sufficient data, the solutions can be unstable.
Additionally, these solutions are sensitive to small changes in
the measured data (noise due to modeling or experimental
errors), which means that even a noisy image can qualify
as a feasible solution. This solution can be an image of
the location of a landmine in the ground, or detection of a
weapon in a bag, or used to diagnose cancerous cells. This
becomes an issue when the reconstruction techniques do not
converge to a better solution than a noisy image. Therefore
it is natural that we consider the data to be measured, any
prior information about the problem we can make use of, and
the methods for reconstructing high quality images. However
before thinking about the reconstruction algorithms, we must
first consider whether the information we have is useful. This
can be done by characterizing the cost of measure. This is
simply a variable specific to the application. In our case, this
could be the available acquisition time, or perhaps the level
of dose we use to scan a patient. It is clear that, whatever
the application is, we do not want a dataset comprising just
one projection acquired over a long period of time (strong
signal), or many projections in very short periods (weak
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signal). We want to be able to determine what we need to
know, and plan experiments accordingly. Taking into account
the important variables in CT, we propose a map to guide the
reader when planning experiments. This map displays aspects
of the information content of the dataset with the abscissa
quantifying the number of projections and the ordinate the
number of photons collected (proportional to the number of
frames acquired per projection times the number of projec-
tions). In this space a given experimental strategy is a point
on the map. If the quality of the reconstructed image can
be expressed as a metric, then it can be used to map the
capability of a given algorithm highlight acquisition regimes
over which it maybe deemed acceptable. Similarly regimes
over which different algorithms are beneficial can be identified.
Conversely, acquisition strategies can be identified to achieve
a given performance in the least time or dose.

Fig. 1. The log-plot of number of projections vs photon count (number of
projections × number of frames). The numbers on the chart refer to the
number of frames for scans lying on LINES A and B.

From this map it is clear that if we want to identify the
performance of algorithms as a function of the number of
projections, it is fairer to keep the number of photons collected
constant while the number of projections is varied (LINE A
in Fig. 1). By contrast it is often the case that in practice the
comparison is made using one frame for each projection (LINE
B) which convolves the decreasing number of projections
with the decreasing signal, influencing our conclusions. The



difference in reconstructed images for both LINES A and B is
illustrated in Fig. 2(c), where we have used the SophiaBeads
128 dataset with 1 frame (lying on LINE B) and 16 frames
(on LINE A). We introduce the SophiaBeads Datasets in the
next section.

(a) 128 projections, 1 frame. (b) 128 projections, 16 frames.

(c) Difference between the reconstructed results.

Fig. 2. Highlighting the difference in reconstructions with the traditional
approach following LINE B (top left), and keeping the cost of measure
constant by following LINE A (top right). The eliminated noise is shown
in the image (bottom). Reconstructions are obtained using CGLS.

Our ultimate aim is to introduce a framework for designing
experiments and choosing appropriate reconstruction methods
via fair comparisons. In this paper, we wish to discuss this
aspect of our work, and support our logic with reconstructed
results. Before concluding the paper, we explore ways of
quantifying results using a real dataset.

I. EXPERIMENTAL DESIGN AND QUANTIFICATION
METHODS

We have established an experimental glass bead pack
dataset, [5], based on the above framework acquiring 1 frame
for each of 2048 projections; 2 frames at 1024, 4 frames
at 512, 8 frames at 256, 16 frames at 128 and 32 frames
for 64 projections (see points lying on LINE A in Fig. 1).
This enables a wide range of algorithm comparisons and
information content optimizations to be examined. In this
paper we examine the performance of algorithms along LINE
A, namely we compare the performance of algorithms using
different numbers of frames but at a constant signal.

The experiment dataset is called SophiaBeads, available as
part of the SophiaBeads Datasets Project. More information

on the sample, data acquisition and quantitative analysis of the
reconstructions can be found in [6, 4]. We have chosen a beads
problem because it is easy to make the dimensions of the solid
spheres precisely known and the problem is representative
of many X-ray imaging problems [7]. A key element of the
beads problems is that the samples often consist of only beads
and air, making them suitable for studying ‘porous channels’
(bottlenecks) and ‘touching of beads’. These are important
characterizations for studying segmentation techniques or dis-
crete CT algorithms.

Our motivation for using SophiaBeads Datasets in particular
is that we know what the reconstructions should look like. We
know that the beads are of one size1, and thus the following
items can be considered when quantifying our results:

I. Volume of the beads2: The range of expected volume
of each bead is known.

II. Shape of the beads2: We can parameterize how close
(in shape) a reconstructed bead is to a perfect sphere.

III. Circular cross-section of the beads3: Because the
beads are (nearly) perfectly spherical, each bead should
have the same1 diameters or radii in all axes (i.e. a cross-
section of each bead should be a perfect circle).

VI. Smoothness of the beads3: boundary of each bead
should be smooth.

II. COMPARISON OF RECONSTRUCTION METHODS

In this section, we present the 2D reconstructions of the
SophiaBeads Datasets, using FDK [8], CGLS [3] and SART
[2]. To examine the reconstructions in detail, we focus on a
central window of the reconstructed slices (see Fig. 3).

Fig. 3. 2D CGLS reconstruction of 2048 projections, and its center window.

1The size of the beads is normally distributed with a mean of 2.5mm (in
diameter), and a standard deviation of 0.01mm (or 100µm). This means that
even though most beads in 2D will look like perfect circles, there will be a
proportion of them that are egg-shaped.

3Suitable for 2D and 3D reconstructions.
2Requires 3D reconstructions.



FDK Results

FDK [8] is the standard approach employed by most com-
mercial scanners. Results below are obtained using the in-
house implementation of FDK.

(a) 2048. (b) 1024. (c) 512.

(d) 256. (e) 128. (f) 64.

Fig. 4. 2D FDK reconstructions of each SophiaBeads dataset.

One can observe line artefacts and loss of contrast in the
reconstructed images in scans with fewer projections. In
particular in Fig. 4(f), the bead is almost unidentifiable due
to loss of definition in shape.

CGLS Results

This is the Conjugate Gradient method modified for non-
square systems such as the CT problem, as explained in [3].

(a) 2048. (b) 1024. (c) 512.

(d) 256. (e) 128. (f) 64.

Fig. 5. CGLS reconstructions at iteration 12.

The method is implemented in MATLAB R2014b, with the
forward and back projector codes written in C. This method
is also used in the SophiaBeads tutorials [4]. The number of
iterations is fixed at 12. We observe increase in blur and loss
of definition of bead shape in scans with fewer projections.

SART Results

As the third example, we present results using a popular
method from the family of algebraic reconstruction techniques
[2]. For these runs, we performed 200 sweeps with a relaxation
factor chosen as 0.8. Just as with CGLS, we have implemented

and plotted results in MATLAB with forward and back pro-
jectors implemented in C.

(a) 2048. (b) 1024. (c) 512.

(d) 256. (e) 128. (f) 64.

Fig. 6. SART reconstructions with 200 sweeps, and relaxation factor ω = 0.8.

We observe relatively greater loss of definition in the
shape and contrast (compared to CGLS), as the number of
projections decrease.

Quantifying the SophiaBeads Reconstructions

To evaluate our results we use the quantification item II
(henceforth referred to as SHAPE3D). For the analysis, we
have used built-in image-measuring techniques in Avizo Fire
8, where the reconstructed volume is read by Avizo (see the
quantification tutorial in [4]).

Fig. 7. Results of the SHAPE3D analysis plotted with errorbars in MATLAB.

Fig. 7 is the log-plot of the mean and the standard deviation
of each reconstructed volume. The image-measuring technique
in Avizo attempts to fit the each bead to a unit sphere, and



parameterizes how close that bead is to a perfect fit (more
details in the Avizo user manual [1]). If the reconstructed beads
fit the model sphere perfectly, then Avizo outputs 1, so this
is taken as the exact answer. Anything above the dashed line
can be dismissed as an infeasible solution. From this it is clear
that FDK at 64 iterations is a poor choice as a reconstruction
method. For datasets with 256 projections or more, we see
all three methods giving similar results with small standard
deviations.

III. CONCLUSIONS

As the CT community, we welcome novel ideas for iterative
reconstruction methods for better quality reconstructions. We
spend time on defining our problems, creating and testing
ideas, and developing algorithms. Yet we still struggle to an-
swer this simple question: When should we be using iterative
methods?

In this paper, we offered a strategy to help us answer this
question by introducing a map to plan trials and across which
the performance of various algorithms can be charted. Here
we examined the effect of altering the number of projections
whilst keeping the photon count constant. This has shown
that iterative methods deal better with datasets with fewer
projections, whereas the FDK method is adequate for scans
with 256 projections or higher.

The SophiaBeads Datasets [5] were acquired in such a
way that it allows a multi-faceted exploration of the effect
of decreasing the information content on the performance of
reconstruction algorithms as outlined in Fig. 1. Another key
advantage of the SophiaBeads Datasets was that many aspects
of the actual 3D object are precisely known, enabling us
to quantify algorithm performance. It is noteworthy that the
framework in Fig. 1 and the SophiaBeads Datasets allow a
wide range of experimental strategies to be simulated (mini-
mum time, dose, number of projections) and the limits of the
algorithms delineated or the most appropriate one identified.
We would like to note here that there was no prior information
used in these reconstructions, which is outside the scope
of this discussion. However, improvements in images and
changes in fewer projection artefacts when prior information
is used are interesting topics that deserve further discussion.
In addition, because the beads problem is amenable to discrete
tomography, an algorithm (with a suitable prior information)
may outperform the current algorithms in quality and speed.
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