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Abstract

Given a symmetric matrix what is the nearest correlation matrix, that is, the

nearest symmetric positive semidefinite matrix with unit diagonal? This prob-

lem arises in the finance industry, where the correlations are between stocks. For

distance measured in two weighted Frobenius norms we characterize the solution

using convex analysis. We show how the modified alternating projections method

can be used to compute the solution for the more commonly used of the weighted

Frobenius norms. In the finance application the original matrix has many zero or

negative eigenvalues; we show that for a certain class of weights the nearest corre-

lation matrix has correspondingly many zero eigenvalues and that this fact can be

exploited in the computation.

Key words. correlation matrix, positive semidefinite matrix, nearness prob-

lem, convex analysis, weighted Frobenius norm, alternating projections method,

semidefinite programming
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1 Introduction

A correlation matrix is a symmetric positive semidefinite matrix with unit diagonal.

Correlation matrices occur in several areas of numerical linear algebra, including precon-

ditioning of linear systems and error analysis of Jacobi methods for the symmetric eigen-

value problem (see [2] for details and references). The term “correlation matrix” comes
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from statistics, since a matrix whose (i, j) entry is the correlation coefficient between two

random variables xi and xj is symmetric positive semidefinite with unit diagonal. It is a

statistical application that motivates this work—one coming from the finance industry.

In stock research sample correlation matrices constructed from vectors of stock returns

are used for predictive purposes. Unfortunately, on any day when an observation is made

data is rarely available for all the stocks of interest. One way to deal with this problem is

to compute the sample correlations of pairs of stocks using data drawn only from the days

on which both stocks have data available. The resulting matrix of correlations will be

only an approximate correlation matrix, because it has been built from inconsistent data

sets. In order to justify the subsequent stock analysis it is desired to compute the nearest

correlation matrix and to use that matrix in the computations. The matrices in this

application are dense with dimensions in the thousands, and a particular feature is that

relatively few vectors of observations are available, so that the approximate correlation

matrix has low rank.

The problem we consider is, for arbitrary symmetric A ∈ R
n×n, to compute the

distance

γ(A) = min{ ‖A−X‖ : X is a correlation matrix } (1.1)

and a matrix achieving this minimum distance. The norm is a weighted version of the

Frobenius norm, ‖A‖2F =
∑

i,j a2
ij, the Frobenius norm being the easiest norm to work

with for this problem and also being the natural choice from the statistical point of

view. Two different weighted Frobenius norms are of interest. The first, and the most

commonly used in numerical mathematics, is

‖A‖W = ‖W 1/2AW 1/2‖F , (1.2)

where W is a symmetric positive definite matrix. The second weighted norm is

‖A‖H = ‖H ◦ A‖F , (1.3)

where H is a symmetric matrix of positive weights and ◦ denotes the Hadamard product:

A ◦B = (aijbij).

The use of weights allows us to express our confidence in different elements of A: for

the H-norm, if aij is known accurately (relatively to the other elements) then we can

assign a large weight hij, so as to force xij to be close to aij, and conversely if aij is

known relatively inaccurately then a small weight wii can be assigned. The W -norm

does not allow the independent weighting of individual elements, but it is easier to work

with, principally because the transformation A → W 1/2AW 1/2 is a congruence, and so

preserves inertia, while the transformation A→ H ◦ A merely preserves symmetry.
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The two weighted norms coincide when W = diag(wi) is diagonal and H is rank-1

with hij = (wiwj)
1/2, but neither norm includes the other as a special case. For the

W -norm, a diagonal W is the most natural choice, but our theory and algorithms do not

require W to be diagonal.

We define the sets

S = {Y = Y T ∈ R
n×n : Y ≥ 0 },

U = {Y = Y T ∈ R
n×n : yii = 1, i = 1: n }.

Here, for a symmetric Y the notation Y ≥ 0 (≤ 0) means Y is positive semidefinite

(negative semidefinite). In the finance application A ∈ U and |aij| ≤ 1 for all i 6= j, but

we will treat (1.1) with a general symmetric A.

We are looking for a matrix in the intersection of S and U that is closest to A in

a weighted Frobenius norm. Since S and U are both closed convex sets, so is their

intersection. It thus follows from standard results in approximation theory (for example,

[14, p. 69]) that the minimum in (1.1) is achieved and that it is achieved at a unique

matrix X.

An interesting feature of the problem is that while positive definiteness is a property

of the eigenvalues, and hence is basis independent, the possession of a unit diagonal is a

basis dependent property. This mismatch appears to preclude an explicit solution of the

problem.

Some upper and lower bounds on γ(A) are easily obtained.

Lemma 1.1 Let A ∈ R
n×n be symmetric, with eigenvalues λ1, . . . , λn. Then

max{α1, α2} ≤ γ(A) ≤ max{β1, β2, β3},

where

α2
1 =

n∑

i=1

h2
ii(aii − 1)2 +

∑

|aij |>1

i6=j

h2
ij(1− |aij|)2,

α2
2 = min{ ‖A−X‖ : X ∈ S },

β1 = ‖A− I‖,
β2 = min{ ‖A− zzT‖ : zi = ±1, i = 1: n },
β3 = min

0≤ρ≤1
‖A− (ρ|i−j|)‖,

where ‖ · ‖ is the norm in the definition of γ. For the W -norm the lower bound α1 is

valid only for W = diag(wi), in which case hij = (wiwj)
1/2.
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Proof. Straightforward. The first lower bound follows from the fact that for any

symmetric positive definite matrix A, |aij| ≤ √aiiajj.

An explicit formula for α2 is available for the W -norm, as we show in Section 3. When

W = I or hij ≡ 1, computing β2 is equivalent to maximizing zT Az over all ±1 vectors

z, which is an NP-hard problem [16]. We are not aware of an explicit solution to the ρ

minimization in the upper bound β3, but techniques that may be helpful can be found

in [18, Sec. 3].

Two special cases in which the optimal X is known are worth noting, with the re-

striction that for the W -norm W is diagonal. If A is diagonal then X = I (and, corre-

spondingly, α1 = β1 = β3 in Lemma 1.1), and if A is positive semidefinite with diagonal

elements less than or equal to 1 then X is obtained by replacing the diagonal elements

by 1.

Finally, we note the inequality

|γ(A)− γ(B)| ≤ ‖A−B‖,

which holds for any nearness problem. The practical significance of the inequality is that

if ‖A−B‖ is sufficiently small then the nearest correlation matrix to A is a good enough

approximation of the nearest correlation matrix to B.

In the next section we derive a characterization of the solution for both the W -

and H-norms, and in the case of diagonal W (or rank-1 H) deduce information about

the dimension of the null space of the solution. In Section 3 we show that the modified

alternating projections method can be used to compute the solution, making use of a new

result identifying the projection in the W -norm onto the positive semidefinite matrices.

For diagonal W , we show how to exploit the low rank property inherent in the finance

application. Numerical experiments are given in Section 4 and concluding remarks in

Section 5.

2 Theory

Important insight into the nearest correlation matrix problem can be obtained with the

aid of optimization theory. The development in this section is inspired by Glunt, Hayden,

Hong and Wells’ treatment of the nearest Euclidean distance matrix problem [8, Sec. 3].

We will work with the W -norm in (1.2) and comment later on how the analysis adapts

for the H-norm. We define

〈A,B〉 = trace(AT WBW ),
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which can be regarded as an inner product on R
n×n that induces the W -norm.

The normal cone of a convex set K ⊂ R
n×n at B ∈ K is

∂K(B) = {Y = Y T ∈ R
n×n : 〈Z −B, Y 〉 ≤ 0 for all Z ∈ K } (2.1)

=
{

Y = Y T ∈ R
n×n : 〈Y,B〉 = sup

Z∈K
〈Y, Z〉

}
. (2.2)

Our starting point is the observation that the solution X to (1.1) is characterized by

the condition that [14, p. 69]

〈Z −X,A−X〉 ≤ 0 for all Z ∈ S ∩ U. (2.3)

This condition can be rewritten as A−X ∈ ∂(S ∩ U)(X), the normal cone to S ∩ U at

X. For two general convex sets K1 and K2, ∂(K1 ∩K2)(X) = ∂K1(X) + ∂K2(X) if the

relative interiors of K1 and K2 have a point in common [15, Cor. 23.8.1]. Any positive

definite correlation matrix is in the relative interiors of both S and U , so we conclude

that the solution X is characterized by

A−X ∈ ∂S(X) + ∂U(X). (2.4)

Our task is now to determine ∂S and ∂U .

Lemma 2.1 For A ∈ U ,

∂U(A) = {W−1 diag(θi)W
−1 : θi arbitrary }. (2.5)

Proof. We have

∂U(A) =
{

Y = Y T ∈ R
n×n : 〈Y,A〉 = sup

Z∈U
〈Y, Z〉

}

and the constraint can be written

∑

i,j

ỹij aij = sup
Z∈U

∑

i,j

ỹij zij,

where Ỹ = WY W . If Ỹ is not diagonal then we can choose zij arbitrarily large and of

the same sign as ỹij 6= 0 and thereby violate the sup condition. Therefore Ỹ is diagonal,

and any Y of the form Y = W−1 diag(θi)W
−1 satisfies the sup condition.

The next two results generalize ones of Fletcher [7].

Lemma 2.2 For A ∈ S,

∂S(A) = {Y = Y T : 〈Y,A〉 = 0, Y ≤ 0 }.
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Proof. We have

∂S(A) =
{

Y = Y T : 〈Y,A〉 = sup
Z∈S
〈Y, Z〉

}
.

Let Z ∈ S have the spectral decomposition Z = QΛQT , where Q is orthogonal and

Λ = diag(λi) ≥ 0. Then, with C = QT WY WQ,

sup
Z∈S
〈Y, Z〉 = sup

Λ≥0, QT Q=I

〈Y,QΛQT 〉

= sup
Λ≥0, QT Q=I

〈C,Λ〉

= sup
Λ≥0, QT Q=I

∑

i

λicii

=

{
0, if Y ≤ 0,

∞, otherwise.

Thus equality holds in the sup condition for Y such that 〈Y,A〉 = 0 and Y ≤ 0.

Corollary 2.3 For A ∈ S,

∂S(A) = {Y : WY W = −V DV T , where V ∈ R
n×p has orthonormal columns

spanning null(A) and D = diag(di) ≥ 0 }.

Proof. Let A have the spectral decomposition QΛQT , where Λ = diag(λi) with

λ1 ≥ · · · ≥ λn−p > 0 = λn−p+1 = · · · = λn. Write Λ1 = diag(λ1, . . . , λp), Q = [Q1, Q2],

with Q1 ∈ R
n×(n−p), and note that the columns of Q2 span null(A).

For Y ∈ ∂S(A),

0 = 〈Y,A〉 = trace(AWY W ) = trace(Q1Λ1Q
T
1 WY W ) = trace(Λ1Q

T
1 WY WQ1),

and since Λ1 > 0 and Y ≤ 0 this implies that diag(QT
1 WY WQ1) = 0. Now write

[
G H

HT M

]
:= QT (WY W )Q =

[
QT

1 (WY W )Q1 QT
1 (WY W )Q2

QT
2 (WY W )Q1 QT

2 (WY W )Q2

]
≤ 0.

Since diag(G) = 0 it follows that G = 0 and hence H = 0; furthermore, M ≤ 0. Then

0 ≥ WY W = Q2MQT
2 = −V DV T , where we have used the spectral decomposition of

M to produce V ∈ R
n×p with orthonormal columns and D ∈ R

p×p diagonal and positive

semidefinite.

We are now ready to state a theorem that characterizes the solution of our nearness

problem.
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Theorem 2.4 The correlation matrix X solves (1.1) if and only if

X = A + W−1
(
V DV T + diag(θi)

)
W−1, (2.6)

where V ∈ R
n×p has orthonormal columns spanning null(X), D = diag(di) ≥ 0, and the

θi are arbitrary.

Proof. The result follows from the condition (2.4) on applying Lemma 2.1 and

Corollary 2.3.

An analogue of Theorem 2.4 holds also for the H-norm, with

X = A +
(
V DV T + diag(θi)

)
◦ (h−2

ij ).

This can be proved by modifying the analysis above, or it can be deduced from a slightly

more general result of Johnson, Kroschel and Wolkowicz [12, Thm. 2.2]. In the case

W = I, Theorem 2.4 can also be deduced from an expression for ∂(S ∩ U)(X) given by

Laurent and Poljak [13].

An immediate implication of Theorem 2.4 is that, at least when W is diagonal, X will

generally be singular (and hence not positive definite). For if X is nonsingular then V = 0

and X = A + W−1 diag(θi)W
−1, which means that X is obtained simply by adjusting

the diagonal elements to 1.

It is interesting to note that (2.6) implies the necessary condition for optimality that

X satisfies the quadratic matrix equation XW (X − A)W = X diag(θi).

In the important special case where W is diagonal and the diagonal elements of A are

at least 1, we can say more.

Theorem 2.5 Let A = AT have diagonal elements aii ≥ 1 and let W be diagonal. Then,

in Theorem 2.4, θi ≤ 0 for all i. Moreover, if A has t nonpositive eigenvalues then the

nearest correlation matrix has at least t zero eigenvalues.

Proof. Since A has diagonal elements at least 1 and W−1(V DV T )W−1 ≥ 0, the

diagonal elements of X = A + W−1(V DV T )W−1 in (2.6) are all at least 1. Therefore

in order for X to have unit diagonal we need θi ≤ 0 for all i. Examining (2.6) we see

that the perturbation W−1(V DV T )W−1 moves the t or more nonpositive eigenvalues of

A + W−1 diag(θi)W
−1 to become nonnegative. The perturbation V DV T has rank at

most p and so, by a standard result on the eigenvalues of a symmetric matrix subject to

a low-rank perturbation [11, Thm. 4.3.6], we must have p ≥ t. Since p is the dimension

of the null space of X, the result follows.
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That a restriction on the diagonal of A is necessary in Theorem 2.5 can be seen from

that fact that if A is a diagonal matrix then, as noted at the end of Section 1, the nearest

correlation matrix is I for any diagonal W , irrespective of the values of the aii.

Although they do not give a method for computing a solution, Theorems 2.4 and 2.5

can be used to verify a putative solution. To illustrate we consider the matrix

A =




1 1 0

1 1 1

0 1 1




and the unweighted Frobenius norm. Since A = eeT −(e1e
T
3 +e3e

T
1 ), where e = [1 1 1]T , it

is clear that A is indefinite, and in fact its eigenvalues are 1+
√

2, 1 and 1−
√

2. An obvious

candidate for the nearest correlation matrix to A is X = eeT , with ‖A−X‖F =
√

2. The

null space of X is spanned by the columns of

V =




1 −1

−1 0

0 1


 ,

so from Theorem 2.4 (which remains true if the columns of V are not orthonormal) we

must have

X = A +




d1 + d2 −d1 −d2

−d1 d1 0

−d2 0 d2


 + diag(θi)

with di ≥ 0. This equation implies d2 = −1 and so X cannot be a solution. In fact, the

solution is, to the figures shown,

X =




1.0000 0.7607 0.1573

0.7607 1.0000 0.7607

0.1573 0.7607 1.0000


 ,

with ‖A−X‖F = 0.5278. This matrix X is singular, with a one-dimensional null space

spanned by q = [−0.4814, 0.7324, −0.4814]T . A short MATLAB computation verifies

that adding a suitable positive multiple of qqT to A reproduces the off-diagonal of X,

and the θi can then be chosen to achieve equality in (2.6), verifying the optimality of X.

3 Computation

3.1 Projections

Our problem is to project from the symmetric matrices onto the correlation matrices,

with respect to a weighted Frobenius form. We consider first how to project onto the

sets S and U individually. We begin with U and denote by PU the projection onto U .
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Theorem 3.1 For the W -norm,

PU(A) = A−W−1 diag(θi)W
−1,

where θ = [θ1, . . . , θn]T is the solution of the linear system

(W−1 ◦W−1)θ = diag(A− I). (3.1)

Proof. The projection X = PU(A) is characterized by A − X ∈ ∂U(X), which, by

Lemma 2.1 can be written

A−X = W−1 diag(θi)W
−1.

Equating diagonal elements and writing W−1 = (ωij), we have

n∑

j=1

ω2
ij θj = aii − 1.

These equations form the linear system (3.1). Since W is positive definite so is W−1◦W−1,

and so this linear system has a unique solution.

In the case where W is diagonal we can write, more simply,

PU(A) = (pij), pij =

{
aij, i 6= j,

1, i = j.
(3.2)

It is easy to show that, for the H-norm, (3.2) is the projection onto U for all H.

Projection onto S is more difficult. No closed formula is known for the H-norm, but

for the W -norm the following result, which appears to be new, provides such a formula.

We need some more notation. For a symmetric A ∈ R
n×n with spectral decomposition

A = QDQT , where D = diag(λi) and Q is orthogonal, let

A+ = Q diag(max(λi, 0))QT , A− = Q diag(min(λi, 0))QT .

Note that A+ and A− do not depend on the choice of spectral decomposition and A =

A+ + A−, A+A− = A−A+ = 0.

Theorem 3.2 For the W -norm,

PS(A) = W−1/2
(
(W 1/2AW 1/2)+

)
W−1/2. (3.3)

Moreover,

diag(PS(A)) ≥ diag(A).
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Proof. We need to show that the claimed projection X satisfies A − X ∈ ∂S(X),

that is, from Lemma 2.2, that

A−X ≤ 0, trace((A−X)WXW ) = 0.

Now

A−X = W−1/2(W 1/2AW 1/2 − (W 1/2AW 1/2)+)W−1/2

= W−1/2(W 1/2AW 1/2)− W−1/2 ≤ 0

and then

(A−X)WXW = W−1/2(W 1/2AW 1/2)− W−1/2 ·W 1/2
(
(W 1/2AW 1/2)+

)
W 1/2

= W−1/2 (W 1/2AW 1/2)− (W 1/2AW 1/2)+ W 1/2 = 0.

For the last part, we have

(W 1/2AW 1/2)+ −W 1/2AW 1/2 ≥ 0.

Pre- and post-multiplying by W−1/2 effects a congruence transformation and so preserves

the inequality, and taking the diagonal parts gives the result, since the diagonal of a

positive semidefinite matrix is nonnegative.

3.2 Alternating Projections Method

To find the nearest matrix at the intersection of the sets S and U we might iteratively

project by repeating the operation

A← PU(PS(A)).

The idea of iteratively projecting onto subspaces was analyzed in a Hilbert space setting

by von Neumann, who proved convergence to the point in the intersection nearest to the

starting point. See [4] for a survey of the large literature on von Neumann’s method.

Our sets are not subspaces, so von Neumann’s convergence result does not apply. Indeed

when the subspaces are replaced by closed convex sets the iteration can converge to

non-optimal points [9]. We therefore use a modified iteration due to Dykstra [6], which

incorporates a judiciously chosen correction to each projection that can be interpreted

as a normal vector to the corresponding convex set. Note that while U is not a subspace

it is a translate of a subspace and, as noted in [1], for a translate of a subspace the

corresponding correction in the general algorithm in [6] can be omitted.

We restrict now to the W -norm, though the following algorithm could also be used

for the H-norm if we had an efficient way of computing the projection PS for this norm.
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Algorithm 3.3 Given a symmetric A ∈ R
n×n this algorithm computes the nearest cor-

relation matrix to A in the W -norm.

∆S0 = 0, Y0 = A

for k = 1, 2, . . .

Rk = Yk−1 −∆Sk−1 % ∆Sk−1 is Dykstra’s correction.

Xk = PS(Rk)

∆Sk = Xk −Rk

Yk = PU(Xk)

end

General results of Boyle and Dykstra [1, Thm. 2] and Han [9, Thm. 4.7] show that Xk

and Yk both converge to the desired correlation matrix as k →∞. The rate of convergence

of Dykstra’s algorithm is linear when the sets are subspaces, the constant depending on

the angle between the subspaces [3], [5], so we can expect linear convergence, at best, of

Algorithm 3.3.

The next result gives some insight into the behaviour of Algorithm 3.3 for diagonal

W .

Theorem 3.4 Suppose A = AT has diagonal elements aii ≥ 1 and let W be diagonal.

Let Yk = PU(Xk) = Xk + Dk, where Dk is diagonal (in view of Theorem 3.1). Then in

Algorithm 3.3

Rk = A + ∆k, (3.4)

where the diagonal matrix

∆k =
k−1∑

k=1

Dk

is negative semidefinite.

Proof. We have R1 = A and

Rk+1 = Yk −∆Sk = PU(Xk)−∆Sk

= Xk + Dk − (Xk −Rk) = Rk + Dk,

so (3.4) is proved. Furthermore,

I = diag(Yk) = diag(Xk + Dk)

= diag(PS(Rk) + Dk)

≥ diag(Rk + Dk)

= diag(A + ∆k+1)

≥ I + ∆k+1,
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so that ∆k+1 ≤ 0, as required.

Theorem 3.4 shows that Rk is A minus a positive semidefinite diagonal matrix. This

has an important implication for the case where A is “highly non-positive definite”, or,

in particular, highly rank-deficient.

Corollary 3.5 Let A = AT have diagonal elements aii ≥ 1 and t nonpositive eigenvalues

and let W be diagonal. Then in Algorithm 3.3 Rk has at least t nonpositive eigenvalues

and Xk has at least t zero eigenvalues, for all k.

Note that by letting k →∞ in the corollary we recover the second part of Theorem 2.5.

The practical significance of the corollary is that if t is large then we can com-

pute Ps(Rk) at a much lower cost than that of computing the complete eigensystem

of W 1/2RkW
1/2 (recall (3.3)). It suffices to compute the largest n− t≪ n eigenvalues λj

and corresponding orthonormal eigenvectors qj of W 1/2RkW
1/2 and then take in (3.3)

(W 1/2RkW
1/2)+ =

∑

λi>0

λiqiq
T
i .

This computation can be done very efficiently by the Lanczos iteration or by orthogonally

reducing Rk to tridiagonal form and applying the bisection method followed by inverse

iteration [20, pp. 227 ff.].

If A has few nonpositive eigenvalues (t ≪ n) then it is likely that the Rk, too, will

have few nonpositive eigenvalues, though an upper bound on this number is not available.

Nevertheless, similar computational savings are possible in this situation by computing

(W 1/2RkW
1/2)+ = W 1/2RkW

1/2 −
(∑

λi≤0

λiqiq
T
i

)
,

where the number of nonpositive eigenvalues of W 1/2RkW
1/2 is estimated from step to

step, and the estimate increased if it is found to be too small.

3.3 Semidefinite Programming

Another way to attack the nearest correlation matrix problem (1.1) is to phrase it as

a semidefinite programming problem and then exploit the powerful interior-point algo-

rithms available for semidefinite programming (see [19] and the references therein).

The positive semidefinite program in primal standard form is

minimize 〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1: m, X = diag(X1, X2, . . . , Xr) ≥ 0,

(3.5)

12



where C and the Ai are given n×n symmetric matrices. Ignoring weights, for simplicity,

our aim is to minimize

‖A−X‖2F = ‖A‖2F + 〈X,X〉 − 2〈A,X〉 ≡ aT a + xT x− 2aT x

subject to X being a correlation matrix, where x = vec(X) and a = vec(A) and the

vec operator stacks the columns of a matrix into one long vector. We can rephrase the

problem as

minimize θ subject to Y =

[
In2 x

xT θ + 2aT x− aT a

]
≥ 0, X ≥ 0, diag(X) = In.

Our variables are now Z = diag(X,Y, θ) ≥ 0 and the equality constraints are

〈eie
T
i , Z〉 = 1, i = 1: n (X has unit diagonal),

〈eie
T
j + eje

T
i , Z〉 = δij, n + 1 ≤ i ≤ j ≤ n + n2, (Y (1: n2, 1: n2) = In2),

together with n2 constraints relating Y to X, of the form

〈eie
T
j + eje

T
i − epe

T
n+n2+1 − en+n2+1e

T
p , Z〉 = 0, 1 ≤ i ≤ j ≤ n, n + 1 ≤ p ≤ n + n2,

and a final constraint

〈diag(2A,−en+n2+1e
T
n+n2+1, 1), Z〉 = aT a.

In total, there are n4/2 + 3n2/2 + n + 1 constraints. Unfortunately, this number of con-

straints make it impractical to apply a general semidefinite programming solver—merely

specifying the constraints (taking full advantage of their sparsity) requires a prohibitive

amount of memory.

Another possibility is to express the problem in terms of a quadratic cone (or Lorentz

cone) constraint. For example, we can write Y = A − X and then minimize α subject

to X being a correlation matrix and ‖vec(Y )‖2 ≤ α. Efficient methods are available for

solving problems with cone constraints but, since the number of variables is still O(n2),

standard software is likely to require at least O(n4) operations per iteration, which again

is impractical for large n; numerical experiments with the SeDuMi package [17] confirm

this conclusion (Anjos and Wolkowicz, private communication).

Johnson, Kroschel and Wolkowicz [12] treat a class of positive semidefinite completion

problems of which (1.1), for the H-norm (with H now allowed to have zero elements), is a

special case, and they derive two interior-point methods for solving this class of problems.

Unfortunately, when applied to our problem with an H having all positive entries the

methods in [12] are prohibitively expensive (computing the Newton direction requires

O(n12) operations) and the constraint of unit diagonal cannot be directly incorporated.
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How to efficiently solve the nearest correlation matrix problem by semidefinite pro-

gramming techniques (including how to take advantage of “highly positive definite” or

“highly non positive definite” matrices A) therefore remains an interesting open question.

4 Numerical Experiments

In our experiments we tested for convergence in Algorithm 3.3 at the end of the for loop

using the condition

max

{‖Xk −Xk−1‖∞
‖Xk‖∞

,
‖Yk − Yk−1‖∞
‖Yk‖∞

,
‖Yk −Xk‖∞
‖Yk‖∞

}
≤ tol, (4.1)

where tol is a tolerance. Our experience shows that the three quantities in this test are

usually of the same order of magnitude, so in practice any one of them can be used to

test for convergence. Our computations were done in MATLAB 6, for which the unit

roundoff u = 2−53 ≈ 1.1×10−16. For ease of description we use the unweighted Frobenius

norm.

In our first example we take the positive definite matrix

A =




2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2


 .

With tol = 10−8, Algorithm 3.3 converges in 19 iterations, with the relative differences

in (4.1) reducing by a factor approximately 3 on each iteration. The solution is, to the

figures shown,

X =




1.0000 −0.8084 0.1916 0.1068

−0.8084 1.0000 −0.6562 0.1916

0.1916 −0.6562 1.0000 −0.8084

0.1068 0.1916 −0.8084 1.000


 , ‖A−X‖F = 2.13,

and X has rank 3. The bounds from Lemma 1.1 are shown for all our examples in

Table 6.1, wherein we approximated β3 by the approximate local minimum obtained

with MATLAB’s fminbnd minimizer.

For our second example we begin with a random 500× 500 correlation matrix C with

eigenvalues αβi, where β10 = 10−8 and α is chosen so that the eigenvalues sum to 10;

C is generated using MATLAB 6’s gallery(’randcorr’,...), which uses an algorithm

described in [2]. Then we set A = C +E, where E is a random symmetric perturbation of

Frobenius norm 10−4 and find the nearest correlation matrix to A. This problem models
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the situation where a correlation matrix is corrupted by relatively large errors. With

tol = 10−6, Algorithm 3.3 converges in 2 iterations and ‖A − X‖F = 1.0 × 10−5. Note

from Table 6.1 that the lower bounds from Lemma 1.1 are good estimates in this case.

Our third example is a matrix of stock data provided to us by a fund management

company. The matrix A is an approximate correlation matrix of dimension 1399; it has

unit diagonal and its off-diagonal elements are bounded by 1 in magnitude, but it is not

positive semidefinite. The eigenvalues of A range between −8.5 and 339 (see Figure 6.1),

with 30 eigenvalues in the interval [−8.5,−10−3], 1215 in the interval [−10−11, 10−11],

and the rest in the interval [1.3, 339]. Thus A is a highly rank-deficient matrix and

Theorem 2.5 tells us that the nearest correlation matrix will have at least 1245 zero

eigenvalues, and therefore rank at most 154. The low rank results from the sample

correlation matrix being constructed from a small number of observations and is typical

in this application.

We applied Algorithm 3.3 with tol = 10−4, since the data is accurate to 2–3 significant

digits only. The algorithm converged in 67 iterations to an X with ‖A −X‖F = 20.96;

the spectrum of X is plotted in Figure 6.1. Since ‖X‖2 = 339 and tol = 10−4, all the

eigenvalues of X less than about 10−2 (the first 1245 eigenvalues in the plot) are zeros to

within the convergence tolerance (cf. Corollary 3.5).

When the projection PS was computed via the full eigensystem, using MATLAB’s

eig function, the computation took 2 hours 45 minutes on a 1Ghz Pentium III. In

order to take advantage of the high rank-deficiency of A we repeated the computation by

calling LAPACK’s dsyevr (via a MEX interface) in place of eig; this routine reduces to

tridiagonal form and (when a partial spectrum is requested) uses the bisection method

and inverse iteration. We used dsyevr to compute just the largest 154+10 eigenvalues

and corresponding eigenvectors of Rk on each iteration, where the “+10” is a safety

factor that enables us to check that we have obtained all the non-negligible positive

eigenvalues. The number of iterations was unchanged, but the computation time dropped

to 37 minutes—an improvement by a factor 4.5.

5 Concluding Remarks

This work adds to the large literature on matrix nearness problems, a survey of which can

be found in [10]. Algorithm 3.3 guarantees to compute the nearest correlation matrix

to A and can exploit the spectral properties of A inherent in the finance application.

The main weakness of the algorithm is its linear convergence rate. We are currently

investigating alternative algorithms for this problem, as well as generalizations, such as
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to include rank constraints on X.
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Table 6.1: Lower and upper bounds from Lemma 1.1 for the three test problems. For

the second and third examples β2 is too expensive to compute.

Lower bounds Upper bounds

Example n Distance α1 α2 β1 β2 β3

1 4 2.13 2.0 0 3.16 3.16 3.16

2 500 1.0e-5 6.21e-6 8.34e-6 6.4e1 − 6.4e1

3 1399 2.10e1 3.36e-1 1.32e1 3.59e2 − 3.58e2
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Figure 6.1: Eigenvalues of A (top) and eigenvalues of the nearest correlation matrix X

(bottom): the index of the eigenvalues sorted in increasing order is displayed on the

x-axis and |λi| on the y-axis.
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