
Computing Nearest Covariance and Correlation
Matrices

Lucas, Craig

2001

MIMS EPrint: 2015.40

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Computing Nearest Covariane and

Correlation Matries

A thesis submitted to the University of Manhester for the degree of Master

of Siene in the Faulty of Siene and Engineering.

Otober 2001

Craig Luas

Department of Mathematis

1

Contents

Abstrat 4

Delaration 5

Copyright and Intelletual Property Rights 6

Aknowledgements 7

1 Introdution 8

1.1 Covariane and Correlation Matries 8

1.2 Appliation . 9

1.3 Properties . 9

1.4 Eigenvalues of a Correlation Matrix 10

2 Calulation of Covariane and Correlation

Matries 11

2.1 Exat Sample Covariane and Correlation Matries 11

2.2 Approximate Sample Covariane and Correlation

Matries . 14

3 Testing 16

3.1 Test Data . 16

3.2 Test Mahine . 17

4 The Nearest Correlation Matrix Problem 18

4.1 The Problem . 18

4.2 Alternating Projetions . 19

4.3 Experiments . 25

4.4 Sequential Quadrati Programming 29

4.5 Experiments . 29

2

4.6 Matrix Completions . 31

4.7 Conlusions . 32

5 The Nearest Covariane Matrix Problem 34

5.1 The Problem . 34

5.2 Multi-Diretional Searh Optimization 36

5.3 Experiments . 37

5.4 Conlusions . 40

6 EÆient Implementation 41

6.1 MEX �les . 41

6.2 LAPACK . 42

6.3 Some Timings . 42

7 Conluding Remarks 43

Appendies 44

A MATLAB M-Files 44

A.1 Computation of S and R M-�les 44

A.2 Alternating Projetion M-Files 48

A.3 M-Files for fminon . 57

A.4 M-File Funtion for mdsmax . 61

B MEX �le for Partial Eigendeomposition 63

3

Abstrat

We look at two matrix nearness problems posed by a �nane ompany, where

nearness is measured in the Frobenius norm. Correlation and ovariane matri-

es are omputed from sampled stok data with missing entries by a tehnique

that produes matries that are not positive semide�nite. In the �rst problem

we �nd the nearest orrelation matrix that is positive semide�nite and preserves

any orrelations known to be exat. In the seond problem we investigate how

the missing elements in the data should be hosen in order to generate the

nearest ovariane matrix to the inde�nite matrix from the ompleted set of

data. We show how the former problem an be solved using an alternating

projetions algorithm and how the latter problem an be investigated using a

multi-diretional searh optimization method.

4

Delaration

No portion of the work referred to in this thesis has been submitted in support

of an appliation for another degree or quali�ation of this university or other

institute of learning.

5

Copyright and Intelletual Property Rights

Copyright in text of the this thesis rests with the Author. Copies (by any

proess) either in full, or of extrats, may be made only in aordane with

instrutions given by the Author and lodged in the John Rylands University

Library of Manhester. Details may be obtained from the Librarian. This page

must form part of any suh opies made. Further opies (by any proess) of

opies made in aordane with suh instrutions may not be made without

the permission (in writing) of the Author.

The ownership of any intelletual property rights whih may be desribed in this

thesis is vested in the University of Manhester, subjet to any prior agreement

to the ontrary, and may not be made available for use by third parties without

the written permission of the University, whih will preserve the terms and

onditions of any suh agreement.

Further information on the onditions under whih dislosures and exploitation

may take plae is available from the Head of the Department of Mathematis.

6

Aknowledgements

I would like to thank my supervisor, Nik Higham, for his guidane and nu-

merous helpful suggestions throughout the preparation of this thesis.

Thanks also go to Glenn for his ompanionship and reminding me there is more

to my life than mathematis.

7

1 Introdution

1.1 Covariane and Correlation Matries

In statistis, a random variable, say Y , is a funtion de�ned over a sample

spae,
, that has assoiated a real number, Y (e) = y, for eah outome, e,

in
. We all y an observation. The sample spae is the set of all possible

outomes of an experiment, the proess of obtaining this outome from some

phenomenon. For example, a random variable ould be `The number of threes

in an integer' if the sample spae onsists of all integers, and for the outome

3003 we have Y (3003) = 2.

A sample is a subset of the sample spae, and we say a random variable is

sampled if we measure the values y from this subset only.

We an measure the spread or dispersion of the sampled random variable,

and all this quantity the sample variane. Similarly we an measure how two

sampled random variables vary relative to eah other and all this the sample

ovariane of the two random variables. Another measure between two random

variables is their orrelation oeÆient. The orrelation oeÆient is a measure

of the linear relation between the two variables. It takes values between �1

and 1, where 1 indiates perfet positive orrelation and �1 perfet negative

orrelation. Perfet orrelation arises if x and y are vetors of observations for

two sampled random variables and x = ky; k 2 R. We give formal de�nitions

of the sample ovariane and sample orrelation oeÆient later.

If we have a olletion of sampled random variables we an onstrut sample

ovariane matries and sample orrelation matries. The (i; j) element of a

8

sample ovariane matrix is the ovariane of the ith and jth random variables.

Similarly the (i; j) element of a sample orrelation matrix is the orrelation

oeÆient of the ith and jth random variables.

1.2 Appliation

Correlation matries get their name from the fat they ontain orrelation o-

eÆients, but they also arise in non-statistial appliations in numerial linear

algebra. They are used in error analysis of Cholesky fatorisation, in a pre-

onditioner for iteration methods for solving symmetri positive de�nite linear

systems and in error analysis of Jaobi methods for �nding the eigensystem of

a symmetri matrix. See [3℄ for more details.

Our appliation, however, is a statistial one, where sample ovariane and

orrelation matries are generated from stok data. We look at two problems

posed by a �nane ompany who use the matries for analysis and predition

purposes.

1.3 Properties

Covariane and orrelation matries are symmetri and positive semide�nite

(see setion 2.1.) Correlation matries have a unit diagonal sine a variable is

learly perfetly orrelated with itself.

It is well known that for a positive semide�nite matrix A

ja

ij

j �

p

a

ii

a

jj

:

Thus for orrelation matries we have

ja

ij

j � 1

and the inequality is strit if variables i and j are not perfetly orrelated.

9

1.4 Eigenvalues of a Correlation Matrix

Gershgorin's theorem states that the eigenvalues of A 2 C

n�n

lie in the union

of n disks in the omplex plane. The ith disk is given by

D

i

=

�

z 2 C : jz � a

ii

j �

n

X

j=1

j 6=i

ja

ij

j

�

; i = 1: n:

Sine a orrelation matrix, A, is symmetri all its eigenvalues are real so we

have for an eigenvalue �,

j�� 1j � n� 1:

But also A is positive semide�nite, so its eigenvalues are nonnegative and we

have �nally

0 � �

i

� n; i : n:

Furthermore, sine trae(A) =

P

n

i

�

i

;

X

i

�

i

= n:

10

2 Calulation of Covariane and Correlation

Matries

2.1 Exat Sample Covariane and Correlation Matries

There are several ways we an onstrut ovariane and orrelation matries.

Consider a matrix P 2 R

m�n

where eah olumn represents m observations

of a random variable and eah row observations at a partiular time. That is,

p

ij

is the ith observation of the jth random variable. Let S represent the sample

ovariane matrix, and R the sample orrelation matrix. Sample ovariane,

for the ith and jth random variable, is de�ned as

s

ij

=

1

m� 1

(p

i

� �p

i

)

T

(p

j

� �p

j

); (2.1)

where the oeÆient (m� 1)

�1

is alled the normalisation.

Here, p

i

and p

j

represent the ith and jth olumns of P , and �p

k

2 R the

sample mean of random variable p

k

,

�p

k

=

1

m

m

X

i=1

p

ik

:

The sample orrelation oeÆient is de�ned as

r

ij

=

(p

i

� �p

i

)

T

(p

j

� �p

j

)

kp

i

� �p

i

k

2

kp

j

� �p

j

k

2

: (2.2)

From (2.1) we an write

s

ij

=

1

m� 1

[(p

1i

� �p

i

)(p

1j

� �p

j

) + (p

2i

� �p

i

)(p

2j

� �p

j

) +

� � �+ (p

mi

� �p

i

)(p

mj

� �p

j

)℄;

11

and therefore

S =

2

6

6

6

6

6

6

4

p

11

� �p

1

p

12

� �p

2

.

.

.

p

1n

� �p

n

3

7

7

7

7

7

7

5

[p

11

� �p

1

; p

12

� �p

2

; : : : ; p

1n

� �p

n

℄

+

2

6

6

6

6

6

6

4

p

21

� �p

1

p

22

� �p

2

.

.

.

p

2n

� �p

n

3

7

7

7

7

7

7

5

[p

21

� �p

1

; p

22

� �p

2

; : : : ; p

2n

� �p

n

℄

+ � � �+

+

2

6

6

6

6

6

6

4

p

m1

� �p

1

p

m2

� �p

2

.

.

.

p

mn

� �p

n

3

7

7

7

7

7

7

5

[p

m1

� �p

1

; p

m2

� �p

2

; : : : ; p

mn

� �p

n

℄ :

If we de�ne the ith observation as q

i

= [p

i1

; p

i2

; : : : ; p

in

℄

T

2 R

n

and �p =

[�p

1

; �p

2

; : : : ; �p

n

℄ 2 R

n

as the vetor of sample means we have

S =

1

m� 1

m

X

i=1

(q

i

� �p)(q

i

� �p)

T

2 R

n�n

: (2.3)

We an write (2.2) as

r

ij

=

(m� 1)s

ij

p

(m� 1)s

ii

p

(m� 1)s

jj

;

and de�ning

D

1=2

S

= diag (s

�1=2

11

; s

�1=2

22

; : : : ; s

�1=2

nn

)

we have that the sample orrelation matrix is

R = D

1=2

S

SD

1=2

S

2 R

n�n

: (2.4)

12

We an write (2.3) as

S =

1

m� 1

(P

T

� �pe

T

)(P

T

� �pe

T

)

T

=

1

m� 1

(P

T

� �pe

T

)(P � e�p

T

);

where e = [1; 1; : : : ; 1℄ 2 R

m

. Now, we an write

�p = m

�1

P

T

e;

so

S =

1

m� 1

(P

T

�m

�1

P

T

ee

T

)(P �m

�1

ee

T

P)

=

1

m� 1

P

T

(I

m

�m

�1

ee

T

)(I

m

�m

�1

ee

T

)P;

where I

m

is the m�m identity matrix. Now, I

m

�

1

m

ee

T

is idempotent so

S =

1

m� 1

P

T

(I

m

�m

�1

ee

T

)P:

Now m

�1

ee

T

is rank 1 with nonzero eigenvalue 1, so I

m

�m

�1

ee

T

has one

zero eigenvalue, and the remainder are 1. Hene S is positive semide�nite with

rank at most the rank of I

m

�m

�1

ee

T

whih is m � 1 (and ertainly � n, as

S 2 R

n�n

). For S to be positive de�nite we learly need m > n, that is, more

observations than variables.

It is worth noting the rank of S and R will be redued if there is any

linear dependene, either by two random variables being perfetly orrelated

or more generally if a olumn of P an be written as a linear ombination of

other olumns. Also if one variable is atually a onstant then it will have zero

variane and all the ovarianes involving it will also be zero.

We de�ne COV(P) and COR(P) to be the sample ovariane and orrela-

tion matries respetively, omputed from the sample data matrix P , and refer

to these as exat. (See Appendix A.1 for gen ov.m whih omputes COV(P)

and gen or.m whih omputes COR(P).)

13

2.2 Approximate Sample Covariane and Correlation

Matries

In the �nane appliation not all elements of the sample data matrix P are

known. That is, at a given moment in time it is not possible to reord the

value of all the stoks. Thus we need a method to ompute an approximate

ovariane and orrelation matrix. One suh method is a pairwise deletion

method.

We represent the missing data matrix elements by NaNs. We use (2.1) to

ompute eah element of the ovariane matrix, but we use only the data that

is available at ommon times for both variables. For example if we have

p

i

=

2

6

6

6

6

6

6

6

6

6

4

p

i1

NaN

p

i3

p

i4

p

i5

3

7

7

7

7

7

7

7

7

7

5

; p

j

=

2

6

6

6

6

6

6

6

6

6

4

p

j1

p

j2

p

j3

NaN

p

j5

3

7

7

7

7

7

7

7

7

7

5

;

then in the omputation of s

ij

we use only those omponents for whih data is

available in both vetors. Thus

�p

i

=

1

3

[p

i1

+ p

i3

+ p

i5

℄ ; �p

j

=

1

3

[p

j1

+ p

j3

+ p

j5

℄ ;

and the normalisation of m� 1 is replaed with the e�etive sample size minus

one, giving

s

ij

=

1

2

h

p

i1

� �p

i

p

i3

� �p

i

p

i5

� �p

i

i

2

6

6

6

4

p

j1

� �p

j

p

j3

� �p

j

p

j5

� �p

j

3

7

7

7

5

:

It is obvious that nothing in this method will fore S to be positive semidef-

inite. We all this S an approximate ovariane matrix.

14

The approximate orrelation matrix R is alulated from (2.4). Note that

alulating an approximateR from (2.2) in an analogous way to an approximate

S above is not equivalent.

We de�ne COV(P) and COR(P) to be the approximate sample ovariane

and orrelation matries respetively, omputed from the data matrix P with

missing elements. (See Appendix A.1 for ov bar.m whih omputes COV(P)

and or bar.m whih omputes COR(P).)

Inde�nite ovariane and orrelation matries are a ommon problem. It

has been reported on the MathWorks web site [16℄ that inde�nite ovariane

matries an be generated due to round-o� error when a small number of

observations are supplied to funtions ov and ewstats in MATLAB.

Users of Sienti� Software International's statistial software LISTREL

have also found the same problems due to, among other reasons, pairwise

deletion methods for dealing with inomplete data sets [13℄.

Finally, Finanial Engineering Assoiates In.'s MakeVC [6℄ software laims

to reognise the problem and make ovariane matries positive de�nite if they

are not already.

15

3 Testing

In this hapter we desribe the test data we will use for our experiments.

3.1 Test Data

We use data that is the sale pries of the top 8 ompanies from the NASDAQ

100 on August 10th, 2001. The pries are for Aug 1st, 2001 and those at the

�rst trading day of the previous nine months. See Table 3.1.

B

i

o

g

e

n

P

A

C

C

A

R

E

l

e

t

r

o

n

i

A

r

t

s

I

n

.

A

m

g

e

n

I

n

.

e

B

a

y

I

n

.

M

i

r

o

s

o

f

t

Q

u

a

l

o

m

m

I

n

.

N

V

I

D

I

A

C

o

r

p

.

1 Nov 00 59.875 42.734 47.938 60.359 54.016 69.625 61.500 62.125

1 De 00 53.188 49.000 39.500 64.813 34.750 56.625 83.000 44.500

2 Jan 01 55.750 50.000 38.938 62.875 30.188 43.375 70.875 29.938

1 Feb 01 65.500 51.063 45.563 69.313 48.250 62.375 85.250 46.875

1 Mar 01 69.938 47.000 52.313 71.016 37.500 59.359 61.188 48.219

2 Apr 01 61.500 44.188 53.438 57.000 35.313 55.813 51.500 62.188

1 May 01 59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080

1 Jun 01 61.230 48.700 60.300 68.580 61.250 70.340 61.590 90.350

2 Jul 01 52.900 52.690 54.230 61.670 68.170 70.600 57.870 88.640

1 Aug 01 57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840

Table 3.1: Sale Pries for 8 NASDAQ Companies

16

Some values are removed to simulate an inomplete data set, giving the follow-

ing matrix, with a NaN representing the missing data:

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

59:875 42:734 47:938 60:359 54:016 69:625 61:500 62:125

53:188 49:000 39:500 NaN 34:750 NaN 83:000 44:500

55:750 50:000 38:938 NaN 30:188 NaN 70:875 29:938

65:500 51:063 45:563 69:313 48:250 62:375 85:250 NaN

69:938 47:000 52:313 71:016 NaN 59:359 61:188 48:219

61:500 44:188 53:438 57:000 35:313 55:813 51:500 62:188

59:230 48:210 62:190 61:390 54:310 70:170 61:750 91:080

61:230 48:700 60:300 68:580 61:250 70:340 NaN NaN

52:900 52:690 54:230 NaN 68:170 70:600 57:870 88:640

57:370 59:040 59:870 62:090 61:620 66:470 65:370 85:840

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (3.1)

3.2 Test Mahine

All omputation was undertaken using MATLAB 6 on a 350 MHz Pentium II

running Linux.

17

4 The Nearest Correlation Matrix Problem

4.1 The Problem

We look at the problem of �nding

min

�

kA�Xk

F

: X is a orrelation matrix with ertain elements �xed

	

(4.1)

where A = A

T

2 R

n�n

. Our interest is in the ase when A = COR(P) is an

approximate orrelation matrix and has some exat entries. kAk

2

F

=

P

i;j

a

2

ij

is the Frobenius norm.

We observe that all orrelations involving a variable with missing entries

will be approximate. From the omputation of our approximate orrelation

matrix we an see that a missing element in P will a�et a whole row and

olumn of A. That is, a missing element for the ith random variable will ause

the ith row and the ith olumn to be approximate in the omputed orrelation

matrix.

Sine the order of variables in the orrelation matrix is arbitrary we an

permute any two rows and orresponding olumns. So we an arrange our ap-

proximate orrelation matrix, A, for the data matrix, P , ontaining k olumns

of data with no missing entries as

2

4

E B

B

T

C

3

5

;

where E = E

T

2 R

k�k

is the prinipal submatrix ontaining the exat orre-

lations between the stoks 1 : k, B 2 R

k�(n�k)

is approximate as it holds the

18

orrelations between stoks that have missing data and those whih do not,

and C = C

T

2 R

(n�k)�(n�k)

ontains the approximate orrelations between the

n� k stoks that have data missing. Note that E will be positive semide�nite

as it is an exat orrelation matrix.

Thus we seek a nearest orrelation matrix X to A suh that

x

ij

= e

ij

; 1 � i; j � k:

.

In [10℄ a solution is found to the problem

min

�

kW

1=2

(A�X)W

1=2

k

F

: X is a orrelation matrix

	

by an alternating projetions algorithm, where W is a symmetri positive def-

inite matrix of weights. We follow the same approah and ompare how using

the weighted method to try and preserve exat orrelations ompares with our

diret solution of the problem.

Also we onsider an approah of applying sequential quadrati programming

and ask whether a matrix ompletion method is suitable.

4.2 Alternating Projetions

We de�ne

hA;Bi = trae(A

T

B);

whih is an inner produt on R

n�n

that indues the Frobenius norm.

We de�ne also the sets

� =

�

Y = Y

T

2 R

n�n

: Y � 0

�

;

�

E

=

�

Y = Y

T

=

2

4

E B

B

T

C

3

5

2 R

n�n

; B 2 R

k�(n�k)

;

C 2 R

(n�k)�(n�k)

; y

ii

� 1

�

;

19

where Y � 0 means that Y is positive semide�nite.

We seek the matrix in the intersetion of � and �

E

whih is losest to A in

the unweighted Frobenius norm, where E is the exat part of A as desribed

above.

Sine our sets are both losed and onvex, so is there intersetion, so

from [14, p. 69℄, for example, it follows that the minimum in (4.1) is ahieved

and it is ahieved at a unique matrix X.

Charaterisation

The solution, X in (4.1), is haraterised by the ondition [14, p. 69℄

hZ �X;A�Xi � 0; for all Z 2 � \ �

E

: (4.2)

Here, Z is of the form

Z =

2

4

E Z

1

Z

T

1

Z

2

3

5

: (4.3)

The normal one of a onvex set K � R

n�n

at B 2 K is

�K(B) =

�

Y = Y

T

2 R

n�n

: hZ � B; Y i � 0 for all Z 2 K

�

=

�

Y = Y

T

2 R

n�n

: hY;Bi = sup

Z2K

hY; Zi

�

: (4.4)

The ondition (4.2) an be rewritten as A � X 2 �(� \ �

E

)(X), the normal

one to � \ �

E

at X.

For two onvex sets K

1

and K

2

; �(K

1

\K

2

)(B) = �K

1

(B) + �K

2

(B) if the

relative interiors of the two set have a point in ommon [17, Cor. 23.8.1℄. Thus

we have

A�X 2 ��(X) + ��

E

(X) (4.5)

sine any matrix of the form

2

4

E B

B

T

I

3

5

20

whih is positive de�nite (where I is the (n� k)� (n� k) identity matrix) is

in the relative interiors of � and �

E

.

So we assume that E is positive de�nite, whih implies that we must have

more observations than stoks with omplete data sets, sine, as we saw in

setion 2.1, the rank of E is at most min(m� 1; k). Thus we only onsider the

ase that m � k + 1 and E is positive de�nite.

From [10℄ with W = I we have

��(A) =

�

Y = �V DV

T

;where V 2 R

n�p

has orthonormal olumns

spanning null(A) and D = diag(d

i

) � 0

	

: (4.6)

Lemma 4.1 For A 2 �

E

(A);

��

E

(A) =

�

Y = Y

T

=

2

4

F 0

0 H

3

5

: F 2 R

k�k

arbitrary;

H = diag(h

ii

) arbitrary

�

:

Proof. Any Z 2 �

E

(A) is of the form (4.3) with diag(Z

2

) = I. Let

Y =

2

4

F G

G

T

H

3

5

2 ��

E

(A):

If G 6= 0 or H 6= diag(h

ii

) we an hoose (Z

1

)

ij

or (Z

2

)

ij

in (4.3) arbitrarily

large and the same sign as G

ij

and H

ij

6= 0, respetively, and violate the sup

ondition (4.4). Therefore G = 0 and H = diag(h

ii

) and any suh Y satis�es

the sup ondition. �

Write

V DV

T

=

2

4

(V DV

T

)

11

(V DV

T

)

12

(V DV

T

)

21

(V DV

T

)

22

3

5

;

where (V DV

T

)

11

2 R

k�k

.

21

Theorem 4.1 The orrelation matrix X solves (4.1) if and only if

X = A + V DV

T

+

2

4

F 0

0 H

3

5

where V 2 R

n�p

has orthonormal olumns spanning null(X), D = diag(d

i

) � 0

and F = �(V DV

T

)

11

and H = diag(h

ii

) is arbitrary.

Proof The result follows from ondition (4.5) on applying (4.6) and

Lemma 4.1 and noting that F is ompletely determined by the need to preserve

E. �

Now, if a

ii

� 1, whih is true in the �nane appliation, we also have the

following theorem whih generalises [10, Thm. 2.5℄

Theorem 4.2 If A has diagonal elements a

ii

� 1 and t nonpositive eigenvalues

then the nearest orrelation matrix that preserves the exat part, E, has at least

t zero eigenvalues.

Proof. From Theorem 4.1 we have

X = A + V DV

T

+

2

4

F 0

0 H

3

5

;

where V DV

T

is positive semide�nite, and hene F = �(V DV)

T

11

and the

diagonal matrix H are negative semide�nite (sine E is preserved in the former

ase and sine a

ii

� 1 in the latter ase.) So if A has t nonpositive eigenvalues

then

A+

2

4

F 0

0 H

3

5

(4.7)

has at least t nonpositive eigenvalues, from a standard result for symmetri

matries [11, Thm. 4.3.1℄. Now the perturbation V DV

T

of rank at most p

to (4.7) produes nonnegative eigenvalues, so from a standard result for low

rank perturbations [11, Thm. 4.3.6℄ we must have p � t. Now p is the dimension

of the null spae of X, by Theorem 4.1, and hene the result follows. �

22

Alternating Projetions

The idea of alternating projetions is to �nd in the intersetion of a �nite

number of sets, fSg

n

i

, a point nearest to some starting point, by repeating the

operation

A (P

n

: : : (P

2

(P

1

(A))))

where P

i

is the projetion on to the set S

i

. The idea was �rst analysed by von

Neumann [20℄ who showed that if we have two sets that are losed subspaes of

a Hilbert spae then this iteration onverges to the point nearest the starting

point.

If we have losed onvex sets instead of subspaes it has been shown that

the onvergene result does not hold, and instead the onvergene an be to a

non-optimal point [8℄. In this ase we an use a orretion, due to Dykstra [5℄,

for eah projetion as follows: for n sets and a starting point A,

�

i

0

= 0; X

i

0

= A; i = 1: n

for k = 1; 2; : : :

for i = 1: n

�

i

k

= X

(i+1 mod n)

k�1

��

i

k�1

X

i

k

= P

i

(�

i

k

)

�

i

k

= X

i

k

� �

i

k

end

end

Applying this algorithm the X

i

k

; i = 1: n, all onverge to the desired nearest

point [2℄.

Finally, if a set is the translate of a subspae then the orresponding or-

retion an be omitted [2℄.

Now � and �

E

are both losed onvex sets so we apply an alternating

projetions algorithm with a orretion only for �, sine �

E

is a translate of a

subspae.

23

From [10℄, with W = I, the projetion onto � is

P

�

(A) = Qdiag(max(�

i

; 0))Q

T

;

where A = Q�Q

T

is a spetral deomposition, with Q orthogonal and � =

diag(�

i

).

The projetion onto �

E

is, in view of Lemma 4.1,

P

�

E

(A) = (p

ij

); p

ij

=

8

>

>

>

<

>

>

>

:

e

ij

; 1 � i; j � k;

1; i = j > k;

a

ij

; otherwise.

Algorithm 4.1 Given the matrix A = A

T

2 R

n�n

with exat elements e

ij

=

a

ij

; 1 � i; j � k, and with E = (e

ij

) positive de�nite, this algorithm omputes

the nearest orrelation matrix in the Frobenius norm that preserves E.

�

0

= 0; Y

0

= A

for k = 1; 2; : : :

�

k

= Y

k�1

��

k�1

% �

k�1

is Dykstra's orretion

X

k

= P

�

(�

k

)

�

k

= X

k

� �

k

Y

k

= P

�

E

(X

k

)

end

Note if E is not positive semide�nite the alternating projetions algorithm

will not onverge. Every priniple sub-matrix of a positive semide�nite matrix

is itself positive semide�nite. Thus if E is not then no matrix ontaining it will

be either, thus there is no intersetion of the sets � and �

E

and no onvergene

of the algorithm.

Weighted Norm

We now onsider a weighted Frobenius norm from [10℄

min

�

kW

1=2

(A�X)W

1=2

k

F

: X is a orrelation matrix

	

; (4.8)

24

for the ase where W

1=2

is diagonal, and with

A =

2

4

E B

B

T

C

3

5

;

with E �xed. We try to enourage E to be preserved by the following weighting

W

1=2

= (w

ij

) =

8

>

>

>

<

>

>

>

:

f; i = j � k;

1; i = j > k;

0; otherwise;

where f � 1 is hosen to try to fore x

ij

� e

ij

; 1 � i; j � k: A diagonal

weighting means, elementwise, for W

1=2

= (w

ii

) we seek

min k(w

ii

(a

ij

� x

ij

)w

jj

)k

F

:

so although E is heavily weighted and C is unweighted we are undesirably

weighting B also.

We apply the alternating projetion algorithm of [10℄ whih solves (4.8),

with no elements in A �xed.

4.3 Experiments

Using our test data (3.1) we generated the approximate orrelation matrix

R = COR(P)

R =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1:0000 �0:3250 0:1881 0:5760 0:0064 �0:6111 �0:0724 �0:1589

�0:3250 1:0000 0:2048 0:2436 0:4058 0:2730 0:2869 0:4241

0:1881 0:2048 1:0000 �0:1325 0:7658 0:2765 �0:6172 0:9006

0:5760 0:2436 �0:1325 1:0000 0:3041 0:0126 0:6452 �0:3210

0:0064 0:4058 0:7658 0:3041 1:0000 0:6652 �0:3293 0:9939

�0:6111 0:2730 0:2765 0:0126 0:6652 1:0000 0:0492 0:5964

�0:0724 0:2869 �0:6172 0:6452 �0:3293 0:0492 1:0000 �0:3983

�0:1589 0:4241 0:9006 �0:3210 0:9939 0:5964 �0:3983 1:0000

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

whih has eigenvalues

�

R

= [

�0:2498 �0:0160 0:0895 0:2192 0:7072 1:7534 1:9611 3:5355

℄

T

:

25

We �rst omputed the nearest orrelation matrix, with E empty, using an

unweighted version of the algorithm in [10℄ (see near or.m in Appendix A.2),

using default toleranes for onvergene of the algorithm, namely

kY

k

�X

k

k

1

kY

K

k

1

� 1:0e�5;

1.0e-5 for onvergene of the eigenvalues found in the MEX routine and 1.0e-4

for de�ning the positivity of the eigenvalues.

All the MATLAB M-�les use a MEX interfae for the eigendeomposition

instead of using a MATLAB built-in funtion. This was done to inrease the

eÆieny of the algorithms and details are given in Setion 6.

Using near or.m gave

R

N

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1:0000 �0:3112 0:1889 0:5396 0:0268 �0:5925 �0:0621 �0:1921

�0:3112 1:0000 0:2050 0:2265 0:4148 0:2822 0:2915 0:4088

0:1889 0:2050 1:0000 �0:1468 0:7880 0:2727 �0:6085 0:8802

0:5396 0:2265 �0:1468 1:0000 0:2137 0:0015 0:6069 �0:2208

0:0268 0:4148 0:7880 0:2137 1:0000 0:6580 �0:2812 0:8762

�0:5925 0:2822 0:2727 0:0015 0:6580 1:0000 0:0479 0:5932

�0:0621 0:2915 �0:6085 0:6069 �0:2812 0:0479 1:0000 �0:4470

�0:1921 0:4088 0:8802 �0:2208 0:8762 0:5932 �0:4470 1:0000

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

whih has eigenvalues

�

R

N

= [

3:3233e�17 �2:8662e�16 0:0381 0:1731 0:6894

1:9217 1:7117 3:4661

℄

T

:

So R

N

is a orrelation matrix as required. The algorithm onverged in 10

iterations in less than half a seond, and

kR� R

N

k

F

= 0:2960:

We now apply Algorithm 4.1 knowing that part of R is exat, namely the

upper left orner

E =

2

6

6

6

4

1:0000 �0:3250 0:1881

�0:3250 1:0000 0:2048

0:1881 0:2048 1:0000

3

7

7

7

5

:

26

This is implemented by or exat.m (see Appendix A.2). With k = 3 and the

default toleranes, we obtain

R

E

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1:0000 �0:3250 0:1881 0:5375 0:0258 �0:5899 �0:0625 �0:1927

�0:3250 1:0000 0:2048 0:2251 0:4145 0:2838 0:2914 0:4081

0:1881 0:2048 1:0000 �0:1462 0:7882 0:2720 �0:6084 0:8805

0:5375 0:2251 �0:1462 1:0000 0:2141 0:0001 0:6071 �0:2203

0:0258 0:4145 0:7882 0:2141 1:0000 0:6570 �0:2810 0:8762

�0:5899 0:2838 0:2720 0:0001 0:6570 1:0000 0:0475 0:5929

�0:0625 0:2914 �0:6084 0:6071 �0:2810 0:0475 1:0000 �0:4469

�0:1927 0:4081 0:8805 �0:2203 0:8762 0:5929 �0:4469 1:0000

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

(4.9)

whih has eigenvalues

�

R

N

= [

1:0359e�17 6:3707e�17 0:0379 0:1736 0:6885

1:9226 1:7111 3:4664

℄

T

;

whih illustrates Theorem 4.2, and

kR� R

E

k

F

= 0:2967:

The algorithm onverged in 10 iterations and again in less than half a seond.

This matrix is not as near to R as R

N

, as expeted sine R

N

is the nearest

orrelation matrix to R.

We now apply the weighted algorithm (see or weight.m in Appendix A.2)

with default tolerane to try to fore E to be preserved.

If we let

W = diag ([

4:0 4:0 4:0 1:0 1:0 1:0 1:0 1:0

℄)

27

then we have after 12 iterations

R

W

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1:0000 �0:3247 0:1880 0:5667 0:0083 �0:6046 �0:0711 �0:1639

�0:3247 1:0000 0:2048 0:2389 0:4070 0:2762 0:2876 0:4214

0:1880 0:2048 1:0000 �0:1322 0:7680 0:2744 �0:6163 0:8989

0:5667 0:2389 �0:1322 1:0000 0:2127 0:0622 0:5974 �0:1849

0:0083 0:4070 0:7680 0:2127 1:0000 0:6585 �0:2799 0:8756

�0:6046 0:2762 0:2744 0:0622 0:6585 1:0000 0:0506 0:5740

�0:0711 0:2876 �0:6163 0:5974 �0:2799 0:0506 1:0000 �0:4553

�0:1639 0:4214 0:8989 �0:1849 0:8756 0:5740 �0:4553 1:0000

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

However,

kR� R

W

k

F

= 0:3323:

Furthermore, we an see that the foring in insuÆient to preserve E.

By empirial testing we �nd that with

W = diag ([

6:8 6:8 6:8 1:0 1:0 1:0 1:0 1:0

℄)

we have, after 15 iterations

R

W

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1:0000 �0:3250 0:1881 0:5720 0:0071 �0:6083 �0:0719 �0:1608

�0:3250 1:0000 0:2048 0:2416 0:4063 0:2744 0:2872 0:4231

0:1881 0:2048 1:0000 �0:1320 0:7665 0:2755 �0:6169 0:9001

0:5720 0:2416 �0:1320 1:0000 0:2101 0:0797 0:5960 �0:1817

0:0071 0:4063 0:7665 0:2101 1:0000 0:6568 �0:2788 0:8761

�0:6083 0:2744 0:2755 0:0797 0:6568 1:0000 0:0498 0:5738

�0:0719 0:2872 �0:6169 0:5960 �0:2788 0:0498 1:0000 �0:4550

�0:1608 0:4231 0:9001 �0:1817 0:8761 0:5738 �0:4550 1:0000

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Note that E is preserved to the �gures shown. However now

kR� R

W

k

F

= 0:3448;

whih is signi�antly bigger than kR � R

E

k

F

. This result is not surprising

given the undesired weighting of B.

28

4.4 Sequential Quadrati Programming

We now examine the same problem using Sequential Quadrati Programming

(SQP). SQP uses a quasi-Newton method at eah iteration, solves a quadrati

approximation sub-problem and generates a line searh. See [7℄, for example,

for an overview.

From Theorem 4.2 we an write

X = x

1

x

T

1

+ x

2

x

T

2

+ � � �+ x

n�t

x

T

n�t

;

and form the onstrained optimization problem

min

x

kA� x

1

x

T

1

� x

2

x

T

2

� � � � � x

n�t

x

T

n�t

k

F

;

subjet to maintaining the unit diagonal

n�t

X

k=1

x

2

ki

= 1; i = 1: n;

and preserving E, whih gives the additional k

2

� k onstraints for the o�-

diagonal elements, whih redues to (k

2

� k)=2 by symmetry:

n�t

X

k=1

x

ki

x

kj

= e

ij

; i = 1: k � 1; j = i+ 1: k:

where x

ki

is the ith element of x

k

, and

x =

�

x

T

1

; x

T

2

; : : : ; x

T

n�t

�

T

:

We solve this nonlinear equality onstrained optimization problem with

SQP, using MATLAB's fminon whih implements an SQP algorithm, part of

its Optimization Toolbox; see [15℄ for details.

4.5 Experiments

Our test data (3.1) was used one more, with t = 2. (See Appendix A.3 for

the alling sript �le sqp run.m and the funtion fun.m and onstraint on.m.)

29

The default toleranes for fminon were used for terminating the algorithm.

These were all 1.0e-6, for hanges in the funtion value, the onstraints and

the vetor x.

Empirial tests showed that fminon onverged to a matrix of ones if x

0

,

the starting vetor for the optimization, was a onstant vetor, inluding zero.

Also if the any of the x

i

is a multiple of another this same non-optimal solution

was often found.

It was found that random values of x gave onvergene to the desired opti-

mal solution (4.9).

The solution was

R

O

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1:0000 �0:3250 0:1881 0:5375 0:0257 �0:5898 �0:0625 �0:1928

�0:3250 1:0000 0:2048 0:2251 0:4144 0:2838 0:2914 0:4083

0:1881 0:2048 1:0000 �0:1462 0:7883 0:2722 �0:6083 0:8804

0:5375 0:2251 �0:1462 1:0000 0:2142 0:0002 0:6071 �0:2202

0:0257 0:4144 0:7883 0:2142 1:0000 0:6571 �0:2808 0:8764

�0:5898 0:2838 0:2722 0:0002 0:6571 1:0000 0:0475 0:5932

�0:0625 0:2914 �0:6083 0:6071 �0:2808 0:0475 1:0000 �0:4470

�0:1928 0:4083 0:8804 �0:2202 0:8764 0:5932 �0:4470 1:0000

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where eah value is within 3e-04 of those in (4.9) and E is preserved, to the

�gures shown, as required.

The speed of onvergene obviously varies due to the random starting ve-

tor x

0

, but typially onvergene was ahieved in 12 seonds, in around 50

iterations with 2500 funtion alls.

This implies that an SQP method will be muh slower for larger matries,

whih our �nane appliation involves. So we then tested both the alternating

projetions and SQP algorithms on an approximate orrelation matrix, gen-

erated from a data matrix P 2 R

60�80

of NASDAQ stok with 80 missing

elements, exat part E 2 R

20�20

and t = 29. The alternating projetion al-

gorithm, with onvergene tolerane set to equal that for the SQP algorithm,

onverged in 1.7 seonds but the SQP algorithm took 2 hours and 59 minutes.

30

4.6 Matrix Completions

Here we onsider whether amatrix ompletion approah is suitable to solve (4.1).

Methods are disussed in [12℄ to omplete a matrix to be positive (semi)de�nite

from a partial (semi)de�nite matrix. A partial matrix is a matrix where only

some elements are known, and a partial (semi)de�nite matrix has all its prin-

ipal submatries, omprising of these known entries, individually positive

(semi)de�nite, a neessary ondition for the full matrix to be so. The the-

ory looks at prinipal submatries of an n�n matrix of size r� r; r < n of the

form

2

6

6

6

4

y b

T

x

b A

x

T

z

3

7

7

7

5

; (4.10)

where A 2 R

(r�2)�(r�2)

and x is the unknown entry.

For a ompletion to be possible there is the ondition that the undireted

graph made of the known entries is hordal. That is we form a graph with n

nodes, joining the ith and jth nodes if the (i; j) element is a known one, and

all this line an edge; we omit the loops at eah node representing the (i; i)

element. Now, we de�ne a simple iruit as a olletion of nodes joined in a

loop with no other intersetions aross that loop. Finally if our graph ontains

no simple iruits of length four or more than the graph is said to be hordal.

To demonstrate, onsider the following two symmetri matries, with known

entries marked X, and unknown entries marked ?:

A =

2

6

6

6

6

6

6

6

6

6

4

X X X X ?

X X ? X X

X ? X X ?

X X X X X

? X ? X X

3

7

7

7

7

7

7

7

7

7

5

; B =

2

6

6

6

6

6

6

6

6

6

4

X X X ? ?

X X ? ? X

X ? X X ?

? ? X X X

? X ? X X

3

7

7

7

7

7

7

7

7

7

5

:

31

Then we have the orresponding graphs:

A's graph is hordal, but B's is not, as there is a simple iruit of length 5.

It is obvious that the hordal ondition is met in our ase. All our known

elements form the full matrix E, and a full matrix learly gives a hordal graph,

sine every node is onneted to every other node.

One approah to solve (4.1) ould be to form submatries like (4.10) taking

x to be eah of the approximate entries in turn. In [12℄ formula are given to

alulate an interval for x, so we an use this to set eah approximate entry

to one that is losest to its original value within this interval. However, any

approximate entry will be in a row and olumn of unknown entries. Thus, even

for r = 3, 2 R is unknown and we must take z as the diagonal entry. So

we are fored to trust an approximate entry to give with no knowledge what

the umulative e�et of this would be. Also, we do not have a strategy for

ordering the approximate values, noting that subsequent submatries will use

previously adjusted approximate values. Thus ompletion methods are of no

use for solving our problem.

4.7 Conlusions

Using an unweighted version of the alternating projetions algorithm in [10℄ is

learly inappropriate as it fails to preserve the orrelations that are known to

be exat. The weighted algorithm is also unsuitable as the weighting needed

to preserve the exat elements undesirably weights B. However Algorithm 4.1

produes the desired optimal matrix.

32

This SQP method is learly apable of �nding the optimal solution for

suitable starting values, but as the timings show this method is too slow. The

algorithm takes nearly three hours to onverge for n = 80 and the �nane

appliation requires n > 1000.

However, the timings for the alternating projetions algorithm are enour-

aging. Also in [10℄ its shown that the unweighted algorithm for a matrix of

n = 1399 onverges to the solution in 37 minutes, using the same MEX inter-

fae, on a 1Ghz Pentium III, so we onlude that this method is of pratial

use and is indeed being used by the �nane ompany.

33

5 The Nearest Covariane Matrix Problem

Another problem posed by the �nane ompany is onerned with ovariane

matries. We wish to determine how the missing elements in P should be

hosen to give the nearest ovariane matrix to an approximate one.

5.1 The Problem

Again we have a P 2 R

m�n

data matrix. And it is �rst required to ompute

Ln(P) 2 R

(m�1)�n

, whih is a standard proedure for �nanial data as the

resulting matrix is onsidered easier and more appropriate to work with, where

Ln(P) = l

ij

= ln(p

i+1;j

=p

i;j

); i = 1: m� 1; j = 1: n;

where both p

i+1;j

and p

i;j

are not missing. Clearly for eah missing entry in

P we have two unde�ned entries in Ln(P). If either p

i+1;j

or p

i;j

is missing

then we set l

ij

= NaN. We note that Ln(P) an be any matrix in R

(m�1)�n

for

suitable hoie of P .

We then form the approximate sample ovariane matrix COV(Ln(P)) 2

R

n�n

using the method desribed in Setion 2.2.

De�nition: An extension of a matrix P 2 R

m�n

with missing data is de�ned

by P

E

2 R

m�n

having no missing data and if p

ij

is not missing then p

E

ij

= p

ij

The problem is to �nd the extension P

E

of P that solves

min

P

E

kCOV(Ln(P))� COV(Ln(P

E

))k

F

: (5.1)

We make the observation that if we �nd the nearest ovariane matrix to

COV(Ln(P)) of the form COV(L), then should we be able to �nd L we annot

34

reover P

E

from L = Ln(P

E

) as, in general,

p

ij

=

p

i+1j

exp(l

ij

)

6= exp(l

i�1j

)p

i�1j

:

We also note that it is not lear that we an �nd the solution COV(Ln(P

E

))

that is equal to the nearest ovariane matrix. For example onsider using the

data in Table 3.1 to form a data matrix with one missing element:

P

1

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

59:875 42:734 47:938 60:359 54:016 69:625 61:500 NaN

53:188 49:000 39:500 64:813 34:750 56:625 83:000 44:500

55:750 50:000 38:938 62:875 30:188 43:375 70:875 29:938

65:500 51:063 45:563 69:313 48:250 62:375 85:250 46:875

69:938 47:000 52:313 71:016 37:500 59:359 61:188 48:219

61:500 44:188 53:438 57:000 35:313 55:813 51:500 62:188

59:230 48:210 62:190 61:390 54:310 70:170 61:750 91:080

61:230 48:700 60:300 68:580 61:250 70:340 61:590 90:350

52:900 52:690 54:230 61:670 68:170 70:600 57:870 88:640

57:370 59:040 59:870 62:090 61:620 66:470 65:370 85:840

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Now, S = COV(Ln(P

1

)) is

S =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0:0117 �0:0016 0:0090 0:0066 0:0096 0:0076 �0:0000 0:0003

�0:0016 0:0057 �0:0036 0:0027 0:0003 �0:0004 0:0128 �0:0006

0:0090 �0:0036 0:0152 0:0025 0:0202 0:0153 �0:0039 0:0155

0:0066 0:0027 0:0025 0:0117 0:0073 0:0072 0:0118 0:0047

0:0096 0:0003 0:0202 0:0073 0:0901 0:0527 0:0161 0:0516

0:0076 �0:0004 0:0153 0:0072 0:0527 0:0385 0:0136 0:0468

�0:0000 0:0128 �0:0039 0:0118 0:0161 0:0136 0:0425 0:0255

0:0003 �0:0006 0:0155 0:0047 0:0516 0:0468 0:0255 0:0738

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and the nearest ovariane matrix is the nearest positive semide�nite matrix,

35

given by S

N

= P

�

(S):

S

N

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0:0118 �0:0014 0:0089 0:0066 0:0097 0:0074 �0:0002 0:0005

�0:0014 0:0059 �0:0037 0:0028 0:0004 �0:0007 0:0126 �0:0000

0:0089 �0:0037 0:0152 0:0024 0:0202 0:0154 �0:0039 0:0154

0:0066 0:0028 0:0024 0:0117 0:0073 0:0071 0:0118 0:0048

0:0097 0:0004 0:0202 0:0073 0:0901 0:0525 0:0160 0:0517

0:0074 �0:0007 0:0154 0:0071 0:0525 0:0389 0:0138 0:0465

�0:0002 0:0126 �0:0039 0:0118 0:0160 0:0138 0:0426 0:0253

0:0005 �0:0003 0:0154 0:0048 0:0517 0:0465 0:0253 0:0740

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

with

kS � S

N

k

F

= 0:0012:

Empirial tests show that there is no value to replae the NaN in P

1

that

an give S

N

= COV(Ln(P

1

)). This is not surprising, we have far less variables

than we had in the nearest orrelation matrix problem.

We optimize with the missing elements as variables.

5.2 Multi-Diretional Searh Optimization

Multi-Diretional Searh (MDS) is a diret searh method. Diret searh meth-

ods use funtion values but not derivatives to determine the searh diretion,

requiring only that the funtion be ontinuous. These methods are used when

derivatives are not available or are ill-behaved in the domain of interest. At

eah iteration the funtion is evaluated on a given set of points inluding the

urrent iterate. The MDS algorithm uses a simplex, and analysis of the fun-

tion values generates the next set of points. See [18℄, [19℄ and [4℄ for details of

this algorithm.

For r missing elements, e, in P we seek

min

e

1

;::: ;e

r

kCOV(Ln(P))� COV(Ln(P (e

1

; : : : ; e

r

)))k

F

36

where e

1

; : : : ; e

r

denote the missing elements of P , the r = 9 NaNs in (3.1) for

example, whih form a vetor for our optimization.

We use mdsmax, whih is part the Test Matrix Toolbox [9℄. This routine

aims to maximise a given funtion, thus we supply a funtion of the form

�kCOV(Ln(P))� COV(Ln(P (e

1

; : : : ; e

r

)))k

F

;

and note that a funtion value of zero orresponds to a `perfet' extension.

5.3 Experiments

From our test data we have L= Ln(P) (see gen lnp.m in Appendix A.1):

L =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�0:1184 0:1368 �0:1936 NaN �0:4411 NaN 0:2998 �0:3337

0:0470 0:0202 �0:0143 NaN �0:1407 NaN �0:1579 �0:3964

0:1612 0:0210 0:1571 NaN 0:4690 NaN 0:1847 NaN

0:0656 �0:0829 0:1381 0:0243 NaN �0:0496 �0:3316 NaN

�0:1286 �0:0617 0:0213 �0:2199 NaN �0:0616 �0:1724 0:2544

�0:0376 0:0871 0:1517 0:0742 0:4305 0:2289 0:1815 0:3816

0:0332 0:0101 �0:0309 0:1108 0:1203 0:0024 NaN NaN

�0:1462 0:0787 �0:1061 NaN 0:1070 0:0037 NaN NaN

0:0811 0:1138 0:0989 NaN �0:1010 �0:0603 0:1219 �0:0321

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

This matrix gives the following approximate sample ovariane matrix S =

COV(Ln(P)):

S =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0:0117 �0:0016 0:0090 0:0102 0:0140 �0:0016 �0:0018 �0:0082

�0:0016 0:0057 �0:0036 0:0063 �0:0079 0:0040 0:0176 �0:0081

0:0090 �0:0036 0:0152 0:0024 0:0329 0:0034 �0:0072 0:0330

0:0102 0:0063 0:0024 0:0222 �0:0057 0:0100 0:0151 0:0187

0:0140 �0:0079 0:0329 �0:0057 0:1046 0:0270 0:0038 0:1155

�0:0016 0:0040 0:0034 0:0100 0:0270 0:0123 0:0214 0:0260

�0:0018 0:0176 �0:0072 0:0151 0:0038 0:0214 0:0557 �0:0023

�0:0082 �0:0081 0:0330 0:0187 0:1155 0:0260 �0:0023 0:1192

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

The eigenvalues of S are

�

S

= [

�0:0244 �0:0022 �0:0011 0:0024 0:0241 0:0271 0:0760 0:2446

℄

T

:

37

We have a lower bound for (5.1), given by the nearest ovariane matrix P

�

(S)

kS � P

�

(S)k

F

= 0:0245:

We now all mdsmax with [x,fmax,nf℄=mdsmax(�mdsfun,x0,stop) where

the inputs are respetively our funtion to be maximised (see Appendix A.4

for mdsfun.m), a starting vetor and a vetor of stopping riteria and options.

An iteration is terminated if the relative size of the simplex is less than or

equal to stop(1) (we use 1e-04), the maximum number stop(2) of allowed

funtion evaluations is exeeded (we use inf), or if the maximum allowed value

stop(3) for the funtion evaluations is exeeded (we obviously use 0.) We also

set stop(4)=0 for a regular simplex and stop(5)=1 to output progress of the

iteration.

The outputs give the vetor giving the maximum funtion value, the fun-

tion value at that point and the number of funtion evaluations, respetively.

We try several starting vetors, ordered so the �rst element represents the

(2,4) element in (3.1) and then ontinues olumn-wise from top to bottom.

First we try an initial vetor of values suh that their di�erene is equal to

the two known entries above and below in P , that is,

x

0

=

(63:3 66:3 65:3 41:5 67:2 65:0 59:8 39:0 89:8):

(5.2)

After 80 iteration with 1468 funtion alls the algorithm onverged to the

solution

x

1

=

(75:8982 60:5820 59:2138 30:9588 72:69031

57:315 45:1410 58:3263 108:2271);

with

kCOV(Ln(P))� COV(Ln(P (x)))k

F

= 0:0605:

38

We now try initial values of the smallest integer value, rounded down, for

eah olumn ontaining the missing entry, that is

x

0

=

(57:0 57:0 57:0 30:0 55:0 55:0 57:0 29:0 29:0):

(5.3)

After 70 iteration with 1324 funtion alls the algorithm onverged to

x

2

=

(72:5486 59:1316 71:4367 30:4268 72:5953

57:3579 76:4600 57:990 71:3162):

Here

kCOV(Ln(P))� COV(Ln(P (x)))k = 0:0627:

We then try an initial vetor of the highest integer value, rounded up, for

eah olumn ontaining the missing entry,

x

0

=

(71:0 71:0 71:0 69:0 71:0 71:0 86:0 92:0 92:0):

This gave the same �nal vetor, x

2

, as (5.3) gave with the same number of

iterations and funtion alls.

It appears we have two loal minima, and we are unertain if one is a global

minimum. We also try very low and very high values (onstant vetors of 2s

and 200s) and they onverge to the same minimum for that of (5.2).

Eah onvergene took around 90 seonds to ompute.

If we replae our missing entries in (3.1) with these two minima, we have

from x

1

P

E1

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

59:875 42:734 47:938 60:359 54:016 69:625 61:500 62:125

53:188 49:000 39:500 75:898 34:750 72:690 83:000 44:500

55:750 50:000 38:938 60:582 30:188 57:315 70:875 29:938

65:500 51:063 45:563 69:313 48:250 62:375 85:250 58:326

69:938 47:000 52:313 71:016 30:959 59:359 61:188 48:219

61:500 44:188 53:438 57:000 35:313 55:813 51:500 62:188

59:230 48:210 62:190 61:390 54:310 70:170 61:750 91:080

61:230 48:700 60:300 68:580 61:250 70:340 45:141 108:227

52:900 52:690 54:230 59:214 68:170 70:600 57:870 88:640

57:370 59:040 59:870 62:090 61:620 66:470 65:370 85:840

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

39

and from x

2

P

E2

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

59:875 42:734 47:938 60:359 54:016 69:625 61:500 62:125

53:188 49:000 39:500 72:549 34:750 72:595 83:000 44:500

55:750 50:000 38:938 59:132 30:188 57:358 70:875 29:938

65:500 51:063 45:563 69:313 48:250 62:375 85:250 57:990

69:938 47:000 52:313 71:016 30:427 59:359 61:188 48:219

61:500 44:188 53:438 57:000 35:313 55:813 51:500 62:188

59:230 48:210 62:190 61:390 54:310 70:170 61:750 91:080

61:230 48:700 60:300 68:580 61:250 70:340 76:460 71:316

52:900 52:690 54:230 71:437 68:170 70:600 57:870 88:640

57:370 59:040 59:870 62:090 61:620 66:470 65:370 85:840

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Note we an redue the amount of alulations in this method if we add an

if statement to ov bar to alulate only ovarianes for i or j greater than

k. This makes a saving of O(k

2

m) oating point operations. And we make

appropriate alterations in mdsfun, to obtain the orret value of the norm.

5.4 Conlusions

With areful hoie of starting vetors this method an provide some insight

into a possible solution. Now, no �nanial analysis is o�ered here, but it

worth noting that the values 45.141 and 108.227 in P

E

1

appear unrealisti

(they represent the smallest and largest values in their olumn respetively)

ompared to their orresponding values in P

E

2

, but COV(Ln(P

E

1

)) is nearer

to COV(Ln(P)). Sine the problem is to �nd the missing values of P it is

not obvious that we an aept the nearest matrix without some �nanial

interpretation.

40

6 EÆient Implementation

Our algorithms for the alternating projetions method of solving the nearest

orrelation problem require us to �nd only the positive eigenvalues of a sym-

metri matrix, and their assoiated eigenvetors. Thus it is obvious that alling

MATLAB's eig funtion is wasteful as it returns all the eigenvalues and ve-

tors. MATLAB does, however, supply the eigs funtion that an return a

spei�ed range of eigenvalues. However, eigs uses an iterative method and

is most suited to sparse matries, and ours, of ourse, are dense. Obtaining

these required eigenvalues and vetors is learly the most expensive part of the

algorithm, thus we attempt to speed this proess up by writing a MATLAB

MEX �le that alls an appropriate LAPACK routine.

6.1 MEX �les

MATLAB allows you to write Fortran and C subroutines and use them as if

they were your own M-�le routines. These MEX �les are dynamially linked

subroutines that the MATLAB interpreter an automatially load and exeute.

The motivation for this feature is to allow users to use pre-existing Fortran

and C ode without the need to rewrite them as M-�les and also to inrease

eÆieny by overoming bottleneks in MATLAB suh as its for loops. Here

we implement a C MEX �le to enable us to all an LAPACK routine diretly.

41

6.2 LAPACK

LAPACK [1℄ is transportable olletion of linear algebra subroutines designed

to be eÆient on a wide range of modern high-performane omputers. MAT-

LAB 6 itself is built on LAPACK. We use the library routine desevr (all LA-

PACK routines are supplied with MATLAB 6) to obtain the desired positive

eigenvalues and their assoiated eigenvetors. This routine redues the matrix

to tridiagonal form and then uses a bisetion method and inverse iteration.

6.3 Some Timings

We ompare the performane of our MEX routine (see Appendix B for MEX

soure ode �le eig mex.) against MATLAB's eigs. We use an approximate

orrelation matrix, supplied by the �nane ompany, of size 1399, and ompute

di�erent numbers of its largest eigenvalues. See Table 6.1.

Number of Time with Time with

eigenvalues eigs (ses) eig mex (ses)

280 278.7 52.9

140 75.4 42.1

70 56.7 38.9

28 29.2 37.4

Table 6.1: Comparison of MATLAB's eigs vs. eig mex MEX �le for a dense

orrelation matrix

So the MEX subroutine is learly more eÆient than eigs for our dense

matrix when we are omputing more than a small number of eigenvalues.

42

7 Conluding Remarks

The Nearest Correlation Matrix Problem

For the problem of omputing the nearest orrelation matrix to a symmetri

matrix with �xed elements, we have examined the suitability of three di�erent

approahes, namely alternating projetions, sequential quadrati programming

and matrix ompletion methods. We have found that the method of alternating

projetions is the only eÆient method to guarantee a solution. This extends

the theory and algorithm of [10℄. Also, this method is fast enough for pratial

use.

The Nearest Covariane Matrix Problem

For the problem of omputing the nearest ovariane matrix we have investi-

gated possible solutions using a multi-diretional searh optimization method.

We have found that this method an produe a solution; however there is some

unertainty as to the usefulness of this solution. Further work is needed to

establish the underlying theory of the problem and also some �nanial analysis

of the solutions obtained is required.

43

Appendies

A MATLAB M-Files

A.1 Computation of S and R M-�les

gen ov.m

This routines produes the same output as ov(P) in MATLAB.

funtion S=gen_ov(P)

%GEN_COV Calulates sample ovariane matrix.

%

% S=GEN_COV(P)

%

% Produes an n-by-n ovariane matrix based on

% data of size m-by-n. n olumns of different

% random variables observed at m different times.

%

% INPUT: P data matrix

%

% OUTPUT: S sample ovariane matrix

[m,n℄=size(P);

I=eye(m);

O=ones(m)/(m);

S=(1/(m-1))*P'*(I-O)*P;

% ensure symmetry

S=(S+S')/2;

gen or.m

This routines produes the same output as orroef(P) in MATLAB.

funtion R=gen_or(P)

44

%GEN_COR Calulates sample orrelation matrix.

%

% S=GEN_COR(P)

%

% Produes an n-by-n orrelation matrix based on

% data of size m-by-n. n olumns of different

% random variables observed at m different times.

%

% INPUT: P data matrix

%

% OUTPUT: R sample orrelation matrix

[m,n℄=size(P);

S=gen_ov(P);

D=diag(1./sqrt(diag(S)));

R=D*S*D;

ov bar.m

funtion S = ov_bar(P)

%COV_BAR Calulates approximate sample ovariane matrix.

%

% S=COV_BAR(P)

%

% Produes an n-by-n approx ovariane matrix based on

% data of size m-by-n. n olumns of different

% random variables observed at m different times.

% P has missing data represented by NaNs.

%

% INPUT: P data matrix

%

% OUTPUT: S approx sample ovariane matrix

[m,n℄ = size(P);

45

S = zeros(n);

for i = 1:n

xi = P(:,i);

for j=1:i

xj = P(:,j);

% reate mask for data values that are 'ommon'

p = ~isnan(xi) & ~isnan(xj);

S(i,j) = (xi(p) - mean(xi(p)))'*(xj(p) - mean(xj(p)));

% normalise over effetive sample size i.e. sum(p)-1

S(i,j) = 1/(sum(p)-1)*S(i,j);

S(j,i) = S(i,j);

end

end

or bar.m

funtion R = or_bar(P)

%COR_BAR Calulates approximate sample orrelation matrix.

%

% S=COR_BAR(P)

%

% Produes an n-by-n approx orrelation matrix based on

% data of size m-by-n. n olumns of different

% random variables observed at m different times.

% P has missing data represented by NaNs.

%

% INPUT: P data matrix

%

% OUTPUT: R approx sample orrelation matrix

46

[m,n℄=size(P);

S=ov_bar(P);

D=diag(1./sqrt(diag(S)));

R=D*S*D;

gen lnp.m

funtion L=gen_lnp(P)

%GEN_LNP Compute L(i,j)=Ln(P(i+1,j)/P(i,j))

%

% L = GEN_LNP(P)

%

% If either P(i+1,j) or P(i,j) is NaN then

% L(i,j)=NaN.

%

% INPUT: P (m+1)-by-n matrix

%

% OUTPUT: L n-by-n matrix

[m,n℄=size(P);

k=m-1;

for j=1:n

for i=1:k

L(i,j)=log(P(i+1,j)/P(i,j));

end

end

47

A.2 Alternating Projetion M-Files

The onvergene riterion is taken from [10℄.

near or.m

funtion X=near_or(A,tol,maxits)

%NEAR_COR Computes the nearest orrelation matrix.

%

% X = NEAR_COR(A,tol,maxits)

%

% Computes the nearest orrelation matrix

% to an approximate orrelation matrix,

% i.e. not positive semidefinite.

%

% INPUT: A n-by-n approx orrelation matrix

% tol vetor of size three or omit for defaults

% tol(1) onvergene tolerane for algorithm,

% default 1.0e-5

% tol(2) onvergene tolerane for eig_mex mex

% routine, default 1.0e-5

% tol(3) defines relative positiveness of

% eigenvalues ompared to largest,

% default 1.0e-4

% maxits maximum number of iterations allowed

%

% tol optional, maxits optional if tol inl.

%

% OUTPUT: X nearest orrelation matrix to A

if ~isequal(A,A')

error('Error: Input matrix A must be square and symmetri')

end

if nargin < 2

onv_tol = 1.0e-5;

mex_tol = 1.0e-5;

eig_tol = 1.0e-4;

else

48

onv_tol = tol(1);

mex_tol = tol(2);

eig_tol = tol(3);

end

if nargin < 3, maxits = 100; end

[m,n℄=size(A);

U=zeros(n);

Y=A;

iter=0;

[V,D℄=eig(Y);

d=diag(D);

% define 'positiveness' relative to largest eigenvalue

num_pos= sum(d >= eig_tol*d(n));

while 1

T=Y-U;

% PROJECT ONTO PSD MATRICES

[Q,d℄=eig_mex(T,num_pos,mex_tol);

D=diag(d);

% reate mask from relative positive eigenvalues

p=(d>eig_tol*d(n));

% use p mask to only ompute 'positive' part

X=Q(:,p)*D(p,p)*Q(:,p)';

% UPDATE DYKSTRA'S CORRECTION

U=X-T;

% PROJECT ONTO UNIT DIAG MATRICES

49

Y=X;

for i=1:n

Y(i,i)=1;

end

iter = iter + 1;

if iter==maxits

fprintf('Max its exeeded'), break, end

% onvergene test

if norm(Y-X,'inf')/norm(Y,'inf') <= onv_tol, break,end

end

fprintf('||A-X||_F: %2.4f\n',norm(A-X,'fro'))

fprintf('Number of iterations taken: %4.0f\n',iter)

or exat.m

funtion X=or_exat(A,k,tol,maxits)

%COR_EXACT Computes the nearest orrelation matrix w/exat part.

%

% X = COR_EXACT(A,k,tol,maxits)

%

% Computes the nearest orrelation matrix to an approximate

% orrelation matrix (not positive semidefinite) w/exat part.

%

% INPUT: A n-by-n approx orrelation matrix,

% with exat part of the form | E B^T |

% | B C |

% E is k-by-k and is exat

% C is (n-k)-by-(n-k), B and C are approx.

% E must be psd

% k size of E

% tol vetor of size three or omit for defaults

50

% tol(1) onvergene tolerane for algorithm,

% default 1.0e-5

% tol(2) onvergene tolerane for eig_mex mex

% routine, default 1.0e-5

% tol(3) defines relative positiveness of

% eigenvalues ompared to largest,

% default 1.0e-4

% maxits maximum number of iterations allowed

%

% tol optional, maxits optional if tol inl.

%

% OUTPUT: X nearest orrelation matrix to A

[m,n℄=size(A);

if (nargin > 1) & (k <= n)

E=A(1:k,1:k);

d=eig(E);

end

if nargin < 3

onv_tol = 1.0e-5;

mex_tol = 1.0e-5;

eig_tol = 1.0e-4;

else

onv_tol = tol(1);

mex_tol = tol(2);

eig_tol = tol(3);

end

if ~isequal(A,A')

error('Error: Input matrix A must be square and symmetri')

elseif nargin < 2

error('Error: k must be speified')

elseif k > n

error('Error: k too large')

elseif sum(d >= eig_tol*d(k)) ~= k

error('Error: E must be positive semidefinite')

end

51

if nargin < 4, maxits = 100; end

U=zeros(n);

Y=A;

iter=0;

[V,D℄=eig(Y);

d=diag(D);

% define 'positiveness' relative to largest eigenvalue

num_pos= sum(d >= eig_tol*d(n));

while 1

T=Y-U;

% PROJECT ONTO SIGMA

[Q,d℄=eig_mex(T,num_pos,mex_tol);

D=diag(d);

% reate mask from relative positive eigenvalues

p=(d>eig_tol*d(n));

% use p mask to only ompute 'positive' part

X=Q(:,p)*D(p,p)*Q(:,p)';

% UPDATE DYKSTRA'S CORRECTION

U=X-T;

% PROJECT ONTO SIGMA_E

Y=X;

Y(1:k,1:k)=E;

for i=k+1:n

Y(i,i)=1;

end

52

iter = iter + 1;

if iter==maxits

fprintf('Max its exeeded'), break, end

% onvergene test

if norm(Y-X,'inf')/norm(Y,'inf') <= onv_tol, break,end

end

fprintf('||A-X||_F: %2.4f\n',norm(A-X,'fro'))

fprintf('Number of iterations taken: %4.0f\n',iter)

or weight.m

funtion X=or_weight(A,W,tol,maxits)

%COR_WEIGHT Computes nearest orretion matrix, weighted.

%

% X = COR_WEIGHT(A,W,tol,maxits)

%

% Computes the nearest orrelation matrix to an approximate

% orrelation matrix (not positive semidefinite) subjet

% to weighting, i.e min|| W^(1/2) (A-X) W^(1/2)||_F

% where W is diagonal. Note: input W is W^(1/2).

%

% INPUT: A n-by-n approx orrelation matrix

% W diaganol matrix of weights

% tol vetor of size three or omit for defaults

% tol(1) onvergene tolerane for algorithm,

% default 1.0e-5

% tol(2) onvergene tolerane for eig_mex mex

% routine, default 1.0e-5

% tol(3) defines relative positiveness of

% eigenvalues ompared to largest,

% default 1.0e-4

53

% maxits maximum number of iterations allowed

%

% tol optional, maxits optional if tol inl.

%

% OUTPUT: X nearest orrelation matrix to A

[m,n℄=size(A);

[mw,nw℄=size(W);

if ~isequal(A,A')

error('Error: Input matrix A must be square and symmetri')

elseif nargin < 2

error('Error: W must be speified')

elseif ~isequal(A,A')

error('Error: W must be square and symmetri')

elseif n ~= nw

error('Error: A and W must be onformable')

end

if nargin < 3

onv_tol = 1.0e-5;

mex_tol = 1.0e-5;

eig_tol = 1.0e-4;

else

onv_tol = tol(1);

mex_tol = tol(2);

eig_tol = tol(3);

end

if nargin < 4, maxits = 100; end

U=zeros(n);

Y=A;

iter=0;

Winv=W^(-1);

% weighting preserves inertia we an use Y

54

[V,D℄=eig(Y);

d=diag(D);

% define 'positiveness' relative to largest eigenvalue

num_pos= sum(d >= eig_tol*d(n));

while 1

T=Y-U;

% PROJECT ONTO PSD MATRICES

[Q,d℄=eig_mex(W*T*W,num_pos,mex_tol);

D=diag(d);

% reate mask from relative positive eigenvalues

p=(d>eig_tol*d(n));

% use p mask to only ompute 'positive' part

X=Winv*(Q(:,p)*D(p,p)*Q(:,p)')*Winv;

% UPDATE DYKSTRA'S CORRECTION

U=X-T;

% PROJECT ONTO UNIT DIAG MATRICES

Y=X;

for i=1:n

Y(i,i)=1;

end

iter = iter + 1;

if iter==maxits

fprintf('Max its exeeded \n'), break, end

% onvergene test

if norm(Y-X,'inf')/norm(Y,'inf') <= onv_tol, break,end

end

55

fprintf('||A-X||_F: %2.4f\n',norm(A-X,'fro'))

fprintf('Number of iterations taken: %4.0f\n',iter)

56

A.3 M-Files for fminon

sqp run.m

% Sript file for finding the nearest orrelation matrix to

% A below using FMINCON

% Set random starting vetor

for i=1:48

x0(i)=rand;

end

% A is our approx orrelation matrix

A= [1.0000 -0.3250 0.1881 0.5760 0.0064 -0.6111 -0.0724 -0.1589;

-0.3250 1.0000 0.2048 0.2436 0.4058 0.2730 0.2869 0.4241;

0.1881 0.2048 1.0000 -0.1325 0.7658 0.2765 -0.6172 0.9006;

0.5760 0.2436 -0.1325 1.0000 0.3041 0.0126 0.6452 -0.3210;

0.0064 0.4058 0.7658 0.3041 1.0000 0.6652 -0.3293 0.9939;

-0.6111 0.2730 0.2765 0.0126 0.6652 1.0000 0.0492 0.5964;

-0.0724 0.2869 -0.6172 0.6452 -0.3293 0.0492 1.0000 -0.3983;

-0.1589 0.4241 0.9006 -0.3210 0.9939 0.5964 -0.3983 1.0000℄;

% We know onstant values

n=8;

t=6; %t is atually n-t

k=3;

ti

% Set options for fminon, mediumsale algorithm

% and need many funtion evaluations. Default tolerane

opt=optimset('Largesale','off','MaxFunEvals',10000);

[x,f,fl,out℄=fminon(�fun,x0,[℄,[℄,[℄,[℄,[℄,[℄,�on,opt,A,n,t,k)

to

% hek onstraints

[,eq℄=on(x,A,n,t,k)

% reonstrut X

X=zeros(n);

57

for i=1:t

y=x((i-1)*n+1:i*n);

X=X+y'*y;

end

X

fun.m

funtion f=fun(x,A,n,t,k)

%FUN Funtion to be minimises in FMINCON.

%

% f = FUN(x,A,n,t,k)

%

% Construts matrix X from the latest vetor x

% and alulates Frobenius norm of matrix minus

% the approximate orrelation matrix.

%

% INPUT: x urrent vetor

% A approx orrelation matrix

% n size of A

% t number of positive eigenvalues

% k size of exat part of A (Not used)

%

% OUTPUT: f funtion value

% onstrut orrelation matrix from vetor

X=zeros(n);

for i=1:t

y=x((i-1)*n+1:i*n);

X=X+y'*y;

58

end

f=norm(A-X,'fro');

on.m

funtion [,eq℄=on(x,A,n,t,k)

%CON Nonlinear equality onstraint for FMINCON.

%

% [,eq℄ = CON(x,A,n,t,k)

%

% Supplies the onstraints neessary to obtain unit

% diagonal of orrelation matrix and preserve

% exat part of approximate orrelation matrix 'E'.

%

% INPUT: x urrent vetor

% A approx orrelation matrix

% n size of A

% t number of positive eigenvalues

% k size of exat part of A

%

% OUTPUT: inequality onstraint (zero)

% eq equality onstraint vetor

% empty inequality onstraint

=0;

% equality onstraint for unit diaganol of X

for i=1:n

eq(i)=sum(x(i:n:(t-1)*n + i).^2) - 1;

end

l=n+1;

% onstraint for preserving 'E'

if k >0

59

for i=1:k-1

for j=i+1:k

eq(l)=sum(x(i:n:(t-1)*n+i).*x(j:n:(t-1)*n+j))-A(i,j);

l=l+1;

end

end

end

60

A.4 M-File Funtion for mdsmax

mdsfun.m

funtion f=mdsfun(x)

%MDSFUN Funtion for use with MDSMAX to find nearest ov matrix

%

% f = MDSFUN(x)

%

% INPUT: x urrent vetor

%

% OUTPUT: f funtion value

%

% data matrix P with missing elements

P=[59.875 42.734 47.938 60.359 54.016 69.625 61.500 62.125;

53.188 49.000 39.500 x(1) 34.750 x(5) 83.000 44.500

55.750 50.000 38.938 x(2) 30.188 x(6) 70.875 29.938;

65.500 51.063 45.563 69.313 48.250 62.375 85.250 x(8) ;

69.938 47.000 52.313 71.016 x(4) 59.359 61.188 48.219;

61.500 44.188 53.438 57.000 35.313 55.813 51.500 62.188;

59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080;

61.230 48.700 60.300 68.580 61.250 70.340 x(7) x(9);

52.900 52.690 54.230 x(3) 68.170 70.600 57.870 88.640;

57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840℄;

% S = ov_bar(gen_lnp(P)) the approx ovariane matrix

% omputed from P above (with NaNs instead of the x(i)

S=[0.0117 -0.0016 0.0090 0.0102 0.0140 -0.0016 -0.0018 -0.0082;

-0.0016 0.0057 -0.0036 0.0063 -0.0079 0.0040 0.0176 -0.0081;

0.0090 -0.0036 0.0152 0.0024 0.0329 0.0034 -0.0072 0.0330;

0.0102 0.0063 0.0024 0.0222 -0.0057 0.0100 0.0151 0.0187;

0.0140 -0.0079 0.0329 -0.0057 0.1046 0.0270 0.0038 0.1155;

-0.0016 0.0040 0.0034 0.0100 0.0270 0.0123 0.0214 0.0260;

-0.0018 0.0176 -0.0072 0.0151 0.0038 0.0214 0.0557 -0.0023;

-0.0082 -0.0081 0.0330 0.0187 0.1155 0.0260 -0.0023 0.1192℄;

% Generate new Ln(P) with x(i) values, and orresponding

% ovariane matrix

L=gen_lnp(P);

V=ov_bar(L);

61

% we seek to min||S-V||

% hene minus sign sine using mdsmax

f=-norm(S-V,'fro');

62

B MEX �le for Partial Eigendeomposition

eig mex.

/*

* C mex file for MATLAB that implements LAPACK dsyevr_ for

* for finding largest 'num' eigenvalues and their orresponding

* vetors of a symmetri real matrix

*

* [Q,d℄=eig_mex(A,num,tol)

*

* INPUT: A need only have upper triangular part

* num number of largest eigs required

* tol as required by dsyevr_

*

* OUTPUT: d(1:num) required eigenvalues

* Q(1:num,:) orthonormal eigenvetors

*/

#inlude "mex.h"

#inlude "matrix.h"

void mexFuntion(int nlhs, mxArray *plhs[℄, int nrhs, onst

mxArray *prhs[℄) {

/* jobz=V to get eigvetors, range=I for ILth to IUth eigs */

/* vu, vl not referened by LAPACK routine */

har *jobz = "V", *range = "I", *uplo = "U", msg[80℄;

int n, num, lda, il, iu, *m, ldz, lwork, *iwork;

int liwork, *isuppz, info;

double *a, *vu, *vl, abstol, *w, *z, *work;

mxArray *org;

/* expet 3 inputs and 2 outputs */

if ((nrhs != 3) || (nlhs != 2)){

mexErrMsgTxt("Expeted 3 inputs and 2 outputs");

}

63

/* opy input matrix so it's not destroyed */

org = mxDupliateArray(prhs[0℄);

a=mxGetPr(org);

/* get dimension of A via number of ols */

n = mxGetN(prhs[0℄);

/* assume input array is square */

lda = n;

/* set dimension of output */

ldz = n;

/* get biggest 'num' eigs */

num = mxGetSalar(prhs[1℄);

iu = n;

il = n-num+1;

/* set work spae dimensions (not optimised) */

lwork = 26*n;

liwork = 10*n;

/* set toleranes for eigs */

abstol = mxGetSalar(prhs[2℄);

/* alloate all workspae */

work = (double *)mxCallo(lwork,sizeof(double));

iwork = (int *)mxCallo(liwork,sizeof(int));

isuppz = (int *)mxCallo(2*num,sizeof(int));

/* must alloate m, it's referened */

m=(int *)mxCallo(1,sizeof(int));

/* must also alloate variables NOT referened */

vl = (double *)mxCallo(1,sizeof(double));

vu = (double *)mxCallo(1,sizeof(double));

/* set output, then set pointers to them */

plhs[0℄=mxCreateDoubleMatrix(n,n,mxREAL);

z=mxGetPr(plhs[0℄);

64

plhs[1℄=mxCreateDoubleMatrix(n,1,mxREAL);

w=mxGetPr(plhs[1℄);

info=0;

dsyevr_(jobz,range,uplo,&n,a,&lda,vl,vu,&il,&iu,&abstol,m,w,z,

&ldz,isuppz,work,&lwork,iwork,&liwork,&info);

if(info < 0){

sprintf(msg, "input %d to DSYEVR had illegal input",-info);

mexErrMsgTxt(msg);

}

/* Free up memory */

mxFree(work);

mxFree(iwork);

mxFree(isuppz);

mxFree(m);

mxFree(vl);

mxFree(vu);

}

65

Referenes

[1℄ E. Anderson, Z. Bai, C. Bishof, S. Blakford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. MKenney, and D. Soren-

son. LAPACK Users' Guide, 3rd Edition. Soiety for Industrial and

Applied Mathematis, Philadelphia, PA, USA, 1999.

[2℄ J. P. Boyle and R. L. Dykstra. A method for �nding projetions onto

the intersetion of onvex sets in Hilbert spaes. In Advanes in Order

Restrited Inferene, volume 37 of Leture Notes in Statistis, Springer-

Verlag, Berlin, 1985, pages 28{47.

[3℄ P. I. Davies and Niholas J. Higham. Numerially stable generation of or-

relation matries and their fators. BIT, 40(4):640{651, November 2000.

[4℄ J. E. Dennis, Jr. and V. Torzon. Diret searh methods on parallel ma-

hines. SIAM Journal of Optimization, 1(4):448{474, November 1991.

[5℄ Rihard L. Dykstra. An algorithm for restrited least squares regression.

J. Amer. Stat. Asso., 78(384):837{842, 1983.

[6℄ FEA. URL: http://www.fea.om/home.htm.

[7℄ Philip E. Gill, Walter Murray, and Margaret H. Wright. Pratial Op-

timization. path|Aademi Press, Boston, MA, USA, 1981. xvi + 401

pp.

[8℄ Shih-Ping Han. A suessive projetion method. Math prog, 40:1{14,

November 1988.

[9℄ Niholas J. Higham. The Test Matrix Toolbox for Matlab (version 3.0).

Numerial Analysis Report No. 276, Manhester Centre for Computational

Mathematis, Manhester, England, September 1995.

66

[10℄ Niholas J. Higham. Computing the nearest orrelation matrix|A prob-

lem from �nane. Numerial Analysis Report No. 369, Manhester Centre

for Computational Mathematis, Manhester, England, Otober 2000. 14

pp. Revised July 2001.

[11℄ Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge

University Press, 1985. xiii+561 pp. ISBN 0-521-30586-1.

[12℄ C. R. Johnson. Matrix ompletion problems: a survey. In Matrix theory

and appliations, Amer. Math. So., Providene, RI, 1990, pages 171{198.

[13℄ LISTREL. Frequently asked questions number 3. URL: http://www.

utexas.edu//faqs/stat/lisrel/lisrel3.html.

[14℄ David G. Luenberger. Optimization by Vetor Spae Methods. Wiley, New

York, 1969. xvii+326 pp. ISBN 0-471-55359-X.

[15℄ MathWorks. Optimization toolbox user's guide version 2. URL:

http://www.mathworks.om/aess/helpdesk/help/pdf_do/optim/

optim_tb.pdf.

[16℄ MathWorks. Solution number: 23117. URL: http://www.mathworks.

om/support/solutions/data/23117.shtml.

[17℄ R. Tyrrell Rokafellar. Convex Analysis. Prineton University Press,

Prineton, NJ, USA, 1970. xviii+451 pp. ISBN 0-691-08069-0.

[18℄ Virginia J. Torzon. Multi-Diretional Searh: A Diret Searh Algorithm

for Parallel Mahines. PhD thesis, Rie University, Houston, TX, USA,

May 1989. vii+85 pp.

[19℄ Virginia J. Torzon. On the onvergene of the multidiretional searh

algorithm. SIAM J. Optimization, 1(1):123{145, 1991.

67

[20℄ J. von Neumann. Funtional Operators (Vol. II). Prineton University

Press, Prineton, NJ, 1950.

68

