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Abstract

We look at two matrix nearness problems posed by a finance company, where
nearness is measured in the Frobenius norm. Correlation and covariance matri-
ces are computed from sampled stock data with missing entries by a technique
that produces matrices that are not positive semidefinite. In the first problem
we find the nearest correlation matrix that is positive semidefinite and preserves
any correlations known to be exact. In the second problem we investigate how
the missing elements in the data should be chosen in order to generate the
nearest covariance matrix to the indefinite matrix from the completed set of
data. We show how the former problem can be solved using an alternating
projections algorithm and how the latter problem can be investigated using a

multi-directional search optimization method.
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1 Introduction

1.1 Covariance and Correlation Matrices

In statistics, a random wvariable, say Y, is a function defined over a sample
space, €, that has associated a real number, Y(e) = y, for each outcome, e,
in Q. We call y an observation. The sample space is the set of all possible
outcomes of an experiment, the process of obtaining this outcome from some
phenomenon. For example, a random variable could be ‘The number of threes
in an integer’ if the sample space consists of all integers, and for the outcome
3003 we have Y (3003) = 2.

A sample is a subset of the sample space, and we say a random variable is
sampled if we measure the values y from this subset only.

We can measure the spread or dispersion of the sampled random variable,
and call this quantity the sample variance. Similarly we can measure how two
sampled random variables vary relative to each other and call this the sample
covariance of the two random variables. Another measure between two random
variables is their correlation coefficient. The correlation coefficient is a measure
of the linear relation between the two variables. It takes values between —1
and 1, where 1 indicates perfect positive correlation and —1 perfect negative
correlation. Perfect correlation arises if x and y are vectors of observations for
two sampled random variables and x = ky, k € R. We give formal definitions
of the sample covariance and sample correlation coefficient later.

If we have a collection of sampled random variables we can construct sample

covariance matrices and sample correlation matrices. The (i,j) element of a



sample covariance matrix is the covariance of the ith and jth random variables.
Similarly the (i,j) element of a sample correlation matrix is the correlation

coefficient of the 7th and jth random variables.

1.2 Application

Correlation matrices get their name from the fact they contain correlation co-
efficients, but they also arise in non-statistical applications in numerical linear
algebra. They are used in error analysis of Cholesky factorisation, in a pre-
conditioner for iteration methods for solving symmetric positive definite linear
systems and in error analysis of Jacobi methods for finding the eigensystem of
a symmetric matrix. See [3] for more details.

Our application, however, is a statistical one, where sample covariance and
correlation matrices are generated from stock data. We look at two problems
posed by a finance company who use the matrices for analysis and prediction

purposes.

1.3 Properties

Covariance and correlation matrices are symmetric and positive semidefinite
(see section 2.1.) Correlation matrices have a unit diagonal since a variable is
clearly perfectly correlated with itself.

It is well known that for a positive semidefinite matrix A

|aij| < Vaiiag;.
Thus for correlation matrices we have
lai;] <1

and the inequality is strict if variables ¢ and j are not perfectly correlated.



1.4 Eigenvalues of a Correlation Matrix

Gershgorin’s theorem states that the eigenvalues of A € C"*" lie in the union

of n disks in the complex plane. The ith disk is given by

n
Dl:{Z€C|Z—CLZZ|§ E |az~j|}, 1=1:n.
j=1
J#i
Since a correlation matrix, A, is symmetric all its eigenvalues are real so we

have for an eigenvalue A,
A—1<n-1.

But also A is positive semidefinite, so its eigenvalues are nonnegative and we

have finally
0< A\ <n, i:n.

Furthermore, since trace(A4) =" A;,

10



2 Calculation of Covariance and Correlation

Matrices

2.1 Exact Sample Covariance and Correlation Matrices

There are several ways we can construct covariance and correlation matrices.
Consider a matrix P € R™*™ where each column represents m observations
of a random variable and each row observations at a particular time. That is,
pij is the ith observation of the jth random variable. Let S represent the sample
covariance matriz, and R the sample correlation matriz. Sample covariance,

for the sth and jth random variable, is defined as

1 — —
Sij = l(pi - )" (0 — Pj), (2.1)

where the coefficient (m — 1)~" is called the normalisation.
Here, p;, and p; represent the ith and jth columns of P, and p; € R the

sample mean of random variable py.,

1 m
Pk = m Zpik-
=1
The sample correlation coefficient is defined as

_ i=p) (i —py)
lpi — pill2llp; — Djll2

(2.2)

Tij
From (2.1) we can write

1 _ _ _ _
Sij = m[(pu — Pi)(p1j — Dj) + (P2 — i) (p2j — Dj) +

R (,’sz‘ —pi)(pmj _pj)]’

11



and therefore

P11 — D1
D12 — P2 - - -
S = . [p11—p1,p12—p2,--- ,pln—pn]
L Pin _pn ]
P21 — D1
D22 — D2 _ _ _
+ . [p21_p17p22_p27"' Jp2n_pn]
L Dan _ﬁn ]
DPm1 — P1
Pm2 — D2 _ _ _
+ . [pml_plapm2_p27"' 7pmn_pn]
L Pmn _pn ]

If we define the ith observation as ¢; = [pi1,Di2,--- ,Pin). € R* and p =

(D1, D2, .. ,Pn] € R" as the vector of sample means we have
1 m
S=— i —0)(g —p)T € R, 2.3
m_lg,(q p)(¢i —P) (2.3)

We can write (2.2) as

= (m - ]-)Sij
! \/(m— l)sn\/(m— ]-)Sjj,
and defining
Dé'/2 = dl&g (8;11/27 5;21/27 LR 57:71/2)

we have that the sample correlation matrix is

R =DY*SDJ/? e R (2.4)

12



We can write (2.3) as

1
S = m(PT—ﬁeT)(PT—ﬁeT)T
1
— PT_—T P— T
—— pe’ )(P —ep”),
where e = [1,1,...,1] € R™. Now, we can write

p=m"'Ple,

SO

1
S = 71(PT —m~'PTee”)(P — m™'ee” P)
m J—

1
= ﬁPT(Im —m™ee”) (I, —m ™ ee”) P,

m —

where I,,, is the m x m identity matrix. Now, [, — %eeT is idempotent so

1
S = mPT(Im —m™ee”)P.

T

Now m~'ee” is rank 1 with nonzero eigenvalue 1, so I, — m~'ee” has one

zero eigenvalue, and the remainder are 1. Hence S is positive semidefinite with

Yee” which is m — 1 (and certainly < n, as

rank at most the rank of I,,, — m~
S € R™™). For S to be positive definite we clearly need m > n, that is, more
observations than variables.

It is worth noting the rank of S and R will be reduced if there is any
linear dependence, either by two random variables being perfectly correlated
or more generally if a column of P can be written as a linear combination of
other columns. Also if one variable is actually a constant then it will have zero
variance and all the covariances involving it will also be zero.

We define COV(P) and COR(P) to be the sample covariance and correla-
tion matrices respectively, computed from the sample data matrix P, and refer

to these as ezact. (See Appendix A.1 for gen_cov.m which computes COV(P)
and gen_cor.m which computes COR(P).)

13



2.2 Approximate Sample Covariance and Correlation

Matrices

In the finance application not all elements of the sample data matrix P are
known. That is, at a given moment in time it is not possible to record the
value of all the stocks. Thus we need a method to compute an approzimate
covariance and correlation matrix. One such method is a pairwise deletion
method.

We represent the missing data matrix elements by NaNs. We use (2.1) to
compute each element of the covariance matrix, but we use only the data that

is available at common times for both variables. For example if we have

| Pi1 - - Pj1 ]
NaN Dj2
bi = Pi3 | pj = Pj3 | »
Pia NaN
| Pis | | Pjs

then in the computation of s;; we use only those components for which data is

available in both vectors. Thus

1 B 1
Di = 3 [pix + pis + Pis) s p; = 3 [pj1 + pjs + pjs]

and the normalisation of m — 1 is replaced with the effective sample size minus

one, giving

Dj1 — Pj

Dit —Di Pi3 —Di Dis — Di Dj3 — Dj

NN

Sij
Pjs — Dj
It is obvious that nothing in this method will force S to be positive semidef-

inite. We call this S an approzimate covariance matrix.

14



The approximate correlation matrix R is calculated from (2.4). Note that
calculating an approximate R from (2.2) in an analogous way to an approximate
S above is not equivalent.

We define COV(P) and COR(P) to be the approximate sample covariance
and correlation matrices respectively, computed from the data matrix P with
missing elements. (See Appendix A.1 for cov_bar.m which computes COV(P)
and cor_bar.m which computes COR(P).)

Indefinite covariance and correlation matrices are a common problem. It
has been reported on the MathWorks web site [16] that indefinite covariance
matrices can be generated due to round-off error when a small number of
observations are supplied to functions cov and ewstats in MATLAB.

Users of Scientific Software International’s statistical software LISTREL
have also found the same problems due to, among other reasons, pairwise
deletion methods for dealing with incomplete data sets [13].

Finally, Financial Engineering Associates Inc.’s MakeVC [6] software claims
to recognise the problem and make covariance matrices positive definite if they

are not already.

15



3 Testing

In this chapter we describe the test data we will use for our experiments.

3.1 Test Data

We use data that is the sale prices of the top 8 companies from the NASDAQ
100 on August 10th, 2001. The prices are for Aug 1st, 2001 and those at the

first trading day of the previous nine months. See Table 3.1.

3

o)

=
w2 .
Z ER
9 @)

.9 =i g

= g = g b5 g <
=] S e =] — 72 ) —
L +© L °© = A
20 O |5) e0 > ;C') = —
2 = < g A = >
oa) o =5) < o = c z

1 Nov 00 | 59.875 42.734 47.938 60.359 54.016 69.625 61.500 62.125
1 Dec 00 | 53.188 49.000 39.500 64.813 34.750 56.625 83.000 44.500
2 Jan 01 | 55.750 50.000 38.938 62.875 30.188 43.375 70.875 29.938
1 Feb 01 | 65.500 51.063 45.563 69.313 48.250 62.375 85.250 46.875
1 Mar 01 | 69.938 47.000 52.313 71.016 37.500 59.359 61.188 48.219
2 Apr 01 | 61.500 44.188 53.438 57.000 35.313 55.813 51.500 62.188
1 May 01 | 59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080
1Jun 01 | 61.230 48.700 60.300 68.580 61.250 70.340 61.590 90.350
2Jul 01 | 52.900 52.690 54.230 61.670 68.170 70.600 57.870 88.640
1 Aug 01 | 57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840

Table 3.1: Sale Prices for 8 NASDAQ Companies

16



Some values are removed to simulate an incomplete data set, giving the follow-

ing matrix, with a NaN representing the missing data:

09.875 42.734 47.938 60.359 54.016 69.625 61.500 62.125
53.188 49.000 39.500 NaN 34.750 NaN 83.000 44.500
55.750 50.000 38.938 NaN 30.188 NaN 70.875 29.938
65.500 51.063 45.563 69.313 48.250 62.375 85.250  NaN
69.938 47.000 52.313 71.016 NaN ©59.359 61.188 48.219
61.500 44.188 53.438 57.000 35.313 55.813 51.500 62.188
59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080
61.230 48.700 60.300 68.580 61.250 70.340 NaN  NaN
52.900 52.690 54.230 NaN 68.170 70.600 57.870 88.640
57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840

3.2 Test Machine

All computation was undertaken using MATLAB 6 on a 350 MHz Pentium II

running Linux.

17



4 The Nearest Correlation Matrix Problem

4.1 The Problem

We look at the problem of finding

min {||4 — X|| : X is a correlation matrix with certain elements fixed }

(4.1)

where A = AT € R™". Our interest is in the case when A = COR(P) is an
approximate correlation matrix and has some eract entries. ||Al|% = 37, ;a;
is the Frobenius norm.

We observe that all correlations involving a variable with missing entries
will be approximate. From the computation of our approximate correlation
matrix we can see that a missing element in P will affect a whole row and
column of A. That is, a missing element for the ith random variable will cause
the 7th row and the ith column to be approximate in the computed correlation
matrix.

Since the order of variables in the correlation matrix is arbitrary we can
permute any two rows and corresponding columns. So we can arrange our ap-

proximate correlation matrix, A, for the data matrix, P, containing £ columns

of data with no missing entries as

E B
BT C

where E = ET € RF*F is the principal submatrix containing the exact corre-

lations between the stocks 1: k, B € RF*(®%) ig approximate as it holds the

18



correlations between stocks that have missing data and those which do not,
and C = CT e R(»#)x("—k) contains the approximate correlations between the
n — k stocks that have data missing. Note that F will be positive semidefinite
as it is an exact correlation matrix.

Thus we seek a nearest correlation matrix X to A such that

Tij = eij, 1<i,j <k

In [10] a solution is found to the problem
min {||W1/2(A — X)W'?||;x : X is a correlation matrix }

by an alternating projections algorithm, where W is a symmetric positive def-
inite matrix of weights. We follow the same approach and compare how using
the weighted method to try and preserve exact correlations compares with our
direct solution of the problem.

Also we consider an approach of applying sequential quadratic programming

and ask whether a matriz completion method is suitable.

4.2 Alternating Projections
We define
(A, B) = trace(A” B),

which is an inner product on R™*™ that induces the Frobenius norm.

We define also the sets
Y = {Y:YTER"X" :Yzo},
E B
Yp = {Y =y = e R™", B e R™("H),
BT C

19



where Y > 0 means that Y is positive semidefinite.

We seek the matrix in the intersection of ¥ and Y5 which is closest to A in
the unweighted Frobenius norm, where FE is the exact part of A as described
above.

Since our sets are both closed and convex, so is there intersection, so
from [14, p. 69], for example, it follows that the minimum in (4.1) is achieved

and it is achieved at a unique matrix X.
Characterisation
The solution, X in (4.1), is characterised by the condition [14, p. 69]

(Z-X,A-X)<0, forallZeXNIpg. (4.2)

Here, 7 is of the form

E 7
= (4.3)
zr 7,
The normal cone of a convex set K C R**" at B € K is
0K(B) = {Y:YTE]R"X" :(Z —B,Y) <0 for allZEK}
= {Y =YT e R™" : (Y, B) = sup (Y, Z>}. (4.4)
7K

The condition (4.2) can be rewritten as A — X € (X N Xg)(X), the normal
cone to X N Y at X.

For two convex sets K and Ky, (K, N Ky)(B) = 0K, (B) + 0K»(B) if the
relative interiors of the two set have a point in common [17, Cor. 23.8.1]. Thus

we have
A—X €dX(X)+0Xp(X) (4.5)

since any matrix of the form

E B
BT T

20



which is positive definite (where I is the (n — k) x (n — k) identity matrix) is
in the relative interiors of > and X p.

So we assume that E' is positive definite, which implies that we must have
more observations than stocks with complete data sets, since, as we saw in
section 2.1, the rank of F is at most min(m — 1, %). Thus we only consider the
case that m > k 4+ 1 and FE is positive definite.

From [10] with W = I we have

0X(A) = {Y = -V DV" where V € R has orthonormal columns

spanning null(A) and D = diag(d;) > 0}. (4.6)
Lemma 4.1 For A € Yp(A),

— —vT _ F 0 . kxk .
OXp(A) =Y =YY" = : F e R™" arbitrary,
0 H

H = diag(hy;) arbitmry}.
Proof. Any Z € ¥g(A) is of the form (4.3) with diag(Z,) = I. Let

F G
Y = € 0Xr(A).
G' H
If G # 0 or H # diag(h;;) we can choose (Z);; or (Z2);; in (4.3) arbitrarily
large and the same sign as G;; and H;; # 0, respectively, and violate the sup
condition (4.4). Therefore G = 0 and H = diag(h;;) and any such Y satisfies
the sup condition. [

Write

. (VDVT),, (VDVT)y,
(VDVT)yy (VDVT)y |

where (VDVT)11 € RExE,

21



Theorem 4.1 The correlation matriz X solves (4.1) if and only if

0
0 H

X=A+VDVT +

where V- € R™P has orthonormal columns spanning null(X), D = diag(d;) > 0
and F = —(VDV")y, and H = diag(h;;) is arbitrary.

Proof The result follows from condition (4.5) on applying (4.6) and
Lemma 4.1 and noting that F'is completely determined by the need to preserve
E. 0O

Now, if a;; > 1, which is true in the finance application, we also have the

following theorem which generalises [10, Thm. 2.5]

Theorem 4.2 If A has diagonal elements a; > 1 and t nonpositive eigenvalues
then the nearest correlation matrix that preserves the exact part, E, has at least

t zero eigenvalues.

Proof. From Theorem 4.1 we have
(7o
X=A4+VDV" 4 ,
Lo |

where VDV is positive semidefinite, and hence F = —(VDV)? and the
diagonal matrix H are negative semidefinite (since E is preserved in the former
case and since a; > 1 in the latter case.) So if A has ¢ nonpositive eigenvalues

then

F 0
A+ (4.7)
0 H

has at least ¢ nonpositive eigenvalues, from a standard result for symmetric
matrices [11, Thm. 4.3.1]. Now the perturbation VDV7 of rank at most p
to (4.7) produces nonnegative eigenvalues, so from a standard result for low
rank perturbations [11, Thm. 4.3.6] we must have p > ¢. Now p is the dimension

of the null space of X, by Theorem 4.1, and hence the result follows. [

22



Alternating Projections

The idea of alternating projections is to find in the intersection of a finite
number of sets, {S}?, a point nearest to some starting point, by repeating the

operation
A (Po. .. (P(P(A))))

where P; is the projection on to the set S;. The idea was first analysed by von
Neumann [20] who showed that if we have two sets that are closed subspaces of
a Hilbert space then this iteration converges to the point nearest the starting
point.

If we have closed convex sets instead of subspaces it has been shown that
the convergence result does not hold, and instead the convergence can be to a
non-optimal point [8]. In this case we can use a correction, due to Dykstra [5],
for each projection as follows: for n sets and a starting point A,

Aj=0,Xi = A, i=1:n

fork=1,2,...
fori=1:n
2;: X]gi_-i-ll mod n) B 2_1

Xj, = B(T})
Al = Xi_Ti
end
end
Applying this algorithm the X} ,i = 1: n, all converge to the desired nearest
point [2].
Finally, if a set is the translate of a subspace then the corresponding cor-
rection can be omitted [2].
Now ¥ and ¥ are both closed convex sets so we apply an alternating
projections algorithm with a correction only for ¥, since g is a translate of a

subspace.

23



From [10], with W = I, the projection onto X is
Ps(A) = Qdiag(max();, 0))Q",

where A = QAQT is a spectral decomposition, with @) orthogonal and A =
diag()\;).
The projection onto ¥ is, in view of Lemma 4.1,
eij, 1<1,7 <k,
Poy(A) =(pi),  py=9q1, i=j>k,
a;j, otherwise.
Algorithm 4.1 Given the matriz A = AT € R™" with ezact elements e;; =
aij, 1 <1i,j <k, and with E = (e;;) positive definite, this algorithm computes
the nearest correlation matrixz in the Frobenius norm that preserves E.
Ay=0,Yy=A
fork=1,2,...
' =Y. 1 — Ap_ % Ay_1 is Dykstra’s correction

Xp = Po(T%)
Ap =X, =T
Y = Ps,(Xy)

end

Note if E is not positive semidefinite the alternating projections algorithm
will not converge. Every principle sub-matrix of a positive semidefinite matrix
is itself positive semidefinite. Thus if F is not then no matrix containing it will
be either, thus there is no intersection of the sets ¥ and ¥z and no convergence

of the algorithm.

Weighted Norm
We now consider a weighted Frobenius norm from [10]

min {||W1/2(A — X)W'?||;x : X is a correlation matrix}, (4.8)

24



for the case where W1'/2 is diagonal, and with

E B
BT C

A=

with F fixed. We try to encourage E to be preserved by the following weighting
[ i=7j<k,
W1/2:(wi]‘): 1, 1=7>k,
0, otherwise,

where f > 1 is chosen to try to force z;; ~ e;;,1 < i,7 < k. A diagonal

weighting means, elementwise, for W'/2 = (wy;) we seek
min [ (wi(aij — i) wg;)|| -

so although F' is heavily weighted and C' is unweighted we are undesirably
weighting B also.
We apply the alternating projection algorithm of [10] which solves (4.8),

with no elements in A fixed.

4.3 Experiments

Using our test data (3.1) we generated the approximate correlation matrix
R = COR(P)

1.0000 —-0.3250  0.1881  0.5760  0.0064 —-0.6111 —-0.0724 —0.1589 ]
—0.3250  1.0000  0.2048  0.2436  0.4058  0.2730  0.2869  0.4241
0.1881  0.2048  1.0000 -0.1325 0.7658  0.2765 —0.6172  0.9006
0.5760  0.2436 —0.1325  1.0000  0.3041  0.0126  0.6452 —0.3210
0.0064  0.4058  0.7658  0.3041 1.0000  0.6652 —0.3293  0.9939
—-0.6111  0.2730  0.2765  0.0126  0.6652  1.0000  0.0492  0.5964
—-0.0724  0.2869 —-0.6172  0.6452 —-0.3293  0.0492  1.0000 —-0.3983
—0.1589  0.4241  0.9006 —0.3210 0.9939  0.5964 —0.3983  1.0000 |

which has eigenvalues

Ar=[ —0.2498 —0.0160 0.0895 0.2192 0.7072 1.7534 1.9611 3.5355 ]T-
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We first computed the nearest correlation matrix, with £ empty, using an
unweighted version of the algorithm in [10] (see near_cor.m in Appendix A.2),

using default tolerances for convergence of the algorithm, namely
1Y — Xl

1Vl
1.0e-5 for convergence of the eigenvalues found in the MEX routine and 1.0e-4

< 1.0e-5,

for defining the positivity of the eigenvalues.
All the MATLAB M-files use a MEX interface for the eigendecomposition
instead of using a MATLAB built-in function. This was done to increase the

efficiency of the algorithms and details are given in Section 6.

Using near_cor.m gave

1.0000 —-0.3112  0.1889  0.5396  0.0268 —0.5925 —0.0621 —0.1921
—0.3112  1.0000  0.2050  0.2265  0.4148  0.2822  0.2915  0.4088
0.1889  0.2050  1.0000 —0.1468  0.7830  0.2727 —0.6085  0.8802
0.5396  0.2265 —0.1468  1.0000  0.2137  0.0015  0.6069 —0.2208
0.0268  0.4148 0.7880  0.2137  1.0000  0.6580 —0.2812  0.8762
—0.5925 0.2822  0.2727  0.0015 0.6580  1.0000  0.0479  0.5932
—0.0621  0.2915 —0.6085  0.6069 —0.2812  0.0479 1.0000 —0.4470
—0.1921  0.4088  0.8802 —0.2208  0.8762  0.5932 —-0.4470  1.0000

which has eigenvalues

Ry =

Ary = [ 3.3233e—17 —2.8662e—16 0.0381 0.1731 0.6894
1.9217 1.7117 3.4661 7.

So Ry is a correlation matrix as required. The algorithm converged in 10

iterations in less than half a second, and
IR — Ry||F = 0.2960.

We now apply Algorithm 4.1 knowing that part of R is exact, namely the

upper left corner

1.0000 —0.3250 0.1881
E=1 -0.3250 1.0000 0.2048
0.1881  0.2048 1.0000
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This is implemented by cor_exact.m (see Appendix A.2). With £ = 3 and the

default tolerances, we obtain

1.0000 —0.3250  0.1881  0.5375  0.0258 —0.5899 —0.0625 —0.1927
—0.3250  1.0000 0.2048 0.2251 04145 02838 0.2914  0.4081
0.1881  0.2048  1.0000 —0.1462 0.7882  0.2720 —0.6084  0.8805
05375  0.2251 —0.1462  1.0000 0.2141  0.0001  0.6071 —0.2203
0.0258 04145 0.7882  0.2141  1.0000 0.6570 —0.2810  0.8762
—0.5899  0.2838  0.2720 0.0001  0.6570  1.0000  0.0475  0.5929
—0.0625 02914 —0.6084 0.6071 —0.2810 0.0475 1.0000 —0.4469
—0.1927 04081  0.8805 —0.2203 0.8762  0.5929 —0.4469 1.0000J

(4.9)

which has eigenvalues
ARy = [ 1.0359e—17 6.3707e—17 0.0379 0.1736 0.6885

1.9226 1.7111 3.4664 |7,

which illustrates Theorem 4.2, and
IR — Rgl||r = 0.2967.

The algorithm converged in 10 iterations and again in less than half a second.
This matrix is not as near to R as Ry, as expected since Ry is the nearest
correlation matrix to R.

We now apply the weighted algorithm (see cor_weight.m in Appendix A.2)
with default tolerance to try to force E to be preserved.

If we let

W = diag ([ 4.0 4.0 40 1.0 1.0 1.0 1.0 1.0])
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then we have after 12 iterations

1.0000 —-0.3247  0.1830  0.5667  0.0083 —0.6046 —0.0711
—0.3247  1.0000  0.2048  0.2389  0.4070  0.2762  0.2876
0.1880  0.2048  1.0000 -0.1322  0.7680  0.2744 —-0.6163
0.5667  0.2389 —0.1322 1.0000  0.2127  0.0622  0.5974

Rw =
0.0083 0.4070 0.7680 0.2127 1.0000 0.6585 —0.2799
—0.6046 0.2762 0.2744 0.0622 0.6585 1.0000 0.0506
—-0.0711 0.2876 —0.6163 0.5974 —0.2799 0.0506 1.0000
—0.1639 0.4214 0.8989 —0.1849 0.8756 0.5740 —0.4553
However,

IR — Ry ||r = 0.3323.

Furthermore, we can see that the forcing in insufficient to preserve E.

By empirical testing we find that with

W = diag ([ 6.8 6.8 6.8 1.0 1.0 1.0 1.0 1.0 )

we have, after 15 iterations

1.0000 —-0.3250  0.1881  0.5720  0.0071 —-0.6083 —0.0719
—0.3250  1.0000  0.2048  0.2416  0.4063  0.2744  0.2872
0.1881  0.2048  1.0000 -0.1320 0.7665  0.2755 —0.6169
0.5720  0.2416 -0.1320 1.0000  0.2101  0.0797  0.5960
0.0071  0.4063  0.7665  0.2101 1.0000  0.6568 —0.2788
—0.6083  0.2744  0.2755  0.0797  0.6568  1.0000  0.0498
—-0.0719  0.2872 —-0.6169  0.5960 —0.2788  0.0498  1.0000
—0.1608 04231 0.9001 -0.1817 0.8761  0.5738 —0.4550

Rw =

Note that E is preserved to the figures shown. However now

IR — Ry ||r = 0.3448,

—0.1639 W
0.4214
0.8989

—0.1849
0.8756
0.5740

—0.4553
1.0000 J

—0.1608 W
0.4231
0.9001

—0.1817
0.8761
0.5738

—0.4550
1.0000

which is significantly bigger than [|R — Rg||r. This result is not surprising

given the undesired weighting of B.
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4.4 Sequential Quadratic Programming

We now examine the same problem using Sequential Quadratic Programming
(SQP). SQP uses a quasi-Newton method at each iteration, solves a quadratic
approximation sub-problem and generates a line search. See [7], for example,
for an overview.

From Theorem 4.2 we can write
X =xol +zol + -+ a:n_txf_t,
and form the constrained optimization problem
T

mzin ||A — 9311'{ — XToly — xn—txz;—t“Fv

subject to maintaining the unit diagonal

n—t

§jx2—1 i=1:n
ki — & - ',

k=1

and preserving E, which gives the additional k? — k constraints for the off-

diagonal elements, which reduces to (k? — k)/2 by symmetry:
n—t
Zxkixkj:eij, 1=1:k—1, j7=1+1:k.
k=1

where xj; is the ith element of x;, and

We solve this nonlinear equality constrained optimization problem with
SQP, using MATLAB’s fmincon which implements an SQP algorithm, part of

its Optimization Toolbox; see [15] for details.

4.5 Experiments

Our test data (3.1) was used once more, with ¢t = 2. (See Appendix A.3 for

the calling script file sqp_run.m and the function fun.m and constraint con.m.)
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The default tolerances for fmincon were used for terminating the algorithm.
These were all 1.0e-6, for changes in the function value, the constraints and
the vector z.

Empirical tests showed that fmincon converged to a matrix of ones if xg,
the starting vector for the optimization, was a constant vector, including zero.
Also if the any of the x; is a multiple of another this same non-optimal solution
was often found.

It was found that random values of x gave convergence to the desired opti-

mal solution (4.9).

The solution was

1.0000 —0.3250  0.1881  0.5375  0.0257 —0.5898 —0.0625 —0.1928 W
—0.3250  1.0000  0.2048  0.2251  0.4144 0.2838 0.2914  0.4083
0.1881  0.2048 1.0000 -0.1462  0.7883  0.2722 —-0.6083  0.8804
0.5375  0.2251 -0.1462  1.0000  0.2142  0.0002  0.6071 —0.2202
0.0257  0.4144  0.7883  0.2142 1.0000  0.6571 —0.2808  0.8764
—0.5898  0.2838  0.2722  0.0002  0.6571 1.0000  0.0475  0.5932
—-0.0625 0.2914 —-0.6083  0.6071 —0.2808  0.0475  1.0000 —0.4470
—0.1928  0.4083  0.8804 —0.2202 0.8764 0.5932 —0.4470  1.0000 J

Ro

where each value is within 3e-04 of those in (4.9) and F is preserved, to the
figures shown, as required.

The speed of convergence obviously varies due to the random starting vec-
tor xy, but typically convergence was achieved in 12 seconds, in around 50
iterations with 2500 function calls.

This implies that an SQP method will be much slower for larger matrices,
which our finance application involves. So we then tested both the alternating
projections and SQP algorithms on an approximate correlation matrix, gen-
erated from a data matrix P € R5*%0 of NASDAQ stock with 80 missing

elements, exact part E € R?0%20

and t = 29. The alternating projection al-
gorithm, with convergence tolerance set to equal that for the SQP algorithm,

converged in 1.7 seconds but the SQP algorithm took 2 hours and 59 minutes.
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4.6 Matrix Completions

Here we consider whether a matriz completion approach is suitable to solve (4.1).
Methods are discussed in [12] to complete a matrix to be positive (semi)definite
from a partial (semi)definite matrix. A partial matrix is a matrix where only
some elements are known, and a partial (semi)definite matrix has all its prin-
cipal submatrices, comprising of these known entries, individually positive
(semi)definite, a necessary condition for the full matrix to be so. The the-
ory looks at principal submatrices of an n x n matrix of size r X r,r < n of the

form

y b
b A ¢ |, (4.10)

Q?CTZ

where A € RC-2x("-2) and z is the unknown entry.

For a completion to be possible there is the condition that the undirected
graph made of the known entries is chordal. That is we form a graph with n
nodes, joining the ith and jth nodes if the (i,j) element is a known one, and
call this line an edge; we omit the loops at each node representing the (i,1)
element. Now, we define a simple circuit as a collection of nodes joined in a
loop with no other intersections across that loop. Finally if our graph contains
no simple circuits of length four or more than the graph is said to be chordal.

To demonstrate, consider the following two symmetric matrices, with known

entries marked X, and unknown entries marked ?:

X X X X ? X X X ? 7
X X 7 X X X X 7 7 X
A=|xX ? X X 7|, B=[X ? X X ?
X X X X X ? 7 X X X

| 7 X 7 X X | | 7 X 7 X X |
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Then we have the corresponding graphs:

(4
) s —

A’s graph is chordal, but B’s is not, as there is a simple circuit of length 5.

It is obvious that the chordal condition is met in our case. All our known
elements form the full matrix F, and a full matrix clearly gives a chordal graph,
since every node is connected to every other node.

One approach to solve (4.1) could be to form submatrices like (4.10) taking
x to be each of the approximate entries in turn. In [12] formula are given to
calculate an interval for z, so we can use this to set each approximate entry
to one that is closest to its original value within this interval. However, any
approximate entry will be in a row and column of unknown entries. Thus, even
for r = 3, ¢ € R is unknown and we must take z as the diagonal entry. So
we are forced to trust an approximate entry to give ¢ with no knowledge what
the cumulative effect of this would be. Also, we do not have a strategy for
ordering the approximate values, noting that subsequent submatrices will use
previously adjusted approximate values. Thus completion methods are of no

use for solving our problem.

4.7 Conclusions

Using an unweighted version of the alternating projections algorithm in [10] is
clearly inappropriate as it fails to preserve the correlations that are known to
be exact. The weighted algorithm is also unsuitable as the weighting needed
to preserve the exact elements undesirably weights B. However Algorithm 4.1

produces the desired optimal matrix.
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This SQP method is clearly capable of finding the optimal solution for
suitable starting values, but as the timings show this method is too slow. The
algorithm takes nearly three hours to converge for n = 80 and the finance
application requires n > 1000.

However, the timings for the alternating projections algorithm are encour-
aging. Also in [10] its shown that the unweighted algorithm for a matrix of
n = 1399 converges to the solution in 37 minutes, using the same MEX inter-
face, on a 1Ghz Pentium III, so we conclude that this method is of practical

use and is indeed being used by the finance company.
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5 The Nearest Covariance Matrix Problem

Another problem posed by the finance company is concerned with covariance
matrices. We wish to determine how the missing elements in P should be

chosen to give the nearest covariance matrix to an approximate one.

5.1 The Problem

Again we have a P € R™*" data matrix. And it is first required to compute
Ln(P) € R™ V" which is a standard procedure for financial data as the

resulting matrix is considered easier and more appropriate to work with, where
Ln(P) = l;; = In(piy1,/pij), i=1l:m-—1, j=1:n,

where both p;;;; and p;; are not missing. Clearly for each missing entry in
P we have two undefined entries in Ln(P). If either p;;;; or p;; is missing
then we set [;; = NaN. We note that Ln(P) can be any matrix in R(™~1D*" for
suitable choice of P.

We then form the approximate sample covariance matrix COV(Ln(P)) €
R™™™ using the method described in Section 2.2.

Definition: An eztension of a matrix P € R™*" with missing data is defined
by Pr € R™*" having no missing data and if p;; is not missing then Pg,, = Dij

The problem is to find the extension Pg of P that solves
rr}gin |ICOV(Ln(P)) — COV(Ln(Pg))|| - (5.1)
E

We make the observation that if we find the nearest covariance matrix to

COV(Ln(P)) of the form COV(L), then should we be able to find L we cannot
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recover P from L = Ln(Pg) as, in general,

pij - exp(lij

Llj) # exp(li—1j)pi-1;-

We also note that it is not clear that we can find the solution COV(Ln(Pg))

that is equal to the nearest covariance matrix. For example consider using the

data in Table 3.1 to form a data matrix with one missing element:

[ 50.875
53.188
55.750
65.500
69.938
61.500
59.230
61.230
52.900
57.370

42.734
49.000
50.000
51.063
47.000
44.188
48.210
48.700
52.690
59.040

47.938
39.500
38.938
45.563
52.313
53.438
62.190
60.300
54.230
59.870

Now, S = COV(Ln(P)) is

[ 00117 —0.0016
~0.0016  0.0057
0.0090 —0.0036

o_ | o005 00027
0.0096  0.0003
0.0076 —0.0004
~0.0000  0.0128

| 0.0003 —0.0006

and the nearest covariance matrix is the nearest positive semidefinite matrix,

0.0090
—0.0036
0.0152
0.0025
0.0202
0.0153
—0.0039
0.0155

60.359
64.813
62.875
69.313
71.016
57.000
61.390
68.580
61.670
62.090

0.0066
0.0027
0.0025
0.0117
0.0073
0.0072
0.0118
0.0047
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54.016
34.750
30.188
48.250
37.500
35.313
54.310
61.250
68.170
61.620

0.0096
0.0003
0.0202
0.0073
0.0901
0.0527
0.0161
0.0516

69.625
96.625
43.375
62.375
59.359
95.813
70.170
70.340
70.600
66.470

0.0076
—0.0004
0.0153
0.0072
0.0527
0.0385
0.0136
0.0468

61.500
83.000
70.875
85.250
61.188
51.500
61.750
61.590
57.870
65.370

NaN
44.500
29.938
46.875
48.219
62.188
91.080
90.350
88.640
85.840

—0.0000  0.0003
0.0128 —0.0006
—0.0039  0.0155
0.0118  0.0047
0.0161  0.0516
0.0136  0.0468
0.0425  0.0255
0.0255  0.0738




given by Sy = Ps(S):

0.0118 —-0.0014  0.0089 0.0066 0.0097  0.0074 —0.0002  0.0005
—0.0014  0.0059 —0.0037 0.0028 0.0004 -0.0007  0.0126 —0.0000
0.0089 —0.0037  0.0152 0.0024 0.0202  0.0154 -0.0039  0.0154
0.0066  0.0028  0.0024 0.0117 0.0073  0.0071  0.0118  0.0048

Sy = ,
0.0097 0.0004 0.0202 0.0073 0.0901 0.0525 0.0160 0.0517
0.0074 —0.0007 0.0154 0.0071 0.0525 0.0389 0.0138 0.0465
—0.0002 0.0126 —0.0039 0.0118 0.0160 0.0138 0.0426 0.0253
0.0005 —0.0003 0.0154 0.0048 0.0517 0.0465 0.0253 0.0740 J
with

1S — Sx||r = 0.0012.

Empirical tests show that there is no value to replace the NaN in P; that
can give Sy = COV(Ln(P;)). This is not surprising, we have far less variables
than we had in the nearest correlation matrix problem.

We optimize with the missing elements as variables.

5.2 Multi-Directional Search Optimization

Multi-Directional Search (MDS) is a direct search method. Direct search meth-
ods use function values but not derivatives to determine the search direction,
requiring only that the function be continuous. These methods are used when
derivatives are not available or are ill-behaved in the domain of interest. At
each iteration the function is evaluated on a given set of points including the
current iterate. The MDS algorithm uses a simplex, and analysis of the func-
tion values generates the next set of points. See [18], [19] and [4] for details of
this algorithm.
For r missing elements, e, in P we seek

min |[COV(Ln(P)) — COV(Ln(P(ey,... ,e.))l|r

€1,...,Ep
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where ey, ...

example, which form a vector for our optimization.

We use mdsmax, which is part the Test Matrix Toolbox [9].

, e, denote the missing elements of P, the r =9 NaNs in (3.1) for

This routine

aims to maximise a given function, thus we supply a function of the form

—[[COV(Ln(P)) — COV(Ln(P(ey, . ..

) 67‘)))||Fv

and note that a function value of zero corresponds to a ‘perfect’ extension.

5.3 Experiments

From our test data we have L= Ln(P) (see gen_lnp.m in Appendix A.1):

—0.1184
0.0470
0.1612
0.0656

L= —0.1286

—0.0376
0.0332

—0.1462
0.0811

0.1368 —0.1936
0.0202 —-0.0143

0.0210
—0.0829
—0.0617

0.0871

0.1571
0.1381
0.0213
0.1517

0.0101 —0.0309
0.0787 —0.1061

0.1138

0.0989

NaN
NaN
NaN
0.0243
—0.2199
0.0742
0.1108
NaN
NaN

—0.4411
—0.1407
0.4690
NaN
NaN
0.4305
0.1203
0.1070
—0.1010

NaN
NaN
NaN
—0.0496
—0.0616
0.2289
0.0024
0.0037
—0.0603

0.2998
—0.1579
0.1847
—0.3316
—0.1724
0.1815
NalN
NaN
0.1219

—0.3337
—0.3964
NaN
NaN
0.2544
0.3816
NalN
NaN
—0.0321

This matrix gives the following approximate sample covariance matrix S

COV(Ln(P)):

0.0117
—0.0016
0.0090
0.0102
0.0140
—0.0016
—0.0018
—0.0082

—0.0016

0.0090

0.0057 —0.0036

—0.0036
0.0063
—0.0079
0.0040

0.0152
0.0024
0.0329
0.0034

0.0176 —0.0072

—0.0081

0.0330

The eigenvalues of S are

As =] —0.0244

—0.0022

0.0102
0.0063
0.0024
0.0222
—0.0057
0.0100
0.0151
0.0187

0.0140
—0.0079
0.0329
—0.0057
0.1046
0.0270
0.0038
0.1155

—0.0016
0.0040
0.0034
0.0100
0.0270
0.0123
0.0214
0.0260

—0.0011 0.0024 0.0241 0.0271
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—0.0018
0.0176
—0.0072
0.0151
0.0038
0.0214
0.0557
—0.0023

—0.0082
—0.0081
0.0330
0.0187
0.1155
0.0260
—0.0023
0.1192

0.0760 0.2446 1*.




We have a lower bound for (5.1), given by the nearest covariance matrix Py (S)
IS = Ps(S) ||+ = 0.0245.

We now call mdsmax with [x,fmax,nf]=mdsmax(@mdsfun,x0,stop) where
the inputs are respectively our function to be maximised (see Appendix A.4
for mdsfun.m), a starting vector and a vector of stopping criteria and options.
An iteration is terminated if the relative size of the simplex is less than or
equal to stop(1) (we use le-04), the maximum number stop(2) of allowed
function evaluations is exceeded (we use inf), or if the maximum allowed value
stop(3) for the function evaluations is exceeded (we obviously use 0.) We also
set stop(4)=0 for a regular simplex and stop(5)=1 to output progress of the
iteration.

The outputs give the vector giving the maximum function value, the func-
tion value at that point and the number of function evaluations, respectively.

We try several starting vectors, ordered so the first element represents the
(2,4) element in (3.1) and then continues column-wise from top to bottom.

First we try an initial vector of values such that their difference is equal to

the two known entries above and below in P, that is,

zo = (63.3 66.3 65.3 41.5 67.2 65.0 59.8 39.0 89.8). (5.2)

After 80 iteration with 1468 function calls the algorithm converged to the

solution

z1 = (75.8982 60.5820 59.2138 30.9588 72.69031

57.315 45.1410 58.3263 108.2271),
with

[COV (Ln(P)) — COV(Ln(P(z)))||r = 0.0605.
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We now try initial values of the smallest integer value, rounded down, for

each column containing the missing entry, that is

zo= (57.0 57.0 57.0 30.0 55.0 55.0 57.0 29.0 29.0). (5.3)

After 70 iteration with 1324 function calls the algorithm converged to

2 = (72.5486 59.1316 71.4367 30.4268 72.5953
57.3579 76.4600 57.990 71.3162).

Here
|COV(Ln(P)) — COV(Ln(P(z)))|| = 0.0627.

We then try an initial vector of the highest integer value, rounded up, for

each column containing the missing entry,

zo= (71.0 71.0 71.0 69.0 71.0 71.0 86.0 92.0 92.0).

This gave the same final vector, z2, as (5.3) gave with the same number of
iterations and function calls.

It appears we have two local minima, and we are uncertain if one is a global
minimum. We also try very low and very high values (constant vectors of 2s
and 200s) and they converge to the same minimum for that of (5.2).

Each convergence took around 90 seconds to compute.

If we replace our missing entries in (3.1) with these two minima, we have

from x;
[ 59.875 42734 47.938 60.359 54.016 69.625 61.500 62.125 ]
53.188 49.000 39.500 75.898 34.750 72.690 83.000 44.500
55.750  50.000 38.938 60.582 30.188 57.315 70.875 29.938
65.500 51.063 45.563 69.313 48.250 62.375 85.250 58.326
Py = 69.938 47.000 52.313 71.016 30.959 59.359 61.188 48.219 ’

61.500 44.188 53.438 57.000 35.313 55.813 51.500 62.188
59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080
61.230 48.700 60.300 68.580 61.250 70.340 45.141 108.227
52.900 52.690 54.230 59.214 68.170 70.600 57.870 88.640
97.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840
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and from x4

59.875 42.734 47938 60.359 54.016 69.625 61.500 62.125
53.188 49.000 39.500 72.549 34.750 72.595 83.000 44.500
55.750 50.000 38.938 59.132 30.188 57.358 70.875 29.938
65.500 51.063 45.563 69.313 48.250 62.375 85.250 57.990
69.938 47.000 52.313 71.016 30.427 59.359 61.188 48.219
61.500 44.188 53.438 57.000 35.313 55.813 51.500 62.188
59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080
61.230 48.700 60.300 68.580 61.250 70.340 76.460 71.316
52.900 52.690 54.230 71.437 68.170 70.600 57.870 88.640
57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840

Pgy =

Note we can reduce the amount of calculations in this method if we add an
if statement to cov_bar to calculate only covariances for 7 or j greater than
k. This makes a saving of O(k*m) floating point operations. And we make

appropriate alterations in mdsfun, to obtain the correct value of the norm.

5.4 Conclusions

With careful choice of starting vectors this method can provide some insight
into a possible solution. Now, no financial analysis is offered here, but it
worth noting that the values 45.141 and 108.227 in Pp, appear unrealistic
(they represent the smallest and largest values in their column respectively)
compared to their corresponding values in Pg,, but COV(Ln(Pg,)) is nearer
to COV(Ln(P)). Since the problem is to find the missing values of P it is
not obvious that we can accept the nearest matrix without some financial

interpretation.
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6 Efficient Implementation

Our algorithms for the alternating projections method of solving the nearest
correlation problem require us to find only the positive eigenvalues of a sym-
metric matrix, and their associated eigenvectors. Thus it is obvious that calling
MATLAB'’s eig function is wasteful as it returns all the eigenvalues and vec-
tors. MATLAB does, however, supply the eigs function that can return a
specified range of eigenvalues. However, eigs uses an iterative method and
is most suited to sparse matrices, and ours, of course, are dense. Obtaining
these required eigenvalues and vectors is clearly the most expensive part of the
algorithm, thus we attempt to speed this process up by writing a MATLAB
MEX file that calls an appropriate LAPACK routine.

6.1 MEX files

MATLARB allows you to write Fortran and C subroutines and use them as if
they were your own M-file routines. These MEX files are dynamically linked
subroutines that the MATLAB interpreter can automatically load and execute.

The motivation for this feature is to allow users to use pre-existing Fortran
and C code without the need to rewrite them as M-files and also to increase
efficiency by overcoming bottlenecks in MATLAB such as its for loops. Here
we implement a C MEX file to enable us to call an LAPACK routine directly.
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6.2 LAPACK

LAPACK [1] is transportable collection of linear algebra subroutines designed

to be efficient on a wide range of modern high-performance computers. MAT-

LAB 6 itself is built on LAPACK. We use the library routine desevr (all LA-

PACK routines are supplied with MATLAB 6) to obtain the desired positive

eigenvalues and their associated eigenvectors. This routine reduces the matrix

to tridiagonal form and then uses a bisection method and inverse iteration.

6.3 Some Timings

We compare the performance of our MEX routine (see Appendix B for MEX

source code file eig mex.c) against MATLAB’s eigs. We use an approximate

correlation matrix, supplied by the finance company, of size 1399, and compute

different numbers of its largest eigenvalues. See Table 6.1.

Number of

eigenvalues

Time with

eigs (secs)

Time with

eig mex (secs)

280
140
70
28

278.7
75.4
56.7
29.2

52.9
42.1
38.9
37.4

Table 6.1: Comparison of MATLAB’s eigs vs. eig_mex MEX file for a dense

correlation matrix

So the MEX subroutine is clearly more efficient than eigs for our dense

matrix when we are computing more than a small number of eigenvalues.
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7 Concluding Remarks

The Nearest Correlation Matrix Problem

For the problem of computing the nearest correlation matrix to a symmetric
matrix with fixed elements, we have examined the suitability of three different
approaches, namely alternating projections, sequential quadratic programming
and matrix completion methods. We have found that the method of alternating
projections is the only efficient method to guarantee a solution. This extends
the theory and algorithm of [10]. Also, this method is fast enough for practical

use.

The Nearest Covariance Matrix Problem

For the problem of computing the nearest covariance matrix we have investi-
gated possible solutions using a multi-directional search optimization method.
We have found that this method can produce a solution; however there is some
uncertainty as to the usefulness of this solution. Further work is needed to
establish the underlying theory of the problem and also some financial analysis

of the solutions obtained is required.
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Appendices

A MATLAB M-Files

A.1 Computation of S and R M-files

gen_cov.m

This routines produces the same output as cov(P) in MATLAB.

function S=gen_cov(P)
LGEN_COV Calculates sample covariance matrix.

% S=GEN_COV(P)

%  Produces an n-by-n covariance matrix based on
% data of size m-by-n. n columns of different

%» random variables observed at m different times.
%» INPUT: P data matrix

% OUTPUT: S sample covariance matrix
[m,n]=size(P);

I=eye(m);

O=ones (m)/(m) ;

S=(1/(m-1))*P’*(I-0) *P;

/» ensure symmetry
S=(S+S’)/2;

gen_cor.m

This routines produces the same output as corrcoef (P) in MATLAB.

function R=gen_cor(P)
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LGEN_COR Calculates sample correlation matrix.

S=GEN_COR (P)

Produces an n-by-n correlation matrix based on
data of size m-by-n. n columns of different
random variables observed at m different times.

INPUT: P data matrix

OUTPUT: R sample correlation matrix

[m,n]=size(P);

S=gen_cov(P);
D=diag(1./sqrt(diag(S)));

R=D*S*D;

cov_bar.m

function S = cov_bar(P)

%COV_BAR Calculates approximate sample covariance matrix.

S=COV_BAR(P)

Produces an n-by-n approx covariance matrix based on
data of size m-by-n. n columns of different

random variables observed at m different times.

P has missing data represented by Nals.

INPUT: P data matrix

OUTPUT: S approx sample covariance matrix

[m,n] = size(P);
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S = zeros(n);

for 1 = 1:n

xi = P(:,1);
for j=1:1i
xj = P(:,3);

% create mask for data values that are ’common’
p = “isnan(xi) & “isnan(xj);

S(i,j) = (xi(p) - mean(xi(p)))’*( xj(p) - mean(xj(p)));

%» normalise over effective sample size i.e. sum(p)-1
S(i,j) = 1/(sum(p)-1)*S(i,j);

S(j,1i) = S(i,j);

end
end

cor_bar.m

function R = cor_bar (P)
%COR_BAR Calculates approximate sample correlation matrix.

%»  S=COR_BAR(P)

%»  Produces an n-by-n approx correlation matrix based on
% data of size m-by-n. n columns of different

% random variables observed at m different times.

» P has missing data represented by Nals.

% INPUT: P data matrix

%» OUTPUT: R approx sample correlation matrix
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[m,n]=size(P);
S=cov_bar (P) ;
D=diag(1./sqrt(diag(S)));

R=D*Sx*D;

gen_lnp.m

function L=gen_lnp(P)
KGEN_LNP Compute L(i,j)=Ln(P(i+1,j)/P(i,3j))

% L = GEN_LNP(P)

%  If either P(i+1,j) or P(i,j) is NalN then
%  L(i,j)=NaN.

% INPUT: P  (m+1)-by-n matrix
% OUTPUT: L  n-by-n matrix
[m,n]=size(P);

k=m-1;

for j=1:n
for i=1:k

L(i,j)=log(P(i+1,j)/P(i,j));

end
end
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A.2 Alternating Projection M-Files

The convergence criterion is taken from [10].

near_cor.m
function X=near_cor(A,tol,maxits)
JNEAR_COR Computes the nearest correlation matrix.

% X = NEAR_COR(A,tol,maxits)

%»  Computes the nearest correlation matrix
%»  to an approximate correlation matrix,
% i.e. not positive semidefinite.

h

%  INPUT: A n-by-n approx correlation matrix

yA tol vector of size three or omit for defaults
yA tol(1)  convergence tolerance for algorithm,

T default 1.0e-5

b tol(2)  convergence tolerance for eig_mex mex

A routine, default 1.0e-5

yA tol(3) defines relative positiveness of

h eigenvalues compared to largest,

/ default 1.0e-4

b maxits  maximum number of iterations allowed

h

yA tol optional, maxits optional if tol incl.
b

%  OUTPUT: X nearest correlation matrix to A

if “~isequal(A,A’)
error (’Error: Input matrix A must be square and symmetric’)
end

if nargin < 2
conv_tol = 1.0e-5;

1.0e-5;

1.0e-4;

mex_tol

eig_tol
else
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conv_tol = tol(1l);
mex_tol = tol(2);
t0l1(3);

eig_tol
end

if nargin < 3, maxits = 100; end
[m,n]l=size(A);

U=zeros(n) ;
Y=A;

iter=0;

[V,D]=eig(Y);
d=diag(D) ;

% define ’positiveness’ relative to largest eigenvalue
num_pos= sum(d >= eig_tol*d(n));

while 1
T=Y-U;

% PROJECT ONTO PSD MATRICES
[Q,d]=eig_mex(T,num_pos,mex_tol);

D=diag(d);

% create mask from relative positive eigenvalues
p=(d>eig_tolxd(n));

% use p mask to only compute ’positive’ part
X=QC:,p)*D(p,p)*Q(:,p)’;

% UPDATE DYKSTRA’S CORRECTION
U=X-T;

% PROJECT ONTO UNIT DIAG MATRICES
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Y=X;

for i=1:n
Y(i,i)=1;

end

iter = iter + 1;

if iter==maxits
fprintf (’Max its exceeded’), break, end

i convergence test
if norm(Y-X,’inf’)/norm(Y,’inf’) <= conv_tol, break,end

end

fprintf (’ | |A-X||_F: %2.4f\n’ ,norm(A-X,’fro’))
fprintf (’Number of iterations taken: %4.0f\n’,iter)

cor_exact.m

function X=cor_exact(A,k,tol,maxits)
%COR_EXACT Computes the nearest correlation matrix w/exact part.

%» X = COR_EXACT(A,k,tol,maxits)

%»  Computes the nearest correlation matrix to an approximate
%  correlation matrix (not positive semidefinite) w/exact part.

%»  INPUT: A n-by-n approx correlation matrix,

yA with exact part of the form | E B°T |

h | BC |

b E is k-by-k and is exact

yA C is (n-k)-by-(n-k), B and C are approx.
b E must be psd

yA k size of E

b tol vector of size three or omit for defaults
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yA tol(1)  convergence tolerance for algorithm,

T default 1.0e-5

b tol(2)  convergence tolerance for eig_mex mex
A routine, default 1.0e-5

b tol(3) defines relative positiveness of

b eigenvalues compared to largest,

h default 1.0e-4

b maxits  maximum number of iterations allowed
b

yA tol optional, maxits optional if tol incl.
h

%»  OQUTPUT: X nearest correlation matrix to A

[m,n]=size(A);

if (nargin > 1) & (k <= n)
E=A(1:k,1:k);
d=eig(E);

end

if nargin < 3
conv_tol = 1.0e-5;

mex_tol = 1.0e-5;

eig_tol = 1.0e-4;
else

conv_tol = tol(1);

mex_tol = to0l(2);

eig_tol = to0l(3);

end

if “isequal(A,A’)
error (’Error: Input matrix A must be square and symmetric’)
elseif nargin < 2
error (’Error: k must be specified’)
elseif k > n
error (’Error: k too large’)
elseif sum(d >= eig_tol*d(k)) "= k
error (’Error: E must be positive semidefinite’)
end
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if nargin < 4, maxits = 100; end

U=zeros(n) ;
Y=A;

iter=0;

[V,DI=eig(Y);
d=diag(D) ;

% define ’positiveness’ relative to largest eigenvalue
num_pos= sum(d >= eig_tol*d(n));

while 1
T=Y-U;

% PROJECT ONTO SIGMA
[Q,d]=eig_mex(T,num_pos,mex_tol);

D=diag(d);

% create mask from relative positive eigenvalues
p=(d>eig_tolxd(n));

% use p mask to only compute ’positive’ part
X=Q(:,p)*D(p,p)*Q(:,p)’;

% UPDATE DYKSTRA’S CORRECTION
U=X-T;

% PROJECT ONTO SIGMA_E
Y=X;
Y(1:k,1:k)=E;

for i=k+1:n

Y(i,i)=1;
end
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iter = iter + 1;

if iter==maxits

fprintf (’Max its exceeded’), break, end

% convergence test

if norm(Y-X,’inf’)/norm(Y,’inf’) <= conv_tol, break,end

end

fprintf (’ | |A-X||_F: %2.4f\n’ ,norm(A-X,’fro’))
fprintf (’Number of iterations taken: %4.0f\n’,iter)

cor_weight.m

function X=cor_weight(A,W,tol,maxits)

#COR_WEIGHT Computes nearest correction matrix, weighted.

% X = COR_WEIGHT(A,W,tol,maxits)

%»  Computes the nearest correlation matrix to an approximate

%  correlation matrix (not positive semidefinite) subject
%  to weighting, i.e minl|| W(1/2) ( A-X ) W~ (1/2)||_F
%  where W is diagonal. Note: input W is W~ (1/2).

b

% INPUT: A

b W

yA tol

yA tol(1)
b

yA t0l(2)
b

yA t0l(3)
b

b

n-by-n approx correlation matrix

diaganol matrix of weights

vector of size three or omit for defaults
convergence tolerance for algorithm,
default 1.0e-5

convergence tolerance for eig_mex mex
routine, default 1.0e-5

defines relative positiveness of
eigenvalues compared to largest,

default 1.0e-4
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% maxits maximum number of iterations allowed

b tol optional, maxits optional if tol incl.
yA
A QUTPUT: X nearest correlation matrix to A

[m,n]=size(A);
[mw,nw]=size (W) ;

if “isequal(A,A’)
error (’Error: Input matrix A must be square and symmetric’)
elseif nargin < 2
error (’Error: W must be specified’)
elseif “isequal(A,A’)
error (’Error: W must be square and symmetric’)
elseif n "= nw
error (’Error: A and W must be conformable’)
end

if nargin < 3
conv_tol = 1.0e-5;

mex_tol = 1.0e-5;

eig_tol = 1.0e-4;
else

conv_tol = tol(1);

mex_tol = tol(2);

eig_tol = to0l(3);

end
if nargin < 4, maxits = 100; end

U=zeros(n);
Y=A;

iter=0;
Winv=W"(-1);

/» weighting preserves inertia we can use Y
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[V,D]=eig(Y);
d=diag(D) ;

% define ’positiveness’ relative to largest eigenvalue
num_pos= sum(d >= eig_tol*d(n));

while 1
T=Y-U;

% PROJECT ONTO PSD MATRICES
[Q,d]=eig_mex (W*T*W,num_pos,mex_tol) ;

D=diag(d);

% create mask from relative positive eigenvalues
p=(d>eig_tolxd(n));

% use p mask to only compute ’positive’ part
X=Winv*(Q(:,p)*D(p,p) *Q(:,p) ) *Winv;

% UPDATE DYKSTRA’S CORRECTION
U=X-T;

% PROJECT ONTO UNIT DIAG MATRICES
Y=X;
for i=1:n
Y(i,i)=1;
end

iter = iter + 1;

if iter==maxits
fprintf(’Max its exceeded \n’), break, end

% convergence test
if norm(Y-X,’inf’)/norm(Y,’inf’) <= conv_tol, break,end

end
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fprintf (’ | |A-X||_F: %2.4f\n’ ,norm(A-X,’fro’))
fprintf (’Number of iterations taken: %4.0f\n’,iter)

26



A.3 M-Files for fmincon

sqp_run.m

% Script file for finding the nearest correlation matrix to
% A below using FMINCON

% Set random starting vector
for i=1:48

x0(i)=rand;
end

% A is our approx correlation matrix

A= [1.0000 -0.3250 0.1881 0.5760 0.0064 -0.6111 -0.0724 -0.1589;
-0.32560 1.0000 0.2048 0.2436 0.4058 0.2730 0.2869 0.4241;
0.1881 0.2048 1.0000 -0.1325 0.7658 0.2765 -0.6172 0.9006;
0.5760 0.2436 -0.1325 1.0000 0.3041 0.0126 0.6452 -0.3210;
0.0064 0.4058 0.7658 0.3041 1.0000 0.6652 -0.3293 0.9939;
-0.6111 0.2730 0.2765 0.0126 0.6652 1.0000 0.0492 0.5964;
-0.0724 0.2869 -0.6172 0.6452 -0.3293 0.0492 1.0000 -0.3983;
-0.1589 0.4241 0.9006 -0.3210 0.9939 0.5964 -0.3983 1.0000];

/» We know constant values

t=6; %t is actually n-t

tic

% Set options for fmincon, mediumscale algorithm

/» and need many function evaluations. Default tolerance
opt=optimset (’Largescale’,’off’,’MaxFunEvals’,10000) ;
[x,f,f1,out]=fmincon(@fun,x0,[1,[1,[],0],[],[],@con,opt,A,n,t, k)

toc

% check constraints
[c,ceq]l=con(x,A,n,t,k)

% reconstruct X
X=zeros(n);
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for i=1:t

y=x((i-1)*n+1:i%*n);

X=X+y’*y;

end

fun.m

function f=fun(x,A,n,t,k)
%FUN Function to be minimises in FMINCON.

% £ = FUN(x,A,n,t,k)

% Constructs matrix X from the latest vector x

% and calculates Frobenius norm of matrix minus

%»  the approximate correlation matrix.

%  INPUT:

==
oo B = M

%  OQUTPUT: f

current vector

approx correlation matrix

size of A

number of positive eigenvalues
size of exact part of A (Not used)

function value

% construct correlation matrix from vector

X=zeros(n);

for i=1:t

y=x((i-1)*n+1:i%*n);

X=X+y’*y;
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end

f=norm(A-X,’fro’);

con.m
function [c,ceql=con(x,A,n,t,k)
%#CON Nonlinear equality constraint for FMINCON.

% [c,ceq] = CON(x,A,n,t,k)

%  Supplies the constraints necessary to obtain unit
%  diagonal of correlation matrix and preserve
% exact part of approximate correlation matrix ’E’.

%» INPUT: x current vector

yA A approx correlation matrix

b n size of A

to t number of positive eigenvalues
b k size of exact part of A

b

% QUTPUT: c inequality constraint (zero)

yA ceq equality constraint vector

% empty inequality constraint
c=0;

/» equality constraint for unit diaganol of X
for i=1:n

ceq(i)=sum(x(i:n:(t-1)*n + i)."2) - 1;
end

1=n+1;

% constraint for preserving ’E’
if k >0
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for i=1:k-1
for j=i+l:k
ceq(l)=sum(x(i:n: (t-1)*n+i) . *x(j:n:(t-1)*n+j))-A(1,j);
1=1+1;
end
end

end
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A.4 M-File Function for mdsmax

mdsfun.m

function f=mdsfun(x)
%MDSFUN Function for use with MDSMAX to find nearest cov matrix

% f = MDSFUN(x)

% INPUT: x current vector

% OQUTPUT: £ function value

% data matrix P with missing elements

P=[59.875 42.734 47.938 60.359 54.016 69.625 61.500 62.125;
53.188 49.000 39.500 x(1) 34.750 x(5) 83.000 44.500
55.750 50.000 38.938 x(2) 30.188 x(6) 70.875 29.938;
65.500 51.063 45.563 69.313 48.250 62.375 85.250 x(8) ;
69.938 47.000 52.313 71.016 x(4) 59.359 61.188 48.219;
61.500 44.188 53.438 57.000 35.313 55.813 ©51.500 62.188;
59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080;
61.230 48.700 60.300 68.580 61.250 70.340 x(7) x(9);
52.900 52.690 54.230 x(3) 68.170 70.600 57.870 88.640;
57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840];

% S = cov_bar(gen_lnp(P)) the approx covariance matrix

% computed from P above (with NaNs instead of the x(i)

S=[0.0117 -0.0016 0.0090 0.0102 0.0140 -0.0016 -0.0018 -0.0082;
-0.0016 0.0057 -0.0036 0.0063 -0.0079 0.0040 0.0176 -0.0081;

0.0090 -0.0036 0.0152 0.0024 0.0329 0.0034 -0.0072 0.0330;
0.0102 0.0063 0.0024 0.0222 -0.0057 0.0100 0.0151 0.0187;
0.0140 -0.0079 0.0329 -0.0057 0.1046 0.0270 0.0038 0.1155;
-0.0016 0.0040 0.0034 0.0100 0.0270 0.0123 0.0214 0.0260;
-0.0018 0.0176 -0.0072 0.0151 0.0038 0.0214 0.0557 -0.0023;
-0.0082 -0.0081 0.0330 0.0187 0.1155 0.0260 -0.0023 0.1192];

% Generate new Ln(P) with x(i) values, and corresponding
%y covariance matrix

L=gen_lnp(P);

V=cov_bar(L);
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% we seek to min]|S-V]||
/» hence minus sign since using mdsmax

f=-norm(S-V,’fro’);
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B MEX file for Partial Eigendecomposition

eig_mex.c
/%
* C mex file for MATLAB that implements LAPACK dsyevr_ for
* for finding largest ’num’ eigenvalues and their corresponding
* vectors of a symmetric real matrix
*
* [Q,d]=eig_mex(A,num,tol)
X
* INPUT: A need only have upper triangular part
* num number of largest eigs required
* tol as required by dsyevr_
X
* QUTPUT: d(1:num) required eigenvalues
* Q(1:num,:) orthonormal eigenvectors

*/

#tinclude "mex.h"
#include "matrix.h"

void mexFunction(int nlhs, mxArray #*plhs[], int nrhs, const
mxArray *prhs[]) {

/* jobz=V to get eigvectors, range=I for ILth to IUth eigs */
/* vu, vl not referenced by LAPACK routine */

char *jobz = "V", *range = "I", *uplo = "U", msg[80];
int n, num, lda, il, iu, *m, ldz, lwork, *iwork;

int liwork, *isuppz, info;

double *a, *vu, *vl, abstol, *w, *z, *work;

mxArray *org;

/* expect 3 inputs and 2 outputs */

if ((nrhs != 3) || (nlhs != 2)){
mexErrMsgTxt ("Expected 3 inputs and 2 outputs");
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/* copy input matrix so it’s not destroyed */
org = mxDuplicateArray(prhs[0]);
a=mxGetPr (org) ;

/* get dimension of A via number of cols */
n = mxGetN(prhs[0]);

/* assume input array is square */

lda = n;
/* set dimension of output */
1dz = n;

/* get biggest ’num’ eigs */
num = mxGetScalar(prhs[1]);
iu = n;

il = n-num+1;

/* set work space dimensions (not optimised) */
lwork = 26%*n;
liwork = 10%*n;

/* set tolerances for eigs */
abstol = mxGetScalar(prhs[2]);

/* allocate all workspace */

work = (double *)mxCalloc(lwork,sizeof (double));
iwork = (int *)mxCalloc(liwork,sizeof (int));
isuppz = (int *)mxCalloc(2*num,sizeof (int));

/* must allocate m, it’s referenced */
m=(int *)mxCalloc(1l,sizeof(int));

/* must also allocate variables NOT referenced */
vl (double *)mxCalloc(1l,sizeof(double)) ;
vu (double *)mxCalloc(1l,sizeof(double)) ;

/* set output, then set pointers to them */
plhs[0]=mxCreateDoubleMatrix(n,n,mxREAL) ;
z=mxGetPr (plhs[0]) ;
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plhs[1]=mxCreateDoubleMatrix(n,1,mxREAL);
w=mxGetPr (plhs[1]);

info=0;

dsyevr_(jobz,range,uplo,&n,a,&lda,vl,vu,&il,&iu,&abstol,m,w,z,
&1dz,isuppz,work,&lwork,iwork,&liwork,&info) ;

if (info < 0){
sprintf (msg, "input %d to DSYEVR had illegal input",-info);
mexErrMsgTxt (msg) ;

}

/* Free up memory */
mxFree (work) ;

mxFree (iwork) ;
mxFree (isuppz) ;
mxFree(m) ;

mxFree(vl);
mxFree(vu) ;
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