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MAX-BALANCING HUNGARIAN SCALINGS∗

JAMES HOOK† , JENNIFER PESTANA† , AND FRANÇOISE TISSEUR†

Abstract. A Hungarian scaling is a diagonal scaling of a matrix that is typically applied along
with a permutation to a sparse symmetric or nonsymmetric indefinite linear system before calling a
direct or iterative solver. A Hungarian scaled and reordered matrix has all its entries of modulus less
than or equal to 1 and entries of modulus 1 on the diagonal. We use max-plus algebra to characterize
the set of all Hungarian scalings for a given matrix and show that max-balancing a Hungarian scaled
matrix yields the most “diagonally dominant” Hungarian scaled matrix possible with respect to
some ordering. We also propose a new scaling, called centre of mass scaling, which can be seen as
an approximate max-balancing Hungarian scaling and whose computation is embarrassingly parallel.
Numerical experiments illustrate the increased diagonal dominance produced by max-balancing and
centre of mass scaling of Hungarian scaled matrices as well as the reduced need for pivoting in
Gaussian elimination with partial pivoting and the improved stability of LU factorizations without
pivoting.

Key words. max-plus algebra, diagonal scaling, Hungarian scaling, max-balancing, diagonal
dominance, centre of mass scaling, linear systems of equations, sparse matrices.
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1. Introduction. A Hungarian scaling is a two-sided diagonal scaling of a ma-
trix that can be applied along with a permutation P to a linear system Ax = b, with
A ∈ Cn×n and b ∈ Cn, yielding

H = PD1AD2, Hy = PD1b, x = D2y,

where D1, D2 ∈ Rn×n are diagonal and nonsingular. The scaled and reordered matrix
H = (hij) is such that |hij | ≤ 1 and |hii| = 1 for i, j = 1, . . . , n.

Benzi, Haws, and Tůma [1] show that Hungarian scaling is an effective prepro-
cessing step before applying BiCGSTAB, GMRES, or TFQMR to sparse indefinite
nonsymmetric matrices. The scaled matrices require significantly fewer iterations for
convergence. The authors explain this phenomenon by pointing out that the Hungar-
ian scaled matrix H tends to be more diagonally dominant than the original matrix
A. The authors also experiment with using Hungarian scaling as a preprocessing step
before applying preconditioned BiCGSTAB with an ILU preconditioner. Without
scaling they show that there are many problems for which attempts to compute a
very sparse ILU preconditioner break down. In order to reliably compute effective
ILU preconditioners they are therefore forced to compute less sparse ILU factors at
a considerably increased cost. However they show that after Hungarian scaling has
been applied they are able to reliably compute very sparse ILU preconditioners.

Olschowka and Neumaier [15] proposed applying the Hungarian scaling together
with a permutation to matrices prior to performing Gaussian elimination. Duff and
Koster [6], [7] provide an efficient implementation of the Hungarian algorithm for
sparse matrices, on which the HSL code MC64 is based [6], [7], [14], and analyze its
performance for Gaussian elimination and preconditioned iterative methods. In [10]
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and [11] Hogg and Scott show that Hungarian scaling improves the stability of the
LU factorization of sparse indefinite symmetric matrices and significantly reduces the
need for pivoting, so that after Hungarian scaling many example problems can be
factorized without the need for any pivoting at all. This can also be explained by the
fact that the Hungarian scaled matrix tends to be more diagonally dominant. The
largest entries in the matrix are on the diagonal and as a result pivoting is often not
necessary.

Hungarian scaling, or for that matter any diagonal scaling of a matrix, can be
better understood using max-plus algebra. Schneider and his collaborators have devel-
oped a considerable theory for matrix scalings and weighted graph potentials, which
are equivalent to similarity scalings of the graph’s weighted adjacency matrix (see for
example [3], [17], [18]). In this paper we adapt some of these ideas to the problem of
finding optimal Hungarian scalings for the linear system Ax = b.

An important point that has been overlooked in the previous numerical linear alge-
bra literature is that the Hungarian scaling associated with a matrix A ∈ Cn×n is not
unique. In general there will be many different diagonal matrix pairs D1, D2 ∈ Rn×n,
resulting in different Hungarian scaled matrices that may behave quite differently in
direct factorizations or iterative methods. What does the set of all Hungarian scalings
of a matrix look like? How do we choose the best possible Hungarian scaling for a
particular problem?

The Hungarian scalings of a matrix A are all related by diagonal similarities, so
that if H = D1PAD2 and H ′ = D′1PAD

′
2 are both Hungarian scaled then there exists

a diagonal matrix S such that H ′ = S−1HS. Starting from H, we can generate new
Hungarian scaled matrices by applying “special” diagonal similarities to H: S must
be such that H ′ is a Hungarian scaled matrix, i.e., |h′ij | ≤ 1 and |h′ii| = 1 for all i, j.
The conditions on S are very naturally expressed in terms of max-plus algebra and
this is why it proves so useful here.

Since the increased diagonal dominance of the Hungarian scaled matrices has
been repeatedly cited as being responsible for their improved numerical characteristics
we will focus on trying to obtain Hungarian scaled matrices that are as diagonally
dominant as possible. To this end we consider max-balancing Hungarian scalings.
Max-balancing graphs were introduced by Schneider and Schneider in connection with
certain network flow problems [17]. A directed weighted graph is max-balanced if for
any subset of vertices the maximum weight of an edge into that subset is equal to the
maximum weight of an edge out of that subset. A matrix A ∈ Cn×n is max-balanced
if and only if its precedence graph is max-balanced. We can use the max-balancing
algorithm of Schneider and Schneider to compute a diagonal matrix S ∈ Rn×n such
that the scaled matrix B = S−1AS is max-balanced. We show in Section 4 that
max-balancing (a) preserves the property of a matrix being Hungarian scaled and (b)
minimizes the entrywise p-norm over all diagonal similarity scalings of A in the limit
as p tends to infinity. As a result, the max-balancing of a Hungarian scaled matrix
produces, in the entrywise p-norm sense, the most “diagonally dominant” Hungarian
scaled matrix.

The cost of computing the max-balancing Hungarian scaling of A ∈ Cn×n is
equal to the cost of computing the initial Hungarian scaling plus the cost of com-
puting the max-balancing scaling. Both of these steps have worst case complexity
O
(
nτ +n2 log n

)
, where τ is the number of nonzero entries in A. In practice, the cost

of computing the initial Hungarian scaling is typically much smaller, namely O(τ).
It is not yet clear from our investigations whether the cost of the max-balancing al-
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gorithm typically meets the worst case complexity bound. However it is clear that
the algorithm is difficult to parallelize so that faster alternative scalings may be of
practical interest. One possibility proposed in Section 5 is the centre of mass scaling,
which is a diagonal similarity scaling that aims to approximate the max-balancing
scaling. The cost of computing the centre of mass scaling is the same as that of
the max-balancing scaling but the computation is comparatively straightforward and
easily parallelized.

To demonstrate the effectiveness of max-balancing and centre of mass Hungarian
scalings we include numerical experiments in Section 6. We focus on solving Ax = b
via LU factorization, where A ∈ Cn×n is sparse and nonsymmetric. Our experiments
confirm that max-balancing improves diagonal dominance and that the condition
numbers and number of row interchanges in Gaussian elimination with partial pivot-
ing reduced by Hungarian scaling are further reduced by max-balancing Hungarian
scaling. The centre of mass scaling tends to do nearly as well as the max-balancing
scaling.

2. Background material. Max-plus algebra concerns the max-plus semiring
Rmax = R ∪ {−∞} along with the binary operations max and plus,

a ⊕ b = max{a, b}, a ⊗ b = a + b, for all a, b ∈ Rmax,

and additive and multiplicative identities −∞ and 0 (a ⊕−∞ = a, a ⊗ 0 = a).
Throughout this paper we use calligraphic letters for elements in Rmax, including

matrices. A max-plus matrix A ∈ Rn×mmax is simply an array of elements from Rmax.
A max-plus diagonal matrix has all nondiagonal entries equal to minus infinity, a
particular case being the max-plus identity matrix, denoted by I, which has all its
diagonal entries equal to zero. We write max-plus diagonal matrices as diag∞(d) for
some vector d ∈ Rnmax defining the diagonal entries. We denote by On the n × n
matrix of zeros so that β⊗On for some β ∈ Rmax is the n×n matrix with all entries
equal to β.

Max-plus matrix multiplication is defined analogously to classical matrix multi-
plication so that if A ∈ Rn×mmax and B ∈ Rm×`max then A⊗ B ∈ Rn×`max with

(
A⊗ B

)
ij

=

m⊕
k=1

aik ⊗ bkj = max
1≤k≤m

aik + bkj .

For clarity we denote powers of A ∈ Rn×nmax by the ⊗ symbol so that for example
A⊗3 = A⊗A⊗A. The Kleene star of A ∈ Rn×nmax , denoted by A?, is given by

A? = I ⊕ A⊕A⊗2 ⊕ · · · .

If A is irreducible then the entries of A? are all finite.
The precedence graph Γ(A) of A = (aij) ∈ Rn×nmax is the weighted directed graph

with vertices {1, . . . , n} and an edge from i to j with weight aij whenever aij 6= −∞.
The maximum cycle mean of A ∈ Rn×nmax is defined by

max
C

W (C)/L(C) =: λmax(A),

where the maximum is taken over all elementary cycles C through Γ(A). Here W (C)
is the weight of the cycle C, that is, the sum of the weights of its constituent edges,
and L(C) is the length of the cycle C, that is, the number of edges C contains. An
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elementary cycle C is critical in Γ(A) if W (C)/L(C) = λmax(A). It is known that the
Kleene star A? exists if and only if λmax(A) ≤ 0 (see [2, Prop. 1.6.10] for example).

We use the partial ordering ≤ on Rn×nmax defined by A ≤ B if and only if aij ≤ bij
for all i, j = 1, . . . , n. For A ∈ Rn×nmax and β ∈ Rmax, a vector x ∈ Rnmax with at least
one finite entry satisfying A ⊗ x ≤ β ⊗ x is called a subeigenvector of A associated
with β. Subeigenvectors with finite entries play an important role in this paper. Their
existence is addressed in the next lemma (see [2, Thm. 1.6.18 (a)] for example).

Lemma 2.1. Let A ∈ Rn×nmax , A 6= −∞⊗On and β ∈ Rmax. Then A⊗ x ≤ β ⊗ x
has a finite solution x ∈ Rn if and only if β ≥ λmax(A) and β > −∞.

The column space of A ∈ Rn×nmax is defined by

col(A) = {A ⊗ x : x ∈ Rnmax}.

For A,B ∈ Rn×nmax with B having finite entries, define A/B ∈ Rn×nmax by

(A/B)ij = aij − bij .

To link the classical algebra of complex matrices with standard addition and
multiplication to the max-plus algebra, we use the non-Archimedean valuation

x ∈ C 7→ V(x) = log |x| ∈ Rmax (2.1)

with the convention that log 0 = −∞. For matrices, we apply the valuation compo-
nentwise, that is, for A ∈ Cn×n, V(A) = A =

(
log |aij |

)
∈ Rn×nmax . For some u ∈ Rn,

we use the notation diag0(u) to denote an n×n real diagonal matrix with ith diagonal
entry equal to ui. Then we have that

V
(
diag0(u)

)
= diag∞

(
log(|u|)

)
∈ Rn×nmax ,

where the absolute value and the logarithm of a vector are taken componentwise.
We say that B ∈ Rn×nmax is obtained from A ∈ Rn×nmax by diagonal similarity scaling

if B = diag∞(−d)⊗A⊗ diag∞(d) for some d ∈ Rn.
Lemma 2.2. Let A be a max-plus matrix. Then the weight W (C) of a cycle C

in Γ(A) is preserved by diagonal similarity scaling of A.
Proof. The weight of C = {(i1, i2), . . . , (i`, i1)} as a cycle in Γ(A) is given by

WΓ(A)(C) = ai`i1 +
∑`−1
k=1 aikik+1

. Now let B = diag∞(−d) ⊗ A ⊗ diag∞(d) for some
d ∈ Rn. Then the weight of C as a cycle in Γ(B) is given by

WΓ(B)(C) = bi`i1 +

`−1∑
k=1

bikik+1

= ai`i1 +

`−1∑
k=1

aikik+1
− di` + di1 +

`−1∑
k=1

−dik + dik+1
= WΓ(A)(C).

Recall that, by Lemma 2.1, a max-plus matrix A with at least one finite entry
has a finite subeigenvector associated with λmax(A).

Lemma 2.3. Let A ∈ Rn×nmax have at least one finite entry.
(a) A vector s ∈ Rn is a subeigenvector of A associated with the maximum cycle

mean λmax(A) if and only if diag∞(−s)⊗A⊗ diag∞(s) ≤ λmax(A)⊗On.
(b) If s ∈ Rn is a subeigenvector of A associated with λmax(A) then (S)ij =

λmax(A) for all i, j such that (i, j) is an edge in a critical cycle C in Γ(A).
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(c) If s, s′ ∈ Rn are both subeigenvectors of A associated with λmax(A) then
−si + sj = −s′i + s′j whenever i and j are both vertices visited by a critical
cycle C in Γ(A).

Proof. Let S = diag∞(−s)⊗A⊗ diag∞(s) so that Sij = −si + aij + sj .
(a) By the definition of a subeigenvector we have maxj aij + sj ≤ λmax(A) + si

for all i, which is equivalent to Sij ≤ λmax(A) for all i, j = 1, . . . , n.
(b) Lemma 2.2 states that similarity scaling does not affect cycle means, so that

λmax(A) = W (C)/L(C) =
1

L(C)

∑
(i,j)∈C

(S)ij ,

and since each of the terms in the sum is bounded above by λmax(A) they must all
be equal to λmax(A).

(c) Let S ′ = diag∞(−s′) ⊗ A ⊗ diag∞(s′). Now suppose that i and j are both
vertices visited by a critical cycle C. There is a directed path through C from i to j
given by σ = (σ(1) = i, . . . , σ(t) = j). Since the entries of S and S ′ on C are all equal
to λmax(A) we have −sσ(k) + aσ(k)σ(k+1) + sσ(k+1) = −s′σ(k) + aσ(k)σ(k+1) + s′σ(k+1) =

λmax(A), so that

−sσ(k) + sσ(k+1) = −s′σ(k) + s′σ(k+1), k = 1, . . . , t. (2.2)

Finally summing (2.2) over k yields −si + sj = −s′i + s′j .

3. Hungarian scaling. The max-plus permanent of A ∈ Rn×nmax is given by

perm(A) = max
π∈Π(n)

n∑
j=1

aπ(j)j , (3.1)

where the maximum is taken over the set Π(n) of all permutations of {1, . . . , n}. We
denote by π = id the identity permutation, i.e., id = {1, . . . , n}. A permutation π
which attains the maximum in (3.1) is called an optimal assignment of A. When
perm(A) 6= −∞, the max-plus permanent of A can be rewritten as a minimization
problem (see for example [13]),

perm(A) = min

{ n∑
i=1

(ui + vi) : u, v ∈ Rn, aij − ui − vj ≤ 0

}
. (3.2)

A Hungarian pair of A is an optimal solution (u, v) to (3.2). It is named after the
Hungarian algorithm, which is a widely used primal-dual algorithm for solving the
optimal assignment problem.

To any π ∈ Π(n) we associate the max-plus permutation matrix Pπ ∈ Rn×nmax and
the permutation matrix Pπ ∈ Cn×n defined by

(Pπ)ij =

{
0 for j = π(i),
−∞ otherwise,

(Pπ)ij =

{
1 for j = π(i),
0 otherwise,

so that V(Pπ) = Pπ, where V(·) is the valuation in (2.1).
The next theorem or more precisely, its corollary, appears in [15, Thm. 2.8]. We

provide the proof for completeness.
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Theorem 3.1 (Hungarian scaling). Let π be an optimal assignment of A ∈ Rn×nmax ,
let (u, v) be a Hungarian pair of A, and let Pπ be the max-plus permutation matrix
defined by π. Then the max-plus Hungarian scaled and reordered matrix

H = Pπ ⊗ diag∞(−u)⊗A⊗ diag∞(−v)

is such that hij ≤ 0 and hii = 0 for all i, j = 1, . . . , n. Moreover, λmax(H) = 0.
Proof. Note that H =

(
Pπ ⊗ diag∞(−u) ⊗ PTπ

)
⊗ Pπ ⊗ A ⊗ diag∞(−v) so that

the entries of H are given by hij = (−uπ(i))⊗ aπ(i)j ⊗ (−vj) = aπ(i)j −uπ(i)− vj . Now
from the definition of a Hungarian pair and (3.2) we have hij ≤ 0 for all i, j. Also,

n∑
i=1

hii =

n∑
i=1

aπ(i)i − uπ(i) − vi =

n∑
i=1

aπ(i)i −
n∑
i=1

ui + vi = perm(A)− perm(A) = 0,

which implies that hii = 0 for all i = 1, . . . , n since hii ≤ 0 for all i = 1, . . . , n.
Since the diagonal entries of H correspond to length one cycles of weight zero in

Γ(H) and no cycle in Γ(H) can have strictly positive weight, it follows that λmax(H) =
0.

We refer to a max-plus matrix H such that hij ≤ 0 and hii = 0 for all i, j as a
Hungarian matrix. Since λmax(H) = 0, the Kleene star of a Hungarian matrix always
exists. The next result, which holds for complex matrices, is a direct consequence of
Theorem 3.1.

Corollary 3.2. Let A ∈ Cn×n and let π and (u, v) be an optimal assignment
and a Hungarian pair of V(A), respectively. Let Pπ ∈ Cn×n be the permutation matrix
defined by π. Then the Hungarian scaled and reordered matrix

H = Pπ diag0

(
exp(−u)

)
Adiag0

(
exp(−v)

)
,

has all entries of modulus less than or equal to one and entries of modulus one on the
diagonal, i.e., |hij | ≤ 1 and |hii| = 1 for all i, j = 1, . . . , n.

We note that the max-plus matrix H in Theorem 3.1 is the componentwise log-
of-absolute-value of the matrix H in Corollary 3.2, that is, H = V(H). The max-plus
singular values of H are the points of non-differentiability of the max-plus charac-
teristic polynomial p(x ) = perm(H ⊕ x ⊗ O) [12], [13]. Hook [12, Thm. 4.1] shows
that the max-plus singular values of a Hungarian scaled matrix are all equal to zero
and that, for the valuation (2.1), the exponential of the max-plus singular values of
H = V(H) tend to offer order of magnitude approximation to the singular values of
H. As a result, we can expect the singular values σ1 ≥ · · · ≥ σn of the Hungarian
scaled matrix H ∈ Cn×n to be close to 1 and therefore for H to have a small 2-norm
condition number κ2(H) since κ2(H) := ‖H‖2‖H−1‖2 = σ1/σn.

Example 3.3. Let

A =

 exp(6) exp(2) exp(1)
1 exp(−3) exp(−6)
0 exp(−3) 1

 , A := V(A) =

 6 2 1
0 −3 −6
−∞ −3 0

 .
It is easy to check that the max-plus matrix A has a unique optimal assignment π =
(1, 2, 3) and that (u, v) with u = [0,−5,−1]T and v = [6, 2, 1]T is a Hungarian pair
for A yielding the max-plus Hungarian scaled matrix

H = diag∞(−u)⊗A⊗ diag∞(−v) =

 0 0 0
−1 0 −2
−∞ −4 0

 .
6



Applying the Hungarian pair (u, v) of A to A yields the Hungarian scaled matrix

H = diag0

(
exp(−u)

)
A diag0

(
exp(−v)

)
=

 1 1 1
exp(−1) 1 exp(−2)

0 exp(−4) 1

 .
Note that V(H) = H. Hungarian scaling tends to significantly reduce the condition
number of a matrix. For this example we have κ2(A) = 1.3× 104 � κ2(H) = 6.2.

Next we state a result from Butkovič and Schneider [3, Problem 3.1], which,
given a max-plus matrix and some desired upper bounds on the entries of the matrix,
enables us to compute diagonal similarity scalings so that the scaled matrix satisfies
the desired bounds, or otherwise to prove that no such scaling exists. We note that
although Butkovič and Schneider’s results in [3] are stated for nonnegative matrices
in the max-times algebra rather than max-plus matrices in the max-plus algebra, the
transformation from one to the other is very straightforward. The solution to [3,
Problem 3.1] we state below is for the max-plus algebra.

Theorem 3.4 (One-sided inequality). For A,B ∈ Rn×nmax , B with finite entries,{
s ∈ Rn : diag∞(−s)⊗A⊗ diag∞(s) ≤ B

}
=

{
col
(
(A/B)?

)
if λmax(A/B) ≤ 0,

∅ otherwise.

Note that if A has optimal assignment π 6= id then Pπ ⊗ A has the identity
permutation as optimal assignment so there is no loss of generality in assuming that
A has π = id as optimal assignment. We now provide a characterization for the set
of all Hungarian pairs, which is new to the best of our knowledge.

Theorem 3.5 (Set of all Hungarian pairs). Assume that A ∈ Rn×nmax has optimal
assignment π = id and let (u, v) be a Hungarian pair for A. Then the set of all
Hungarian pairs Hung(A) of A is given by

Hung(A) = {(u+ s, v − s) : s ∈ col(H?)},

where H = diag∞(−u)⊗A⊗ diag∞(−v).
Proof. Let (u′, v′) ∈ Hung(A) and H′ = diag∞(−u′) ⊗ A ⊗ diag∞(−v′). From

Theorem 3.1 we have

hii = h ′ii = 0 ⇐⇒ aii − u′i − v′i = aii − ui − vi = 0

so that there exists s ∈ Rn such that (u′, v′) = (u + s, v − s). Therefore H′ =
diag∞(−s)⊗H⊗ diag∞(s). Now from Theorem 3.1,

H′ = diag∞(−s)⊗H⊗ diag∞(s) ≤ On. (3.3)

From Theorem 3.4 we know that inequality (3.3) is feasible provided λmax(H/On) ≤ 0,
which is true since H/On = H and λmax(H) = 0. Therefore, (3.3) is satisfied if and
only if s ∈ col(H?).

Conversely suppose that s ∈ col(H?), then s is a solution to

diag∞(−s)⊗H⊗ diag∞(s) ≤ On ⇐⇒ aij − (ui + si)− (vj − sj) ≤ 0

so that (u′, v′) := (u+ s, v − s) is a feasible solution to (3.2). Then since

n∑
i=1

u′i + v′i =

n∑
i=1

(ui + si) + (vi − si) =

n∑
i=1

ui + vi = perm(A),

7
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Fig. 3.1. For the matrix of Example 3.6. (a) precedence graph Γ(H). Subfigures (b), (c), and
(d) show col(H?) ∩ {s1 = 0} and different scaling vectors.

the pair (u′, v′) must also be an optimal solution to (3.2) and therefore a Hungarian
pair of A.

Example 3.6. Consider the matrix A and the Hungarian scaled matrix H of
Example 3.3. From Theorem 3.5 we know that the set of all Hungarian pairs of A is
given by Hung(A) = {

(
(0,−5,−1) + s, (6, 2, 1)− s

)
: s ∈ col(H?)}. The (i, j) entry of

H? is equal to the weight of the maximally weighted path through the precedence graph
Γ(H) of H from i to j so, by looking at Γ(H) in Figure 3.1(a), we find that

H? =

 0 0 0
−1 0 −1
−5 −4 0

 .
Computing col(H?) generally requires some special knowledge of tropical geometry.
However in this case, we know from Theorem 3.4 that

s ∈ col(H?) ⇐⇒ Hs := diag∞(−s)⊗H⊗ diag∞(s) ≤ O3,

which yields the following constraints on the entries of s:

−1 + s1 − s2 ≤ 0, s2 − s1 ≤ 0, −4 + s2 − s3 ≤ 0, s3 − s1 ≤ 0. (3.4)

These constraints define the boundary faces of col(H?). For all α ∈ R, a scaling
parameter s ∈ Rn satisfies (3.4) if and only if s̃ := s + [α, α, α]T = s ⊗ α satisfies
(3.4). Therefore col(H?) is a prism extruded in the [1, 1, 1]T direction. Its intersection
with the plane s1 = 0 is the set of solutions to

s2 ≥ −1, s2 ≤ 0, s2 − s3 ≤ 4, s3 ≤ 0,

which is given by the quadrilateral shown in Figure 3.1(b). The three vertices a, b, c
of the quadrilateral are columns of H? and the fourth vertex d is a max-plus linear
combination of two columns of H?,

a = [0,−1, 0]T , b = [0,−1,−5]T , c = [0, 0,−4]T , d = a⊕ c = [0, 0, 0]T .

Since for any α ∈ R the scaling vectors s and s̃ = s ⊗ α both give rise to the
same scaling of H it follows that the set of all Hungarian scalings of A is isomorphic
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Table 3.1
2-norm condition number and Frobenius norm for the matrices of Examples 3.6, 4.4 and 5.3.

Matrix X A H (Hd) Ha Hb Hc Hp Hq Hs
B

Hs
M

κ2(X) 1.27e4 6.19 6.56 6.98 6.40 4.96 4.27 4.08 4.18

‖X‖F 4.04e2 2.27 2.30 2.27 2.27 2.07 1.97 1.94 1.95

to the intersection of col(H?) with the plane s1 = 0. Each vertex of the quadrilateral
therefore corresponds to an extremal Hungarian scaling of A given by

Ha =

 0 −1 0
0 0 −1
−∞ −5 0

 , Hb =

 0 −1 −5
0 0 −6
−∞ 0 0

 ,
Hc =

 0 0 −4
−1 0 −6
−∞ 0 0

 , Hd =

 0 0 0
−1 0 −2
−∞ −4 0

 .
Note that each of these Hungarian scaled matrices contain precisely five entries

equal to zero. If we scale using any parameter from the relative interior of an edge of
the quadrilateral then we obtain a scaled matrix with exactly four entries equal to zero.
If we take any scaling parameter from the interior of the quadrilateral then we obtain
a scaled matrix with exactly three entries equal to zero. For example, p = [0,−1,−1]T

and q = [0,−0.5,−1]T yield

Hp =

 0 −1 −1
0 0 −2
−∞ −4 0

 , Hq =

 0 −0.5 −1
−0.5 0 −2.5
−∞ −3.5 0

 .
Let A and H be as in Example 3.3 so that V(A) = A and V(H) = H. For

s = a, b, c, d, p, q define Hs := diag0

(
exp(−s)

)
H diag0

(
exp(−s)

)
∈ R3×3. The 2-

norm and 2-norm condition number of these matrices are provided in Table 3.1. As in
Example 3.3 we find that Hungarian scaling significantly reduces the matrix condition
number. The scalings a, b, c, d which are taken from extreme points of col(H?) (see
Figure 3.1 (b)) all result in scaled matrices with five entries of modulus one and all
with very similar condition numbers and norms. The scaling p which is taken from
an edge of col(H?) results in a scaled matrix with four entries of modulus one and
a slightly smaller condition number and norm compared to the previous Hungarian
scalings. The scaling q which is taken from the interior of col(H?) results in a scaled
matrix with three entries of modulus one and has a further reduced condition number
and norm. Note that only Hq is diagonally dominant.

In order to Hungarian scale a matrix A ∈ Rn×nmax we must compute an optimal
assignment and Hungarian pair for A. The best known algorithms for this have worst
case cost O

(
nτ+n2 log n

)
, where τ is the number of finite entries inA (finite entries are

the max-plus equivalent of nonzero entries). However, in practical numerical examples
it is found that optimal assignment algorithms such as the Hungarian algorithm [8],
the successive shortest paths algorithm [16] and the auction algorithm [11] have run
times roughly linear in the number of finite entries in the matrix. It is only for some
very special examples that the worst case complexity bound is attained.

In general the space col(H?) contains more than one possible scaling so that
different optimal assignment algorithms may return different Hungarian pairs, which
result in different scalings that may have different properties. Theorem 3.5 tells us
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that these different scalings are all related by similarity scalings. Moreover if we
suppose that A has been Hungarian scaled and reordered into a Hungarian matrix H
then Theorem 3.5 tells us that for s ∈ col(H?), Hs = diag∞(−s)⊗H⊗diag∞(s) is also
a Hungarian matrix. In the remainder of this paper we investigate two approaches
to construct a vector s ∈ col(H?) that aims to make Hs more diagonally dominant
than H. The computed scalings can then be exponentiated and applied to the original
problem matrix A as in Corollary 3.2.

4. Max-balancing. An irreducible matrix A ∈ Rn×nmax is max-balanced if for any
nontrivial subset J ⊂ {1, . . . , n} we have

max
i∈J ,j 6∈J

aij = max
i 6∈J ,j∈J

aij . (4.1)

We note that for a matrix to be max-balanced is a stronger condition than to be
balanced in the max-norm sense as illustrated by the following example taken from
[17]. Indeed, the max-norm of the ith column of the matrix

A =


−∞ 2 −∞ −∞

2 −∞ 1 −∞
−∞ 0 −∞ 2
−∞ −∞ 2 −∞


is equal to the max-norm of the ith row for all i. However the set J = {1, 2} does
not satisfy the max-balancing condition (4.1).

Schneider and Schneider [17, Cor. 9] show that any irreducible nonnegative matrix
can be max-balanced by a unique similarity scaling. It is trivial to rephrase their result
for max-plus matrices.

Theorem 4.1 (Uniqueness of max-balancing scaling). For any irreducible A ∈
Rn×nmax there exists a unique s ∈ Rn with

∑
i si = 0 such that diag∞(−s)⊗A⊗diag∞(s)

is max-balanced.
Note that the requirement that

∑
i si = 0 in Theorem 4.1 is a normalization

condition, which is necessary for uniqueness. Indeed if s max-balances A so does
α⊗ s for any α ∈ R. Now if H is a Hungarian scaled and reordered matrix obtained
from an irreducible max-plus matrix A then the max-balancing scaling of H is the
unique max-balancing Hungarian scaling of A.

4.1. Max-balancing algorithm. Schneider and Schneider’s description of the
max-balancing algorithm is purely in terms of the precedence graph of the matrix
[17]. Our description of the algorithm is in terms of matrices and this turns out to be
useful for the proofs of the theorems in this section and Section 4.2.

Algorithm 4.2 (Max-balancing). Given an irreducible matrix A ∈ Rn×nmax this
algorithm returns sB ∈ Rn such that diag∞(−sB)⊗A⊗ diag∞(sB) is max-balanced.

1 Set t = 1, m0 = n, f1 = id.
2 Let A1 ∈ Rn×nmax be such that (A1)ij = aij if i 6= j and (A1)ii = −∞.
3 Compute β1: = λmax(A1) with critical cycle C1.
4 Compute a subeigenvector s1 ∈ Rn of A1 associated with β1.
5 Let m1: = m0 + 1− number of vertices in C1.
6 while mt > 1
7 t = t+ 1
8 St = diag∞(−st−1)⊗At−1 ⊗ diag∞(st−1)
9 Let ft: {1, . . . ,mt−2} 7→ {1, . . . ,mt−1} be such that ft(i) = ft(j) if
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and only if i and j are both vertices of Ct−1. Let At ∈ Rmt−1×mt−1
max be

such that (At)`p =

{
−∞ if ` = p,
max{(St)ij : ft(i) = `, ft(j) = p} otherwise.

10 Compute βt: = λmax(At) with critical cycle Ct.
11 Compute a subeigenvector st ∈ Rmt of At associated with βt.
12 mt = mt−1 + 1− number of nodes in Ct
13 end
14 sB = s1(f1) + s2(f2 ◦ f1) + · · ·+ st(ft ◦ · · · ◦ f1).

Note that since diagonal similarities do not affect diagonal entries, there is no
harm in setting the diagonal entries of A to −∞ in line 2 of Algorithm 4.2. On line 14,
s`(g`) with g` = fk ◦ · · · ◦ f1 is a vector of length n such that

(
s`(g`)

)
i

= (s`)g`(i),
` = 1, . . . , k. We show in Lemma A.1(a) that the maximum cycle means βk are finite
so that, by Lemma 2.1, the subeigenvectors st exist.

We say that the matrix At on line 9 is a contraction of St with respect to the
projection ft, which we denote by At = contr(St, ft). Since the diagonal entries of
the matrices At are equal to −∞, the number of nodes in the critical cycles Ct is
always strictly larger than 1 so the size of the matrix At decreases at each step. It is
then easy to see that the algorithm terminates after at most n steps. Schneider and
Schneider [17, Thm. 6] show that the vector sB returned by Algorithm 4.2 defines the
diagonal similarity scaling which max-balances A. Now if we apply Algorithm 4.2 to
a Hungarian scaled matrix H then the next result shows that sB belongs to col(H?).
So max-balancing preserves the Hungarian scaled property.

Theorem 4.3. Assume that A ∈ Rn×nmax has optimal assignment π = id and
let (u, v) be a Hungarian pair for A. Let sB be the scaling vector returned by Algo-
rithm 4.2 when applied to the max-plus Hungarian scaled matrix H = diag∞(−u) ⊗
A ⊗ diag∞(−v) . Then sB ∈ col(H?) and with the normalization

∑
i(sB)i = 0, the

pair (u+ sB , v − sB) is the unique Hungarian pair of A that max-balances A.
Proof. See Appendix A.2.

The max-balancing scaling of A ∈ Cn×n is given by

AsB = diag0

(
exp(−sB)

)
A diag0

(
exp(sB)

)
,

where sB ∈ Rn is such that the max-plus matrix diag∞(−sB)⊗ V(A)⊗ diag∞(sB) is
max-balanced, V(·) being the valuation in (2.1).

Young, Tarjan and Orlin show that the max-balancing algorithm can be imple-
mented with O

(
nτ + n2 log n

)
operations, where τ is the number of finite entries in

A [19].
Example 4.4. Let us use Algorithm 4.2 to max-balance A = Hd, where Hd is

one of the max-plus Hungarian-scaled matrices of Example 3.6.
t = 1. We start by setting the diagonal entries of A to −∞ to give

A1 =

−∞ 0 0
−1 −∞ −2
−∞ −4 −∞

 . (4.2)

The precedence graph Γ(A1) is shown in Figure 4.1(a). The maximum cycle
mean β1, a critical cycle C1 and a subeigenvector s1 for A1 associated with
β1 are given by β1 = −0.5, C1 = {(1, 2), (2, 1)}, s1 = [0,−0.5,−4]T so that
m1 = 2.

11
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Fig. 4.1. (a) is the precedence graph of A1 in (4.2) and (b) is that of A2 in (4.3).

t = 2. We compute

S2 = diag∞(−s1)⊗H1 ⊗ diag∞(s1) =

 −∞ −0.5 −4
−0.5 −∞ −5.5
−∞ −0.5 −∞

 .
Next we set f2(1) = f2(2) = 1, f2(3) = 2 so that

A2 =

[
−∞ max{−4,−5.5}

max{−∞,−0.5} −∞

]
=

[
−∞ −4
−0.5 −∞

]
. (4.3)

The precedence graph Γ(A2) is shown in Figure 4.1(b). The maximum cycle
mean, critical cycle and subeigenvector for H2 are given by β2 = −2.25,
C2 = {(1, 2), (2, 1)}, s2 = [0, 1.75]T so that m2 = 2 − 2 + 1 = 1 and the
algorithm terminates. The max-balancing scaling parameter sB is then given
by sB = s1 + s2(f2) = [0,−0.5,−4]T + [0, 0, 1.75]T = [0,−0.5,−2.25]T , which
results in the max-balanced Hungarian scaled max-plus matrix

HsB = diag∞(−sB)⊗A⊗ diag∞(sB) =

 0 −0.5 −2.25
−0.5 0 −3.75
−∞ −2.25 0

 .
For the matrices A,H ∈ Cn×n of Example 3.3, max-balancing leads to the max-
balanced Hungarian scaled matrix

HsB
= diag0

(
exp(−sB)

)
H diag0

(
exp(sB)

)
=

 1 exp(− 1
2 ) exp(− 9

4 )

exp(− 1
2 ) 1 exp(− 15

4 )
0 exp(− 9

4 ) 1

 .
Table 3.1 shows that HsB

has the smallest norm and condition number amongst all of
the Hungarian scaled matrices obtained so far from A. Note that HsB

is diagonally
dominant by row and by column.

4.2. Norm minimization of max-balancing scaling. The property that
max-balancing scaling minimizes the larger entries in the matrix is formalized as
follows. For A ∈ Cn×n let

‖A‖p := ‖vec(A)‖p =
(∑

ij

|aij |p
)1/p

, 1 ≤ p ≤ ∞,

denote the entrywise p-norm of the matrix. Note that p = 2 corresponds to the
Frobenius norm and if H is a Hungarian matrix then 1 ≤ ‖H‖p ≤ τ , where τ is the
number of nonzeros in H.
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Define the ordering ≺ by A ≺ B if there exists p′ ∈ R+ such that ‖A‖p < ‖B‖p
for all p > p′. We are ready to state the main result of this paper.

Theorem 4.5 (Norm minimization of max-balancing scaling). Let As be the max-
balancing scaling of an irreducible A ∈ Cn×n. Then As is the unique least element
with respect to ≺ in the set of all diagonal similarity scalings of A.

Proof. See Appendix A.3.

The next result is a direct consequence of Theorem 3.5 and Theorem 4.5.

Theorem 4.6 (Norm minimization of max-balancing Hungarian scaling). Let
HsB

be the max-balancing Hungarian scaling of an irreducible A ∈ Cn×n. Then HsB
is the unique least element, with respect to ≺, in the set of all Hungarian scalings of
A.

Theorem 4.6 says that max-balancing minimizes the entrywise p-norm over all
diagonal similarity scalings of A that preserve the Hungarian scaling property in the
limit as p tends to infinity. As a result, the max-balancing of a Hungarian scaled
matrix produces, in the entrywise p-norm sense, the most “diagonally dominant”
Hungarian scaled matrix.

4.3. Reducible case. If A ∈ Rn×nmax is not irreducible then it is not diagonally
similar to a max-balanced matrix. For example

A =

[
0 0
−∞ 0

]
, B = diag∞(−s)⊗A⊗ diag∞(s) =

[
0 s2 − s1

−∞ 0

]
,

is not max-balanced unless s2 − s1 = −∞.

We treat a reducible matrix A ∈ Rn×nmax as follows. First we determine the strongly
connected components of Γ(A). Suppose that there are m of these of size n1, . . . , nm.
We then apply a similarity permutation to obtain a block upper triangular matrix
A′ = P−1 ⊗A⊗P with irreducible diagonal blocks A′ii ∈ Rni×ni

max , i = 1, . . . ,m. Next
we compute the max-balancing scaling vector si for each of the diagonal blocks A′ii
and we let B′ = diag∞(−s) ⊗ A′ ⊗ diag∞(s), where s = [sT1 , . . . , s

T
m]T ∈ Rn. The

matrix B′ is block upper triangular with irreducible max-balanced diagonal blocks.
However it may have some large entries in its off diagonal blocks and these can be
scaled down as follows. For ε ∈ Rmax, let C ∈ Rm×mmax be such that

cij =

{
ε+ max

kl
(B′ij)kl if j > i,

−∞ otherwise.

Let r = C? ⊗Om×1 and t = [r1O1×n1
, . . . , rmO1×nm

]T ∈ Rn. We apply t as a scaling
to obtain

B = diag∞(−t)⊗ B′ ⊗ diag∞(t) = diag∞(−t− s)⊗ P−1 ⊗A⊗ P ⊗ diag∞(s+ t).

The matrix B is block upper triangular with irreducible max-balanced diagonal blocks
and all entries in off-diagonal blocks less than or equal to ε. The smaller ε is, the more
diagonally dominant is B. However setting ε to be extremely small has little extra
benefit and may lead to large errors when scaling back solutions of linear systems
after Gaussian elimination. We choose ε to be the smallest of all of the maximum
cycle means computed by the max-balancing algorithm for all the diagonal blocks A′ii,
i = 1 . . . ,m.
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5. Centre of mass scaling. A visualization scaling as introduced by Sergeev,
Schneider and Butkovič [18] is a diagonal similarity scaling which results in a matrix
whose entries are all less than or equal to the maximum cycle mean of the matrix,
with a strict inequality for any entries that do not lie on critical cycles. Such scaled
matrices are called strictly visualized. The motivation behind visualization scaling is
to better understand connections between classical and tropical algebra and also to
provide normal forms for certain tropical linear maps.

For a nonnegative matrix A, Sergeev, Schneider and Butkovič characterize the
set of all diagonal similarities which strictly visualize A (see [18, Thm. 3.7]). It is
straightforward to rephrase their result in terms of max-plus matrices.

Theorem 5.1 (Visualization scalings). Let A ∈ Rn×nmax . Then As = diag∞(−s)⊗
A⊗ diag∞(s) is strictly visualized if and only if s ∈ relint

(
col(A?)

)
, where relint(X )

is the relative interior of X .
Now if H ∈ Rn×nmax is a Hungarian scaled matrix which has been strictly visualized

into Hs := diag∞(−s)⊗H⊗diag∞(s) then the entries of Hs are such that (Hs)ij = 0
for all i, j such that j = π(i) for some optimal assignment π ∈ Πn and (Hs)ij < 0
otherwise. So Hs is a Hungarian matrix which has as few zero entries as is possible.
In particular, if H ∈ Rn×nmax has a unique optimal assignment then a strict visualization
scaling of H will have exactly n entries equal to zero.

As we saw in Example 3.6 each face of col(H?) corresponds to a different linear
constraint on the scaling parameter s for Hs to be a Hungarian scaling. Each of
these constraints is of the form (Hs)ij ≤ 0 for some entry (i, j). Thus if the scal-
ing parameter s is taken from the face of col(H?) associated with the (i, j)th entry
constraint then the scaled matrix will have (Hs)ij = 0. If the scaling parameter is
a point outside of col(H?) on the other side of this face then the scaled matrix will
have (Hs)ij > 0 and if the scaling parameter is taken from col(H?) but not from this
face then (Hs)ij < 0. The further away from the face, towards the interior of col(H?),
the smaller the value of the (i, j)th entry in the scaled matrix. The max-balancing
scaling attempts to minimize larger entries in the matrix and this is reflected in the
observation that the max-balancing scaling parameter lies roughly in the centre of
col(H?). Points in the centre of col(H?) maximize the minimum distance from the
various faces and thus minimize larger entries in the scaled matrix.

Rather than using max-balancing scaling, we can instead try any scaling that
takes its scaling parameter from a point close to the centre of col(H?). One simple
way of obtaining such a scaling is to take the centre of mass of the vertices of col(H?).
The centre of mass scaling of H is given by C = diag∞(−sM )⊗H⊗diag∞(sM ), where

sM =
1

n

n∑
i=1

H? ⊗ ei ∈ Rn.

Here ei ∈ Rnmax is the ith column of the max-plus identity matrix. If τ is the number
of finite entries of H then the total cost of computing this scaling is O

(
nτ +n2 log n

)
,

which is the same as the max-balancing scaling. However computing the centre of
mass scaling is embarrassingly parallel since each of the H? ⊗ ei can be computed
independently using Dijkstra’s algorithm with an individual cost of O

(
τ + n log n

)
.

Theorem 5.2 (Uniqueness of centre of mass scaling). Let H and H′ be two
different Hungarian scalings of a max-plus matrix A. Then the centre of mass scalings
of H and H′ are the same.

Proof. Let C = diag∞(−sM ) ⊗ H ⊗ diag∞(sM ) ∈ Rn×nmax be the centre of mass
scaling of H. Since H′ is also a Hungarian scaling of A, it must, by Theorem 3.5, be
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a similarity scaling of H, i.e., there exists s ∈ Rn such that H′ = diag∞(−s) ⊗ H ⊗
diag∞(s). The centre of mass scaling parameter for H′ is then given by

sM ′ =
1

n

n∑
i=1

(H′)?⊗ei =
1

n

n∑
i=1

diag∞(−s)⊗H?⊗diag∞(s)⊗ei = −s+sM +e
1

n

∑
j

sj ,

where e is a vector of ones and sM is the centre of mass scaling parameter for H. Thus
the centre of mass scaling of H′ is

C′ = diag∞(+s− sM − e
1

n

∑
j

sj)⊗H′ ⊗ diag∞(−s+ sM + e
1

n

∑
j

sj)

= diag∞(−e 1

n

∑
j

sj)⊗ diag∞(−sM )⊗H⊗ diag∞(sM )⊗ diag∞(e
1

n

∑
j

sj)

= diag∞(−e 1

n

∑
j

sj)⊗ C ⊗ diag∞(e
1

n

∑
j

sj) = C.

Example 5.3. Consider the matrices H, H? and H of Examples 3.3 and 3.6.
The centre of mass scaling parameter is given by

sM =
1

3
(H? ⊗ e1 +H? ⊗ e2 +H? ⊗ e3) = [0,−2/3,−3]T

yielding the Hungarian scaled matrix

HsM = diag∞(−sM )⊗H⊗ diag∞(sM ) =

 0 −2/3 −3
−1/3 0 −13/3
−∞ −5/3 0

 .
Figure 3.1(d) shows the position of the arithmetic centre of mass scaling parameter
sM in col(H∗). Table 3.1 shows that 2-norm condition number of

HsM
= diag0

(
exp(−sM )

)
H diag0(exp

(
sM )

)
is slightly larger than that for the max-balanced Hungarian matrix HsB

of Example 4.4.
Note that, as for HsB

, the centre of mass Hungarian scaled matrix HsM
is diagonally

dominant by row and by column for this example.

6. Numerical results for linear system scalings. In this section we report on
the effect of the max balancing and centre of mass scalings on classical matrices, and
on the solution of linear systems Ax = b by Gaussian elimination, where A ∈ Rn×n
is sparse and nonsymmetric, and b ∈ Rn. Our test matrices are from the University
of Florida Sparse Matrix Collection [4], and come from a variety of applications. We
select all real nonsymmetric matrices in the collection for which 100 ≤ n ≤ 500,
excluding binary matrices and matrices with a two-norm condition number larger
than 1015. This gives us 80 matrices in total.

For each matrix A in our test set we use the HSL code MC64 [6], [7], [14] to com-
pute a Hungarian pair and optimal assignment permutation. The resulting classical
Hungarian scaled and reordered matrix is H = D1AD2P . Note that the permutation
provided by MC64 should be applied to the columns of A, in contrast to the row
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permutation in Corollary 3.2. The max balancing and centre of mass scalings are
then applied to H to give

B = D−1
s HDs = (D−1

s D1)A(D2PDs), (6.1)

with Ds a nonsingular diagonal matrix. For comparison, we also report results for the
original unscaled matrix A. The right-hand side b is chosen so that all components of
the solution x are equal to two, i.e., xi = 2, i = 1, . . . , n.

We make use of performance profiles [5], that allow us to easily display, for all
matrices in the test set, how the scalings affect a performance measure like the condi-
tion number. To obtain the performance profile we first define the performance ratio
for the kth scaling on a given matrix to be the ratio of the performance for scaling k
to that of the best possible scaling for that matrix. (Throughout, we assume that the
performance measure of interest is one for which a smaller number is better.) The
monotonically increasing function fk(α), α ∈ [1,∞) then measures the proportion
of matrices for which the performance ratio for scaling k is at most α. Plotting the
curves fk(α) against α for the different scalings gives a performance profile, that shows
which scaling performs best or joint-best (α = 1) and which scalings are near-best
(small α). Additionally, limα→∞ indicates when a scaling fails (say, to produce L and
U factors without pivoting) on a matrix for which at least one other scaling does not
fail.

6.1. Comparison of scalings. In this section we investigate the impact of our
scalings on the diagonal dominance and conditioning of matrices in our test set, and
on Gaussian elimination.

Recall that the diagonal similarity scalings tend to improve the diagonal domi-
nance of H by reducing the magnitude of off-diagonal entries (cf. Theorem 4.5). To
see this we first measure the number of rows of B in (6.1) that are not diagonally
dominant, i.e., for which

|bii| ≤
n∑

j=1,
j 6=i

|bij |,

and display the results in a performance profile (see Figure 6.1, left plot). We see that
both the max balancing and centre of mass scalings improve the row-wise diagonal
dominance, with the max balanced matrices tending to have the most diagonally
dominant rows.

However, the left plot in Figure 6.1 does not tell us how close (or far) each row is
from a diagonally dominant one. Consequently, the measure

ρ = log

(
n∏
i=1

ηi

)
, ηi = max

{∑n
j=1,j 6=i |bij |
|bii|

, 1

}
(6.2)

may be more instructive. (Note that for a Hungarian scaled matrix |bii| = 1.) The
performance profile of ρ in Figure 6.1 shows clearly that the max balanced matrices
tend to give lower values of ρ, i.e., are in some sense closest to diagonally dominant
matrices. The 53 fails correspond to matrices A with at least one zero on the diagonal.
The centre of mass scaled matrices tend to have lower values of ρ than the MC64
Hungarian scaled matrices but higher values than the max balanced matrices.

As a by-product of increased diagonal dominance the max balancing and centre
of mass scalings may reduce the condition number. The left plot in Figure 6.2 shows
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Fig. 6.1. Performance profile of the number of rows that are not diagonally dominant (left
plot) and ρ in (6.2) (right plot).
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Fig. 6.2. Performance profile of the 2-norm condition number (left plot) and of ‖|L||U |‖F for
the L and U factors of B = LU computed without pivoting (right plot).

that for more than 60 per cent of matrices in our test set the max balanced matrices
have the smallest condition number, but for a small number of matrices the condition
number increases when we apply the max balancing scaling. However, even for these
problems the condition number is still smaller than for the original matrix A. The
centre of mass scaled matrices, however, have condition numbers that are always
within a factor of 10 of the smallest condition number.

Diagonal dominance by row or column is also important for Gaussian elimination
without pivoting since in that case an LU factorization exists and the growth factor
is bounded by 2 (see for example [9, Thm. 9.9]). Consequently, the max balancing
and centre of mass scalings may improve the stability of the computation of L and
U factors when pivoting is not used. It may also reduce the number of interchanges
when partial pivoting is employed. To investigate whether the scalings are beneficial
for Gaussian elimination, we first measure the stability of the computed factors when
no pivoting is used. Since stability is related to the size of |L||U |, where | · | is the
componentwise absolute value [9, Section 9.3], here we compare the Frobenius norm of
|L||U |, with a failure indicating that at least one entry of L or U is not finite. We see
from Figure 6.2 (right plot) that applying the MC64 Hungarian scaling reduces the
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Fig. 6.3. Performance profile of the number of interchanges needed to perform Gaussian elim-
ination with partial pivoting.

Table 6.1
Number of matrices amongst our set of 80 matrices for which no pivoting is required to perform

Gaussian elimination.

Method Number
Original 3
Hungarian scaled 10
Max balance 16
Centre of Mass 15

number of failures. However, the max balancing scaling improves stability further,
most likely because of its effect on diagonal dominance. The value of ‖|L||U |‖F is
rarely smallest for the centre of mass scaled matrices but is within a factor of 20 of
the lowest.

In practice, however, for stability and accuracy we usually require pivoting, with
some variant of partial pivoting often used. However, pivoting tends to increase the
cost of performing Gaussian elimination, since data structures may require modifica-
tion and, in multifrontal methods, pivots may be delayed. Accordingly, it is desirable
to minimize the amount of pivoting performed. Table 6.1 and Figure 6.3 show that
although the MC64 scaling and reordering reduces the number of pivots, as is well
documented, we obtain further improvements by applying the max balancing and
centre of mass scalings. This is most likely due to improved diagonal dominance. The
max balanced matrices tend to require the fewest pivots but the centre of mass scaled
matrices are almost as good.

6.2. Subset of matrices. In this section we explore the effect of the scalings
in more detail for a subset of matrices from our test set. These matrices have been
chosen because they exhibit the range of behaviours seen in the larger test set. The
matrices are listed in Table 6.2.

We start by comparing the diagonal dominance of the scaled matrices. For most
of the matrices, applying the MC64 Hungarian scaling increases the number of diag-
onally dominant rows, as shown in Table 6.3. However, the max balancing scaling
tends to improve this further, and often by a large amount. For example, the num-
ber of diagonally dominant rows increases almost six times for impcol c and almost
eight times for robot. (Note that although utm300 and robot have fewer diagonally
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Table 6.2
Information on subset of test problems.

Matrix n Application
bwm200 200 chemical process simulation

cz148 148 closest point method for computing on surfaces
fs 183 1 183 nonsymmetric facsimile convergence matrix
impcol c 137 chemical process simulation

oscil dcop 01 430 circuit simulation
rajat05 301 circuit simulation
robot 120 robotics problem

str 200 363 linear programming
tols340 340 computational fluid dynamics
utm300 300 electromagnetics

Table 6.3
Number of diagonally dominant rows and the quantity ρ in (6.2).

Matrix Orig H Max bal CoM Orig H Max bal CoM
bwm200 4 102 102 102 1.8 1.9 1.7 1.9

cz148 1 13 52 56 4 5.7 3.3 5.9
fs 183 1 75 150 180 163 7e2 27 2.7 17
impcol c 14 22 114 74 ∞ 62 5.3 26

oscil dcop 01 172 220 330 284 ∞ 77 27 74
rajat05 91 151 245 189 ∞ 63 16 55
robot 26 12 83 41 ∞ 33 14 21

str 200 0 100 327 193 ∞ 90 23 69
tols340 204 267 340 322 ∞ 38 0 26
utm300 96 67 100 79 2.9e2 2.1e2 1.8e2 2.0e2

dominant rows after the MC64 scaling is applied, in both cases A has zeros on the
diagonal, so that the MC64 Hungarian scaling and optimal assignment permutation
may be beneficial overall.) With the exception of cz148 the centre of mass scaled
matrices have fewer diagonally dominant rows than the max balanced matrices, but
more than the MC64 Hungarian scaled matrices.

The quantity ρ in (6.2) measures how close the rows of the scaled matrix are to
diagonally dominant ones, and is tabulated in Table 6.3. We see that ρ is smallest for
the max balanced matrices and is often much smaller than for the MC64 Hungarian
scaled matrices. The centre of mass scaling also tends to reduce ρ, relative to the
MC64 scaling, and for some problems this reduction is also large.

Since the matrix 2-norm is greatly reduced by the MC64 scaling, the max bal-
ancing and centre of mass scalings only offer small additional gains (see Table 6.4).
However, the scalings have a significant impact on the 2-norm condition number,
which is up to two orders of magnitude smaller for the max balanced matrices than
for the MC64 scaled matrices. Note, however, that the max balancing scaling is not
guaranteed to improve the condition number as oscil dcop 01 demonstrates. The
centre of mass scaled matrices generally have smaller condition numbers than the
MC64 Hungarian scaled matrices. However, these condition numbers are larger than
for the max balanced matrices with the exception of oscil dcop 01.

Finally, we examine in Table 6.5 the number of interchanges needed when Gaus-
sian elimination with partial pivoting is applied to the scaled matrices. The max
balanced matrices tend to require fewer interchanges, and for cz148 and tols340

no interchanges are required. On the other hand significantly more interchanges are
needed for rajat05 after the max balancing scaling is applied. For most matrices,
the centre of mass scaled matrices require slightly more interchanges than the max
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Table 6.4
The Frobenius norm (second column) and 2-norm condition number (third column).

Matrix Orig H Max bal CoM Orig H Max bal CoM
bwm200 8.5e3 1.7e1 1.7e1 1.7e1 2.4e3 1.8e3 1.8e3 1.8e3

cz148 1.4e3 1.4e1 1.4e1 1.4e1 2.5e3 8.9e2 8.1e2 8.4e2
fs 183 1 1.1e9 1.9e1 1.4e1 1.6e1 2.2e13 4.3e2 1.7e1 2.6e1
impcol c 1.5e2 1.9e1 1.3e1 1.6e1 1.8e4 8e2 2.1e2 3.4e2

oscil dcop 01 4.1e6 2.8e1 2.5e1 2.8e1 5.9e12 1.2e10 1.8e12 1.1e10
rajat05 2.4e1 2.4e1 2.0e1 2.3e1 5.4e4 2.5e4 1.1e4 1.5e4
robot 2.8e2 1.6e1 1.3e1 1.5e1 4.3e8 5.2e1 2.1e1 3.4e1

str 200 3.7e1 2.6e1 2.1e1 2.5e1 1.5e4 1.1e3 2.9e2 7.2e2
tols340 8e5 2.3e1 1.8e1 2.1e1 2e5 3.1e1 1.1e0 8.7e0
utm300 1.7e1 2.8e1 2.5e1 2.7e1 8.5e5 1.6e5 7.6e3 4.2e4

Table 6.5
The number of interchanges needed to perform Gaussian elimination with partial pivoting.

Matrix Original MC64 Max bal CoM
bwm200 236 236 236 236

cz148 12 4 0 0
fs 183 1 8 0 0 0
impcol c 194 38 12 24

oscil dcop 01 384 278 242 220
rajat05 162 76 144 80
robot 102 122 22 26

str 200 724 144 20 58
tols340 272 64 0 0
utm300 312 254 96 190

balanced matrices but fewer than the MC64 scaled matrices.

7. Conclusion. The fact that a given matrix A usually has a range of possible
Hungarian scalings has been overlooked in matrix computation. Given a Hungarian
pair (u, v) of A, we have provided a characterization of the set of all Hungarian pairs of
A in terms of (u, v) and a vector parameter s that belongs to a specific set of vectors.
This gives us a way to build many Hungarian scaled matrices from a Hungarian
scaled matrix and to look for Hungarian scaled matrices with particular properties
such as diagonal dominance. We used our characterization to (a) show that the
Schneider and Schneider’s max-balancing algorithm preserves the Hungarian scaled
property, to (b) construct a special visualization scaling, called centre of mass scaling,
that is aimed at approximating the max-balancing scaling and whose computation is
embarrassingly parallel, and to (c) show that max-balancing scaling and centre of mass
scaling both produce a unique Hungarian scaled matrix. We have shown that max-
balancing minimizes the entrywise p-norm according to the ordering ≺. As a result,
the max-balancing of a Hungarian scaled matrix minimizes the off-diagonal entries
while maintaining the weight on the diagonal (all diagonal entries have modulus one),
leading to a matrix which is more diagonally dominant than the other Hungarian
scalings of A. This was confirmed by our numerical experiments. The latter also
showed that, when combined with Hungarian scaling, max-balancing and centre of
mass scalings improve the stability of LU factorizations with no pivoting.

Appendix A. This appendix provides a technical lemma with its proof and the
proofs of Theorems 4.3 and 4.5.
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A.1. Properties of the max-balancing algorithm. Suppose that we apply
Algorithm 4.2 to an irreducible matrix A ∈ Rn×nmax . We obtain a sequence of matrices
A1, . . . ,Ak of dimensions n = m0, . . . ,mk, and sequences of cycle means β1, . . . , βk,
critical cycles C1, . . . , Ck, subeigenvectors s1, . . . , sk and projections f1 = id, . . . , fk,
where k ≤ n is the number of steps required for the max-balancing algorithm to
terminate. For 1 ≤ ` ≤ k define g` : {1, . . . , n} 7→ {1, . . . ,m`−1} and u` ∈ Rn by

g` = f` ◦ · · · ◦ f1, u` = s1(g1) + s2(g2) + · · ·+ s`(g`) ∈ Rn,

where
(
s`(g`)

)
i

= (s`)g`(i). We let gk+1 : {1, . . . , n} 7→ {1} so that gk+1(i) = gk+1(j)
for all i, j = 1, . . . , n. Also define M`,U`,Q` ∈ Rn×nmax by

(M`)ij =

{
β` if g`+1(i) = g`+1(j),
−∞ otherwise,

` = 1, . . . , k − 1,

U1 = β1 ⊗On, U` =M1 ⊕ · · · ⊕M`−1 ⊕ β` ⊗On, ` = 2, . . . , k,

Q` = A1/U`, ` = 1, . . . , k.

The next lemma gives a list of properties that the above quantities have.
Lemma A.1. With the above notation the following statements hold.
(a) β1 ≥ · · · ≥ βk > −∞.
(b) A` = contr

(
diag∞(−u`−1)⊗A1 ⊗ diag∞(u`−1), g`

)
, ` = 2, . . . , k.

(c) diag∞(−u`)⊗A1 ⊗ diag∞(u`) ≤ U`, ` = 1, . . . , k.
(d) u` ∈ col(Q?` ), ` = 1, . . . , k.
(e) col(Q?k) ⊆ · · · ⊆ col(Q?1).
(f) Let q ∈ col(Q?` ) for some ` such that 1 ≤ ` ≤ k. Then(

diag∞(−u`)⊗A⊗ diag∞(u`)
)
ij

=
(
diag∞(−q)⊗A⊗ diag∞(q)

)
ij

whenever g`+1(i) = g`+1(j).
Proof. (a) See [17, Lem. 4], which proves that β1 ≥ · · · ≥ βk. That these cycle

means are all finite follows from the fact that any contraction of an irreducible matrix
is also an irreducible matrix so that while m` > 1 the graph Γ(A`) contains at least
one cycle of finite weight and therefore β` > −∞ for ` = 1, . . . , k.

(b) By construction, A` = contr
(
diag∞(−s`−1) ⊗ A`−1 ⊗ diag∞(s`−1), f`

)
, and

since u1 = s1 and g2 = f2 ◦ f1 = f2, the claim is true for ` = 2. Now suppose
that for ` > 2, A`−1 = contr

(
diag∞(−u`−2) ⊗ A1 ⊗ diag∞(u`−2), g`−1

)
and, as in

Algorithm 4.2, let S` = diag∞(−s`−1)⊗A`−1 ⊗ diag∞(s`−1). For i 6= j, we have

(S`)ij = −(s`−1)i + (s`−1)j + max
(i′,j′):

g`−1(i′,j′)=(i,j)

(
diag∞(−u`−2)⊗A1 ⊗ diag∞(u`−2)

)
i′j′
,

and since
(
s`−1(g`−1)

)
i

=
(
s`−1(g`−1)

)
j

whenever g`−1(i) = g`−1(j) we have

(S`)ij = max
(i′,j′):g`−1(i′,j′)=(i,j)

{
−
(
s`−1(g`−1)

)
i′

+
(
s`−1(g`−1)

)
j′

+
(
diag∞(−u`−2)⊗A1 ⊗ diag∞(u`−2)

)
i′j′

}
= max

(i′,j′):g`−1(i′,j′)=(i,j)

(
diag∞(−u`−1)⊗A1 ⊗ diag∞(u`−1)

)
i′j′

= contr
(
diag∞(−u`−1)⊗A1 ⊗ diag∞(u`−1), g`−1

))
ij
.
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Finally, since g` = f` ◦ g`−1, we have

A` = contr
(
S`, f`

)
= contr

(
contr

(
diag∞(−u`−1)⊗A1 ⊗ diag∞(u`−1), g`−1

)
, f`

)
= contr

(
diag∞(−u`−1)⊗A1 ⊗ diag∞(u`−1), g`

)
.

(c) Define B` := diag∞(−u`) ⊗A1 ⊗ diag∞(u`), ` = 1, . . . , k. For ` = 1 we have
u1 = s1, which is a subeigenvector of A1 corresponding to the maximum cycle mean
β1, so the claim follows from Lemma 2.3(a).

For ` ≥ 2 suppose that B`−1 ≤ U`−1. Now since u` = s`(g`) + u`−1 we have B` =
diag∞

(
− s`(g`)

)
⊗ B`−1 ⊗ diag∞

(
s`(g`)

)
. First consider i, j such that g`(i) = g`(j).

We have
(
s`(g`)

)
i

=
(
s`(g`)

)
j

so that (B`)ij = (B`−1)ij and from Lemma A.1(a) we

also have (U`)ij = (U`−1)ij so that (B`)ij ≤ (U`)ij .
Now consider i, j such that g`(i) 6= g`(j). We have (U`)ij = β` and

(B`)ij ≤ contr(B`, g`)g`(i),g`(j).

But, from Lemma A.1(b), we have contr(B`, g`) = diag∞(−s`) ⊗ A` ⊗ diag∞(s`),
where by construction s` is a subeigenvector for A` corresponding to the maximum
cycle mean β` so that, from Lemma 2.3(a), we have

(B`)ij ≤
(
diag∞(−s`)⊗A` ⊗ diag∞(s`)

)
g`(i)g`(j)

≤ β` = (U`)ij .

(d) This follows immediately from Lemma A.1(c) and Theorem 3.4.
(e) It follows from Lemma A.1(c) that the inequality

diag∞(−s`)⊗A1 ⊗ diag∞(s`) ≤ U`

is feasible for ` = 1, . . . , k. Therefore by Theorem 3.4 we have λmax(Q`) ≤ 0 and
col(Q?` ) = {s ∈ Rn : diag∞(−s)⊗A1 ⊗ diag∞(s) ≤ U`}. Now from Lemma A.1(a) it
follows that Uk ≤ · · · ≤ U1 so that col(Q?` ) ⊆ col(Q?`−1) for ` ≥ 2.

(f) Let B` := diag∞(−u`) ⊗ A1 ⊗ diag∞(u`) and let B′ := diag∞(−q) ⊗ A1 ⊗
diag∞(q).

First consider the case ` = 1 and suppose that q ∈ col(Q?1). We have B1,B′ ≤ U1 =
β1⊗On, where β1 is the maximal cycle mean ofA1. Thus it follows from Lemma 2.3(a)
that u1 and q are both subeigenvectors of A1 and therefore from Lemma 2.3(c) that
−(u1)i + (u1)j = −qi + qj , whenever i and j are both vertices on C1 or equivalently
whenever g2(i) = g2(j).

Now assume that the statement is true for ` − 1 and suppose that q ∈ col(Q?` ).
From Lemma A.1(e) we have col(Q?` ) ⊂ col(Q?`−1) so that q ∈ col(Q?`−1) and therefore
from the induction hypothesis we have −(u`−1)i + (u`−1)j = −qi + qj whenever
g`(i) = g`(j). Therefore q = u`−1 + t for some t ∈ Rn such that ti = tj whenever
g`(i) = g`(j). Thus there exists r ∈ Rm`−1 such that t = r(g`) and q = u`−1 + r(g`)
and B′ = diag∞

(
− r(g`)

)
⊗ B` ⊗ diag∞

(
r(g`)

)
.

From Lemma A.1(b) we have A` = contr(B`−1, g`) ∈ Rm`×m`
max , where A` has

maximum cycle mean β` with C` a critical cycle and s` a subeigenvector. Also define

A′ = contr
(
B′, g`

)
= contr

(
diag∞

(
− r(g`)

)
⊗ B` ⊗ diag∞

(
r(g`)

)
, g`
)

= diag∞(−r)⊗ contr(B`−1, g`)⊗ diag∞(r)

= diag∞(−r)⊗A` ⊗ diag∞(r).
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Since B′ ≤ U` we have A′ = contr(B′, g`) ≤ contr(U`, g`), where contr(U`, g`) =
β` ⊗ Om`−1

, so that (A′)ij ≤ β` for all i, j = 1, . . . , n. Therefore from Lemma
2.3 (a), r must also be a subeigenvector of A` and therefore from Lemma 2.3 (c),
−ri + rj = −(s`)i + (s`)j whenever i and j are both vertices visited by the cycle C`
or equivalently whenever f`+1(i) = f`+1(j).

Finally note that g`+1 = f`+1 ◦ g` so that whenever we have g`+1(i) = g`+1(j) we
have f`+1

(
g`(i)

)
= f`+1

(
g`(j)

)
and

−qi + qj = −(u`−1)i + (u`−1)j − r(g`)i + r(g`)j

= −(u`−1)i + (u`−1)j − s`(g`)i + s`(g`)j

= −(u`)i + (u`)j .

A.2. Proof of Theorem 4.3. We show that s ∈ col(H?). For that, let us
apply Algorithm 4.2 to H. Then A1 is simply H with diagonal entries replaced by
−∞ and Q1 = A1/U1 = A1/(On ⊗ β1) = A1 ⊗ −β1, where β1 = λmax(A1). By
Theorem 3.1, λmax(H) = 0 and from the definition of the maximum cycle mean,
β1 = λmax(A1) ≤ λmax(H) = 0 and λmax(Q1) = 0. From Lemma A.1 (d) and (e) we
have that s = uk ∈ col(Q?k) ⊆ col(Q?1). Since λmax(Q1) ≤ 0, Theorem 3.4 says that

col(Q?1) = {t ∈ Rn : diag∞(−t)⊗A1 ⊗ diag∞(t) ≤ β1 ⊗On}.

Also, since λmax(H) ≤ 0

col(H?) = {t ∈ Rn : diag∞(−t)⊗H⊗ diag∞(t) ≤ On}
= {t ∈ Rn : diag∞(−t)⊗A1 ⊗ diag∞(t) ≤ On}

so that col(Q?1) ⊆ col(H?) and hence, s ∈ col(H?).
That (u+s, v−s) is the unique Hungarian pair of A that max-balances A follows

from Theorem 4.1.

A.3. Proof of Theorem 4.5. Define At = diag0

(
exp(−t)

)
Adiag0

(
exp(t)

)
for

t = s, r ∈ Rn and let At := V(At) = diag∞(−t)⊗A⊗diag∞(t), where A = V(A) and
V(·) is the valuation in (2.1). We use the notation introduced before Lemma A.1.

Suppose that s ∈ col(Q?1) and r 6∈ col(Q?1). It follows from Theorem 3.4 that
As ≤ β1 ⊗On and Ar 6≤ β1 ⊗On. Thus all entries in As are of modulus less than or
equal to exp(β1) while Ar contains at least one entry of modulus greater than exp(β1).
Therefore we have As ≺ Ar.

Now suppose that s ∈ col(Q?` ) and r ∈ col(Q?`−1)/col(Q?` ) with ` > 1. It follows
from Lemma A.1 (e) that s, r ∈ col(Q?`−1) and therefore from Lemma A.1 (f) we have
that |(As)ij | = |(Ar)ij | whenever g`(i) = g`(j). Thus

‖As‖pp − ‖Ar‖pp =
∑

(i,j):g`(i)6=g`(j)

|(As)ij |p −
∑

(i,j):g`(i)6=g`(j)

|(Ar)ij |p.

It follows from Theorem 3.4 that

As ≤M1 ⊕ · · · ⊕M`−1 ⊕On ⊗ β`,
Ar ≤M1 ⊕ · · · ⊕M`−2 ⊕On ⊗ β`−1, Ar 6≤ M1 ⊕ · · · ⊕M`−1 ⊕On ⊗ β`.
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Therefore (As)ij ≤ β` whenever g`(i) 6= g`(j) but there exists at least one pair (i, j)
such that g`(i) 6= g`(j) and (Ar)ij > β` from which it follows that As ≺ Ar.

Finally let s ∈ col(Q?k) be a max-balancing scaling and let r ∈ Rn be any other
scaling parameter. If r 6∈ col(Q?1) then As ≺ Ar. Otherwise if r ∈ col(Q?1) but
r 6∈ col(Q?2) then As ≺ Ar and so on. Either As ≺ Ar or r ∈ col(Q?k) in which case
As = Ar.
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[5] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Programming, 91:201–213, 2002.

[6] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matrix Anal. Appl., 20:889–901, 1999.

[7] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM J. Matrix Anal. Appl., 22:973–996, 2001.

[8] A. Frank. On Kuhn’s Hungarian method–a tribute from Hungary. Technical Report TR-2004-
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