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Abstract

We derive an explicit formula for the remainder term of a Taylor polynomial of
a matrix function. This formula generalizes a known result for the remainder
of the Taylor series for an analytic function of a complex scalar. We investigate
some consequences of this result, which culminate in new upper bounds for
the level-1 and level-2 condition numbers of a matrix function in terms of the
pseudospectrum of the matrix. Numerical experiments show that, although
the bounds can be pessimistic, they can be computed almost three orders of
magnitude faster than the standard methods for the 1-norm condition number
of f(A) = At. This makes the upper bounds ideal for a quick estimation of the
condition number whilst a more accurate (and expensive) method can be used
if further accuracy is required.
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1. Introduction

Taylor’s theorem is a standard result in elementary calculus (see e.g. [16]).
If f : R → R is k times continuously differentiable at a ∈ R, then the theorem
states that there exists Rk : R→ R such that

f(x) =

k∑
j=0

f (j)(a)

j!
(x− a)j +Rk(x)

and Rk(x) = o(|x − a|k) as x → a. Depending on any additional assumptions
on f , various precise formulae for the remainder term Rk(x) are available. For

1This work was supported by European Research Council Advanced Grant MATFUN
(267526).

2Email addresses: edvin.deadman@manchester.ac.uk (E. Deadman), samuel.relton@

manchester.ac.uk (S. D. Relton)



example, if f is k + 1 times continuously differentiable on the closed interval
between a and x, then

Rk(x) =
f (k+1)(c)

(k + 1)!
(x− a)k+1 (1)

for some c between a and x. This is known as the Lagrange form of the remain-
der. Alternative expressions, such as the Cauchy form or the integral form for
the remainder are well known [16].

Taylor’s theorem generalizes to analytic functions in the complex plane: in-
stead of (1) the remainder is now expressed in terms of a contour integral. If
f(z) is complex analytic in an open subset D ⊂ C of the complex plane, the
kth-degree Taylor polynomial of f at a ∈ D satisfies

f(z) =

k∑
j=0

f (k)(a)

k!
(z − a)j +Rk(z),

where

Rk(z) =
(z − a)k+1

2πi

∫
γ

f(w)dw

(w − a)k+1(w − z)
, (2)

and γ is a closed curve defining a region W ⊂ D containing a. See [1, §3.1] for
a proof of this result.

The first goal of this paper is to generalize (2) to matrices, thereby pro-
viding an explicit expression for the remainder term for the kth-degree Taylor
polynomial of a matrix function. Note that it will not be possible to obtain an
expression similar to (1) because its derivation relies on the mean value theorem,
which does not have an exact analogue for matrix-valued functions. Our second
goal is to investigate applications of this result to pseudospectra and condition
numbers. In particular we show how upper bounds on the condition number of
the matrix function At, for t ∈ (0, 1), can be estimated very efficiently using a
pseudospectral bound derived from the remainder term of a Taylor expansion
of the function f(z) = zt about the matrix A. The bound offers substantial
speedups over existing methods to estimate the condition number, though the
bound can be much looser.

Convergence results for Taylor series of matrix functions have been known
since the work of Hensel [8] and Weyr [18] (see [9, Thm. 4.7] for a more re-
cent exposition). Mathias [15] also obtains a normwise truncation error bound
for matrix function Taylor polynomials, which form part of the Schur–Parlett
algorithm [5]. However, to our knowledge, this paper represents the first time
an explicit remainder term (as opposed to a bound) has been obtained for the
Taylor polynomial of a matrix function.

The remaining sections of this paper are organized as follows. In section 2
we state and prove the remainder term for the kth-degree Taylor polynomial of
a matrix function. In section 3 we investigate some applications of this result
by bounding the first order remainder term using pseudospectral techniques
and relating it to the condition number of f(A). In section 4 we extend these
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results to the level-2 condition number of a matrix function, introduced in [11].
In section 5 we examine the behaviour of the pseudospectral bounds on some
test problems. Finally in section 6 we present our conclusions and discuss some
potential extensions of this work.

2. Remainder term for Taylor polynomials

The Taylor series theorems found in Higham’s monograph [9] primarily in-
volve expanding f(A) about a multiple of the identity matrix, I:

f(A) =

∞∑
j=0

f (j)(α)

j!
(A− αI)j .

Our starting point is the more general Taylor series expansion in terms of Fréchet
derivatives, obtained by Al-Mohy and Higham [2, Thm. 1]. Suppose that f is an-
alytic in an open subset D ⊂ C of the complex plane. Then, given A,E ∈ Cn×n
with Λ(A + E) ⊂ D (where Λ(X) denotes the spectrum of the matrix X), Al-
Mohy and Higham proved that

f(A+ E) =

∞∑
j=0

1

j!
D

[j]
f (A,E), (3)

where

D
[j]
f (A,E) =

dj

dtj

∣∣∣∣
t=0

f(A+ tE). (4)

They called the D
[j]
j (A,E) terms Fréchet derivatives. More precisely, D

[j]
f (A,E)

is a special case of the jth order Fréchet derivative described by Higham and
Relton [11], in which the perturbations in the j directions are all E. The

first of these terms, D
[1]
f (A,E), coincides with the “standard” Fréchet deriva-

tive Lf (A,E). Additionally, if A and E commute then we have D
[j]
f (A,E) =

Ejf (j)(A), where f (j) denotes the jth derivative of the scalar function f(x).
Before writing down the remainder term obtained by truncating the Taylor

series in (3), we first recall the standard result that, for any invertible A and B,

A−1 −B−1 = A−1(B −A)B−1. (5)

We will also need the following lemma.

Lemma 2.1. Let X(t) = A− tB, where t is a scalar. Then

dj

dtj

∣∣∣∣
t=0

X(t)−1 = j!A−1(BA−1)j .

Proof. Note that
d

dt
X−1 = −X−1X ′X−1,
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where X ′ denotes the derivative of X, and that, since higher derivatives of X
vanish,

dj

dtj
X−1 = (−1)jj!X−1(X ′X−1)j .

The result then follows by substituting X = A− tB and setting t = 0.

We now state and prove the main result of this paper, which gives an explicit
form of the remainder term when truncating (3).

Theorem 2.2. Let f : C → C be analytic in an open subset D ⊂ C. Let
A, E ∈ Cn×n be such that Λ(A), Λ(A+ E) ⊂ D. Then for any k ∈ N

f(A+ E) = Tk(A,E) +Rk(A,E),

where

Tk(A,E) =

k∑
j=0

1

j!
D

[j]
f (A,E), (6)

Rk(A,E) =
1

2πi

∫
Γ

f(z)(zI −A− E)−1[E(zI −A)−1]k+1dz, (7)

and Γ is a closed contour in D enclosing Λ(A) and Λ(A+ E).

Proof. The result is proved by induction on k. For the case k = 0 we have
f(A+ E) = f(A) +R0(A,E). Then

R0(A,E) = f(A+ E)− f(A)

=
1

2πi

∫
Γ

f(z)[(zI −A− E)−1 − (zI −A)−1]dz,

using the Cauchy integral definition of a matrix function. It follows from (5)
that

R0(A,E) =
1

2πi

∫
Γ

f(z)(zI −A− E)−1E(zI −A)−1dz.

For the inductive step, we assume that f(A+ E) = Tk(A,E) + Rk(A,E). The
remainder for the degree-(k + 1) Taylor polynomial is given by

Rk+1(A,E) = f(A+ E)− Tk+1(A,E)

= f(A+ E)− Tk(A,E)− 1

(k + 1)!
D

[k+1]
f (A,E)

= Rk(A,E)− 1

(k + 1)!

dk+1

dtk+1

∣∣∣∣
t=0

f(A+ tE).
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Substituting the inductive hypothesis for Rk(A,E) and the Cauchy integral
form for f(A+ tE) gives

Rk+1(A,E) =
1

2πi

∫
Γ

f(z)(zI −A− E)−1[E(zI −A)−1]k+1dz

− 1

2πi(k + 1)!

dk+1

dtk+1

∫
Γ

f(z)(zI −A− tE)−1dz.

By continuity, we can differentiate the integrand in the second term, and simplify
it using Lemma 2.1. We obtain

Rk+1(A,E) =
1

2πi

∫
Γ

f(z)
[
(zI −A− E)−1[E(zI −A)−1]k+1

−(zI −A)−1[E(zI −A)−1]k+1
]
dz

=
1

2πi

∫
Γ

f(z)(zI −A− E)−1[E(zI −A)−1]k+2dz,

where (5) has been used once more. This completes the proof.

We end this section by briefly describing how Theorem 2.2 also allows us
to obtain a remainder term for Padé approximants (this was first done in the
scalar case by Elliot [6]).

Suppose that we approximate f(z) using a rational function pm(z)/qn(z),
where pm(z) and qn(z) are polynomials of degree m and n respectively. The
Padé approximant is the unique choice (up to scalar multiples) of pm(z) and
qn(z) such that f(z) − pm(z)/qn(z) = O(zm+n+1). Therefore, using the same
rational function to approximate the corresponding matrix function we have
qn(A)f(A) − pm(A) = O(‖A‖m+n+1). We introduce the truncation error term
Sm,n(A) to the Padé approximant such that

f(A) =
pm(A)

qn(A)
− Sm,n(A).

Then
qn(A)Sm,n(A) = qn(A)f(A)− pm(A) = O(‖A‖m+n+1).

The term qn(A)Sm,n(A) is then the remainder term for the Taylor series for
qn(A)f(A) about 0 with degree m+ n. From (7) we obtain

Sm,n(A) =
qn(A)−1Am+n+1

2πi

∫
Γ

qn(z)f(z)(zI −A)−1

zm+n+1
dz,

where the closed contour Γ encloses Λ(A) and the origin.

3. Application to condition numbers and pseudospectra

In this section we use Theorem 2.2 to study the behaviour of the condition
number of a matrix function, which measures the sensitivity of f(A) to small
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perturbations in A. We approach this using techniques borrowed from the
analysis of pseudospectra. Recall that the ε-pseudospectrum of a matrix X is
the set

Λε(X) =
{
z ∈ C : ‖(zI −X)−1‖ ≥ ε−1

}
. (8)

To begin, the following lemma provides some pseudospectral bounds on the size
of the remainder terms.

Lemma 3.1. Let ε > 0 be such that f in Theorem 2.2 is analytic on the ε-
pseudospectra of A and A + E, that is Λε(A) ⊂ D and Λε(A + E) ⊂ D. Let
Γ̃ε ⊂ D be a closed contour that encloses Λε(A) and Λε(A + E). Then the
remainder term Rk(A,E) is bounded by

‖Rk(A,E)‖ ≤ ‖E‖
k+1L̃ε

2πεk+2
max
z∈Γ̃ε
|f(z)|, (9)

where L̃ε is the length of Γ̃ε. In particular, when a circular contour can be used,

‖Rk(A,E)‖ ≤ ‖E‖
k+1

εk+2
max

θ∈[0,2π]
|f(ρ̃εe

iθ)|, (10)

where ρ̃ε = max{|z| : z ∈ Λε(A+ E) ∩ Λε(A)}.
(Note that tildes on L̃ε, Γ̃ε, and ρ̃ε are used because, for this result only,

the contour needs to enclose Λε(A + E) in addition to Λε(A). For subsequent
results, the contour need only enclose Λε(A) and the tildes are dropped.)

Proof. The proof is analogous to that of the bound

‖f(A)‖ ≤ L̃ε
2πε

max
z∈Γ̃ε
|f(z)|,

obtained by Trefethen and Embree [17, Ch. 14]. We bound the norm of Rk(A,E)
by noting that

‖Rk(A,E)‖ ≤ ‖E‖
k+1

2π

∫
Γ̃ε

|f(z)|‖(zI −A− E)−1‖‖(zI −A)−1‖k+1.

On Γ̃ε we have ‖(zI −A−E)−1‖ ≤ ε−1 and ‖(zI −A)−1‖ ≤ ε−1. The first part
of the lemma follows immediately. For the second part, take Γ̃ε to be a circle
with centre 0 and radius ρ̃ε = max{|z| : z ∈ Λε(A + E) ∩ Λε(A)}. Note that
a circular contour is not applicable for all functions, for example those with a
branch cut.

We can also use this result to bound the absolute condition number of a
matrix function. Recall that the absolute condition number measures the first
order sensitivity of f(A) to small perturbations in A and is given by [9, Chap. 3]

condabs(f,A) := lim
τ→0

sup
‖E‖≤τ

‖f(A+ E)− f(A)‖
τ

= max
‖E‖≤1

‖Lf (A,E)‖. (11)
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Lemma 3.1 provides us with the following bound on the absolute condition
number.

Corollary 3.2. Let ε > 0 be such that f in Theorem 2.2 is analytic on the
ε-pseudospectrum of A and let Γε ⊂ D be a closed contour of length Lε that
encloses the pseudospectrum. Then

condabs(f,A) ≤ Lε
2πε2

max
z∈Γε
|f(z)|. (12)

In particular, when a circular contour can be used,

condabs(f,A) ≤ ρε
ε2

max
θ∈[0,2π]

|f(ρεe
iθ)|, (13)

where ρε = max{|z| : z ∈ Λε(A)} is the pseudospectral radius of A.

Proof. Set k = 0 in (9). Suppose that ‖E‖ = α. Then, since R0(A,E) =
Lf (A,E) + o(‖E‖), we have

‖Lf (A,E) + o(α)‖ ≤ αL̃ε
2πε2

max
z∈Γε
|f(z)|.

We divide by α and take the supremum over all E such that ‖E‖ ≤ α to obtain

sup
‖E‖≤α

‖Lf (A,E/α) + o(α)/α‖ ≤ L̃ε
2πε2

max
z∈Γ̃ε
|f(z)|.

Note that the curve Γ̃ε must enclose Λε(A + E) for each ‖E‖ ≤ α. The proof
of (12) is completed by taking the limit α → 0 and recalling that the absolute
condition number of a matrix function is given by operator norm of the Fréchet
derivative (11). In the limit α → 0, the curve Γ̃ε ⊂ D can become any closed
contour Γε ⊂ D enclosing Λε(A).

The proof of (13) is essentially the same, except that (10) is taken as the
starting point rather than (9).

Note that an alternative proof of the corollary can be obtained by starting
with the integral representation of the Fréchet derivative

Lf (A,E) =
1

2πi

∫
Γε

f(z)(zI −A)−1E(zI −A)−1dz,

and bounding it above using the techniques from the proof of Lemma 3.1.

Assuming that these bounds can be computed efficiently they are of con-
siderable interest since most existing results regarding the estimation of the
condition number provide only lower bounds [9, Chap. 3]. In section 5 we show
how to calculate this bound efficiently for matrix powers At, where t ∈ (0, 1). We
obtain large speedups over existing methods whilst sacrificing some accuracy.
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We end this section by briefly mentioning a related theorem due to Lui [14,
Thm. 3.1], concerning the relationship between the pseudospectra of A and
f(A). The theorem is restated here in our notation. Recall that Rk(A,E) was
defined in Theorem 2.2 and that R0(A,E) = Lf (A,E) + o(‖E‖).

Lemma 3.3 (Lui). Let ε, f , and Γε satisfy the conditions of Corollary 3.2. Fur-
thermore let f(Λε(A)) = {f(z) : z ∈ Λε(A)} and M = max‖E‖≤ε ‖R0(A,E)‖.
Then f(Λε(A)) ⊂ ΛM (f(A)).

Proof. If z is an eigenvalue of A + E with ‖E‖ ≤ ε (so that z ∈ Λε(A)), then
f(z) is an eigenvalue of f(A+E) = f(A) +R0(A,E) and ‖R0(A,E)‖ ≤M .

This result shows that, to first order in ε, the ε-pseudospectrum of A is
related to the δ-pseudospectrum of f(A) via f(Λε(A)) ⊂ Λδ(f(A)), where δ =
condabs(f,A)ε.

4. Application to higher order condition numbers

Higham and Relton [11] introduce the level-q condition number for matrix
functions, which is defined recursively by

cond
(q)
abs(f,A) := lim

α→0
sup
‖Z‖≤α

| cond
(q−1)
abs (f,A+ Z)− cond

(q−1)
abs (f,A)|

α
, (14)

where cond
(1)
abs(f,A) := condabs(f,A). In section 3 we focused on the first or-

der remainder term, R0(A,E), and results concerning the condition number
condabs(f,A) but—by choosing k > 0 in Lemma 3.1—we can attempt to ex-
tend results such as Corollary 3.2 to these higher order condition numbers.

Before proceeding, we must first investigate the relationship between the

D
[j]
f (A,E) defined in (4) and higher order Fréchet derivatives. Recall that

D
[j]
f (A,E) is a special case of the jth order Fréchet derivative in which the

perturbation in each direction is E. In [11] a definition of the jth order Fréchet
derivative is given in terms of the mixed partial derivative:

L
(j)
f (A,E1, . . . , Ej) =

∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

f(A+ s1E1 + · · ·+ sjEj). (15)

The following theorem expresses this jth order Fréchet derivative in terms of a
contour integral.

Theorem 4.1. The jth order Fréchet derivative of a matrix function f(A) in
the directions E1, . . . , Ej is given by

L
(j)
f (A,E1, . . . , Ej) =

1

2πi

∫
Γ

f(z)(zI −A)−1
∑
σ∈Sj

k∏
i=1

Eσ(i)(zI −A)−1dz, (16)
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where Γ is a closed curve enclosing Λ(A), within which f is analytic, and Sj is

the set of permutations of {1, 2, . . . , k}. In particular the derivative D
[j]
f (A,E)

is given by

D
[j]
f (A,E) =

j!

2πi

∫
Γ

f(z)(zI −A)−1[E(zI −A)−1]j+1dz. (17)

Proof. For any choice of si and Ei, we can write f(A + s1E1 + · · · + sjEj) as
a Cauchy integral by using the standard Cauchy integral definition of a matrix
function and choosing a contour Γ̃ that encloses Λ(A+s1E1 + · · ·+sjEj). Then
(15) becomes

L
(j)
f (A,E1, . . . , Ej) =

∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

∫
Γ̃

f(z)(zI − (A+ s1E1 + · · ·+ sjEj))
−1dz.

By continuity, the differential operator

∂

∂s1
· · · ∂

∂sj

∣∣∣∣
(s1,...,sj)=0

can be brought inside the integral sign. The required integrand is then obtained
by using the identity

d

dx
U−1 = −U−1 dU

dx
U−1.

The result (16) follows by then restricting the contour to any closed curve Γ
containing Λ(A). The second part of the theorem, (17), follows by setting
E1 = · · · = Ej .

Theorem 4.1 shows that, to first order, the kth remainder term in the Tay-
lor series is simply the (k + 1)st derivative, as we might expect. Specifically,
comparing (17) with (7) we find

Rk(A,E) =
1

(k + 1)!
D

[k+1]
f (A,E) + o(‖E‖k+2).

In addition, Theorem 4.1 allows us to prove the following theorem, which
uses the pseudospectrum of A to bound the norm of the jth order Fréchet
derivative.

Theorem 4.2. Let Γε ⊂ D be a closed contour enclosing the ε-pseudospectrum
of A within which f is analytic. The jth order Fréchet derivative can be bounded
by

‖L(j)
f (A,E1, . . . , Ej)‖ ≤

j!Lε
2πεj+1

(
max
z∈Γε
|f(z)|

) j∏
i=1

‖Ei‖, (18)

where Lε is the length of Γε.

9



Proof. In (16), use the contour Γε, take norms and note that ‖(zI−A)−1‖ ≤ ε−1
on Γε.

It would be desirable to obtain a bound on the level-q condition number, by
first bounding it in terms of the norm of the qth Fréchet derivative and then
applying Theorem 4.2. However, in the general case such bounds prove to be far
too weak to be of any interest. Instead we restrict ourselves to the case q = 2
and the level-2 condition number.

Lemma 4.3. The level-2 condition number is bounded by

cond
(2)
abs(f,A) ≤ Lε

πε3
max
z∈Γε

|f(z)|,

where Lε is the length of a closed contour Γε ⊂ D enclosing Λε(A) within which
f is analytic. When a circular contour is applicable

cond
(2)
abs(f,A) ≤ 2ρε

ε3
max

θ∈[0,2π]
|f(ρεe

iθ)|,

where ρε is the pseudospectral radius.

Proof. Higham and Relton [11, Sec. 5] give an upper bound for the level-2
absolute condition number in terms of the norm of the 2nd Fréchet derivative

cond
(2)
abs(f,A) ≤ max

‖E1‖=1
max
‖E2‖=1

‖L(2)
f (A,E1, E2)‖. (19)

Substituting the bound from (18) into (19) gives the required results.

5. Numerical Experiments

In this section we show how the pseudospectral bounds on the condition
number, (12) and (13), can be used to estimate the condition number of matrix
powers at extremely low cost. Due this low cost, one might use the pseudospec-
tral bound as a quick estimate of the condition number and, if it is unsatisfac-
torily large, use existing methods to estimate it more accurately.

Recall from (12) that

condabs(f,A) ≤ Lε
2πε2

max
z∈Γε
|f(z)|,

where Γε is a closed contour of length Lε that encloses the spectrum of A and
within which f(z) is analytic. Recall also that the relative condition number
condrel(f,A), is given by

condrel(f,A) = condabs(f,A)
‖A‖
‖f(A)‖

.

10



Combining these two results allows us to bound the relative condition number
from above. This bound will be cheap to compute provided that the cost of
computing Lε and maxz∈Γε |f(z)| is sufficiently small.

In this section we will focus on matrix powers At for t ∈ (0, 1), so that
f(z) = zt. This restriction will enable us to easily compute maxz∈Γε |f(z)|
provided a suitable contour is chosen. Fractional powers of a matrix arise in
a number of applications such as Markov chain models from healthcare and
finance [3], [13].

The functions f(z) = zt have a branch cut, conventionally taken to be along
the closed negative real axis. If we choose ε such that Λε(A) does not contain any
segment of the branch cut, then the contour Γε can be taken to be a “keyhole”
contour, enclosing Λε(A) but avoiding the closed negative real axis. We can
take ρε, the ε-pseudospectral radius, to be the radius of the outer circle of the
keyhole. As the inner circle becomes infinitesimally small, the overall length
of Γε is Lε = 2(π + 1)ρε. It is also easy to see that maxz∈Γε |f(z)| = ρtε, and
therefore

condrel(f,A) ≤ 2(π + 1)ρ1+tε

2πε2
‖A‖
‖f(A)‖

. (20)

It remains to choose ε, ensuring that the ε-pseudospectrum does not cross the
branch cut. One heuristic way to do this is to find the closest point on the
branch cut for each eigenvalue of A and calculate the value of ε for which the
boundary of Λε(A) would intersect this point. Any value of ε less than these
would be permissible. This leads to the following algorithm.

1 Compute the eigenvalues λ1, . . . , λn of A.
2 for i = 1 : n
3 Find zi, the nearest point to λi on the negative real line.
4 resnorm(i) = ‖(A− ziI)−1‖
5 end for
6 εmax = 1/max(resnorm)

We can then select ε ∈ [0, εmax] in the upper bound (20).
Note that, up to this point, our analysis has been largely independent of

the matrix norm used. In order to compare this upper bound against the exact
condition number we will need to choose a specific norm. It is known that, in
the Frobenius norm, condrel(f,A) = ‖Kf (A)‖2‖A‖2/‖f(A)‖2, where Kf (A) is
the Kronecker form of the matrix function [9, Alg. 3.17].

In order to use our upper bound (20) in the Frobenius norm we will need to
compute the corresponding ε-pseudospectral radius in this norm. The 2-norm
pseudospectral radius can be computed at a very low cost using an algorithm by
Guglielmi and Overton [7] so we can instead bound the pseudospectral radius
in the Frobenius norm by that in the 2-norm. Since all norms over Cn×n are
equivalent, it is simple to show that ρε in the Frobenius norm is less than ρε

√
n

in the 2-norm and so we have the following practical bound.
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Lemma 5.1. The relative condition number in the Frobenius norm of the matrix
function f(A) = At, where 0 < t < 1, can be bounded above by

condrel(f,A) ≤
2(π + 1)ρ1+t

ε
√
n

2πε2
‖A‖F
‖f(A)‖F

, (21)

where ρε
√
n is the ε

√
n pseudospectral radius computed in the 2-norm.

Proof. See above.

Our experiments will compare our estimate of the Frobenius norm condition
number in Lemma 5.1, henceforth referred to as CN Pseudo, against two other
algorithms. The first of these computes the exact condition number in the
Frobenius norm by explicitly forming the Kronecker form Kf (A) and taking
its 2-norm at a cost of O(n5) flops. This requires computing multiple Fréchet
derivatives of the matrix function, which we perform using an algorithm of
Higham and Lin [10]. We refer to this method as CN Exact. Secondly we
compare against the current state-of-the-art method which, using a block 1-norm
estimator of Higham and Tisseur [12] estimates ‖Kf (A)‖1 in only O(n3) flops
to approximate the 1-norm condition number. This method avoids computing
Kf (A) explicitly and needs only matrix-vector products with Kf (A) which are
given by Kf (A) vec(E) = Lf (A,E). The vec operator stacks the columns of a
matrix vertically from left to right. We refer to this method as CN Normest.

Note that although this means we will be comparing condition numbers
computed in different norms (since the Frobenius and 1-norms differ by at most
a factor

√
n and we use n = 20 in our experiments) this is not a completely

unfair comparison. Indeed in Figure 2 as part of our first experiment we shall
see that the values returned by CN Exact and CN Normest are indistinguishable
on our graphs.

Our experiments use four test matrices whose pseudospectra are shown
in Figure 1. Clockwise from the top-left these are the “airy” matrix from
EIGTOOL, a matrix with eigenvalues sampled randomly from a Uniform(−1, 0)
distribution (with a small perturbation of the order 1e-3 to each eigenvalue to
avoid the branch cut), the 1D Laplace operator known as “tridiag” in the MAT-
LAB gallery, and the “grcar” matrix from the MATLAB gallery, all of dimension
n = 20. All experiments are performed in MATLAB 2014b.

Our first experiment in Figure 2 shows, for each of our test matrices, the
upper bound CN Pseudo against CN Exact and CN Normest as ε varies from
10−8 to 10, unless εmax is reached first. The lines corresponding to CN Normest

and CN Exact overlap almost exactly on each plot. The distance between the
upper bound and the exact condition number decreases almost linearly on the
log-log plot as ε increases (until εmax is reached), suggesting that our upper
bound behaves like Cεm for some constants C and m. Generally the upper
bound is 1–2 orders of magnitude above the exact condition number for ε = 0.1,
though the performance is worse for the upper-right plot corresponding to the
matrix with eigenvalues close to the branch cut, forcing εmax to be rather small.

12
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Figure 1: Pseudospectra of the four test matrices. Clockwise from top left: the “airy” matrix,
a matrix with eigenvalues chosen randomly but close to the branch cut, the 1D Laplace
operator, and the “grcar” matrix.

The blank spaces in the lower-right plot are where the code to calculate the
pseudospectral radius failed for these values of ε.

Our next experiment investigates the reliability of CN Pseudo multiplied by
the unit roundoff as a bound on the relative error. More precisely, let F̂ denote
our computed value of At then—since the algorithm we use to compute At is
backward stable in exact arithmetic—it is reasonable to expect that the relative
error will approximately satisfy

‖At − F̂‖F
‖At‖F

≤ condrel(x
t, A)u,

where u = 2−53 is the unit roundoff in IEEE double precision arithmetic. Indeed
the forward stability of this algorithm was observed in [10]. We can compute
the relative error by obtaining an “exact” value for At.

The “exact” value of At is computed by using 250 digit arithmetic from the
MATLAB symbolic toolbox. We make a random perturbation of norm 10−125

to A to ensure that, with probability 1, it has distinct eigenvalues. Following
this we perform the diagonalization A = XDX−1 and then f(A) = Xf(D)X−1

where f(D) is diagonal and f(D)ii = f(dii). This idea was introduced by
Davies [4], though not for high precision arithmetic.
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Figure 2: Condition number bounds for the test problems detailed in Figure 1 for ε ∈ [0, εmax].
CN Pseudo denotes the bound (21), CN Exact denotes the condition number in the Frobe-
nius norm, and CN Normest denotes the 1-norm condition number estimate. In each plot CN

Normest and CN Exact overlap almost exactly.

In Table 1, for each of our four test matrices, we list the relative error and
the values of CN Exact, CN Normest, and CN Pseudo with the latter using the
parameter ε = min{0.1, εmax}. In each case we see that CN Pseudo is an upper
bound on the condition number, and can be used to bound the relative error of
our computed matrix function, though it can be pessimistic in some cases. Since
our next experiment shows that the computation of CN Pseudo is far cheaper
than the alternatives, we recommend trying it initially before using one of the
alternatives if the upper bound on the relative error that CN Pseudo returns is
larger than desired.

Our final experiment, shown in Figure 3, explores how the running time for
computing CN Pseudo compares with CN Normest. We omit CN Exact for this
experiment since its O(n5) flop count makes it prohibitively expensive for larger
matrices. We consider t ∈ {1/5, 1/10, 1/15} and use random matrices with n
varying between 10 and 200 with each element selected from the Normal(0, 1)
distribution.

The plot on the left of Figure 3 shows the time taken to compute the con-
dition number using the two methods. The three lines corresponding to CN

Pseudo overlap almost exactly at the bottom of the plot. As n increases both
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Table 1: Condition numbers and condition number estimates for the test problems detailed
in Figure 1, multiplied by the unit roundoff u = 2−53, where CN Pseudo is run with ε =
min{0.1, εmax}. The relative errors are calculated by comparing the code in [10] against the
functions computed in 250 digit arithmetic using the MATLAB symbolic toolbox.

Matrix airy random laplace grcar
Rel. Err. 1e-14 4e-10 1e-14 4e-15
CN Exact 3e-16 6e-9 2e-17 6e-16
CN Pseudo 3e-14 4e-4 5e-14 6e-11
CN Normest 3e-16 6e-9 2e-17 6e-16
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Figure 3: Run times and corresponding speedups for condition number estimation of At for
random matrices of varying size n, and for t ∈ {1/5, 1/10, 1/15}. CN Pseudo denotes the
bound (21) and CN Normest denotes the 1-norm condition number estimate. The three lines
corresponding to CN Pseudo overlap almost exactly at the bottom of the plot on the left.

methods find it more difficult to estimate the condition number. However, in-
creases in t have a small effect on our upper bound whilst they slow the norm
estimation method considerably. This is due to the increased cost of calculating
the required Fréchet derivatives. The plot on the right shows the speedup ob-
tained by computing the upper bound instead. For larger values of t speedups
of over 900x can be obtained.

It appears that, although our upper bound on the condition number can be
loose, it is exceptionally cheap to compute. If a user needs to compute At to
some desired accuracy, often only a few digits in many applications, then CN

Pseudo offers a fast way to check this has been obtained. However, if the upper
bound determines that the error might be unacceptably large, the user can
continue to calculate the condition number more accurately using CN Normest.

We end this section by explaining why the methods above are not of practical
use when applied to the matrix inverse. The function f(z) = z−1 is not analytic
at the origin so a keyhole contour can again be used to excise this point. The
term maxΓ |f(z)| takes its maximum on the inner circle of the contour. To make
the bound as tight as possible we should therefore take the inner circle to be
as large as possible. The maximum possible radius for the inner circle is |λmin|
where λmin is the eigenvalue of smallest magnitude. Combining these results,
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the bound (12) becomes

condrel(z
−1, A) ≤ (πρε + π|λmin|+ ρε − |λmin|)

πε2|λmin|
‖A‖
‖A−1‖

.

Since the exact condition number can be obtained by estimating ‖A‖‖A−1‖,
there is no computational advantage to be gained from using our estimate.

6. Conclusions

The main results in this paper are as follows. We have obtained an ex-
plicit expression for the remainder term of a matrix function Taylor polynomial
(Theorem 2.2). Combining this with use of the pseudospectrum of A leads
to upper bounds on the higher-order condition numbers of f(A). In the case
f(A) = At, t ∈ (0, 1), we demonstrated how the bound on the level-1 condition
number can be computed very efficiently and far more cheaply than standard
condition number estimation methods. Our bounds could be used as a quick
estimate of the condition number. If this estimate is too large, for example if
the estimate suggests that an insufficient number of correct significant figures
might be obtained in computing f(A), then existing methods can be used to
obtain the condition number more accurately.

Our results may also have further useful applications in the development of
matrix function algorithms, by allowing us to estimate the size of remainder
terms for Padé approximants. This will be the subject of future work.
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