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Abstract

Computing the roots of a scalar polynomial, or the eigenvalues of a matrix polynomial, expressed
in the Chebyshev basis {Tk(x)} is a fundamental problem that arises in many applications. In this
work, we analyze the backward stability of the polynomial rootfinding problem solved with colleague
matrices. In other words, given a scalar polynomial p(x) or a matrix polynomial P (x) expressed in the
Chebyshev basis, the question is to determine whether the whole set of computed eigenvalues of the
colleague matrix, obtained with a backward stable algorithm, like the QR algorithm, are the set of roots
of a nearby polynomial or not. In order to do so, we derive a first order backward error analysis of
the polynomial rootfinding algorithm using colleague matrices adapting the geometric arguments in [A.
Edelman and H. Murakami, Polynomial roots for companion matrix eigenvalues, Math. Comp. 210,
763–776, 1995] to the Chebyshev basis. We show that, if the absolute value of the coefficients of p(x)
(respectively, the norm of the coefficients of P (x)) are bounded by a moderate number, computing the
roots of p(x) (respectively, the eigenvalues of P (x)) via the eigenvalues of its colleague matrix using a
backward stable eigenvalue algorithm is backward stable. This backward error analysis also expands on
the very recent work [Y. Nakatsukasa and V. Noferini, On the stability of computing polynomial roots via

confederate linearizations, To appear in Math. Comp.] that already showed that this algorithm is not
backward normwise stable if the coefficients of the polynomial p(x) do not have moderate norms.

Keywords: polynomial, roots, Chebyshev basis, matrix polynomial, colleague matrix, backward stabil-
ity, polynomial eigenvalue problem, Arnold trasnversality theorem

MSC classification: 65H04, 65H17, 65F15, 65G50

1 Introduction

A popular way to compute the roots of a monic polynomial expressed in the monomial basis is via the
eigenvalues of its companion matrix. This is, for instance, the way followed by the MATLAB command roots,
that, after balancing the companion matrix, uses the QR-algorithm to get its eigenvalues. The numerical
properties of this method for computing roots of polynomials have been extensively studied [7, 8, 14, 24],
in particular with respect to conditioning and backward errors. It has been shown that, in practice, if the
companion matrix is balanced [20], the rootfinding method using companion matrices is numerically stable,
in the sense that the computed roots are the exact roots of a nearby polynomial. However, as it was made
famous by Wilkinson [21, 25, 26], roots of polynomials whose roots lie on a real interval can be highly
sensitive to perturbations in the coefficients when the monomial basis is used. So, even perturbations in the
coefficients of order of the machine precision may produce a catastrophically large forward error. In practice,
rootfinding on a real interval is a very frequent and important situation, and one way to circumvent this
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problem is to use, instead, a polynomial basis such that the roots of a polynomial expressed in that basis
are better conditioned functions of its coefficients, like the Chebyshev basis.

Chebyshev polynomials are a family of polynomials, orthogonal with respect to the weight function
w(x) = (1− x2)−1/2 on the interval [−1, 1], which may be computed using the following recurrence relation
[1, Chapter 22]:

T0(x) = 1,

T1(x) = x, and,

Tk(x) = 2xTk−1(x)− Tk−2(x), for k ≥ 2.

(1)

Moreover, the Chebyshev polynomials T0(x), T1(x), . . . , Tn(x) form a basis for the vector space of polynomials
of degree at most n with real coefficients Rn[x], so, any real polynomial p(x) ∈ Rn[x] can be written uniquely
as p(x) =

∑n
k=0 akTk(x).

Chebyshev polynomials are widely used in many areas of numerical analysis, and in particular approx-
imation theory [22]. In fact, a common approach, as done in Chebfun [23], for computing the roots of a
nonlinear smooth function f(x) on an interval is to approximate first f(x) by a polynomial p(x) expressed
in the Chebyshev basis via Chebyshev interpolation and then compute the roots of p(x) as the eigenvalues
of its colleague matrix [10].

In this paper, we are interested in the backward stability of the rootfinding problem solved via colleague
matrices and a backward stable eigenvalue algorithm. Our work is motivated by [17], which addresses related
issues for confederate matrices (the colleague matrix is a particular example of a confederate matrix [4, 16]).
Also, similar backward error analysis may be found in [7, 12, 13]. In [7], the authors study the backward
stability of rootfinding methods using Fiedler companion matrices of monic polynomials expressed in the
monomial basis; in [12], the authors study the backward stability of rootfinding methods using a suitable
companion matrix of polynomials expressed in barycentric form; in [13], several bases are analyzed at once,
for nonstandard linearizations of larger size with respect to the colleague or the companion.

Given a monic scalar polynomial in the Chebyshev basis of degree n

p(x) = Tn(x) +

n−1∑

k=0

akTk(x), with ak ∈ R, for k = 0, 1, . . . , n− 1,

where by monic in the Chebyshev basis we mean that the coefficient of Tn(x) is equal to 1, the following
matrix

CT =
1

2




−an−1 −an−2 + 1 −an−3 · · · −a2 −a1 −a0
1 0 1 0 · · · · · · 0

0 1 0 1
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 1 0 1
0 · · · · · · · · · 0 2 0




∈ R
n×n,

is known as the colleague matrix of p(x) [10]. If we write Tn(x) = νnx
n + · · · , the colleague matrix has the

property that det(xI −CT ) =
1
νn

p(x), so the roots of p(x) may be computed as the eigenvalues of CT using,
for instance, the QR algorithm. The QR algorithm is a backward stable algorithm, this means than the
computed eigenvalues are the exact eigenvalues of a matrix CT + E, where E is a (possibly dense) matrix
such that

‖E‖ = O(u)‖CT ‖,
for some matrix norm, where u denotes the machine precision. However, the previous equation does not
guarantee that the computed eigenvalues are the roots of a nearby polynomial of p(x) or, in other words, that
this rootfinding method is backward stable. In order for the method to be backward stable (in a normwise

sense), the computed eigenvalues should be the exact roots of a polynomial p̃(x) = Tn(x) +
∑n−1

k=0 ãkTk(x),
such that

‖p̃− p‖
‖p‖ = O(u),
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for some polynomial norm.
The backward stability of the polynomial rootfinding in degree-graded basis using confederate matrices

is studied in [17]. In particular (see [17, Theorem 4.2]), the authors prove that if CT is the colleague matrix
of a polynomial p(x) and E ∈ R

n×n is any matrix, then the eigenvalues of CT + E are the exact roots of a
polynomial p̃(x) such that

p̃(x) − p(x) =

n−1∑

i=0

δi(p,E)Ti(x) +O(‖E‖22), (2)

where, for i = 0, 1, . . . , n − 1, the quantity δi(p,E) is an affine function of the coefficients of p(x), and,
separately, of the entries of E.

Equation (2) implies that if the roots of p(x) are computed as the eigenvalues of its colleague matrix
CT using a backward stable eigenvalue algorithm, then, the computed roots will be the exact roots of a
polynomial p̃(x) such that

‖p̃− p‖
‖p‖ = κ(n)O(u)‖p‖,

for some constant k(n). The previous equation shows, first, that this method is not backward stable if
‖p‖ ≫ 1, and, second, that this method is backward stable if the following two conditions are satisfied:
(i) the quantity κ(n) is a low-degree polynomial in n with moderate coefficients; and, (ii) the norm ‖p‖ is
moderate. As it is observed in [17], writing δi(p,E) =

∑
i,j,ℓ βijℓaℓEij , since it is not clear what exactly are

the constants βijℓ involved, in principle it could happen that |βijℓ| >> 1, implying that κ(n) might not be a
polynomial in n with moderate coefficients. However, in this work we show that, in fact, |βijℓ| ≤ 4, and, so,

‖p̃− p‖
‖p‖ = O(u)‖p‖,

holds. The previous equation implies that computing the roots of p(x) via the eigenvalues of its colleague
matrix using a backward stable eigenvalue algorithm is a backward stable rootfinding algorithm, provided
that ‖p‖ . 1.

Computing the eigenvalues of matrix polynomials in the Chebyshev basis is becoming an important
problem [9]. Given a p× p monic matrix polynomial in the Chebyshev basis of degree n

P (x) = IpTn(x) +

n−1∑

k=0

AkTk(x), with Ak ∈ R
p×p, for k = 0, 1, . . . , n− 1, (3)

where by monic in the Chebyshev basis we mean that the coefficient of Tn(x) is equal to Ip (the p×p identity
matrix), the polynomial eigenvalue problem consists of finding the eigenvalues of P (x), that is, finding the
roots of the scalar polynomial det (P (x)) (note that the monicity of P (x) implies its regularity), that is,
det (P (x)) is not identically zero). A common approach to solve the polynomial eigenvalue problem for P (x)
is to use the block colleague matrix

CT =
1

2




−An−1 −An−2 + Ip −An−3 · · · −A2 −A1 −A0

Ip 0 Ip 0 · · · · · · 0

0 Ip 0 Ip
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 Ip 0 Ip
0 · · · · · · · · · 0 2Ip 0




∈ R
np×np, (4)

since it is known (see [2]) that the eigenvalues of (4) coincide with the eigenvalues of P (x).
The backward stability question arises also in the matrix polynomial case, since the eigenvalues of CT

may be computed using a backward stable eigenvalue algorithm, like the QR algorithm. As in the scalar
polynomial case, the backward stability of the QR algorithm implies that the computed eigenvalues are the
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exact eigenvalues of the perturbed matrix CT + E, with ‖E‖ = O(u)‖CT ‖. However, again, the backward
stability of the QR algorithm does not guarantee that the computed eigenvalues are the eigenvalues of a
nearby matrix polynomial of P (x) or, in other words, that the method is backward stable. In order for
the method to be backward stable (in a normwise sense), the computed eigenvalues should be the exact

eigenvalues of a matrix polynomial P̃ (x) = IpTn(x) +
∑n−1

k=0 ÃkTk(x), with Ãk ∈ R
p×p, such that

‖P̃ − P‖
‖P‖ = O(u),

for some matrix polynomial norm.
Nevertheless, we will prove using some arguments inspired by [3, 8, 14, 15] that if the eigenvalues of a

matrix polynomial P (x) are computed as the eigenvalues of its colleague matrix using a backward stable
eigenvalue algorithm, then, the computed eigenvalues are the exact eigenvalues of a monic matrix polynomial
in the Chebyshev basis P̃ (x) such that

‖P̃ − P‖
‖P‖ = O(u)‖P‖.

The previous equation implies that this method is backward stable if ‖P‖ is moderate.

The paper is organized as follows. In Section 2 we present Arnold transversality theorem for colleague
matrices, which will be the main tool to study the polynomial backward stability of the rootfinding method
using colleague matrices. In Section 3, to give a flavor of our algebraic approach based on interpreting the
companion or colleague linearizations as multiplication-by-x operators in certain quotient modules (see also
[18, Sec. 5]), we first review the backward error analysis of the rootfinding method using companion matrices
in [8, 14]. Then, in Section 4 we prove Arnold transversality theorem for colleague matrices, and we use this
theorem to study the backward stability of the rootfinding method using colleague matrices.

Throughout this paper, for a p × p matrix polynomial P (x) =
∑n

k=0 AkTk(x), non necessarily monic,
‖P‖F is the norm on the vector space of p× p matrix polynomials of degree less than or equal to n defined
as

‖P‖F =

√√√√
n∑

k=0

‖Ak‖2F .

Notice that, since we are going to deal with monic polynomials in the Chebyshev basis, An = Ip. Also notice
that for a scalar polynomial p(x) =

∑n
k=0 akTk(x), that is, for p = 1, this norm reduces to the usual 2-norm:

‖p‖F = ‖p‖2 =

√√√√
n−1∑

k=0

|ak|2.

2 Arnold transversality theorem for colleague matrices

Arnold transversality theorem will be the main tool in Section 4 to study what kind of polynomial backward
stability is provided by matrix backward stability when the roots of scalar polynomials or the eigenvalues
of matrix polynomials are computed as the eigenvalues of its colleague matrix with a backward stable
eigenvalue algorithm. This theorem was first stated in [3] for companion matrices, and later generalized in
[17] to confederate matrices of scalar polynomials.

Following [3, 7, 8, 14, 17], we consider the Euclidian matrix space R
n×n with the usual Frobenius inner

product
< A,B >:= tr (ABT ),

where MT denotes the transpose of M ∈ R
n×n. In this space, the set of matrices similar to a given matrix

A ∈ R
n×n is a differentiable manifold in R

n×n. This manifold is called the orbit of A under the action of
similarity:

O(A) := {SAS−1 : S ∈ R
n×n and det(S) 6= 0}.
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A first-order expansion shows that the tangent space of O(A) at A is the set

TAO(A) := {AX −XA for some X ∈ R
n×n}.

We also consider the vector subspace of “first block row matrices”, denoted by BFRn,p ⊂ R
np×np, which is

defined as those n×n block matrices [Xij ], with Xij ∈ R
p×p, whose block rows are all zero except (possibly)

the first:

BFRn,p :=
{
X =

[
IP 0 · · · 0

]T [
X1 X2 · · · Xn

]
, for some X1, X2, . . . , Xn ∈ R

p×p
}
⊂ R

np×np.

Note that taking p = 1 the space BFRn,p reduces to the vector subspace FRn of “first row matrices”

introduced in [17].
Arnold transversality theorem for a block colleague matrix CT of a monic matrix polynomial P (x) in the

Chebyshev basis states that any matrix E ∈ R
np×np may be decomposed as

E = F0 + T,

where F0 ∈ BFRn,p is a first block row matrix and T ∈ TCT
O(CT ). Notice that taking p = 1 in the

previous decomposition, this “block” version of Arnold transversality theorem reduces to a special case of
[17, Theorem 4.1].

In Section 4.2 we present a proof of Arnold transversality theorem, different to the one in [17], extending
(for the important case of the Chebyshev basis) [17, Theorem 4.1] to the more complicated case of matrix
polynomials. The new approach allows us to compute explicitly the matrix F0. Then, using this explicit
expression, we study the polynomial backward stability of the rootfinding method using colleague matrices.
However, before doing that, to give a flavor of our approach, we first treat the much easier case of the
monomial basis (see [8, 14]).

3 Arnold transversality theorem for companion matrices and back-

ward error analysis

The backward stability of the polynomial rootfinding using companion matrices is studied in [8]. In this
section we review their results in the matrix polynomial case, since results for scalar polynomials may be
seen as corollaries of them.

Given a p× p monic matrix polynomial expressed in the monomial basis

P (x) = Ipx
n +

n−1∑

k=0

Bkx
k, with Bk ∈ R

p×p, for k = 0, 1, . . . , n− 1,

its eigenvalues may be computed as the eigenvalues of the block companion matrix (see [11, Chapter 14])

C1 :=




−Bn−1 −Bn−2 · · · −B1 −B0

Ip 0 · · · 0 0

0 Ip
. . . 0 0

...
. . .

. . .
...

...
0 · · · 0 Ip 0



,

using a backward stable eigenvalue algorithm.
In [8], it is shown how a dense perturbation E to the block companion matrix leads to first order

perturbations in the coefficients Bk. To do so, they use Arnold transversality theorem for companion
matrices, that is, they show how any matrix E ∈ R

np×np may be decomposed as

E = E0 + T = E0 + C1X −XC1, (5)

5



where E0 ∈ BFRn,p is a first block row matrix and T = XC1 −C1X ∈ TC1
O(C1) is a matrix in the tangent

space of the orbit of C1. As a consequence of the previous decomposition we have that if E is a small
perturbation of C1, then, to first order in E, the matrix C1 + E is similar to C1 + E0. In other words,

C1 + E = (I +X)−1(C1 + E0)(I +X) +O(‖E‖22),

for some matrix X ∈ R
np×np. Noting that C1 + E0 is in turn a block companion matrix of another matrix

polynomial, we see that a small perturbation of the block companion matrix of P (x) is similar, to first order

in the norm of the perturbation, to a block companion matrix of a perturbed polynomial P̃ (x).
In order to compute E0 in (5), define the matrices

Nk :=

n∑

j=k

Cn−j
1 (In ⊗Bj), for k = 1, 2, . . . , n, (6)

where Bn := Ip and ⊗ denotes the Kronecker product, which satisfy, for k = 1, 2, . . . , n− 1,

Nk = Nk+1C1 + In ⊗Bk, with Nn = In ⊗ Ip. (7)

Using the recurrence relation (7), the matrix Nk can be computed explicitly [8, Lemma 4.1]:

Nk =




0 −Bk−1 · · · −B1 −B0

...
. . .

. . .
. . .

. . .

0 −Bk−1 · · · −B1 −B0

Ip Bn−1 · · · Bk

0 Ip Bn−1 · · · Bk

...
. . .

. . .
. . .

. . .

0 Ip Bn−1 · · · Bk




, for k = 1, 2, . . . , n, (8)

where the first block-row contains n− k block rows, and the second block row contains k block rows.
Writing the matrix E and the matrix Nk as n×n block matrices E = [Eij ] andNk = [(Nk)ij ], respectively,

with Eij , (Nk)ij ∈ R
p×p, the authors in [8] prove that the matrix E0 in (5) is given by

E0 =




∑n
i,j=1 Eij(Nn)ji · · ·

∑n
i,j=1 Eij(N2)ji

∑n
i,j=1 Eij(N1)ji

0 · · · 0 0
...

...
...

0 · · · 0 0


 .

Therefore, the matrix C1 + E is similar, to first order in the norm of E, to a block companion matrix
associated with the monic matrix polynomial

P̃ (x) = Ipx
n +

n−1∑

k=0

B̃kx
k = Ipx

n +

n−1∑

k=0

(Bk −
n∑

ij=1

Eij(Nk+1)ji))x
k.

From the previous equation, together with (8), we get that the eigenvalues of C1 +E are the eigenvalues

of a monic matrix polynomial P̃ (x) = Ipx
n +

∑n−1
k=0 B̃kx

k such that, to first order in the norm of E,

‖B̃k −Bk‖F = ‖
n∑

s=k+1




n∑

j=n−k

BsEj−s+k+1,j


 −

k∑

s=0




n−k−1∑

j=1

BsEj−s+k+1,j


 ‖F , (9)

for k = 0, 1, . . . , n − 1. Then, if the eigenvalues of the block companion matrix C1 are computed with a
backward stable eigenvalue algorithm, it may be proved from (9) that, to first order in E, the computed

eigenvalues are the exact eigenvalues of a polynomial P̃ (x) such that

‖P̃ − P‖F
‖P‖F

= O(u)‖P‖F . (10)
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Note that (10) implies that if the norm of the coefficients of P (x) are moderate, then computing its eigenvalues
via the eigenvalues of its block companion matrix C1 is a backward stable method.

In the following, we present a different approach to the matrices Nk, for k = 1, 2, . . . , n, in (8) in order to
better understand them and the block Toeplitz structure of their two blocks. First, by direct multiplication,
it may be easily checked (see also [18, Section 5] and [19, Section 9]) that the block companion matrix C1

satisfies

x




xn−1

...
x
1


⊗ Ip = C1




xn−1

...
x
1


⊗ Ip + e1 ⊗ P (x), (11)

where e1 denotes the first column of the n × n identity matrix. Then, define the degree k Horner shift of
P (x) as the matrix polynomial (see [6, Definition 4.1])

Pk(x) := Ipx
k +

k−1∑

j=0

Bn−k+jx
j . (12)

The Horner shifts of P (x) satisfy, for k = 1, 2, . . . , n− 1,

Pk(x) = xPk−1(x) +Bn−k, with P0(x) = Ip. (13)

Using (13), together with (7) and (11), it may be proved that the matrix Nk in (6) is the unique matrix
satisfying 



xn−1

...
x
1


⊗ Pn−k(x) = Nk




xn−1

...
x
1


⊗ Ip +




r1k(x)
...

rn−1,k(x)
rnk(x)


⊗ P (x) (14)

for some scalar polynomials r1k(x), . . . , rnk(x). In words, the ith block row of Nk contains the coefficients
of the unique matrix polynomial Qik(x) of degree less than or equal to n− 1 such that

xn−iPn−k(x) = Qik(x) + rik(x)P (x), (15)

for some scalar polynomial rik(x).
Observing that the Horner shifts in (12) satisfy

xkPn−k(x) = P (x) −Bk−1x
k−1 − · · · −B1x−B0, for k = 1, 2, . . . , n− 1, (16)

it is immediate to check that the polynomial Qik(x) in (15) is given by

Qik(x) =

{ ∑n
j=k Bjx

n+j−i−k if i ≥ n− k + 1, and∑k−1
j=0 −Bjx

n+j−i−k if i ≤ n− k,
(17)

for i, k = 1, 2, . . . , n, where we set Bn := Ip. Then, from (15) and (17) we get




xn−1

...
xk

xk−1

...
1




⊗ Pn−k(x) =




−∑k−1
j=0 Bjx

n−1+j−k

...

−∑k−1
j=0 Bjx

j

∑n
j=k Bjx

j−1

...∑n
j=l Bjx

j−k




+




r1k(x)
...

rn−k,k(x)
rn−k+1,k(x)

...
rnk(x)




⊗ P (x) (18)

and comparing (14) with (18), we recover the expression in (8) for the matrix Nk, and the Toeplitz structure
of its two blocks is also immediately explained.

In Section 4.2 we will use an approach similar to (14) in the case of the Chebyshev basis. However, there
are more technicalities to be addressed with respect to the monomial basis.
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4 Arnold transversality theorem for colleague matrices and back-

ward error analysis

4.1 Clenshaw shifts and Clenshaw matrices

In this section we introduce some matrix polynomials and some matrices, named here as Clenshaw shifts and
Clenshaw matrices, respectively, associated with a monic matrix polynomial in the Chebyshev basis P (x),
that will be used through Section 4.2 and will be key in the following developments. Clenshaw shifts and
Clenshaw matrices are the generalization of the Horner shifts in (12) and the matrices N1, N2, . . . , Nk in (6),
respectively, when the polynomial P (x) is expressed in the Chebyshev basis.

Associated with the p × p monic matrix polynomial in the Chebyshev basis P (x) in (3), we define the
following p× p matrix polynomials:

H0(x) = 2Ip,

H1(x) = 2xH0(x) + 2An−1,

Hk(x) = 2xHk−1(x)−Hk−2(x) + 2An−k, for k = 2, 3, . . . , n− 2,

Hn−1(x) = xHn−2(x)−Hn−3(x)/2 +A1.

(19)

We will refer, for k = 1, 2, . . . , n, to the matrix polynomial Hk(x) as the degree k Clenshaw shifts of P (x),
since for p = 1 they coincide with the well known Clenshaw shifts associated with a scalar polynomial
expressed in the Chebyshev basis [5]. Clenshaw shifts are related with the polynomial P (x) through the
following equation [5]:

2P (x) = 2xHn−1(x) −Hn−2(x) + 2A0. (20)

In Theorem 4.1, given the Chebyshev polynomial Tn−i(x) and the Clenshaw shift Hn−k(x), we show how
to express Tn−i(x)Hn−k(x) uniquely as Qij(x) + rik(x)P (x), where Qij(x) is a p× p matrix polynomial of
degree less than or equal to n−1 and rik(x) is a scalar polynomial. This result is the Chebyshev analogue of
(15) and (17). The proof of Theorem 4.1 is elementary but rather technical, so we leave it to the appendix.
In order to write down a reasonably simple formula for Tn−i(x)Hn−k(x), we define the following quantities

Γ2k+1 = Γ2k−1 + 2An−2k−1, for k = 1, 2, . . . ,
⌊n
2

⌋
− 1, with Γ0 = 2Ip, and

Γ2k = Γ2(k−1) + 2An−2k, for k = 1, 2, . . . ,
⌈n
2

⌉
− 1, with Γ1 = 2An−1.

(21)

Notice that in Γk only appear coefficients of P (x) with indices of the same parity.

Theorem 4.1. Let P (x) = IpTn(x) +
∑n−1

k=0 AkTk(x) be a p× p monic matrix polynomial in the Chebyshev

basis of degree n, let Tn−i(x) and Hn−k(x) be, respectively, the degree n − i Chebyshev polynomial and the

degree n − k Clenshaw shift of P (x), with i, k ∈ {1, 2, . . . , n}. Then, there exist a unique p × p matrix

polynomial Qik(x) of degree less than or equal to n− 1 and a unique scalar polynomial rik(x) such that

Tn−i(x)Hn−k(x) = Qik(x) + rik(x)P (x),

where,

• if i ≥ n− k + 1 and k ≥ 2,

Qik(x) =

n−k−1∑

ℓ=0

Γℓ(T2n−i−k−ℓ(x) + T|k+ℓ−i|(x)) + Γn−kTn−i(x); (22)

• if i = n and k = 1,

Qik(x) =
n−2∑

ℓ=0

ΓℓTn−1−ℓ(x) +
Γn−1

2
T0(x); (23)
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• if i ≤ n− k and n− 1 ≥ k ≥ 2,

Qik(x) =

i−2∑

ℓ=0

Γℓ(Ti+k−2−ℓ(x) + T|k+ℓ−i|(x)) + Γi−1Tk−1(x)−
n−k+1−i∑

ℓ=1

k−1+ℓ∑

r=1

2Ak−1+ℓ−rT|n−i+1−ℓ−r|(x);

(24)

• if i ≤ n− k and k = 1

Qik(x) =

i−2∑

ℓ=0

ΓℓTi−1−ℓ(x) +
Γi−1

2
T0(x) −

n−i∑

ℓ=1

ℓ∑

r=1

Aℓ−rT|n−i+1−ℓ−r|(x); (25)

where Γℓ, for ℓ = 0, 1, 2, . . ., is defined in (21).

From Theorem 4.1, it is clear that there exists a unique n × n block matrix Mk = [(Mk)ij ], with
(Mk)ij ∈ R

p×p, such that




Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k(x) = Mk




Tn−1(x)
...

T1(x)
T0(x)


⊗ Ip +




r1k(x)
...

rn−1,k(x)
rnk(x)


⊗ P (x), for k = 1, 2, . . . , n, (26)

where ⊗ denotes the Kronecker product, for some scalar polynomials r1k(x), . . . , rnk(x). We will refer to the
matrix Mk in (26) as the kth Clenshaw matrix of P (x).

By direct multiplication, it may be easily checked that the block colleague matrix CT satisfies

x




Tn−1(x)
...

T1(x)
T0(x)


⊗ Ip = CT




Tn−1(x)
...

T1(x)
T0(x)


⊗ Ip + e1 ⊗ P (x), (27)

Then, using (26) and (27), in Proposition 4.2 we show that the Clenshaw matrices M1,M2, . . . ,Mn in
(26) satisfy a simple recurrence relation. This recurrence relation is the analogue of (13) when the matrix
polynomial P (x) is expressed in the Chebyshev basis instead of the monomial basis.

Proposition 4.2. Let P (x) = IpTn(x)+
∑n−1

k=0 AkTk(x) be a p×p monic matrix polynomial in the Chebyshev

basis of degree n, let CT be the block colleague matrix of P (x), and let M1,M2, . . . ,Mn be the Clenshaw

matrices in (26). Then,

Mn = In ⊗ 2Ip,

Mn−1 = 2MnCT + In ⊗ 2An−1,

Mk = 2Mk+1CT −Mk+2 + In ⊗ 2Ak, for k = n− 2, . . . , 3, 2, and

M1 = M2CT −M3/2 + In ⊗A1.

(28)

Proof. The proof proceeds by induction on k (backwards from k = n). First, we prove that the result is true
for k = n. From (19), we have




Tn−1(x)
...

T1(x)
T0(x)


⊗H0(x) =




Tn−1(x)
...

T1(x)
T0(x)


⊗ 2Ip =




2Ip
. . .

2Ip
2Ip







Tn−1(x)
...

T1(x)
T0(x)


⊗ Ip.

Comparing the previous equation with (26), we deduce that Mn = In ⊗ 2Ip.
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Second, we prove that the result is true for k = n− 1. From (19), we have



Tn−1(x)
...

T1(x)
T0(x)


⊗H1(x) =




Tn−1(x)
...

T1(x)
T0(x)


⊗ (2xH0(x) + 2An−1) = 2x




Tn−1(x)
...

T1(x)
T0(x)


⊗H0(x) +




Tn−1(x)
...

T1(x)
T0(x)


⊗ 2An−1.

Using the inductive hypothesis, together with (27), we get



Tn−1(x)
...

T1(x)
T0(x)


⊗H1(x) = (2MnCT + In ⊗ 2An−1)




Tn−1(x)
...

T1(x)
T0(x)


+




r1,n−1(x)
...

rn−1,n−1(x)
rn,n−1(x)


⊗ P (x),

for some scalar polynomials r1,n−1(x), . . . , rn,n−1(x). Comparing the previous equation with (26), we deduce
that Mn−1 = 2MnCT + In ⊗ 2An−1.

Third, assume that the result is true for Mn,Mn−1, . . . ,Mk+1, with n− 2 ≥ k ≥ 2. From (19), we have



Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k(x) =




Tn−1(x)
...

T1(x)
T0(x)


⊗ (2xHn−k−1(x) −Hn−k−2(x) + 2Ak)

= 2x




Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k−1(x)−




Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k−2(x) +




Tn−1(x)
...

T1(x)
T0(x)


⊗ 2Ak.

Using that the result is true for k + 1 and k + 2, together with (27), we get



Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k(x) = (2CTMk+1 −Mk+2 + In ⊗ 2Ak)




Tn−1(x)
...

T1(x)
T0(x)


+




r1k(x)
...

rn−1,k(x)
rn,k(x)


⊗ P (x),

for some scalar polynomials r1k(x), . . . , rnk(x). Comparing the previous equation with (26), we deduce that
Mk = 2CTMk+1 −Mk+2 + In ⊗ 2Ak.

Finally, the proof of the last case (k = 1) is similar to the proof for the previous cases (n− 2 ≥ k ≥ 2),
but using Hn−1(x) = xHn−2(x)−Hn−3(x)/2 +A1, so we omit it.

In contrast with (8), the Clenshaw matrices M1,M2, . . . ,Mn have a complicated structure. For example,
for n = 6 and k = 3, it is easy to check using (28) that the matrix Mk is equal to




0 −2A2 −2A3 − 2A1 2Ip − 2A4 − 2A2 − 4A0 −2A3 − 4A1 −2A2 − 2A0

0 0 2Ip − 2A2 2A5 − 2A3 − 2A1 2Ip − 2A2 − 4A0 −2A1

0 2Ip 2A5 2Ip + 2A4 − 2A2 2A5 − 2A1 2Ip − 2A0

2Ip 2A5 2Ip + 2A4 2A5 + 2A3 4Ip + 2A4 2A5

0 2Ip 2A5 4Ip + 2A4 4A5 + 2A3 2A4 + 2Ip
0 0 4Ip 4A5 4Ip + 4A4 2A5 + 2A3



. (29)

Two observations about the matrix (29) are: (i) its first block column is equal to en−k+1 ⊗ 2Ip, where eℓ
denotes the ℓth column of the n× n identity matrix; and, (ii) if we set An := Ip, each block entry has the
form

∑n
i=0 ciAi, where |ci| ≤ 4. In Theorem 4.3, we show that the two previous observations are true for

any n and k. Property (i) will be key to prove Arnold transversality theorem, and property (ii) will be key
to study what kind of backward stability of a linearization-based algorithm for the polynomial eigenvalue
problem is provided by the backward stability of an eigensolver for the linearized problem.
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Theorem 4.3. Let P (x) = IpTn(x) +
∑n−1

k=0 AkTk(x) be a p× p monic matrix polynomial in the Chebyshev

basis of degree n, and let Mk, for k = 1, 2, . . . , n, be the kth Clenshaw matrix in (26). Then, the following

statements hold:

(a) The first block column of Mk is equal to en−k+1 ⊗ 2Ip, where eℓ denotes the ℓth column of the n × n
identity matrix.

(b) For i, j = 1, 2, . . . , n, the (i, j)th block entry of Mk satisfies (Mk)ij =
∑n

t=0 αt,ijkAt with |αt,ijk| ≤ 4,
where we set An := Ip.

Proof. From Theorem 4.1 together with (26), we have Hn−k(x)Tn−i(x) =
∑n

j=1(Mk)ijTn−j(x)+rik(x)P (x).
Therefore, to prove part (a) it is enough to show that

Tn−i(x)Hn−k(x) = 2IpTn−1(x) + · · ·+ rik(x)P (x), (30)

if i = n− k + 1, and that

Tn−i(x)Hn−k(x) = (Mk)iνTν(x) + · · ·+ rik(x)P (x), (31)

with ν < n− 1, if i 6= n− k + 1, where the dots correspond to Chebyshev polynomials with lower indices.
First, suppose that i ≥ n−k+1. We will prove that Tn−i(x)Hn−k(x) is of the form (30) when i = n−k+1

and it is of the form (31) otherwise. We need to distinguish several cases. First, let k = n. From (22) we get
that Tn−i(x)H0(x) = Γ0Tn−i(x) = 2IpTn−i(x). Since the index n− i is equal to n− 1 if and only if i = 1,
the result is true in this case. Then, consider the case n − 1 ≥ k ≥ 2. There are three kinds of indices of
Chebyshev polynomials in (22). The first is 2n− i− k − ℓ, which is equal to n− 1 if and only if ℓ = 0 and
i = n−k+1. This gives a contribution Γ0Tn−1(x) = 2IpTn−1(x) only when i = n−k+1. The second one is
|k+ ℓ− i|. Taking into account the possible values that k, ℓ, and i can take in (22), it may be easily checked
that this index is smaller than or equal to n− 2. The third index is n− i which necessarily is smaller than
or equal to n − 2, and, hence, the result is true in this case. Finally, consider the case k = 1 and i = n.
There are two kinds on indices of Chebyshev polynomials in (23). The first one is n− 1− ℓ, which is equal
to n − 1 if and only if ℓ = 0. This gives a contribution Γ0Tn−1(x) = 2IpTn−1(x). The second index is 0,
which is smaller than n− 2. Therefore, the result is also true in this case.

Now suppose that i ≤ n − k. We will we prove that Tn−i(x)Hn−k(x) is of the form (31). Notice that
there are four kinds of indices in (24) when k ≥ 2, namely, i + k − 2− ℓ, |k + ℓ− i|, |n− i+ 1− ℓ− r| and
k − 1, and three kinds on indices in (25) when k = 1, namely, i− 1− ℓ, i− 1 and |n− i+ 1− ℓ− r|. Taking
into account the possible values that k, ℓ, r, and i can take in (31), in both cases (k ≥ 2 and k = 2), it may
be checked that these indices do not exceed n− 2.

Now, we proceed to prove part (b). Again, we need to distinguish several cases. First, suppose that
i ≥ n− k + 1 and also assume that k ≥ 2 (the argument when k = 1 is similar and simpler, so we omit it),
and consider the three kinds of indices of Chebyshev polynomials that appear in (22), namely, 2n− i−k− ℓ,
|k+ ℓ− i|, and n− i. For ℓ = 0, 1, . . . , n− k, a careful look at these indices reveals that if k+ ℓ− i ≥ 0, then
the three of them are different. Therefore, we can write (22) as

n−1∑

ℓ=0

BℓTℓ(x) +

−1∑

ℓ=−(1−n)

BℓT−ℓ(x), (32)

where Bℓ is equal to either 0 or Γt for some t. It follows that (Mk)ij is equal to either 0, Γt for some t, or
Γt1 +Γt2 for some t1, t2. Finally, recall from (21) that Γt is equal to 2Ip +2An−2 +2An−4 + · · · if t is even,
or to 2An−1 + 2An−3 + · · · if t is odd. Therefore, (Mk)ij =

∑n
t=0 αt,ijkAt, with |αt,ijk | ≤ 4.

Then suppose that i ≤ n − k and also assume that k ≥ 2 (again, the argument when k = 1 is similar
and simpler, so we omit it). First, consider the three kinds of indices of Chebyshev polynomials that appear
in the first summand in (24), namely, i + k − 2 − ℓ, |k + ℓ − i|, k − 1. For ℓ = 0, 1, . . . , i − 2, again, it may
be checked that if k + ℓ − i ≥ 0, then these three indices are different. Therefore, the first summand in
(24) is also of the form (32). Finally, consider the index of the Chebyshev polynomials and the index of the
coefficients Ai that appear in the second summand in (24), namely, |n− i+ 1− ℓ− r|, and k + 1+ ℓ− r. If
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n− i+ 1− ℓ− r ≥ 0, it may be checked that for any two allowed different pairs (ℓ, r) that realize the same
value of n− i + 1 − ℓ − r, then the associate indices k + 1 + ℓ − r must be different. Since the same occur
when n− i+ 1− ℓ− r < 0, it follows that (24) is of the form

n−2∑

ℓ=0

CℓTℓ(x) +

−1∑

ℓ=−(2−n)

CℓT−ℓ(x) − 2

n−2∑

ℓ=0

DℓTℓ(x) − 2

−1∑

ℓ=2−n

DℓT−ℓ(x) + rik(x)P (x)

where Cℓ is equal to either 0 or Γt for some t, and Dℓ is equal to
∑qℓ

t=1 Ait , where it1 6= it2 whenever t1 6= t2.
Then, it follows that

(Mk)ij =

n∑

ℓ=0

δℓAℓ −
n∑

ℓ=0

ρℓAℓ,

where δℓ and ρℓ are equal to either 4, or 2 or 0, therefore (Mk)ij =
∑n

t=0 αt,ijkAt with |αt,ijk| ≤ 4.

If necessary, explicit expressions of the entries of the Clenshaw matrices M1,M2, . . . ,Mn may be obtained
from Theorem 4.1. However, since Theorem 4.3 is the only information that we will need about them to
prove our main results in the following section, we do not pursue that idea.

4.2 Backward error of the Chebyshev rootfinding method using colleague ma-

trices

In this section we prove Arnold transversality theorem for colleague matrices of monic polynomials in the
Chebyshev basis. That is, we show that any matrix E ∈ R

pn×pn may be decomposed as

E = F0 + T, (33)

where F0 ∈ BFRn,p is a first block row matrix and T ∈ TCT
O(CT ), constructing the matrix F0 explicitly.

As in the case of the monomial basis, generically, dim (TCT
O(CT )) + dim (BFRn,p) = n2p2 − np+ np2 ≥

n2p2 (see [8, 15]). In words, the tangent space TCT
O(CT ) and the vector space of first block row matrices

BFRn,p may have a nontrivial intersection when p > 1. For this reason, following [8, 15] we choose a
particular subspace of the tangent space that will give a unique decomposition (33). This subspace is
denoted by Sub TCT

O(CT ) and it is given by

Sub TCT
O(CT ) = {X ∈ TCT

O(CT ) such that X has 0 first block column}.

In order to get the decomposition (33) with T ∈ Sub TCT
O(CT ) we will make use of the Clenshaw

matrices M1,M2, . . . ,Mn ∈ R
np×np, defined in (26), of the matrix polynomial P (x) in (3). Recall that the

Clenshaw matrices satisfy the following recurrence relation (see Proposition 4.2):

Mn = In ⊗ 2Ip,

Mn−1 = 2MnCT + In ⊗ 2An−1,

Mk = 2Mk−1CT −Mk−2 + In ⊗ 2Ak, for k = n− 2, . . . , 3, 2, and

M1 = M2CT −M3/2 + In ⊗A1.

(34)
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We illustrate these matrices with a small example (n = 4). From (34), it is easy to check that

M4 =




2In 0 0 0
0 2In 0 0
0 0 2In 0
0 0 0 2In


 , M3 =




0 2In − 2A2 −2A1 −2A0

2In 2A3 2In 0
0 2In 2A3 2In
0 0 4In 2A3


 ,

M2 =




0 −2A1 2In − 2A2 − 4A0 −2A1

0 2In 2A3 − 2A1 2In − 2A0

2In 2A3 4In + 2A2 2A3

0 4In 4A3 2In + 2A2


 , and

M1 =




0 −2A0 −2A1 In −A2 −A0

0 0 2In − 2A0 A3 −A1

0 2In 2A3 In +A2 −A0

2In 2A3 2In + 2A2 A3 +A1


 .

The only information that we need about Clenshaw matrices are those stated in Theorem 4.3.

Following [8], we also define the block trace of a np× np block matrix Z = [Zij ], with Zij ∈ R
p×p, as the

p× p matrix

trp (Z) :=

n∑

i=1

Zii.

The block trace is used in Theorem 4.4, which provides a characterization of the subspace SubTCT
O(CT ),

and is a generalization of [8, Theorem 4.1] when the matrix polynomial P (x) is expressed in the Chebyshev
basis.

Theorem 4.4. For any Z ∈ R
pn×pn,

trp (Mk+1Z) = 0, for k = 0, 1, . . . , n− 1, (35)

if and only if

Z = CTX −XCT for some X ∈ R
np×np with 0 first block column. (36)

Moreover, either condition determines the first block row of Z uniquely given the remaining block rows.

Proof. From part (a) in Theorem 4.3, the (n− k, 1) block entry of Mk+1 is equal to 2Ip, and the (i, 1) block
entry of Mk+1, with i 6= n−k, is equal to 0. Therefore, Z1,n−k, for k = 0, 1, . . . , n−1, is uniquely determined
from (35). Also, if X has 0 first block column, it may be easily checked that the map from X to the last
n− 1 block rows of CTX −XCT has a trivial nullspace. Thus, Z is uniquely determined by (36).

To finish the proof we need to prove that (36) implies (35). That is, we need to show that trp (Mk+1(CTX−
XCT )) = 0 for any block matrix X with 0 first block column. In order to do this, first, we show that if X
has 0 first block column, then trp (Mk+1XCT ) = trp (XCTMk+1). The proof of the previous equation is not
completely immediate when p > 1 since, in this situation, trp (AB) = trp (BA) does not hold in general. So,
consider a block matrix Y that has 0 first block column. Then,

trp (CTY ) =

p−2∑

i=1

(
Yi,i+1

2
+

Yi+2,i+1

2

)
+ Yp−1,p = trp (Y CT ).

Therefore, if X has 0 first block column, then trp (Mk+1XCT ) = trp (CTMk+1X).
Then, we show that trp (CTMk+1X) = trp (Mk+1CTX). To do this, note that the Clenshaw matrix Mk+1

is of the form 2n−kCn−k−1
T +

∑n−k−1
t=1 (In ⊗Bk)C

n−k−1−t
T , for some B1, B2, . . . , Bn−k−1 ∈ R

p×p (this can be

verified by induction using (34)). So, we only need to show that trp (CT (In⊗B)Cj
TX) = trp ((I⊗B)Cj

TCTX).
Indeed, since the matrix CT (In ⊗B)− (In ⊗B)CT is 0 except the first block row, and since CTX has 0 first
block column, it follows that trp (CT (In ⊗ B)Cj

TX − (I ⊗ B)Cj
TCTX) = 0. Therefore, trp (CTMk+1X) =

trp (Mk+1CTX). Thus, we conclude that trp (Mk+1XCT ) = trp (CTMk+1X) = trp (Mk+1CTX).
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In Theorem 4.5 we present the proof of Arnold transversality theorem for block colleague matrices. Part
(a) in Theorem 4.3 will be key here.

Theorem 4.5. Let p(x) = IpTn(x) +
∑n−1

k=0 AkTk(x) be a p× p monic matrix polynomial in the Chebyshev

basis of degree n, and let CT be its block colleague matrix. Then, any matrix E ∈ R
np×np can be expressed

as

E = F0 + T, (37)

where F0 ∈ BFRn,p is a first block row matrix, and T ∈ Sub TCT
O(CT ). Moreover, if the first block row of

F0 is written as
[
F

(n−1)
0 · · · F

(1)
0 F

(0)
0

]
, then

F
(k)
0 =

1

2
trp (EMk+1), for k = 0, 1, . . . , n− 1, (38)

where the matrix Mk+1 is Clenshaw matrix defind in (26).

Proof. Define F
(k)
0 = 1

2 trp (EMk+1), for k = 0, 1, . . . , n− 1, and let F0 ∈ BFRn,p be a first block row matrix

such that its first block row is
[
F

(n−1)
0 · · · F

(1)
0 F

(0)
0

]
. We may write the matrix T := E − F0. Then,

we have to check that T ∈ Sub TCT
O(CT ). From Theorem 4.4, we see that it is sufficient to show that

trp (TMk+1) = 0, for k = 0, 1, . . . , n− 1. Indeed, using part (a) in Theorem 4.3,

trp (TMk+1) = trp (EMk+1)− trp (F0Mk+1) = trp (EMk+1)− 2F
(k)
0 = trp (EMk+1)− trp (EMk+1) = 0,

for k = 0, 1, . . . , n− 1. So, we conclude that T ∈ Sub TCT
O(CT ).

An important consequence of the decomposition in Theorem 4.5 is that if E is a small perturbation of
the block colleague matrix CT , then

CT + E = CT + F0 + T = CT + F0 + (CTX −XCT ) = (I +X)−1(CT + F0)(I +X) +O(‖E‖22),

where we have used that T can be written as CTX −XCT , for some X ∈ R
np×np with 0 first block column.

Noticing that CT + F0 is in turn a block colleague matrix of another matrix polynomial, we deduce that
a small perturbation of the block colleague matrix of P (x) is similar, to first order in the norm of the

perturbation, to a block colleague matrix of a perturbed polynomial P̃ (x). This observation allows us to
formulate the next corollary.

Corollary 4.6. Let P (x) = IpTn(x) +
∑n−1

k=0 AkTk(x) be a p× p monic matrix polynomial in the Chebyshev

basis of degree n, and let CT be its block colleague matrix. Assume that the eigenvalues of P (x) are com-

puted as the eigenvalues of CT with a backward stable algorithm, i.e., an algorithm that computes the exact

eigenvalues of some matrix CT + E, with ‖E‖F = O(u)‖CT ‖F , where u is the machine precision. Then, to

first order in u, the computed roots are the exact roots of a polynomial P̃ (x) such that

‖P̃ − P‖F
‖P‖F

= O(u)‖P‖F .

Proof. If a backward stable eigensolver is given CT as an input, the computed eigenvalues are the exact
eigenvalues of a matrix CT + E, for some E with ‖E‖F = ǫ‖CT ‖F , where ǫ = uh(n), for some low degree
polynomial h with moderate coefficients. In other words, the computed eigenvalues are the exact roots of
the polynomial det(xI − CT − E).

Using Theorem 4.5, we can write E = F0 + T , where T ∈ Sub TCT
O(CT ) and F0 is a first block row

matrix with first block row as in (38). Therefore,

CT + E = CT + F0 + CTX −XCT = (I +X)−1(CT + F0)(I +X) +O(u2),

for some matrix X ∈ R
np×np with 0 first block column, that is, the matrix CT + E is similar, to first order

in u, to the colleague matrix CT + F0. Writing E as a np × np block matrix E = [Eij ], with Eij ∈ R
p×p,

and noticing that CT + F0 is the colleague matrix of the matrix polynomial P̃ (x) = IpTn(x) +
∑n−1

k=0 (Ak −

14



F
(k)
0 )Tk(x), we have that, to first order in u, the computed eigenvalues are the exact eigenvalues of a

matrix polynomial P̃ (x) = IpTn(x) +
∑n−1

k=0 ÃkTk(x), with ‖Ãk − Ak‖F = ‖F (k)
0 ‖F = ‖trp (EMk+1)‖F =

‖∑n
i,j=1 Eij(Mk+1)ji‖F . Therefore, for k = 0, 1, . . . , n− 1, we have

‖Ãk −Ak‖F ≤
n∑

i,j=1

‖Eij‖F ‖(Mk+1)ji‖F ≤

√√√√
n∑

i,j=1

‖Eij‖2F

√√√√
n∑

i,j=1

‖(Mk+1)ij‖2F = ‖E‖F‖Mk+1‖F ,

where we have used the Cauchy-Schwarz inequality. Then, using part (b) of Theorem 4.3, we have

‖Mk+1‖F =

√√√√
n∑

i,j=1

‖(Mk+1)ij‖2F =

√√√√
n∑

i,j=1

‖
n∑

t=0

αt,ij,k+1At‖2F ≤

√√√√
n∑

i,j=1

(
n∑

t=0

‖αt,ij,k+1At‖F
)2

≤ 4

√√√√
n∑

i,j=1

(
n∑

t=0

‖At‖F
)2

≤ 4n3/2‖P‖F ,

where we have used
∑n

t=0 ‖At‖2 ≤ √
n‖P‖2. Finally, using that ‖E‖F = ǫ‖CT ‖F , we get that

‖E‖F = ǫ‖CT ‖F ≤ ǫ

2
‖




−An−1 −An−1 · · · −A0

0 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0



‖F +

ǫ

2
‖




Ip
Ip Ip

. . .
. . .

Ip 0 Ip
2Ip



‖F

≤ ǫ

2




√√√√
n−1∑

t=0

‖At‖2F +
√
2np


 ≤ ǫ

√
2n

2




√√√√
n−1∑

t=0

‖At‖2F +
√
p


 ≤ ǫ

√
2n‖P‖F .

Thus, the computed eigenvalues, to first order in u, are the exact eigenvalues of a monic matrix polynomial
in the Chebyshev basis P̃ (x) such that,

‖P̃ − P‖F =

√√√√
n−1∑

k=0

‖Ãk −Ak‖2F ≤
n−1∑

k=0

‖Ãk −Ak‖F ≤
n−1∑

k=0

‖Mk+1‖F ‖E‖F ≤ 4n5/2‖P‖F ‖E‖F ≤ ǫ̃‖P‖2F ,

where ǫ̃ = uĥ(n), for some low degree polynomial ĥ with moderate coefficients.

5 Conclusions

In this paper, we have analyzed the backward stability of a Chebyshev-basis polynomial rootfinder (or matrix
polynomial eigensolver) based on the solution of the standard eigenvalue problem for the corresponding
colleague matrix. More precisely, given a monic scalar polynomial in the Chebyshev basis p(x), we have
proved that if the roots of p(x) are computed as the eigenvalues of a colleague matrix using a backward
stable eigenvalue algorithm, like the QR algorithm, then the computed roots are the exact roots of a monic
polynomial in the Chebyshev basis p̃(x) such that

‖p̃− p‖2
‖p‖2

= O(u)‖p‖2,

Similarly, if the eigenvalues of a monic matrix polynomial in the Chebyshev basis are computed as the
eigenvalues of a block colleague matrix using a backward stable eigenvalue algorithm, then the computed
eigenvalues are the exact eigenvalues of a monic matrix polynomial in the Chebyshev basis P̃ (x) such that

‖P̃ − P‖F
‖P‖F

= O(u)‖P‖F ,

These backward error analysis show that these methods are backward stable when the norms ‖p‖2 and ‖P‖F
are moderate.
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A Proof of Theorem 4.1

In this section we present the proof of Theorem 4.1, that is, given the Clenshaw shift Hn−k(x) associated
with the matrix polynomial P (x) in (3), and the Chebyshev polynomial Tn−i(x), we show that

Tn−i(x)Hn−k(x) = Qik(x) + rik(x)P (x), (39)

for some scalar polynomial rik(x), where Qik(x) is the matrix polynomial of degree less than or equal to
n− 1 in (22)–(25). Moreover, we show that the decomposition (39) is unique.

Along the proof, quite often products of two of Chebyshev polynomials will occur. For this reason, the
following formula [1, Chapter 22] is of fundamental importance here:

2Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x). (40)

The first step is to expand the Clenshaw shifts Hk(x), for k = 0, 1, . . . , n − 1, in the Chebyshev basis.
We will prove

Hk(x) =
k−1∑

ℓ=0

2ΓℓTk−ℓ(x) + ΓkT0(x), for k = 0, 1, . . . , n− 2, and (41)

Hn−1(x) =
n−2∑

ℓ=0

ΓℓTn−1−ℓ(x) +
1

2
Γn−1T0(x), (42)

where Γℓ is defined in (21). The proof proceeds by induction on k. From (19) we get H0(x) = 2Ip = Γ0T0(x)
and H1(x) = 4Ipx + 2An−1 = 2Γ0T1(x) + Γ1T0(x), so the result is true for k = 0 and k = 1. Then, assume
that the result is true for H0(x), H1(x), . . . , Hk−1(x), with 2 ≤ k ≤ n − 2. Using the induction hypothesis,
together with (19), we have

Hk(x) = 2xHk−1(x)−Hk−2(x) + 2An−k

= 2x

(
k−2∑

ℓ=0

2ΓlTk−1−ℓ(x) + Γk−1T0(x)

)
−

k−3∑

ℓ=0

2ΓℓTk−2−ℓ(x)− Γk−2T0(x) + 2An−k.

Using T0(x) = 1, T1(x) = x, and (40) with m = 1 and n = k, from the previous equation we get

Hk(x) =
k−2∑

ℓ=0

2Γℓ (Tk−ℓ(x) + Tk−2−ℓ(x)) + 2Γk−1T1(x) −
k−3∑

ℓ=0

2ΓℓTk−2−ℓ(x)− Γk−2T0(x) + 2An−kT0(x)

=
k−2∑

ℓ=0

2ΓℓTk−ℓ(x) + 2Γk−2T0(x) + 2Γk−1T1(x)− Γk−2T0(x) + 2An−kT0(x)

=

k−1∑

ℓ=0

2ΓℓTk−ℓ(x) + (Γk−2 + 2An−k)T0(x) =

k−1∑

ℓ=0

2ΓℓTk−ℓ(x) + ΓkT0(x),

where in the last equality we have used Γk−2 + 2An−k = Γk. Therefore, the result is also true for Hk(x).
Finally, the proof that (42) holds is similar to the previous one, but starting with Hn−1(x) = xHn−2(x) −
Hn−3(x)/2 +A1, so we omit the details.

Now we proceed to show that (39) holds with Qik(x) as in (22)–(25). In order to do that, we will proceed
in certain order. To help the reader to follow the steps, we depict all the possible products Tn−i(x)Hn−k(x)
for n = 10 in the following 10× 10 grid.
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The vertices with triangular shape in the previous grid represent the cases in which the degree of
Tn−i(x)Hn−k(x) does not exceed n − 1, that is, when i ≥ n − k + 1. In this case, the polynomial Qik(x)
coincide with Tn−i(x)Hn−k(x), so we just need to expand Tn−i(x)Hn−k(x) in the Chebyshev basis. Indeed,
when i = n and k = 1, from (42), we have

T0(x)Hn−1(x) = Hn−1(x) =

n−2∑

ℓ=0

ΓℓTn−1−ℓ(x) +
1

2
Γn−1T0(x),

and when n− 1 ≥ i ≥ n− k + 1, from (40) and (41), we have

Tn−i(x)Hn−k(x) =

n−k−1∑

ℓ=0

2ΓℓTn−i(x)Tn−k−ℓ(x) + Γn−kTn−i(x)T0(x)

=
n−k−1∑

ℓ=0

Γℓ(T2n−i−k−ℓ(x) + T|k+ℓ−i|(x)) + Γn−kTn−i(x).

As can be checked, the two previous equations correspond to (22) and (23), respectively.
Next, we consider the products Tn−i(x)Hn−k(x) with i < n− k + 1, represented in the grid by vertices

with circular shape. This case is much more involved, since the degree of Tn−i(x)Hn−k(x) is larger than or
equal to n. We will prove that (39) holds, with Qik(x) as in (22)–(25), each diagonal in the grid at a time
(from left to right), showing that each product Tn−i(x)Hn−k(x) can be computed using, at most, a product
represented by a vertex in the same diagonal and two products represented by vertices in the diagonal on
its left.

The first step is to consider the products Tk(x)Hn−k(x), for k = 1, 2, . . . , n− 1, that is, products repre-
sented by the diagonal with white circular vertices in the grid. We show that Theorem 4.1 holds for those
products from top to bottom. We start with the white circular vertex labeled with 1 in the grid, that is,
with the product T1(x)Hn−1(x). From (20) and (41), together with T1(x) = x, we have

T1(x)Hn−1(x) = xHn−1(x) =
1

2
Hn−2(x)−A0T0(x)+ · · · =

n−3∑

ℓ=0

ΓℓTn−2−ℓ(x)+
1

2
Γn−2T0(x)−A0T0(x)+ · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar polynomial. As can be
easily checked, the previous equation corresponds to (25) with i = n− 1.

Then, we consider the white circular vertex labeled with 2 in the grid, that is, the product T2(x)Hn−2(x).
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From (1) and (19), we have

Hn−2(x)T2(x) = Hn−2(x) (2xT1(x)− T0(x)) = 2xT1(x)Hn−2(x)− T0(x)Hn−2(x)

= T1(x) (2Hn−1(x) +Hn−3(x)− 2A1)− T0(x)Hn−2(x)

= 2T1(x)Hn−1(x) + T1(x)Hn−3(x) − T0(x)Hn−2(x)− 2A1T1(x).

As can be seen from the previous equation, the product Hn−2(x)T2(x) may be computed from products
represented by two triangular vertices: T1(x)Hn−3(x) and T0(x)Hn−2(x), and the product T1(x)Hn−1(x).
Then, using (41), (42), and the result previously obtained for T1(x)Hn−1(x), we get

T2(x)Hn−2(x) =

n−4∑

ℓ=0

Γℓ(Tn−2−ℓ(x) + T|ℓ+4−n|(x)) + Γn−3T1(x) − 2A0T0(x) − 2A1T1(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar polynomial. The previous
equation corresponds to (24) with i = n− 2 and k = 2.

Finally, we consider the white circular vertices labeled with 3, that is, the products Tk(x)Hn−k(x), for
k = 3, 4, . . . , n. From (1) and (19), we have

Tk(x)Hn−k(x) = (2xTk−1(x)− Tk−2(x))Hn−k(x) = 2xTk−1(x)Hn−k(x)− Tk−2(x)Hn−k(x)

= Tk−1(x)(Hn−k+1(x) +Hn−k−1(x) − 2Ak−1)− Tk−2(x)Hn−k(x)

= Tk−1(x)Hn−k+1(x) + Tk−1(x)Hn−k−1(x) − Tk−2(x)Hn−k(x)− 2Ak−1Tk−1(x).

As can be seen from the previous equation, Tk(x)Hn−k(x) may be computed from Tk−1(x)Hn−k−1(x) and
Tk−2(x)Hn−k(x), represented in the grid by triangular vertices, and Tk−1(x)Hn−k+1(x), represented in the
grid by the white circular vertex above the white circular vertex corresponding to Tk(x)Hn−k(x). Since
we have previously seen that Theorem 4.1 holds for T1(x)Hn−1(x) and T2(x)Hn−2(x), and for products
represented by triangular vertices, this shows how to prove inductively (from top to bottom) that Theorem
4.1 holds for products represented by white circular vertices labeled with 3. Indeed, assuming that the result
holds for Tk−1(x)Hn−k+1(x) and using (22), we get

Tk(x)Hn−k(x) = Tk−1(x)Hn−k−1 +
k∑

r=2

(−2Ak−r)Tk−r(x) − 2Ak−1Tk−1(x) + · · ·

=
n−k−2∑

ℓ=0

Γℓ(Tn−2−ℓ(x) + T|ℓ+2k−n|) + Γn−k−1Tk−1(x) +
k∑

r=1

(−2Ak−r)Tk−r(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar polynomial. It is immediate
to check that the previous equation corresponds to (24) when i = n− k.

The second step is to consider the products Tk+1(x)Hn−k(x), for k = 2, 3, . . . , n− 2, that is, the diagonal
with black circular vertices in the grid. This step is very similar to the previous one, so we will only sketch
the main ideas. We have to distinguish the cases k = 2, k = 3 and k > 3. When k = 2, using (1), (19) and
(20), it may be proved

T2(x)Hn−1(x) = T1(x)Hn−2(x) − T0(x)Hn−1(x)− 2A0T1(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar polynomial. The previous
equation shows that T2(x)Hn−1(x) may be computed from two products represented by triangular vertices
in the grid: T1(x)Hn−2(x) and T0(x)Hn−1(x). Since we have seen that Theorem 4.1 holds for products
represented by triangular vertices, it may be proved that (25) holds for T2(x)Hn−1(x).

Then, from (1) and (19), it may be proved that, when k = 2,

T3(x)Hn−2(x) = 2T2(x)Hn−1(x) + T2(x)Hn−3(x)− 2A1T2(x),

and, when k > 3,

Tk+1(x)Hn−k(x) = Tk(x)Hn−k+1(x) + Tk(x)Hn−k−1(x)− Tk−1(x)Hn−k(x) − 2Ak−1Tk(x).
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These two equations show that Tk+1(x)Hn−k(x) may be computed from two products represented by trian-
gular vertices, and the product represented by the black circular vertex above the black circular vertex corre-
sponding to Tk+1(x)Hn−k(x). Assuming that Theorem 4.1 holds for T2(x)Hn−1(x), the previous observation
shows how to prove inductively (from top to bottom) that Theorem 4.1 holds for products corresponding to
black circular vertices labeled with 2 and 3.

Now, we address the products represented by circular vertices colored with different shades of grey, that
is, the products Tk+r−1(x)Hn−k(x), for r = 3, 4, . . . , n − 2 and k = 1, 2, . . . , n − 1 − r. We will show that
Theorem 4.1 holds for products represented by vertices in the same diagonal (same shade of grey) assuming
that it holds for products represented by (non-triangular) vertices in the diagonal on its left. Since we have
previously proved that Theorem 4.1 holds for products represented by the white and black diagonals, this
will imply that Theorem 4.1 holds for all products represented by grey vertices. For each grey diagonal, we
have to distinguish the products represented by vertices labeled with 1, 2, and 3.

First, we consider the product Tr(x)Hn−1(x), with r ≥ 3, represented by a grey vertex labeled with 1.
From (1) and (20), we get

Tr(x)Hn−1(x) = (2xTr−1(x)− Tr−2(x))Hn−1(x) = 2xTr−1(x)Hn−1(x) − Tr−2(x)Hn−1(x)

= Tr−1(x)Hn−2(x)− Tr−2(x)Hn−1(x)− 2A0Tr−1(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar polynomial. The previous
equation shows that Tr(x)Hn−1(x) may be computed from two products represented by vertices in the
diagonal on its left: Tr−1(x)Hn−2(x) and Tr−2(x)Hn−1(x). Assuming that (24) and (25) hold for those
products, we have

Tr−1(x)Hn−2(x) =

n−r−1∑

ℓ=0

Γℓ

(
Tn−r+1−ℓ(x) + T|ℓ−n+r+1|(x)

)
+Γn−rT1(x)−

r−2∑

ℓ=1

ℓ+1∑

s=1

2Aℓ+1−sT|r−ℓ−s|(x)+ · · · ,

and

Tr−2(x)Hn−1(x) =

n−r∑

ℓ=0

ΓℓTn−r+1−ℓ(x) +
1

2
Γn−r+1T0(x)−

r−2∑

ℓ=1

ℓ∑

s=1

Aℓ−sT|r−ℓ−s−1|(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar polynomial. Using

n−r−1∑

ℓ=0

Γℓ

(
Tn−r+1−ℓ(x) + T|ℓ−n+r+1|(x)

)
+ Γn−rT1(x) −

n−r∑

ℓ=0

ΓℓTn−r+1−ℓ(x)−
1

2
Γn−r+1T0(x)

=

n−r−2∑

ℓ=0

ΓℓTn−r−1−ℓ(x) +
1

2
Γn−r−1T0(x)−Ar−1T0(x),

where we have used (Γn−r+1 − Γn−r−1)/2 = Ar−1, and

−
r−2∑

ℓ=1

ℓ+1∑

s=1

2Aℓ+1−sT|r−ℓ−s|(x) +
r−2∑

ℓ=1

ℓ∑

s=1

Aℓ−sT|r−ℓ−s−1|(x) = −
r−2∑

ℓ=1

ℓ+1∑

s=1

Aℓ+1−sT|r−ℓ−s|(x)−
r−2∑

ℓ=1

AℓT|r−ℓ−1|(x)

=−
r−2∑

ℓ=1

ℓ+1∑

s=1

Aℓ+1−sT|r−ℓ−s|(x)−
r∑

s=1

Ar−sT|s−1|(x) +Ar−1T0(x) +A0Tr−1(x)

=−
r−1∑

ℓ=0

ℓ+1∑

s=1

Aℓ+1−sT|r−ℓ−s|(x) +Ar−1T0(x) + 2A0Tr−1(x)

=−
r∑

ℓ=1

ℓ∑

s=1

Aℓ−sT|r+1−ℓ−s|(x) +Ar−1T0(x) + 2A0Tr−1(x),

we get

Tr−1(x)Hn−2(x) =
n−r−2∑

ℓ=0

ΓℓTn−r−1−ℓ(x) +
1

2
Γn−r−1T0(x)−

r∑

ℓ=1

ℓ∑

s=1

2Aℓ−sT|r+1−ℓ−s|(x) + · · · ,
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where the dots correspond to something of the form r(x)P (x), with r(x) a scalar polynomial. As can be
checked, the previous equation corresponds to (25) with k = 1 and i = n− r.

The proof that Theorem 4.1 holds for products represented by grey vertices labeled with 2 is very similar
to the previous one, so we omit it.

Finally, consider a product Tn−i(x)Hn−k(x) represented by a grey vertex labeled with 3. From (1) and
(19), we have

Tn−i(x)Hn−k(x) =(2xTn−i−1(x) − Tn−i−2(x))Hn−k(x)

=Tn−i−1(x)Hn−k+1(x) + Tn−i−1(x)Hn−k−1(x) − Tn−i−2(x)Hn−k(x)− 2Ak−1Tn−i−1(x)

The previous equation shows that Tn−i(x)Hn−k(x) may be computed from two products represented by (non-
triangular) vertices in the diagonal on its left: Tn−i−1(x)Hn−k−1(x) and Tn−i−2(x)Hn−k(x), and a product
represented by a vertex in the same diagonal, above the vertex corresponding to Tn−i(x)Hn−k(x), that is,
the product Tn−i−1(x)Hn−k+1(x). This observation shows how to prove inductively (from top to bottom)
that Theorem 4.1 holds for the grey vertices labeled with 3 in the same diagonal. Assuming that (24) holds
for Tn−i−1(x)Hn−k−1(x), Tn−i−2(x)Hn−k(x) and Tn−i−2(x)Hn−k(x), and using Γi+1 − Γi−1 = 2An−i−1,

i−1∑

ℓ=0

Γℓ(Ti+k−2−ℓ(x) + T|k+ℓ−i−2|(x)) + ΓiTk−2(x) +
i−1∑

ℓ=0

Γℓ(Ti+k−ℓ(x) + T|k+ℓ−i|(x)) + ΓiTk(x)

−
i∑

ℓ=0

Γℓ(Ti+k−ℓ(x) + T|k+ℓ−i−2|(x)) − Γi+1Tk−1(x)

=

i−2∑

ℓ=0

Γℓ(Ti+k−2−ℓ(x) + T|k+ℓ−i|(x)) + Γi−1Tk−1(x)− 2An−i−1Tk−1,

and

−
n−k+1−i∑

ℓ=1

k−2+ℓ∑

r=1

2Ak−2+ℓ−rT|n−i−ℓ−r|(x) −
n−k−1−i∑

ℓ=1

k+ℓ∑

r=1

2Ak+ℓ−rT|n−i−ℓ−r|(x)

+

n−k−1−i∑

ℓ=1

k−1+ℓ∑

r=1

2Ak−1+ℓ−rT|n−i−1−ℓ−r|(x) = −
n−k+1−i∑

ℓ=1

k−1+ℓ∑

r=1

2Ak−1+ℓ−rT|n−i+1−ℓ−r|(x)

+ 2Ak−1Tn−i−1(x) + 2An−i−1Tk−1(x).

we get

Tn−i(x)Hn−k(x) = Tn−i−1(x)Hn−k+1(x) + Tn−i−1(x)Hn−k−1(x)− Tn−i−2(x)Hn−k(x) − 2Ak−1Tn−i−1(x)

=

i−2∑

ℓ=0

Γℓ(Ti+k−2−ℓ(x) + T|k+ℓ−i|(x)) + Γi−1Tk−1(x)−
n−k+1−i∑

ℓ=1

k−1+ℓ∑

r=1

2Ak−1+ℓ−rT|n−i+1−ℓ−r|(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar polynomial, which shows
that (24) holds also for Tn−i(x)Hn−k(x).

The final step of the proof consists in proving the uniqueness of rik(x) andQik(x) in (39). For this purpose,
assume that there exist two scalar polynomials rik(x) and r̃ik(x), and two matrix polynomials Qik(x) and

Q̃ik(x) of degree at most n − 1 such that Tn−i(x)Hn−k(x) = Qik(x) + rik(x)P (x) = Q̃ik(x) + r̃ik(x)P (x).

Then, Qik(x) − Q̃ik(x) = (r̃ik(x) − rik(x))P (x) is a matrix polynomial of degree at most n − 1, but, if
rik(x) 6= r̃ik(x), the matrix polynomial (r̃ik(x) − rik(x))P (x) has degree larger than or equal to n, hence

rik(x) = r̃ik(x) and Qik(x) = Q̃ik(x).
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