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Detecting and Reducing Redundancy in Alarm Networks

Timothy D. Butters1,2, Stefan Güttel2, and Jonathan L. Shapiro3

Abstract— Alarm systems are vital for the safe operation
of almost all large-scale industrial and technical installations,
such as chemical plants or power stations. The optimization of
alarm systems has great potential to improve the safety of these
installations, and also to increase their profitability through the
reduction of automated shut-downs and suboptimal operation
modes.

In this work we present a new approach to alarm system
optimization through the identification of redundant alarms.
Our approach is based on a ranking of alarms by their
connectivity in the alarm network. We also propose an overall
redundancy measure for the alarm system which can be used
to monitor performance improvements after redundant alarms
have been removed. We present an example demonstrating that
our ranking technique provides operational staff with useful
information, allowing them to enhance the effectiveness of their
existing alarm systems.

I. INTRODUCTION
Alarm systems are a key component in the safe operation

of large-scale industrial installations. They are responsible
for alerting plant operators to abnormal behavior and, if nec-
essary, performing automated shut-downs to prevent serious
damage. However, it is not uncommon for alarm systems to
exhibit suboptimal performance, as documented in industrial
catastrophes such as the partial nuclear meltdown at Three
Mile Island and the Texas City refinery explosion, both
having root causes in poor alarm management [1], [2].

When discussing system optimization it is important to
identify a suitable quantitative measure that indicates the
effectiveness of the system in performing its intended task.
Perhaps the most commonly used measure in the context of
alarm systems is “operator load,” which is defined as the
number of alarms each operator has to address in a given
time interval. The global standard for alarm management
configuration, EEMUA 191, provides recommended limits
on the operator load of at most 1 alarm per operator every
10 minutes [3].

Operator load not only measures the frequency of alarms,
but also takes into account the feasibility of acknowledging
and actioning each alarm in the appropriate manner. In
the event of an alarm cascade, in which many alarms are
triggered in a short period of time due to a single physical
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event, it may be very difficult or impossible for the operators
to identify the root cause of the problem [4]. In some reported
cases, the manual suppression of noisy alarms by operators
has had severe consequences. It is therefore important to
suppress these noisy alarms and alarm cascades without
losing safety-critical information. This can be achieved by
identifying and removing redundancies in the alarm system.

With sensors becoming cheaper it is now commonplace
to install a large number of these across a plant, ensuring
that every physical component is monitored. Although this
may be necessary for some aspects of operation, it is usually
unnecessary to configure an alarm for each single sensor, a
practice that has also become common, particularly during
initial configuration. Because these sensors often measure
physically linked systems (e.g., temperature conduction be-
tween components), a single physical event can trigger a
large number of alarms. The identification of such redun-
dancies would allow the alarm management system to be
re-configured in a way that operator load is reduced, while
maintaining safety of operation.

When undertaking alarm optimization exercises it is com-
mon practice to prioritize alarms based on their arrival
frequency, aiming to reduce operator load through the direct
suppression of the most active alarms. Although there is
some merit to this approach it does not take into account the
pathways of activation for each high-frequency alarm. This
means that the removal or suppression of these alarms may
remove important information from the operator. It is also
possible that an alarm ranked lower by frequency but often
followed by an alarm cascade has a bigger impact on operator
load than a high-frequency alarm. If instead the alarms with
highest redundancy were targeted this would not only lead
to a reduction in operator load, but also ensure that safety-
critical information is retained.

Various methods to optimize alarm system performance
have been discussed in the literature [5], [6], [7], but these
mainly focus on real-time optimization through automated
intervention. These methods require detailed computational
models of the plant, which are not only difficult to con-
struct, but also often rely on the manufacturer’s equipment
parameters, rather than reflecting the actual behavior of the
equipment in operation. Commercialized solutions of this
kind are both expensive and require time-consuming set-up.

With many industrial installations such as chemical plants
and power stations being operational for many years, there
are large amounts of alarm data available for analysis. Using
this data would allow for the reliable identification of alarm
dependencies. This would ensure that the results obtained
are relevant to the specific installation, rather than being



suggested by an idealized computational model.
Here we present a novel approach that utilizes historical

and streamed alarm data to identify and prioritize sources
of redundancy within an alarm system. We also present an
alarm system health measure that can be used to track the
progress of a plant optimization exercise, and which allows
for differential analysis with varying operation parameters.
This is an important requirement in effective alarm system
optimization as complex plants are likely to behave differ-
ently under varying operation modes.

II. METHODS

To identify redundancies in an alarm system we analyse
historical alarm data that was acquired during the operation
of an industrial petrochemicals plant. Once redundant alarms
have been identified the plant operations team can then
decide to eliminate these alarms, or deploy suppression rules
in the alarm management system. Our data-driven approach
removes the need for complex computational models of
the industrial process required by other alarm management
solutions [8], [9], [10]. To access, aggregate, and process the
large datasets required our method was built in the Sabisu
platform (http://www.sabisu.co).

A. Constructing the Alarm Transition Matrix

Our approach is based on a network interpretation of
the alarm system, where connected alarms are modelled as
links in a directed graph. For a comprehensive overview
of the graph-theoretical tools used in this paper we refer
to [11]. A more applied introduction to graphs and related
computational methods can be found in [12]. In our notation,
bold printed capitals stand for matrices (e.g., A and T), and
bold lower-case letters denote vectors (e.g., c and r). The
notation cT stands for transposition of the vector c.

Our aim is to construct an n× n transition matrix T of
the alarm system, in which each entry ti, j represents the
probability that an alarm Ai is followed by alarm A j within
a fixed time window of, say, 30 s. These probabilities can
be obtained empirically from historical alarm data, as is best
explained at a simple example.

Assume we are given a system of n = 3 alarms A1, A2,
A3, sounding in the following sequence:

A1A1 A2 A3

t

Fig. 1. A simple alarm system with n = 3 alarms. Time goes from left to
right. The under-braces symbolize a fixed time window of 30 s, and a link
Ai→ A j indicates that alarm A j followed alarm Ai within 30 s.

In the first step we will unfold this alarm sequence into
an ensemble of alarm pairs and single alarms. By alarm
pair we mean a pair (Ai,A j) representing an occurrence of

alarm A j within 30 s of alarm Ai. By single alarm we mean a
singleton (Ai) representing an occurrence of alarm Ai which
was not followed by any other alarm for at least 30 s. The
alarm sequence in Fig. 1 is transformed into the following
alarm ensemble:

A1

A1

A1

A2

A2

A3

A3

Fig. 2. The alarm ensemble corresponding to our simple alarm system.

The motivation for decoupling an alarm sequence into an
alarm ensemble is that transitions on alarm ensembles are
compatible with elementary linear algebra operations. Effec-
tively we are splitting the alarm sequence into statistically
independent events such that the resulting ensemble can be
modelled as a Markov chain with transition matrix T. As a
step towards obtaining this matrix T, let us use the ensemble
representation to construct an n×n matrix A and an n-vector
c counting the number of alarm pairs and singles. The matrix
A has only zeroes on the diagonal and each non-diagonal
entry ai, j corresponds to the number of pairs (Ai,A j) in the
alarm ensemble. The ith entry in c corresponds to the sum
of the number of single alarms (Ai) and alarm pairs (Ai,A j)
in the ensemble. For the example in Fig. 2 we have

A =

0 1 1
0 0 1
0 0 0

 , c =

3
1
0

 . (1)

Finally, the n×n alarm transition matrix T is defined as

T = diag(c)†A,

where diag(c)† corresponds to the n×n diagonal matrix with
entries c−1

i (set to zero in the case ci = 0). For example, with
A and c given in (1) we obtain

T =

0 1/3 1/3

0 0 1
0 0 0

 .

By construction, the matrix T is guaranteed to be non-
negative and row sub-stochastic. This matrix can be used to
retrieve statistics regarding the alarm ensemble. For example,
with the vector 1 = [1, . . . ,1]T , the ith entry in the matrix-
vector product T1 corresponds to the probability that alarm
Ai triggers any other alarm in the ensemble. Likewise, the
jth entry in the product cT T returns the number of times
alarm A j followed an alarm state represented in c. In our
example we have

cT T = [ 0 1 2 ],



which means that starting from an alarm state cT =
[ 3 1 0 ] we are more likely to hear alarm A3 than
alarm A2, and we are unlikely to hear alarm A1. Note how
this interpretation corresponds to a transition from the left
of Fig. 2 to the right.

State transitions are consistent with matrix products, and
therefore we can perform longer transitions by multiplication
with higher powers of T. For example, starting again from
state c we obtain after two transitions

cT T2 = [ 0 0 1 ],

i.e., we are likely to hear alarm A3 alone, and finally

cT T3 = [ 0 0 0 ]

means that the alarm system eventually becomes silent.

B. Alarm Ranking

Probably the most common ranking technique used in
alarm management is to simply count the number of times
each alarm was triggered over a sufficiently long time period.
Although this approach gives some information about the
alarm system it does not account for cascades of alarms
where a less frequent alarm triggers a series of other incident
alarms, which in turn trigger a large number of alarms. Such
a cascade may have a much bigger impact on operator load
than a single faulty alarm that sounds frequently.

To account for the connectivity of alarms we propose
to rank them using higher-order powers of the transition
matrix T. From algebraic graph theory it is known that
the (i, j) entry in Tk can be interpreted as the weighted
number of walks of length k from alarm Ai to A j (see, e.g.,
[11], [13]). Summing weighted powers wkTk hence gives a
measure of communicability between alarm Ai and A j via
walks of nonzero length (i.e., loops are not allowed). The
weighting coefficients wk = 1/k! have been found to produce
meaningful results, i.e., we use the matrix function

f (T) :=
∞

∑
k=1

Tk

k!
= eT− I,

which corresponds to the matrix exponential of T minus the
identity matrix I. The entries of the matrix exponential are a
popular communicability measure in network analysis (see,
e.g., [14]), but other functions can give similar results [15].

We now define the vector

rT := cT f (T)

to be the redundancy ranking of the alarm system. The
entries of this vector relate to the frequencies at which each
alarm can be expected to be triggered by the initial alarm
state c (which is obtained as an average alarm state by
counting as explained in the previous section). Redundant
alarms are those which are often preceded by incident alarms
and hence do not contribute much information by themselves.
These alarms will have large entries in the ranking vector
r. This vector can be efficiently approximated via Taylor
expansion of f (z) = ez− 1. A sketch of the computational
method used is a follows:

v = c; r = 0;
for k = 1 to m:

v = v*T/k;
r = r + v;

where c stores the row vector cT and m is an integer chosen
so that accuracy requirements are met (in our computations
we used m = 10).

We note that there are other ways to sum the terms
in the Taylor expansion of f (such as, e.g., the Horner
scheme [16]). However, it is useful to keep track of the
vector v as it can be expected to align with a dominant left
eigenvector of T, which essentially is the PageRank vector1

[12]. Indeed, the PageRank vector can also be obtained as
a limit of cT fk(T) as k → ∞, where the functions fk(z)
have Taylor coefficients (0, . . . ,0,ρ(T)−k,0, . . .) with the
only nonzero in the kth position. Here, ρ(T) denotes the
spectral radius of T. We will now argue that ρ(T) can be
viewed as a measure for redundancy in the alarm system.

C. Measuring Redundancy

Recall that the powers of T correspond to longer-range
dependencies in the alarm system. In an optimal alarm
system, a single physical event (such as, e.g., “Overheat
warning in compressor X”) will trigger exactly one alarm
and then become silent, but in practice incident alarms will
follow (e.g., “High pressure in compressor X”). Therefore,
one measure of redundancy in alarm systems is the limiting
rate at which the matrices Tk decay. More precisely, let ‖ ·‖
be an arbitrary matrix norm, then we consider the spectral
radius

ρ(T) = lim
k→∞
‖Tk‖1/k ≥ 0 (2)

as a measure of alarm redundancy. The equality in (2) is
independent of the matrix norm used and typically referred
to as Gelfand’s formula. Note that ρ(T) ≤ 1 because T is
sub-stochastic. A highly redundant alarm system will have
ρ(T) ≈ 1, meaning that alarm cascades may potentially
decay off very slowly (resulting in an alarm cascade).

It should be emphasized that the spectral radius ρ(T) may
be approached by the decay rate only for very large k in (2).
No single number can capture the whole information about
‖Tk‖1/k, but nevertheless we found ρ(T) to at least be a good
indicator of redundancy. Indeed, if ‖ · ‖1 denotes the vector
1-norm (which is just the sum of the entries in a non-negative
vector), then

‖cT Tk‖1 ≤ ‖c‖1‖Tk‖1 ∝∼ ‖c‖1ρ(T)k. (3)

In words: the number of alarms after k transitions (which
is ‖cT Tk‖1) is approximately proportional to the number
of alarms in the initial state (which is ‖c‖1) multiplied
by ρ(T)k. We will demonstrate this behavior at a practical
example in the following section.

1Strictly speaking, more conditions are required, e.g., the assumption that
the spectral radius ρ(T)> 0 is the eigenvalue of largest modulus and it is
a simple eigenvalue, and c is not orthogonal to the associated eigenvector.
Some of these requirements can be guaranteed by the Perron–Frobenius
theory for non-negative matrices (see, e.g., [12, Section 15.2]).



III. RESULTS

We analyzed industrial alarm data from a SABIC UK
petrochemicals plant. The alarm log ranges over approx-
imately two weeks (from 2014/04/01 to 2014/04/16) and
collects alarm signals from n = 1433 alarms.

A sparsity plot of the n×n transition matrix T is shown
in Fig. 3. With 34948 nonzero elements this matrix has a
sparsity of 1.7%. The matrix rows and columns have been
reordered by the reverse Cuthill–McKee algorithm [17] so
that nonzero elements are brought close to the diagonal. One
can see from the resulting sparsity pattern that some alarms
appear in clusters. The alarm redundancy was found to be

ρ(T) = 0.856.
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Fig. 3. Sparsity pattern of the transition matrix T corresponding to alarm
data from a large-scale petrochemicals plant.

In Fig. 4 we visualize the entries of the vectors cT , cT T,
and cT T2. Recall from Section II-A that the ith entry in
cT corresponds to the sum of the number of single alarms
(Ai) and alarm pairs (Ai,A j). In total, we found 89372 alarm
singles and pairs (this corresponds to the vector norm ‖c‖1).
One multiplication by T reduces the total alarm number to
76262, and a further multiplication reduces it to 66155. We
find that the reduction factor is very well approximated by
our alarm redundancy measure ρ(T), which is in agreement
with (3).

We now apply the exponential-based ranking as described
in Section II-B to determine the ten alarms with the highest
redundancy. The effect of consecutively removing 1,2, . . . ,10
of these alarms on the redundancy measure is shown in
Table I. This table also shows the alarm index (which is
the unique identifier for each alarm corresponding to the

0 200 400 600 800 1000 1200 1400
0

2500

5000 count = 89372

0 200 400 600 800 1000 1200 1400
0

2500
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0 200 400 600 800 1000 1200 1400
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2500
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Fig. 4. Entries in the vectors cT Tk for k = 0,1,2 (from top to bottom).

row/column index in T), and the count (which is the number
of times each alarm appeared in the alarm ensemble). We
find that the redundancy of the alarm system is reduced
significantly by eliminating the five alarms of highest rank.
After this elimination the redundancy measure continues to
decrease, but at a slower rate.

TABLE I
EXPONENTIAL-BASED ALARM RANKING AND THE REDUCTION IN

REDUNDANCY BY REMOVING THE HIGHEST-RANKED ALARMS.

Alarms Removed Index Count Redundancy Measure
0 — — 0.856
1 1265 5902 0.841
2 1266 3334 0.833
3 1279 863 0.822
4 1272 1152 0.818
5 1275 971 0.815
10 1013 269 0.808

By comparing with Table II, which shows the index and
counts of the most frequent alarms, it becomes clear that a
simple ranking based on alarm frequency will give different
results. Although four of the alarms are present in both
tables, they appear in a different order even though there is a
significant difference in their respective counts. Alarm 1279
appears only in the exponential-based ranking, whereas
alarm 1282 appears only in the ranking by frequency.



TABLE II
ALARM RANKING BY FREQUENCY.

Rank Index Count
1 1265 5902
2 1266 3334
3 1272 1152
4 1282 1010
5 1275 971

Using a simple load calculation is was possible to estimate
the reduction in operator load that would have been attained
if the highest-ranked alarms in Table I were removed for the
analysed time period. It was found that the average load per
operator was reduced by approximately 12%.

IV. DISCUSSION

The results in Section III, and other tests not reported here,
indicate that our approach to alarm ranking can be used ef-
fectively to reduce the load on plant operators. We found that
the exponential-based ranking may differ significantly from
the ranking of alarms by frequency. This means that there is
dependency information in the alarm network which is worth
factoring into the analysis. The frequency-based ranking fails
to include alarm cascades, in which a less frequent alarm
triggers an alarm with a large number of incident alarms.
Such alarm cascades may result in much higher operator
load than individual alarms that sound frequently, and the
exponential-based ranking proposed in this paper takes this
into account.

Having a reliable ranking method and the possibility to
simulate the effect of alarm system modifications is partic-
ularly important in real-world applications as real changes
to a running alarm system can take considerable time to
enact. This is because any proposed change must first be
approved by the alarm management team due to its safety-
critical nature. It is therefore vital that alarms with the largest
overall redundancy can be identified reliably and processed
first.

The proposed alarm redundancy measure provides a useful
quantitative metric to assess the current state of an alarm
system, and it also allows to track improvements as the alarm
system is optimized. Moreover, this measure can be used
to compare alarm systems in different operation modes, or
between similar industrial installations.

It is common for manufacturing plants to change their
mode of operation due to environmental factors or varying
customer demand. For example, this could mean running
a chemical process on a different set of raw materials,
or running the plant with modified parameters to produce
a higher or lower grade of end product. With the plant
operating in these distinct modes it is likely that differ-
ent alarm behavior will be observed, possibly causing a
change in the redundancy measure. Tracking this change
in redundancy allows problematic operation modes to be
identified and documented. Alarms being particularly active

in a problematic operation mode could be tagged and dealt
with separately.

Redundant alarms can be handled in several possible ways
in order to reduce the operator load. The simplest solution
is to remove the alarm from the system. This is a possible
course of action if the alarm has a high redundancy in all
operation modes, which suggests that it rarely gives any
meaningful information to the operators. However, if an
alarm is highly redundant in only a subset of operation
modes, removal is clearly not the best course of action.
As the alarm provides useful information in some modes,
it should be suppressed only in modes in which it has been
identified as redundant. An alternative to these two methods
is trigger-based suppression. Here a redundant alarm A2 is
suppressed for 30 s when it appears in combination with
another alarm A1, and both alarms have been identified to
appear very likely together (so only in combination with
alarm A1, alarm A2 can be considered as redundant). This
allows alarm A2 to act as normal when it appears by itself. In
practice probably all three methods of alarm load reduction
will be utilized.

V. CONCLUSIONS

The alarm ranking approach presented here provides an
effective way to improve the performance of existing alarm
systems. Due to its data-driven nature, this approach it is
very easy to implement and versatile. The alarm ranking will
automatically adapt to the specific alarm installation being
analysed. Moreover, any changes the plant may go through,
whether intended or incidental, will eventually be reflected
in the alarm data, allowing for an automatic re-ranking of
the alarms.

Our results show that in a real-world installation our
ranking-based approach may significantly reduce operator
load while making sure that important alarms are retained.
The approach is currently being trialled by a number of
Sabisu’s customers, who have provided a positive initial re-
sponse. In the future, with the permission of these customers,
a comprehensive analysis of the method could be performed
to quantify the reduction in operator load throughout a
variety of operational environments.

This approach does not require any complex configuration,
and can easily be implemented to any industrial installation
using an alarm management system. We believe that its
simplicity and versatility make it an extremely effective
solution to alarm optimization problems.
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