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Abstract

Pathways-reduced analysis is one of the techniques used by the Fispact-II nuclear
activation and transmutation software to study the sensitivity of the computed invento-
ries to uncertainties in reaction cross-sections. Although deciding which pathways are
most important is very helpful in for example determining which nuclear data would
benefit from further refinement, pathways-reduced analysis need not necessarily define
the most critical reaction, since one reaction may contribute to several different path-
ways. This work examines three different techniques for ranking reactions in their order
of importance in determining the final inventory, viz. a pathways based metric (PBM),
the direct method and one based on the Pearson correlation coefficient. Reasons why
the PBM is to be preferred are presented.

1 Introduction

Fispact-II is a software suite for the analysis of nuclear activation and transmutation events
of all kinds [1]. In ref [2] it was established that the pathways-reduced approach [3, 4] almost
invariably gives very close agreement with Monte-Carlo sensitivities computed using the full
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or Bateman model for the evolution of the nuclear inventory of a target subject to irradiation
by an imposed flux of projectile particles, always neutrons in this work. Pathways-reduced
models are, following Eastwood and Morgan [3], identified by a graph-based approach which
determines the key reaction pathways determining the inventory at a given time and elimi-
nates from consideration those nuclides which do not lie on this reduced set of pathways.

The pathways-reduced metric is a sensitivity method in the respect that implicitly it se-
lects a set of the most important nuclide reactions. A wide range of different sensitivity meth-
ods have been reviewed in the literature by nuclear industry experts Helton et al(2006) [5],
see also Cacuci and Ionescu-Bujor(2004) [6, 7], and indeed general software packages are
available, for example DAKOTA [8]. This work represents a comparison of three different
techniques that exploit the pathways based reduction for the nuclear activation problem.

A key input to most techniques considered herein is an estimate of the uncertainty in
the reaction cross-section. Fispact-II can access uncertainty data on the vast majority
or reactions in the EASY-II database [9], however no information is currently passed con-
cerning pure decay reactions. This reflects the fact that half-lives are often very accurately
known. There are other reactions in the database for which a value of zero uncertainty is
found, usually indicating that no information is available. The implications for the three-way
comparison exercise are discussed in Section 2.4.

To proceed further with this introduction, it is efficient to introduce the time evolution
(rate or Bateman equation) for a nuclear inventory X

dX

dt
= AX (1)

where X is the vector of nuclide numbers, and A is the matrix of nuclear interaction coeffi-
cients for both induced reactions and spontaneous decays. Note that one coefficient Aij of A
may represent several different nuclear reactions, since the equation involves an average over
a spectrum of energies (of neutrons in the present work, although other elementary parti-
cles may be considered in general). Hence the term ‘interaction’ is used to cover all effects
generating nuclide i as the child of parent j. It is worth noting that although i precedes j
alphabetically, reactions throughout this work will be described by a parent-child ordering.

In general, the coefficients Aij may change with time as the incident neutron flux changes.
All the techniques for ranking the interactions Aij are however most easily understood in
the context of a single constant irradiation in the time interval (0, tf ), producing an inven-
tory X(tf ). Different aspects of the inventory, such as heat production or kerma, may be
studied using Fispact-II, but for illustrative purposes it is sufficient to consider only the
total activity

Q =
∑
k

λkXk(tf ) (2)

where λk is the decay rate of the nuclide Xk; λk is zero for stable nuclides and λk = loge 2/τk
for unstable ones, where τk is the half-life.

The three different ranking techniques are described in the next Section 2. There is
novelty in the calculation of the direct sensitivity, in that the matrix Fréchet derivative is
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used in its computation, see Appendix, rather than the more usual decoupled direct method
DDM of Dunker(1981) [10]. The application of the techniques to the wide range of test cases
first introduced in ref [2] is illustrated in Section 3. Lastly Section 4 compares the utility of
the different techniques.

2 Sensitivity Measures

2.1 Pathways Based Metric

The Pathways Based Metric (PBM) is calculated quite simply from the output of the
pathways-reduced approach, which includes a listing of each pathway and its percentage
contribution to the active nuclide at its termination. For a given interaction Aij, all the
number Np of pathways upon which it lies are identified and the PBM calculated as

SijPBM =

Np∑
k=1

plλtXtIkl (3)

where pl is the fractional contribution of pathway l to the number of atoms Xt (evaluated at
time tf ) in the inventory with decay rate λt and the indicator matrix Ikl = 1 or 0 depending
whether or not a reaction contributing to the interaction lies on the pathway. This technique
required special modification to Fispact-II for its implementation, which was facilitated by
the object-oriented design of the Fortran-95 code. For the purposes of initial investigation,
the loops which are identified by the graph-based approach used by Fispact-II are ignored.

2.2 Direct Method

The Direct Method (DM) works directly with the tensor describing the rate of variation of
the nuclide Xk with respect to nuclear reaction coefficients. For initial investigative purposes
it is sufficient to consider the partial derivative with respect to Aij. Differentiating Eq. (1)
with (i, j) regarded as fixed, gives

d

dt

(
∂X

∂Aij

)
= A

∂X

∂Aij
+

∂A

∂Aij
X (4)

If the sensitivity of the total activity is required, then using Eq. (2), this is

SijDM =
∑
k

λk
∂Xk(tf )

∂Aij
(5)

In the decoupled direct method, Eq. (4) is solved for ∂Xk/∂Aij using a method which exploits
the sparseness of ∂A/∂Aij = δij in the present context. However, it is also possible to express
SDM in terms of the matrix Fréchet derivative as explained in the Appendix, viz.

SijFDM(tf ) = tf
∑
k

λkLexp(tfA,Eij)X(0) (6)
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where Lexp is the matrix Fréchet derivative as defined in the Appendix where Eij is also
defined. Eq. (6) defines the Fréchet direct method. Similarly to the PBM, this technique
required modification of Fispact-II to output the matrix A in a format suitable for input
to MATLAB [11].

2.3 Pearson Derived Method

The Pearson technique for ranking sensitivities starts with the definition of the Pearson
product-moment correlation coefficient for a set of Ns samples {(As, Qs) : s = 1, . . . , Ns},
viz.

r =

∑
s(Qs − Q̄)(As − Ā)

(Ns − 1)∆Q∆A
(7)

where the suffix ij on r and A is to be understood, overbar denotes average and ∆ denotes
the standard deviation of the distribution so that for example

Q̄ =
1

Ns

Ns∑
s=1

Qs (8)

∆Q =

√√√√ 1

(Ns − 1)

Ns∑
s=1

[(Qs)2 − Q̄2] (9)

The coefficient rij is by definition always less than or equal to one, and a magnitude of r
close to one indicates strong linear correlation.

However, it is the proportionality constant corresponding to ∂Q/∂Aij that is of initial
interest. Assuming

Q− Q̄ = r̃(A− Ā) (10)

and substituting in Eq. (7), it follows that

SPRD = r̃ij = rij

(
∆Q

∆A

)
(11)

It follows that the output of the Monte-Carlo sensitivity calculations may be used to rank
the different interactions by computing rij/∆A (note that ∆Q is the same for all the Aij vari-
ations in the standard approach described in ref [2]).

The calculation of the Pearson coefficient r is well-known to be sensitive to round-off
error. To avoid modifying the software, the coefficient is computed using output values from
Fispact-II given only to 6 significant figures by default. This accuracy is the maximum that
can be expected from the numerical integration of the rate equation which is is constrained
to an accuracy of one part in a million. It was found that splitting the separate contributions
of As and Ā to Eq. (7) led to unacceptable cancellation due to round-off effects, however if
Q̄ was not subtracted from Qs before summation, this made negligible change in the value
of r computed from Eq. (7).
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2.4 Comments upon the Different Metrics

The main distinction between the PBM and the other two measures is that the pathways
based method is ‘global’, capturing the whole variation of the inventory as parameters are
varied, although having the disadvantage that it cannot measure sensitivity to diagonal
entries of A. The other two techniques are more local, indeed the DM returns directly only
a coefficient at the mean of the distribution of Q. The Pearson method is somewhere in-
between, using global variations, but making a local linear assumption about the mean. This
complicates the comparison in the next Section 3.

The principal comment to be made concerning the comparison is that, corresponding to
the lack of sensitivity to element Aij when it is zero due an absence of interaction between
nuclides i and j, a large sensitivity in the local sense is inconsequential for the total activityQ.
However, the two more local estimates (Eq. (5) and Eq. (11)) for ∂Q/∂Aij should be directly
comparable.

Main interest attaches to global measures such as SPBM . The FDM approach may be
used to produce an equivalent ranking by scaling by the estimated error in the coefficient,
viz.

SijFDS = SijFDM ·
( εij

100

)
· Āij (12)

where εij is the percentage error in the distribution of the coefficient Aij. Fispact-II returns
both εij and Āij by combining the uncertainties in the reaction coefficients corresponding
to Aij.

From Eq. (11), a ranking based on the Pearson coefficient r should also be comparable
to SPBM , if it is scaled similarly, viz.

SijPRS = rij ·
( εij

100

)
·
(
Āij

∆Aij

)
(13)

In practice it is found that SijPRS ≈ rij.
Note that for interactions for which no uncertainty information is available, a Pearson

coefficient cannot be computed, nor is SFDS useful. The coefficient SPBM may be non-
zero, but this relies on the interaction’s lying on a pathway important for other reasons.
Interactions without accompanying uncertainty information will therefore largely be ignored
in this work.

3 Sensitivity Calculations

3.1 Details of Cases

The test cases are taken from ref [2] and involve several different nuclide mixtures designed
to be indicative of a wide range of activation problems, see Table 1. As indicated, all but
one of the mixtures consisted of 1 kg of material subject to a neutron flux of 1015 cm−2s−1,
for a year, without any cooling period.
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Table 1: Test cases. Each consists of numbers of atoms of the listed elements with their
natural abundances of nuclides, given as percentages by mass of the whole.

Test Constituents of Mixture Sample Irradiation Cooling Neutron flux
Label Mass Period Period cm−2s−1

Alloy Fe 40.0 : Ni 20.0 : Cr 20.0 : Mn 20.0 1 kg 1 yr 0 1015

Alloy+c Fe 40.0 : Ni 20.0 : Cr 20.0 : Mn 20.0 1 kg 1 yr 1 yr 1015

Fe Fe 1 kg 2.5 yr 0 1015

LiMix Li 40.0 : Be 30.0 : O 30.0 1 kg 1 yr 0 1015

WMix W 20.0 : Re 20.0 : Ir 20.0 : Bi 20.0
: Pb 20.0

1 kg 1 yr 0 1015

Y2O3 Y 78.74 : O 21.26 1 g 300 s 0 1.116× 1010

Table 2: Test cases statistics. Monte-Carlo sampling by Fispact-II has a sample size
determined by the number of reactions examined.

Test I, Reactions Matrix Max. Nx, Samples Ns, Total
Label Examined ASize per Reaction Sample
Alloy 84 51 640 53 760
Alloy+c 50 38 640 32 000
Fe 27 24 640 17 280
LiMix 17 21 640 10 880
WMix 71 63 640 45 440
Y2O3 13 16 2 560 33 280

The mixtures are used in six test cases, with the Alloy case extended to include a cooling
phase. Each test case is run using the full TENDL 2013 data from the EASY-II database [9]
with pathways analysis to identify the important reactions, the numbers of which are listed
in Table 2. As in ref [2], Monte-Carlo solution of the reduced problem, investigating the
distributions of the important reaction rates specified in the newer database, was then per-
formed in the sequence of increasing sample size per reaction, Nx = 10, 40, 160, . . . up to
the maximum value specified in the table. Indications from ref [2] and work which may be
published elsewhere indicate that the pathways-reduced results agree to at least two (and
often three) significant figures with those obtained by sampling the full problem, at less than
a thousandth of the computational cost. As might be expected from the large maximum
number of samples Ns employed, the distributions of reaction rates actually sampled usually
agree in the mean to 4 significant figures with the nominal database values.
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3.2 Results

This section presents results for each of the test cases in turn, in the alphabetic order
specified in Table 1. For each test case there is a table of sensitivity rankings ordered by
Fréchet derivative amplitude and a graph of rankings ordered by SPBM . The table enables a
larger range of interactions to be compared, since the graphs become hard to interpret once
the number of plotted interactions exceeds about ten. Note the convention (except for the
Y2O3 case) that all three methods must provide a ranking for the comparison to be plotted.
So in the figures the ten highest-ranked cases plotted may actually have ranks lower than
ten.

A general feature of all graphs comparing rankings by the different techniques is the
symmetry about the mid-line labelled PBM . The appearance of “V ” and “Λ” patterns in-
dicates that although the more local measures may not agree with SPBM , they do themselves
correlate well.

For two of the test cases, Alloy+c in Section 3.2.2 and WMix in Section 3.2.5, further
results of analysis are presented to help understand the effect of sampling and round-off on
the calculation of SPRS. In addition, a table of sensitivity rankings ordered by SPBM and
a graph of rankings ordered by Fréchet derivative also appear in these two sections. (This
information is omitted from the other four sections Section 3.2.1, Section 3.2.3, Section 3.2.4
and Section 3.2.6 to save space.)

3.2.1 Alloy
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Table 3: Alloy case. Rankings for different methods.
Sensitivity

Parent Child FDS PBM PRS
Fe-56 Mn-56 1 5 1
Ni-58 Ni-57 21 37 57
Mn-55 Cr-55 10 11 10
Mn-55 V-52 12 18 12
Mn-55 Mn-56 9 1 9
Cr-52 Cr-51 17 19 24
Cr-52 V-52 5 10 5
Ni-58 Co-58m 3 4 3
Mn-55 Mn-54 11 6 11
Fe-56 Fe-55 14 15 15
Ni-58 Co-57 8 9 8
Ni-60 Co-60m 4 13 4
Ni-58 Co-58 2 2 2
Ni-58 Fe-55 7 12 6
Fe-54 Cr-51 13 20 13
Cr-53 V-52 37 0 0
Cr-53 V-53 15 25 18
Fe-54 Mn-54 6 8 7
Cr-50 Cr-51 22 3 30
Fe-57 Mn-56 36 0 0
Fe-57 Mn-57 18 26 33
Ni-62 Fe-59 19 35 71
Ni-62 Co-62m 30 50 56
Ni-62 Co-61 39 79 66
Ni-62 Co-62 28 46 47
Ni-60 Co-60 16 28 14
Cr-54 Cr-55 24 22 67
Cr-54 Ti-51 27 49 26
Cr-54 V-54 25 52 50
Fe-54 Fe-55 26 14 48
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Figure 1: Comparison of the Alloy test case results, showing the first ten interactions ac-
cording to the Pathways Based Metric SPBM , ranked accordingly.
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3.2.2 Alloy+c

Table 4 suggests that once the Pearson correlation becomes below 0.1 it becomes inaccurate.
Figure 2 shows that the smaller Pearson coefficients vary erratically with sampling, from
which it is inferred that round-off effects have become important.

As indicated in Table 1 this case involves both an irradiation phase and a cooling period.
Care is required in comparing the FDM approach in this instance, for the method uses
only the matrix for the cooling phase, whereas the other analyses are of the entire history.
Although there is still reasonably good correlation between PFDS and PPRS, it is not as good
in the other test cases.

Figure 2: Comparison of the Alloy+c test case results, showing the first ten odd-numbered
interactions according to the scaled Pearson technique value SPRS, for a Monte-Carlo sample
size of Nx = 640 per reaction, as Nx is increased.
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Table 4: Alloy+c case. Values of absolute Pearson correlation coefficient |r| as Monte Carlo
sample size increases with Nx.

Absolute Pearson
Parent Child 40 160 640
Ni-58 Fe-55 0.81342 0.79097 0.79709
Fe-54 Mn-54 0.48716 0.48798 0.48761
Ni-58 Co-57 0.24152 0.23469 0.23442
Mn-55 Mn-54 0.17194 0.16534 0.16563
Ni-60 Co-60m 0.16462 0.15008 0.13389
Ni-58 Co-58 0.13754 0.12544 0.11864
Fe-56 Fe-55 9.410× 10−2 7.202× 10−2 9.237× 10−2

Ni-60 Co-60 0.10390 6.218× 10−2 5.669× 10−2

Ni-58 Co-58m 6.996× 10−2 5.098× 10−2 4.101× 10−2

Ti-46 Sc-46m 3.614× 10−2 1.570× 10−3 1.575× 10−2

Ti-47 Sc-46 2.538× 10−2 2.806× 10−3 1.209× 10−2

V-49 Sc-46 4.678× 10−3 1.198× 10−2 1.144× 10−2

Co-60m Co-60 1.923× 10−2 9.042× 10−3 8.303× 10−3

Cr-50 V-50 9.279× 10−3 1.598× 10−2 8.073× 10−3

Ni-60 Co-59 1.648× 10−2 1.167× 10−2 7.639× 10−3

Ni-57 Co-57 1.665× 10−2 1.499× 10−2 7.389× 10−3

Co-57 Co-58 2.483× 10−3 1.572× 10−2 6.780× 10−3

Fe-54 Cr-51 2.407× 10−2 2.252× 10−2 6.773× 10−3

Co-57 Co-58m 3.906× 10−2 9.176× 10−3 6.739× 10−3

Ti-47 Ti-46 2.828× 10−2 1.220× 10−2 5.516× 10−3

Co-59 Fe-59 8.709× 10−3 1.451× 10−2 5.499× 10−3

Fe-58 Fe-59 2.626× 10−2 1.466× 10−2 5.289× 10−3

Fe-54 Fe-55 2.698× 10−2 7.802× 10−3 5.261× 10−3

Co-58 Fe-58 2.502× 10−3 1.069× 10−3 5.199× 10−3

Ti-47 Sc-46m 4.156× 10−3 1.867× 10−2 5.039× 10−3

Cr-50 Cr-51 1.015× 10−2 2.073× 10−3 4.815× 10−3

Co-59 Co-60 1.789× 10−2 1.673× 10−2 4.743× 10−3

Ni-58 Ni-59 2.777× 10−3 1.273× 10−2 4.581× 10−3

Mn-55 Mn-56 1.473× 10−2 3.741× 10−3 4.456× 10−3

Co-58 Co-59 5.478× 10−3 6.033× 10−4 4.220× 10−3
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Table 5: Alloy+c case. Rankings for different methods.
Sensitivity

Parent Child FDS PBM PRS
Cr-52 Cr-51 11 39 49
Mn-55 Mn-54 6 1 4
Fe-56 Fe-55 9 6 7
Ni-58 Co-57 5 3 3
Ni-58 Ni-57 16 20 42
Ni-58 Co-58 1 7 6
Ni-58 Co-58m 2 9 9
Ni-58 Fe-55 4 4 1
Fe-54 Cr-51 8 40 17
Fe-54 Mn-54 3 2 2
Cr-50 Cr-51 13 26 26
Ni-62 Fe-59 12 37 44
Ni-60 Co-60 10 14 8
Ni-60 Co-60m 7 11 5
Fe-54 Fe-55 15 5 23
Cr-50 V-49 14 16 35
Fe-58 Fe-59 18 27 22
Fe-54 Mn-53 17 18 30
Ni-60 Co-59 22 28 15
Ni-59 Co-58 21 0 0
Ni-58 Fe-54 31 0 0
Ni-59 Co-58m 23 0 0
Co-59 Fe-59 19 42 20
Co-59 Co-58 26 0 0
Fe-56 Mn-55 30 0 0
Co-59 Co-58m 25 0 0
Ni-59 Fe-55 32 0 0
Ni-62 Ni-63 27 12 33
Fe-55 Mn-54 28 0 0
Co-58 Co-57 24 30 34
Co-57 Co-56 29 44 37
Co-58 Mn-54 33 0 0
Co-58 Co-58m 20 62 0
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Figure 3: Comparison of the Alloy+c test case results, showing the first ten interactions by
magnitude of Fréchet derivative. The labels are ordered according to Fréchet derivative size,
so that the top interaction is the most sensitive.

Figure 4: Comparison of the Alloy+c test case results, showing the first ten interactions
according to the Pathways Based Metric SPBM for which comparison is possible.
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Table 6: Alloy+c case. Rankings for different methods.
Sensitivity

Parent Child FDS PBM PRS
Mn-55 Mn-54 6 1 4
Fe-54 Mn-54 3 2 2
Ni-58 Co-57 5 3 3
Ni-58 Fe-55 4 4 1
Fe-54 Fe-55 15 5 23
Fe-56 Fe-55 9 6 7
Ni-58 Co-58 1 7 6
Co-60m Co-60 0 8 13
Ni-58 Co-58m 2 9 9
Co-58m Co-58 0 10 32
Ni-60 Co-60m 7 11 5
Ni-62 Ni-63 27 12 33
Co-58 Co-59 0 13 31
Ni-60 Co-60 10 14 8
Co-59 Co-60m 0 15 43
Cr-50 V-49 14 16 35
Co-59 Co-60 0 17 27
Fe-54 Mn-53 17 18 30
Mn-53 Mn-54 0 19 46
Ni-57 Co-57 0 21 16
Ni-58 Ni-57 16 20 42
Mn-55 Mn-56 0 23 29
Mn-56 Fe-56 0 22 0
Co-58m Co-59 0 24 36
Co-57 Co-58 0 25 18
Cr-50 Cr-51 13 26 26
Fe-58 Fe-59 18 27 22
Ni-60 Co-59 22 28 15
Ni-64 Ni-63 0 29 39
Co-58 Co-57 24 30 34
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3.2.3 Fe

Figure 5: Comparison of the Fe test case results, showing the first ten interactions according
to the Pathways Based Metric SPBM , ranked accordingly.
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Table 7: Fe case. Rankings for different methods.
Sensitivity

Parent Child FDS PBM PRS
Fe-56 Mn-56 1 1 1
Fe-56 Fe-55 4 4 3
Fe-54 Cr-51 3 5 4
Fe-54 Mn-54 2 2 2
Fe-57 Mn-56 13 0 0
Fe-57 Mn-57 5 7 6
Fe-54 Fe-55 6 3 27
Fe-56 Mn-55 7 27 18
Fe-58 Fe-59 9 6 25
Fe-58 Cr-55 10 19 8
Fe-58 Mn-58m 11 21 19
Fe-58 Mn-58 12 22 22
Fe-54 Mn-53 8 9 7
Fe-56 Fe-57 16 10 11
Fe-55 Mn-54 14 0 0
Cr-54 Cr-55 20 15 12
Cr-54 V-54 21 26 5
Mn-55 Cr-55 18 24 26
Mn-55 V-52 22 25 16
Mn-55 Mn-56 15 0 0
Fe-57 Fe-58 25 13 24
Mn-55 Mn-54 24 0 0
Fe-57 Cr-54 27 28 14
V-51 V-52 32 16 23
Mn-53 Mn-54 19 8 10
Fe-57 Fe-56 23 0 0
Co-59 Co-60m 30 12 21
Co-59 Mn-56 31 0 0
Co-59 Fe-59 28 0 0
Fe-55 Mn-55 17 23 17
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3.2.4 LiMix

The comparison between the various metrics in Figure 6 does not at first appear to be
as successful as in other cases. However the dominant interaction from the PBM involves
tritium for which uncertainty data are not accessible in the database, hence the FDS and
PRS cannot assign it a ranking and it is omitted from the plot. Moreover all FDS rankings
over 21 similarly correspond to zero uncertainty and allowing for this, the comparison is as
good as any reported herein.

Figure 6: Comparison of the LiMix test case results, showing the first ten interactions
according to the Pathways Based Metric SPBM for which comparison is possible.
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Table 8: LiMix case. Rankings for different methods.
Sensitivity

Parent Child FDS PBM PRS
Li-7 He-6 3 5 3
Li-7 Li-8 2 3 2
Be-9 He-6 1 2 1
O-16 N-16 22 4 16
Li-6 He-6 4 7 5
Li-7 Li-6 24 0 0
Be-9 Be-10 6 10 7
O-18 O-19 8 11 10
O-18 C-15 5 8 13
O-17 N-16 15 0 0
O-17 N-17 7 12 12
O-16 N-15 18 14 11
Be-9 Li-7 11 0 0
He-3 H-3 25 0 0
Be-10 He-6 27 0 0
Be-10 Be-11 21 9 15
O-16 O-17 14 18 4
Li-6 Li-7 13 0 0
N-15 N-16 19 0 0
N-15 C-15 12 0 0
N-15 B-12 9 13 6
C-13 Be-10 10 16 8
O-16 C-13 23 15 17
C-13 Be-9 26 0 0
O-17 O-18 20 0 0
O-17 N-15 17 20 9
O-17 O-16 16 0 0
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3.2.5 WMix

Table 9 suggests that once the Pearson correlation becomes below 0.1 it becomes inaccurate.
Figure 7 shows that the lower rankings in terms of sensitivity vary erratically with sampling
for similar reasons to do with round-off effects.

Figure 7: Comparison of the WMix test case results, showing the first ten odd-numbered
interactions according to the scaled Pearson technique value SPRS, for a Monte-Carlo sample
size of Nx = 640 per reaction, as Nx is increased.
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Table 9: WMix case. Values of absolute Pearson correlation coefficient |r| as Monte Carlo
sample size increases with Nx.

Absolute Pearson
Parent Child 40 160 640
Re187 Re188 0.93702 0.94033 0.94091
Ir193 Ir194 0.24971 0.23407 0.24135
Ir191 Ir192 0.13306 0.13520 0.13542
Ir193 Ir193m 0.11155 0.11969 0.11550
Re185 Re186 0.10156 8.413× 10−2 7.955× 10−2

W-184 W-185 6.398× 10−2 9.215× 10−2 7.856× 10−2

W-186 W-187 5.029× 10−2 6.135× 10−2 6.423× 10−2

Re187 Re188m 2.181× 10−2 5.108× 10−2 5.264× 10−2

Pt192 Pt191 4.270× 10−2 4.238× 10−2 3.215× 10−2

Ir193m Ir193 2.090× 10−3 9.212× 10−3 2.514× 10−2

Ir191 Ir192m 3.290× 10−2 1.785× 10−2 2.510× 10−2

W-186 W-185m 4.033× 10−2 4.676× 10−2 2.323× 10−2

Re187 Re186 3.941× 10−2 2.248× 10−2 1.720× 10−2

Bi209 Bi210 6.132× 10−5 1.141× 10−2 1.679× 10−2

Ir192 Ir193m 1.539× 10−2 1.425× 10−2 1.637× 10−2

Ir192 Ir193 1.845× 10−2 1.529× 10−2 1.352× 10−2

W-182 W-181 1.497× 10−2 1.685× 10−2 1.274× 10−2

Ir191 Ir190 2.775× 10−2 8.743× 10−3 1.263× 10−2

Pb208 Pb207m 3.345× 10−2 9.360× 10−3 1.217× 10−2

Ir191 Ir191m 2.715× 10−2 1.390× 10−2 1.167× 10−2

Pt194 Pt193m 1.482× 10−2 1.318× 10−2 1.020× 10−2

W-186 W-185 3.379× 10−2 1.427× 10−2 9.663× 10−3

W-183 W-183m 2.160× 10−3 1.927× 10−2 9.005× 10−3

W-183 W-184 5.385× 10−3 1.532× 10−3 8.812× 10−3

Ir193 Ir192 2.121× 10−2 8.499× 10−3 8.497× 10−3

Re185 Re184m 1.874× 10−2 7.629× 10−3 8.467× 10−3

Ir194 Ir195m 4.688× 10−3 5.884× 10−3 8.447× 10−3

Ir193 Os193 3.587× 10−4 2.355× 10−3 8.253× 10−3

Re188m Re188 1.010× 10−2 4.477× 10−3 7.839× 10−3

Bi210m Bi210 1.836× 10−2 3.068× 10−3 7.527× 10−3
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Table 10: WMix case. Rankings for different methods.
Sensitivity

Parent Child FDS PBM PRS
Bi209 Bi210 14 38 14
Re187 W-185m 29 0 0
Re187 Re188m 6 12 8
Ir193 Os191 35 0 0
Ir193 Os191m 37 0 0
Bi209 Pb207m 28 0 0
Ir193 Ir192m 11 0 0
Re187 W-185 31 0 0
W-184 W-185m 17 50 51
Re187 W-187 19 0 0
Ir193 Ir193m 3 16 4
Re187 Ta183 32 0 0
W-186 W-185m 7 27 12
Re187 Re186 8 18 13
Re187 Re188 1 4 1
Pt194 Os191 26 0 0
Pt194 Os191m 30 0 0
Pb208 Pb207m 12 26 19
Re185 W-185m 20 0 0
Ir193 Ir192 9 20 26
W-184 W-185 4 13 6
Ir193 Ir194 2 1 2
Pt194 Ir193m 34 0 0
W-186 W-185 10 21 22
W-184 Ta183 33 0 0
W-184 Ta182m 38 0 0
W-184 Ta182 36 0 0
W-184 W-183m 15 35 55
Pt194 Ir194 24 0 0
Pt194 Pt193m 13 24 21
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Figure 8: Comparison of the WMix test case results, showing the first ten interactions by
magnitude of Fréchet derivative. The labels are ordered according to Fréchet derivative size,
so that the top interaction is the most sensitive.

Figure 9: Comparison of the WMix test case results, showing the first ten interactions
according to the Pathways Based Metric SPBM for which comparison is possible.
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Table 11: WMix case. Rankings for different methods.
Sensitivity

Parent Child FDS PBM PRS
Ir193 Ir194 2 1 2
Re185 Re186 0 2 5
Ir191 Ir192m 0 3 11
Re187 Re188 1 4 1
Ir191 Ir192 0 5 3
Ir192m Ir192 0 6 71
Ir192 Ir193m 0 7 15
W-186 W-187 5 8 7
Ir193m Ir193 0 9 10
Ir192 Ir193 0 10 16
W-187 Re187 0 11 0
Re187 Re188m 6 12 8
W-184 W-185 4 13 6
Re186 W-186 0 14 37
Re188m Re188 0 15 29
Ir193 Ir193m 3 16 4
W-185 Re185 0 17 0
Re187 Re186 8 18 13
Ir194 Ir195 0 19 62
Ir193 Ir192 9 20 26
W-186 W-185 10 21 22
W-182 W-181 0 22 17
Pb207 Pb207m 0 23 54
Pt194 Pt193m 13 24 21
Ir194 Pt194 0 25 0
Pb208 Pb207m 12 26 19
W-186 W-185m 7 27 12
Ir191 Ir191m 0 28 20
Re186 Os186 0 29 0
Os186 Os185 0 30 38
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3.2.6 Y2O3

The activity at the end of this test case is dominated (99.6 %) by two nuclides N-16 and Y-
89m, hence all the detailed rankings by Pearson apart from the first two are suspect. It follows
that although the correlation between the two methods appears poor, it is surprisingly good.
The reactions O-16| N-16 and Sr-89| Y-89m have no corresponding uncertainty estimate,
leading to their very high ranking values based on SFDS.

Figure 10: Comparison of the Y2O3 test case results, showing the first ten interactions
according to the Pathways Based Metric SPBM , for which comparison is possible.
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Table 12: Y2O3 case. Rankings for different methods.
Sensitivity

Parent Child FDS PBM PRS
Y-89 Y-90m 8 7 11
Y-89 Rb-86m 4 3 2
O-16 N-16 30 2 13
Y-89 Rb-86 5 10 5
Y-89 Y-89m 2 1 1
Y-89 Y-90 6 8 10
Y-89 Sr-89 3 9 9
Y-89 Y-88 1 5 6
O-18 N-16 11 0 0
O-18 C-15 7 4 3
O-18 N-17 12 11 12
O-17 N-16 9 0 0
O-17 N-17 10 6 7
Y-88 Y-89m 13 0 0
O-16 O-17 15 0 0
Sr-89 Y-89m 31 0 0
Rb-86 Rb-86m 14 0 0
O-18 O-16 21 0 0
Y-90 Y-90m 18 0 0
Y-90 Rb-86m 23 0 0
O-18 O-17 16 0 0
O-17 O-18 24 0 0
Y-90 Rb-86 22 0 0
Y-90 Y-89m 19 0 0
Y-90 Sr-89 20 0 0
O-17 O-16 17 0 0
Y-89m Y-90m 28 0 0
Y-89m Rb-86m 26 0 0
Y-89m Rb-86 27 0 0
Y-89m Y-90 29 0 0
Y-89m Sr-89 25 0 0
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4 Conclusions

The sensitivity of the total activity of an inventory to uncertainties in the nuclear data
for neutron-induced reactions has been studied. Six different test cases covering nearly the
whole range of atomic masses were considered using three different ranking techniques. It
is expected that similar results would be obtained for other inventory properties and other
particle species.

The principal result is that a simple pathways based metric (PBM) gives a sensitivity
ranking of interactions which is comparable to ranking based on more conventional mea-
sures obtained either by the direct method or in terms of Pearson correlation coefficients.
Moreover, the PBM is superior in that it

1. is quick to calculate once the principal pathways have been identified

2. does not suffer from numerical difficulties such as underflow (Fréchet direct) or round-
off (Pearson) in its evaluation

3. may be generalised to the case of multiple irradiation periods just like the pathways-
reduced approach itself, whereas the other two techniques require further investigation.

4. does not require error estimates for every interaction coefficient like Pearson.

An additional noteworthy feature is that the PBM, which is a global measure of un-
certainty, is comparable with more local measures, provided these others are scaled by the
uncertainty in the reaction cross-section. This scaling is to be expected since the uncer-
tainty estimates computed by Fispact-II [1, §A.13] involve a multiplication by a measure
of cross-section uncertainty (r.m.s. is used to combine reaction coefficients rather than the
simple percentages). However, the product also involves the number of child nuclides in the
inventory which is a significantly different measure from the point sensitivity measures.

The value of studying a wide range of test cases is that it demonstrates the general
applicability of the above conclusions. In conjunction with modifications to Fispact-II for
more efficient pathways-based analysis in the presence of multiple irradiations, the PBM
should be extended to account for loops in the pathways and ultimately integrated into a
production version of the Fispact-II package.
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Appendix: Fréchet Derivatives

As explained in Section 1, the Bateman equation Eq. (1)

dX

dt
= AX, X(0) = X0, t ∈ [0, tf ] ,

where X ∈ Rn is a vector of nuclide numbers and A ∈ Rn×n is a matrix of nuclear interaction
coefficients, controls the evolution of the nuclear activation over time. In this appendix, we
focus on the case where A is constant in time.

We are interested in the sensitivity of the total activity Eq. (2)

Q =
n∑
k=1

λkXk(tf )

to the elements in A, which is determined by the n2 numbers ∂Q/∂Aij. To determine these
quantities we use the matrix exponential and its Fréchet derivative. The matrix exponential
of A ∈ Rn×n is defined by

eA =
∞∑
k=1

Ak

k!
.

The Fréchet derivative of the exponential at A in the direction E ∈ Rn×n is denoted by
Lexp(A,E) ∈ Rn×n and satisfies

eA+E = eA + Lexp(A,E) + o(‖E‖) .

For further details of Fréchet derivatives see [12, Chap. 3].
The solution to the Bateman equation is given by

X(t) = eAtX0

and so
Q = fTX(tf ) = fT eAtfX0, f = [λ1 . . . λn]T .

Let Eij be the n× n matrix with a 1 in the (i, j) entry and zeros elsewhere. Now,

∂Q

∂Aij
= lim

δ→0

Q(Aij + δ)−Q(Aij)

δ

= lim
δ→0

fT
(
e(A+Eijδ)tf − eAtf

)
X0

δ

= lim
δ→0

fT (Lexp(Atf ,Eijtfδ) + o(δ))X0

δ
= tff

TLexp(Atf ,Eij)X0,

where we have used the fact that Lexp is linear in its second argument.
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To determine the k largest of these derivatives we can simply compute them all and sort
them. For this we can use the relationship [12, eq. (3.16)]

exp

([
tA Eij
0 tA

])
=

[
etA Lexp(tA,Eij)
0 etA

]
, (14)

which yields the formula

exp

([
tA Eij
0 tA

])[
0
X0

]
=

[
Lexp(tA,Eij)X0

etAX0

]
. (15)

Hence one method to compute Lexp(Atf ,Eij)X0 is to apply the method from [13] to compute
the product on the left-hand side and then read off the first n components.

However, it is not necessary to carry out n2 Fréchet derivative evaluations. One suffices,
as we now explain. We need some notation. The Kronecker product of two matrices B and C
(of any dimension) is the block matrix B⊗C = (bijC). The vec operator stacks the columns
of a matrix one of top of each other from first to last, producing a long vector. We need
the property that vec(Lexp(A,E)) = K(A) vec(E), for some n2×n2 matrix K(A) that satisfies
K(A)T = K(AT ). Using the fact that the vec of a scalar is itself and the formula

vec(AXB) = (BT ⊗ A) vec(X) ,

we have

∂Q

∂Aij
= tff

TLexp(Atf ,Eij)X0

= vec
(
tff

TLexp(Atf ,Eij)X0

)
= tf (X0 ⊗ f)T vec (Lexp(Atf ,Eij))

≡ tfg
TK(Atf ) vec(Eij),

where g = X0 ⊗ f . Now, since vec(Eij) is a unit vector, we simply require the k largest
elements in modulus of gTK(Atf ), which are the largest k elements in magnitude of K(Atf )

Tg.
We have K(AT tf )g = vec(Lexp(AT tf ,E)), where vec(E) = g = X0 ⊗ f and hence E = fxT0 .
This means that a single Fréchet derivative evaluation is sufficient, and it can be done using
the relationship (14) above with an algorithm to compute the matrix exponential such as
that in [14].

Some of the matrices arising from nuclear activation problems can be susceptible to
underflow and overflow, due to the large range of magnitudes in the coefficients. This
may necessitate the use of quadruple precision arithmetic on certain problems. Quadruple
precision was used to check the accuracy of all the Fréchet derivatives calculated in the
course of the current work.
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