Andreas, Frommer and Stefan, Güttel and Marcel, Schweitzer

2015

MIMS EPrint: 2015.16

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
            School of Mathematics
                            The University of Manchester
                            Manchester, M13 9PL, UK
```


FUNM_QUAD: AN IMPLEMENTATION OF A STABLE QUADRATURE-BASED RESTARTED ARNOLDI METHOD FOR MATRIX FUNCTIONS

ANDREAS FROMMER*, STEFAN GÜTTEL ${ }^{\dagger}$, AND MARCEL SCHWEITZER*

This note gives an overview of the FUNM_QUAD MATLAB code which implements the restarted Arnoldi algorithm described in [4] and analysed in [3]. Parts of FUNM_QUAD have been adopted from the FUNM_KRYL code [1], and FUNM_QUAD also implements deflated restarting based on the analysis in [2].

FUNM_QUAD can be downloaded from either one of the following web sites:
http://www.guettel.com/funm_quad
http://www-ai.math.uni-wuppertal.de/SciComp/software/funm_quad.html
The code can be used to approximate $f(A) \boldsymbol{b}$, the action of a matrix function on a vector, for an arbitrary (Hermitian or non-Hermitian) matrix A, a vector \boldsymbol{b}, and a function f with an integral representation

$$
\begin{equation*}
f(z)=\int_{\Gamma} \frac{g(t)}{t-z} \mathrm{~d} t \tag{1}
\end{equation*}
$$

For details concerning the algorithm we refer the reader to [4].
The basic calling sequence of FUNM_QUAD is
[f,out] = funm_quad(A,b,param)
where A is a (sparse) quadratic matrix, b is a vector of corresponding length, and param controls various parameters (including the function f) of the algorithm. The output parameter \mathbf{f} corresponds to the final approximation to $f(A) \boldsymbol{b}$, while the structure out collects various other outputs. In the following we describe the possible input and output parameters in detail.

Inputs:

- param.function (string or function handle): The function f to be evaluated. Predefined functions are 'invSqrt' for $f(z)=z^{-\frac{1}{2}}$, 'exp' for $f(z)=e^{z}$, and ' \log ' for $f(z)=\log (1+z) / z$. Other functions can be evaluated by specifying a function handle for the integrand in (1).
- param.restart_length (integer): The number of Arnoldi steps performed in each restart cycle.
- param.max_restarts (integer): The maximum number of restart cycles to be performed.
- param.tol (scalar): The error tolerance for numerical quadrature.
- param.hermitian (0 or 1): Specifies whether A is Hermitian.
- param.V_full (0 or 1): Specifies whether the full Arnoldi basis should be stored and returned in the out structure.

[^0]- param.H_full (0 or 1): Specifies whether all Hessenberg matrices should be stored and returned in the out structure.
- param.exact (vector or []): If the exact solution $f(A) \boldsymbol{b}$ is known it can be passed to FUNM_QUAD for computation of the error after each cycle.
- param.stopping_accuracy (scalar): Relative accuracy at which the algorithm is terminated.
- param.inner_product (function handle): The inner product used for orthogonalization.
- param.thick (function handle or []): Thick-restart function for implicitly deflated restarts. Typically, this will be the function thick_quad provided with our code.
- param.number_thick (integer): Number of target eigenvalues to be deflated when thick restarts are used.
- param.min_decay (scalar between 0 and 1): Desired rate of linear error reduction. If this rate is no longer achieved, the algorithm terminates.
- param.reorth_number (0 or 1): Number of reorthogonalizations in Arnoldi's method.
- param.truncation_length (integer of inf): Truncation length for Arnoldi's method.
- param.transformation_parameter: Parameter used in the integral transformation when dealing with $f(z)=z^{-\frac{1}{2}}$. For details on the choice of this parameter, see [4].
- param.waitbar (0 or 1): Specifies whether a waitbar indicating the progress of the algorithm is shown.
- param.verbose (0 or 1 or 2): The level of information outputted on the command line while running the algorithm.

Outputs:

- out.stop_condition: Specifies why the algorithm terminated (maximum number of iterations reached, achieved desired accuracy etc.).
- out.V_full: Full Arnoldi basis (if desired).
- out.H_full: Hessenberg matrices from all restart cycles (if desired).
- out.time: CPU time needed for each restart cycle.
- out.thick_interpol: Interpolation nodes (Ritz values) from each restart cycle.
- out.thick_replaced: Additional interpolation nodes from thick restart procedure for each cycle (if used).
- out.num_quadpoints: Number of quadrature points used for evaluating the error function in each restart cycle.
- out.appr: Arnoldi approximation after each restart cycle.
- out.update: Update of the Arnoldi iterate after each restart cycle.
- out.err: Euclidean norm of the error after each restart cycle (if exact solution is provided as input).

For more details and examples on how to use FUNM QUAD, see also the different demo files demo_*.m provided with our code. When using FUNM_QUAD or referring to it, please consider citing the paper [4].

REFERENCES

[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, Implementation of a restarted Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429 (2008), pp. 229-314.
[2] M. Eiermann, O. G. Ernst, and S. Güttel, Deflated restarting for matrix functions, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 621-641.
[3] A. Frommer, S. Güttel, and M. Schweitzer, Convergence of restarted Krylov subspace methods for Stieltjes functions of matrices, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 661-683.
[4] ——, Efficient and stable Arnoldi restarts for matrix functions based on quadrature, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 1602-1624.

[^0]: *Department of Mathematics, Bergische Universität Wuppertal, 42097 Wuppertal, Germany, \{frommer, schweitzer\}@math.uni-wuppertal.de
 ${ }^{\dagger}$ School of Mathematics, The University of Manchester, M13 9PL Manchester, United Kingdom, stefan.guettel@manchester.ac.uk

