

Preface to "An Introduction to Computational Stochastic PDEs"

Powell, C.E. and Shardlow, T and Lord, G.J.

2014

MIMS EPrint: 2015.2

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Contents

Preface

4

page viii

	PAR	T ONE DETERMINISTIC DIFFERENTIAL EQUATIONS	1
1	Line	ar Analysis	1
	1.1	Banach spaces C^r and L^p	1
	1.2	Hilbert spaces L^2 and H^r	9
	1.3	Linear operators and spectral theory	15
	1.4	Fourier analysis	28
	1.5	Notes	35
	Exer	cises	36
2	Galerkin Approximation and Finite Elements		
	2.1	Two-point boundary-value problems	40
	2.2	Variational formulation of elliptic PDEs	58
	2.3	The Galerkin finite element method for elliptic PDEs	66
	2.4	Notes	80
	Exer	cises	82
3	Tim	e-dependent Differential Equations	87
	3.1	Initial-value problems for ODEs	88
	3.2	Semigroups of linear operators	96
	3.3	Semilinear evolution equations	102
	3.4	Method of lines and finite differences for semilinear PDEs	107
	3.5	Galerkin methods for semilinear PDEs	110
	3.6	Finite elements for reaction-diffusion equations	120
	3.7	Non-smooth error analysis	124
	3.8	Notes	132
	Exer	cises	134

PAR'	T TWO STOCHASTIC PROCESSES AND RANDOM FIELDS	137
Prob	ability Theory	137
4.1	Probability spaces and random variables	137
4.2	Least-squares approximation and conditional expectation	152

vi		Contents	
	4.3	Convergence of random variables	157
	4.4	Random number generation	164
	4.5	Notes	177
	Exer	cises	178
5	Stoc	hastic Processes	181
	5.1	Introduction and Brownian motion	181
	5.2	Gaussian processes and the covariance function	189
	5.3	Brownian bridge, fractional Brownian motion, and white noise	193
	5.4	The Karhunen–Loève expansion	199
	5.5	Regularity of stochastic processes	206
	5.6	Notes	214
	Exercises		215
6	Stationary Gaussian Processes		217
	6.1	Real-valued stationary processes	217
	6.2	Complex-valued random variables and stochastic processes	225
	6.3	Stochastic integrals	228
	6.4	Sampling by quadrature	234
	6.5	Sampling by circulant embedding	241
	6.6	Notes	254
	Exer	cises	254
7	Random Fields		
	7.1	Second-order random fields	258
	7.2	Circulant embedding in two dimensions	266
	7.3	Turning bands method	283
	7.4	Karhunen-Loève expansion of random fields	293
	7.5	Sample path continuity for Gaussian random fields	303
	7.6	Notes	307
	Exercises		
	PAR	T THREE STOCHASTIC DIFFERENTIAL EQUATIONS	313
8	Stoc	hastic Ordinary Differential Equations	313

9.1	Variational formulation on D	373

314

317

323

328

336

345

359

364

367

371

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

9

Exercises

Examples of SODEs

Strong approximation

Weak approximation

Elliptic PDEs with Random Data

Numerical methods for Itô SODEs

Stratonovich integrals and SODEs

Itô integral

Itô SODEs

Notes

		Contents	vii
	9.2	Monte Carlo FEM	379
	9.3	Variational formulation on $D \times \Omega$	385
	9.4	Variational formulation on $D \times \Gamma$	392
	9.5 Stochastic Galerkin FEM on $D \times \Gamma$		395
	9.6	Stochastic collocation FEM on $D \times \Gamma$	420
	9.7	Notes	422
	Exerc	cises	427
10	Semi	431	
	10.1	Examples of semilinear SPDEs	432
	10.2	<i>Q</i> -Wiener process	435
	10.3	Itô stochastic integrals	445
	10.4	Semilinear evolution equations in a Hilbert space	447
	10.5	Finite difference method	455
	10.6	Galerkin and semi-implicit Euler approximation	459
	10.7	Spectral Galerkin method	466
	10.8	Galerkin finite element method	471
	10.9	Notes	476
	Exercises		479
	Appendix A		482
	References		489
	Index	;	499

Preface

Techniques for solving many of the differential equations traditionally used by applied mathematicians to model phenomena such as fluid flow, neural dynamics, electromagnetic scattering, tumour growth, telecommunications, phase transitions, etc. are now mature. Parameters within those models (e.g., material properties, boundary conditions, forcing terms, domain geometries) are often assumed to be known exactly, even when it is clear that is not the case. In the past, mathematicians were unable to incorporate noise and/or uncertainty into models because they were constrained both by the lack of computational resources and the lack of research into stochastic analysis. These are no longer good excuses. The rapid increase in computing power witnessed in recent decades allows the extra level of complexity induced by uncertainty to be incorporated into numerical simulations. Moreover, there are a growing number of researchers working on stochastic partial differential equations (PDEs) and their results are continually improving our theoretical understanding of the behaviour of stochastic systems. The transition from working with purely deterministic systems to working with stochastic systems is understandably daunting for recent graduates who have majored in applied mathematics. It is perhaps even more so for established researchers who have not received any training in probability theory and stochastic processes. We hope this book bridges this gap and will provide training for a new generation of researchers - that is, you.

This text provides a friendly introduction and practical route into the numerical solution and analysis of stochastic PDEs. It is suitable for mathematically grounded graduates who wish to learn about stochastic PDEs and numerical solution methods. The book will also serve established researchers who wish to incorporate uncertainty into their mathematical models and seek an introduction to the latest numerical techniques. We assume knowledge of undergraduate-level mathematics, including some basic analysis and linear algebra, but provide background material on probability theory and numerical methods for solving differential equations. Our treatment of model problems includes analysis, appropriate numerical methods and a discussion of practical implementation. MATLAB is a convenient computer environment for numerical scientific computing and is used throughout the book to solve examples that illustrate key concepts. We provide code to implement the algorithms on model problems, and sample code is available from the authors' or the publisher's website^{*}. Each chapter concludes with exercises, to help the reader study and become more

* http://www.cambridge.org/9780521728522

Preface

familiar with the concepts involved, and a section of notes, which contains pointers and references to the latest research directions and results.

The book is divided into three parts, as follows.

Part One: Deterministic Differential Equations We start with a deterministic or nonrandom outlook and introduce preliminary background material on functional analysis, numerical analysis, and differential equations. Chapter 1 reviews linear analysis and introduces Banach and Hilbert spaces, as well as the Fourier transform and other key tools from Fourier analysis. Chapter 2 treats elliptic PDEs, starting with a two-point boundaryvalue problem (BVP), and develops Galerkin approximation and the finite element method. Chapter 3 develops numerical methods for initial-value problems for ordinary differential equations (ODEs) and a class of semilinear PDEs that includes reaction–diffusion equations. We develop finite difference methods and spectral and finite element Galerkin methods. Chapters 2 and 3 include not only error analysis for selected numerical methods but also MATLAB implementations for test problems that illustrate numerically the theoretical orders of convergence.

Part Two: Stochastic Processes and Random Fields Here we turn to probability theory and develop the theory of stochastic processes (one parameter families of random variables) and random fields (multi-parameter families of random variables). Stochastic processes and random fields are used to model the uncertain inputs to the differential equations studied in Part Three and are also the appropriate way to interpret the corresponding solutions. Chapter 4 starts with elementary probability theory, including random variables, limit theorems, and sampling methods. The Monte Carlo method is introduced and applied to a differential equation with random initial data. Chapters 5–7 then develop theory and computational methods for stochastic processes and random fields. Specific stochastic processes discussed include Brownian motion, white noise, the Brownian bridge, and fractional Brownian motion. In Chapters 6 and 7, we pay particular attention to the important special classes of stationary processes and isotropic random fields. Simulation methods are developed, including a quadrature scheme, the turning bands method, and the highly efficient FFT-based circulant embedding method. The theory of these numerical methods is developed alongside practical implementations in MATLAB.

Part Three: Stochastic Differential Equations There are many ways to incorporate stochastic effects into differential equations. In the last part of the book, we consider three classes of stochastic model problems, each of which can be viewed as an extension to a deterministic model introduced in Part One. These are:

Chapter 8	ODE (3.6)	+	white noise forcing
Chapter 9	Elliptic BVP (2.1)	+	correlated random data
Chapter 10	Semilinear PDE (3.39)	+	space-time noise forcing

Note the progression from models for time t and sample variable ω in Chapter 8, to models for space x and ω in Chapter 9, and finally to models for t, x, ω in Chapter 10. In each case, we adapt the techniques from Chapters 2 and 3 to show that the problems are well posed and to develop numerical approximation schemes. MATLAB implementations are also discussed. Brownian motion is key to developing the time-dependent problems with white noise forcing considered in Chapters 8 and 10 using the Itô calculus. It is these types

Preface

of differential equations that are traditionally known as stochastic differential equations (SODEs and SPDEs). In Chapter 9, however, we consider elliptic BVPs with both a forcing term and coefficients that are represented by random fields *not* of white noise type. Many authors prefer to reserve the term 'stochastic PDE' only for PDEs forced by white noise. We interpret it more broadly, however, and the title of this book is intended to incorporate PDEs with data and/or forcing terms described by both white noise (which is uncorrelated) and correlated random fields. The analytical tools required to solve these two types of problems are, of course, very different and we give an overview of the key results.

Chapter 8 introduces the class of stochastic ordinary differential equations (SODEs) consisting of ODEs with white noise forcing, discusses existence and uniqueness of solutions in the sense of Itô calculus, and develops the Euler-Maruyama and Milstein approximation schemes. Strong approximation (of samples of the solution) and weak approximation (of averages) are discussed, as well as the multilevel Monte Carlo method. Chapter 9 treats elliptic BVPs with correlated random data on two-dimensional spatial domains. These typically arise in the modelling of fluid flow in porous media. Solutions are also correlated random fields and, here, do not depend on time. To begin, we consider lognormal coefficients. After sampling the input data, we study weak solutions to the resulting deterministic problems and apply the Galerkin finite element method. The Monte Carlo method is then used to estimate the mean and variance. By approximating the data using Karhunen–Loève expansions, the stochastic PDE problem may also be converted to a deterministic one on a (possibly) high-dimensional parameter space. After setting up an appropriate weak formulation, the stochastic Galerkin finite element method (SGFEM), which couples finite elements in physical space with global polynomial approximation on a parameter space, is developed in detail. Chapter 10 develops stochastic parabolic PDEs, such as reaction-diffusion equations forced by a space-time Wiener process, and we discuss (strong) numerical approximation in space and in time. Model problems arising in the fields of neuroscience and fluid dynamics are included.

The number of questions that can be asked of stochastic PDEs is large. Broadly speaking, they fall into two categories: *forward problems* (sampling the solution, determining exit times, computing moments, etc.) and *inverse problems* (e.g., fitting a model to a set of observations). In this book, we focus on forward problems for specific model problems. We pay particular attention to elliptic PDEs with coefficients given by correlated random fields and reaction–diffusion equations with white noise forcing. We also focus on methods to compute individual samples of solutions and to compute moments (means, variances) of functionals of the solutions. Many other stochastic PDE models are neglected (hyperbolic problems, random domains, forcing by Levy processes, to name a few) as are many important questions (exit time problems, long-time simulation, filtering). However, this book covers a wide range of topics necessary for studying these problems and will leave the reader well prepared to tackle the latest research on the numerical solution of a wide range of stochastic PDEs.

х