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Preface

Techniques for solving many of the differential equations traditionally used by applied
mathematicians to model phenomena such as fluid flow, neural dynamics, electromagnetic
scattering, tumour growth, telecommunications, phase transitions, etc. are now mature.
Parameters within those models (e.g., material properties, boundary conditions, forcing
terms, domain geometries) are often assumed to be known exactly, even when it is clear
that is not the case. In the past, mathematicians were unable to incorporate noise and/or
uncertainty into models because they were constrained both by the lack of computational
resources and the lack of research into stochastic analysis. These are no longer good excuses.
The rapid increase in computing power witnessed in recent decades allows the extra level of
complexity induced by uncertainty to be incorporated into numerical simulations. Moreover,
there are a growing number of researchers working on stochastic partial differential equations
(PDEs) and their results are continually improving our theoretical understanding of the
behaviour of stochastic systems. The transition from working with purely deterministic
systems to working with stochastic systems is understandably daunting for recent graduates
who have majored in applied mathematics. It is perhaps even more so for established
researchers who have not received any training in probability theory and stochastic processes.
We hope this book bridges this gap and will provide training for a new generation of
researchers — that is, you.

This text provides a friendly introduction and practical route into the numerical solution
and analysis of stochastic PDEs. It is suitable for mathematically grounded graduates who
wish to learn about stochastic PDEs and numerical solution methods. The book will also
serve established researchers who wish to incorporate uncertainty into their mathematical
models and seek an introduction to the latest numerical techniques. We assume knowledge
of undergraduate-level mathematics, including some basic analysis and linear algebra, but
provide background material on probability theory and numerical methods for solving
differential equations. Our treatment of model problems includes analysis, appropriate
numerical methods and a discussion of practical implementation. Matlab is a convenient
computer environment for numerical scientific computing and is used throughout the book
to solve examples that illustrate key concepts. We provide code to implement the algorithms
on model problems, and sample code is available from the authors’ or the publisher’s
website∗ . Each chapter concludes with exercises, to help the reader study and become more

∗ http://www.cambridge.org/9780521728522
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familiar with the concepts involved, and a section of notes, which contains pointers and
references to the latest research directions and results.

The book is divided into three parts, as follows.

Part One: Deterministic Differential Equations We start with a deterministic or non-
random outlook and introduce preliminary background material on functional analysis,
numerical analysis, and differential equations. Chapter 1 reviews linear analysis and
introduces Banach and Hilbert spaces, as well as the Fourier transform and other key tools
from Fourier analysis. Chapter 2 treats elliptic PDEs, starting with a two-point boundary-
value problem (BVP), and develops Galerkin approximation and the finite element method.
Chapter 3 develops numerical methods for initial-value problems for ordinary differential
equations (ODEs) and a class of semilinear PDEs that includes reaction–diffusion equations.
We develop finite difference methods and spectral and finite element Galerkin methods.
Chapters 2 and 3 include not only error analysis for selected numerical methods but also
Matlab implementations for test problems that illustrate numerically the theoretical orders
of convergence.
Part Two: Stochastic Processes and Random Fields Here we turn to probability theory
and develop the theory of stochastic processes (one parameter families of random variables)
and random fields (multi-parameter families of random variables). Stochastic processes and
random fields are used to model the uncertain inputs to the differential equations studied
in Part Three and are also the appropriate way to interpret the corresponding solutions.
Chapter 4 starts with elementary probability theory, including random variables, limit
theorems, and sampling methods. The Monte Carlo method is introduced and applied to
a differential equation with random initial data. Chapters 5–7 then develop theory and
computational methods for stochastic processes and random fields. Specific stochastic
processes discussed include Brownian motion, white noise, the Brownian bridge, and
fractional Brownian motion. In Chapters 6 and 7, we pay particular attention to the important
special classes of stationary processes and isotropic random fields. Simulation methods
are developed, including a quadrature scheme, the turning bands method, and the highly
efficient FFT-based circulant embedding method. The theory of these numerical methods is
developed alongside practical implementations in Matlab.
Part Three: Stochastic Differential Equations There are many ways to incorporate sto-
chastic effects into differential equations. In the last part of the book, we consider three
classes of stochastic model problems, each of which can be viewed as an extension to a
deterministic model introduced in Part One. These are:

Chapter 8 ODE (3.6) + white noise forcing
Chapter 9 Elliptic BVP (2.1) + correlated random data
Chapter 10 Semilinear PDE (3.39) + space–time noise forcing

Note the progression from models for time t and sample variable ω in Chapter 8, to models
for space x and ω in Chapter 9, and finally to models for t,x,ω in Chapter 10. In each
case, we adapt the techniques from Chapters 2 and 3 to show that the problems are well
posed and to develop numerical approximation schemes. Matlab implementations are also
discussed. Brownian motion is key to developing the time-dependent problems with white
noise forcing considered in Chapters 8 and 10 using the Itô calculus. It is these types
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of differential equations that are traditionally known as stochastic differential equations
(SODEs and SPDEs). In Chapter 9, however, we consider elliptic BVPs with both a forcing
term and coefficients that are represented by random fields not of white noise type. Many
authors prefer to reserve the term ‘stochastic PDE’ only for PDEs forced by white noise. We
interpret it more broadly, however, and the title of this book is intended to incorporate PDEs
with data and/or forcing terms described by both white noise (which is uncorrelated) and
correlated random fields. The analytical tools required to solve these two types of problems
are, of course, very different and we give an overview of the key results.

Chapter 8 introduces the class of stochastic ordinary differential equations (SODEs)
consisting of ODEs with white noise forcing, discusses existence and uniqueness of solutions
in the sense of Itô calculus, and develops the Euler–Maruyama and Milstein approximation
schemes. Strong approximation (of samples of the solution) and weak approximation
(of averages) are discussed, as well as the multilevel Monte Carlo method. Chapter 9
treats elliptic BVPs with correlated random data on two-dimensional spatial domains.
These typically arise in the modelling of fluid flow in porous media. Solutions are also
correlated random fields and, here, do not depend on time. To begin, we consider log-
normal coefficients. After sampling the input data, we study weak solutions to the resulting
deterministic problems and apply the Galerkin finite element method. The Monte Carlo
method is then used to estimate the mean and variance. By approximating the data using
Karhunen–Loève expansions, the stochastic PDE problem may also be converted to a
deterministic one on a (possibly) high-dimensional parameter space. After setting up an
appropriate weak formulation, the stochastic Galerkin finite element method (SGFEM),
which couples finite elements in physical space with global polynomial approximation on
a parameter space, is developed in detail. Chapter 10 develops stochastic parabolic PDEs,
such as reaction–diffusion equations forced by a space–time Wiener process, and we discuss
(strong) numerical approximation in space and in time. Model problems arising in the fields
of neuroscience and fluid dynamics are included.

The number of questions that can be asked of stochastic PDEs is large. Broadly speaking,
they fall into two categories: forward problems (sampling the solution, determining exit
times, computing moments, etc.) and inverse problems (e.g., fitting a model to a set of
observations). In this book, we focus on forward problems for specific model problems. We
pay particular attention to elliptic PDEs with coefficients given by correlated random fields
and reaction–diffusion equations with white noise forcing. We also focus on methods to
compute individual samples of solutions and to compute moments (means, variances) of
functionals of the solutions. Many other stochastic PDE models are neglected (hyperbolic
problems, random domains, forcing by Levy processes, to name a few) as are many important
questions (exit time problems, long-time simulation, filtering). However, this book covers a
wide range of topics necessary for studying these problems and will leave the reader well
prepared to tackle the latest research on the numerical solution of a wide range of stochastic
PDEs.


