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Electrical impedance tomography (EIT) is an emerging medical imaging technique that
aims to reconstruct the internal conductivity distribution of a subject from electrical
measurements obtained on the skin. In this thesis we explore the promising application
of EIT to the respiratory monitoring of humans.

We pay particular focus to the forward problem, highlighting the need to have an
accurately known external boundary shape and electrode positions on a reconstruction
model. A theoretical study of uniqueness results of EIT with an unknown external
boundary shape is presented. A novel sensitivity study of the external boundary shape
is presented as well as results from a reconstruction algorithm to account for errors
in electrode position with simulated data in 3D. We also demonstrate results of a
shape correction algorithm from a pilot study of lung EIT with data collected using
the fEITER system, and MR images used to inform the external boundary shape
of healthy subjects. After image co-registration of the resulting dynamic 3D EIT
reconstruction images with the lung-segmented MR image, we outline a novel mutual
information performance criterion to measure the quality of reconstructed images. We
also outline the computation of the forward problem of the complete electrode model
in 3D using high order polynomial finite elements and present convergence results in
2D for the continuum, point and complete electrode model. Our numerical study
demonstrates that the convergence rate of the forward problem is independent of the
polynomial approximation order for the complete electrode model and there is no
global convergence for the point electrode model in the energy norm.

Reconstructed conductivity images can be difficult to interpret at the bedside.
Moreover clinicians would like clinically meaningful indices, such as regional lung com-
pliance, to determine the pathologies of patients in real time. By modelling the res-
piratory system as a coupled time dependent system of simple mechanical functional
units, we propose a novel methodology to couple mechanical ventilation and EIT. The
mechanical properties of the lungs are estimated through an inverse coefficient prob-
lem on coupled ODEs, with the measurable data being the time series of pressure at
airway opening and interior air volume data. We present results with simulated data
as well as a discussion on extensions and limitations to the mechanical models.

Finally we present a theoretical discussion of anisotropic EIT. It is well known that
any diffeomorphism fixing points on the boundary gives rise to a conductivity with the
same electrical measurements on the skin, generating a large class of conductivities
that are electrically equivalent. We define novel classes of anisotropic media with con-
straints on their eigenspace: prescribed eigenvalues, prescribed orthogonal coordinates,
prescribed eigenvectors, fibrous and layered conductivities. By drawing analogies with
elasticity theory, we discuss how these constraints on the eigenspace restrict the set of
diffeomorphisms fixing points on the boundary, and present two uniqueness results for
anisotropic conductivities with prescribed eigenvalues and prescribed eigenvectors.
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The following abbreviations are commonly used in this thesis, with the number in

brackets indicating the page number of the first occurrence:

• BEM - Boundary element method (33).

• CEM - Complete electrode model (29).

• CFD - Computational fluid dynamics (186).

• CGO - Complex geometric optics (60).

• CT - Computerised tomography (19).

• DtN - Dirichlet-to-Neumann (60).

• EIT - Electrical impedance tomography (18).

• FE(M) - Finite element (method) (24).

• FPS - Frames per second (169).

• FDM - Finite difference method (33).

• HFOV - High frequency oscillatory ventilator (19).

• ICU - Intensive care unit (19).

• LPV - Lung protective ventilation (19).

• MRI - Magnetic resonance imaging (19).

• NtD - Neumann-to-Dirichlet (61).

• ODE - Ordinary differential equation (184).
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• PDE - Partial differential equation (23).

• PEEP - Positive end expiratory pressure (19).

• PSDO - Pseudo-differential operator (66).

• RK4 - Runge-Kutta 4 (192).

• SNR - Signal to noise ratio (90).

• SVD - Singular value decomposition (57).

• VILI - Ventilator induced lung injury (19).



Chapter 1

Introduction to lung EIT

Electrical impedance tomography (EIT) is an imaging modality that aims to recon-

struct the internal conductivity distribution of a given object from electrical measure-

ments obtained on the periphery. Low-frequency alternating currents are applied on

a set of electrodes on the boundary of a body and the interior conductivity distribu-

tion distorts the equipotential field lines. The objective of EIT is to infer the interior

conductivity distribution from measurements of the potential on the same electrodes

(see figure 1.1).

Figure 1.1: Simulation of current streamlines and equipotentials in thoracic EIT when current is
applied between two electrodes. Conductivity of the lungs and ‘background’ is 0.3 and 1 respectively
in arbitrary units. Current streamlines are in blue and equipotentials, which are distorted at the lung
boundary, are in black.

EIT is inherently a severely ill-posed problem and high resolution imaging is not

presently a realistic possibility using the technique. However high resolution imaging

is not always of fundamental importance in applications. For example, clinicians in

18
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respiratory monitoring are often interested in low resolution questions such as is the

left or right lung dominating ventilation or is there excessive liquid in the lungs. EIT is

excellent at detecting high conductivity contrasts and thus shows promise in answering

these questions raised by the clinicians.

1.1 Respiratory monitoring

A current exciting application area for EIT is for patients in intensive care units

(ICU) with acute lung injuries such as acute respiratory distress syndrome (ARDS).

These patients are typically mechanically ventilated using high frequency oscillatory

ventilation (HFOV), designed to recruit collapsed regions of the lung. These ventilators

work by an operator choosing a baseline pressure, and superimposing a square wave

at high frequency, to force air in and out of patients lungs. Mechanical ventilation of

patients is often a life saving intervention for patients suffering from ARDS [1], but the

technique can create ventilator induced lung injury (VILI) due to excessive mechanical

forces in the lung. Choosing too small a positive end expiratory pressure (PEEP) or

frequency leads to ineffective ventilation and alveolar collapse, and too high a pressure

or frequency can over distend lung tissue causing irreversible damage. Consequently

lung protective ventilation (LPV) techniques have been developed to optimise pressure

and frequency settings to trade off alveolar collapse and over-distension. Despite the

use of LPV it is estimated that 33−55% of patients with ARDS still develop VILI [2].

In the ICU there is little or no means of observing the distribution of air and liquid

inside a patient’s lungs in real time. Many clinical decisions are made on the intuition

and experience of trained clinicians, which has made choosing appropriate ventilator

settings an art rather than a science with potentially severe consequences. Magnetic

resonance imaging (MRI) and computerised tomography (CT) are readily available in

hospitals and are high resolution techniques. However MRI and CT are not portable

making them almost impossible to use for bedside monitoring. Less importantly these

techniques are also very expensive to maintain. On the other hand a typical EIT

system is portable and quick, making it ideal for an ICU, and the running cost is

orders of magnitude smaller than MRI and CT. There is also negligible safety risk

with EIT for sufficiently small amplitude and high frequency injected currents (see [3]
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for a discussion of safety.)

Different tissues and organs in the human body have significantly different con-

ductivities, for example blood, bone, heart, liver and lung have resistivity values of

≈ 151, 1.2× 108, 175, 342 and 157 Ωcm respectively [4]. Generating a conductivity im-

age of the thorax potentially allows one to infer the internal distribution of tissues and

organs. EIT as a biomedical imaging technique was originally developed at Sheffield

University by Barber and Brown in the early 1980s [5]. The authors also presented an

early review of possible applications of EIT [6], including respiratory monitoring, and

published the first EIT images of a cross-section of a human thorax. Since the 1980s

there has been widespread interest in the clinical application of thoracic EIT. Several

review articles [7, 8, 9, 10, 11, 12] provide the reader with the current status of clinical

activity and also detail the broad spectrum of specific thoracic EIT application areas.

Applications include the assessment of pulmonary ventilation [11, 13], lung perfusion

[14], pulmonary oedema [15], changes in tissue impedance due to gravity [16, 17],

emphysema [18] and lung injury [19]. These studies demonstrate that thoracic EIT

promises to become a routine bedside monitoring tool for critically ill patients who

undergo mechanical ventilation, and is already beginning to play an important role in

optimizing ventilator settings for such patients.

1.2 Current state

Experimental data over the last 25 years from clinical researchers has mostly been

collected from variants of Sheffield data collection systems in which adjacent-adjacent

current and measurements are deployed [5, 20]. However recent research argues that

adjacent stimulation and measurement are the worst patterns for detecting interior

conductivity changes in 2D [21]. Early reconstruction algorithms were also based

on crude algorithms such as Sheffield backprojection, and since the early 1980s much

research has been undertaken to establish efficient, accurate and repeatable reconstruc-

tion algorithms [22]. This important issue was addressed at the 2007 ICEBI conference

in Graz, Austria, where a common consensus was made for lung EIT, namely GREIT

(Graz consensus Reconstruction algorithm for EIT) [23]. The aim of the consensus

was to develop an agreement between mathematicians, engineers and clinicians on
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measures of quality for a reconstruction algorithm for 2D linearised EIT, such as am-

plitude response, position error, resolution and shape deformation. The objective of

the GREIT algorithm is then to optimise against these performance criteria to ensure

robust and repeatable imaging.

Almost all reconstructions from real lung data are based on difference or dynamic

imaging. Difference imaging is where two sets of data are obtained at different times

when a change of interior conductivity is known to have occurred. The forward op-

erator mapping the conductivity to the measurements is assumed to be linear and

a linearised regularised inversion is performed to estimate the conductivity change.

Differential imaging is unsatisfactory from a mathematical perspective because the as-

sumption of linearity between the conductivity and measurements is not true. More-

over this technique results in a differential conductivity image for which one can not

resolve the forward problem, and thus it is unclear how well the new parameters for

the conductivity fit the measured voltage data. More desirable in the ICU is absolute

EIT, where a conductivity image is reconstructed from electrical data recorded at a

single time instant. A theme of this thesis will be understanding how we can make

absolute EIT a realistic possibility in the ICU and why it is so important.

Although EIT is not currently in common use in the ICU, commercial systems have

been designed and are used largely in clinical trials. The PulmoVista 500, developed

by Dräger [24] is a chest height touchscreen system with 16 electrodes, with image

reconstruction based on a linearised difference imaging technique. SwissTom have

also developed an instrument, Swisstom BB2, using difference imaging based on the

GREIT algorithm.

Figure 1.2: Swisstom BB2 developed by SwissTom. (Image used with permission from SwissTom
www.swisstom.com.)

www.swisstom.com
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1.3 Future challenges

The major downfall with EIT is the poor spatial resolution of reconstructed images

when compared to MRI and CT, stemming from the severely ill-posed nature of the

problem as well as the partial, limited and noisy electrical boundary data available in

practice. It is desirable to perform absolute EIT but this has proven to be extremely

difficult in practice in a clinical setting. Absolute EIT requires the measurement error

and modelling error from inaccurately known contact impedance, electrode positions

and boundary shape to be sufficiently small, as well as using better a-priori estimates

of the conductivity in non-linear reconstruction algorithms. In this thesis we iden-

tify how some of these aspects of forward modelling in EIT can be improved. We

note that in geophysical applications of EIT absolute imaging is standard with the

reconstruction software RES3DINV, developed by Loke [25], being commonly used in

geophysical surveys [26, 27]. However geophysical surveys are usually sufficiently large

that electrodes can be modelled as point sources, and capturing the boundary shape

is trivial, under the assumption that the surface is flat. Moreover corrections due to

breathing can generally be ignored in geophysical applications too (although landslides

could potentially create analogous effects). The RPI group are the exceptions to this

trend who obtained the first absolute EIT images for tank and chest data in [28] and

[29] respectively, although in the case of chest data it is still difficult to physically

interpret the resulting absolute reconstructions.

Clinicians are often unsure how to interpret reconstructed conductivity images, and

we explore how reconstructed images can be converted to physiologically meaningful

quantities such as lung compliance and airway resistance, and also importantly how

this relies on performing absolute EIT.

1.3.1 Boundary shape and dimension

Perhaps the most important challenge for a step change in lung EIT is to have suffi-

ciently accurate thorax cross sections, as well as using reconstruction models with the

correct number of (three) spatial dimensions. Mathematically, assuming full knowl-

edge of the current-to-voltage map on the body and the conductivity is isotropic, the

data measured on the body will only be consistent with an isotropic conductivity in the
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model domain if the body and model domain are related by a conformal map [30, 31].

It is unlikely that the true and model domain will be related by a conformal map

and this effect creates large artefacts in reconstructed images [32, 33]. Most current

EIT systems assume that the thorax is not only 2D but the cross section is circular,

elliptical or at best some generic thorax cross section. The problem is exacerbated

because of the patient’s breathing. As the patient breathes the boundary shape and

the internal organs move relative to a fixed geometrical model of the torso, and these

breathing effects create image artefacts on static reconstruction models. We explore

the use of a shape correction algorithm to account for breathing and display results

from real and simulated data in 3D.

To determine the boundary shape of the patient’s thorax one can use other high

resolution modalities such as MRI or CT, because this information is often available

in the ICU. This requires generation of finite element models of a patient’s thorax

as well as electrodes embedded into the surface of these models. The embedding of

electrodes makes model generation somewhat unique to standard segmentation and

meshing software, although accurate model generation has been presented in breast

EIT by Forsyth et al. [34] and brain EIT by Tizzard et al. [35].

1.3.2 Forward modelling

Iterative reconstruction algorithms simulate voltages at the current best estimate of

the conductivity by computing the solution of a boundary value problem of an ellip-

tic partial differential equation (PDE) for every measurement per iteration. Clearly

the voltages must be computed sufficiently accurately so as not to be the dominant

source of error during reconstruction. However, quantification of the dominant source

of modelling error is difficult and depends on a number of factors. This includes in-

accurately known contact impedances, electrode positions and boundary shape, poor

prior information of the conductivity, and also not accounting for anisotropic con-

ductivities. It is the opinion of the author that the combination of these sources of

modelling error is the leading reason why the vast majority of groups working in lung

EIT still only perform differential imaging, in the sense that the modelling error largely

cancels when constructing voltage difference data. Nissinen et al. have recently de-

veloped a Bayesian approximation error approach to explicitly account for modelling
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and approximation errors in reconstruction algorithms [36, 37].

The forward modelling can be improved in a number of ways which we explore

in this thesis. Firstly, and most importantly, the dimension, boundary shape and

electrode positions should be as accurate as possible as discussed in the previous

section. Secondly, more prior information on the anatomy such as the lungs, liver,

heart and rib cage can be incorporated into the forward model, using patient specific

MRI or CT. Thirdly, more advanced mathematical techniques, such as high order finite

element methods (FEM) can be adopted to solve the forward problem more accurately

than standard piecewise linear finite elements.

1.3.3 Spatial resolution testing

Difference imaging techniques result in conductivity images that are the linearised

difference of conductivity between two time frames. The forward problem can not be

resolved on a difference image, and so it is difficult to assess how reliable the resulting

EIT reconstructions are. The spatial resolution of EIT has been assessed in several ex-

perimental and clinical studies involving spontaneous and artificial ventilation against

well established imaging techniques e.g. X-ray CT, positron emission tomography and

single photon emission CT [38, 39, 40, 41, 42, 43]. However, such studies have not

made direct comparisons of the spatial accuracy of EIT with a second high resolution

modality using image co-registration. In this thesis an empirical approach is proposed

to assess the quality of EIT reconstructions through co-registration and a novel mutual

information calculation with another high resolution technique such as MRI or CT.

1.3.4 Clinically meaningful parameters

Clinicians in the ICU often have difficulty interpreting conductivity images at the

bedside. Moreover clinicians are often interested in questions about the distribution of

liquid in the lungs and regional compliance, and not necessarily electrical conductivity.

Thus in order for EIT to be used as a useful diagnostic for respiratory monitoring in

the ICU, it would be desirable if conductivity images can be converted to clinically

meaningful parameters.

A novel method is proposed to couple EIT with mechanical ventilation by first
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assuming that absolute regional time series of conductivity can be converted to time

series of regional air volume. We model the respiratory system as a coupled time

dependent system of mechanical functional units [44], with time series of air volume

and the pressure at airway opening as states of the model, and the regional compliance

and resistance as parameters. Mechanical ventilators additionally provide time series

of pressure, volume and flow at the mouth, as well as heart rate data. We set up an

inverse coefficient problem with the regional air volume time series obtained from EIT

and the pressure time series at airway opening as data. We outline what information

can be determined from this data, and why generating absolute conductivity images

is a fundamental step to compute such parameters.

1.3.5 Anisotropic media

Almost all reconstruction algorithms in EIT assume that the underlying conductivity

distribution is isotropic, or locally invariant under the rotation group SO(n), where n

is the number of spatial dimensions. Anisotropic conductivities are definitely present

in medical applications, for example muscle fibres have a preferred electrical direction.

The isotropic assumption simplifies EIT reconstructions because the inverse problem

in EIT is known to be non-unique under diffeomorphisms fixing the boundary [45, 46].

For some classes of anisotropy, however, the equivalence class of diffeomorphisms

reduces to just the identity, for example for isotropic and conformally flat conductiv-

ities [31]. There is very little known about which constraints are required for more

general anisotropic conductivities for unique determination from the electrical bound-

ary data. We define anisotropic media that have constraints on their eigenspace, such

as prescribed eigenvalues, prescribed orthogonal coordinates, prescribed eigenvectors,

layered and fibrous media. By drawing analogies with elasticity theory, we discuss how

such constraints restrict the set of diffeomorphisms fixing points on the boundary. We

demonstrate a local uniqueness result for anisotropic conductivities with prescribed

eigenvalues, and a uniqueness results for anisotropic conductivities with prescribed

eigenvectors assuming a globally defined coordinate system.
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1.4 Thesis Outline

In chapter 2 there is a discussion of the forward problem in EIT along with boundary

conditions. The implementation of high order polynomial tetrahedral finite elements

for the complete electrode model in 3D will be outlined, and a novel convergence study

under different electrode models in 2D will be performed. In chapter 3 a literature

review of uniqueness of the inverse conductivity problem is discussed, including a dis-

cussion of exact methods and their potential application in lung EIT. The geometric

and anisotropic inverse conductivity problem is posed, and the possibility of unique

recovery of certain novel subclasses of anisotropic conductivities where the permitted

eigenspace has been constrained, will be discussed. Two novel uniqueness results for

conductivities with prescribed eigenvalues and prescribed eigenvectors are made. In

chapter 4 a literature review of theoretical uniqueness results for the simultaneous

recovery of the external shape and electrode positions and an isotropic conductivity

is presented. A novel calculation of the Fréchet derivative with respect to the ex-

ternal shape is outlined for the continuum model and an original sensitivity study

for boundary shape perturbations is performed in 3D. Results from a novel absolute

reconstruction algorithm to simultaneously recover the electrode positions and con-

ductivity in 3D are displayed. In chapter 5 we discuss results from a pilot study at

the University of Manchester on MRI-informed lung EIT. An MR image is used to

inform a 3D finite element model of the thorax, and a robust electrode position error

correction algorithm is deployed to account for the effects of breathing. The resulting

EIT reconstructions are co-registered with the original MR images, and an assessment

of quality is measured using a novel mutual information performance criteria. Finally

in chapter 6 we discuss a novel method to obtain clinically meaningful parameters

from EIT reconstructions using lumped parameter mechanical ODE models. We ex-

hibit results using simulated data for a simple mechanical model, and discuss possible

limitations and extensions to such models.



Chapter 2

Forward modelling in EIT

In this chapter we review the forward problem and different electrode models in EIT.

We outline the computation of high order FEM in 3D for the complete electrode

model, and a novel convergence study for high order FEM in 2D is performed for the

continuum, point and complete electrode models, which also includes a novel analytic

solution to the CEM on a square domain.

2.1 Conductivity equation

An equation governing the relationship between the interior voltage and conductivity

distribution can be derived from Maxwell’s equations assuming time harmonic electric

and magnetic fields [47, 48]. In Cartesian coordinates, using Einstein summation

convention, we arrive at a second order linear elliptic PDE

∇ · ((σ + iωε)∇u) :=
∂

∂xi
((σij + iωεij)

∂u

∂xj
) = 0 x ∈ Ω, (2.1)

where Ω ⊂ Rn is the domain of the body, n is the number of spatial dimensions,

u : Ω → R is the electric potential, ω is the frequency and σ : Ω → Rn×n and

ε : Ω→ Rn×n are the conductivity and permittivity tensors respectively. In this thesis

the frequency is assumed sufficiently small that the permittivity can be neglected

(see section 2.1.1). The conductivity is a symmetric positive definite matrix almost

everywhere with σij ∈ L∞(Ω). In the isotropic case, σij(x) = α(x)δij, this condition

reduces to 0 < c ≤ α(x) ≤ C almost everywhere for constants c, C ∈ R.

27
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2.1.1 Electrode modelling

The simplest boundary conditions in EIT are Neumann boundary conditions on the

conductivity equation (2.1), by supplying the current flux density, f , on ∂Ω. Let ν

denote the outward pointing unit normal at x ∈ ∂Ω. The Ohmic current density is

given by f = (σ∇u) ·ν|∂Ω, and the current passing into a region B ⊂ ∂Ω is the integral

of f over B, IB =
∫
B
f . As a consequence of the divergence theorem, integrating (2.1)

over Ω implies

0 =

∫
Ω

∇ ·
(
σ∇u

)
=

∫
∂Ω

f. (2.2)

This gives us a consistency condition that the integral of current density over the whole

boundary must be 0. Secondly the electrical potential is only defined up to a constant.

This can be written mathematically by choosing a ground point xg, so that u(xg) = 0,

or by setting the average potential over the boundary to 0,
∫
∂Ω
u = 0.

An important consideration in EIT is the modelling of the electrodes, which has

been studied extensively in [49, 50]. Let the subset of the boundary in contact with

the lth electrode be El ⊂ ∂Ω, and the portions of the boundary in contact and not

in contact with any electrode be ET :=
⋃
lEl and E

′
T = ∂Ω \ ET respectively. The

most important electrode models in EIT are the continuum, point electrode, shunt

and complete electrode models. It is assumed that (σ∇u) · ν|E′T = 0 away from the

electrodes because the surrounding air is an insulator to a good level of approximation.

In medical applications of EIT an alternating current is applied on the subject typically

with a frequency of 10− 100 kHz with maximum permissible current in this range of

100F µA, where F is the frequency in kHZ [3]. In this thesis the frequency is assumed

sufficiently small that capacitive coupling is ignored, so that ωε
σ
≈ 0, which justifies

our assumption that ε can be assumed to be zero [51].

Continuum model

In the continuum model, the current injection boundary conditions are

σ
∂u

∂ν

∣∣∣∣
∂Ω

:= (σ∇u) · ν|∂Ω = f, (2.3)

where f : ∂Ω→ R is a current injection function, with
∫
∂Ω
f = 0 to satisfy the consis-

tency condition (2.2). This model assumes every point of the boundary is accessible
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to input current, and so there are effectively an infinite number of electrodes. This is

clearly not realistic but is the nicest model to work with from a theoretical perspective.

Point electrode model

In the point electrode model, the current injection function f , defined in (2.3), is

f =
L∑
l=1

Ilδ(x− xl). (2.4)

This is a model of an L electrode system, all of negligible size, where xl is the spatial

coordinate of the lth electrode and
∑L

i=1 Il = 0 to satisfy the consistency condition

(2.2). The vast majority of EIT systems use pair drive excitation i.e. between two

electrodes, which must have equal and opposite injected currents. This model is non-

physical because the electrodes are of finite size in practice.

Shunt model

This model assumes that the potential on each electrode is constant, u|El = Ul, with the

resulting currents given by Il =
∫
El
σ ∂u
∂ν

, leading to the following boundary conditions∫
El

σ
∂u

∂ν
= Il l = 1, . . . , L, u = Ul l = 1, . . . , L, σ

∂u

∂ν
= 0 x ∈ E ′T .

This model takes into account the finite size of the electrodes but is still non-physical

because it ignores the formation of contact impedances under the electrodes.

Complete electrode model

When electrodes are placed in contact with an object, a contact impedance layer exists

between the electrode and the object and the voltage under the electrode is no longer

constant [49]. If electrode l is a perfect conductor, the upper voltage on the electrode,

Ul, is still constant and there is a voltage drop across the contact impedance layer,

(u + zlσ
∂u
∂ν

)|El = Ul. The contact impedance, zl, is assumed to be constant for each

electrode and positive, zl > 0. The full complete electrode model (CEM) consists of

the conductivity equation (2.1) along with the boundary conditions

(u+ zlσ
∂u

∂ν
)|El = Ul l = 1, . . . , L,

∫
El

σ
∂u

∂ν
= Il, σ

∂u

∂ν
= 0 x ∈ E ′T , (2.5)
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along with the consistency condition that
∑L

l=1 IL = 0. This model is currently the

most widely used in practical EIT systems (see [49] for experimental validation.)

A classical solution u to (2.1) lies in C2(Ω̄). If we have non-smooth domains, or

discontinuous boundary conditions, then there may not exist a solution u with such

regularity. We introduce the standard weak formulation of the PDE [52] (see appendix

A.1 for relevant notation on PDE theory.)

2.1.2 Weak formulation

Assume u ∈ C2(Ω̄), σ ∈ C1(Ω̄) and an interior current source q ∈ C0(Ω̄). We multiply

the governing equation (2.1) by a test function, v, and integrate over Ω∫
Ω

v∇ · (σ∇u) =

∫
Ω

qv x ∈ Ω. (2.6)

Using the vector identity for scalar fields u and v and a matrix field σ

∇ · (v(σ∇u)) = (σ∇u) · ∇v + v∇ · (σ∇u), (2.7)

and invoking the divergence theorem, (2.6) can be written as∫
Ω

(σ∇u) · ∇v −
∫
∂Ω

v(σ∇u) · ν = −
∫

Ω

qv. (2.8)

Assuming q = 0 ∫
Ω

(σ∇u) · ∇v =

∫
∂Ω

v(σ∇u) · ν. (2.9)

This is the weak form of the conductivity equation and we have shown a strong solution

u ∈ C2(Ω̄) satisfies it. The smoothness assumptions can be reduced to u ∈ H1(Ω),

σ ∈ L∞(Ω) and q ∈ H−1(Ω) as we demonstrate for the continuum model.

Continuum model

The weak formulation for the continuum boundary conditions (2.3) is: Given f ∈

H−
1
2 (∂Ω), such that

∫
∂Ω
f = 0, find u ∈ H1(Ω) such that

a(u, v) = f(v) ∀v ∈ H1(Ω), (2.10)

where

a(u, v) =

∫
Ω

(σ∇u) · ∇v, f(v) =

∫
∂Ω

fv. (2.11)
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The forward problem for the continuum model is well-posed as we demonstrate for

completeness. We show the problem is compatible with the Lax-Milgram conditions

in theorem A.1.1. Firstly the bilinear form a(., .) is bounded

|a(u, v)| = |
∫

Ω

(σ∇u) · ∇v| ≤ b||∇u||L2(Ω)||∇v||L2(Ω) ≤ b||u||H1(Ω)||v||H1(Ω),

and a(., .) is elliptic

a(u, u) =

∫
Ω

(σ∇u) · ∇u ≥ a||∇u||2L2(Ω) ≥
a

1 + C(Ω)2
||u||2H1(Ω), (2.12)

where a, b are lower and upper bounds for the eigenvalues of σ respectively (which are

positive because σ is positive definite almost everywhere), and C(Ω) is the constant

from the Poincaré-Freidrich’s inequality, ||u||L2 ≤ C(Ω)||∇u||L2 [53]. Since v ∈ H1(Ω),

by the trace theorem A.1.2 there is a unique v|∂Ω ∈ H
1
2 (∂Ω), and so we identify the

right hand side as the dual pairing of f ∈ H− 1
2 (∂Ω) and v|∂Ω ∈ H

1
2 (∂Ω). In particular

∂Ω can be considered as an n− 1-dimensional manifold and is covered by a collection

of coordinate charts (Ui, ψi) that are homeomorphic to an open set in V ⊂ Rn−1,

through ψi : Ui → V . Hence instead of ∂Ω we can work on Rn−1 using the composition

functions f ◦ ψ−1 : Rn−1 → R (with an abuse of notation we denote f as f ◦ ψ−1 and

neglect the sum over coordinate charts)

|f(v)| = |
∫
Rn−1

f(x)v(x)| = |
∫
Rn−1

f̃(k)ṽ(k)| = |
∫
Rn−1

f̃(k)(1 + |k|2)−
1
2 ṽ(k)(1 + |k|2)

1
2 |

≤
(∫

Rn−1

|f̃(k)|2(1 + |k|2)−1
) 1

2
(∫

Rn−1

|ṽ(k)|2(1 + |k|2)
) 1

2
= ||f ||

H−
1
2
||v||

H
1
2
,

where the second equality and fourth innequality follow from Plancherel’s theorem

(A.4) and the Cauchy-Schwarz theorem respectively. Hence f(v) is a bounded linear

functional (because the current density f ∈ H−
1
2 (∂Ω)), and the conditions of the

Lax-Milgram theorem are satisfied.

So given any compatible σ and f , there is a unique u ∈ H1(Ω), which can be written

as u = T (σ)f , where T : H−
1
2 (∂Ω)→ H1(Ω). The boundary conditions for the point

electrode model are a special case of the continuum model with f =
∑L

l=1 Ilδ(x− xl).

Of course, the Dirac delta is a distribution or generalised function, and care is required

to interpret the regularity of u. In particular the solution for this boundary value

problem is not necessarily bounded in the H1-norm. We demonstrate this regularity

result explicitly because we will use this when performing a convergence study in

section 2.2.3.
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The first Sobolev embedding theorem (A.8) asserts that Hs(M) ⊂ C0(M) for

all s > n/2 for a compact manifold M of dimension n. In particular ∂Ω can be

considered as an (n − 1)-dimensional manifold, and thus Hs(∂Ω) ⊂ C0(∂Ω) for all

s > (n − 1)/2. Thus if f ∈ H(n−1)/2+ε(∂Ω), for all ε > 0, then f is continuous.

To apply a delta distribution to a function f : ∂Ω → R, i.e. δ(f) = 〈δ, f〉, then f

must be continuous and thus the Dirac delta distribution belongs to the dual space of

H(n−1)/2+ε(∂Ω), δ ∈ H−(n−1)/2−ε(∂Ω) for all ε > 0. For n ≥ 2 it can be deduced that

u ∈ Hmin{(4−n)/2−ε,1}(Ω) for all ε > 0 (see [54] for a rigorous justification). In particular

there is no guarantee u is H1(Ω) regular. This strengthens the non-physicality of delta

distribution current sources in the sense that the resulting solutions are unbounded in

the energy norm.

Complete electrode model

As for the continuum case we again pose a weak formulation of the problem. Multi-

plying (2.1) by v ∈ H1(Ω), integrating over Ω, using the divergence theorem and the

first boundary condition in (2.5) we have∫
Ω

(σ∇u) · ∇v =

∫
∂Ω

vν · (σ∇u) =
L∑
l=1

∫
El

Ul − u
zl

v.

From the second condition in (2.5) we can write, for any V ∈ RL

L∑
l=1

Vl

∫
El

Ul − u
zl

=
L∑
l=1

IlVl

Combining these equations we have

Bσ,z((u, U), (v, V )) :=

∫
Ω

(σ∇u) · ∇v +
L∑
l=1

∫
El

(u− Ul)(v − Vl)
zl

=
L∑
l=1

VlIl. (2.13)

We introduce the quotient space Ḣ(Ω) = (H1(Ω) ⊕ RL) \ R i.e. (u, U), (v, V ) ∈

H1(Ω)⊕RL are equivalent if

u− v = U1 − V1 = · · · = UL − VL = C

for some constant C ∈ R. This quotient space exactly reflects the fact that the

potential is only defined up to a constant. The forward problem is then: given σ ∈
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L∞+ (Ω), z ∈ RL and I ∈ RL, find (u, U) ∈ Ḣ(Ω) such that

Bσ,z((u, U), (v, V )) =
L∑
l=1

IlVl for all (v, V ) ∈ Ḣ(Ω), (2.14)

where the set of currents Il additionally satisfy the consistency condition
∑L

l=1 Il = 0.

In [55] it is shown that this problem is well-posed

Theorem 2.1.1 (Existence and uniqueness of CEM). Given that
∑L

l=1 IL = 0, (2.14)

has a unique solution (u, U) ∈ Ḣ(Ω).

An analysis of the CEM for σ ∈ C∞(Ω) show that the potential has improved

regularity u ∈ H2−ε(Ω) for all ε > 0 [54, 56]. We will use this result when performing

a convergence study in section 2.2.3. The CEM is also the discretisation of a Robin

boundary value problem

(zν · (σ∇u) + ηu)|∂Ω = h, (2.15)

where z ∈ C∞(∂Ω) is now a function describing the contact impedance on the bound-

ary, with z|Ej = zj and η =
∑L

j=1 χEj , where χEj is the characteristic function of the

jth electrode and h is a function of the input voltage data [57]. The CEM is thus

a discretisation of the above continuous model in the limit that h is non-zero and

constant only on subsets of the boundary corresponding to the electrodes, and in the

limit that z is zero off electrodes and constant on electrodes. The Robin boundary

value problem will be used when discussing external shape corrections in section 4.2.

2.2 High order finite elements

To perform image reconstruction in EIT some simulated voltage data is normally

required for a conductivity sufficiently close to the true conductivity, known as the

forward problem. The forward problem can only be solved analytically for simple do-

main geometries, conductivities and boundary conditions, and a numerical method is

almost always required to compute a solution. A number of different methods are

available including the finite difference method (FDM), boundary element method

(BEM) or the FEM. The FDM can be used to solve such problems, but is inefficient

especially when attempting to represent curved boundaries. In the BEM only surfaces

of regions are discretised, and within each region the conductivity is assumed to be
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constant and analytic expressions for Green’s functions are used. The BEM results in

a dense matrix and its computational advantages diminish as the number of regions

in the model increases. The FEM has the advantage that it can be applied to do-

mains with curved boundaries, complex boundary conditions and non-homogeneous

coefficients making it the most appealing to lung EIT.

In this section the implementation of the FE method with high order polynomial

basis functions for the potential and anisotropic piecewise constant conductivities is

discussed. Texts on computational aspects of the method include [53, 58, 59, 60, 61].

In the FE method Ω is decomposed into a set of NE elements. In this thesis the

elements are chosen to be triangles in 2D and tetrahedra in 3D. Within each element

each corner point is called a vertex and there are NV vertices in total over Ω. On each

element a number of nodes are defined, of which the vertices are subset, and a total of

Nn distinct nodes over Ω. One looks for an approximate solution to the potential of

the form

uh =
Nn∑
i=1

uiψi(x) (2.16)

where ψi are known as the shape functions, which are associated with each node in the

domain. The shape functions are chosen to satisfy the interpolation property

ψj(xi) = δij i, j = 1, . . . , Nn, (2.17)

where xi is the spatial coordinate of node i and δij is the Kronecker delta. From (2.16)

the vector u = (u1, . . . , uNn) ∈ RNn represents the discretised approximation to the

potential, u. If the kth element has nk local degrees of freedom, corresponding to the

number of nodes used in the element to interpolate the potential, then there are nk

basis functions not identically 0 on the element. The element shape functions are the

restriction of the nk global shape functions ψi in (2.17). The restriction of the global

shape functions form a basis set Πk = {ψ(k)
1 , ψ

(k)
2 , . . . , ψ

(k)
nk }, and the solution to the

potential within element k is given by

uh|k =

nk∑
i=1

ukiψ
(k)
i .

A piecewise constant conductivity approximation over elements is used,

σ =

NE∑
i=1

σiχi, (2.18)
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where χi is the characteristic function of the ith finite element and σi ∈ Rn×n is the

conductivity matrix of the ith element.

Continuum FE approximation

In the Galerkin finite element method, a finite dimensional subspace, S1
h(Ω) ⊂ H1(Ω),

is chosen to represent the approximate potential uh, and the test function vh chosen

to lie in the same space S1
h(Ω), that is vh =

∑Nn
i=1 ciψi for some coefficients ci [53]. The

finite dimensional weak formulation of the problem is: Given f ∈ H− 1
2 (∂Ω), such that∫

∂Ω
f = 0, find uh ∈ S1

h(Ω) such that∫
Ω

(σ∇uh) · ∇vh =

∫
∂Ω

fvh ∀vh ∈ S1
h(Ω). (2.19)

Substituting the expression for the approximate potential (2.16) yields∫
Ω

(
(σ∇ψi) · ∇ψj

)
ui =

∫
∂Ω

fψj j = 1 . . . Nn, (2.20)

and substituting the point electrode boundary conditions yields∫
Ω

(
(σ∇ψi) · ∇ψj

)
ui =

∫
∂Ω

L∑
l=1

Ilψj(xl) j = 1 . . . Nn.

The vector of nodal potential value, u ∈ RNn , is the solution of the linear system

Au = f, (2.21)

where f has Il at the index corresponding to the node of the lth electrode and the

matrix A has entries

Aij =

∫
Ω

(σ∇ψi) · ∇ψj. (2.22)

The potential u is only defined up to a constant resulting in a one-dimensional null

space of A. This difficulty can be resolved by choosing, say, the gth interior node, with

coordinate xg, to be at zero potential i.e. u(xg) = 0. The gth row and column of A and

the gth row of f and u are removed to generate Ã, f̃ and ũ respectively. The Nn − 1

dimensional system Ãũ = f̃ is now uniquely solvable for ũ.

CEM FE approximation

The CEM applies physically more realistic boundary conditions to the EIT problem

given by (2.5). In this model an approximate solution for the interior potentials is
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sought as well as an approximation to the potentials on the electrodes U ∈ RL. Fol-

lowing the method first described by Vauhkonen [47], the finite element approximation

to the potential (2.16) is substituted into the weak form (2.14), where the test functions

v are chosen as the shape functions v = ψi, i = 1, . . . , Nn, yielding

Nn∑
j=1

{∫
Ω

(σ∇ψi).∇ψj +
L∑
l=1

∫
El

ψiψj

}
uj −

L∑
l=1

∫
El

1

zl
ψiUl = 0. (2.23)

Substituting the finite element approximation (2.16) into equation (2.5) yields

Il =

∫
El

1

zl
Ul −

Nn∑
i=1

{∫
El

1

zl
ψi

}
ui,

and assuming zl is constant on electrode l, we have the expression

Il =
1

zl
|El|Ul −

1

zl

Nn∑
i=1

{∫
El

ψi

}
ui, (2.24)

where |El| is the area of the lth electrode. Combining equations (2.23) and (2.24) leads

to the linear system of equations

S

 u

U

 :=

 A+B C

CT D


 u

U

 =

 0

I

 , (2.25)

where u is a vector of the values of the potential at the nodes, U is a vector of the

voltages on the electrodes and I is the vector of currents supplied to the electrodes.

The matrix A is given by (2.22) and the matrices B, C and D by

Bij =
L∑
l=1

1

zl

∫
El

ψiψjdS Cjl = − 1

zl

∫
El

ψjdS Dll =
|El|
zl
, (2.26)

where i, j = 1, . . . , Nn and l = 1, . . . , L. This can be written compactly as

Sb = f (2.27)

where b = [u, U ]T , f = [0, I]T and S is the block matrix in (2.25). Since the potential

is only defined up to a constant, the gth interior node, with coordinate xg, is assumed

to be at zero potential i.e. u(xg) = 0. The gth row and column of S and the gth row of

f and b are removed to generate S̃, f̃ and b̃ respectively. The Nn + L− 1 dimensional

linear system S̃b̃ = f̃ is now uniquely solvable for b̃.
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2.2.1 Reference elements and boundaries

We first detail the classical computation of the stiffness matrix in (2.22) using a linear

transformation to reference elements (see [53] for more details). It is instructive to

detail this well-known computation because analogous transformations are required to

compute the surface integrals appearing in the CEM.

Stiffness matrix

Using the piecewise-constant conductivity representation (2.18), (2.22) can be written

Aij =

∫
Ω

(σ∇ψi) · ∇ψj dV =

NE∑
k=1

∫
Ωk

(σk∇ψi) · ∇ψj dV, (2.28)

where k is an index over the elements and A is the stiffness matrix. With the elemental

shape functions the elemental stiffness matrices to be calculated in equation (2.28),

are of the form

akij =

∫
Ωk

(σk∇ψ(k)
i ) · ∇ψ(k)

j dV. (2.29)

The stiffness matrix is then assembled from contributions from the elemental stiffness

matrices. It is instructive to define a new mapping from a reference element to a

global element allowing one to define arbitrary polynomial shape functions satisfying

the interpolation property (2.17) in a simple geometry.

The linear mapping Fk : R3 → R3 from a reference element, R, chosen as the unit

tetrahedron, to the kth element, is illustrated in figure 2.1. It is useful to number

the vertices in the local and reference element, by numbering the vertices 2 − 4 anti-

clockwise looking into the element from vertex 1, as illustrated in figure 2.1. The kth

global element’s vertex coordinates are specified as xk1,x
k
2, xk3 and xk4, and the simplest

mapping Fk from the local element in coordinate system (ε, η, γ) to the global element

k in (x, y, z) coordinate system is given by

(x, y, z) = Fk(ε, η, γ) =
4∑
i=1

xki χi(ε, η, γ), (2.30)

where χi is the linear basis function associated with the ith vertex in the reference

element. The basis functions χi above must satisfy the Lagrange interpolation property

(2.17) and are uniquely determined as

χ1(ε, η, γ) = 1− ε− η − γ, χ2(ε, η, γ) = ε, χ3(ε, η, γ) = η, χ4(ε, η, γ) = γ.
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Figure 2.1: The mapping Fk from a local element R to a general element k in 3D

This linear map sends a straight sided reference element to a straight sided global

element. Equipped with this coordinate transformation, the derivatives of the shape

functions with respect to global coordinates (x, y, z) must be converted to derivatives

of the shape functions with respect to local coordinates (ε, η, γ) through the Jacobian

matrix. This can be computed via the chain rule as
∂ψ
∂ε

∂ψ
∂η

∂ψ
∂γ

 =


∂x
∂ε

∂y
∂ε

∂z
∂ε

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂γ

∂y
∂γ

∂z
∂γ



∂ψ
∂x

∂ψ
∂y

∂ψ
∂z

 = J


∂ψ
∂x

∂ψ
∂y

∂ψ
∂z

 =


xk2 − xk1 yk2 − yk1 zk2 − zk1
xk3 − xk1 yk3 − yk1 zk3 − zk1
xk4 − xk1 yk4 − yk1 zk4 − zk1



∂ψ
∂x

∂ψ
∂y

∂ψ
∂z


(2.31)

where the matrix J is known as the Jacobian matrix, and the last equality follows

from the definition of the linear coordinate transformation. Equipped with such a

transformation, the elemental stiffness matrix can be written

akij =

∫
Ωk

(σk∇ψ(k)
i ) · ∇ψ(k)

j dx dy dz

=

∫
ΩR

(
σk∇

(
ψ

(k)
i ◦ Fk

))
·
(
∇
(
ψ

(k)
j ◦ Fk

))
|Jk| dε dηdγ, (2.32)

where |Jk| is the absolute value of the determinant of the Jacobian matrix, ΩR is the

reference element and
∫

ΩR
=
∫ 1

0

∫ 1−η
0

∫ 1−η−γ
0

dε dη dγ. Finally, using the definition

of the Jacobian transformation (2.31), the gradient operator with respect to global
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coordinates, ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

), can be written in terms of the gradient operator with

respect to local coordinates, namely ∇R = ( ∂
∂ε
, ∂
∂η
, ∂
∂γ

), as ∇ = J−1
k ∇(R), and so the

elemental stiffness matrix is given by

akij =

∫
ΩR

(
σkJ

−1
k ∇

(R)ψ
(R)
i

)
.
(
J−1
k ∇

(R)ψ
(R)
j

)
|Jk| dε dη dγ, (2.33)

where ψ
(R)
i := ψ

(k)
i ◦ Fk, the basis functions on the reference element.

CEM matrices

The forward problem for the CEM requires the additional computation of the matrices

B, C, and D in equation (2.26) which are surface integrals for a 3D problem. During

the meshing process it is convenient for electrodes to be the union of some tetrahedral

element faces in 3D, so that the integrals can be written as the sum over faces of

some boundaries. This means that we can write integrals of some function g over an

electrode as ∫
El

g dS =

nl∑
p=1

∫
l(bp)

g dS, (2.34)

where nl is the number of faces that the lth electrode contains, and l(bp) denotes the

integral over the pth face of the lth electrode. With this notation, we can write the

matrix entries of B and C in (2.26) as

Bij =
L∑
l=1

1

zl

∫
El

ψiψj dS =
L∑
l=1

1

zl

nl∑
p=1

∫
l(bp)

ψiψj dS, (2.35)

and

Clj = − 1

zl

∫
El

ψj dS = − 1

zl

nl∑
p=1

∫
l(bp)

ψj dS, (2.36)

respectively. The integrals over the electrodes have been split to surface integrals

over individual boundaries l(bp). The contribution from each boundary can then be

assembled to form B and C. The matrix D is independent of the choice of basis

functions and is trivial to compute.

The surface integral of some scalar field g : R3 → R over a surface S, is given by∫
S

g dS =

∫
T

g(h(ε, η)) |∂εh(ε, η)× ∂ηh(ε, η)| dε dη, (2.37)
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where h(ε, η) is a parametrization of the surface S and (ε, η) vary in a region T of the

plane. Using the notation in equation (2.34), the pth boundary of the lth electrode is

assumed to be a face of the kth element as illustrated in figure 2.1. Let Gk(ε, η) =

Fk(ε, η, 0), where Fk(ε, η, 0) is defined in (2.30), and ∂εGk, ∂ηGk be vectors of partial

derivatives of this mapping. The surface integrals in equation (2.34) can be written as∫
l(bp)

g dS =

∫
T

(
g ◦Gk(ε, η)

)
|∂εGk(ε, η)× ∂ηGk(ε, η)| dε dη, (2.38)

where
∫
T

=
∫ 1

0

∫ 1−η
0

. So the pth boundary of the lth electrode has been parametrized

by a plane Gk(ε, η). The partial derivatives of the mapping Gk are given by

∂εGk(ε, η) = xk3 − xk1, ∂ηGk(ε, η) = xk2 − xk1,

and so magnitude of the cross product is given by

|∂εGk(ε, η)× ∂ηGk(ε, η)| = |(xk3 − xk1)× (xk2 − xk1)|.

It can be seen that the magnitude is independent of the parameters ε and η and

physically is twice the total area of the pth boundary of the lth electrode. We now have

to evaluate integrals along the unit triangle, T , of the form∫
l(bp)

g dS =

∫
T

(
g ◦Gk(ε, η)

)
|(xk3 − xk1)× (xk2 − xk1)| dε dη.

The only contributions to the matrices (2.26) will be from basis functions ψi whose

defining node, xi, lies on the boundary, since the product of all other basis functions

along the boundary are identically 0. Thus instead of performing integration over the

boundary of an element k, it is simplest just to integrate over the boundary l(bp). We

define a reference boundary as the unit triangle, T , (see appendix B.3) define our local

shape functions on this, and then map to the true boundary l(bp) as illustrated in

figure 2.2. The surface integrals along a boundary l(bp) are now of the form∫
l(bp)

g dS =

∫
T

(
g ◦Gbp(ε, η)

)
|(xbp3 − x

bp
1 )× (x

bp
2 − x

bp
1 )| dε dη,

and using the notation above, and defining Jbp = (x
bp
3 − x

bp
1 )× (x

bp
2 − x

bp
1 ) the surface

integrals appearing in the matrix entries of B in equation (2.35) can be written as∫
l(bp)

ψiψj dS =

∫
T

(
ψ

(bp)
i ◦Gbp(ε, η)

)(
ψ

(bp)
j ◦Gbp(ε, η)

)
|Jbp| dε dη. (2.39)
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Figure 2.2: The mapping Gl(bp) from a local boundary T , the unit triangle 123, to a general boundary
l(bp) in 3D.

Similarly the integrals appearing in the entries of C in equation (2.36) can be written∫
l(bp)

ψi dS =

∫
T

(
ψ

(bp)
i ◦Gbp(ε, η)

)
|Jbp| dε dη. (2.40)

The shape functions on the unit triangle for a quadratic approximation in 3D are

illustrated in appendix B.3. After the integrals have been evaluated, the matrices B

and C are then assembled in an analogous manner to the stiffness matrix.

2.2.2 Polynomial approximation

It remains now to choose the shape functions ψ
(R)
i on the reference element to inter-

polate the solution within the reference.

Global piecewise linear approximation

In three dimensions, the general form of linear approximation to the potential within

element k is given by

ukh(x, y, z) = a+ bx+ cy + dz.

The coefficients are uniquely determined from the shape function interpolation prop-

erty at the nodes (2.17), and so we can take the mapping basis functions as the local
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basis functions for the potential on the element, that is ψ
(R)
i = χi in (2.30). The to-

tal finite element approximation is also continuous (C0) since there is a unique linear

polynomial that takes values at the three points along each element’s faces [53].

Global piecewise polynomial approximation

For arbitrary order polynomials, the number of unknown coefficients to be determined

equates to the number of nodes required on a given element. For example for quadratic

approximation in three dimensions the general form of the approximation is given by

ukh(x, y, z) = a+ bx+ cy + dz + ex2 + fy2 + gz2 + hxy + ixz + jyz,

and so there are 10 unknown coefficients and thus 10 shape functions that are not

exactly 0 on each element. There is now freedom to choose the positions of nodes

within the element to satisfy the interpolation property (2.17). In this thesis we

position the nodes equispaced within an element (see appendix B.3 for basis functions

for a quadratic element in 3D). The total finite element approximation is again C0

since there is a unique quadratic polynomial that takes values at the six points along

each element’s faces.

Numerical quadrature

Gauss quadrature is used to evaluate the integrals appearing in (2.33), (2.39) and

(2.40). Defining a function g as

g =
(
σkJ

−1
k ∇

(R)ψ
(R)
i

)
.
(
J−1
k ∇

(R)ψ
(R)
j

)
|Jk|,

then we can write

akij =

∫
R

g dV,

where dV = dεdηdγ in 3D. It is important to note that since a linear mapping is

used from the reference element to the true element, the Jacobian determinant, |Jk|, is

independent of ε, η, γ. If the polynomial approximation used in element k is of degree

p, the integrand is a polynomial of degree 2(p − 1). Similarly we can deduce that

the matrices B and C in (2.39) and (2.40) require integration rules for polynomials of

degree 2p and p respectively, although only (n− 1)D rules are required.
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An N point quadrature rule for the approximate integral of a function p : Rn → R

over a region R consists of a set of weights, wi, and Gauss points, xi ∈ Rn, where

i = 1, . . . , N . Let Pk denote the set of polynomials of degree k. The smallest integer

kn such that ∫
R

p dV =
kn∑
i=1

ωip(xi) ∀p ∈ Pk

is the quadrature order. Quadrature rules are available to integrate polynomials of a

given degree on triangles and tetrahedra, and the weights and Gauss points required

to perform the numerical integration of the elemental stiffness matrix are listed in

appendix B.4. We note that the quadrature order increases with increasing polynomial

approximation order. For information on the numerical implementation of the forward

problem in the open source reconstruction software EIDORS [62], see appendix B.1.

2.2.3 Convergence study

In the following section we perform a convergence study for the forward problem in

2D under uniform refinement of a square domain. In particular we are interested in

L2 convergence of the boundary voltages for the forward problem and H1 convergence

for the Fréchet derivative (see section 3.2.2) for the inverse problem. For the inverse

problem, we are also interested in determining how accurately the forward problem can

be solved for a given finite element triangulation. This is because a piecewise constant

representation of the conductivity on finite elements is typically deployed leading to a

single degree of freedom per triangle (2D) or tetrahedron (3D) for the inverse problem.

Secondly a convergence study under different electrode models is performed to observe

how the convergence rate changes to understand how effective high order FEM is at

generating more accurate solutions for the forward problem.

There are well known error estimates for high order FE approximations for elliptic

problems [61]. Let Ω be a polygonal domain, and assume the solution of an elliptic

problem u ∈ H1(Ω)∩Hk+1(Ω) with k an integer. Let ukh be the kth order finite element

approximation to u, then

||u− ukh||L2 ≤ C1h
k+1|u|k+1, ||∇(u− ukh)||L2 ≤ C2h

k|u|k+1, (2.41)

where h is the length of the largest edge in the finite element mesh, k is the degree of

polynomial approximation, C1, C2 are constants and the semi-norm | · |k+1 is defined
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as

|u|k+1 =
( ∑
|α|=k+1

∫
Ω

|Dαu|2
) 1

2
.

If the solution u a-priori has high regularity, for example u ∈ C∞(Ω), we can deduce

that exponential convergence is guaranteed in the H1 and L2 norm, for increasing p

at a fixed h. Such regularity is true if ∂Ω is smooth, and the boundary conditions

and conductivity are smooth functions. The forward problem in EIT with realistic

electrode models does not have smooth prescribed boundary data, and so it is not

obvious that such regularity will be present. From section 2.1.2 the solutions to the

point and complete electrode models are known to have regularity u ∈ H1−ε(Ω) (in

2D) and u ∈ H2−ε(Ω) respectively for all ε > 0, when σ ∈ C∞(Ω). Convergence results

have been extended to solutions with fractional Sobolev regularity [63]. In particular

let u ∈ Hs(Ω) and s ∈ R with k + 1 ≥ s ≥ 1, then

||u− ukh||L2 ≤ C3|u|shs, ||∇(u− ukh)||L2 ≤ C4|u|shs−1,

where C3, C4 are constants. The power of h is independent of the approximation order.

In particular for the CEM we can predict convergence at rate h1−ε and h2−ε in the H1

and L2 norms respectively for all approximation orders, and for the point electrode

model (u ∈ H1−ε(Ω)), convergence is not guaranteed in either norm.

We exhibit convergence results of high order FEM under different electrode models

for each order of approximation under uniform refinement of a given finite element

triangulation. In particular we consider convergence of FE solutions to the Laplacian

(σ = 1) on a square domain Ω = [0, π]2. In doing so a novel analytic solution to

the CEM is computed to test convergence. In all cases we consider Neumann zero

boundary conditions on the y = 1, x = 0 and x = 1 boundaries of the square.

Convergence is studied by computing a sequence of finite element triangulations, T (i),

indexed by an integer i ≥ 1, (see figure 2.3). Each finite element triangulation has

a maximum associated element length hi, where h is the maximum length in the

coarsest mesh, T (1). The global linear, quadratic and cubic finite element errors are

computed as a function of the refinement level, i, by calculating the L2 norm and

H1 energy norm of the difference between analytic and FE solutions, ||u− uh||L2 and

||u − uh||H1 = ||∇(u − uj)||L2 . To approximate these integrals the same quadrature

rule is used as to integrate the products of basis functions exactly over each element.
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Figure 2.3: Uniform triangulations of square domain. The left and right hand figure represent the
T (1) and T (2) triangulations respectively with point electrode model.

To demonstrate convergence log(||u−uh||) is plotted against − log(h). Asymptotic

convergence of the form Chk, as h → 0, would give approximate straight lines of

gradient −k, which we estimate through a Least-Squares fit.

Continuum model

We first consider the continuum models with a non-zero Neumann condition given by

a function f = cos(x) on y = 0. After separation of variables, and using the Neumann

zero boundary conditions on the x = 0 and x = π boundary, we arrive at an analytic

expression for the solution u of the Laplacian

u(x, y) = A0 +
∞∑
n=1

An cos(nx) cosh(n(π − y)), (2.42)

where the coefficients An, n ≥ 1, are given by

Ann sinh(nπ) =
2

π

∫ π

0

f(x) cos(nx) dx, (2.43)

and A0 is a constant determined by choice of a ground point. Given the Neumann

condition f(x) = cos(x), only 1 non-zero Fourier coefficient, A1 = 1
sinh(π)

, is retained.

We note also that the solution is smooth, u ∈ C∞(Ω). Figure 2.4 demonstrates

the convergence of the continuum model. We observe errors approximately of the

form Chp+1 and Chp in the L2 and H1 norm respectively, where p is the polynomial

approximation degree. These results demonstrate that global high order finite element

approximations are more accurate at a given triangulation, for this smooth boundary

condition, and are in agreement with the classical error estimate (2.41).
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Figure 2.4: Convergence for the continuum model in the L2 and H1 norm. p is the polynomial ap-
proximation degree and mE and mT are the estimated and theoretical convergence rates respectively.
We observe convergence of the form Chp+1 and Chp in the L2 and H1 norm respectively.

Point electrode model

We consider a current function f(x) = δ(x− π
3
)−δ(x− 2π

3
) and arrive at an expression

for the coefficients as

An =
2

n sinh(nπ)

(
cos(

nπ

3
)− cos(

2nπ

3
)
)
.

The solution to the point electrode model is unbounded in the global H1-norm because

of the Dirac delta Neumann conditions. To efficiently compute the infinite series we

split into the interior and boundary nodes. On the y = 0 boundary we have

u(x, 0) = A0 +
∞∑
n=1

2

n tanh(nπ)

(
cos(

nπ

3
)− cos(

2nπ

3
)
)

cos(x).

As n→∞, tanh(nπ)→ 1 and the series is a slowly converging harmonic-type series.

Away from the boundary y > 0

u(x, y) = A0 +
∞∑
n=1

2

n sinh(nπ)

(
cos(

nπ

3
)− cos(

2nπ

3
)
)

cos(x) cosh(n(π − y)),

which converges quickly as n → ∞ because of the dominant sinh(nπ) term. The

L2 and H1 errors are plotted against the refinement level in figure 2.6. The point

electrode model exhibits approximate O(h) convergence in the L2 norm independent

of the polynomial approximation. Unsurprisingly there is effectively no convergence in

the H1-norm because the analytic solution is unbounded in this norm, and this is an

artefact of the series approximation to the gradient of the solution. These results are

in agreement with theory, because in 2D the solution u ∈ H1−ε(Ω) for all ε > 0 when



CHAPTER 2. FORWARD MODELLING 47

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x

y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x

y

Figure 2.5: The left and right hand images are the square domain with point and complete electrode
models. The red elements highlighted are the regions of the domain neglected for the convergence
study away from the electrodes.

there are delta function current sources, and thus ∇u fails to be in L2. This example

highlights the danger of the point electrode model, as a globally accurate sensitivity

map can not be computed with this model.

Figure 2.7 illustrates convergence plots of the errors, neglecting a neighbourhood

of elements near the boundary (see figure 2.5). In the interior there is convergence of

the form Chp+1 and Chp in both the L2 and H1-norm. This can be explained because

of elliptic regularity of the solution operator Tε : Hs(∂Ω)→ C∞(Ω \ ∂Ωε) : f 7→ uε for

all s ∈ R, mapping the boundary current density to interior potential, where ∂Ωε is

notation for an ε neighbourhood of the boundary. In particular the solution operator

for an elliptic PDE preserves singular support [64], where the singular support is the

complement of the smallest open set on which the function is smooth. In the interior of

the domain, away from the point electrodes, the solution must be smooth. The solution

to the discretised FEM solution also appears to retain this property to generate the hp

convergence observed. This is an interesting observation for the inverse problem if we

consider the case when the conductivity is known in a neighbourhood of the boundary,

because the results suggest that the sensitivity map is still accurately computed in the

interior.

CEM

Semi-analytic solutions have been obtained for the CEM on the unit disc using Fourier

decomposition methods [50, 65], the solutions being only semi-analytic because the
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Figure 2.6: FEM convergence for the point electrode model. Convergence for the point electrode
model in the L2 and H1 norm. p is the polynomial approximation degree and mE and mT are the
estimated and theoretical convergence rates respectively. We observe convergence of the form Ch in
the L2 norm and no convergence in the H1 norm, both independent of the polynomial approximation
degree.

method results in an infinite dimensional system of equations to solve for the Fourier

coefficients. We apply a similar technique to the CEM on the square domain with

σ = 1. We consider the application of a potential vector U ∈ R2, U = (1,−1),

between two electrodes as opposed to a current vector I ∈ R2. The finite element

system to solve for (u, I) in equation (2.44) becomes A 0

BT −I


 u

I

 =

 −BU
CU

 . (2.44)

We denote the two electrodes on the y = 0 boundary as E1 = {(x, y)|y = 0, π
5
≤

x ≤ 2π
5
} and E2 = {(x, y)|y = 0, 3π

5
≤ x ≤ 4π

5
} (see figure 2.5). We characterise the

electrodes by their centre of mass, and width (x1, x2, w) = (3π
10
, 7π

10
, π

5
). The interior

potential solves Laplace’s equation, and the Neumann zero boundary conditions on

the x = 0 and x = π boundary imply that the solution again has the form (2.42).

Substituting this into the Robin condition, we have for x ∈ [0, π]

∞∑
k=1

Akk sinh(kπ) cos(kx) =


1
zl

(Ul − A0 −
∑∞

k=1Ak cosh(kπ) cos(kx) if x ∈ El

0 otherwise
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Figure 2.7: FEM convergence for the point electrode model in the L2 and H1 norm away from the
driven electrodes. p is the polynomial approximation degree and mE and mT are the estimated and
theoretical convergence rates respectively. We retain convergence observed with smooth boundary
conditions of the form Chp+1 and Chp in the L2 and H1 norm respectively (see figure 2.4).

We extend this to an even function over [−π, π], multiply by cos(nx) and integrate

over [−π, π] resulting in

∞∑
k=1

∫ π

−π
Akk sinh(kπ) cos(kx) cos(nx) dx =

2∑
l=1

1

zl

(∫
El

(Ul − A0) cos(nx) dx−
∞∑
k=1

∫
El

Ak cosh(kπ) cos(kx) cos(nx) dx
)

The orthonormality of cos(kx) implies that the left hand side is Ann sinh(nπ). The

last term on the right hand side is a linear combination of Ak weighted by integrals

of cosine products which can be computed analytically. We have an infinite system of

equations for the Fourier coefficients, A = (A0, A1, . . .) of the form, SA = U , where

Snk =
2∑
l=1

1

zl

∫ xl+wl

xl−wl
cos(nx) cos(kx) cosh(kπ) dx+δnkπ sinh(kπ) cos(kx) n, k = 0, 1, 2 . . .

and

Un =
2∑
l=1

Ul
zl

∫ xl+wl

xl−wl
cos(nx) dx n = 0, 1, 2 . . . .

The existence and uniqueness result for the CEM ensures a unique solution in H1(Ω).

The linear system of equations are inverted numerically by truncating to a system of

N equations. The matrix S is ill-conditioned in practice as N increases, because of the

increasing contributions from the k sinh(kπ) and cosh(kπ) terms. The matrix S can

be factorized as S = MD, where D is diagonal with entries Dkk = cosh(kπ), and the

inverse is given by S−1 = D−1M−1, where the matrix M has improved conditioning.
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The matrix D is still ill-conditioned, but is diagonal and thus has an explicit inverse

of the form (D−1)kk = 1
cosh(kπ)

. This diagonal matrix acts to dampen high frequency

coefficients in U .

Figure 2.8 shows convergence plots for the CEM under uniform refinement with a

contact impedance on each electrode of z = 1000. The convergence in the L2-norm

is approximately O(h2) and the convergence in the H1 norm O(h), both independent

of the approximation degree, although higher order finite elements have a smaller

associated constant. This is also in agreement with the theory, because for smooth

conductivities we have regularity of the solution u ∈ H2−ε(Ω), for all ε > 0, and the

gradient ∇u ∈ H1−ε(Ω) (see section 2.1.2). Figure 2.9 illustrates the error convergence

away from the boundary with z = 1000. As with the point electrode model we again

observe fast hp type convergence in the interior of the domain because of elliptic

regularity. This highlights that the errors in the forward problem in EIT, with a

constant conductivity, are heavily concentrated near the electrodes.
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Figure 2.8: Convergence of the CEM with z = 1000. p is the polynomial approximation degree and
mE and mT are the estimated and theoretical convergence rates respectively. We observe conver-
gence of the form Ch2 and Ch in the L2 and H1 norm respectively, independent of the polynomial
approximation degree.

2.3 Conclusions

In this chapter the computation of global high order polynomial FE approximations

to the CEM was outlined in 3D. The extension to arbitrary polynomial orders is con-

ceptually straightforward, by first determining Lagrange interpolating basis functions
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Figure 2.9: Convergence of the CEM with z = 1000 away from driven electrodes. p is the polynomial
approximation degree and mE and mT are the estimated and theoretical convergence rates respec-
tively. We retain convergence observed with smooth boundary conditions of the form Chp+1 and Chp

in the L2 and H1 norm respectively (see figure 2.4).

on the reference tetrahedron, and then using a quadrature rule consistent with the

polynomial approximation degree.

A convergence study under different models was carried out in 2D on square do-

mains. It was found that using high order FEM increased the accuracy of the forward

problem in all models for a given finite element triangulation. However the global con-

vergence rate was approximately independent of the polynomial degree for the point

and complete electrode models. Any additional accuracy comes at the expense of the

increased computational complexity with the additional degrees of freedom required

for the solution. The solutions to the point electrode model are just short of H1 reg-

ularity, and thus global convergence is not observed in this norm. For the complete

electrode model, with a potential applied between two electrodes on a single side and

Neumann zero conditions on the other three sides, approximately O(h2) and O(h)

global convergence in the L2 and H1 norm respectively was observed, and indepen-

dent of the approximation order. An interesting observation was that away from the

driven electrodes O(hp+1) and O(hp) convergence to the analytic solution in the L2

and H1 norm respectively was observed for both the point and complete electrode

models. These results strengthen the intuition that errors in the forward problem are

heavily concentrated near electrodes and why finite element meshes are usually more

refined near electrodes to compensate for this.

More advanced numerical methods to achieve exponential convergence of solutions
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to PDE, such as hp-adaptive methods, are becoming increasingly popular in the liter-

ature. In these methods, the solution can be updated locally both through a spatial

refinement of the elements (h-refinement), most useful where there are discontinuities

present in the solution, or through an increase of the approximating polynomial degree

(p-refinement), where the solution is smoother. Such methods aim to achieve expo-

nential convergence as a function of the total degrees of freedom of the approximation.

See [66, 67] for an application of hp-FEM for 2D EIT in the continuum model and

CEM respectively.

2.3.1 Modelling errors and lung EIT

It is clearly important to solve the forward problem sufficiently accurately during an

iterative reconstruction algorithm in EIT. How accurately the forward problem needs

to be solved for the inverse problem is unclear though. The modelling error in the

forward problem depends on the type of finite element approximation as discussed

in this chapter. The inverse problem modelling error depends on the regularisation

scheme and parameters used during a given inversion algorithm. In practical lung EIT

it is also apparent that the boundary shape and electrode positions are inaccurately

known. We will observe in section 4.1 that an inaccurately known boundary shape

and electrode positions creates a much larger source of error in the forward problem

solution than a sub optimal finite element method. In order for absolute lung EIT to

become practically realisable it will require the systematic minimisation of modelling

error i.e. determining the current dominant source of modelling error, improving the

modelling to decrease the error until it does not dominate, and repeating until all

sources of modelling error are negligible compared to measurement noise. It is of

the author’s opinion that accurately determining the external shape and electrode

positions of a subject is currently the largest source of modelling error that needs to

be reduced in lung EIT.



Chapter 3

Inverse problem in EIT

This chapter is largely theoretical and serves to outline general inverse problem theory,

theory specific to EIT, as well as a novel discussion of EIT with eigenspace constraints

on the conductivity. In section 3.1 we outline some general inverse problem theory that

will be used in the subsequent chapters. This includes a discussion of mild and severe

ill-posed problems, the singular value decomposition and reconstruction algorithms.

In section 3.2 the Dirichlet-to-Neumann map is defined and Fréchet differentiability

with respect to conductivity changes is demonstrated. We show that the derivative

and discretisation commute which is not clearly stated in the literature. This is also

related to the Fréchet derivative with respect to external boundary shape, because it is

not clear whether the discretisation and derivative commute in this case. In section 3.3

we outline uniqueness results for the non-linear isotropic inverse conductivity problem.

In section 3.3.1 we outline identifiability of σ|∂Ω from the DtN map by highlighting

that the DtN map is a pseudo-differential operator. This will give us some insight into

why EIT is ill-posed, and is also used to understand the problem with an inaccurately

known external shape in sections 4.2.2 and 4.3.4. In section 3.3.2 we outline the use

of complex geometric optics to determine the conductivity in the interior of Ω. This

is used in our novel discussion of exact methods in lung EIT in section 3.3.3, where

we highlight why accurate forward modelling, such as the correct number of spatial

dimensions (three) and accurate boundary shape, should be used on a reconstruction

model.

In section 3.4 we discuss the anisotropic inverse conductivity problem. In section

3.4.1 we outline the natural generalisation of the inverse conductivity problem to the

53
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determination of a Riemannian metric on a manifold M as well as the non-uniqueness

result in section 3.4.2. This is used in the remainder of this chapter as well as in the

boundary shape chapter in 4.2.2. In section 3.4.3 we digress to discuss some problems

in theoretical elasticity. We discuss the Saint-Venant compatibility condition, which

is analogous to the Cotton-York integrability condition in section 4.2.2. We outline in

detail two problems from theoretical elasticity that are directly used when discussing

the anisotropic problem with constraints on the conductivity eigenspace. We outline

a theorem stating the recovery of the deformation field from principal strains and

a theorem on the existence of orthogonal coordinates on 3-dimensional Riemannian

manifolds. These two problems are analogous to the anisotropic inverse conductivity

problem with prescribed eigenvalues and eigenvectors respectively.

In section 3.4.4 we perform a novel discussion of the anisotropic inverse conductivity

problem with constraints on the eigenspace of the metric. We define subclasses of

anisotropic conductivity with eigenspace constraints: prescribed eigenvalues, prescribed

orthogonal coordinates, prescribed eigenvectors, fibrous and layered conductivities, and

by drawing analogies with the elasticity theory in the previous section we explain how

such constraints restrict the set of diffeomorphisms fixing points on the boundary. We

prove two uniqueness results. Firstly a local uniqueness result (in an ε-neighbourhood

of the boundary) with a conductivity with prescribed eigenvalues is shown. Secondly a

uniqueness results with prescribed eigenvectors is shown, assuming a globally defined

coordinate system.

3.1 Ill-posed inverse problems

Let M and D be abstract spaces in which our solution and data lie respectively and

consider an operator F : M → D,m 7→ d = F (m). Hadamard [68] defined such a

problem to be well-posed if (i) for any d ∈ D there exists a solution m ∈ M , (ii)

for any d ∈ D the solution is unique (there exists an inverse, F−1), and (iii) if the

solution depends continuously on the data (F−1 is continuous). Hadamard further

defined a problem to be ill-posed if any of the three criteria are not satisfied. In an

inverse problem, we wish to determine some model parameters m ∈M from some data

d ∈ D. A typical ill-posed inverse problem may satisfy the existence and uniqueness
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criteria, but the inverse will be discontinuous. Small experimental errors in the data

can lead to unbounded errors in the solution, and can also result in data that may

not lie in the range of the forward operator F anymore, bringing into question the

existence of a solution.

An archetypal linear ill-posed inverse problem is the inversion of a compact op-

erator. Consider two Hilbert spaces X and Y , and denote {xn}∞n=1 and {yn}∞n=1 as

orthogonal bases for X and Y respectively. Let σn ∈ R, n = 1, . . . ,∞, and define two

operators F, FN : X → Y by

F : x 7→
∞∑
n=1

σn〈x, xn〉yn, FN : x 7→
N∑
n=1

σn〈x, xn〉yn. (3.1)

If σn → 0 as n→∞, then ||F − FN || → 0 as N →∞. In this case the operator F is

the norm limit of a finite rank operator and so is compact. Conversely, any compact

operator between two Hilbert spaces can be written in the form (3.1) where σn → 0 as

n→∞ [69]. Let g ∈ R(A), then Ff = g if and only if σn〈f, xn〉 = 〈g, yn〉. We require

||f || <∞ which implies
∑∞

n=1
〈g,yn〉
σ2
n

<∞, and thus observe that F−1 : Y → X

F−1 : g 7→
∞∑
n=1

〈g, yn〉
σn

xn,

satisfies Ff = g, and is unique. However, if we take gm = g+
√
σmym, then ||g−gm|| =

√
σm → 0, but ||f−fm|| = 1√

σm
→∞, and hence the inverse is not continuous, and the

inversion of a compact operator between two Hilbert spaces is an ill-posed problem.

Regularisation and prior information are important tools to perform stable inversion

in practice as we discuss in section 3.1.3. We now consider two classic examples of

linear ill-posed problems that we will use in this thesis.

3.1.1 Mild and severe ill-posedness

We present two examples to classify the degree of ill-posedness of an inverse problem,

namely differentiation and the backwards heat equation.

Differentiation

We consider integration of a function f ∈ L2[0, π] with f(0) = f(π) = 0, represented

using a Fourier sine series as f(x) =
∑∞

n=1 fn sin(nx). We denote the integration
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operation F : L2([0, π])→ L2([0, π]) by (Ff)(x) =
∫ x

0
f(x′) dx′

F : f(x) 7→
∞∑
n=1

− 1

n
fn cos(nx) + C.

Now 1
n
→ 0 as n→∞, and we observe that F is a linear, compact operator on L2, and

thus differentiation is a classical ill-posed problem on L2. We note that the singular

values have polynomial type decay, which classifies this operation as mildly ill-posed

and this class of inverse problem is relatively tame. When we outline a mechanical

model of the lung in chapter 6, we treat numerical differentiation as an ill-posed inverse

integration problem.

Backwards heat equation

Consider the solution u(x, t) of the heat equation in one spatial dimension

∂u

∂t
=
∂2u

∂x2
, x ∈ [0, π],

with initial condition u(x, 0) = f(x) ∈ L2([0, π]) and Dirichlet boundary conditions

u(0, t) = u(π, t) = 0. Using separation of variables the solution to this problem is

u(x, t) =
∞∑
n=1

An sin(nx)e−n
2t,

where An are the Fourier sine coefficients of f(x). This is in the form of the ab-

stract framework with xn(x) = sin(nx), forming an orthogonal basis of L2([0, π]). The

solution operator F : L2([0, π])→ L2([0, π]) is given by

Ft : f 7→ Ftf =
∞∑
n=1

σn〈f, xn〉xn,

where 〈, 〉 denotes the L2 inner product and σn = e−n
2t. Now σn → 0 as n → ∞ and

so the solution operator Ft is compact. An ill-posed problem would then be, given

some heat distribution at time t > 0, what was the initial heat distribution at t = 0?

Given no error in the solution ut, then the solution would be

u(x, 0) =
∞∑
n=1

en
2t〈ut, xn〉xn,

but because of the factor en
2t, any high frequency noise in ut would generate large errors

in the solution rendering it meaningless. The singular values of F have exponential
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decay, and inverse problems with this type of decay are known as severely ill-posed.

This instability demonstrates that using the formal inverse operator, if it exists, can

be inadequate in the presence of any noise. The inverse problem of EIT has features

similar to the backwards heat equation as will be explained in this chapter.

3.1.2 Singular value decomposition

In a finite dimensional setting, the singular value decomposition (SVD) is an important

computational tool to analyse ill-conditioning of a discretised linear inverse problem

and will be used in the boundary shape sensitivity study in section 4.4. We consider

a matrix F : Rm ⊃M → D ⊂ Rd, m 7→ d = Fm whose SVD is given by [70]

F = UΣV T =

min(m,d)∑
i=1

uiλiv
T
i

where U = (u1, . . . , ud) ∈ Rd×d, V = (v1, . . . , vm) ∈ Rm×m are orthonormal matrices,

and Σ = diag(λ1, . . . , λmin(m,d)) ∈ Rd×m. The SVD is unique up to reordering and the

singular values are ordered such that λ1 ≥ λ2 ≥ . . . ≥ λmin(m,d) ≥ 0. The ui and vi are

the left and right singular vectors respectively and satisfy

Fvi = λiui, F Tui = λivi. (3.2)

The null space of F is the set N(F ) = {m ∈ Rm : Fm = 0}. If F has rank r, with

r < min(m, d), the singular values λr+1, . . . , λmin(m,d) are zero, and the corresponding

singular vectors span N(F ). Left and right multiplication of the equation d = Fm by

UT and U respectively yields

r∑
i=1

(uTi d)ui =
r∑
i=1

λi(v
T
i m)ui.

Any components of d that are parallel to the singular vectors with small singular values

are attenuated resulting in a meaningless solution m. In practice the data is subject

to some instrumentation error threshold, ε, as well as a numerical error threshold,

µ. Singular vectors with singular values below the instrumentation threshold give

rise to observations with smaller amplitude than the instrument noise, and below the

numerical error threshold are effectively unobservable. Model vectors parallel to these

singular vectors will hence be sensitive to data errors. Effectively the singular value
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spectrum can be classified as

λ1 ≥ . . . ≥ λz ≥ µ ≥ λz+1 ≥ . . . ≥ λw ≥ ε ≥ λw+1 ≥ λr > 0 = λr+1 = . . . = λD,

and this characterises M . The subspace of M spanned by singular vectors associated

with the singular values λ1, . . . , λz are observable in practice. The subspace of M

spanned by singular vectors associated with the singular values λz+1, . . . , λw gener-

ate data with amplitudes smaller than the noise level. The subspace of M spanned

by singular vectors associated with singular values λw+1, . . . , λr generate data with

amplitudes that are numerically unobservable. The subspace of M spanned by the

singular vectors with the remaining singular values result in null observations and are

undetectable.

We finish this section with a discussion of how ill-posed problems, after discretisa-

tion, can be reposed as a regularised optimisation problem which will be used in the

remaining chapters of this thesis. A good resource for inversion algorithms specific to

EIT include [48], and for generic inverse problems in [71, 72, 73].

3.1.3 Reconstruction algorithms for ill-posed problems

In this section we derive the maximum a posteriori (MAP) estimate for ill-posed

problems, which will be used in the subsequent three chapters. In applied inverse

problems we think of two spaces — the model and data space. The model space,

possibly after discretisation, consists of vectors m ∈ Rm of model parameters taking

values in a discrete or continuous set. The data space consists of vectors d ∈ Rd,

taking values in some instrument responses. There are three sources of information

in inverse problems: physical laws, results of measurements and prior information.

The forward model sends the model parameters m to the data d, F : m 7→ d, usually

through some well understood physical law. Given some model parameters m we can

assign a probability density PL(d|m) called the likelihood. Physical measurements give

information about the true values of observable parameters, d. We can assign this

probability density PD(d). If we have prior information of the model parameters we

denote this with a probability density PM(m), called the prior distribution. If no prior

information is given this implies PM(m) is a constant whereas perfect knowledge of the

parameters implies PM(m) is a delta function. Using Bayes’ theorem, the conditional



CHAPTER 3. INVERSE PROBLEM 59

probability density, PC(m|d), is given by

PC(m|d) =
PL(d|m)PM(m)

PD(d)
.

In the Bayesian viewpoint, the conditional probability distribution of the parameters

given the data is interpreted as the solution of the inverse problem, as opposed to a

single set of physical values. Point estimates relate to the most probable values of

the parameters, and dispersion estimates relate to the confidence levels we have of the

parameters. The most common point estimate is the MAP estimate

mMAP = max
m∈M

PC(m|d). (3.3)

This is the most probable configuration of the model given the measurements and prior

information. Assuming the prior and likelihood distributions are Gaussian, we can

form an expression formMAP. We assume the errors are additive, d = F (m)+n, where

n is the measurement noise and Gaussian distributed with zero mean and covariance

Cv, then

PL(d|m) ∝ exp{−1

2
||d− F (m)||2

C−1
v
}

where ||x||A :=
√
xTAx. Similarly if the prior distribution is Gaussian with mean m0

and covariance Cm, then

PC(m|d) ∝ exp{−1

2
||d− F (m)||2

C−1
v
} · exp{−1

2
||m−m0||2C−1

m
},

and hence the MAP estimate is given by

mMAP = arg min
m∈M
{||d− F (m)||2

C−1
v

+ ||m−m0||2C−1
m
}, (3.4)

and we arrive at an output Least-Squares optimisation problem. This can be gener-

alised to non Gaussian hypothesis and non-smooth norms [71, 74] and in general the

MAP estimate can be written

mMAP = arg min
m∈M
{||d− F (m)||2Cv−1 + α2P (m)}.

The first term is the data misfit functional, and this is minimised because we want

model parameters that accurately match the experimental data. The second term is

the prior functional, or penalty term, and is included to enforce stability. A number

of choices for the penalty term exist that enforce different smoothness properties on
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the resulting reconstruction. The simplest choice is Tikhonov regularisation, P (m) =

||m||22, where the hyperparameter α dampens large values in the solution. An obvious

extension of this penalty term is Generalised Tikhonov regularisation,

P (σ) = ||L(m−mr)||22, (3.5)

where L is a symmetric positive definite matrix and mr is the prior mean. Choosing L

as a discrete approximation to the Laplacian, for example, will promote differentiability

of the solution. Other popular choices of penalty term include the total variation (TV)

semi-norm, which is used when jump discontinuities are expected in parameter space

[73, 75, 76], and sparsity and Besov space regularisation [77].

3.2 The Dirichlet-to-Neumann map

We consider two applied boundary voltages u|∂Ω = f ∈ H
1
2 (∂Ω) and v|∂Ω = g ∈

H
1
2 (∂Ω) to the PDE (2.1). The Dirichlet-to-Neumann (DtN) map, Λσ : H

1
2 (∂Ω) →

H−
1
2 (∂Ω), is defined weakly through the equation∫

Ω

σ∇u · ∇v =

∫
∂Ω

fσ
∂v

∂ν
=:

∫
∂Ω

fΛσ(g) =: Qσ(f, g).

This map takes as an input an applied boundary voltage and the resulting (unique)

output as the boundary current density. Qσ(f, g) is the quadratic form associated with

the DtN map, and in particular on the diagonal we have

Qσ(f, f) =

∫
Ω

σ∇u · ∇u =

∫
∂Ω

Λσ(f)f,

which is the power necessary to maintain the potential f on the boundary. To know

Qσ(f, f) or Λσ(f) for all f ∈ H 1
2 (∂Ω) is equivalent. In his seminal work [78], Alberto

Calderón considered the map

ψ : σ 7→ Qσ, (3.6)

and asked whether ψ is injective, that is, does Qσ1 = Qσ2 ⇒ σ1 = σ2? Calderón proved

that the Fréchet derivative of ψ at a constant conductivity is in fact injective using a

class of solutions to Laplace’s equation known as complex geometric optics (CGO).
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3.2.1 Fréchet differentiability

Calderón demonstrated Fréchet differentiability at a constant conductivity, but this

is also true for any feasible conductivity [79]. We consider the Neumann-to-Dirichlet

(NtD) map, Nσ, taking a boundary current density, σ ∂u
∂ν
|∂Ω = f to boundary potential

Nσ : f 7→ u|∂Ω.

Analogously to the DtN map the NtD map is defined weakly through∫
Ω

σ∇u · ∇u =

∫
∂Ω

fNσ(f).

We denote the solution operator mapping a boundary current density to interior po-

tential as TNσ : H−
1
2 (∂Ω)→ H1(Ω). We have the following theorem, expressed in the

form given by Lechleiter et al. [80]:

Theorem 3.2.1 (Fréchet derivative of continuum model: Conductivity). Let σ ∈

L∞+ (Ω). The forward operator TNσ is Fréchet differentiable with derivative TN ′σ

TN ′σ(h)f = uF ,

where uF ∈ H1(Ω) solves

aσ(uF , v) = −ah(u, v) ∀v ∈ H1(Ω).

Furthermore Nσ is Fréchet differentiable with the derivative, DNσ, satisfying∫
∂Ω

gDNσ[h]f = −
∫

Ω

h∇u · ∇v, (3.7)

where u and v are solutions to the Neumann problems σ ∂u
∂n
|∂Ω = f and σ ∂v

∂n
|∂Ω = g of

the conductivity equation respectively.

The continuum model is by far the most studied in terms of uniqueness and stabil-

ity results in EIT, although is clearly not an accurate description of physical measure-

ments, the most striking difference being that we can only inject a finite number of

currents, at a finite number of locations, into the domain. Let σ ∈ L∞+ (Ω) and z ∈ RL,

zl > 0, we say the matrix, Rσ,z ∈ RL×L, called the transfer impedance matrix satisfies

U = Rσ,zI.
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If we have full knowledge of the transfer impedance matrix, then we can determine

the boundary potential for any current injection. It turns out that the CEM is also

Fréchet differentiable with respect to the interior conductivity and contact impedance

changes. This is important for non-linear reconstruction algorithms that use a linear

approximation to the forward problem at each iteration. The following theorem is due

to Kaipio et al. [71]:

Theorem 3.2.2 (Fréchet derivative of complete electrode model: Conductivity). Let

σ ∈ L∞+ (Ω), the forward operator T : (σ, z) 7→ (u, U) is Fréchet differentiable, with

derivative T ′ : (h, η) 7→ (uF , UF ) satisfying (uF , UF ) = T ′σ,z(h, η), where (uF , UF ) is

defined

Bσ, 1
z
((uF , UF ), (v, V )) = −

∫
Ω

h∇u · ∇v −
L∑
l=1

ηl

∫
El

(u− Ul)(v − Vl). (3.8)

for all (v, V ) ∈ Ḣ(Ω), where (u, U) is the unique solution to (2.14).

The Fréchet derivative has the same form as in the continuum model i.e. the inner

product of gradients of solutions are the kernel of the derivative in integral form. It

is thus important for the inverse problem to have accurate solutions to the forward

problem as measured in the H1-norm to ensure the derivative is accurately computed.

The Fréchet derivative is also shown to be a compact operator in [79], and so the

linearised inverse problem is severely ill-posed. The map σ 7→ Λσ is also non-linear,

hinting at why fully non-linear inversion is so difficult in practice.

3.2.2 Numerical approximation

There are two methods to compute the Fréchet derivative numerically. Firstly the

Fréchet derivative in integral form (3.7) can be discretised, or secondly the discretised

(FEM) forward problem can be differentiated with respect to conductivity [81, 82, 83].

We show that these operations commute which is not clearly stated in the literature.

The FEM system matrix, S, maps a specific potential to the current density, and

because the forward problem is well posed the inverse, S−1, exists. We denote a

linear operator Z mapping the electrode voltages to the specific measurement protocol

(over all current excitations and voltage measurements). In particular for the mth
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measurement, Vm, Z(m) is a row vector and

Vm = Z(m)S−1f (m).

The vector f (m) is the discretised input current corresponding to the mth measurement,

and the matrix S depends on the specific electrode model used.

Continuum model

For the continuum model, the system matrix has the form

Sij = Aij =

∫
Ω

σ∇ψi · ∇ψj,

where i, j are indices running over the number of nodes. If we have a piecewise constant

discretisation of the conductivity on elements, σ =
∑NE

l=1 σlχl, then the derivative of

the mth measurement with respect to the lth coefficient, σl, is

Jml =
∂Vm
∂σl

=
∂

∂σl
(Z(m)A−1f (m)) = −Z(m)A−1DAσlu

(m), (3.9)

where we have used D(A−1) = −(A−1)(DA)(A−1). The matrix Jc := J is called the

Jacobian matrix and the matrix DAσl has components

[DAσl ]ij =

∫
Ωl

∇ψi · ∇ψj 1 ≤ i, j ≤ Nn. (3.10)

The discretisation and the derivative commute which is important numerically, which

we demonstrate by showing that the FEM approximation to the Fréchet derivative in

(3.7) agrees with the Jacobian matrix. Consider a perturbation in the direction of the

lth characteristic function, h = αlχl, and consider the finite element solution uh, vh

with σ ∂u
∂n
|∂Ω = f and σ ∂v

∂n
|∂Ω = g, then∫

∂Ω

gDNσ[h]f = −
∫

Ω

h∇vh · ∇uh = −
∫

Ωl

αl∇(viψi) · ∇(ujψj)

= (vi)T
(
−
∫

Ωl

αl∇ψj · ∇ψj
)
uj.

= −αlZ(m)A−1DAσlu
(m),

and differentiating with respect to αl, we arrive at the Jacobian matrix (3.9).
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Complete electrode model

For the complete electrode model the system matrix is slightly larger due to the bound-

ary terms (2.44), although the derivative has a similar format and is given by

∂Vm
∂σl

=
∂

∂σl
(Z(m)S−1f (m)) = −Z(m)S−1DSσl(u, U)(m),

where Vm is the mth voltage measurement, (u, U)(m) the vector of nodal and electrode

potentials for the mth measurement and DSσl is given by

DSσn =

DAσn 0

0 0

 .
For details on the numerical implementation of the Jacobian see appendix B.2.

3.2.3 Calderón fields

In Calderón’s seminal paper the derivative at a constant conductivity was calculated,

and shown to be injective using specially constructed CGO solutions, which are har-

monic functions with a highly oscillatory spatial dependence. To show the Fréchet

derivative is injective at a constant conductivity, we need to show that DΛ1[h1] =

DΛ1[h2]⇒ h1 = h2. From (3.7) we thus need to show that if∫
Ω

h∇u[f ] · ∇u[g] = 0

for all harmonic functions 4u[f ] = 4u[g] = 0 then h = 0. We introduce harmonic

functions of the form u = ea·x with a ∈ Cn with a ·a = 0, where · denotes the real inner

product. The condition a · a = 0 implies |Re(a)| = | Im(a)| and Re(a) · Im(a) = 0. We

introduce two fields a = u+ vi and b = −u+ vi. Let u1 = ea·x and u2 = eb·x, then∫
Ω

ha · be(a+b)·x =

∫
Ω

−2h|u|2e2v·xi.

If we extend h = 0 outside of Ω, then∫
Rn

he2v·xi = 0

and thus by the Fourier transform inversion formula h = 0 if we perform this for all

v. Consider the unit disc D ⊂ R2 and a complex frequency ω ∈ C2, ω = a+ zi, where

a, z ∈ R2 with z = (z1, z2) and a = (z2,−z1). Let u = eω·x, then for x ∈ ∂D

u(1, θ) = e(a+zi)·x = ez2 cos(θ)+iz1 cos(θ)−z1 sin(θ)+iz2 sin(θ) = e(iz1+z2)eiθ =
∞∑
k=0

(iz1 + z2)k

k!
eikθ.
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In figure 3.1 we construct CGO solutions with trigonometric current patterns of the

form eikθ. The large complex frequencies, corresponding to finer spatial information

of the conductivity, require many Fourier modes because of increasing contributions

from the (iz1 + z2)k term. The problem is amplified in lung EIT when only a discrete,

band limited, approximation to trigonometric patterns is available.
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Figure 3.1: Construction of CGO solution at complex frequencies ω = 7 + 7i and ω = 14 + 14i
respectively from a basis of 16 trigonometric patterns. The smaller complex frequency is resolved
well with the Fourier basis, but the larger complex frequency, corresponding to the higher spatial
frequency and hence spatial resolution, is not.

The CEM results in a finite dimensional transfer impedance matrix Rσ ∈ Rn×n.

Rσ is self-adjoint, and because the potential is defined up to a constant there are

only 1
2
n(n− 1) independent entries. There is no hope that a generic L∞ conductivity

distribution can be determined from this finite dimensional impedance matrix. How-

ever in [80] it has been shown that the derivative is injective for piecewise polynomial

conductivities when the number of electrodes is sufficiently large.

3.3 Non-linear inverse conductivity problem

Calderón’s paper has initiated much research on the uniqueness of the fully non-linear

inverse conductivity problem. The uniqueness results can roughly be split into the

determination of σ on the boundary and interior of Ω.

3.3.1 Boundary identifiability

We briefly review boundary identifiability results as this is important for our discussion

on anisotropic media in section 3.4, the boundary shape problem in section 4.2.2, as
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well as an important step for interior uniqueness results in dimension n ≥ 3.

The first uniqueness result was proved by Kohn and Vogelius in [84], who showed

that the Taylor series of an isotropic real-analytic conductivity is uniquely determined

from Λγ on ∂Ω, and was later extended by the same authors to piecewise real-analytic

conductivities [85]. An alternative proof by Lee and Uhlmann [86] demonstrates that

the DtN map is an elliptic pseudo-differential operator (PSDO) of order 1, which we

briefly explain (for a much more rigorous treatment of PSDOs see [87, 88].)

Let L be a differential operator with constant coefficients, L(D)u =
∑

α aαD
αu.

From the definition of the Fourier Transform (A.3), and applying L to u(x) we obtain

(Lu)(x) =
1

(2π)n

∫ ∫
ei(x−y)·ξL(ξ)u(y) dy dξ,

where the symbol of the operator, L(D), is defined as L(ξ) =
∑

α aαL(ξα), by replacing

partial derivatives ∂
∂xn

by ξn. Very loosely speaking, a PSDO, Ψ(x,D), is an operator

whose operation on the function u(x) is another function of x given by

Ψ(x,D)u(x) =
1

(2π)n

∫ ∫
ei(x−y)·ξΨ(x, ξ)u(y) dy dξ.

We consider the half-space Ω = Rn
+ = {x = (x′, xn) : xn > 0} with ∂Ω = Rn−1.

Let f ∈ H 1
2 (Rn−1) and let v ∈ H1(Rn

+) be unique solution of

4u = 0 x ∈ Rn
+,

with associated DtN map f 7→ − ∂u
∂xn
|Rn−1 . The Laplacian can be factorized as

4 = (Dxn − i
√
−4′)(Dxn + i

√
−4′),

where Dxj = 1
i
∂
∂xj

, −4′ = −
∑n−1

j=1
∂2

∂x2j
and

(
√
−4′f)(x′) :=

1

(2π)n−1

∫
Rn−1

eix′·ξ′|ξ′|f̃(ξ′)dξ′.

Thus
√
−4′ is a PSDO of order 1 with full symbol |ξ′|. The Laplacian, −4′ has full

symbol ξ′2, and hence
√
−4′ and −4′ are both elliptic and exhibit similar qualitative

behaviour. We write the Laplacian as a coupled system of PDE

(Dxn − i
√
−4′)v = 0, (Dxn + i

√
−4′)u = v, u|∂Ω = f.

The operator (Dxn − i
√
−4′) behaves like a forwards heat equation and is smoothing,

so v ∈ C∞(Ω). The operator (Dxn + i
√
−4′) behaves like a backwards heat equation
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which is severely ill-posed as we observed in section 3.1.1. Let Rf = v|∂Ω, then R is a

smoothing operator and

Dxnu|∂Ω = −i
√
−4′u|∂Ω +Rf.

The left hand side is essentially Neumann boundary data and hence

Λσf := −iDxnu|∂Ω = −
√
−4′u|∂Ω mod smoothing.

The DtN map on the half space with σ = 1 is thus a PSDO of order 1 with full

symbol |ξ′|. This result is a simplification of [86] where C∞ conductivity metrics are

considered. The DtN map is still a PSDO of order 1, although the full symbol is now

given by an asymptotic series, a(x, ξ) =
∑

j≤1 aj(x, ξ). The result shows that

Λσf = δ
1
2Afdx1 ∧ · · · ∧ dxn−1|∂M mod smoothing operator (3.11)

where {xi}n−1
i=1 are boundary normal coordinates. The full symbol of δ

1
2A is clearly

determined by Λg and it is further shown that the complete Taylor series of g at any

boundary point is determined by the full symbol of δ
1
2A.

As well as providing boundary determination, the result sheds light on why EIT

is so challenging. The symbol expansion of Λσ only depends on the Taylor series

of the conductivity on ∂Ω whilst interior conductivity changes are in the smoothing

part of Λσ and hence very difficult to detect in practice. The fact that the DtN

map is an elliptic PSDO of order 1 implies that it can be written as an integral

operator with a distributional kernel G(x, y) [87] and because the DtN map is elliptic

the kernel is smooth (C∞(∂Ω × ∂Ω)) at least off the leading diagonal. The kernel

can be computed explicitly for simple geometries and conductivities using classical

applications of Green’s theorem. The kernel of the DtN map is a function of 2(n −

1) variables, and the objective of the (isotropic) inverse conductivity problem is to

determine a function of n variables from this information. Thus for n ≥ 3 the inverse

problem is, at least formally, overdetermined from a dimension counting argument.

3.3.2 Interior determination

Sylvester and Uhlmann [89] proved global uniqueness in three spatial dimensions for

σ ∈ C∞(Ω̄) and smooth boundary ∂Ω. We outline this result through the transfor-

mation to Schrödinger’s equation in a similar spirit to [90]. This is useful for the
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discussion of exact reconstruction algorithms in section 3.3.3.

A fundamental step is to transform the conductivity equation to a Schrödinger

equation. By direct computation, if σ−
1
2u solves the conductivity equation, then u

solves the Schrödinger equation, (−4 + q)u = 0, with potential q = 4(σ
1
2 )/σ

1
2 . Let

u ∈ H1(Ω), with u|∂Ω = f , then the DtN map associated with Schrödinger’s equation,

Λq : H
1
2 (∂Ω)→ H−

1
2 (∂Ω), f 7→ ∂u

∂ν
|∂Ω, is defined weakly through∫

Ω

(∇u · ∇v + quv) =

∫
∂Ω

vΛqf ∀v ∈ H1(Ω).

Λq is a bounded linear map from H
1
2 (∂Ω) to H−

1
2 (∂Ω) and can be computed from

the conductivity equation DtN map, Λσ. In particular let u solve (−4 + q)u = 0,

u|∂Ω = f , and v = σ−
1
2u solve −∇ · (σ∇v) = 0, v|∂Ω = σ−

1
2f then it can be shown

that Λqf = σ−
1
2 Λσ(σ−

1
2f) + 1

2
σ−1 ∂σ

∂ν
|∂Ωf . We are now in a position to understand the

uniqueness results for the Schrödinger potential. We loosely follow Salo [90] by stating

two theorems:

Theorem 3.3.1 (Sylvester and Uhlmann). Let Ω ⊂ Rn, with n ≥ 3 and σ1, σ2 ∈

C2(Ω). If Λσ1 = Λσ2 then σ1 = σ2.

Theorem 3.3.2 (Salo). Let Ω ⊂ Rn, with n ≥ 3 and q1, q2 ∈ L∞(Ω). If Λq1 = Λq2

then q1 = q2.

Theorem 3.3.2 implies theorem 3.3.1 as demonstrated in [90]. Interestingly this

result hinges on σ having C2 regularity and from boundary determination of the con-

ductivity. By proving theorem 3.3.2 a uniqueness result for the inverse conductivity

problem can be deduced, which we briefly outline. CGO solutions were used to demon-

strate injectivity of the linearised problem and were extended to the fully non-linear

problem by Sylvester and Uhlmann in [89]. Let q = 0, then u = eix·ξ, ξ ∈ Cn, solves

the Schrödinger equation if and only if ξ · ξ = 0. For q 6= 0 consider CGO solutions of

the form u(x) = eiξ·x(1 + r(x)), where r is a correction term. This solves Schrödinger’s

equation if and only if e−iξ·x(−4+q)eiξ·x(1+r) = 0 if and only if (D2+2ξ·D+q)r = −q,

where Di = 1
i
∂
∂xi

. The following lemma, on regularity of r, is due to Salo [90]:

Lemma 3.3.3. Let q ∈ L∞(Ω). There is constant C such that for ξ ∈ Cn, with ξ·ξ = 0,

and |ξ| ≥ max(C||q||L∞ , 1), and for a ∈ H2 with ξ·∇a = 0, the equation (−4+q)u = 0
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has a solution u(x) = eiξ·x(a + r), where r ∈ H1 satisfies ||r||L2 ≤ C
|ξ| ||(−4 + q)a||L2

and ||∇r||L2 ≤ C||(−4+ q)a||L2

We now consider two solutions satisfying (−4+ qi)ui = 0. We have∫
∂Ω

(Λq1 − Λq2)u1u2 =

∫
Ω

(4u1)u2 −∇u1 · ∇u2 − (4u2)u1 +∇u1 · ∇u2

=

∫
Ω

(q1 − q2)u1u2.

Thus Λq1 = Λq2 implies
∫

Ω
(q1 − q2)u1u2 = 0. If we let u1 = eiξ·x(eix·b + r1) and

u2 = e−iξ·x(1 + r2), these both satisfy the conditions in theorem 3.3.3 if b · ξ = 0 then∫
Ω

(q1 − q2)(eix·b + r1)(1 + r2) = 0.

Let ξ = s(ω1 + iω2), where ω1, ω2 must be orthogonal by construction. So ω1, ω2, b

must form an orthogonal set (and so this only works for n ≥ 3). Since ||rj||L2 ≤ C
|s|

this can be chosen arbitrarily small for large enough spatial frequencies s, hence∫
Ω

(q1 − q2)eix·b = 0

holds for every b ∈ Rn. Let q̄ = q1 − q2 inside Ω, and extend to 0 outside Ω, then the

last identity implies the Fourier Transform of q̄ vanishes for every frequency b ∈ Rn,

and hence q̄ = 0.

Optimal uniqueness results

Identifying uniqueness in two spatial dimensions initially proved more difficult until

Nachman [91] showed uniqueness of solution for σ ∈ W 2,p(Ω), with p > 1, with

a positive lower bound and a Lipschitz boundary. In two spatial dimensions, the

uniqueness problem was fully solved by Astala and Päivärinta [92] for σ ∈ L∞(Ω).

In three dimensions, uniqueness has been proved for σ ∈ W 1,∞(Ω) and C1(Ω), as

well as Lipschitz conductivities close to the identity in [93]. Unique identifiability for

σ ∈ L∞(Ω) is still an open problem when n ≥ 3.

3.3.3 Exact reconstruction methods and lung EIT

The original uniqueness result using CGO solutions outlined for the non-linear problem

only worked in dimensions n ≥ 3. Nachman [91] eventually extended uniqueness to
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2D constructively, in that the proof gives rise to a practical reconstruction algorithm.

We briefly explain the d-bar algorithm following Siltanen and Mueller [77] assuming

that σ = 1 in a neighbourhood of ∂Ω. The d-bar method works by constructing CGO

solutions from Λσ by solving for ψ(·, k) for every k ∈ Cn

ψ(·, k)|∂Ω = eik·x − Sk(Λσ − Λ1)ψ(·, k) where (Skf)(x) =

∫
∂Ω

Gk(x− y)f(y) dy

and Gk is the Fadeev Green’s function [94]. Nachman [91] proved that the operator

I + Sk(Λσ −Λ1) is invertible on H
1
2 (∂Ω) and thus ψ(·, k)|∂Ω, can be recovered for any

complex frequency k. This step is severely ill-posed for large |k| as figure 3.1 suggests.

The scattering transform t(k) is computed through

t(k) =

∫
∂Ω

eik·x(Λσ − Λ1)ψ(x, k) dx.

For n = 2 the d-bar equation is given by

∂

∂k̄
µ(x, k) =

1

4πk̄
t(k)e−i(kx+k̄x̄) ¯µ(x, k), (3.12)

and is uniquely solvable for µ given t [91]. Moreover the conductivity can be recovered

from µ(x, k), as σ(x) = limk→0(µ(x, k))2. The d-bar method was first translated to a

practical algorithm by Siltanen et al. [95] for σ ∈ C2(Ω̄) and has been applied with

real chest data in [96] and to determine boundary conductivity in [97].

Reconstruction algorithms for non-linear inverse problems often rely on iterative

gradient based methods to estimate parameters. Iterative reconstruction algorithms

can be highly sensitive to initial guesses and can get stuck in local minima especially

if under regularized. Exact reconstruction algorithms bypass such problems with local

minima. There are still a number of challenges before exact reconstruction methods

can be applied with confidence in lung EIT. Firstly d-bar methods are only completely

understood in 2D because there is no analogous d-bar equation known in 3D. The

scattering transformation can still be computed in 3D, and the high frequency limit of

the scattering transform is the Fourier Transform of the potential q. The Schrödinger

potential q satisfies (−4+ q)σ
1
2 = 0, which is a well-posed problem given q and σ|∂Ω

to compute σ [90]. This approximation has formed the basis of recent exact d-bar

type methods in 3D in [98, 99]. Such high frequency scattering data, however, is very

difficult to obtain in practice when only a relatively small number of electrodes are
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used, and the number of electrodes is typically limited in order to obtain a full set of

measurements quick enough before breathing effects become important. An analogy

can also be drawn between the d-bar methods and the exact Katsevitch reconstruction

algorithm in X-ray CT [100, 101]. In an implementation of the Katsevitch algorithm

in micro-CT [102], it is noted that small errors in the forward problem e.g. the axis of

rotation, can generate images that appear reasonable but with features at the incorrect

spatial location, whereas iterative methods tend to compute the spatial location of

features correctly at the expense of significant blurring. Features at incorrect spatial

locations is clearly a dangerous property for an algorithm to have if EIT is to be used

in clinical diagnosis. Hence an accurate forward problem, including parameters such

as the correct boundary shape and electrode positions is still of paramount importance

before we can use exact methods with confidence in lung EIT.

3.4 Anisotropic media

The uniqueness results discussed in this chapter so far are for a Euclidean domain,

Ω ⊂ Rn, with an isotropic conductivity, σ : Ω → R+. We have demonstrated that,

under certain regularity requirements, the map ψ : σ 7→ Λσ is injective. If σ is

anisotropic, that is σ : Ω → Rd×d is a symmetric positive definite matrix valued

function of Ω, there is a well known obstruction to uniqueness — every diffeomorphism

fixing points on the boundary, which we abbreviate as a distortion, gives rise to a

conductivity producing the same electrical measurements on ∂Ω [103, 104, 105]. In

other words, there is a large equivalence class of conductivities that all give rise to

the same boundary measurements. Anisotropic conductivities are certainly present

in nature in various forms, for example in medical applications muscle tissue has a

preferred direction (1/σ ≈ 240 and 675 Ωcm in longitudinal and tranverse directions

respectively [4]), similar to rock strata in geophysical applications. Improving our

understanding of what information can be obtained about anisotropic conductivities

from the DtN map is thus very important. Another interesting source of anisotropy

arises from the low spatial resolution of EIT. For example if we have microscale layers

of alternating conductivity, we would only reconstruct an homogenised average of the

conductivity which will in general be anisotropic [106]. A practical question that
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arises is given a-priori knowledge of the microscale anisotropy, for example the ratio

of the principal eigenvalues, is it possible to invert the reconstructed homogenized

conductivity to determine some microscale parameters?

In this section we demonstrate the non-uniqueness result for fully anisotropic con-

ductivities and summarise uniqueness results that have been obtained for subclasses of

fully anisotropic conductivities. We further define five classes of anisotropic conductiv-

ity: prescribed eigenvalues, prescribed orthogonal coordinates, prescribed eigenvectors,

fibrous and layered, and discuss potential unique identifiability results for these. We

begin by posing the geometric form of the inverse conductivity problem.

3.4.1 Geometric problem

We now state the geometric problem in EIT based on [31]. We first review a few key

definitions and results on coordinates and mappings between Riemannian manifolds

explicitly (see appendix A.2 for relevant notation) which will be used later in this

chapter and in section 4.2 of the subsequent chapter when discussing the problem

with an inaccurately known external boundary shape. Unless otherwise stated, M is

assumed to be an oriented, compact, Riemannian manifold of dimension n ≥ 3 with

smooth boundary ∂M and metric, g = gijdx
i⊗dxj, with arbitrary coordinates {xi}ni=1,

and volume form µg =
√
|g|dx1 ∧ . . . ∧ dxn.

Coordinate systems

Let p ∈ U ⊂M have local coordinates x : U → Rn given by functions {xi}ni=1 and we

consider the same point p ∈ V ⊂ M with local coordinates y : V → Rn. The metric

transforms as gxij = gykl
∂yk

∂xi
∂yl

∂xj
under a change of coordinates. A metric g is said to be

flat if in some (local) coordinate system it is given by δij, the Euclidean metric. This

is exactly equivalent to the Riemann curvature tensor being zero [107].

Given any Riemannian 2-manifold there exists, at least locally, isothermal coordi-

nates such that the components of the metric is diagonal. In fact the metric tensor

can be written in the form gij(x) = λ(x)δij, where λ : M → R+ is a positive function,

and so the matrix associated with the metric is a multiple of the identity. This is

reasonable because the metric in general consists of 3 independent functions and there

are 2 functions available to change coordinates. There is an extension to this result
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for any Riemannian 3-manifold known classically as triply orthogonal systems (see,

for example, [108].) In particular DeTurck and Yang [109] demonstrated that for such

a 3-manifold there exists an atlas of C∞ coordinate charts for M such that, in each

chart, the metric has the form g = λ1(x, y, z)dx2 +λ2(x, y, z)dy2 +λ3(x, y, z)dz2, where

λi : M → R+ are in general three different functions. We will outline this result in

detail in section 3.4.3. We again note this existence is reasonable because the metric

is composed of 6 independent functions and there are only 3 functions available to

change coordinates.

Mappings between manifolds

We also outline some special maps between manifolds which will become relevant in

the external shape problem in EIT in the subsequent chapter. Firstly two metrics

g1 and g2 on M are conformally equivalent if g1 = αg2 for some positive function

α : M → R+. Let Ψ : (M, g) → (N, h) be a C∞ diffeomorphism and λ : M → R+ a

positive function, then g and h are conformally related if

Ψ∗g = λh or as matrices in coordinates (DΨ)G(DΨ)T = λH,

where G and H are matrices defined by [G]ij = gij, and [H]ij = hij, (DΨ)ij = ∂Ψi

∂xj
is

the matrix of partial derivatives of Ψ. Ψ is called a conformal transformation and

furthermore if h = g then Ψ is called a conformal map. A metric g is conformally flat

if there is a map Ψ : (M, g)→ (N, e) such that

Ψ∗g = λe or as matrices in coordinates (DΨ)G(DΨ)T = λI.

where e is a flat metric. The existence of isothermal coordinates in 2D means that every

compact Riemannian 2-manifold is conformally flat, but in 3 or more dimensions this

is not true. In 3 dimensions a necessary and sufficient condition for a conformally flat

metric is that the Cotton-York tensor is identically zero, and in 4 or more dimensions

the Weyl tensor is zero (see appendix A). Given a vector field X, we can define a

one-parameter family of diffeomorphisms, Ψt, for t ∈ [−ε, ε], by solving the ODE

dΨt
dt
|t=0 = X. The linearised version of the conformal mappings is then LXg = λg,

where LX is the Lie derivative (see (A.19)), and the X that satisfy this system of PDE

are called conformal Killing vector fields.
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Laplace-Beltrami operator

The electric field can be considered as a 1-form du, because the work done moving a test

charge between two points is the integral of the electric field along a curve connecting

these points. The current density J is an (n−1)-form, since the total current crossing a

surface is given by the integral of J over the surface. The conductivity, σ, maps the 1-

form du to the (n−1)-form J i.e. σ : Ω1(M)→ Ωn−1(M) (or σ ∈ Ω1(M)⊗(Ωn−1(M))∗),

and thus is interpreted as the Hodge star map ? : Ωk(M)→ Ωn−k(M) (with k = 1).

Kirchhoff’s law states that the exterior derivative of the current density, J = σdu,

is zero when no interior sources are present, so (?d ? d)u = 0. This results in the

Laplace-Beltrami equation

4gu = Div(gradgu) = 0 or in coordinates
n∑

i,j=1

1√
|g|

∂

∂xi
(
√
|g|gij ∂u

∂xj
) = 0, (3.13)

where |g| = det(gjk). If we set σij =
√
|gkl|gij then we recover the original conductivity

equation in Cartesian coordinates. Taking the determinant of both sides implies,

|σij| = |gij|
n−2
2 , and since gij = |gij|−

1
2σij, we have

gij = (gij)−1 = (
1√
|gij|

σij)−1 = |gij|
1
2σij = |σij|

1
n−2σij.

We see that a (possibly anisotropic) conductivity determines a Riemannian metric

when M is considered as a subset of Rn. Denoting the conductivity σij as a matrix in

Cartesian coordinates and in 3D we have gij = |σ|−1σij.

Boundary conditions

Let u|∂M = f ∈ H 1
2 (∂M). The Dirichlet problem to the Laplace-Beltrami operator is

uniquely solvable on (M, g) [64], and we introduce a Dirichlet-to-Neumann map

Λg : H
1
2 (∂M)→ H−

1
2 (Ωn−1(∂M)), Λg : f 7→ ι?(σdu),

where ι is the inclusion operator, ι : ∂M ↪→ M , and ι∗ is the pullback, which is

independent of the embedding of M . In Euclidean space, it is normal to interpret

the current density as a scalar field on the boundary, f = σ ∂u
∂ν
|∂Ω. On a general

Riemannian manifold there is not necessarily an outward facing normal present unless

the manifold is implicitly assumed embedded in a higher dimensional space.
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3.4.2 Non-uniqueness result

The anisotropic inverse conductivity problem is not unique, a well known result at-

tributed to Tartar in [84]. We demonstrate this result explicitly as this is important

to understand constrained anisotropic media in the remainder of this chapter, as well

as the problem with an inaccurately known external shape in the subsequent chapter.

We consider the conductivity equation (2.1) with Dirichlet data u|∂Ω = f . Through

an integration by parts, the DtN map Λσ : f 7→ (σ∇u) ·ν|∂Ω, and associated quadratic

form Qσ(f, f), are defined weakly through∫
Ω

n∑
i,j=1

σij(x)
∂u

∂xi

∂u

∂xj
=

∫
∂Ω

f

n∑
i,j=1

(σij
∂u

∂xj
)νi =:

∫
∂Ω

f(Λσf) =: Qσ(f, f).

Let Ψ : Ω→ Ω′ be a C∞ diffeomorphism with Ψ|∂Ω = ψ, and let y = Ψ(x), then∫
Ω

n∑
i,j=1

σij
∂u

∂xi

∂u

∂xj
=

∫
Ω′

n∑
i,j,k,l=1

∂Ψl

∂xi

∂u

∂Ψl

σij ◦Ψ−1(y)
∂Ψk

∂xj

∂u

∂Ψk

| det(DΨ)−1|

=

∫
Ω′

(Ψ∗σ)ij
∂ũ

∂yi

∂ũ

∂yj
, (3.14)

where the pushforward conductivity, Ψ∗σ, is given by

(Ψ∗σ)(y) :=
(DΨ)σ(DΨ)T ◦Ψ−1(y)

| detDΨ|
ũ(y) = (u ◦Ψ−1)(y). (3.15)

Using an integration by parts on the last term in (3.14), we have∫
Ω′

n∑
i,j=1

(Ψ∗σ)ij
∂ũ

∂yi

∂ũ

∂yj
=

∫
∂Ω′

f̃(ΛΨ∗σf̃) = Q′Ψ∗σ(f ◦ ψ−1, f ◦ ψ−1).

Denote f̃ = f◦ψ−1, then ũ is the unique solution of ∂
∂yi

((Ψ∗σ)ij ∂ũ
∂yj

) = 0, with ũ|∂Ω′ = f̃ ,

and Qσ(f, f) = Q′Ψ∗σ(f ◦ ψ−1, f ◦ ψ−1). For h ∈ H 1
2 (∂Ω′) define

((ψ∗Λσ)h)(x) := (Λσ(h ◦ ψ))(y)|y=ψ−1(x). (3.16)

Then we have
∫
∂Ω
f(Λσf) =

∫
∂Ω′

f̃(Λσf) ◦ ψ−1 =
∫
∂Ω′

f̃(ψ∗Λσ)f̃ , and hence

ΛΨ∗σ = ψ∗Λσ. (3.17)

If the deformation Ψ fixes points on the boundary i.e. ψ = id and Ω′ = Ω, then

this simplifies to ΛΨ∗σ = Λσ. Hence there are potentially a large class of anisotropic
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conductivities generating the same electrical measurements on the boundary. We

denote the distortions on M as Diff∂(M)

Diff∂(M) = {Ψ : M →M | Ψ|∂M = id}.

This non-uniqueness observation has broadly generated two different approaches to

understanding anisotropy in EIT. The first approach is to determine if the distor-

tions are the only obstruction to uniqueness. Lee and Uhlmann [86] proved that the

boundary fixing diffeomorphisms are the only obstruction to uniqueness for a compact

manifold with real-analytic metric under topological assumptions about the manifold.

This result essentially hinges on Λg being a PSDO which determines the full Taylor

series of g at the boundary. Lassas, Taylor and Uhlmann [46] improved this result by

replacing compactness with completeness and removing the topological assumptions.

In particular they proved:

Theorem 3.4.1 (Lassas, Taylor and Uhlmann). Let M1 and M2 be complete, con-

nected, real-analytic Riemannian n-manifolds with boundary with n ≥ 3. Assume

the boundaries ∂Mj are compact and all boundary points are regular, in the sense of

Wiener. Assume that ∂M1 and ∂M2 contain a non-empty open set Γ1 = Γ2 = Γ,

which are identified by a diffeomorphism. Assume each boundary is real analytic, with

the metric tensors analytic up to Γj. Assume ΛΓ,g1 and ΛΓ,g2 coincide. Then M1 and

M2 are isometric.

We note that the result for n ≥ 3 assumes a high degree of regularity of the metric

in that it is real analytic. For the case n = 2, Sylvester [103] proved distortions are the

only obstruction for C3 conductivities sufficiently close to the identity. Astala, Lassas

and Päivärinta [45] effectively completed the problem for n = 2 in the sense that the

DtN map determines L∞ anisotropic conductivities up to a H1 distortion.

The second approach is to determine if there is unique identifiability for certain

classes of anisotropic media. For example in the isotropic case in Euclidean space,

with dimension n ≥ 3, the space of boundary fixing diffeomorphisms consists of con-

formal maps of Euclidean space that are the identity on ∂Ω. For n ≥ 3, the conformal

maps are exactly the similarity transformations: rotations, scaling, translations and

inversions (see section 4.2.1). An isotropic conductivity is locally invariant under the

rotation group, and the translations, scalings and inversion can only be the identity
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because of the condition F |∂Ω = id. So the equivalence class in the isotropic case de-

generates to exactly the identity diffeomorphism. This raises the question that when

does the equivalence class of diffeomorphisms reduce to a single identity diffeomor-

phism? An early result by Kohn and Vogelius [84] demonstrated uniqueness if the

entire eigenspace of the anisotropic conductivity is known apart from a single eigen-

value. In [31] uniqueness for the conformal inverse problem, that is the recovery of a

function α on M given the metric has the form g = αg0, with g0 known, was shown

to hold. The isotropic problem is a special case of this result when g0 is the Euclidean

metric. In [110] it was shown that if the conductivity matrix A(x) is assumed to have

the structure A(a(x)), where A(t) is a known matrix function and a(x) is an unknown

scalar field, then this is uniquely identifiable under the assumption of monotonicity,

A(t)′ ≥ CI > 0. This was generalised in [111] to A(x) = A(x, a(x)), where again a(x)

is unknown and A(x, t) is known still under the monotonicity assumption.

3.4.3 Elasticity

Before discussing the anisotropic inverse conductivity problem further, we discuss some

problems in theoretical elasticity. Firstly the Saint-Venant consistency condition is

analogous to the vanishing of the Cotton-York tensor when considering an inaccurately

known external shape with isotropic conductivity in the subsequent chapter. Secondly

two problems in theoretical elasticity will be outlined in detail as this will be directly

used when discussing anisotropic conductivities with constrained eigendata.

Curvature and Saint-Venant’s condition

We consider Ω ⊂ Rn in Euclidean space endowed with Cartesian coordinates, and let

F : Ω → Ω′ : x 7→ Ψ(x) = y represent a deformation. Let {∂i}ni=1 represent tangent

vectors at x, then the orthonormal pair, ∂i and ∂j, are sent to Ψ∗∂i,Ψ∗∂j under the

differential of Ψ at x. At the deformation point x and y we have the metric ds2 and

dS2 respectively given by

ds2 = gij(x)dxi ⊗ dxj = (dxi)2, dS2 = gij(y)dyi ⊗ dyj = (dyi)2.
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where the second equalities follow since we are in Euclidean space using Cartesian

coordinates. The pullback of the metric under Ψ, Ψ∗dS2, is thus

Ψ∗(dS2) =
∑
i,j,k

∂Ψk

∂xi

∂Ψk

∂xj
dxi ⊗ dxj.

The difference of the two metrics defines a non-linear strain tensor, εij, through

2εijdx
i ⊗ dxj := Ψ∗(dS2)− ds2 =

(∂Ψk

∂xi

∂Ψk

∂xj
− δij

)
dxi ⊗ dxj.

Consider an infinitesimal strain field u, defined by Ψ(x) = x+εu(x), with ε sufficiently

small, then the linearised strain tensor (an order 2 symmetric tensor) is given by the

symmetrized derivative of the deformation field

µij =
1

2

(∂ui
∂xj

+
∂uj

∂xi

)
=:

1

2
∇S(u),

where∇S is the symmetrised derivative of u. The tensor µij is in fact the Lie derivative

of the Euclidean metric, e, with respect to u (A.19)

µ =
1

2
Lue.

A question we can ask is given a rank 2 tensor field, µij, how do we know if this is the

strain tensor of some deformation field? There is a consistency condition that this is

true if and only if Sijkl = 0, where

Sijkl =
∂2µjk
∂xixl

+
∂2µli
∂xkxj

− ∂2µjl
∂xkxi

− ∂2µik
∂xlxj

,

known as the Saint-Venant tensor [112, 113]. The Riemann curvature tensor measures

the deviation of choosing local coordinates at a point on a manifold such that the metric

is flat, and is given by (A.21). The diffeomorphism Ψ is a map between Euclidean

spaces and thus the Riemann tensor must vanish for both the original metric e and the

perturbation e+µ. Consider the perturbation of the Euclidean metric in the direction

of the strain tensor i.e. g = e + εµ. Amrouche et al. demonstrate in [113] that the

Saint-Venant integrability condition is equivalent to the linearisation of the Riemann

tensor of the perturbation of the Euclidean metric being zero

Sijkl = lim
ε→0

Rijkl(ε)

ε
,

where R(ε) refers to the Riemann tensor with metric gij = eij+εµij. Ciarlet et al. show

in [112] that the Saint-Venant condition is the extension of the Poincaré lemma for
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vector fields to matrix fields. The classical Poincaré lemma asserts that, on a simply

connected domain Ω, if ∇ × v = 0 for a vector field v then v = ∇f for some scalar

field f . In the language of differential forms, on a simply connected manifold M , if

dF = 0, then F = du for some u so that every closed form is exact. The extension to

matrix fields is that if ∇× (∇×w) = 0 for a matrix field w then w = ∇S(v) for some

vector field v, where (∇× w)ij = εilk∂lwjk, where εilk is the Levi-Civita symbol.

Recovering the deformation field from principal strains

In the same article DeTurck and Yang also consider the inverse problem of determining

the deformation field given the eigenvalues of the strain tensor [109]. We outline

this result as we will use this directly when discussing anisotropy with prescribed

eigenvalues. The authors considered two Riemannian manifolds (M, g) and (N, h).

Let Ψ : M → N be a diffeomorphism, then λ(x) is said to be an eigenvalue of Ψ

at x ∈ M if det(Ψ∗h − λg)(x) = 0. The goal is to recover Ψ given a set of positive

C∞ functions λ1, λ2, . . . , λn on M that are the eigenvalues of Ψ. Let e1, . . . , en be an

orthonormal basis of vector fields with respect to g on M , if Ψ : M → N , then we define

〈ei, ej〉Ψ∗h := 〈dΨ(ei), dΨ(ei)〉h. Let S map a symmetric matrix to its eigenvalues in

increasing order, and consider the (non-linear) PDE

S(〈ei, ej〉Ψ∗h) = λ,

where λ is a vector valued function λ ∈ C∞(M,Rn). The authors show the linearisation

is diagonal hyperbolic. They further consider submanifolds M ′ and N ′ of M and

N respectively and let ψ : M ′ → N ′ be a diffeomorphism. The authors further

show that if λ, M ′, N ′ and ψ are known, then ψ can be extended, at least in a

neighbourhood of M ′, to the diffeomorphism Ψ provided the Cauchy data is admissible.

They demonstrate that a sufficient condition for admissible Cauchy data is that the

eigenvalues κ1, . . . , κn−1 of ψ∗h′ with respect to g′ are positive, distinct and interlock,

λ1 < κ1 < λ2 < . . . < κn−1 < λn. (3.18)

The admissibility condition for the Cauchy problem can be interpreted as meaning that

the eigenvectors at p ∈M ′ can not lie in the tangent space TpM
′. Hence by theorems

A.1.3 and A.1.4 the non-linear Cauchy problem is well-posed and it is possible to
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solve for the interior diffeomorphism Ψ, given ψ : M ′ → N ′ and λ ∈ C∞(M,Rn) up

to 2n sign choices. These sign choice represent choices of the orientation of the flag,

dψ(e1), . . . , dψ(en). To sum up DeTurck and Yang proved the following [109]:

Theorem 3.4.2. Let (M, g) and (N, h) be C∞ manifolds and λ1, . . . , λn be C∞ func-

tions from M to (0,∞) such that λi(x) 6= λj(x) whenever i 6= j for all x ∈ M . Then

in a neighbourhood of any p ∈ M there exists a C∞ diffeomorphism Ψ such that Ψ∗h

has eigenvalues λ1, . . . , λn. The C∞ Cauchy problem for Ψ given ψ is locally solvable

and has 2n solutions provided the non interlocking condition (3.18) is satisfied.

Orthogonal coordinates

In section 3.4.1 it was stated there exists coordinates on a 3-manifold in which the

metric is diagonal. We outline this result in detail as we will use this to understand

anisotropic conductivities with prescribed orthogonal coordinates. The authors at-

tempt to solve the non-linear system of PDE

∂Ψi

∂xk
∂Ψj

∂xl
gij(x) = 0, k 6= l, (3.19)

for the orthogonal coordinates {Ψi} in terms of the original coordinates {xl}. They

demonstrate that although the first condition in theorem A.1.5 is satisfied, the sec-

ond condition on the dimension of ker(σP (ξ)) is not. Hence the linearisation is not

symmetric hyperbolic and there is no obvious theory to deduce anything about the

non-linear problem. This difficulty is a reflection of the fact that if (x, y, z) are orthog-

onal coordinates then so are (f(x), g(y), h(z)) for monotone functions f, g, h.

DeTurck and Yang demonstrate the existence of orthogonal coordinates in the C∞

category of metrics using the technique of moving frames, which we outline in detail.

Solving for an orthogonal frame, as opposed to the coordinates, bypasses the non-

uniqueness due to the monotonic functions adressed above. Following Cartan [114],

who proved this in the real-analytic category, we let {ē1, ē2, ē3} be an orthonormal

frame of vector fields on M and {ω̄1, ω̄2, ω̄3} be the dual basis of 1-forms. They search

for coordinate functions (x1, x2, x3) so that 〈 ∂
∂xi
, ∂
∂xj
〉g = 0, with the orthonormal

coframe associated to (x1, x2, x3) being (not summing over repeated indices)

ωi = f idxi f i = (〈dxi, dxi〉g)−
1
2 i = 1, 2, 3.



CHAPTER 3. INVERSE PROBLEM 81

Three applications of Frobenius’ theorem (A.33) for the existence of xi given ωi give

ωi ∧ dωi = 0 i = 1, 2, 3. (3.20)

Now {ωi} also satisfies the structure equations for Riemannian geometry (A.18)

dωi =
∑
j

ωj ∧ ωij i = 1, 2, 3, (3.21)

where ωij is the skew-symmetric matrix of connection 1-forms (A.17). Substituting

equation (3.21) in (3.20) and repeated use of the skew-symmetry of ∧ and ωij in it’s

indices, leads to three equations

ω1 ∧ ω2 ∧ ω1
2 = 0, ω1 ∧ ω3 ∧ ω1

3 = 0, ω2 ∧ ω3 ∧ ω2
3 = 0. (3.22)

The unknown coframe {ωi} is related to the reference coframe {ω̄i}, through ωi =∑
j b

i
jω̄

j and ω̄j =
∑

k b
k
jω

k, where b is an orthogonal matrix valued function of M .

DeTurck and Yang demonstrate that ωij can be eliminated from (3.22) and can be

written as three non-linear equations in terms of bij. The authors demonstrate that

the linearisation of these equations is symmetric hyperbolic. In particular choose the

reference frame to be the frame we are linearising about, bij(x) = δij, and let βij be the

variation in b (which is skew-symmetric since b is orthogonal). To first order in β

∂

∂x̄1
(β2

3) = 0,
∂

∂x̄2
(β3

1) = 0,
∂

∂x̄3
(β1

2) = 0, (3.23)

which is a diagonal, and hence symmetric, hyperbolic system of PDE (see section

A.1.2.) They further demonstrate that Cauchy data can be specified on a surface

Σ ⊂ M3 in the following way: Admissible Cauchy data consists of the coframe {ωi}

on Σ and is admissible if

ωi(v) 6= 0 ∀v ∈ TΣ, (3.24)

which means that none of the vectors in the dual frame {ei} can be tangent to Σ.

Hence, given non-characteristic Cauchy data, the non-linear problem is well-posed by

theorems A.1.3 and A.1.4. We state DeTurck and Yang’s result as a theorem:

Theorem 3.4.3 (Orthogonal coordinates). Let (M3, g) be a three dimensional C∞

Riemannian manifold. Then there exists an atlas of C∞ coordinate charts on M such

that, in each chart, the metric has the form

g = λ1(x, y, z)dx2 + λ2(x, y, z)dy2 + λ3(x, y, z)dz2, (3.25)

where λi : M → R+, i = 1, 2, 3, are, in general, three different functions.
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3.4.4 Anisotropy with eigenspace constraints

Abascal et al. performed a computational sensitivity study of anisotropic conduc-

tivities in 3D with known eigenvectors in [115]. The study demonstrated that the

conductivity Jacobian with respect to the unknown eigenvalues, with fixed eigenvec-

tors, were full rank, suggesting that this constraint on the conductivity eigenspace

allows unique recovery of the eigenvalues. When considering the eigenspace of the

contravariant electrical metric gij, the eigenvalue equation gijvi = λvj does not make

sense because the left and right hand side are contravariant and covariant vectors re-

spectively. We instead consider eigenvalues of the metric g with respect to another

metric, say, h (or more practically the Euclidean metric e). The eigenvalues are the

solutions λ(x) of det(g − λh)(x) = 0 for x ∈ M , which is invariant under a local

coordinate change.

In this section, we propose a theoretical framework to demonstrate unique recovery

with given constraints on the eigenspace of the metric g. Given a diffeomorphism

Ψ : Ω→ Ω with Ψ|∂Ω = id, we know that σ and Ψ∗σ defined by (3.15) have the same

DtN maps (3.17). We want to prescribe certain structure to σ and Ψ∗σ. More precisely,

let σ and σ′ be matrix valued functions of the conductivity and its pushforward. We

want to characterise solutions Ψ ∈ Diff∂(Ω) of the non-linear system of PDE

(DΨ(x))σ(x)(DΨ(x))T = det (DΨ(x))σ′(Ψ(x)), (3.26)

such that the matrix valued functions σ and σ′ share a specific constraint on their

eigenspace. This eigenspace constraint, and the additional constraint that Ψ is fixed

at the boundary, will restrict the set of diffeomorphisms. The ideal case would be to

show that the solution space of diffeomorphisms reduces to the identity, as is the case

when σ and σ′ are both a-priori assumed isotropic.

Prescribed eigenvalues

We first consider the situation when all the eigenvalues of g with respect to h are known,

and the goal is to determine g given Λg. We call this the prescribed eigenvalues inverse

conductivity problem. We begin with a conjecture for this problem followed by a local

uniqueness result, and an explanation for why the conjecture may be true:
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Conjecture 3.4.4 (Prescribed eigenvalues). Let (M, g1), (M, g2), (M,h) be complete,

connected real-analytic manifolds of dimension n ≥ 3 with compact boundary ∂M . As-

sume the eigenvalues of g1 and g2 with respect to the known metric h are λ1, λ2, . . . , λn,

with λi 6= λj everywhere in M , and the eigenvalues κ1, κ2, . . . , κn−1 of ι∗g1 and ι∗g2

with respect to ι∗h are given and satisfy the interlocking property (3.18), where ι :

∂M ↪→M . If Λg1 = Λg2, then g1 = g2.

By drawing a direct analogy to the inverse deformation problem considered in

section 3.4.3 we have the following local result:

Theorem 3.4.5 (Local prescribed eigenvalues). Given all the conditions in conjecture

3.4.4 and that Λg1 = Λg2, then g1 = g2 in an ε-neighbourhood of ∂M .

Proof. We consider the identical embedding of (M,h) in (M, g1) and (M, g2). We

assume that the eigenvalues of g1 and g2 are known with respect to h and are the

same, so we know λ ∈ C∞(M,Rn) satisfying

det(g1 − λh)(x) = 0 det(g2 − λh)(x) = 0 for all x ∈M. (3.27)

Theorem 3.4.1 asserts that if Λg1 = Λg2 then g1 = Ψ∗g2 for some Ψ ∈ Diff∂(M). Thus

from the a-priori assumption on the eigenvalues of g1 and g2 we have

det(Ψ∗g2 − λh)(x) = 0 det(g2 − λh)(x) = 0 for all x ∈M. (3.28)

Theorem 3.4.2 states that Ψ is uniquely determined in an ε-neighbourhood of ∂M from

the restriction ψ : ∂M → ∂M , given the sufficient conditions on the eigenvalues in

(3.18) up to 2n sign choices. The sign choice is fixed by choosing an orientation for each

of the vectors e1, . . . , en for every x ∈ ∂M . In particular Ψ = id is a solution in this

ε-neighbourhood and, since Ψ is unique, we thus have g1 = g2 in this ε-neighbourhood.

There are a number of possible improvements to this result. Firstly we note that

theorem 3.4.2 is true for C∞ metrics, and so if the regularity of the metric in theorem

3.4.1 was improved from C∞ to real-analytic, then the above would be true in the C∞

category. Secondly, this result is only true in an ε-neighbourhood of ∂M due to theo-

rem A.1.3, and it is clearly of interest to understand if this can be extended to a global

result over M to prove conjecture 3.4.4. The conditions in theorem 3.4.1 are true for
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a complete and hence compact manifold, and so given an open cover of orthogonal

coordinate charts of the manifold there exists a finite subcover of orthogonal charts

covering the manifold. We apply a frame in a neighbourhood of b ∈ ∂M with the

prescribed eigenvectors satisfying the conditions in (3.18) and apply theorem 3.4.2 to

uniquely recover Ψ in this chart. We then consider a surface of intersection of the cur-

rent chart with the next coordinate chart, which also satisfies the conditions in (3.18)

and again apply theorem 3.4.2 to recover Ψ in this chart, and continue this until we

reach an arbitrary interior point p ∈M . It is unclear, however, if the ε-neighbourhood

in theorem A.1.3 can be chosen large enough for this continuation argument to hold.

It is worth pursuing further research into the validity of this argument, perhaps with

some additional topological assumptions on M , to obtain a global result.

Prescribed eigenvectors

Theorem 3.4.3 states that on any 3-manifold there exists an atlas of charts in which the

components of the metric are diagonal. We assume a-priori we are working in such a

local orthogonal coordinate system, with the metric g having the form g =
∑

i λi(dx
i)2

for positive coordinate functions λi : M → R+ for i = 1, 2, 3 and x ∈ M . We denote

this as the prescribed orthogonal coordinates problem. We define two metrics g1 and

g2 to be in the same orthogonal class if g1 =
∑

i λi(dx
i)2 and g2 =

∑
i λ
′
i(dx

i)2 for

positive functions λi, λ
′
i : M → R+ for i = 1, 2, 3.

In the outline of the proof of theorem 3.4.3 the orthogonal coframe can be solved for

uniquely in a given coordinate chart given admissible coframe Cauchy data satisfying

(3.24) on a surface Σ ⊂M3. Let Ω ⊂ R3 with Euclidean metric and Cartesian coordi-

nates. If any v ∈ Tx∂Ω at x ∈ ∂Ω are parallel to any of the Cartesian coordinate axes,

then Cauchy data is inadmissible at this point. For example the boundary of a cubic

domain aligned with the Cartesian coordinate axes has no admissible characterisitics.

A spherical domain, on the other hand, will only have exactly 3 non-characteristic

equitorial lines in which there are no admissible characteristics.

There is a single obstruction to uniqueness due to any three monotone functions

that rescale each of the coordinate functions. Theorem 3.4.3 is also strictly local

because we can only guarantee to solve for the coframe uniquely in an ε-neighbourhood

of Σ due to the conditions in theorem A.1.3. It is unknown whether we can continue
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the orthogonal coframe uniquely to an arbitrary point p ∈M , and further research in

this continuation is worth pursuing.

The prescribed orthogonal coordinates problem can in fact be formulated as a

prescribed eigenvectors problem. Let n1, n2, n3 be orthonormal basis in the neighbour-

hood U of x such that ni(x) is an eigenvector of Ψ at x corresponding to the eigenvalue

λi(x), i = 1, 2, 3, we have ni = dxi. Given 3 vector fields everywhere orthogonal on

M , then each vector field forms an integrable distribution whose integral curves are

the orthogonal coordinate functions. We denote these vector fields as the eigenvectors

of the system and the eigenvalues as the coordinate functions at each point x ∈M .

The goal is to determine three eigenvalues of the conductivity field which we call

the prescribed eigenvectors inverse conductivity problem given the eigenvectors. In

particular the prescribed eigenvectors problem boils down to understanding the rigidity

of rescaling the metric by monotone functions that fix points on the boundary. We

state a conjecture on unique identifiability with prescribed eigenvectors, followed by a

uniqueness result assuming a global orthogonal coordinate system and an explanation

of why this may be true.

Conjecture 3.4.6 (Prescribed eigenvectors). Let (M, g1), (M, g2) and (M,h) be com-

pact real-analytic Riemannian 3-manifolds with smooth boundary ∂M . Assume that

the eigenvectors of g1 and g2 with respect to h are n1, n2, n3 so that g1 =
∑

i λi(ni)
2 and

g2 =
∑

i λ
′
i(ni)

2, with the associated eigenvalues satisfying the admissibility condition

(3.24). If Λg1 = Λg2, then g1 = g2.

Theorem 3.4.1 implies that if Λg1 = Λg2 then g1 = Ψ∗g2 for Ψ ∈ Diff∂(M). Thus

if we can show g1 = Ψ∗g2 with Ψ ∈ Diff∂(M) implies Ψ = id, when g1 and g2 are

in the same orthogonal class, then the above conjecture is true. We demonstrate

this result under the assumption of a global coordinate system. For i = 1, 2, 3, let

x−,∂i = minx∈∂M(xi), x
+,∂
i = maxx∈∂M(xi), x

−
i = minx∈M(xi) and x+

i = maxx∈M(xi).

Let I∂i = (x−,∂i , x+,∂
i ) and Ii = (x−i , x

+
i ), then we say I ⊆ I∂ if Ii ⊆ I∂i for i = 1, 2, 3.

Theorem 3.4.7 (Prescribed global orthogonal coordinates). Let (M, g1) and (M, g2)

be C∞ Riemannian 3-manifolds with smooth boundary in the same orthogonal class.

Assume a global orthogonal coordinate system, with I ⊆ I∂, and M and ∂M satisfying

the admissibility condition (3.24). Given Ψ ∈ Diff∂(M) and Ψ∗g2 = g1, then Ψ = id
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in M .

Proof. By assumption g1 =
∑

i λi(ni)
2, g2 =

∑
i λ
′
i(ni)

2 and hence Ψ∗g2 =
∑

i(λ
′
i ◦

Ψ)(ni)
2 preserves the orthogonal coordinates. Theorem 3.4.3 states that there exists

an atlas of orthogonal coordinate charts and we assume there exists a single global

coordinate chart. This assumption means that we do not have to consider any poten-

tial non-uniqueness of orthogonal coordinates arising from continuing the prescribed

coframe on ∂M as Cauchy data into an arbitrary point in the interior.

Any potential non-uniqueness arises due to monotone functions f, g, h that pre-

serve the orthogonal coordinate structure. We consider applying a distortion Ψ to M ,

with orthogonal coordinates (x1, x2, x3), and so the orthogonal coordinate preserving

diffeomorphisms are of the form Ψ(x1, x2, x3) = (f(x1), g(x2), h(x3)) where f, g, h are

the identity on ∂M . We thus want conditions such that f, g, h are the identity in the

interior of M . If all the range of the coordinates are on the boundary, i.e. I ⊆ I∂, and

we have global orthogonal coordinates, satisfying the condition (3.24), then clearly

the rescaling must be fixed because we observe the range of all the coordinates at the

boundary. Hence each of the monotone functions have to be the identity and so the

diffeomorphism Ψ is uniquely Ψ = id.

If theorem 3.4.1 was strengthened to C∞ metrics then the above theorem again

would be true in the C∞ category. It also appears unknown what conditions on a 3-

manifold are required for the atlas of orthogonal coordinate charts to be extended to a

global coordinate system as we assumed in theorem 3.4.7. If the manifold is considered

as a simply connected domain in R3 this is clearly possible to do. For a general M ,

for example, is it true that if a manifold is parallelizable, that is there exists smooth

vector fields X1, . . . , Xn on M such that at any point p of M the tangent vectors Xi(p)

provide a basis for tangent space at p, then can local coordinates be extended to global

coordinates?

Layered and fibrous media

We consider classes of anisotropic conductivities that have two eigenvalues the same

λ2 = λ3, which would be appropriate for materials with a single preferred direction,
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such as muscle tissue. We denote the preferred eigendirection as a vector field N ∈

C∞(Ω,R3). The conductivity can be written in the form σ = αNNT + βI, so that

σN = (α+β)N and σN⊥ = βN⊥, where N⊥ is a vector orthogonal to N . The goal is

then to determine the two eigenvalues α and β and the eigendirection N (which is two

degrees of freedom because the eigendirections are normalisable), which completely

specifies the conductivity. We denote this problem as the fibrous inverse conductivity

problem. The problem is now a mixture of the prescribed eigenvector and eigenvalue

problem which in a sense would combine conjectures 3.4.4 and 3.4.6. We could relax

one of the conditions so that the preferred eigendirection, N , is known for all x ∈M ,

and thus only seek the two distinct eigenvalues α and β.

We further define a layered media to be fibrous but with N satisfying the inte-

grability condition to be normal to a family of surfaces. From (A.33) the necessary

and sufficient condition is that w ∧ dw = 0, where ω is the 1-form associated with the

preferred eigendirection field, ω =
∑

iNidx
i. Computing this condition we get

dω =
∑
i<j

(
∂Ni

∂xj
− ∂Nj

∂xi
)dxi ∧ dxj =⇒ ω ∧ dω =

∑
i<j,k

Nk(
∂Ni

∂xj
− ∂Nj

∂xi
)dxi ∧ dxj ∧ dxk.

Hence dw∧w = 0 implies N ·(∇×N) = 0. Consider one such foliated surface, S, as an

embedded submanifold of M , and denote the inclusion as f : S ↪→M with the pulled

back metric, g|S = f ∗g. Because S is a co-dimension 1 submanifold of M , there exists

another diffeomorphism r : S → S such that r∗(g|S) = γe, where e is a flat metric

(see section 3.4.1), and hence g|S is conformally flat. If the surface S further intersects

with ∂M , and we knew the interior structure of S in M , then it is known that any

distortion restricted to S, Ψ|S, of a conformally flat metric must be the identity [31].

We can not deduce that the entire diffeomorphism is the identity because we can not

a-priori assume that the structure of S in the interior of M is known. However this

additional structure may prove useful when considering whether a layered material is

uniquely determined from Λg, because M now has a product structure. That is the

metric locally takes the form g = g|S ⊕ gN , where g|S is conformally flat, and gN is

the metric associated with the normal eigendirection.

For such a material we want to characterise the solutions Ψ to

(DΨ)T (αNNT + βI)(DΨ) = α′N ′N ′T + β′I Ψ|∂Ω = id. (3.29)
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Assume there are two diffeomorphisms Ψ and Φ with Ψ|∂Ω = Φ∂Ω = id, and consider

difference between two diffeomorphisms. h = Ψ − Φ, with h∂Ω = 0, we arrive at

(keeping only first order terms in h)

(Dh)T (αNNT + βI)(DΨ) + (DΨ)T (αNNT + βI)(Dh) = 0 h|∂Ω = 0. (3.30)

This is clearly a more complicated system of PDE than when working with orthogonal

coordinates. In particular the coefficients of the system depend on the unknowns α, β

and N . The system, in general, is not symmetric hyperbolic and so we can not use the

uniqueness results for such systems as presented in this chapter. Perhaps the technique

of moving frames can be deployed to understand the rigidity of a layered conductivity

under diffeomorphism. We leave this as an open question as to whether a fibrous or

layered material is uniquely identifiable from the DtN map.



Chapter 4

Shape and electrode position

corrections

This chapter will be organised as follows. Firstly a brief motivation for the shape

problem will be discussed followed by a theoretical discussion of uniqueness results for

the simultaneous reconstruction of the external shape and conductivity from the DtN

map. Secondly, a novel calculation of the Fréchet derivative of the continuum model

is presented with respect to the external shape and a novel numerical sensitivity study

will be performed under different measurement strategies. Finally a novel algorithm

is proposed for absolute conductivity and electrode position imaging with a fixed

boundary shape and contact impedance in 3D and numerical results for spherical

and cylindrical geometries presented. In the subsequent chapter, results from a shape

correction algorithm on real human data using the fEITER instrument will be outlined.

4.1 Inaccurately known external shape

An inaccurate knowledge of the external boundary shape and electrode positions are

known to create major artefacts in lung EIT [30, 32, 116]. In the ICU many patients

often have MRI and CT scans during their course of treatment, and if these are

available it is reasonable to use this as prior information to generate an external shape

specific to the patient. A recent study on pig data, with external shapes informed

from CT scans, has demonstrated that informing the shape from CT improves the

quality of EIT reconstructions [117]. The authors define the mismatch ∆S between

89
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a smooth extruded shape represented using a Fourier series and the original extruded

shape (both normalised to π) as the area of symmetric difference between the two

shapes divided by π. The study suggests that there is little difference in the quality

of dynamic EIT reconstructions if the model shape is known within a mismatch of

∆S = 3.91% of the exact shape. MRI and CT can additionally provide us with prior

information of the interior conductivity distribution, which should further improve

the quality of EIT reconstructions. An alternative method of shape capture could

use optical tracking techniques as demonstrated for breast cancer detection in [34].

Even with informed FEM models, however, the shape problem is still present in lung

EIT because when the patient breathes the external shape and the electrode positions

change relative to a fixed geometrical model of the thorax.

To illustrate why boundary shape changes can be so important, the error in mea-

sured voltages on a unit disc with unit conductivity as a function of the standard

deviation in electrode position perturbation are displayed in figure 4.1. In particu-

lar, 16 electrodes are placed equiangular on the unit circle, and the theta coordinate

perturbed by adding normally distributed noise with mean 0 and standard deviation

α. A nearest neighbour adjacent-adjacent drive-measurement strategy is used without

measuring on driven electrodes. With a standard deviation of α ≈ 0.17◦ the total 2-

norm voltage error due to incorrect positions of electrodes is approximately the same

as measurement signal-to-noise ratio (SNR) level of 50, where the addition of SNR to

measurements V ∈ Rm is defined through

V 7→ Ṽ = V +
||V ||
||n||SNR

n, (4.1)

where n ∈ Rm is a vector with entries from the standard normal distribution, ni ∈

N (0, 1). Relatively modest inaccuracies of the electrode position of less than a degree

leads to voltage errors larger than a practical noise level. We observe that even with

the relatively coarse finite element mesh, there is little difference in the measured

voltages between linear, quadratic or cubic approximation, highlighting that shape

changes can be a major source of error in the forward problem in lung EIT.
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Figure 4.1: The figure illustrates the 2-norm error in measured voltages on a unit circle with σ = 1 as
a function of the standard deviation in electrode angle perturbation, α. When α ≈ 0.17◦ the voltage
error is larger than an SNR of 50 of the measurements. We also observe that even with a relatively
coarse mesh (813 elements and 450 nodes), there is negligible difference in the measured voltages
when using linear, quadratic or cubic approximation compared to an SNR of 50.

4.2 Global uniqueness

Lionheart [30, 31] demonstrated that assuming full knowledge of the DtN map and the

conductivity is a-priori assumed isotropic, that if the boundary shape of the reconstruc-

tion model is inaccurately known, an isotropic conductivity can only be reconstructed

if the thorax shape and model domain are related through a conformal map. In other

words, if the model and exact shapes are not related conformally, then we can not find

an isotropic conductivity consistent with the measurements in the model domain. In

this section we review uniqueness results for an isotropic conductivity and an unknown

shape.

4.2.1 Configuration manifolds

In section 3.4 we observed that an anisotropic conductivity determines a Riemannian

metric, gij = |σ|−1σij in 3D, and theorem 3.4.1 also states that Λg determines a real

analytic metric g up to a distortion.

Lionheart [30] modelled the unknown shape problem, by considering the body as

a manifold M with smooth boundary ∂M . A configuration is a smooth embedding

C : M → R3 with C(M) = Ω̄. Knowledge of the DtN map on ∂M corresponds

to knowing the electrode positions and boundary in some coordinate system but not

how this system is embedded in R3. An anisotropic real-analytic metric g can be
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determined on M up to a distortion Φ ∈ Diff∂M(M) by theorem 3.4.1. Given two

configurations there exists a smooth invertible mapping Ψ = C2 ◦ Φ ◦ C−1
1 : Ω̄1 → Ω̄2.

We suppose that two electrical metrics g1 and g2 are found on Ω1 and Ω2 consistent

with the measurements, then there must be such a Ψ satisfying Ψ∗g1 = g2. If the

conductivity is a-priori assumed to be isotropic, g1 = λ1e and g2 = λ2e, it is by

definition conformally flat. We observe that Ψ must be a conformal map between

Euclidean spaces, so that Ψ∗e = λe for some positive function λ.

If the underlying conductivity distribution is assumed to be anisotropic, there is

no reason why Ψ must be conformal to preserve the isotropic structure. As with the

anisotropic inverse conductivity problem, little is known about what information can

be obtained with an incorrectly known external shape and anisotropic conductivity.

For the rest of this section we will assume that the conductivity distribution a-priori

is isotropic.

Conformal maps

Let Ω, Ω̃ ⊂ Rn. For Ψ : Ω→ Ω̃ to be a conformal map between Euclidean spaces, we

require Ψ∗e = λe or as matrices in Cartesian coordinates

DΨTDΨ = λI,

where DΨ is the Jacobian matrix of Ψ = (Ψx,Ψy). Taking the determinant of both

sides we find that the conformal factor, λ, must satisfy λ = det(DΨ)2/n. The structure

of the vector space of conformal maps is dependent on the dimension. In particular

for the case n = 2, this condition is satisfied if and only if the two components of Ψ

satisfy the Cauchy-Riemann equations

∂Ψx

∂x
− ∂Ψy

∂y
= 0,

∂Ψx

∂y
+
∂Ψy

∂x
= 0.

These are satisfied for any complex analytic function, Ψ, and hence the vector space

of such functions is infinite dimensional. Figure 4.2 illustrates a conformal, ΨC , and

non-conformal, ΨNC , map from the unit circle,

ΨC : (x, y) 7→ (x+
ε

2
(x2 − y2 − 1), y + εxy), ΨNC : (x, y) 7→ (x, (1− ε

2
)y), (4.2)

parameterised by ε ∈ R. The boundary voltage data using an adjacent-adjacent

drive-measurement strategy with point electrodes after a conformal distortion is the
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same as without a distortion but the non-conformally mapped domain has noticeably

different boundary data. This highlights how conformal changes in the shape can not

be detected with EIT. In [118] it is further demonstrated experimentally that only

the non-conformal component of the shape deformation can be recovered from the

electrical data in 2D.

For the case n ≥ 3, the space of conformal maps is a finite dimensional Lie group of

dimension (n+ 1)(n+ 2)/2 [30]. Specifically, up to similarity transformations (trans-

lations, dilations and rotations), conformal maps are the identity map or a Kelvin

transformation. This is known as Liouville’s theorem [119] (see [120] for a proof):

Theorem 4.2.1 (Liouville). Let Ω, Ω̃ ⊂ Rn with n ≥ 3. An orientation preserving

diffeomorphism Ψ : (Ω, e)→ (Ω̃, e) is conformal if and only if

Ψ(x) = αAh(x− x0) + b

where α ∈ R, x0 ∈ Rn \ Ω, b ∈ Rn, A is an n× n orthogonal matrix and h(x) = x or

h(x) = x
|x|2 , a Kelvin transformation.

Lionheart [30] uses this result to demonstrate that in 3D the conformal maps can

be fixed (up to similarity) by explicitly measuring three non co-linear coordinates on

the boundary. These measurements fix the vector x0 ∈ R3 above corresponding to

Kelvin transformations and implies that the shape and an isotropic conductivity can

be recovered from the electrical data up to similarity. The dilation can be fixed with

some additional a-priori information of the conductivity and/or contact impedances,

and we can never expect to determine, nor are interested in, the exact orientation or

position of the subject from electrical data.

In three dimensional respiratory EIT, when a generic thorax cross section is used for

the computational domain, it is highly unlikely that this can be mapped to the exact

domain by a conformal map. It is apparent that a good approximation to the exact

shape should be used initially if available, as well as accounting for any discrepancy

explicitly in a reconstruction algorithm if required.

4.2.2 Conformal flatness

In this section we will describe in detail a constructive uniqueness result for the external

shape in 3D. We note different reconstruction algorithms in 2D have been proposed
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Figure 4.2: The top left figure illustrates a unit disc with unit conductivity and the top right and
bottom right illustrates a conformal and non-conformal distortion as a function of ε given by (4.2).
The 2-norm voltage error is plotted in the bottom left figure as a function of ε. The error diverges
for a non-conformal change as ε increases, but is approximately zero for conformal changes. This
highlights that conformal distortions can not be detected from electrical boundary measurements.

by Kolehmainen et al. using minimally anisotropic conductivities and Teichmuller

mappings (see [121, 122, 123, 124].)

In [57] a reconstruction algorithm was proposed to reconstruct the shape and an

isotropic conductivity in three or more dimensions from the observation that a de-

formed conductivity is conformally flat. The Robin boundary value problem (2.15) is

considered, where the data for the inverse problem consists of the Robin-to-Neumann

(RtN) map, Rη : H−
1
2 (∂Ω)→ H−

1
2 (∂Ω), h 7→ σ ∂u

∂ν
|∂Ω, defined weakly through

R(h, h) :=

∫
∂Ω

(Rηh)h :=

∫
∂Ω

σ
∂u

∂ν
(u+ zσ

∂u

∂ν
) =

∫
Ω

σ∇u · ∇u+

∫
∂Ω

z|σ∂u
∂ν
|2, (4.3)

where R : H−
1
2 (∂Ω)×H− 1

2 (∂Ω)→ R is the bilinear form associated with Rη.

Deformation by a diffeomorphism

An incorrect model domain Ω̃ can be viewed as a deformation of the true domain

Ω, through a diffeomorphism Ψ : Ω → Ω̃, with inverse Ψ−1 : Ω̃ → Ω. We denote

ψ = Ψ|∂Ω as the restriction of Ψ to the boundary. When u solves ∇ · (σ∇u) = 0 in Ω,
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then ũ(x̃) = u(Ψ−1(x̃)) and h̃(x̃) = h(ψ−1(x̃)) satisfy the conductivity equation

∇ · (σ̃∇ũ) = 0 in Ω̃ (z̃ν̃ · σ̃∇ũ+ ũ)|∂Ω = h̃

where ν̃ is the unit normal vector of ∂Ω̃, z̃ is the deformed contact impedance and σ̃

is the pushforward conductivity

σ̃(x̃) =
(DΨ(x))σ(x)(DΨ(x))T

| detDΨ(x)|
|x=Ψ−1(x̃)

where DΨ is the Jacobian of the map Ψ. As described in the previous section an

isotropic conductivity can be pushed-forward to an anisotropic conductivity if Ψ is

not conformal. The current flux, J , across the boundary is considered as an invariant

(n − 1)-form, J = ν · σ∇udSE ∈ Ωn−1(∂Ω) where dSE is the Euclidean volume form

of the boundary, or J = i∗(?du). The contact impedance is interpreted as a density

z̃(x̃) = (detDψ(x))z(x), (4.4)

so that zν · ∇u transforms invariantly under Ψ. This rule in turn implies that if

ψ : ∂Ω → ∂Ω̃, the map R̃ = ψ∗R, defined by ψ∗R(h)(x̃) = R(h ◦ ψ)(x)|x=ψ−1(x̃),

satisfies R[h, h′] = R̃[h◦ψ−1, h′ ◦ψ−1] and the measurements are invariant (see section

3.4.2). We have the following theorem due to Kolehmainen et al. [57].

Theorem 4.2.2. Let Ω ⊂ R3 be a bounded, convex C∞ domain, and assume an

isotropic and smooth conductivity σ. Let Ω̃ be a model of the domain and ψ : ∂Ω→ ∂Ω̃

be an orientation preserving diffeomorphism. Assuming complete knowledge of ∂Ω̃, the

contact impedance z ◦ ψ−1 and the map R̃ = ψ∗R, then Ω can be determined up to a

rigid transformation T and the conductivity σ◦T−1 on the reconstructed domain T (Ω).

We briefly outline this result to understand why we have uniqueness up to a rigid

transformation. Firstly the RtN map determines the DtN map since from equation

(4.3), RzΛσ+R = Λσ and so Λσ = (R−1−z)−1 and R = (z+Λ−1
σ )−1. Given two PSDOs

A and B with principal symbols of order a and b respectively then the composition

AB is a PSDO of order a+ b [87]. Λσ is a PSDO of order 1 (see section 3.3.1) and so

Λ−1
σ is a PSDO of order −1. Using a formal Neumann series we also have

R = z−1

∞∑
m=0

(−z−1Λ−1
σ )m,
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and thus R is a PSDO of order 0 with principal symbol 1/z. Now R̃ = Rz̃,σ̃, where

z̃(x) = det(Dψ)z(ψ−1(x)) and σ̃ is the pushforward conductivity and so R̃ determines

z̃, and thus also det(Dψ). Λσ can be determined from Rσ,z, and thus from (3.11), Rσ̃,z̃

determines the Taylor series of g̃jk in boundary normal coordinates [86]. Kolehmainen

et al. use the recovered g̃jk|∂Ω̃ and det(DΨ|∂Ω) to prove that the metric tensor on ∂Ω̃

corresponding to the Euclidean metric of ∂Ω can be determined. The authors further

use a classical result from the geometry of surfaces which states that intrinsically iso-

metric C2 smooth surfaces that are boundaries of a strictly convex body are congruent

in a rigid motion, and so the boundary data uniquely determines the map T ◦ ψ−1

where T is a rigid motion. Hence we can find the surface T (∂Ω) and on it the map

T∗Λσ̃ = T∗Λσ. Hence from the uniqueness of the isotropic inverse conductivity problem

then we can determine σ ◦ T−1.

Construction of the surface T (∂Ω) from the recovered metric g̃jk|∂Ω is a difficult

task numerically. However we have already observed that an isotropic conductivity

pushed-forward by a diffeomorphism is conformally flat. Let η = (Ψm)∗σ be a possibly

anisotropic conductivity in Ω̃ such that σ is isotropic. As observed in section 3.4,

this determines a Riemannian metric gjk = det(η)−1ηjk, and in some coordinates the

metric g is a scalar function times the Euclidean metric, that is g is conformally

flat i.e. gij(x) = e−2α(x)ḡij(x), where ḡij(x) is a metric with zero curvature tensor

and α : Ω → R. The necessary and sufficient integrability conditions for g to be

conformally flat are that the Cotton-York tensor (A.30) vanishes. A penalty term on

the Cotton-York tensor can be included in the reconstruction algorithm.

Conformal map to rigid transformation

We note that this result means that the shape of a convex body can be recovered up

to a rigid transformation for the RtN map as opposed to a more general conformal

transformation for the DtN map. The transformation rule for the contact impedance,

and hence the recovery of det(Dψ), has pinned down the surface area change at every

point on the boundary which fixes the scaling and Kelvin transformation. Intuitively

since the surface metric can be recovered this determines the curvature of the surface

and because the surface is assumed convex, and has for example no saddle points, there

is no ambiguity in the embedding of the surface in R3 up to a rigid transformation.
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4.3 Reconstruction algorithms

In the previous section it was demonstrated that the shape and an isotropic conduc-

tivity can be determined from electrical data, but the conformal flatness approach has

some computational difficulties. Firstly to determine the deformed contact impedance

we need to calculate the principal symbol of the RtN map using highly oscillatory

boundary data, which is impractical with a realistic number (16− 128) of electrodes.

Secondly the more poignant issue is the use of a minimisation term on the Cotton-York

tensor as part of a reconstruction algorithm. The tensor requires the computation of

the derivative of the Ricci tensor, which itself involves second derivatives of the metric

tensor. If the conductivity is assumed to be at least three times continuously differ-

entiable, then this in principle is possible, but this imposes quite a large smoothness

assumption on the conductivity. Piecewise constant conductivities, which are often

used in practice in finite element methods are not even continuous, let alone differ-

entiable. It may be possible to define these derivatives in a weak sense but we will

leave this uniqueness result as simply a theoretical note — in principle, the full data

are sufficient to estimate the shape and isotropic conductivity uniquely up to a rigid

motion. It is of interest from a theoretical perspective to determine if this result can

be generalised to non-convex shapes, because a typical human body will not satisfy

the convexity condition.

A number of alternative reconstruction algorithms to estimate the shape and con-

ductivity from knowledge of the NtD map have recently been proposed in the literature.

A Bayesian approximation error approach [36] has been proposed to reconstruct the

conductivity and a low rank estimate of the shape. This approach treats all sources

of modelling error such as the FE discretisation and the boundary shape, but not the

unknown conductivity, as ‘nuisance’ parameters. The modelling error covariance is

estimated from an ensemble of 150 CT images of thorax shapes and this covariance

is then incorporated into a standard regularised Gauss-Newton method to reconstruct

the conductivity.

Other reconstruction algorithms include calculating the derivative of the data with

respect to shape, in effect to determine the embedding of ∂Ω in Rn. In GREIT [23] a
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Jacobian with respect to electrode movement is calculated and used as part of a regu-

larised Least-Squares algorithm to explicitly account for patient’s breathing movement.

The perturbation Jacobian used in GREIT stems from the work in [125, 126]. The

shape correction work has been extended in [33] [118] where it is demonstrated that

the electrode positions can be reconstructed up to a conformal deformation of the

domain.

In the following two sections we firstly perform a novel calculation of the Fréchet

derivative with respect to boundary shape for the continuum model. Secondly we

outline the calculation of the Fréchet derivative for the CEM with respect to boundary

shape as demonstrated by Dardé et al. [56, 127].

4.3.1 Fréchet differentiability: Continuum model

In this section we perform a novel calculation of the Fréchet derivative of the NtD

map with respect to the boundary shape and electrode position. We consider the NtD

map as depending on a vector field mapping the boundary of the domain to R3. Let

Ψ[h](x) = x+ h(x), for x ∈ ∂Ω, and ∂Ωh represent the perturbed boundary

∂Ωh = Ψ[h](∂Ω) = {y ∈ Rn|y = Ψ[h](x) for some x ∈ ∂Ω}.

We assume that ∂Ω and ∂Ωh are both smooth, and define an origin-centred ball of

radius d > 0, in C1(∂Ω,Rn), denoted Bd. We firstly extend the domain of definition

of Ψ to the whole of Ω, so that Ψ : Ω→ Ωh, and at the end of the calculation we show

that this can be converted back to a vector field h mapping ∂Ω to ∂Ωh.

We consider the NtD map as a linear operator Nh ∈ L(H−
1
2 (∂Ωh), H

1
2 (∂Ωh)), with

the associated quadratic form∫
Ωh

σ∇uh · ∇vh =:

∫
∂Ωh

fhNhgh =: Qh(f, g), (4.5)

which includes the functional dependence of the perturbation field h, fh and gh are

deformed current densities defined below and uh is the solution of the conductivity

equation when Ω is replaced by Ωh. The domain of the conductivity is extended to

be defined over the whole of Rn, so that σ : Rn → R+. In effect this assumption

implies that σ is known within a neighbourhood of the boundary. We consider the

map ψ : h→ Qh and we wish to determine the formal derivative of this at the origin
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i.e. at ∂Ω in the direction h. We denote two applied current densities f = σ∇u · ν|∂Ω

and g = σ∇v · ν|∂Ω. We have the usual weak formulation for the continuum model:

Given f ∈ H− 1
2 (∂Ω), find u ∈ H1(Ω) such that

a(u, v) = f(v) =

∫
∂Ω

f(Ng) ∀v ∈ H1(Ω),

where a(u, v) and f(v) are defined in (2.11).

We now need to define the current density in the perturbed domain. The obvious

candidate would be, fh = f ◦Ψ|−1
∂Ω, which preserves the current density at a point in the

undeformed region to the same point mapped to the deformed boundary. However,

in the case that the electrodes are elastic and can deform, this density would not

necessarily preserve the consistency condition (2.2) that the integral of the current

density is zero across the deformed boundary. Instead we consider the current density,

fh = f ◦ Ψ|−1
∂Ω/ det(JSΨ), where JSΨ is the surface Jacobian defined below. This

preserves the total current over a given region in the undeformed region to the same

region mapped to the deformed boundary, and automatically satisfies the consistency

condition (2.2). The surface Jacobian effectively measures the area change of a given

undeformed region to the deformed region, and so in the event that the electrode

shapes are rigid these two densities would be the same.

We consider two applied current densities fh = f ◦ Ψ|−1
∂Ω/ det(JSΨ) and gh =

g ◦Ψ|−1
∂Ω/ det(JSΨ). We have the weak formulation for the perturbed problem: Given

fh ∈ H−
1
2 (∂Ωh), find uh ∈ H1(Ωh) such that

ah(uh, vh) = fh(vh) =

∫
∂Ωh

fh(Nhgh) ∀vh ∈ H1(Ωh)

where

ah(u, v) =

∫
Ωh

σ∇u · ∇v, fh(v) =

∫
∂Ωh

fhv.

Since this is true for all v ∈ H1(Ωh), then through a change of variables we can write

the integral as

ah(uh, v ◦Ψ−1) =

∫
Ω

|JΨ|J−1
Ψ (σ ◦Ψ)(J−1

Ψ )T∇(Ψ∗uh) · ∇v

=

∫
∂Ω

(Ψ∗fh)v|JSΨ| =
∫
∂Ω

fv = a(u, v),

where Ψ∗u = u ◦ Ψ, JΨ is the Jacobian of Ψ and |JSΨ| is the determinant of the

Jacobian of the restriction ψ := Ψ|∂Ω. This equation states that the total power
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dissipation of the two boundary value problems is the same. We also deduce

ah(uh, vh) = a(Ψ∗uh, v).

Through a change of variables we also have

ah(uh, v ◦Ψ−1) = a(Ψ−1)∗σ(Ψ∗uh, v).

To calculate the Fréchet derivative at the origin in the direction h we estimate (Qh −

Q0)(f, g), and thus

(Qh −Q)(f, g) = ah(uh, vh)− a(u, v) = a(Ψ∗uh, v)− a(Ψ−1)∗σ(Ψ∗uh, v)

=

∫
Ω

(σ − |JΨ|J−1
Ψ (σ ◦Ψ)(J−1

Ψ )T )∇(Ψ∗uh) · ∇v.

The vector field h on ∂Ω can be split into normal and tangential components, hν =

(h|∂Ω · ν) and ht = h|∂Ω − hνν. To calculate the formal derivative to this problem, we

linearise the three terms J−1
Ψ , |JΨ| and σ ◦ Ψ on the right hand side to first order in

||h||C1 . Firstly, for the Jacobian matrix JΨ we have

(JΨ)ij =
∂Ψ(x)i
∂xj

= δij +
∂hi
∂xj

,

and so JΨ = I + Jh, where (Jh)ij := ∂h(x)i
∂xj

, and thus

J−1
Ψ = I − Jh +O(||h||2C1). (4.6)

Secondly, for the composition term Ψ∗σ

(Ψ∗σ)(x) = (σ ◦Ψ)(x) = σ(x+ h(x)) = σ(x) + h · ∇σ(x) +O(||h||2C1) (4.7)

Thirdly, for the determinant of the Jacobian det(JΨ), the determinant of a matrix is the

product of its eigenvalues, which implies det(I+A) =
∏n

i=1(1+ai) = 1+
∑

i ai+O(a2
i ),

where {ai}ni=1 are the eigenvalues of A. Hence

det(JΨ) = det(I + Jh) = 1 + tr(Jh) +O(||h||2C1) = 1 +∇ · h+O(||h||2C1), (4.8)

For the Fréchet derivative for the CEM we also require the linearisation of |JSΨ|

to first order in ||h||C1 so also calculate this. Firstly we note that the boundary

can be considered as a two dimensional Riemann surface, M2, embedded in R3. We

consider a point x = (x1, x2, x3) on the surface, and let Ψ : U ⊂ R2 →M2, (u1, u2) 7→
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(x1, x2, x3) = Ψ(u1, u2), where u ∈ U ⊂ R2. The ambient metric in R3 is simply δij,

and thus ds2 = dxi ⊗ dxi. Pulling the metric back under Ψ, Ψ∗ds2,

Ψ∗ds2 =
3∑
i=1

2∑
α,β=1

∂xi

∂uα
∂xi

∂uβ
duαduβ =

2∑
α,β=1

gαβdu
α ⊗ duβ

The volume form for the surface, dS, is given by
√

det gdu1 ∧ du2. If we denote the

vector ei = ∂x
∂ui

, and remembering gαβ = 〈 ∂x
∂uα

, ∂x
∂uβ
〉, then

det g = (e1.e1)(e2.e2)− (e1.e2)2 = |e1|2|e1|2 sin2(θ) = |e1 × e2|2.

Choose e1 and e2 so they are orthogonal and tangential to the surface, and denote the

outer unit normal by ν = e1 × e2. We consider the perturbation Ψh|∂Ω : x 7→ x̃ =

x+ ht + hνν, where we have resolved into tangential and normal components.

det g̃ = |ẽ1×ẽ2| = |e1×e2+e1×
∂h

∂u2

+
∂h

∂u1

×e2+
∂h

∂u1

× ∂h

∂u2

|2 = |ν+b|2 = 1+2ν ·b+b·b.

where

b = e1 ×
∂h

∂u2

+
∂h

∂u1

× e2 +
∂h

∂u1

× ∂h

∂u2

.

Using the vector identity (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) (for arbitrary

vectors a, b, c, d ∈ R3) yields

ν · b =
2∑
i=1

ei ·
∂h

∂ui
= Divgh = Divg(ht) + hνDivg(ν),

where the second equality follows by definition of Divg, the divergence with respect to

the surface metric g, and the last equality by splitting the h field explicitly into normal

and tangential components, h = ht + hνν. The first term on the right is the surface

divergence of the vector field ht. The last term is equal to 2Hhν , where H := Divg(ν)

is the mean surface curvature [128]. For a two-dimensional surface, this equals the

addition of the maximum and minimum curvatures at a given point. Thus

det g̃ij = 1 + 2(Divg(ht) + 2Hhν) +O(||h||2C1).

If we consider a tangential vector field on ∂Ω, this will give us the divergence of the

tangential vector field, Divht, we thus have

|JSΨ| =
√

det g̃ij = 1 + Divht + 2Hhν +O(||h||2C1), (4.9)
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Using the three estimates for J−1
Ψ ,Ψ∗σ and det(JΨ) in (4.6), (4.7) and (4.8) we have

a(Ψ∗uh − u, v) =

∫
Ω

(σJTh + Jhσ − (h · ∇+∇ · h)σ)∇(Ψ∗uh) · ∇v.

From the above equation, and ellipticity of a(·, ·) (2.12), we have two estimates for

some constants A,B

A||Ψ∗uh − u||H1||v||H1 ≤ |a(Ψ∗uh − u, v)| ≤ B||h||C1||v||H1 .

Choosing v = Ψ∗uh − u, implies continuity of h 7→ (Ψ∗uh − u),

||Ψ∗uh − u||H1 ≤ C||h||C1 .

Consider the problem: Find w ∈ H1(Ω) such that

a(w, v) = sh(v) ∀v ∈ H1(Ω),

where

sh(v) =

∫
Ω

(σJTh + Jhσ − (h · ∇+∇ · h)σ)∇u · ∇v. (4.10)

We have

a(Ψ∗uh − u− w, v) =

∫
Ω

(σJTh + Jhσ − (h · ∇+∇ · h)σ)∇(Ψ∗uh − u) · ∇v.

Let v = Ψ∗uh − u − w, then the above equation, (2.12), and the continuity of h 7→

(Ψ∗uh − u) implies

||Ψ∗uh − u− w||H1(Ω) ≤ C||h||2C1 .

Denote u and v as solutions of the conductivity equation (2.1) with boundary currents

f1 = σ ∂u
∂ν
|∂Ω and f2 = σ ∂v

∂ν
|∂Ω respectively, and we call these solutions the forward

and adjoint field respectively. We thus have the solution w is the Fréchet derivative of

h 7→ Qh at the origin (i.e. ∂Ω) in the direction h.

Geometric interpretation

The geometric interpretation of the linear functional (4.10) is that it is the Lie deriva-

tive of the conductivity tensor with respect to the vector field h,

sh(v) =

∫
Ω

(Lhσ)∇u · ∇v,
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see equation (A.19). Assume the metric is preserved under the flow induced from the

perturbation vector field h, that is Lhσ = λσ for some positive function λ. The h that

satisfy these are exactly the conformal Killing vector fields (see section 3.4.1) which

are the linearised version of the conformal mappings discussed in section 4.2. Hence

the linearised version of the non-uniqueness due to an inaccurately known boundary

shape is that a change in Nσ can be attributed to either an isotropic conductivity

change λσ or a conformal Killing vector field h.

Electrode and boundary movement - tangential and normal components

The expression for the linear functional sh in (4.10) is defined over Ω, but can be

simplified to an integral over ∂Ω. In particular the integrand can be written in the

form div(a) + b for a given vector field a and scalar field b through the identity

((σJTh + Jhσ − (h · ∇+∇ · h)σ)∇u) · ∇v = −(h · ∇v)∇ · (σ∇u)− (h · ∇u)∇ · (σ∇v)

+∇ ·
(

(h · ∇u)σ∇v + (h · ∇v)σ∇u− ((σ∇u) · ∇v)h)
)
. (4.11)

The key point is that if u and v solve the conductivity equation, the first two terms

on the right are zero, and so the linear functional is really an integral of the form∫
Ω

div(a), which can be simplified through the divergence theorem. We find that

sh(v) =

∫
∂Ω

(h · ∇u)σ
∂v

∂ν
+ (h · ∇v)σ

∂u

∂ν
− hν((σ∇u) · ∇v). (4.12)

The tangential components move the electrodes around a fixed boundary, whereas

the normal components move the boundary, and we consider these separately. Given

a vector field a : ∂Ω → R3, we denote the component normal to ∂Ω as aν = (a · ν)

and the component tangential to ∂Ω as at = a − aνν. We consider a perturbation

vector field in the tangent bundle of ∂Ω, that is h ·ν = 0 i.e. h = ht, which are exactly

the vector fields that move the electrodes along the boundary with the external shape

fixed. From (4.10) and the divergence theorem, we have that∫
∂Ω

(DN0[h]f1)f2 =

∫
∂Ω

(ht · (∇v)t)f1 + (ht · (∇u)t)f2. (4.13)

The derivative consists of two terms and it is instructive to explain their physical

significance. The first term is the drop in power at the measurement electrodes from

stimulating at the wrong location and is proportional to the product of the (tangential)



CHAPTER 4. SHAPE AND ELECTRODE POSITION CORRECTIONS 104

gradient of the measurement adjoint field, the tangential perturbation vector field

and the forward field current density. The second term is the drop in power at the

measurement electrodes from measuring at the wrong location and is proportional to

the product of the (tangential) gradient of the excitation forward field, the tangential

perturbation vector field and the adjoint field current density. The formula is useful as

it predicts which drive and measurement strategies are best to determine the shape.

For example if measurements are recorded near drive electrodes, we expect the gradient

of the forward and adjoint fields to be large and hence measurements there will have

a high sensitivity to boundary shape changes.

For boundary movement we only consider the normal component of h, h = hνν,

and we obtain∫
∂Ω

(DN0[h]f1)f2 =

∫
∂Ω

(hνν · (∇u)ν)f2 − hνσ(∇u)t · (∇v)t. (4.14)

The first term is the drop in power at the measurement electrodes from measuring

at the wrong location and is proportional to the product of the (normal) gradient of

the excitation forward field, the normal perturbation vector field and the adjoint field

current density. We note that in the limit of point measurements this term becomes

unbounded because of the singularity in the normal derivative at the drive location,

however this does predict that there should be very high sensitivity to normal changes

when measurements are recorded at driven electrodes. The second term is the drop in

power at the measurement electrodes from a normal perturbation of the boundary away

from driven electrodes and is proportional to the product of the normal perturbation

field and inner product of the (tangential) gradient of the excitation forward field

multiplied by the (tangential) gradient of the measurement adjoint field. This takes

the same form as the Fréchet derivative for conductivity changes (3.7), with δσ replaced

with hνσ, and predicts that away from measurement electrodes the normal changes

are of a similar difficulty to detect as interior conductivity changes. Hence the NtD

map should be very insensitive to normal changes away from the electrodes.

We summarise the differentiability result of this section as a theorem.

Theorem 4.3.1 (Fréchet derivative of continuum model: Shape). Let h ∈ C1(∂Ω,Rn),

then N0 is Fréchet differentiable at the origin 0 (i.e. ∂Ω) in the direction h, with the
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derivative DN0 : C1(∂Ω,Rn)×H− 1
2 (∂Ω)→ H

1
2 (∂Ω) satisfying∫

∂Ω

f2DN0[h]f1 =

∫
∂Ω

(hνν ·(∇u)ν)f2−hνσ(∇u)t ·(∇v)t+(ht ·(∇v)t)f1 +(ht ·(∇u)t)f2,

where u and v are the solutions to Neumann problems σ ∂u
∂ν
|∂Ω = f1 and σ ∂v

∂ν
|∂Ω = f2

respectively.

4.3.2 Fréchet differentiability: CEM

We now outline the calculation of the Fréchet derivative for the CEM as calculated

by Dardé et al. [56, 127]. We again consider the CEM including the functional

dependence of the perturbation of the boundary, R : Bd × RL → RL, (h, I) → U [h].

(u[h], U [h]) is the solution of the complete electrode model when Ω is replaced by Ωh

and the electrodes El to Ψ(El) =: El[h]. The weak formulation of the CEM is to find

(u, U) ∈ Ḣ(Ω) such that

B((u, U), (v, V )) =
L∑
l=1

IlVl for all (v, V ) ∈ Ḣ(Ω)

where B((u, U), (v, V )) is defined in (2.13). The weak formulation of the CEM in the

perturbed domain is to find (u[h], U [h]) ∈ Ḣ(Ωh)

Bh((u[h], U [h]), (w,W )) =
L∑
l=1

IlWl for all (w,W ) ∈ Ḣ(Ωh)

where Bh((u, U), (v, V )) is defined in (2.13) with Ω and El replacted with Ωh and El[h]

respectively. Let (w,W ) = (v ◦Ψ−1, V ), changing variables in the integral we have

Bh((u[h], U [h]), (v ◦Ψ−1, V )) =

∫
Ω

J−1
Ψ (Ψ∗σ)(J−1

Ψ )T |JΨ|∇(Ψ∗u[h]) · ∇v

+
L∑
l=1

1

zl

∫
El

(Ul[h]−Ψ∗u[h])(Vl − v)|JSΨ|

where Ψ∗u[h] = u[h] ◦ Ψ, JΨ is the Jacobian of the mapping and |JSΨ| is the de-

terminant of the surface Jacobian restriction Ψ|∂Ω : ∂Ω → ∂Ωh. B((u, U), (v, V )) =

Bh((u[h], U [h]), (v◦Ψ−1, V )), and we deduce that the difference between the perturbed

solution (Ψ∗u[h], U [h]) and the unperturbed solution (u, U) satisfies

B((Ψ∗u[h]− u, U [h]− U), (v, V )) =

∫
Ω

(σ − |JΨ|J−1
Ψ (Ψ∗σ)(J−1

Ψ )T )∇(Ψ∗u[h]) · ∇v

+
L∑
l=1

1

zl

∫
El

(Ul[h]−Ψ∗u[h])(Vl − v)(1− |JSΨ|)
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To calculate the Fréchet derivative we linearise the terms on the right hand side of

the above expression to first order in h, as we did for the continuum model using the

expressions (4.6), (4.7), (4.8) and (4.9), which yields

B((Ψ∗u[h]− u,U [h]− U), (v, V )) =

∫
Ω

(σJTh + Jhσ − (h · ∇+∇ · h)σ)∇(Ψ∗u[h]) · ∇v

−
L∑
l=1

1

zl

∫
El

(Ul[h]−Ψ∗u[h])(Vl − v)(Divht + 2Hhν) +O(||h||2C1).

We consider a sesquilinear functional by replacing (Ψ∗u[h], U [h]) by (u, U) in the above

expression

sh(v, V ) =

∫
Ω

(σJTh + Jhσ − (h · ∇+∇ · h)σ)∇u · ∇v

−
L∑
l=1

1

zl

∫
El

(Ul − u)(Vl − v)(Divht + 2Hhν)

and consider the variational problem: Find (w,W ) ∈ Ḣ(Ω)

B((w,W ), (v, V )) = sh(v, V ) for all (v, V ) ∈ Ḣ(Ω).

In a similar manner to the continuum case it is shown in [127] that

||(Ψ∗u[h]− u, U [h]− U)− (w[h],W )|| ≤ C|I|||h||2C1 ,

and so defines a formal Fréchet derivative for the problem for a vector field h whose

domain is Ω. The above expression for the linear functional for the Fréchet derivative

can be simplified to an integral over ∂Ω using the identity (4.11), yielding

sh(v, V ) =

∫
∂Ω

((h · ∇u)σ∇v + (h · ∇v)σ∇u− ((σ∇u) · ∇v)h)) · ν

−
L∑
l=1

1

zl

∫
El

(Ul − u)(Vl − v)(Divht + 2Hhν)

Electrode movement - tangential component

We now consider the tangential component of the boundary vector field, h, so that

h · ν = 0, which are the fields that move the electrodes around the boundary. We have

sh(v, V ) =

∫
∂Ω

((h · ∇u)σ∇v · ν + (h · ∇v)σ∇u · ν −
L∑
l=1

1

zl

∫
El

(Ul − u)(Vl − v)(Divht)
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Following Dardé et al. [56, 127] we subtract the directional derivative of the un-

perturbed solution, u, in the direction h from the formal Fréchet derivative, w̃[h] =

w[h]− h · ∇u. Then B((w̃,W ), (v, V )) = B((w − h · ∇u,W ), (v, V )) is given by

B((w̃,W ), (v, V )) =

∫
∂Ω

((h · ∇u)σ∇v · ν + (h · ∇v)σ∇u · ν

−
L∑
l=1

1

zl

∫
El

(Ul − u)(Vl − v)(Divht)

−
∫

Ω

σ∇(h · ∇u) · ∇v −
L∑
l=1

1

zl

∫
El

(−h · ∇u)(Vl − v).

Using the divergence theorem on the 3rd term, that (σ∇u) · ν is identically 0 off the

electrodes and the impedance boundary condition, we can simplify to

B((w̃,W ), (v, V )) =−
L∑
l=1

∫
El

1

zl
(Ul − u)(h.∇(Vl − v))t)

−
L∑
l=1

1

zl

∫
El

(Ul − u)(Vl − v)(Divht)

−
L∑
l=1

1

zl

∫
El

h · ∇(Ul − u)t(Vl − v).

Collecting the right hand side terms into a surface divergence, Divg, and using the

divergence theorem on each electrode, we arrive at

B((w̃,W ), (v, V )) = −
L∑
l=1

1

zl

∫
∂El

(h.ν|∂E)(Ul − u)(Vl − v)

Boundary movement - normal component

The boundary movement is composed of normal perturbations of the boundary i.e.

with vanishing tangential components. The procedure is similar to the tangential

perturbations if we let h = hnn denote a normal vector field, then

B((w,W ), (v, V )) =

∫
∂Ω

((h · ∇u)σ∇v · ν + (h · ∇v)σ∇u · ν − ((σ∇u) · ∇v)h.ν

−
L∑
l=1

1

zl

∫
El

(Ul − u)(Vl − v)(2Hh).

As with the tangential case, we proceed again by subtracting the directional derivative

of u in the direction of h from the formal Fréchet derivative, B((w̃,W ), (v, V )) =
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B((w − h · ∇u,W ), (v, V )), resulting in

B((w̃,W ), (v, V )) =

∫
∂Ω

((h · ∇u)σ∇v · ν + (h · ∇v)σ∇u · ν − (σ∇u · ∇v)h.ν

−
L∑
l=1

1

zl

∫
El

(Ul − u)(Vl − v)(2Hh)

−
∫

Ω

σ∇(h · ∇u) · ∇v −
L∑
l=1

1

zl

∫
El

(−h · ∇u)(Vl − v).

We thus have

B((w̃,W ), (v, V )) =

∫
∂Ω

h · (σ∇u∂v
∂ν
− σ∇u · ∇vν)−

L∑
l=1

1

zl

∫
El

(Ul − u)(Vl − v)(2Hh)

−
L∑
l=1

1

zl

∫
El

(−h · ∇u)(Vl − v).

By considering normal and tangential components of ∇u and ∇v we then have

B((w̃,W ), (v, V )) =−
∫
∂Ω

hν(σ∇u)t · (∇v)t

−
L∑
l=1

1

zl

∫
El

hν(Vl − v)(2H(Ul − u)− ν · ∇u)

Electrode and boundary movement

We summarise the differentiability result of Dardé et al. [56, 127] outlined in this

section as a theorem.

Theorem 4.3.2 (Fréchet derivative of complete electrode model: Shape). Let h ∈

C1(∂Ω,Rn), then the transfer impedance matrix R0 ∈ RL×L is Fréchet differentiable

at the origin 0 (i.e. ∂Ω) in the direction h, with the derivative W ∈ RL×L satisfying

M∑
m=1

(W [h]I)lĨl =−
L∑
l=1

1

zl

∫
∂El

(h.ν∂E)(Ul − u)(Vl − v)−
∫
∂Ω

hν(σ∇u)t · (∇v)t

−
L∑
l=1

1

zl

∫
El

hν((Ul − u)2H − ν · ∇u)(Vl − v). (4.15)

where (u, U) and (v, V ) are the solutions to problems with currents I and Ĩ respectively.

The physical interpretation of the Fréchet derivative (4.15) is similar to the contin-

uum case, although now we have additional terms if the electrodes are non rigid and

can distort in shape.
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Physical interpretation of formula

From the sampling form (4.15), we see the electrode movement term is incorporated via

the tangential components of the distortion, and the boundary shape via the normal

components of the distortion. We see that there are three contributing terms which we

can briefly explain. The first term describe what happens when we consider distorting

an electrode. If we increase the electrode size through a tangential vector field whose

domain is the boundary of the electrode, then the electrode increases in size and there

is a larger drop in potential over the deformed electrode. The second term is the

sensitivity we would expect if we were performing EIT only on the surface ∂Ω with

no interior changes, that is if we had a change in conductivity h = hνσδ∂Ω in (3.8).

Hence this again predicts that there will be a low sensitivity of the change in voltages

to normal shape boundary changes away from electrodes, because of the ill-posed

nature of the inverse conductivity problem. The last integral consists of two different

terms. The term with normal derivative of u is where we have a drop in potential

from the extra piece of conductive material added at the electrode. The term with

the mean curvature, H, does not appear in the continuum model Fréchet derivative

but appears here because of the impedance boundary condition. If the surface has

positive curvature with respect to the outward pointing normal, and we distort in this

direction, the electrode increases in size and so there is a larger drop in potential over

the electrode. The opposite effect occurs if the surface is negatively curved. If the

surface has a saddle point then H = 0, the electrode does not change size and this

term is identically zero.

4.3.3 Shape derivative calculation

In this section we will describe a novel non-linear reconstruction algorithm to perform

simultaneous reconstruction of the electrode positions and conductivity in 3D. We

consider a subset of the shape determination problem, where the external boundary

shape is fixed but the electrodes are inaccurately known. Circular electrodes of fixed

diameter are used which ensures that boundary surface area change, det(Dψ), is con-

stant which fixes the scaling and Kelvin transformation. The shape derivative is only

computed at the electrode locations, and not for other nodes on the boundary, and so
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the translational null space is fixed. We illustrate the algorithm with results obtained

with simulated data from spherical and cylindrical geometries. The next chapter will

in part be devoted to shape correction results from real biomedical EIT data obtained

from a healthy subject as part of a pilot study at the University of Manchester.

In section 4.3.1 we outlined the calculation of the Fréchet derivative of the measure-

ment map with respect to external boundary shape for the continuum model. With

the external boundary shape and shapes of electrodes fixed, then only two tangential

vector fields forming a basis for the tangent space of an electrode are required for the

shape derivative. Given a tangential perturbation of the electrode position of the form

(4.17), the Fréchet derivative for the CEM (4.15) can be computed by differentiating

with respect to α. In 3D this would require the computation of a line integral along

the boundary of the electrode and for normal shape changes this would also require the

computation of the mean surface curvature H. The Fréchet derivative with respect to

conductivity changes and the discretisation commute with one another as presented

in section 3.2.2. It is not clear that this is true for the Fréchet derivative with respect

to boundary shape with straight sided finite elements, because there is no consistent

notion of curvature for piecewise linear boundary triangles. Instead of discretising the

formal Fréchet derivative we differentiate the discretisation with respect to electrode

position using a finite difference approximation of the Jacobian Jm : R3L → RN

(Jm)i,3(j−1)+k = lim
ε→0

Vi(xj + εek)− Vi(xj)
ε

j = 1, . . . , L, k = 1, 2, 3 (4.16)

using EIDORS1. The index i corresponds to the ith voltage measurement over all sim-

ulations, xj is the jth Cartesian coordinate of the centre-of-mass of the electrode and

ek is the kth Cartesian unit vector field. The perturbation size was chosen as ε = 10−6

sufficiently small so that the linear approximation is valid but large enough to avoid

floating point arithmetic errors [125, 129]. This can be considered as the first partial

derivative of the forward problem with respect to each coordinate of each electrode.

To calculate this derivative we require some modelling assumptions on the behaviour

of electrode movement. Firstly, the shape of the electrode can conceivably deform

as it moves along the boundary if flexible ‘elastic’ electrodes were used. We use an

identical perturbation for each node of a given electrode and so we are assuming the

1The library function jacobian movement perturb.m
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electrodes move along the boundary rigidly without changing shape. Secondly, to

calculate the normal component of electrode movement in the finite difference approx-

imation, a small piece of conductivite material has to be added under each electrode.

We assume the conductivity is constant in a neighbourhood of the electrode, and so

the conductivity of the small additional piece is the same as under the unperturbed

electrode.

The finite difference approximation to the Jacobian is further projected into normal

and tangential components of the electrodes. It is assumed that each electrode is

approximately flat, and we compute the unique outward pointing normal n, and two

tangent vectors, {t(j)}2
j=1, chosen to form an orthogonal basis for the tangent space

of the electrode. With an abuse of notation we denote the normal as νi = t
(3)
i . The

position of the mth electrode on ∂Ω parameterised by a vector θm ∈ R2 through

vm(θ) = vm(0) +
2∑
i=1

θmi t
m
i . (4.17)

We aim to iteratively update the electrode positions during the algorithm from an

initial guess of each electrode vm(0) by estimating θ := (θ1
1, θ

1
2, θ

2
1, . . . , θ

L
2 ) ∈ R2L.

The tangential movement Jacobian is calculated by projecting this onto each pre-

computed tangential vector field on each electrode, to generate a tangential movement

Jacobian J tm : R2L → Rm. Likewise the normal movement Jacobian can be calculated

by projecting this onto each precomputed normal vector fields on each electrode gener-

ating a normal movement Jacobian Jνm : RL → Rm. This calculation can be repeated

for b other boundary nodes that do not belong to an electrode, to generate a Jacobian

J bm : Rb → Rm. We then define three boundary shape Jacobians as

J tm, J t,νm = [J tm, J
ν
m], J t,ν,bm = [J tm, J

ν
m, J

b
m].

4.3.4 Simultaneous retrieval procedure

A dual modelling approach is used requiring a coarse and fine discretisation of the

domain denoted σf ∈ RNf
E and σc ∈ RNc

E respectively with N c
E << N f

E. We will

discuss the dual modelling approach shortly. The vector of all the electrode centre-of-

mass positions is denoted v ∈ R3L. We aim to recover σ and θ from the voltages and

denote this as a vector x = (σ, θ) ∈ RNc
E+2L. The MAP estimate of x is equivalent to
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the minimisation problem

x = arg min
y

{
(ZF (y)I − V )TΓ−1

e (ZF (y)I − V ) + (y − x(r))
TΓ−1

x (y − x(r))
}
, (4.18)

where Γe denotes the noise covariance, Γx the regularisation covariance operator and

V is the vector of measured voltages. The inverse problem is highly non-linear and

an iterative non-linear algorithm is used to compute the MAP estimate. This has

the potential to be computationally intensive because at each iteration, and during a

linesearch, a new finite element mesh must be generated from the updated electrode

positions along with a new conductivity and movement Jacobian. Additionally a

coarse-fine mapping must be computed to efficiently solve the inverse problem on a

low resolution model as well as computing the forward problem sufficiently accurately

on a higher resolution model.

To decrease the complexity, a two stage algorithm is deployed where the initial

stage is solely to determine a good approximation to the electrode positions from the

measured voltages. We a-priori assume the conductivity is known, and constant, in a

neighbourhood of the boundary, and this constant background conductivity is set on

the forward model when initially only determining the electrode positions. After the

electrode positions have been determined sufficiently accurately, the second stage is

to simultaneously determine the conductivity and the remaining small corrections to

the electrode positions. In effect we assume that the ranges of the maps taking the

boundary shape to the electrical data and conductivity to the electrical data do not

intersect, and can thus be estimated separately. This is plausible because we know we

can reconstruct both the conductivity and shape from the measurements, up to a rigid

transformation for a convex body. We note that we should not expect to determine

the conductivity first followed by the boundary shape. Firstly the DtN map from a

deformed conductivity would most likely be consistent with an anisotropic conductiv-

ity in the undeformed domain as discussed in this chapter. Secondly the pushforward

DtN map ψ∗Λσ = ΛΨ∗σ on the deformed domain Ωh will most likely have a different

symbol to the DtN map Λσr associated with the prior conductivity on the undeformed

domain. The difference between DtN maps with different symbols is not a smoothing

operator, which means that the difference in electrical data arising from a deformed

and undeformed conductivity would be significantly larger than the typical small dif-

ferences associated with interior conductivity changes. The symbol only depends on
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the conductivity and it’s derivatives at the boundary (see section 3.3.1) and so a con-

ductivity reconstruction algorithm would most likely fit the conductivity changes near

to the electrodes to compensate for any significant difference in the symbols. The

over-fitting of the conductivity near the electrodes is a common observation with an

inaccurately known shape in practice [32, 116].

Stage 1: Determining electrode positions

A Gauss-Newton method is deployed to the regularised tangential movement problem.

The electrodes move tangentially to the domain at each iteration and so do not in

general lie on the boundary of the domain after each iteration. These are thus pro-

jected back onto the fixed domain by computing the nearest boundary simplex of the

finite element mesh. With the new electrode positions, a new finite element mesh is

generated using the EIDORS function ng_mk_gen_models.m, and assigned the given

a-priori conductivity. This is continued until the electrodes have been determined

sufficiently accurately.

To determine the electrode positions, with the conductivity fixed, means that the

degrees of freedom associated with the conductivity can be neglected. The inverse prior

covariance matrix is given by Γ−1
θ = β2LTθ Lθ, and classical Tikhonov regularisation is

used for the electrode positions. The ith Gauss-Newton iteration is of the form

x(i+1) = x(i) − µ(i)H
−1
(i) g(i), (4.19)

where µ(i) is a linesearch parameter to ensure sufficient decrease of the functional

(4.18), and g(i) and H(i) are the gradient and Hessian of the functional. To compute

the gradient, g(i) ∈ R2L, of the functional (4.18), at the point xi, we need to calcu-

late the first partial derivatives of the functional with respect to electrode positions,

g(i) = 2Jm(x(i))
T δV(i) + 2Γ−1

θ (x(i) − x(r)), where δV(i) = ZF (x(i))I − V is the data

misfit vector at each iteration. The Gauss-Newton method assumes all second or-

der partial derivatives of the voltages with respect to v can be neglected. Classical

Tikhonov regularisation is deployed, so that the prior covariance matrix is diagonal,

which allows us to write the Hessian matrix of the functional (4.18) at the point x(i) as

H(i) = 2Jm(x(i))
TJm(x(i)) + β22LTθ Lθ ∈ R2L×2L. To avoid remeshing during the line-

search, which is computationally expensive, the forward problem is linearised along the
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particular descent direction, although remeshing is performed at each Gauss-Newton

iteration.

Stage 2: Determining conductivity and electrode positions

After the electrode positions have been determined sufficiently accurately, the min-

imiser of the functional is again approached via a Gauss-Newton method to generate

a sequence of iterations x(i). For simplicity we chose the initial guess as the prior

distribution, x(0) = x(r), and we assume that the conductivity and electrode position

changes are independent, resulting in an inverse prior covariance matrix of the form

Γ−1
x =

 α2LTσLσ 0

0 β2LTθ Lθ

 . (4.20)

Laplace regularisation for the conductivity and Tikhonov regularisation for the elec-

trode positions is deployed, which means that the LTθ Lθ is the identity matrix and

LTσLσ is a discrete approximation to the Laplacian. The Laplace regularisation matrix

has a null space spanned by constant vectors, and thus LTσLσ is not strictly invert-

ible. However determining a constant conductivity background from the voltages is

well-posed and so this single rank deficiency does not create problems in practice.

The Gauss-Newton iteration is again of the form (4.19). During the first stage of the

algorithm it is assumed that the electrode positions have been found sufficiently well

and so we do not remesh after each Gauss-Newton step. A linear approximation to

movement is adopted so that the electrode Jacobian Jm is approximated as constant,

although the conductivity Jacobian Jc is updated at each iteration. To compute the

gradient, g(i) ∈ RNc
E+2L, of the functional (4.18), at the point x(i), we need to calculate

the first partial derivatives of the functional with respect to conductivity and electrode

positions,

g(i) = 2[Jc(x(i))|Jm(x(i))]
T δV(i) + 2Γ−1

x (x(i) − x(r)) (4.21)

where δV(i) = ZF (x(i))I − V is the data misfit vector at each iteration. The Gauss-

Newton method assumes all second order partial derivatives of the voltages with re-

spect to σ and v can be neglected. This, and the structure of the prior covariance

matrix in (4.20) allows us to write the Hessian matrix, H(i) ∈ RNc
E+2L×Nc

E+2L, of the
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functional (4.18) at the point x(i), as a 2× 2 block matrix of the form

H(i) = 2

 Jc(x(i))
TJc(x(i)) + α2LTσLσ Jc(x(i))

TJm(x(i))

Jm(x(i))
TJc(x(i)) Jm(x(i))

TJm(x(i)) + β2LTθ Lθ

 . (4.22)

Dual modelling

The quantities ZF (x(i))I, [Jc(x(i))|Jm(x(i))] and H−1
(i) must be computed for every

iteration of the Gauss-Newton method as well as during the linesearch. Recomputing

the Jacobians and inverting the Hessian matrix in 3D are computationally intensive

tasks. A dual modelling approach is deployed, where the reconstructed conductivity

is represented on a coarse finite element model, but a fine finite element model used

for the forward problem [130]. The fine finite element mesh contains the electrode

positions, with a high mesh density near the electrodes, whereas the coarse mesh

is chosen to have approximately uniform density through the domain. This approach

ensures that the forward problem can be solved sufficiently accurately on the fine mesh

whilst only using a low dimensional representation of the reconstructed conductivity

on the coarse mesh.

A coarse to fine projection matrix, P : RNc
E → RNf

E , can be computed with these

two discretisations using EIDORS2, where Pij represents the fraction of the ith fine

finite element contained within the jth coarse finite element. This projection matrix

allows one to efficiently calculate the coarse conductivity Jacobian columnwise through

[Jc]ij = [JfP ]ij =
∑
k

∂Vi

∂σfk
Pkj.

The reconstruction model is also generated slightly larger than the forward model

allowing one to project the coarse discretisation onto the fine discretisation through

σf = Pσc. This projection allows the forward problem to be resolved sufficiently

accurately at each iteration as well as during the linesearch.

It was observed in numerical simulations that regenerating a finite element mesh

with new electrode positions during linesearches in an iterative algorithm was slow.

In order to speed up the algorithm, the updated electrode movement is assumed suf-

ficiently small during the linesearch so that the voltages can be linearised through

ZF (σ + δσ, v + δv)I ≈ ZF (σ + δσ, v)I + ZJmδv, (4.23)

2The library function mk coarse fine mapping.m
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valid for small changes in the electrode positions. The electrode position Jacobian,

Jm, is computed on the fine finite element discretisation.

Linesearches

The descent direction, p(i) = −H−1
(i) g(i), can be computed and we are left with a 1D

minimisation problem at the ith iteration for t(i)

min
t
g(t) where g(t) = f(xi + tpi),

where f : RNc
E+2L → R is the functional in (4.18). A bracketing linesearch with

quadratic polynomial interpolation is used to perform the linesearch. Since p(i) is a

descent direction, then there must exist a µ such that g(0) > g(µ). Using such a

µ, we then find 0 < s1 < s2 < s3 such that g(s2) < min{g(s1), g(s3)}. Once these

three points are determined, a unique convex quadratic can be fit through the points

and the linesearch parameter chosen as the unique minimiser of the given quadratic.

The bracketing linesearch requires the recomputation of the forward problem with

the new conductivity and electrode positions. Again the dual modelling approach is

used to recompute the voltages at the new conductivity iteration and the voltages are

linearised with respect to tangential changes as in (4.23).

Termination criterion

In the two stage algorithm outlined it is instructive to define a criterion to exit out

of the initial stage of determining the electrode positions, especially in the practical

situation of when the exact conductivity and electrode positions are not known. This

initial stage is based on an iterative Gauss-Newton method, and as discussed in the

results section, it was found numerically that the total 2-norm error in the voltage

misfit generally converged in such a way that the misfit in voltages at the end of

the first stage of the algorithm is largely associated with the unknown conductivity

perturbation. Hence a tolerance could be pre-defined and when the error in voltages

between successive iterates drops below this tolerance we terminate and move onto

the second stage of the algorithm. For the numerical results in this chapter this

termination criterion was not implemented and the number of iterates was chosen to

give the best appearance of reconstructed conductivity images.
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4.4 Numerical results

In this section numerical results are presented from a sensitivity study of the boundary

shape Jacobians followed by reconstructions using the simultaneous conductivity and

electrode position algorithm outlined in the previous section. All figures can be found

on pg. 131-169 at the end of this chapter.

4.4.1 Sensitivity study

A sensitivity analysis is undertaken on the Jacobian with respect to boundary shape.

A cylindrical domain of unit height and radius is constructed, with three rings of 16

electrodes placed about the axis of rotational symmetry approximately equidistant on

each ring. The electrodes are all assumed to be circular with a fixed diameter of 0.05

and contact impedance of z = 0.01. A 3D finite element (FE) forward model extruded

along the caudal-distal axis was generated using EIDORS3 calling the Netgen mesh

generator [131] by supplying the external shape, the electrode positions and outward

pointing normals, and a constant conductivity of σ = 1 assigned to the model.

As discussed in section 3.1.2, the right singular vectors, vi, corresponding to the

singular values below an experimental threshold, λi < ε, effectively give no observa-

tional change in voltage data. We normalise the singular values relative to the largest

singular value, and an SNR level of 50 (which is used in the numerical results of this

section) corresponds to a signal-to-noise ratio of 316 ≈ 1050/20. Hence singular vectors

corresponding to singular values with λi < 1/316 are effectively unobservable.

The SVD is computed in MATLAB for a number of different excitation and mea-

surement strategies and three different electrode position Jacobians — the tangen-

tial movement Jacobian J tm : R2L → Rm, the tangential-normal movement Jacobian,

J t,νm : R3L → Rm, and a tangential-normal-boundary Jacobian, J t,ν,bm : R3L+b → Rm.

For the Jacobian J t,ν,bm three boundary nodes (b = 3) that are not a member of any

of the electrodes were chosen on the curved surface of the cylinder. Different mea-

surement strategies are also adopted, with traditional 2D data collection as well as

more fully 3D data collection schemes used, to understand the sensitivity to electrode

position changes with different measurement strategies. We label the electrodes on the

3The library function ng mk gen models.m
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cylinder from 1− 16 on the top ring (z = 0.75), 17− 32 on the middle ring (z = 0.5)

and 33 − 48 on the bottom ring (z = 0.25), with electrodes i, 16 + i and 32 + i for

i = 1, . . . , 16 on approximately the same vertical axis. Pseudo 2D current patterns

were deployed where currents are injected between electrodes i and i + A with an

offset given by an integer A. For example A = 1 corresponds to an adjacent excitation

strategy, A = 8 is an opposite excitation strategy and A ≥ 17 corresponds to exciting

current between different rings. For A ≤ 8, voltage measurements are also recorded

with the same offset on the driven ring as well as on the other two rings, but no mea-

surements are recorded between different rings. For A ≥ 17 measurements between

different rings are included with the measurement offset given by A. Measurement

strategies that include measurements recorded on driven electrodes, and those that

reject these measurements, are both used in the following comparison.

From section 4.2 we know the electrical data determines the boundary shape up

to a conformal map. In particular if three points on the boundary are fixed and

known, or three or more shapes of the electrodes are fixed and known, then the Kelvin

transformations reduces to the identity. We fix the electrode shapes, because these

are known in practice, which eliminates these transformations from the null space

of the Jacobian. We are left with three rotations and three translations which can

potentially appear in the null space of the boundary shape Jacobian. The shape

derivative is only sampled at the electrode positions, with the rest of the boundary

fixed, and with this assumption the translations will disappear from the null space.

We are left with rotational perturbations which will only appear in the null space if

there is any rotational symmetry of the object.

In figure 4.3 the singular values of J tm and J t,ν,bm are plotted with an A = 1 measure-

ment strategy. In particular J t,ν,bm was calculated with an additional three boundary

nodes away from electrodes on the curved surface of the cylinder, and thus there

are 96 and 147 degrees of freedom associated with each Jacobian respectively. The

first observation is that the singular values do not decay rapidly to zero indicating

that the problem is only mildly ill-posed. A selection of singular vectors of J t,ν,bm

can be seen in figures 4.6 and 4.7, for the case when measurements from driven elec-

trodes are included and not included respectively. In particular J t,ν,bm = UΣV T , where

V ∈ R147×147, and each singular vector v ∈ R147 is of unit length. For a given singular
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value, each singular vector corresponds to the weighting along each direction of each

electrode (3× 48 = 144 components) and the normal direction of the three boundary

nodes (3 components), giving a total of 147 components. The figure then displays,

for a selection of singular values, the weighting along each direction of each elec-

trode and the weighting along normal direction of boundary nodes. If measurements

are not included on the driven electrodes, the singular vectors associated with the

largest singular values (i = 1, . . . , 48) typically correspond to tangential perturbations

parallel to the z-axis, and the next largest (i = 49, . . . , 95) to tangential perturba-

tions in the azimuthal direction. The singular vectors associated with singular values

(i = 96, . . . , 143) are typically associated with perturbations normal to the cylindrical

boundary. The remaining four singular vectors are associated with the normal per-

turbation of the boundary nodes away from the electrodes, and the single rotational

symmetry of the cylindrical object. If measurements are included on the drive elec-

trodes, however, the singular vectors with the largest singular values typically had

largest components corresponding to normal perturbations of the electrodes, although

normal changes away from the electrodes always have a low sensitivity associated and

highlights why the full boundary shape is difficult to determine.

In figure 4.4 the singular values of the tangential movement Jacobian are plotted

for A = 1, 7, 8 and 23 measurement strategies. An interesting observation is the A = 8

strategy Jacobian is clearly rank deficient because of insufficiency of the data with

this ‘opposite’ measurement strategy. The conditioning for the A = 1, 7 and 23 mea-

surement strategies appear qualitatively similar which can be explained because these

strategies all record measurements on electrodes adjacent to drive electrodes, where

the sensitivity to tangential changes is largest. The conditioning is improved for dif-

ferent strategies when measurements are recorded on driven electrodes. A selection of

singular vectors of J t,ν,bm can be seen in figures 4.8 and 4.9 for the A = 23 measurement

strategy. The singular vectors exhibited qualitatively similar behaviour to the singular

vectors for the A = 1 strategy. There is also only a mild decay of the singular values

(apart from the three normal directions away from electrodes, and the singular vector

associated with the rotational symmetry of the cylinder).

The SVD is also calculated for the conductivity Jacobian on the cylindrical do-

main over different measurement patterns. Figure 4.5 displays the singular values
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exhibiting the well known exponential decay, highlighting the severely ill-posed nature

of reconstruction. Given the SVD on this background image, it is instructive to also

understand what information on the interior of the domain we can obtain from the

boundary data. Given a conductivity perturbation, δσ =
∑Nc

E
i=1 δiχi, parameterised by

the vector δ ∈ RNc
E , the change in voltages, d ∈ Rm, satisfies (to first order in δσ)

d = UΣV T δ +O(||δσ||2∞) =

Nc
E∑

i=1

uiλi(v
T
i δ) +O(||δσ||2∞).

The right singular vectors also form a basis for RN , and so we can write the conduc-

tivity perturbation vector as

δ =

Nc
E∑

i=1

(δTvi)vi.

By truncating the series at a measurement precision cut off, that is by rejecting vi for

i > r with λi ≤ ε, we reject components of δ that are undetectable leading to a ‘SVD

projection perturbation’, δ(r), and corresponding image, (δσ)(r), given by

δ(r) =
r∑
i=1

(δTvi)vi, (δσ)(r) =

Nc
E∑

i=1

δ
(r)
i χi,

respectively. Generating such images gives an indication of what information about

the perturbation we can obtain with a practical EIT system operating at a given noise

level, and also allow us to study what the effect of different measurement strategies is

on the projected image. Two smooth conductivity perturbations are considered using

a Gaussian perturbation of the form

σinc(x) = s exp (−||x− x0||2

v
), (4.24)

where x0 is referred to as the centre of the inclusion, v the variance and s is the

conductivity perturbation magnitude.

Firstly a perturbation concentrated at the centre with x0 = (0, 0, 0.5), v = 0.2 and

s = 2 is considered. Figure 4.10 displays (δσ)(r) over a range of r values in the xy

plane. Figure 4.11 displays a central perturbation in the xz plane and we observe that

the resolution in this direction is much worse because electrical measurements can not

be recorded on the top and bottom of the cylinder. This highlights how resolving the

conductivity in the z direction is inherently difficult in lung EIT. When r ≤ 100 the

A = 23 strategy appears to give more interior information than the A = 1 strategy
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r λr
λ1

||δ − δr||2 λr
λ1

||δ − δr||2
50 3.6 15.6 4.7 12.3
100 8.9 14.5 12.3 10.9
200 52.7 7.1 88.1 8.0
300 285.3 5.9 501.2 6.0

Table 4.1: Errors of SVD image for central perturbation with A = 1 (second and third column) and
A = 23 (fourth and fifth column) measurement strategy. The first column indicates the number of
projections r. The norm of the central perturbation has ||δ||2 = 15.6.

r λr
λ1

||δ − δr||2 λr
λ1

||δ − δr||2
50 3.6 3.9 4.7 3.4
100 8.9 2.8 12.3 2.5
200 52.7 1.7 88.1 1.6
300 285.3 1.2 501.2 1.2

Table 4.2: Errors of SVD image for boundary perturbation with A = 1 (second and third column)
and A = 23 (fourth and fifth column) measurement strategy. The first column indicates the number
of projections r. The norm of the boundary perturbation has ||δ||2 = 4.4.

in both the xz and xy plane. The errors for the A = 1 and A = 23 strategy SVD

images as a function of r can also be seen in table 4.1. The table demonstrates that

when r ≤ 100 the A = 23 strategy gives more information about the perturbation

than the A = 1 strategy, but when r = 300 the A = 1 strategy gives marginally more

information about the perturbation than the A = 23 strategy.

Secondly a perturbation concentrated near the boundary with x0 = (0.5, 0.5, 0.7),

v = 0.05 and s = 2 is considered. Figure 4.12 displays (δσ)(r) over a range of r val-

ues in the xy plane. We get reasonable resolution of the perturbation with a lot less

singular vectors than the central perturbation case, highlighting why EIT is good at

detecting inclusions near the measurement locations. Figure 4.13 displays the bound-

ary perturbation in the xz plane. We observe that the resolution in this direction is

not as good as in the xy plane, although the resolution is still better in this direction

for small cut-off values than the analagous figure with a central perturbation. The

errors for the A = 1 and A = 23 strategy SVD images as a function of r can be seen

in table 4.2. The table demonstrates that when r < 300 the A = 23 strategy gives

more information about the perturbation than the A = 1 strategy.
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4.4.2 Simultaneous reconstruction

For the spherical and cylindrical geometry we use a background conductivity of σ = 1,

and an unknown conductivity of the form 1 +σinc(x), where σinc(x) is given by (4.24).

For the spherical external shape an inclusion with x0 = (0, 0.3, 0.3), v = 0.1 and s = 2

is chosen. For the cylindrical external shape three different inclusions are used. Firstly

an extruded inclusion with centre at x0 = (0.2, 0.2, z), with z ∈ [0, 1], v = 0.15 and

s = 2. Secondly an inclusion with centre at x0 = (0.2, 0.2, 0.5), variance v = 0.1

and s = 2. Thirdly two Gaussian inclusions with centres at x0 = (0.5, 0.0, z) and

x0 = (−0.5, 0, z), with z ∈ [0, 1] and both with variances 0.15 and s = −0.7 are

denoted B1 and B2 respectively. We denote these three cylindrical test domains as

C1, C2 and C3 respectively.

The electrode position error was modelled by perturbing each coordinate of each

electrode, parameterised by p. In particular the ith electrode centre-of-mass coordi-

nates are perturbed through, vi 7→ ṽi = vi + pni, where ni ∈ R3 with each component

sampled from the normal distribution with mean 0 and standard deviation 1. The new

coordinates are then projected back onto the surface of the model sphere or cylinder.

A p = 0.1 perturbation resulted in an average perturbation of the electrode of approx-

imately ≈ 8% of the geometry radius, corresponding to ≈ 1− 2 cm on a human body.

We define the total 2-norm error, e, of the electrode centre-of-mass coordinates as

e := (
L∑

m=1

||vAm − vMm ||2)
1
2 (4.25)

where vAm, v
M
m ∈ R3 are the actual and model coordinates of the mth electrode. The

current and voltage were simulated using pair current drives and pair voltage mea-

surements. White Gaussian pseudo-random noise is added to the voltage data, pa-

rameterised by the SNR through (4.1). A noise level with an SNR of 50 is used

throughout all the subsequent reconstructions in this chapter, which is of a similar

order of accuracy of a typical EIT measurement system (see section 5.1.1).

The two stage algorithm is then deployed to firstly determine the approximate

electrode positions and then simultaneously determine the conductivity and electrode

positions. The scenario with the electrode positions fixed is also studied because this

gives us an understanding of how well a standard Laplace regularised reconstruction

performs. The degrees of freedom associated with electrode positions are removed from
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the algorithm, and the algorithm degenerates to a classical Laplace regularised MAP

estimate, solved using a non-linear Gauss-Newton method with dual modelling and a

bracketing linesearch. This algorithm is referred to as the standard algorithm and the

algorithm incorporating electrode movement as the shape correction algorithm. In all

cases the regularisation parameters were chosen to give best appearance of the images.

Spherical geometry

A unit sphere and a cylinder with unit radius and height are used in the following

simulations. Figure 4.15 illustrates the spherical model with spherical inclusion used

with approximately 200000 elements and a p = 0.1 perturbation of the electrodes. Fig-

ure 4.14 displays the initial fine and coarse reconstruction models with approximately

32000 and 1100 finite elements respectively. The sphere is covered with 14 electrodes

placed equidistantly around the equator, 9 electrodes equidistantly around the tropics

and an electrode on the north and south pole, resulting in 34 electrodes. A nearest

neighbour current injection and measurement protocol was deployed.

Figure 4.16 illustrates the reconstruction with the electrode positions known and

fixed. This is the best case scenario when the electrode positions are known during

the algorithm. All spherical reconstructions have hyperparameters of α = 10−5 and

β = 0.015. Reconstructions with a perturbation of p = 0.1 can be seen in figure

4.17 and figure 4.18 for a standard and shape correction algorithm. The standard

algorithm has distinctive artefacts in a neighbourhood of the boundary whereas the

shape correction algorithm removes these artefacts. Figure 4.19 illustrates lineplots

through the solutions with electrodes known and fixed, a shape correction algorithm

and a standard algorithm with incorrect electrode positions. The shape correction

algorithm generates images qualitatively similar to the standard algorithm with known

electrode positions. Figure 4.20 illustrates the convergence of the voltage and electrode

positions (which we do not know in practice) during the first stage of the algorithm.

The first stage of the algorithm appears to converge in such a way that the difference

in voltages by the end of the first stage of the algorithm is largely associated with the

conductivity perturbation. This numerically suggests that we can first determine the

electrode positions and then conductivity changes as we implicitly assume in this two

stage algorithm. The initial and final total 2-norm errors in the electrode positions
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are 0.463 and 0.150 respectively. Figure 4.21 illustrates the initial and final error in

electrode positions at the end of the two stage algorithm, indicating that the electrode

positions have been determined well.

Cylindrical C1 geometry

Figure 4.22 displays the initial fine and coarse reconstruction models used to solve

the forward problem and inverse problem with approximately 37000 and 1300 finite

element respectively. These initial fine and coarse discretisations were used for all the

cylindrical simulations.

Figure 4.23 illustrates the cylindrical model with cylindrical inclusion, C1, used

with approximately 168000 tetrahedral elements respectively with a p = 0.1 pertur-

bation of the electrodes. All C1 reconstructions use hyperparameters of α = 2× 10−5

and β = 0.08. Figure 4.24 illustrates the reconstruction with the electrode positions

known and fixed with an A = 1 measurement strategy. This is the best case scenario

when the electrode positions are known during the algorithm. Reconstructions with

a perturbation of p = 0.1 can be seen in figure 4.25 and figure 4.26 for a standard

and shape correction algorithm. The shape correction algorithm again removes the

boundary artefacts observed in the standard algorithm. Figure 4.27 illustrates line-

plots through the solutions with electrodes known and fixed, a shape correction and

non shape correction algorithm. Figure 4.28 illustrates the convergence of the voltage

and electrode positions during the first stage of the algorithm. As with the spherical

geometry the first stage of the algorithm appears to converge in such a way that the

difference in voltages by the end of the first stage of the algorithm is largely associated

with the conductivity perturbation. The initial and final total 2-norm errors in the

electrode positions are 0.547 and 0.338 respectively. Figure 4.29 illustrates the initial

and final error in electrode positions, highlighting that the electrode positions have

been determined accurately.

Cylindrical C3 geometry

For the cylindrical domains with two cylindrical inclusions, C3, an A = 1 measure-

ment strategy is deployed, and the figure cross-sections are displayed through the B1

inclusion. All cylindrical C3 reconstructions use hyperparameters of β = 0.1, and
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α = 2 × 10−5. Figure 4.30 illustrates the C3 model used with approximately 166000

tetrahedral elements and a p = 0.1 perturbation of the electrodes.

Figure 4.31 illustrates the reconstruction with the electrode positions known and

fixed. This is the best case scenario when the electrode positions are known during

the algorithm. Reconstructions with a perturbation of p = 0.1 can be seen in fig-

ure 4.32 and figure 4.33 for a standard algorithm with incorrect electrode positions

and shape correction algorithm. The standard algorithm has distinctive artefacts in a

neighbourhood of the boundary whereas the shape correction algorithm removes these

artefacts. Figure 4.34 illustrates lineplots through the solutions with electrodes known

and fixed, a shape correction algorithm and standard algorithm with incorrect elec-

trode positions. Figure 4.35 illustrates the convergence of the voltage and electrode

positions during the first stage of the algorithm. Figure 4.36 illustrates the initial and

final error in electrode positions, which are again estimated well (the initial and final

total 2-norm errors in the electrode positions are 0.582 and 0.335 respectively.)

Cylindrical C2 geometry

For the cylindrical domains with a single spherical inclusion, C2, an A = 1 and

A = 23 measurement strategy is deployed. Figure 4.37 illustrates the cylindrical

model C2 with a spherical inclusion used with approximately 167000 tetrahedral ele-

ments respectively with a p = 0.075 perturbation of the electrodes. All cylindrical C2

reconstructions use hyperparameters of β = 0.075, and α = 10−5 and α = 5× 10−5 for

an A = 1 and A = 23 strategy respectively.

Figure 4.38 illustrates the reconstruction with the electrode positions known and

fixed with an A = 1 strategy. This is the best case scenario when the electrode

positions are known during the algorithm. Reconstructions with a perturbation of

p = 0.1 can be seen in figure 4.39 and figure 4.40 for a standard and shape correction

algorithm. The standard algorithm has distinctive artefacts in a neighbourhood of

the boundary whereas the shape correction algorithm removes these artefacts. Figure

4.41 illustrates lineplots through the solutions with electrodes known and fixed, a

shape correction and non shape correction algorithm. We observe good resolution in

both directions transverse to the z-axis although the resolution parallel to the z-axis

is much poorer. Figure 4.42 illustrates the convergence of the voltage and electrode
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positions during the first stage of the algorithm. We again observe that the voltage

error in the initial stage is converging to the voltage error with a homogeneous domain

with the correct electrode positions. Figure 4.43 illustrates the initial and final error

in electrode positions with an A = 1 strategy, and we again observe the electrode

positions are determined well (the initial and final total 2-norm errors in the electrode

positions are 0.413 and 0.200 respectively.)

Figure 4.44 illustrates the reconstruction with the electrode positions known and

fixed with an A = 23 strategy. This is the best case scenario when the electrode

positions are known during the algorithm. Reconstructions with a perturbation of

p = 0.075 can be seen in figure 4.45 and figure 4.46 for a standard and shape correction

algorithm. The standard algorithm has distinctive artefacts in a neighbourhood of the

boundary whereas the shape correction algorithm removes these artefacts. Figure 4.47

illustrates lineplots through the solutions with electrodes known and fixed, a shape

correction and non shape correction algorithm. We again observe good resolution in

both directions transverse to the z-axis although the resolution parallel to the z-axis

is much poorer. Figure 4.48 illustrates the convergence of the voltage and electrode

positions during the first stage of the algorithm. Figure 4.49 illustrates the initial

and final error in electrode positions, which are again estimated well (the initial and

final total 2-norm errors in the electrode positions are 0.413 and 0.241 respectively.)

The A = 1 strategy also appears to have slightly lower contrast in the reconstructed

conductivity than the A = 23 strategy, although the benefits of this strategy are not

entirely obvious.

4.5 Conclusions

The NtD map determines the boundary shape and an isotropic conductivity up to a

conformal map which consists of rotations, translations, a scaling and a Kelvin trans-

formation in 3D. The RtN map determines the boundary shape and an isotropic con-

ductivity up to a rigid transformation for a convex domain in 3D. Further constraints

can pin down the boundary shape exactly. If the shape change is only sampled at

electrode positions, then the translations disappear from the null space of the map

ψ : h 7→ Qh, and the null space associated with rotations has the same dimension
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as the number of rotational symmetries of the domain. The scaling can be pinned

down if, for example, the contact impedance or some a-priori knowledge of the inte-

rior conductivity is known. The Kelvin transformations disappear from the null space

if three non co-linear points on the boundary are known exactly, or if the shapes of

the electrodes are known and fixed.

A numerical and theoretical study of the linearised problem of determining elec-

trode positions from the electrical data has been performed. In particular it is demon-

strated that this is only a mildly ill-posed problem in comparison to the important

internal conductivity changes which is severely ill-posed. There are a number of useful

insights from this sensitivity study. Firstly if the external shape is fixed, the measure-

ment strategies that measure near driven electrodes, where the electric field is largest,

are the best at determining the electrode positions but purely opposite drive and mea-

surement strategies are insufficient to determine the electrode positions uniquely. If the

external shape is also unknown, and so the electrodes can move normally to the bound-

ary, then if measurements are not recorded on drive electrodes, the electrical data is

less sensitive to normal changes than tangential changes. However if recordings are

taken on driven electrodes the electrical data is more sensitive to normal changes than

tangential changes. The electrical data is very insensitive to normal changes away from

drive and measurement electrodes, indicating that using the electrical measurements

to determine the whole external boundary shape is more ill-posed than just deter-

mining the electrode positions on a fixed boundary shape. This highlights that using

another technique to determine the boundary shape provides extremely useful a-priori

information as we will observe in the subsequent chapter, as we can only realistically

sample the normal shape change near current driven electrodes. Adjacent excitation

and measurement patterns are thus good at determining the electrode positions, al-

though are notoriously bad at determining interior conductivity changes [21] in 2D.

Optimal measurement strategies to determine interior conductivity changes in 3D is

an important topic for future research.

A novel two stage reconstruction algorithm to determine the electrode positions and

conductivity, given that the external boundary shape is known, was implemented. In

the first stage the electrode positions are found to a sufficient degree of accuracy using

a non-linear regularised Gauss-Newton method using remeshing of the finite element
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model at each iteration. The voltages by the end of the first stage of the algorithm

appear to converge in such a way that the voltage discrepancy is largely associated

with interior conductivity changes only. In the second stage a non-linear reconstruc-

tion algorithm to determine the conductivity, and linearised changes in the electrode

positions, to reduce computational complexity of remeshing at every iteration, was

implemented. It was observed numerically that the first stage of the algorithm did not

fit electrode positions changes to potential conductivity changes, because the recon-

structions when determining the shape and positions are of a similar quality to when

the electrode positions are known and fixed. In particular numerical results suggested

that shape and conductivity changes can be separated from the electrical data, and

reinforces the theoretical discussion that the shape and isotropic conductivity can be

uniquely determined from the electrical data.

There are a number of extensions to this work. Firstly different regularisation

norms, such as Total Variation for discontinuous conductivities, could be used. This

will require a significant change to the algorithm because a mixed regularisation scheme

for the conductivity and electrode positions will be required. Secondly, we would like

to extend this work to more generic 3D models with an arbitrary boundary ∂Ω. Such

an extension would not require substantial modification of the algorithm, although up-

dated electrode positions will need to be projected on to the surface of the model, by

computing the nearest boundary element to the updated electrode position. A mesh

generator that can triangulate general surfaces with arbitrary electrode positions will

suffice. A more difficult problem is when the external shape is also unknown so that

normal changes of the boundary need to be incorporated. As we have demonstrated

from the sensitivity study, these are only easy to detect at drive electrodes if mea-

surements are recorded on drive electrodes, which is challenging with a practical EIT

instrument, so we can only hope to obtain a low rank estimate of the external shape.

It is thus important that non electrical methods should be used to capture the external

shape if at all possible as demonstrated in the next chapter.
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Figure 4.3: Singular value decay for boundary shape Jacobian on cylindrical domain with A = 1
measurement strategy. The blue and green line indicates that measurements on driven electrodes
have and have not been recorded respectively. The left hand image indicates the singular values of J tm.
Measuring on driven electrodes improves the conditioning of the tangential movement Jacobian. The
right hand figure illustrates the singular values of J t,ν,bm . If measurements are not included on driven
electrodes, the singular vectors corresponding to normal changes are associated with the smallest
singular values (see figures 4.6 and 4.7 for associated singular vectors.) The small group of three
singular values correspond to normal changes away from electrodes. If measurements are included on
driven electrodes the normal changes on electrodes correspond to the largest singular values, although
normal changes away from electrodes still correspond to the smallest singular values.
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Figure 4.4: Singular value decay for J tm (left hand) and J t,ν,bm (right hand) boundary shape Jacobian
respectively on cylindrical domain with measurement strategies A = 1, 7, 8 and 23. The singular
value decay for the A = 1, 7, 23 strategies have qualitatively similar behaviour, as do the associated
singular vectors (see figures 4.6 - 4.9). A pure opposite (8−8) strategy has a particularly quick decay
indicating an insufficiency in the data from this strategy to determine the electrode positions.
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Figure 4.5: Singular value decay for conductivity Jacobian on cylindrical domain with measurement
strategies A = 1, 7, 8 and 23. The left hand figure represents the whole spectrum and the right hand
figure a zoom on ‘observable’ singular values. The singular value decay for the A = 1, 7, 23 strategies
have qualitatively similar behaviour, and exhibit the well known exponential decay indicating the
severely ill-posed nature of the linearised reconstruction problem. There is an effective drop in rank
at singular index i ≈ 1000. A pure opposite (8− 8) strategy has a particularly quick decay indicating
an insufficiency in the data from this strategy to determine the electrode positions.
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Figure 4.6: Singular vectors for boundary shape Jacobian on cylindrical domain with A = 1 mea-
surement strategy and measurements recorded driven electrodes. Green indicates components of
movement in z-direction, red in the angular direction and blue in the radial direction. The left hand
column corresponds to singular values 1, 49, 91, 144 and the right hand column to singular values
8, 51, 97, 147. Singular vectors 1 − 48 are typically dominated by normal perturbations of the elec-
trode e.g. 1 and 8 above. Singular vectors 49 − 96 are typically dominated by perturbations of
the electrodes aligned with the z-axis. Singular vectors 97 − 143 typically dominated by azimuthal
changes in the electrodes. The smallest singular vectors 144−146 are associated with normal changes
of the boundary away from the driven electrode and the smallest singular vector 147 corresponds to
the single rotational similarity transformation on the cylinder.
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Figure 4.7: Singular vectors for boundary shape Jacobian on cylindrical domain with A = 1 measure-
ment strategy with no measurements on driven electrodes. Green indicates components of movement
in z-direction, red in the angular direction and blue in the radial direction. The left hand column
corresponds to singular values 1, 49, 91, 144 and the right hand column to singular values 8, 51, 97, 147.
We notice that in comparison to figure 4.6 the largest singular values 1 − 48 correspond to changes
along the z-axis of the cylinder, and the singular values 97− 144 now correspond to normal changes
in the boundary at the electrodes. This highlights that measurements at the driven electrodes are
best at determining the normal shape change, whereas measurements near to the driven electrodes
are best at determining the tangential movement of electrodes.
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Figure 4.8: Singular vectors for boundary shape Jacobian on cylindrical domain with A = 23 mea-
surement strategy with measurements recorded on driven electrodes. Green indicates components
of movement in z-direction, red in the angular direction and blue in the radial direction. The left
hand column corresponds to singular values 1, 49, 91, 144 and the right hand column to singular val-
ues 8, 51, 97, 147. Singular vectors 1 − 48 are typically dominated by normal perturbations of the
electrode e.g. 1 and 8 above. Singular vectors 49 − 96 are typically dominated by perturbations of
the electrodes aligned with the z-axis. Singular vectors 97 − 143 typically dominated by azimuthal
changes in the electrodes. The smallest singular vectors 144−146 are associated with normal changes
of the boundary away from the driven electrode and the smallest singular vector 147 corresponds to
the single rotational similarity transformation on the cylinder. The singular vectors are qualitatively
similar to the A = 1 strategy (see figure 4.6.)
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Figure 4.9: Singular vectors for boundary shape Jacobian on cylindrical domain with A = 23 measure-
ment strategy and no measurements on driven electrodes. Green indicates components of movement
in z-direction, red in the angular direction and blue in the radial direction. The left hand column
corresponds to singular values 1, 49, 91, 144 and the right hand column to singular values 8, 51, 97, 147.
We notice that in comparison to figure 4.8 the largest singular values 1 − 48 correspond to changes
along the z-axis of the cylinder, and the singular values 97− 144 now correspond to normal changes
in the boundary at the electrodes. This highlights that measurements at the driven electrodes are
best at determining the normal shape change, whereas measurements near to the driven electrodes
are best at determining the tangential movement of electrodes. The singular vectors are qualitatively
similar to the singular vectors of the A = 1 strategy (see figure 4.7.)
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Figure 4.10: SVD projections on xy slice through the centre of spherical interior inclusion. The left,
centre and right column indicate the true inclusion, the SVD projection with A = 1 measurement
strategy and SVD projection with A = 23 measurement strategy respectively. Top row to bottom
row indicates the projection with N = 50, 100, 200 and 300 singular vectors. See table 4.1 for the
singular values and errors. We observe that singular vectors with large singular values largely contain
information related to the boundary. The A = 23 strategy contains slightly more information about
the inclusion at a low number (N = 50, 100) projections, indicating that this strategy has the potential
to be more useful that the traditional A = 1 strategy.
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Figure 4.11: SVD projections on xz slice through the centre of spherical interior inclusion. The left,
centre and right column indicate the true inclusion, the SVD projection with A = 1 measurement
strategy and SVD projection with A = 23 measurement strategy respectively. Top row to bottom row
indicates the projection with N = 50, 100, 200 and 300 singular vectors. We observe that singular
vectors with large singular values largely contain information related to the boundary. We also
observe that the singular vectors, even with N = 300 projections, do not resolve along the z-axis well
for either strategy, indicating that vertical resolution in thoracic EIT is difficult. Again it appears
that the A = 23 strategy contains slightly more information about the inclusion at a low number
(N = 50, 100) projections, indicating that this strategy has the potential to be more useful that the
traditional A = 1 strategy.
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Figure 4.12: SVD projections on xy slice through the centre of spherical boundary inclusion. The left,
centre and right column indicate the true inclusion, the SVD projection with A = 1 measurement
strategy and SVD projection with A = 23 measurement strategy respectively. Top row to bottom
row indicates the projection with N = 50, 100, 200 and 300 singular vectors. See table 4.2 for the
singular values and errors. We observe that even with a small number of projections N = 100, the
boundary inclusion is resolved well, highlighting that boundary inhomogenities are easier to detect
with EIT.
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Figure 4.13: SVD projections on xz slice through the centre of spherical boundary inclusion. The left,
centre and right column indicate the true inclusion, the SVD projection with A = 1 measurement
strategy and SVD projection with A = 23 measurement strategy respectively. Top row to bottom
row indicates the projection with N = 50, 100, 200 and 300 singular vectors. We observe that a large
number of projections N = 200 is required to resolve the boundary inclusion well in the vertical
direction.
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Figure 4.14: Sphere: Initial fine discretisation and coarse discretisation. The left and right hand
image corresponds to the initial fine and coarse reconstruction models with approximately 32000
and 1100 elements respectively. The coarse discretisation is dilated by a factor of 1.05 from the fine
discretisation.

−0.5

0

0.5

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

xy
 

z

0

0.5

1

1.5

2

 

 

0

0.5

1

1.5

2

 

 

0

0.5

1

1.5

2

 

 

0

0.5

1

1.5

2

Figure 4.15: Sphere: Unknown conductivity and unknown electrode positions with p = 0.1. The
top left hand image is a 3D visualisation, the top right, bottom left and bottom right are planes
perpendicular to the z-axis, y-axis and x-axis respectively through the inclusion centre.
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Figure 4.16: Sphere: Reconstructed conductivity with electrode positions known. The top left hand
image is a 3D visualisation, the top right, bottom left and bottom right are planes perpendicular to
the z-axis, y-axis and x-axis respectively through the inclusion centre. A hyperparameter of α = 10−5

was used for reconstruction.
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Figure 4.17: Sphere: Reconstructed conductivity without shape correction p = 0.1. The top left hand
image is a 3D visualisation, the top right, bottom left and bottom right are planes perpendicular to
the z-axis, y-axis and x-axis respectively through the inclusion centre. A hyperparameter of α = 10−5

was used for reconstruction.
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Figure 4.18: Sphere: Reconstructed conductivity using shape correction algorithm p = 0.1. The top
left hand image is a 3D visualisation, the top right, bottom left and bottom right are planes perpen-
dicular to the z-axis, y-axis and x-axis respectively through the inclusion centre. Hyperparameters
of α = 10−5 and β = 0.015 were used for reconstruction.
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Figure 4.19: Sphere: Reconstructed conductivity lineplots with p = 0.1. The left and right col-
umn corresponds to a non shape correction and shape correction algorithm with electrode positions
unknown respectively and the middle column to a non shape correction algorithm with electrode
positions known. The top, middle and bottom row correspond to lineplots parallel to the x-,y- and
z-axis respectively through the inclusion centre. The red lines indicates the actual conductivity and
the blue lines the estimated conductivity. Hyperparameters of α = 10−5 and β = 0.015 were used for
each reconstruction.
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Figure 4.20: Sphere: Electrode position and voltage convergence with p = 0.1 and A = 23. A
hyperparameter of β = 0.015 was used for reconstruction. The left and right image correspond to
the convergence of the voltages and electrode positions respectively. The blue and red line in the left
hand figure illustrates the norm of the difference in the voltages between the unknown conductivity
and background conductivity with known electrode positions and the norm of the difference in voltage
between the unknown conductivity and background conductivity with updated electrode positions.
We observe that the voltage error is converging in such a way that the voltage misfit is largely
associated with the conductivity perturbation at the end of the first stage of the algorithm.
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Figure 4.21: Sphere: Electrode position convergence with p = 0.1. The blue and red stars correspond
to the model and actual electrode positions, and the top and bottom image correspond to the initial
guess and final estimate of the model electrode positions. The green lines indicate the differences in
electrode positions and we can observe that the electrode positions have been estimated well at the
end of the algorithm. A hyperparameter β = 0.015 was used for electrode position reconstruction.
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Figure 4.22: Cylinder: Initial fine and coarse discretisation. The left and right hand image corresponds
to the initial fine and coarse reconstruction models with approximately 37000 and 1300 elements
respectively. The coarse discretisation is dilated by a factor of 1.05 relative to the fine discretisation.
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Figure 4.23: Cylinder with cylindrical inclusion: Unknown conductivity and unknown electrode po-
sitions with p = 0.1. The top left hand image is a 3D visualisation, the top right, bottom left and
bottom right are planes perpendicular to the z, y and x axis respectively through the inclusion centre.



CHAPTER 4. SHAPE AND ELECTRODE POSITION CORRECTIONS 146

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

 

x
y

 

z

0

1

2

3

 

 

0

1

2

3

 

 

0

1

2

3

 

 

0

1

2

3

Figure 4.24: Cylinder with cylindrical inclusion. Reconstructed conductivity with electrode positions
known and A = 1. The top left hand image is a 3D visualisation, the top right, bottom left and bottom
right are planes perpendicular to the z-axis, y-axis and x-axis respectively through the inclusion centre.
A hyperparameter of α = 2× 10−5 was used for reconstruction and an A = 1 measurement strategy
adopted.
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Figure 4.25: Cylinder with cylindrical inclusion: Reconstructed conductivity without shape correction
p = 0.1 and A = 1. The top left hand image is a 3D visualisation, the top right, bottom left
and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively through the
inclusion centre. A hyperparameter of α = 2 × 10−5 was used for reconstruction and an A = 1
measurement strategy adopted.
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Figure 4.26: Cylinder with cylindrical inclusion: Reconstructed conductivity using shape correction
algorithm p = 0.1 and A = 1. The top left hand image is a 3D visualisation, the top right, bottom
left and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively through
the inclusion centre. Hyperparameters of α = 2× 10−5 and β = 0.1 were used for reconstruction and
an A = 1 measurement strategy adopted.
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Figure 4.27: Cylinder with cylindrical inclusion: Reconstructed conductivity lineplots with p = 0.1
and A = 1 with hyperparameters α = 2×10−5 and β = 0.1. The left and right column corresponds to a
non shape correction and shape correction algorithm respectively and the middle column corresponds
to when the electrode positions are known. The top, middle and bottom row corresponds to the
following lineplots. The top row is parallel to the x-axis through (y,z)=(0.2, 0.5), the middle row
parallel to the y-axis though (x,z)=(0.2, 0.5) and the bottom row parallel to the z-axis along the
inclusion centre. The red and blue lines indicate the actual and estimated conductivity respectively.
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Figure 4.28: Cylinder with cylindrical inclusion: Electrode position and voltage convergence with
p = 0.1 and A = 1. A hyperparameter of β = 0.1 was used for reconstruction. The left and right
image correspond to the convergence of the voltages and electrode positions respectively. The blue
and red line in the left hand figure illustrates the norm of the difference in the voltages between the
unknown conductivity and background conductivity with known electrode positions and the norm
of the difference in voltage between the unknown conductivity and background conductivity with
updated electrode positions. We observe that the voltage error is converging in such a way that the
voltage misfit at the end of the first stage of the algorithm is largely associated with the conductivity
perturbation.
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Figure 4.29: Cylinder with cylindrical inclusion: Electrode position convergence with p = 0.1 and
A = 1. The blue and red stars correspond to the model and actual electrode positions, and the left
and right image correspond to the initial guess and final estimate of the electrode positions. The green
lines indicate the differences in electrode position and we can observe that the electrode positions
have been determined well at the end of the algorithm. A hyperparameter of β = 0.1 was used for
each reconstruction and an A = 1 measurement strategy adopted.
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Figure 4.30: Cylinder with two cylindrical inclusions: Unknown conductivity and electrode positions
with p = 0.1. The top left hand image is a 3D visualisation, the top right, bottom left and bottom
right are planes perpendicular to the z-axis, y-axis and x-axis respectively through the centre of
inclusion B1.
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Figure 4.31: Cylinder with two cylindrical inclusions: Reconstructed conductivity with electrode
positions known and A = 1. The top left hand image is a 3D visualisation, the top right, bottom
left and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively through
the centre of inclusion B1. A hyperparameters of α = 2 × 10−5 was used for reconstruction and an
A = 1 measurement strategy adopted.
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Figure 4.32: Cylinder with two cylindrical inclusions: Reconstructed conductivity without shape
correction p = 0.1 and A = 1. The top left hand image is a 3D visualisation, the top right, bottom
left and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively through
the centre of inclusion B1. A hyperparameter of α = 2× 10−5 was used for each reconstruction and
an A = 1 measurement strategy adopted.
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Figure 4.33: Cylinder with two cylindrical inclusions: Reconstructed conductivity using shape cor-
rection algorithm p = 0.1 and A = 1. The top left hand image is a 3D visualisation, the top right,
bottom left and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively
through the centre of inclusion B1. Hyperparameters of α = 2×10−5 and β = 0.1 were used for each
reconstruction and an A = 1 measurement strategy adopted.
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Figure 4.34: Cylinder with two cylindrical inclusions: Reconstructed conductivity lineplots with
p = 0.1 and A = 1 with hyperparameters α = 2 × 10−5 and β = 0.1. The left and right column
corresponds to a non shape correction and shape correction algorithm respectively and the middle
column to when the electrode positions are known. The top, middle and bottom row corresponds
to the following lineplots. The top row is parallel to x-axis through (y,z)=(0, 0.5), the middle row
parallel to y-axis though (x,z)=(0.5, 0.5) and the bottom row parallel to z-axis along the centre of
inclusion B1. The red and blue lines indicate the actual and estimated conductivity respectively.
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Figure 4.35: Cylinder with two cylindrical inclusions: Initial electrode position and voltage conver-
gence with p = 0.1 and A = 1. A hyperparameter of β = 0.1 was used for reconstruction. The left
and right image correspond to the convergence of the voltages and electrode positions respectively.
The blue and red line in the left hand figure illustrates the norm of the difference in the voltages
between the unknown conductivity and background conductivity with known electrode positions and
the norm of the difference in voltage between the unknown conductivity and background conductiv-
ity with updated electrode positions. We observe that the voltage error is converging in such a way
that the voltage misfit at the end of the first stage of the algorithm is largely associated with the
conductivity perturbation.
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Figure 4.36: Cylinder with two cylindrical inclusions: Electrode position convergence with p = 0.1
and A = 1. The blue and red stars correspond to the model and actual electrode positions, and the
left and right image correspond to the initial guess and final estimate of the electrode positions. The
green lines indicate differences in the electrode positions and the electrodes have been determined
well at the end of the algorithm. A hyperparameter of β = 0.1 was used for each reconstruction and
an A = 1 measurement strategy adopted.
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Figure 4.37: Cylinder with spherical inclusion: Unknown conductivity and unknown electrode posi-
tions with p = 0.075 and A = 1. The top left hand image is a 3D visualisation, the top right, bottom
left and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively through
the inclusion centre.
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Figure 4.38: Cylinder with spherical inclusion: Reconstructed conductivity with electrode positions
known and A = 1. The top left hand image is a 3D visualisation, the top right, bottom left and bottom
right are planes perpendicular to the z-axis, y-axis and x-axis respectively through the inclusion
centre. A hyperparameter of α = 10−5 was used for reconstruction and an A = 1 measurement
strategy adopted.
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Figure 4.39: Cylinder with spherical inclusion: Reconstructed conductivity without shape correction
p = 0.075 and A = 1. The top left hand image is a 3D visualisation, the top right, bottom left
and bottom right are planes perpendicular to the z axis, y axis and x-axis respectively through the
inclusion centre. Hyperparameters of α = 10−5 and β = 0.075 were used for reconstruction and an
A = 1 measurement strategy adopted.
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Figure 4.40: Cylinder with spherical inclusion: Reconstructed conductivity using shape correction
algorithm p = 0.075 and A = 1. The top left hand image is a 3D visualisation, the top right, bottom
left and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively through
the inclusion centre. Hyperparameters of α = 10−5 and β = 0.075 were used for reconstruction and
an A = 1 measurement strategy adopted.
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Figure 4.41: Cylinder with spherical inclusion: Reconstructed conductivity lineplots with p = 0.075
and A = 1. The left and right column corresponds to a non shape correction and shape correction
algorithm respectively and the middle column to a non shape correction algorithm with electrode
positions known. The top, middle and bottom row corresponds to lineplots parallel to the x- , y- and
z-axis respectively through the inclusion centre. The red lines indicates the actual conductivity and
the blue lines the estimated conductivity. Hyperparameters of α = 10−5 and β = 0.075 were used for
each reconstruction and an A = 1 measurement strategy adopted.
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Figure 4.42: Cylinder with spherical inclusion: Initial electrode position and voltage convergence with
p = 0.075 and A = 1. A hyperparameter of β = 0.075 was used for reconstruction. The left and right
image correspond to the convergence of the voltages and electrode positions respectively. The blue
and red line in the left hand figure illustrates the norm of the difference in the voltages between the
unknown conductivity and background conductivity with known electrode positions and the norm
of the difference in voltage between the unknown conductivity and background conductivity with
updated electrode positions. We observe that the voltage error is converging in such a way that the
voltage misfit at the end of the first stage of the algorithm is largely associated with the conductivity
perturbation.
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Figure 4.43: Cylinder with spherical inclusion: Electrode position convergence with p = 0.075 and
A = 1. The blue and red stars correspond to the model and actual electrode positions, and the left
and right image correspond to the initial guess and final estimate of the electrode positions. The green
lines indicate the differences in electrode position and the electrode positions have been determined
well at the end of the algorithm. A hyperparameter of β = 0.075 was used for reconstruction and an
A = 1 measurement strategy adopted.
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Figure 4.44: Cylinder with spherical inclusion: Reconstructed conductivity with electrode positions
known and A = 23. The top left hand image is a 3D visualisation, the top right, bottom left
and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively through the
inclusion centre. Hyperparameters of α = 5× 10−5 and β = 0.075 were used for reconstruction and
an A = 23 measurement strategy adopted.
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Figure 4.45: Cylinder with spherical inclusion: Reconstructed conductivity without shape correction
p = 0.075 and A = 23. The top left hand image is a 3D visualisation, the top right, bottom left
and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively through the
inclusion centre. A hyperparameter of α = 5 × 10−5 was used for reconstruction and an A = 23
measurement strategy adopted.



CHAPTER 4. SHAPE AND ELECTRODE POSITION CORRECTIONS 165

−0.5

0

0.5

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

1

 

48

47

31

15

16

32

30

17

46

14

1

33

2

19

29

13

3

45

34

x

18

4

20

12

28

44

35

43

11

27

36

10

42

37

26

5

21

25

9

38

41
6

22

y

8

24

40

39

7

23

 

z

0

0.5

1

1.5

2

 

 

0

0.5

1

1.5

2

 

 

0

0.5

1

1.5

2

 

 

0

0.5

1

1.5

2

Figure 4.46: Cylinder with spherical inclusion: Reconstructed conductivity using shape correction
algorithm p = 0.075 and A = 23. The top left hand image is a 3D visualisation, the top right,
bottom left and bottom right are planes perpendicular to the z-axis, y-axis and x-axis respectively
through the inclusion centre. Hyperparameters of α = 5 × 10−5 and β = 0.075 were used for each
reconstruction and an A = 23 measurement strategy adopted.
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Figure 4.47: Cylinder with spherical inclusion: Reconstructed conductivity lineplots with p = 0.075
and A = 23. The left and right column corresponds to a non shape correction and shape correction
algorithm respectively and the middle column corresponds to a non shape correction algorithm with
the electrode positions known. The top, middle and bottom row corresponds to lineplots parallel
to the x-, y- and z-axis respectively through the inclusion centre. The red lines indicates the actual
conductivity and the blue lines the estimated conductivity. Hyperparameters of α = 5 × 10−5 and
β = 0.075 were used for each reconstruction and an A = 23 measurement strategy adopted.
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Figure 4.48: Cylinder with spherical inclusion: Initial electrode position and voltage convergence
with p = 0.075 and A = 23. A hyperparameter of β = 0.075 was used for reconstruction. The left
and right image correspond to the convergence of the voltages and electrode positions respectively.
The blue and red line in the left and right hand figure illustrates the norm of the difference in
the voltages between the unknown conductivity and background conductivity with known electrode
positions and the norm of the difference in voltage between the unknown conductivity and background
conductivity with updated electrode positions. We observe that the voltage error is converging in
such a way that the voltage misfit at the end of the first stage of the algorithm is largely associated
with the conductivity perturbation.



CHAPTER 4. SHAPE AND ELECTRODE POSITION CORRECTIONS 167

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

xy

z

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

xy

z

Figure 4.49: Cylinder with spherical inclusion: Electrode position convergence with p = 0.075 and
A = 23. The blue and red stars correspond to the model and actual electrode positions, and the left
and right image correspond to the initial guess and final estimate of the electrode positions. The green
lines indicate the differences in electrode position and the electrode positions have been determined
well at the end of the algorithm. A hyperparameter of β = 0.075 was used for reconstruction and an
A = 23 measurement strategy adopted.



Chapter 5

MRI-informed dynamic lung EIT

In this chapter a methodology for MRI-informed lung EIT is presented using data

obtained from a healthy subject during a pilot study at the University of Manchester

in 2012. Novel aspects of this methodology include the use of MRI to inform the

boundary shape, and prior information of the conductivity distribution, of the subject

as well as subsequent image co-registration of the reconstructed EIT image and MR

image. An original mutual information performance criterion is used to quantify the

quality of the EIT reconstruction. The chapter is a combination of peer-reviewed

conference papers given at ‘100 years of electrical imaging’ in Paris in 2012 [129] and

at ‘XIV Conference on Electrical Impedance Tomography 2013’ in Heilbad in 2013

[132], and a journal paper published in Physiological Measurement in 2014 [133]. The

current author was lead author, with 10 other co-authors contributing — Alex Morgan,

Josephine Naish, Chris Miller, Ross Little and Geoff Parker for the MRI data sequences

and collection, Ron Kikinis for help with the 3D Slicer software, John Davidson, Paul

Wright and Hugh McCann for EIT data sequences using the fEITER instrument, and

William Lionheart for expertise in EIT.

5.1 Data collection and model generation

5.1.1 MRI and EIT data collection

In the study 32 electrodes were arranged on a healthy subject as two transverse planes

of 16 electrodes equidistantly spaced around the chest at approximately the fourth and

168
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sixth intercostal spaces, along with an abdominal reference electrode, as illustrated in

figure 5.1. EIT measurements were acquired using the EIT sub-system of the biomedi-

cal fEITER instrument [134], which offers not only a high SNR ratio approaching 80 dB

on bench-top phantoms, but also has been designed to meet the IEC 60601-1 patient

safety requirements. In this study, a nearest-neighbour current injection protocol was

used with a total of 20 current patterns which included 8 independent horizontal injec-

tions per transverse electrode plane. Sinusoidal current injections of 0.5 mA amplitude

at 10 kHz frequency were input and the EIT instrument recorded nearest-neighbour

voltage pairs at 100 frames per second (fps), where a single frame corresponds to

collection of all measurements for the protocol. EIT data were recorded whilst the

subject carried out basic breathing procedures in 1 minute blocks. Breathing proce-

dures involved normal and progressively deeper tidal breathing regimes interspaced

with reference conditions of typically 5 second breath-holds at both inspiration and

expiration. MRI fiducial markers were substituted for the EIT electrodes at all elec-

trode locations immediately after the last EIT data collection, before carrying out

an MRI scan using a T2-weighted half-Fourier acquired single-shot turbo spin-echo

(HASTE) protocol on a 1.5 T Philips Achieva scanner (Philips Healthcare, Best, the

Netherlands) under the same breathing procedures as used during the EIT tests. The

MR scans consisted of 1 cm thick contiguous axial slices, which were cardiac gated

and tuned for the conditions of normal breath-holding, at maximum inspiration and

expiration. The whole procedure was approved by the local ethics committee and the

subject gave written, informed consent.

5.1.2 Finite element model generation

The external boundary shape of the subject was obtained from a transverse MR image

slice at the fifth intercostal spacing at a breath-hold at maximum inspiration. The

contour of the external shape was defined by 50 equispaced points and the contour of

each lung by approximately 25 equispaced points. A 3D finite element (FE) forward

model extruded along the caudal-distal axis was then generated using EIDORS 3.6

[62]1 calling the Netgen mesh generator [131]. The method has been applied to swine

data as described by Grychtol et al. [117]. The FE forward model consisted of 32

1The library function ng mk extruded model.m
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electrodes with approximately N f
E = 20000 tetrahedral elements and 5000 vertices (a

piecewise linear finite element approximation was used), modelled to a depth of 10 cm.

The transverse MR image slice and surface mesh of a typical forward model is shown

in figure 5.2. All electrodes were modelled to a diameter of 1 cm, which is consistent

with those applied to the subject. A high mesh density was chosen in the vicinity of

each electrode where the gradient of the potential is largest, and the lungs segmented

from the MR image were also included in the finite element model. A 3D FE model

was generated with the same boundary shape as the forward model, but with no

electrodes and a lower mesh density, for the reconstruction problem. A reconstruction

model typically consisted of N c
E = 10000 tetrahedral elements and 2500 vertices. From

the forward and reconstruction models a mapping matrix was generated to transform

between the coarse and fine discretisations, allowing one to solve the forward problem

sufficiently accurately on the fine model as well as representing the reconstructed

conductivity on the coarse model [130].

(a)

Fiducials

(b)

Figure 5.1: Electrode arrays; (a) electrodes attached during EIT data acquisition and (b) MRI fiducial
markers to inform electrode positions.

5.2 Dynamic reconstruction algorithms

5.2.1 Electrode movement Jacobian

As the subject breathes the electrodes will move with respect to a fixed geometrical

model of the thorax generating large artefacts in reconstructed images. As in section

4.3.3 a finite difference approximation of the derivative of the forward problem with

respect to the boundary shape is calculated at the electrodes, leaving the rest of the

boundary fixed. This method could equally be applied to other boundary locations,
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(a) (b)

Figure 5.2: FE model generation; (a) segmented MR slice with thorax and lung shapes highlighted
and (b) extruded ‘2.5D’ FE model generated in EIDORS.

but since the largest sensitivity of measured data to shape changes will be at the

electrodes, we only calculate this at the electrode positions (see section 4.3.1). In

effect we are assuming the shape has been sufficiently well approximated from the

MR image and are only accounting for small corrections from electrode movement

due to breathing. A finite difference method on the FEM formulation of the forward

problem is used, and an approximate derivative with respect to electrode movement,

Jm : R3L → Rm, is calculated (4.16). We note this is not projected onto the tangent

space of each electrode as described in section 4.3.3, and so changes in the electrode

positions normal to the fixed boundary are also being accounted for.

5.2.2 Shape correction algorithm

For small changes in the electrode positions and conductivity, the forward problem

can be linearised through a first order Taylor series

Vσ+δσ,v+δv = Vσ,v + Jc(δσ) + Jm(δv) +O(||(δσ, δv)||2), (5.1)

where ||(δσ, δv)|| := ||δσ||∞+ ||δv||∞. We assume an exact linear relationship between

the conductivity/shape change, x, and the data change, d, between two states of

interest, so that d = Jx + n, where J := [Jc, Jm] ∈ Rm×(3L+Nc
E), x = (δσ, δv) and

n ∈ Rm represents the measurement noise. The estimation of x from d is approached

from a probabilistic viewpoint. We assume Gaussian noise with covariance matrix

Γe ∈ Rm×m and mean zero. We further assume a Gaussian prior on the conductivity
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and electrode position changes, with covariance matrix Γx ∈ R3L+Nc
E×3L+Nc

E , and prior

mean xp := (δσp, δvp), which is assumed to be zero. The measurement noise is also

assumed to be independent and identically distributed (i.i.d) and the conductivity

and electrode position changes are assumed to be independent from one another and

separately i.i.d. These assumptions imply that Γ−1
e = I ∈ Rm×m and Γ−1

x is a diagonal

matrix with entries Γ−1
x (i, i) = α2 if i ≤ N c

E and Γ−1
x (i, i) = β2 if N c

E < i ≤ N c
E +3L. α

and β can be physically interpreted as the ratios of expected changes of conductivity

and electrode position to the measurement noise standard deviation. From (3.4) the

MAP estimate is given by

xMAP = max
x

{
||d− Jx||2

Γ−1
e

+ ||x− xp||2Γ−1
x

}
. (5.2)

At the maximum the gradient of the objective function must be zero. Computing this

gradient, and setting to zero, gives an analytic solution for the MAP estimate as

xMAP = (JTΓ−1
e J + Γ−1

x )−1(JTΓ−1
e d+ Γ−1

x xp). (5.3)

This solution was computed in EIDORS via the following procedure. Firstly the

extruded mesh was generated as described previously and a constant conductivity

assigned to the model. Simulated boundary voltages were acquired from this model

using the same measurement protocol as the experiment, and in order to get a con-

sistent scaling between the simulated and measured voltages, Vs and Vm respectively,

a best fit homogeneous reference conductivity, σr, was computed using a formula de-

rived by Kaipio et al. [71]. The prior information of the lungs was then included by

assigning the conductivity in the lung regions as 0.3σr. Using this reference conduc-

tivity the movement Jacobian, Jm, was calculated using the finite difference method

in equation (4.16). The standard conductivity Jacobian, Jc, was computed using the

default Jacobian function2 as described in section 3.2.2. Image reconstructions were

performed using two linear difference imaging methods. Firstly using the shape cor-

rection method described in this section, and secondly a standard EIDORS method

using a one-step linearised Gauss-Newton technique with standard Tikhonov regular-

isation. We compare with a standard method to determine what improvements in

reconstruction quality can be obtained with the shape correction algorithm. In the

2The library function jacobian adjoint.m



CHAPTER 5. MRI-INFORMED DYNAMIC LUNG EIT 173

following section we discuss how optimal regularisation parameters α and β have been

chosen using a mutual information technique.

5.3 Standard and shape correction algorithms

Figures 5.3 and 5.4 are typical of the 3D EIT image reconstructions acquired at 100

FPS using the fEITER system. All images displayed in this chapter are difference im-

ages relative to a maximum exhalation data frame, and blue and red indicate negative

and positive conductivity changes respectively. Figure 5.3 illustrates difference images

for a subject sitting upright at maximum (max) inhalation with the standard and

shape correction reconstruction algorithms respectively. It can be clearly seen that

the shape correction algorithm yields fewer boundary artefacts and sharper contrast

between the lungs and background compared with the standard algorithm. These ef-

fects are also clearly visible in the 2D slices from the 3D image reconstructions for a

second data set shown in figure 5.4. Figures 5.4a and 5.4b correspond to the standard

method, α = 10−2, and the bottom figures 5.4c and 5.4d correspond to the shape

correction method, (α, β) = (10−2, 4 × 10−2). Compensating for movement results in

a large reduction in boundary artefacts which is promising as we do not expect any

physiological mechanisms to produce large conductivity changes near the boundary.

Figure 5.3: Reconstructions in 3D rendered in MayaVi software [135]; The left and right hand image
are conductivity changes at max inhalation (relative to max exhalation) for a standard and shape
corrected reconstruction respectively. Blue and red corresponds to negative and positive conductivity
changes respectively. The front of the chest is in the background, and transverse and coronal scalar-
cut planes are shown within the 3D volume.



CHAPTER 5. MRI-INFORMED DYNAMIC LUNG EIT 174

−200 −150 −100 −50 0 50 100 150 200
−150

−100

−50

0

50

100

150

(a) Standard method at t = 1.50s.
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(b) Standard method at t = 3.00s.
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(c) Shape correction at t = 1.50s.
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(d) Shape correction at t = 3.00s.

Figure 5.4: Image reconstructions viewed down the caudal-distal axis. Left and right: Mid inhalation
(t = 1.50s) and max inhalation (t = 3.00s), both relative to max exhalation, Top and bottom:
Standard algorithm and shape correction algorithm. Blue and red corresponds to negative and
positive conductivity changes respectively.

5.3.1 Gravitational effects in the supine position

Figure 5.5 illustrates smoothed and normalised conductivity along a coronal slice

shown at approximately the fifth intercostal spacing, for the subject in both the sitting

and supine position. These images demonstrate the reduction in boundary artefacts

and the sharper contrast of the lungs obtained using the shape correction method,

and this is particularly evident when the subject is in the supine position. The MR

scan was performed for the subject in this position, so it seems natural that the shape

correction method should work better, as the method really is only accounting for

small boundary changes due to breathing.

Figures 5.6 shows 2D transverse slices at the sixth intercostal spacing for the sub-

ject in the supine and sitting position respectively. These reconstructions are at a

max inhalation frame relative to a max exhalation frame for the subject performing
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Figure 5.5: Normalized conductivity reconstructions; The left and right hand images are reconstruc-
tions at the fifth intercostal spacing for the subject in the sitting and supine position respectively.
The standard and shape correction reconstructions are shown for both postures.

moderate tidal breathing. In the supine position there are large differences between

the dorsal and ventral regions, which are not observed for the subject in the sitting

position. The dynamic behaviour is illustrated in figure 5.6 for averaged conductivity

differences within a 15 mm search radius in a ventral and dorsal region. Temporal

and amplitude differences in the regional traces can be seen in a broadly consistent

manner over successive breathing cycles due to gravitational effects on the subject as

described by Frerichs et al. [16, 17]. The ability of fEITER to capture these regional

differences highlights the excellent SNR characteristics of the instrument.

The MR images are useful as they allow one to generate a patient specific finite

element model of the thorax and segmenting the internal organs for anatomical prior

information for the finite element model. In the following section we will describe

how the EIT reconstruction and MR scan can be superimposed, or co-registered, to

assist clinicians with a qualitative diagnosis. The reconstruction parameters for the

EIT reconstruction can be chosen by maximising the mutual information between the

EIT and MRI through a mutual information calculation. This provides an alternative

to methods such as the L-curve, or discrepancy principle, to optimise regularisation

parameters.

5.4 EIT and MR image co-registration

In this section we describe the EIT and MR image co-registration process, and the

method used to calculate the mutual information between the EIT and MR images.
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Figure 5.6: Sitting and supine image reconstruction; The two top images are transverse slices at the
sixth intercostal spacing for the subject in the supine (left) and sitting (right) position respectively
at max inhalation (relative to max exhalation). Blue and red corresponds to negative and positive
conductivity changes respectively. The bottom image illustrates the dynamic behaviour of normalized
conductivity differences, for simplices in the ventral and dorsal regions, for a subject in the supine
position.

The image co-registration process and mutual information calculation provides both

a qualitative and quantitative measure of EIT reconstruction performance. Although

mutual information techniques have been used in previous multimodal imaging studies

(see [136] for a review) such techniques have yet to be applied in the area of lung

imaging using EIT.

The Manchester Confeitir [137] software was used to convert the reconstructed EIT

image from the irregular tetrahedral mesh into a matrix with 2 mm-cubic isotropic

voxels each representing a conductivity change and the coordinates of each voxel were

then transformed so that they were in the same space as the MRI data. The software

efficiently identifies the tetrahedron whose centroid is closest to the centre of any

given voxel. Additionally, the application of a small threshold to the EIT data aided

improved clarity of the subsequent visualisations. This typically involved discarding

5% of extreme points from the visualisation. This threshold was also applied to the

EIT image in the mutual information calculation outlined in section 5.5. The EIT
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images were transformed to the Nifti data format for subsequent importing into 3D

Slicer [138]. The MRI data were imported into 3D Slicer separately and co-registered

using methods validated with bench-top phantoms [139]. This involved marking up

a set of control points around the outside of the torso on both the EIT and MRI

data using the fiducial registration module of 3D Slicer, followed by least squared

minimisation of the distance between the two sets of data in space.

Figure 5.7 shows an example of image co-registration of MRI and EIT using 3D

Slicer, for the subject in the sitting position at maximum inhalation. The left and

right column are superior and inferior transverse planes respectively. The top row

is the original MR image, the middle row the EIT reconstruction and the bottom

row is the resultant image co-registration. From the images, it can be seen that the

EIT reconstruction typically underestimates the physiological size of the actual cross-

sectional areas of the lung. Inspection of the complete 3D data along the caudal-distal

axis showed this to be true for the entire scanned lung volume.

Figure 5.7: MRI and EIT image co-registration. Left to right columns: Superior and inferior trans-
verse planes. Top to bottom rows: MRI image, EIT image and co-registered EIT and MRI images
at the transverse slice. All images are at max inhalation relative to max exhalation. Blue and red
correspond to negative and positive conductivity changes respectively.

Another observation to note is that the conductivity distribution exhibits a signifi-

cant twisting effect in the superior transverse slice consistent with the 2D linear image
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reconstructions obtained by Bikker et al. using the Dräger system in [140]. This is

likely to be an artefact resulting from the inadequacies of the simple 2.5D extruded

model used in the reconstruction. These inadequacies include the lack of inclusion of

the heart in the model and possibly the model cut-off height along the caudal-distal

axis being too small.

Figure 5.8: MRI and EIT image co-registration. Left to right columns: Sitting standard recon-
struction, sitting shape correction reconstruction, supine standard reconstruction and supine shape
correction reconstruction. Top to bottom rows: Transverse slices from superior to inferior. All images
are at max inhalation relative to max exhalation. Blue and red correspond to negative and positive
conductivity changes respectively.

Figure 5.8 shows EIT and MRI co-registration examples for the subject in the

seated and supine positions for the two reconstruction algorithms. The images clearly

show that the shape correction algorithm decreases the boundary artefacts, and the

EIT reconstructions again are typically found to underestimate the total lung volume.

The shape correction algorithm also has an increased tolerance to positional changes of

the subject in the supine position. Additionally, moving towards the superior position,

the reconstructed lung regions tend to decrease in contrast to that of inferior slices,

and we believe this could be due to the natural tapering of the lungs as we move in a

superior direction.
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5.5 EIT and MR mutual information

We denote two images A and B, each with N cubic voxels, and each voxel having a

positive grayscale value, a, with 0 ≤ a ≤ 1, and consider NB = 256 equispaced bins.

We define two discrete probability distributions of A and B, pA, pB ∈ RNB , and the

discrete joint probability distribution of A and B, pA,B ∈ RNB×NB . pA(i) is given by

the number of voxels in image A that have grayscale value in the interval [ (i−1)
NB

, i
NB

],

normalised by N . pA,B(i, j) is given by the number of times out of N that a pixel in

A has grayscale value in the interval [ (i−1)
NB

, i
NB

] and the same pixel in B has grayscale

value in the interval [ (j−1)
NB

, j
NB

], normalised by N . The Shannon entropy, in the imaging

context, is a measure of the information content of an image, measured in bits. The

information content of a single event, that is of a particular grayscale value interval

of an image, is proportional to the log of the inverse of the probability of an event.

The total information content of an image, or entropy, is the information content of

a single event, weighted by the probability that the event occurs, summed over all

events. The total entropy of A, and the joint entropy of A and B, are expressed as

HA = −
NB∑
i=1

pA(i) log(pA(i)), HA,B = −
NB∑
i=1

NB∑
j=1

pA,B(i, j) log(pA,B(i, j)), (5.4)

respectively. The mutual information of A and B, IA,B, is defined as the total entropy

of A and B minus the joint entropy, IA,B = HA +HB −HA,B, which equates to

IA,B =

NB∑
i=1

NB∑
j=1

pA,B(i, j) log
pA,B(i, j)

pA(i)pB(j)
. (5.5)

It can be shown that 0 ≤ HA ≤ log(N), where HA = 0 when the image conveys no

information i.e. it is featureless or homogeneous, and HA = log(N) for white noise. It

is also true that 0 ≤ IA,B ≤ HA, where IA,B = 0 when A and B have no features in

common and IA,B = HA = HB = HA,B when A and B are the same. The larger the

mutual information between two images, the more similarities the two images share.

To calculate the mutual information, a threshold is first applied to the MR image to

generate a binary image representing just lungs and chest, similar to the segmentation

shown in figure 5.2a. The intensity values of the cubic voxel based EIT image are

then scaled linearly so they lie within the same range as the binary MR image. When

computing the discrete probability distributions and a bin is empty, 0 × log(0) is
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interpreted as 0 because p log(p) → 0 as p → 0. The MR and EIT images are both

sampled at their voxel centres to estimate HA, HB and HA,B, and hence IA,B via (5.5).

This calculation therefore measures how well a linearised EIT reconstruction is able

to find the overall shape of the lungs. We perform the mutual information calculation

over a range of regularisation parameters, (α,β), for both a standard (β = 0) and shape

corrected reconstruction algorithm. This effectively results in a numerical parameter

study to maximise the mutual information between MRI and EIT as a function of the

parameters α and β.

Figure 5.9 shows the mutual information with a lung-segmented MR image as a

function of the parameter α, for the shape corrected and standard reconstruction in

both the sitting and supine positions at maximum inspiration. For comparison, the

maximum possible mutual information, that is the mutual information of the lung-

segmented MR image with itself, was 1.51 bits. From figure 5.9 it can be seen for

the subject in the sitting position, there is a maximum of mutual information of

approximately 1.11 bits for the standard reconstruction algorithm, with α = 3× 10−2,

and 1.21 bits for the shape corrected reconstruction, with (α, β) = (10−2, 4 × 10−2).

In the supine position, there is a maximum of mutual information of approximately

1.09 bits for the standard reconstruction algorithm, with α = 3× 10−2, and 1.20 bits

for the shape corrected reconstruction algorithm, with (α, β) = (2 × 10−2, 4 × 10−2).

This corresponds to an approximate 10% increase in the maximal mutual information

with the shape correction algorithm. It can also be seen at this particular value of

β that the shape corrected reconstruction generally has a greater mutual information

than the standard reconstruction over a wide range of α. The increase in mutual

information from a standard to shape correction reconstruction is also visually evident

in the images of figures 5.3 and 5.4 (which are reconstructions at (α, β) corresponding

to the maximum mutual information), when compared to figure 5.2a.

5.6 Conclusions and extensions

This chapter demonstrates results of 3D EIT dynamic lung imaging at Manchester

using an array of 32 electrodes with the fEITER system. The implemented shape cor-

rection algorithm explicitly accounts for small changes in the boundary shape which
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Figure 5.9: Mutual information parameter study as a function of α; The left and right hand image are
for the subject in the sitting and supine position respectively with a shape corrected (β = 4× 10−2)
and standard (β = 0) reconstruction.

occur when the subject breathes. This novel algorithm yields a reduction of boundary

artefacts and improved contrast of the lungs when compared to a standard recon-

struction algorithm without shape correction. The novel co-registration process, and

original mutual information performance criterion, presented here provides an effec-

tive and practical method of directly comparing the spatial fidelity of EIT images

with those obtained from MRI. The shape correction algorithm increased the maxi-

mum mutual information with a lung-segmented MR image by approximately 10% for

both a subject in the sitting and supine positions and we believe this is the first time

mutual information has been used to assess the quality of lung EIT reconstructions.

Our findings suggest that shape correction would be a valuable enhancement to the

reconstruction algorithms used in existing commercial EIT instruments applied to lung

imaging such as the PulmoVista 500 system, developed by Dräger [24].

Previous multiple electrode plane studies, such as those by Nebuya et al. [141] and

Bikker et al. [140], have typically only used successive EIT data collection at different

electrode planes of the chest, resulting in 2D reconstructions of each plane, at low

frame rates. One notable exception to this trend is the tomography systems of the

Rensselaer group [142, 143] which have previously provided 3D lung and pulmonary

images, albeit using only generic reconstruction models. Although the MRI-informed

3D reconstruction and high frame rate of our present study address these issues, the use

of non-simultaneous data acquisition across the imaging modalities remains a short-

coming as it requires the subject to achieve repeatable breathing and posture for the

separate data captures. For better model generation and validation of EIT using MRI,
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it is thus most attractive to perform simultaneous data acquisition. If EIT were to be

routinely used as a bedside monitoring tool, optical tracking techniques could plausi-

bly be used to inform electrode positions and an approximate boundary shape such

as those by Forsyth et al. in breast imaging [34]. However, the strength of using MRI

to inform the shape is that we can also assess the spatial resolution of EIT after post

processing using, for example, mutual information as presented here. Additionally, we

note that many patients with serious lung injuries in intensive care units have had

MR and/or CT scans during their course of treatment, and so if this information is

available it is logical to use this as prior information of the external shapes for the EIT

forward and reconstruction finite element models as we have described here.

The present methodology could benefit significantly from improvements in the

generation of the thorax model. Firstly, it was found that the resulting image recon-

structions were sensitive to the somewhat arbitrary caudal and distal cut-off heights

chosen for the model. If the model cut-off height chosen is too small, a non-physical

zero current flux boundary condition is set at the caudal and distal ends of the model

and the simulated voltages have logarithmic decays associated with a 2D model. We

believe this is a major contribution to the twisting effects seen in some image recon-

structions, as noted in section 3.3. Choosing a larger cut-off height resulted in little

qualitative change in the reconstruction in the electrode planes, and unrealistic con-

ductivity changes far away from the electrode planes. A possible way to compensate

for this is to use infinite elements to model the voltage decay at the caudal and distal

ends of the model such as by Vauhkonen et al.[144]. Secondly, the image reconstruc-

tions presented here are 2.5D, in the sense that the model cross section did not vary

along the caudal-distal axis. This could be addressed by generating fully 3D models

incorporating the electrodes, from either commercial meshing packages such as Sim-

pleware [145] or open source software such as iso2mesh [146]. Although demonstrated

here for the MRI case, the use of imaging-informed EIT modelling and subsequent co-

registration are directly transferable to other high resolution tomographic modalities,

most notably CT.



Chapter 6

Coupling EIT and mechanical

ventilation

Clinicians are excited about the non-invasive, portable and fast nature of EIT, but it

is difficult to interpret reconstructed conductivities in a clinical setting due to both the

highly ill-posed nature of the problem and inadequate modelling assumptions as dis-

cussed in this thesis. It is also apparent that a conductivity image may not necessarily

be useful to a clinician. Of more practical significance in diagnosis of lung injury would

be the computation of clinically meaningful indices, such as regional compliance, or

the distribution of liquid in the lung. In this chapter we outline an original method

to combine EIT with mechanical ventilation to generate clinically meaningful param-

eters through mechanical modelling of the respiratory system, and results of the novel

algorithm, using simulated data, are presented.

6.1 Mechanical ventilation and EIT

In the mechanical ventilation of ARDS patients a PEEP is set on the ventilator to

prevent lung tissue collapsing and to recruit new regions of the lungs. In a PEEP

trial, the PEEP is changed over time in order to achieve better gas exchange and

maximum alveolar recruitment in the lungs [13]. During a PEEP trial, we would like

to simultaneously use EIT to estimate parameters such as compliance. Compliance is

defined as the ratio of the change in air volume to the change in pressure. The more

compliant a region the more air that can fill the region for a given pressure change.

183
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A dynamic EIT image displays the reconstructed change in conductivity between

two data frames at different stages along the breathing cycle. Air has a small conduc-

tivity relative to typical human tissue, and thus a conductivity change for a given voxel

will largely be attributed to the movement of air within the voxel as observed exper-

imentally in [147]. The following chapter relies on performing absolute EIT because,

using a given homogenisation model, we would be able to convert the reconstructed

conductivity of a voxel to air volume fraction for that voxel as we discuss next.

6.1.1 Inverse homogenization

In this chapter we implicitly assume that the air volume fraction of a particular voxel,

or indeed any region of the lung, can be computed from a conductivity image. Tech-

niques from homogenization theory could help us determine such quantities. The

following subsection is based on a conference paper given in 2014 at the 15th Inter-

national Conference on Biomedical Applications of Electrical Impedance Tomography

2014, titled ‘Regional lung compliance: Coupling ventilation and electrical data’, writ-

ten by Henry Tregidgo, the author and Bill Lionheart [148].

We believe that the essential steps required to retrieve useful information from

EIT must include (i) segmenting regions in the chest cavity from MRI or CT and

assigning a model for specific micro-structures to these regions, (ii) determining the

air volume fraction change from the change in conductivity, (iii) calculating regional

air volume from air volume fractions and (iv) using an ordinary differential equation

(ODE) mechanical model to calculate the required diagnostic parameters.

Chest Segmentation

Defining likely contents of specific anatomic regions in advance has several uses. These

include refining models for retrieving air volume fractions as well as labelling functional

units of the lung for which diagnostic parameters will be required. MRI and CT

data can be used to segment specific regions of the chest cavity and assign properties

to them based on anticipated microstructure. It would then be necessary to model

how this structure changes during the breathing cycle. This modelling will require

coupling of neighbouring regions through mass and volume conservation, as well as

comparisons with typical deformations of the lung, chest cavity and abdomen under
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forced ventilation.

Air Volume Fractions

We would like to create a homogenisation scheme, mapping the air volume fraction

of an underlying microstructure to bulk conductivity. We will then need to invert

this to find the air volume fraction of a region from reconstructed conductivity values.

The assumed microstructure can be as simple as spherical inclusions dispersed in a

homogeneous substrate [149], or can further reflect the anisotropic structures identified

while segmenting the lung image [150]. However, air content is not the only quantity

which will affect the bulk conductivity. In addition other features such as blood flow

or lung fluid content may need to be incorporated. This could be done by combining

heart rate and blood pressure measurements with dispersion relations from multi-

frequency EIT to discern blood content. We note that it is desirable to perform

absolute conductivity imaging, as opposed to reconstructing normalised conductivity

differences, because the mapping from air volume fraction to bulk conductivity will in

general be non-linear.

Regional Air Volume

As previously noted, at different times throughout the breathing cycle the domain

will have deformed, changing the physical volume occupied by the lung. The volume

change is non-uniform, complicating the conversion of air volume fractions to regional

volumes. Models created for chest segmentation could help with this problem while

the ventilator itself provides information on the amount of air passed into the lung,

which can be used to constrain the total air volume within the lung.

The rest of this chapter will be devoted to the last stage of the retrieval, that is

using ODE models to estimate mechanical parameters of the respiratory system.

6.2 CFD and mechanical modelling

The respiratory system is complex and mathematical modelling has proven to be an

extremely difficult task. Recent advances in image-based modelling techniques and

computational power have been utilised to generate computational fluid dynamics
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(CFD) models of the respiratory system from high resolution CT and MRI [151, 152].

One of the aims of high resolution CFD modelling is to model different pathologies

computationally to understand how these affect the respiratory output. The hope

is that such models will give insight into how different pathologies generate different

output signatures, and eventually be used in clinical diagnosis.

Alternatively, a mechanical model assumes the respiratory system is composed of

simple mechanical units connected through a network in order to replicate the be-

haviour of the respiratory system. These models stretch back to the work of Mead

et al. [44, 153]. The airways are modelled as a set of connected tubes, and the lung

parenchyma as inflatable sacs with different regions assigned mechanical parameters,

such as compliance and resistance, and couple through their physical locations and

connectivity. The air is assumed to be an incompressible, inviscid fluid at constant

temperature. These assumptions give rise to a system of coupled temporal ODEs with

the dependent variables being the volumes of the individual sacs, and their temporal

derivatives, and the coefficients of the ODEs being functions of the mechanical param-

eters [154, 155]. More complicated ODE models have also been created that include

the coupling with the cardiovascular system and the brainstem [156].

An input pressure wave at the mouth will distribute air around the system accord-

ing to the compliance and resistances. In this thesis we propose that the regional air

volume fractions calculated from conductivity images can be treated as states of the

ODEs, and we have input data as the temporal pressure wave at the mouth. Using

techniques from inverse problems for ODEs, we demonstrate that for some systems we

can uniquely identify the mechanical parameters in the model.

6.2.1 Electric and hydrodynamic analogies

In a hydrodynamical system there are two fundamental properties - the volume of

fluid (V /L) and the pressure (P/cmH2O) is the force per unit area that the fluid

exerts. The flow (Q/Ls−1) is the rate of change of the fluid volume. There are three

fundamental relationships between P, V and Q. The compliance (C/L(cmH2O)−1) is

defined through V = CP and measures the opposition to a change in volume at a fixed

pressure. The resistance (R/cmH2OsL−1) is defined through P = QR and measures

the opposition to flow at a fixed pressure. The inductance (I/cmH2Os2L−1) defined
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Type Mechanical Hydrodynamical Electrical

Potential Force F Pressure P Voltage V
Quantity Displacement x Volume V Charge Q

Flow Velocity v dx
dt

Flow Q dV
dt

Current I dQ
dt

Spring F = kx Compliance P = 1
C
V Capacitance V = 1

C
Q

Damping F = Bv Resistance P = RQ Resistance V = RI

Inertial mass F = mdv
dt

Inductance P = I dQ
dt

Inductance V = LdI
dt

Table 6.1: Analogous variables in mechanical, hydrodynamic and electrical systems.

through P = I dQ
dt

, measures the opposition to a change of flow at fixed pressure. We

can write these relationships in the following form

PC =
1

C
V, PR = R

dV

dt
, PL = L

d2V

dt2
.

If a hydrodynamical compartment has all these properties, at a fixed pressure, this

results in a second order differential equation for V . The volume, flow and pressure

are analogous to the charge (Q/Coulombs), current (I/Amps) and voltage (V /Volts)

respectively in an electric circuit. The electrical resistance (R/Ohms), defined through

V = IR, capacitance (C/Farad), defined throughQ = CV , and inductance (L/Henries),

defined through V = LdI
dt

, are analogous to the hydrodynamical resistance, compliance

and inductance respectively (see table 6.1). In the rest of this chapter it is assumed

the inductance is small, Ll ≈ 0, which is true for small enough mass of the fluid

[154]. The analogies are useful as we can model the respiratory system as an electrical

network, and then convert back to the hydrodynamical quantities where necessary.

6.2.2 Single and double compartment model

Perhaps the simplest mechanical model of the respiratory system is a single compart-

ment with air volume and flow denoted V and Q respectively, as shown in figure 6.1.

We denote the pressure at the input of the system as P i.e. the mouth pressure, and

the pleural or ‘ground’ pressure as P0. We assume the total pressure drop of the system

is attributed to the elastance, P = EV = 1
C
V , and resistance to air flow, P = RQ,

and we can equate the pressure

P (t) = EV (t) +RV̇ (t) + P0. (6.1)

In practice, we can measure the pressure, volume and flow rate at the mouth using

standard bedside respiratory monitoring devices. We assume these quantities have
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R

C

Figure 6.1: Single mechanical chamber with a spring with hydrodynamical elastance and resistance of
E and R respectively and pressure differential P (t)−P0. The electric circuit analogue with electrical
capacitance and resistance of C and R and voltage V (t)−V0 applied across the battery. The electric
circuit can be represented by a single complex impedance Z(w) = (R+ 1

iωC ).

been sampled at S time points, and also denote the sampled vectors of pressure,

volume and flow as P, V and Q respectively. We can write the sampled ODE in the

form of a matrix-vector equation

P = AX,

where X = [E,R, P0] ∈ R3 and A = [V |V̇ |1] ∈ RS×3, where 1 ∈ RS is a column

vector of 1′s. Assuming a time varying input pressure, the functions V, V̇ and 1 must

be linearly independent from one another, since they solve an ODE with a non-zero

forcing term. The matrix A thus has full rank and so ATA is invertible given enough

independent samples of the solutions. Hence, we can use a least squares estimate

X̂ = arg min
X
||P − AX||22,

with an explicit solution given by the normal equations

X̂ = (ATA)−1ATP.

A single compartment model of the respiratory system is clearly unrealistic, and

an obvious extension is a model with two parallel compartments. We let P (t) and

V̇ (t) denote the pressure and flow at the mouth, Rc the airway resistance and let the

compartments have resistance Ri, and compliances 1/Ei respectively, where i = 1, 2,

along with their respective pressure and flow as Pi(t) and V̇i(t). By Kirchoff’s law, we
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have V = V1 + V2, and three applications of Ohm’s law leads to the following three

equations (dropping the explicit dependence on time)

Pc − P0 = R1V̇1 + E1V1 = R2V̇2 + E2V2, P − Pc = RcV̇ ,

where P0 represents the ground voltage (pleural pressure) and Pc(t) is the pressure

at the branch point of the two compartments. This can be written as two coupled

ordinary differential equations

P − P0 = E1V1 + (R1 +Rc)V̇1 +RcV̇2 = E2V2 + (R2 +Rc)V̇2 +RcV̇1. (6.2)

We would like an equation for P in terms of V , and so want to eliminate V1 from the

equations. This can be achieved by using the Laplace transform, converting the differ-

ential equations into algebraic equations in the Laplace domain, and then transforming

back into the time domain. Following this procedure [154] we find that

(E1 + E2)P + (R1 +R2)Ṗ = E1E2V + (E2(R1 +Rc) + E1(R2 +Rc))V̇

+ (Rc(R1 +R2) +R1R2)V̈ + P0

Dividing through by (E1 + E2), and using sampled time series of solutions, this can

again be written as linear system of equations P = AX, where A ∈ RS×5, which

has maximum rank 5. Thus the 6 parameters RC , R1, R2, C1, C2 and P0, can not be

uniquely determined from the pressure and volume at airway opening. A general linear

model with M parallel compartments, can be written in the form [154]

M−1∑
k=0

bkP
(k)(t) =

M∑
k=0

akV
(k)(t),

for some coefficients ak and bk which are algebratic functions of the individual compli-

ances and resistances. We are interested in the relationship between the pressure and

flow (or volume) at airway opening, P̃ (ω) = Z(ω)iωṼ (ω), where Z(ω) is known as the

response function. Taking the Fourier transform of the above equation we find that

Z(ω) :=
P̃ (ω)

iωṼ (ω)
=

∑M
k=0(iω)kak∑M−1

k=0 (iω)k+1bk
,

a rational function of temporal frequencies. Clearly the more parameters appearing

in a mechanical model, the less that can be uniquely determined from just measuring

the flow and pressure at the mouth as we observed in the two compartment model.
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In particular many different models exist whose parameters can be adjusted to fit

the measured data, known as the model non-uniqueness problem [154]. The response

function does contain useful information, and the impedance spectra can be used to de-

termine effective compliance, resistance and inductance of small parameter mechanical

systems [157, 158].

Converting regional reconstructed conductivity changes to regional air volume pro-

vides us with information of the interior data of the mechanical model and not just

at airway opening. In effect we have created an inverse problem on resistor networks,

consisting of data of time dependent boundary measurement of pressure and volume

as well as interior measurements of volume. In the following section we discuss what

extra information can be gained from the extra interior measurements by considering

a specific example of a multi-lobe lung model.

6.3 Multi-compartment coupled ODE model

We model the respiratory system as two lungs connected in parallel, with each lung

having N compartments, or lobes, connected in parallel. Treating each lung with a

number of distinct lobes connected in parallel is physiologically reasonable (see [159]

for a description of lung physiology), and the illustration for electric circuit analogy for

the case N = 6 is depicted in figure 6.2. We model the main airway with a resistance

RS branching into the lungs, and each lobe of each lung having a compliance and

resistance component connected in series, as in figure 6.1.

Let P (t) denote the pressure at airway opening, PS(t) the (unknown) pressure

after the airway series resistance and P0 the (unknown) pleural pressure. Further let

EA,B, RA,B, where A = L or R and B = 1, . . . , N , denote the elastance and resistance

of each separate compartment. Using Ohm’s law on the airway series resistance, we

have

P (t)− PS(t) = RSV̇ (t). (6.3)

Similarly, appying Ohm’s law on each lobe results in an additional 2N equations

PS(t)− P0 = RL,iV̇L,i(t) + EL,iVL,i(t) i = 1, . . . , N, (6.4)

PS(t)− P0 = RR,iV̇R,i(t) + ER,iVR,i(t) i = 1, . . . , N. (6.5)
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Figure 6.2: Electric circuit analogue of multi-compartment lung model with 6 compartments per lung.
Each compartment has associated an impedance Zi, consisting of a capacitor and resistor connected
in series (see figure 6.1.)

Kirchoff’s law also supplies us with additional constraints on the air volume and flow

V̇ (t) = V̇L(t) + V̇R(t) =
N∑
i=1

(V̇L,i(t) + V̇R,i(t)).

Let v, f ∈ R2N be given by

v = (VL,1, . . . , VL,N , VR,1, . . . , VR,N) f = (P (t)− P0, . . . P (t)− P0),

the matrix E ∈ R2N×2N be diagonal with entries of the elastance of each compartment

respectively, and the matrix B ∈ R2N×2N given by

B =


RS +RL,1 RS . . . RS

RS RS +RL,2
. . . RS

...
. . . . . . RS

RS . . . RS RS +RR,N

 .

Then we can write the RC network as a coupled first order system of ordinary differ-

ential equations

Bv̇(t) = −Ev(t) + f(t), v̇(t) = B−1(−Ev(t) + f(t)) =: g(x, t).



CHAPTER 6. EIT AND VENTILATION 192

To solve the forward problem, we need initial conditions on the volume of each com-

partment. For example at t = 0 we can set each compartment to have volume V0/(2N),

where V0 is the forced expiratory volume which is measurable using spirometry tech-

niques. We also need to apply an input pressure force term, P (t), which will be

discussed in the subsequent section. The solution is evolved through time using a

time integration method for ODE, and in particular an explicit Runge Kutta-4 (RK4)

method is used

vn+1 = vn +
1

6
(∆t)(k1 + 2k2 + 2k3 + k4)

where ∆t is the (constant) time step and

k1 = g(xn, tn +
1

2
∆t) k2 = g(xn +

h

2
k1, tn +

1

2
∆t)

k3 = g(xn +
h

2
k2, tn +

1

2
∆t) k4 = g(xn + hk3, tn + ∆t)

where vn is the approximate solution at time tn = t0 + n∆t.

6.3.1 Inverse problem

We consider the following problem - given measurements of the input pressure at

airway opening, and the resulting volume at all times within the mechanical network,

can we infer the parameters of resistance and capacitance? To answer this question,

we begin by combining equations (6.3), (6.4) and (6.5) leading to 2N equations of the

form

P (t) = RS

N∑
i=1

2∑
j=1

V̇j,i(t) +RL,iV̇L,i(t) + EL,iVL,i(t) + P0 i = 1, . . . , N (6.6)

P (t) = RS

N∑
i=1

2∑
j=1

V̇j,i(t) +RR,iV̇R,i(t) + ER,iVR,i(t) + P0 i = 1, . . . , N. (6.7)

In effect each of these equations describes the pressure drop from pleural to airway

opening pressure for each series circuit in the multi-compartment parallel model. Let

V2Li = [VL,i, ˙VL,i] ∈ RS×2 i = 1, . . . , N and similar with V2Ri. Then we can write the

above equation as a matrix equation d = Mx, where d = (P (t), . . . , P (t)) ∈ R2NS,

vector of parameters x = (EL,1, RL,1, . . . , ER,N , RR,N , RS, V0) ∈ R2(2N)+2 and M ∈
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R2NS×(2(2N)+2) given by

M =



V2L1 0
∑2

j=1

∑N
i=1 V̇j,i 1

0
. . . . . .

...
...

. . . V2LN

V2R1
. . .

. . . . . . 0
...

...

0 V2RN

∑2
j=1

∑N
i=1 V̇j,i 1


. (6.8)

We wish to determine whether the matrix MTM is invertible to perform a least squares

inversion, and so we must must determine if M has full rank. We denote an arbitrary

volume time series of a compartment as Vi(t). We remember two functions f1, f2 are

linearly dependent in an interval [0, T ] if f1(t) = αf2(t) for some α ∈ R and for all

t ∈ [0, T ], else the functions are linearly independent. Hence Vi(t) and V̇i(t) are linearly

independent, unless there is a trivial zero pressure forcing term applied to the coupling

ODE. The matrix consisting of the first 2NS × 4N block of M and the last column

of M has full rank of 4N + 1 given enough independent samples of the volumes, and

a non-trivial forcing term.

Where there is a potential rank deficiency is if the first N even columns are linearly

dependent on the 2nd last column of M . Using the Fourier Transform of V (t), Ṽ (ω),

this condition implies that iωṼj(ω) = αjkiωṼk(ω) for all ω ∈ R, and for some non-zero

constant αjk ∈ R for j, k = 1, . . . , N . Equations (6.4) and (6.5) are also equal so we

must have

(Rjiω + Ej)Ṽj(ω) = (Rkiω + Ek)Ṽk(ω) for all ω,

and thus, if the functions are linearly dependent we must have αjk = Rkiω+Ek
Rj iω+Ej

, for all

j, k = 1, . . . , N . But αjk must be independent from ω because it is constant and this

implies either all the elastances are zero, all the resistances are zero, or

Rk

Ek
=
Rj

Ej
j, k = 1, . . . , N.

If this condition is satisfied we deduce the matrix is rank deficient by exactly one

for a large enough number of samples resulting in an underdetermined system. This

condition means that the impedance angle for each compartment have the same phase.

In this (unlikely) case this means that we can not distinguish between the airway
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resistance and the resistances of each compartment. We note that in practice, if we had

raw interior volume data we could check for this condition numerically by computing

the rank of the matrix M , but for our numerical simulations we will assume that at

least one of the ratios is different when constructing the forward problem. In this

case the matrix M does have full rank, and hence MTM is invertible, and so we can

estimate the parameters using a least squares estimate

x = (MTM)−1MTd. (6.9)

The combination of electrical and mechanical data will generate measurements of

the vectors P (t) ∈ RS and VA,B(t) ∈ RS for the pressure at airway opening and

the sample volumes. The EIT data will not generate measurements of the flow,

V̇A,B(t) ∈ RS, and so we must numerically differentiate the sampled volumes of each

compartment to estimate the flow. In practice the air volume time series estimated

from EIT will be very noisy and so it is important to efficiently, and robustly, estimate

the flow from the volume. We outline a number of different methods to estimate the

flow data from the volume data.

6.3.2 Numerical differentiation

For clarity, we consider numerical differentiation for a single compartment, with a

measured charge time-series V ∈ RS sampled at regular time intervals ti = (i− 1)∆t,

i = 1, . . . , S, where ∆t = T
S−1

. The simplest method is to use finite differences to

estimate the derivative,

V̇ (ti+ 1
2
) =

1

∆t
(V (ti+1)− V (ti)) i = 1, . . . , S − 1,

or some higher order finite difference scheme. Differentiation, however, is unstable in

the presence of noise and we seek an improved method. In this chapter two alternative

methods are outlined and implemented, namely time intergration of equations and

inverse integration.
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Time integration of equations

In this method, each equation relating the input pressure to the compartment volume

and flow in (6.7) is integrated from t = 0 to T = i∆T leading to∫ T

0

P (t) dt =

∫ T

0

EL,iVL,i(t) dt+RL,iVL,i(T ) +RS

N∑
i=1

2∑
j=1

Vj,i(T ) + P0T + FL,i,

∫ T

0

P (t) dt =

∫ T

0

ER,iVR,i(t) dt+RR,iVL,i(T ) +RS

N∑
i=1

2∑
j=1

Vj,i(T ) + P0T + FR,i,

where i = 1, . . . , N , FL,i = −RL,iVL,i(0)−RS

∑N
i=1

∑2
j=1 Vj,i(0) and FR,i = −RR,iVR,i(0)−

RS

∑N
i=1

∑2
j=1 Vj,i(0). This requires cumulative integration of the input pressure data

and volume data and leads to an extra constant to estimate for each compartment.

These can then be fed into a parameter matrix analagous to M in (6.8) with the follow-

ing amendments - V2Li = [
∫ T

0
VL,i(t) dt, VL,i, 1] ∈ RS×3, V2Ri = [

∫ T
0
VR,i(t) dt, VR,i, 1] ∈

RS×3, the second last column is now
∑2

j=1

∑N
i=1 VL,i and the last column is a re-

peated vector of the sampled time points. We can then estimate the partameters

x = (EL,1, RL,1, FL,1 . . . , ER,N , RR,N , FR,N , RS, V0) ∈ R2(3N)+2 through a least squares

estimate. We denote this method as time integration of equations.

Inverse integration

In section 3.1 we considered differentiation and observed this to be a mildly ill-posed

inverse problem and so we treat the numerical differentiation as an ill-posed inverse

integration problem. This allows us to regularise the solution appropriately depending

on the expected noise level and smoothness of the flow, as well as providing a-priori

information of the flow per compartment if available. A rigorous approach to numerical

differentiation and regularisation was first studied in [160]. It has been shown for

smooth problems, inverse integration with generalised Tikhonov regularisation is also

equivalent to fitting a cubic spline to the volume data [161]. This has also been applied

to chemical reaction equations in [162] and also applied to problems with discontinuous

derivatives in [163].

For the problem on ODEs, the smoothness of the input pressure wave will effectively

determine the smoothness of the highest order derivative of the volume by (6.7). For

example, if the pressure wave is smooth, say C2, then the flow data will also be
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C2. The input pressure could be non-differentiable, or discontinuous, but since this

will determine the smoothness of the flow, we can account for this explicitly as a

regularisation term in the inverse integration problem. We use smooth pressure waves

at airway opening which means that smooth regularisation techniques can be applied.

To numerically approximate the integrals we consider a cumulative Trapezium rule

matrix F mapping the time sampled flow, V̇ , to volume, V , vectors

F : RS+1 → RS V̇ 7→ V = FV̇ .

In particular the ith entry of FV̇ for V̇ ∈ RS+1 is given by

(FV̇ )i =
∆t

2
(V̇0 + 2V̇1 + . . .+ 2V̇i−1 + V̇i).

We seek the flow data V̇ as the minimiser of the data residual ||FV̇ − V ||. Because

F is compact, and the input pressure will be smooth, we stabilise using an additional

smooth penalty term, ||V ||H2 = ||LV ||L2 , where L is a finite difference approximation

to the second derivative, L : RS+1 → RS−1, where the ith entry of LV is given by

(LV )i =
1

(∆t)2
(−Vi + 2Vi+1 − Vi+2).

The MAP estimate leads to the following regularised minimisation problem,

V̇MAP = arg min
V̇
{||FV̇ − V ||22 + α||L(V − Vp)||22},

where Vp is a prior volume vector (which we assume to be zero for this rest of this

chapter). This assumes that the volume is 0 at t = 0 which in general is not true. We

can account for this by estimating the integration constant, V0, by adding an additional

column to F , F̃ = [F,1], and to L, L̃ = [L,0], where 1,0 ∈ RS+1. An estimate of

˜̇V = [V̇ , V0] is sought through the augmented problem

˜̇VMAP = arg min
˜̇V

{||F̃ ˜̇V − V ||22 + α||L̃(V − Vp)||22}.

Since the operator F is linear, we have the explicit formula for the minimiser as

˜̇VMAP = (F̃ T F̃ + αL̃T L̃)−1(F̃ TV + L̃T L̃Vp).

After ˜̇VMAP has been estimated a smoothed approximation to the volume, VMAP :=

F̃ ˜̇VMAP, is also calculated. Once the flow and volume have been estimated for each

compartment, these can then be assembled into the parameter estimation matrix (6.8),

and an estimate of the parameters obtained through a least squares fit (6.9). We denote

this method as inverse integration.
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Figure 6.3: Sinusoidal pressure forcing term at mouth with SNR = 100 noise added.

6.4 Multi-compartment lung results

We present results with simulated data using the multi-compartment model with 3

compartments per lung. The MATLAB code used to generate the results can be

seen in appendix D. A sinusoidal input pressure of amplitude 10 cmH2O and average

pressure of 15 cmH20 is simulated, and is contaminated with white pseudo-random

Gaussian noise parameterised by the SNR ratio analogously to (4.1). The sinusoidal

pressure with 0.2 Hz frequency over t = 30 s can be seen in figure 6.3 with SNR= 100

noise added. In this particular model 3 compartments per lung are used, and thus

we need to estimate 6 parameters for the compliance and resistance per lung. We

also have a single airways resistance, RS, and pleural pressure, P0. We model the

lungs with each of the compartments of the lungs having the same elastance and

resistance of 50 cmH2OL−1 and 20 cmH2OsL−1, apart from compartment 1 of the left

lung assigned a low elastance of 5 cmH2OL−1 and compartment 3 of the right lung

a high resistance of 50 cmH2OsL−1. In effect we are modelling an idealised situation

where there is a highly compliant compartment in the left lung and a blockage in a

compartment in the right lung. The values used are in order of magnitude agreement

with experimentally determined values of mechanical resistance and elastance in [154].

We assume at t = 0 the volume of air in the lungs is V (0) = 6 L and then distribute

this equally along each compartment as initial conditions for the forward problem i.e.

VL,1(0) = VL,2(0) = VL,3(0) = VR,1(0) = VR,2(0) = VR,3(0) = 1 L. The volume and

flow at subsequent time steps was solved using the explicit RK4 scheme. For the

given parameter values the resulting ODE system matrix was relatively non-stiff with
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Figure 6.4: Raw volume time series of two compartments in lungs with elastance of 5 cmH2OL−1

(left figure) and resistance of 50 cmH2OsL−1 respectively with SNR = 100 noise added. The volume
time series with high elastance is significantly affected with the addition of noise.

a small stiffness ratio of R ≈ 10.5, which is defined through

R =
max|Re(λi)|
min|Re(λi)|

,

where {λi}ni=1 is the set of eigenvalues of B−1E [164]. The set of eigenvalues are also all

purely real, and negative, indicating that the homogeneous solution decays for a given

set of initial conditions. The small stiffness ratio means that the numerical results

were insensitive to modest timesteps in the range ∆t ≈ 0.001 − 0.01 s. The volume

and pressure were sampled at 20 Hz which is consistent with temporal resolution of

EIT data collections (see section 5.1.1) and pressure transducers [154].

Figure 6.4 indicates the volumes time series of compartment 1 in lung 1 and com-

partment 3 in lung 2 which have a low and high value of elastance and resistance

respectively. We note there is a higher component of noise in the compartment with

the larger elastance, because the time series has a smaller value of volume. The vol-

ume time series have an initial transient, from the homogeneous part of the ODE,

followed by the steady state solution due to the given sinusoidal pressure forcing term.

We perform an inverse integration scheme using a single regularisation parameter of

α = 0.01 for each compartment of each lung. The reconstructed flow and volume plots

for the two compartments can be observed in figure 6.5 and figure 6.6 respectively.

The reconstructed volume is close to the noise free volume, and the reconstructed flow

fits reasonably well to the true flow. We also consider the reconstructed flow and

volume for lung 2, compartment 3 as a function of SNR in figure 6.7 and figure 6.8
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Figure 6.5: Reconstructed flow time series of two compartments in lungs with elastance of 5
cmH2OL−1 (left figure) and resistance of 50 cmH2OsL−1 (right figure) respectively with SNR = 100
noise added. A regularisation parameter of α = 0.005 is used.
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Figure 6.6: Reconstructed volume time series of two compartments in lungs with elastance of 5
cmH2OL−1 (left figure) and resistance of 50 cmH2OsL−1 respectively with SNR = 100 noise added,
with a regularisation parameter of α = 0.005. The noisy volume with high elastance (see figure 6.4)
is reconstructed well.

using regularisation parameters of 0.1 and 0.5 respectively. An increasing SNR results

in a poorer fit of the reconstructed flow to the actual flow as expected.

Parameter estimation

After volume and flow have been estimated for each compartment, we can input these

into (6.8) to estimate the parameter matrix, M . Given enough samples of the pres-

sure, we can then use a least squares estimate to determine an approximation to the

parameters. It is essential that the volume and flow are estimated well before being

used in the matrix M . In the absence of noise M has full rank, for the given model,

because the ratios of the elastance and resistance of each compartment are not all the
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Figure 6.7: Reconstructed flow time series with SNR = 50 (left figure) and SNR = 25 (right figure)
for lung 2 compartment 3 with regularisation parameters of α = 0.05 and α = 0.5 used respectively.
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Figure 6.8: Reconstructed volume time series with SNR = 50 (left figure) and SNR = 25 (right figure)
for lung 2 compartment 3 with regularisation parameters of α = 0.05 and α = 0.5 used respectively.

same. This property was retained numerically over all simulations run, and so suggests

that we do not suffer from any ill-conditioning after discretisation.

The actual parameter matrix is plotted in figure 6.9, along with the corresponding

error with no noise, and we label the matrix as MSNR. From these matrices we

observe that the largest source of error is in the even columns of M , corresponding to

the estimated flow data. In figure 6.10, the error in the parameter matrix M is shown

for an SNR of 100 and 25 respectively. We observe larger errors when increasing the

amount of noise present as expected.

To estimate the parameters we first use time integration of equations, and the

estimated parameters can be seen in figure 6.11. In the absence of noise the parameters

are fitted almost perfectly, but in the presence of even relatively small noise (SNR of

100), the parameters are poorly estimated. In particular the resistances are very poorly
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Figure 6.9: Actual parameter matrix (left figure) and error in parameter matrix with SNR =∞. The
errors in the parameter matrix appear in the even columns, corresponding to the reconstructed flow
time series. The norm of the parameter matrix and the error is ||M ||2 = 108.2 and ||M−M∞||2 = 0.30
respectively.

SNR Elastance Int Elastance Inv Resistance Int Resistance Inv

100 19.1 14.2 24.2 8.5
50 44.6 21.0 45.3 16.4
25 46.7 32.0 45.2 28.2

Table 6.2: 2-norm errors of the estimated elastances and compliances where Int representations time
integration of equations and Inv represents inverse integration. These are the 2-norm errors over all
compartments. The total 2-norm of the elastance is 111.9 cmH2OL−1 and the total 2-norm of the
resistance is 67.1 cmH2OsL−1.

estimated with large errors. In effect, time integration of the equations is a rather ad-

hoc method and an improvement can be made with inverse integration. In figure 6.12

the parameter estimation is plotted using the inverse integration method (after first

estimating V̇ and V for each compartment and hence the parameter matrix M in

(6.8).) Table 6.2 illustrates the total errors in the estimated elastance and resistances.

We observe that for an SNR greater than 50 that the inverse integration procedure

is significantly better than time integration of the equations, with time integration of

equations particularly poor at estimating the resistances.

6.5 Conclusions and extensions

EIT and homogenization models will allow us to estimate the volume of air at different

regions of the lung, and thus provides us with many more measurements than just at

airway opening as is standard in mechanical ventilation. This chapter is a numerical
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Figure 6.10: Error in parameter matrices with SNR = 100 (left figure) and SNR = 25 (right figure).
The largest errors again correspond to the even columns corresponding to reconstructed flows. The
error of the parameter matrices with SNR = 100 and 25 is ||M −M100||2 = 11.12 and ||M −M25||2 =
28.35 respectively.

proof of concept that we can get good estimates of mechanical properties of the lung

using inverse problem techniques on systems of coupled ODEs. The main instability

in the algorithm is converting the volume data to flow data to estimate the compart-

ment resistances in the presence of noise, although inverse integration can stabilise

this to some degree as illustrated in this chapter. This outperforms time integration

of equations for modest noise levels and in particular for estimates of the resistances.

More general regularisation schemes for non-smooth pressure inputs, such as Besov

space or Total-Variation regularisation [77], could easily be extended in to this frame-

work. CFD models of the respiratory system, such as those developed by Tawhai et

al. [152, 151], could also be coupled with these models as they would provide a-priori

information of the volume within different regions of the lung, under different applied

pressures, to further stabilise the volume to flow mapping.

It was observed that the parameter estimation matrix M for the simple multi-

compartment lobe model can be rank deficient. The simplest rank deficiency occurs

if two components of the same type are placed in series inside a single compartment.

For example if two resistors are placed in series in the airway they can not be distin-

guished because the two corresponding columns of the parameter estimation matrix

M would be exactly the same and thus create an extra rank deficiency in the param-

eter estimation matrix (6.8). In effect we can only expect to estimate a single lumped
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Figure 6.11: Parameters estimated as a function of noise level through time integration of equations.
The left and right hand figure are the estimated elastances and resistances of lung compartments
respectively. The resistances are estimated particularly poorly because these correspond to multiples
of the estimated flow time series. See table 6.2 for the estimated errors.

parameter of the airway resistance which we can not localise from a single time se-

ries of the flow. We also noticed that when the ratios of the resistance to elastance

of every compartment are the same this corresponds to not being able to distinguish

between the airway resistance and resistance of each compartment. The difference in

resistance between each compartment and airway resistance can be estimated which

still provides us with clinically meaningful information. It would be an interesting

extension to study how this generalises to more complicated CR networks with more

parallel branches, and in particular understanding how choosing certain combinations

of the capacitance and resistance can make the matrix M rank deficient. This would

be useful because if we can characterise the null space for a given model by some con-

ditions on the components of the CR network, then this should help us determine what

we can identify about the system from some given data. Techniques from the inverse

quadratic eigenvalue problem and inverse problems for damped vibrating systems may

be helpful for future analysis of more complex models [165, 166].

The mechanical models described in this chapter are clearly quite simplistic. For

example, there are no additional hydrodynamical terms because of liquid in the lung.

Of even greater importance is perfusion which is the rate of blood supply to the lungs.

This is fundamental physiologically because any oxygen in the air that enters the lungs

can be attached to the haemoglobin in the blood. Clinicians use the term V/Q ratio to

describe the relative ventilation and perfusion rates, and efficient respiration requires
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Figure 6.12: Parameters estimated as a function of noise level through inverse integration. The
left and right hand figure represent the estimated elastances and resistances respectively. There is
improvement of the estimated parameters compared to time integration of the equations (see figure
6.11), although with SNR < 50, the errors in the estimated coefficients begins to become large. See
table 6.2 for the estimated errors.

this ratio to be finely tuned [159]. Equations for coupling terms of mechanical models

with the cardiovascular systems have been described in [156] and multi-frequency EIT

also can provide regional information on liquid gas fractions and hence would generate

information of the regional interior liquid distribution for coupled ODE models. Non-

linear mechanical models, such as non-linear resistor components of the form Pres =

R1V̇ + R2V V̇ , can also be included in these models, through additional columns of

the parameter estimation matrix M . We also note that these models are static, in

the sense that the parameters do not depend on time, and do not not depend on the

pressure and volume. We hope to extend this work to such cases if necessary.



Chapter 7

Conclusions and future research

7.1 Thesis Summary

In this thesis we have explored a number of challenges facing the application of EIT

in respiratory monitoring, with a particular focus on modelling errors in the forward

problem.

In chapter 2 the computation of the forward problem with high order finite elements

was outlined, and a convergence study performed for different electrode models on a

square domain. High order finite element models increased the convergence rate for

the forward problem in both the L2 and H1 norm for the continuum model. The

convergence rate for the CEM, however, was independent of the global polynomial

approximation order, and the point electrode model is not H1 convergent for any

approximation order. Adaptive finite element methods could be deployed to increase

the accuracy of the forward problem in lung EIT, but it appears that this is currently

less important than modelling errors due to an inaccurately known external shape and

electrode positions.

In chapter 3 a review of uniqueness results for the isotropic inverse conductivity

problem was presented along with exact reconstruction algorithms. The anisotropic

problem was discussed when constraints on the permissible conductivity eigenspace are

imposed. By drawing analogies with theoretical elasticity, a local uniqueness result

with prescribed eigenvalues was proved, and we hope to determine conditions on a

given manifold so that this can be extended to a global uniqueness result. Also a

uniqueness result with prescribed eigenvectors, assuming a globally defined coordinate

205
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system, was proved. Further definitions of fibrous and layered conductivities were

made and we hope to extend these uniqueness results to these materials in the future.

Anisotropic material is most definitely present in the human body, such as muscle

tissue, and so developing a theoretical understanding of what can be uniquely identified

from the electrical data, perhaps with additional constraints, is an important area of

research. Further research would eventually lead us to understand how anisotropic

tissues can be incorporated into prior conductivity models of the thorax.

In chapter 4 the importance of boundary shape and electrode positions was dis-

cussed. A theoretical review of uniqueness results with an unknown shape and con-

ductivity were made. A novel computation of the Fréchet derivative for the continuum

model under a boundary shape perturbation was outlined, along with a physical inter-

pretation of the resulting derivative in integral form. An SVD analysis of the Fréchet

derivative on a cylindrical domain was performed, highlighting how tangential compo-

nents of the shape movement are easier to detect from the electrical data than normal

components if measurements are not included on driven electrodes. If measurements

are included at driven electrodes, however, normal changes at the electrode positions

are easier to detect than tangential changes. Normal changes of the boundary away

from the electrodes are fundamentally difficult to detect with any measurement strat-

egy. Novel results with simulated data in 3D with spherical and cylindrical geometries

were displayed using a non-linear two stage simultaneous shape correction and con-

ductivity reconstruction algorithm. The first stage of the algorithm solely determines

the electrode positions, followed by the second stage where the conductivity and small

changes to electrode positions are determined. The reconstructions with this two stage

algorithm are of similar quality as when the electrode positions are known for both

spherical and cylindrical geometries.

In chapter 5 a pilot study of dynamic lung imaging with EIT was presented. EIT

data was collected with the fEITER instrument using an array of 32 electrodes, and

MR images were used to inform a 3D model of the subject used during the experi-

ment. A shape correction algorithm was implemented that explicitly accounts for small

changes in the boundary shape which occur when the subject breathes, yielding a re-

duction of boundary artefacts and improved contrast of the lungs when compared to

a standard reconstruction algorithm without shape correction. A novel co-registration



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 207

process, and mutual information performance criterion, were presented providing an

effective and practical method of directly comparing the spatial fidelity of EIT images

with those obtained from MRI. The shape correction algorithm increased the maxi-

mum mutual information with a lung-segmented MR image by approximately 10% for

both a subject in the sitting and supine positions and we believe this is the first time

mutual information has been used to assess the quality of lung EIT reconstructions.

In chapter 6 the coupling of mechanical ODE models and EIT to determine clini-

cally meaningful parameters was discussed. In these models, it is assumed that EIT

can be used to determine regional air volumes, which are then states for the coupled

ODE models. It was demonstrated with simulated data, that parameters of a sim-

ple multi-compartment model of the lung can be estimated, even in the presence of

noise. It would be interesting to understand what can be determined when equations

coupling to the cardiovascular system are included, as well as non-linear ODE models.

7.2 Future Research

7.2.1 Optimal measurement strategies

Many EIT systems typically deploy a single ring of electrodes placed approximately

equidistant around the thorax and reconstructions typically performed in a plane de-

fined by this ring. Electric current, however, can not be constrained to lie in this 2D

plane making EIT inherently a 3D imaging technique. This raises the issue that not

only should reconstructions be performed in 3D but also fully 3D measurement pat-

terns should be deployed, as presented in chapters 4 and 5. The majority of systems are

constrained for a source-sink current pattern operation, with excitation between two

pairs of electrodes, due to the substantial increase in cost of adaptive current drives.

Many systems also deploy adjacent current stimulation and adjacent voltage measure-

ment stemming from the development of lung EIT at Sheffield in the 1980s, when

imaging at a high frame rate was of paramount importance. The speed and accuracy

of EIT systems, and reconstruction software, has improved dramatically since then and

it is now the time to begin considering genuine optimal 3D measurement strategies in

EIT. For pair driven current, recent research has argued that the traditional adjacent

stimulation and measurement are the worst patterns to detect interior conductivity
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changes in 2D [21]. In chapter 4 we also demonstrated that adjacent measurement

strategies are not optimal for determining central conductivity perturbations in 3D.

We propose the following methodology to determine optimal electrode positions,

current excitation patterns and voltage measurements. Firstly, and most importantly,

the clinical objectives must be defined to understand exactly what physiological con-

ductivity changes we are interested in and are measurable. The most obvious can-

didate would be to determine the gas/liquid ratio in different regions of the lung of

a certain size and location, and determine what spatial resolution we are capable of

measuring these to. The next step is to add constraints on the allowable electrode

geometry assuming up to, say, 64 electrodes can be deployed. We would consider

applying these on 2 to 4 transverse planes with interplane current excitation and volt-

age measurement allowed. The application of patches of electrodes grouped together

would be introduced for the situation when electrodes can only be applied on a subset

of a patient’s thorax. After fixing the geometry, we would then consider the current

excitation patterns, and in particular comparing between traditional 2D current ex-

citation on a single transverse ring to fully 3D excitation patterns on multiple rings

as an extension of work by Graham et al. [167] and Adler et al. [168]. For the pair

measurement patterns we firstly need to determine which voltage measurement pairs

are large enough to be above the experimental noise level. Further we must consider

only voltage measurements such that the difference in the measurements between the

specific conductivity change we are trying to observe is large enough to be accurately

measured. An optimality criterion must be chosen to decide on optimal patterns.

Traditional criteria include maximising the distinguishability suggested by Isaacson

et al. [169], where it was shown that trigonometric current patterns are optimal for

a concentric anomaly within a unit disc, or maximising the sensitivity in a region of

interest by Borsic et al. [170]. An alternative method by Kaipio et al. [171], based

in the framework of statistical inversion theory, optmises current patterns based on

criteria that are functionals of the posterior covariance matrix. Recent advances in the

optimal design of experiments for ill-posed problems are directly applicable to generate

new criteria [172] which have the nice property that a-priori information is directly

incorporated into the optimisation. The strategies would be tested using segmented

MR and CT images over a range of representative categories such as male and female,



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 209

a range of body mass indices and ages as well as adults and neonates.

7.2.2 Absolute lung EIT

The problems of model dimension and shape described in chapters 4 and 5 need to be

resolved adequately before repeatable absolute 3D imaging becomes a realistic possi-

bility in thoracic EIT, as well as using genuine 3D measurement strategies as described

in the previous section. With the introduction of fully 3D thorax models, we can envis-

age incorporating more spatial prior information of human tissue and anatomy, such

as the liver, heart, ribs and spine into patient-specific thorax reconstruction models,

as well as their in vivo conductivity values [4]. This would be a further development

of the finite difference models developed by Zhang et al. [116]. However, these high

resolution modelling approaches have not yet had a significant impact in clinical lung

EIT. Fully 3D thorax models with anatomy such as the heart included would not only

improve the forward problem in lung EIT, but also be important to further improve the

image co-registration and mutual information techniques outlined in chapter 5. An as-

sessment of the best prior smoothness constraints on the conductivity, and the voltage

data, to offset the ill-posedness of EIT reconstruction, is another topic of paramount

importance for absolute lung imaging. The use of classical Tikhonov regularization

presented in chapter 5, which in the Bayesian viewpoint assumes conductivity changes

for all pixels are independent and identically distributed, is somewhat unrealistic and

we feel this could be significantly improved by using generalized Tikhonov regulariza-

tion and non-smooth penalization norms.
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Appendix A

Mathematical notation

A.1 PDE theory

We outline some essential notation used to analyse PDEs used throughout this thesis.

Some good texts on basic functional analysis and PDE include [64, 69, 173, 174].

An n-dimensional multi-index α is an n-tuple, α = (α1, α2, . . . , αn), of non-negative

integers. Given x = (x1, x2, . . . , xn) ∈ Rn, the length, the partial derivative and the

power of the multi-index are defined as

|α| :=
n∑
i=1

αi, ∂α := ∂α1
1 ∂α2

2 . . . ∂αnn , xα = xα1
1 x

α2
2 . . . xαnn ,

respectively, where ∂αii := ∂αi

∂x
αi
i

. A normed vector space V is a vector space equipped

with a norm, denoted || · || : V → R. A vector space is complete if every Cauchy

sequence vn has a limit point v ∈ V , and a normed vector space (V, || · ||) is a Banach

space if V is complete. An inner-product space V is a vector space with an inner

product, denoted 〈, 〉 : V × V → R. A Hilbert space is a complete inner product space

(H, || · ||, < . >) and a natural norm on a Hilbert space H is given by, ||u||H = 〈u, u〉
1
2
H

Fundamental Hilbert space properties

A fundamental property is the Cauchy-Schwarz inequality: |〈x, y〉|V ≤ ||x||V · ||y||V ,

with equality iff x = cy for some c ∈ R. If we are working on a Hilbert space with an

orthonormal basis, {ej}∞j=1, the following hold:

1. f ∈ H can be written uniquely f =
∑∞

j=1〈f, ej〉ej.
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2. f ∈ H has norm ||f ||2 =
∑∞

j=1 |〈f, ej〉|2 known as Plancherel’s identity.

3. f ∈ H and 〈f, ej〉 = 0 for all j then f = 0.

Dual Spaces

Let X, Y be Banach spaces. Denote L(X, Y ) as the set of all bounded linear mappings

from X to Y , then L(X, Y ) is a Banach space with norm

||T || := sup
06=x∈X

||Tx||Y
||x||X

.

A linear functional is a bounded linear map from X to R, and the vector space of all

linear functionals on X is the dual space denoted X∗ and is Banach. We now state

the Lax Milgram lemma (see [174]):

Theorem A.1.1 (Lax Milgram Lemma). Let V be a complex valued Hilbert space

and denote V ′ as the dual space. Let a(u, v) be a sesquilinear, bounded and coercive

form defined on the product space V × V . Then given any linear functional f ∈ v′,

f : V → C, there exists a unique solution of the problem : Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V,

We denote the solution as u = Tf , where T : V ′ → V .

Fréchet derivative

Let X and Y be Banach spaces and W ⊂ X. An operator T : X → Y is Fréchet

differentiable at x ∈ X, in the direction h ∈ U ⊂ X, if there exists a bounded linear

operator DTx : U → Y such that

lim
h→0

||T (x+ h)− T (x)−DTx(h)||Y
||h||X

= 0. (A.1)

Standard spaces

Let Ω ⊂ Rn. The Lebesgue space Lp(Ω), 1 < p < ∞, is the space of distributions,

u : Ω ⊂ Rn → R, whose value raised to the pth power are integrable over Ω

Lp(Ω) := {u :

∫
Ω

|u(x)|p <∞} ||u||p = (

∫
Ω

||u(x)|p|)
1
p .
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For p =∞, the definition is

L∞(Ω) := {u : sup
x∈Ω
|u(x)| <∞} ||u||∞ = sup

x∈Ω
|u(x)|

Lp(Ω) is a Banach space. For p = 2 it is a Hilbert space with inner product

〈f, g〉L2(Ω) =

∫
Ω

fg. (A.2)

Ck(Ω,Rn) is the space of k-times continuously differentiable functions. It is a Banach

space with norm

||f ||k,∞ :=
k∑

n=0

||f (n)||∞ where ||f ||∞ := sup
x∈Ω
|f(x)|.

A.1.1 Sobolev spaces

To define non-integer Sobolev spaces, we need basic definitions of Fourier series and

transform.

Fourier series

Let f be a periodic, integrable function on the torusTn = Rn/Zn. The set {e−ik·θ}∞k=−∞

forms an orthogonal basis for L2(Tn). Any f ∈ L2(Tn) can be written as

f(θ) =
∞∑

k=−∞

f̃(k)eik·x where f̃(k) =
1

(2π)n

∫
Tn

f(θ)e−ik·θ.

f̃ denotes the Fourier Transform. Plancherel’s theorem states that 〈f̃ , g̃〉 = 〈f, g〉, so

||f ||L2 =
k=+∞∑
k=−∞

|f̃(k)|2.

Fourier transform

If we consider a function defined on Rn, we instead use the Fourier Transform. The

Fourier transform, valid for a function f ∈ L2(Rn), and the inverse Fourier transform,

valid for f̃ ∈ L2(Rn) are respectively

f̃(k) =
1

(2π)n

∫
Rn

f(x)e−ik·x, f(x) =

∫
Rn

f̃(k)eik·x. (A.3)

We also have Plancherel’s theorem, which states that∫
Rn
f(x)g(x) =

∫
Rn
f̃(k)g̃(k). (A.4)
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These results are also true for a compact manifold M (see [87].)

We also need to define the generalized derivative of a function f ∈ L1

loc(Ω). De-

note C∞c (Ω) as the set of smooth functions, ψ, compactly supported in Ω. v is the

generalized derivative of f ∈ L1

loc(Ω) if∫
Ω

v ψ = (−1)|α|
∫

Ω

f∂αψ ∀ψ ∈ C∞c (Ω)

where α is a multi-index. If this exists we denote this as ∂αf = v.

Integer order Sobolev spaces

Let k be a non-negative integer, then the Sobolev space W k,p(Ω) is defined as the set

of all distributions, f ∈ Lp(Ω), such that Dαf ∈ L2(Ω) for |α| ≤ k,

W k,p(Ω) = {u ∈ L1

loc(Ω) : ∂αu ∈ Lp(Ω) ∀|α| ≤ k}. (A.5)

When p = 2 we define Hk(Ω) := W k,p(Ω), and is a Hilbert space with inner product

〈f, g〉Hk(Ω) =
∑
|α|≤k

〈Dαf,Dαg〉L2(Ω).

Fractional Sobolev spaces

It is also useful to define non-integer order Sobolev spaces. These naturally arise

when restricting a distribution defined in a Sobolev space on a compact manifold with

boundary Ω to the boundary ∂Ω. From the definition of the generalized derivative,

the Fourier Transform and derivative of a function are related through ˆ(∂αf)(ω) =

(−2πiω)αf̂(ω). This identity effectively enables us to extend Sobolev spaces to non-

integer derivatives. Let k be any real number, then we have

f ∈ Hk(Ω) if and only if (2πiω)αf̂(ω) ∈ L2(Ω), (A.6)

for any α with |α| ≤ k. For an unbounded domain Ω = Rn, then the norm can be

defined with the Fourier transform as

||f ||2Hs =

∫
Rn

(1 + |k|2)s/2)|f̃(k)|2.

where 〈k〉2 =
∑n

i=1 k
2
i . In a similar spirit, for a periodic domain Tn = Rn \ Zn, we

have the norm defined with the Fourier series as

||f ||2Hs =
k=+∞∑
k=−∞

(1 + |k|2)s/2)|f̃(k)|2. (A.7)

These results can be extended to a compact manifold M (see [64] for more details.)
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Trace theorem

A function u ∈ C0(Ω̄) where Ω ⊂ Rn has a natural restriction to ∂Ω preserving

continuity. If the function lies in, say, L2(Ω) or Hk(Ω), this is not true because ∂Ω

is a subset of Ω of measure zero. If a function defined on ∂Ω lies in a Sobolev space

Hk(∂Ω), then how smooth does this have to be so that a function in Hp(Ω) assumes

this data? This problem is addressed by the following trace theorem [64]:

Theorem A.1.2 (Trace). Let k > 1/2 and assume Ω is a bounded domain in Rn with

smooth boundary. Then there is a bounded trace operator τ : Hk(Ω) → Hk− 1
2 (∂Ω).

Moreover τ has a bounded inverse.

Dual spaces

Let H−k(Ω) denote set of all bounded linear functionals on Hk
0 (Ω). If Ω is Rm, or a

compact manifold of class Ck with k > s, H−s(Ω) denotes the dual space of Hs
0(Ω).

Sobolev’s first embedding theorem

The ‘first’ Sobolev embedding theorem states that functions with large enough Sobolev

indices are continuous in the conventional sense. In particular from [64] given a com-

pact manifold Ω of dimension n, there exists the inclusion

Hs(Ω) ⊂ Ck(Ω) for all s > n/2 + k. (A.8)

A.1.2 Symmetric hyperbolic PDEs

In this section we outline essential theory on first order systems of symmetric hyper-

bolic PDE following DeTurck and Yang [109] (see [87, 175] for more details on such

systems). This class of PDE will appear when discussing theoretical elasticity and the

anisotropic problem with constrained eigendata in sections 3.4.3 and 3.4.4.

Let M be a compact (n − 1)-manifold, and X = M × [0, 1] with coordinates

x′ = (x1, . . . , xn−1) on M and x = (x′, t) = (x1, . . . , xn−1, t) on X. The differential

operator P : C∞(X,Rm)→ C∞(X,Rm) is symmetric hyperbolic if

P =
∂

∂t
+

n∑
i=1

Ai
∂

∂xi
+B, (A.9)
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with Ai, B ∈ C∞(X,End(Rm)) and each matrix Ai symmetric. Consider a non-linear

system of PDE
∂u

∂t
= F (x, u,

∂u

∂x1
, . . . ,

∂u

∂xn−1
), (A.10)

with F ∈ C∞(V,Rm), and V is an open subset of X ×Rm ×R(n−1)m. This is defined

to be symmetric hyperbolic if the associated linearised operator L

L :=
∂

∂t
−
∑
α

∂F

∂uα

∂

∂xα
, where

∂F

∂uα
= [

∂F i

∂ujα
] 1 ≤ i, j ≤ m 1 ≤ α ≤ n− 1,

is symmetric hyperbolic for all (x, u, uαdx
α) ∈ V . The following two theorems by

DeTurck and Yang [109], based on the Nash-Moser inverse function theorem [176],

asserts uniqueness of solution for the non-linear system.

Theorem A.1.3. Let F define a non-linear symmetric hyperbolic system. If u0 :

M → Rm is such that (x′, 0, u0(x′), ∂u0
∂xα

dxα) ∈ V for all x′ ∈ M , then there exists an

ε > 0 and a unique smooth function u : M × [0, ε]→ Rm such that (A.10) is satisfied

for all x ∈M × [0, ε] and u(x′, 0) = u0(x′).

Theorem A.1.4. Let F define a non-linear symmetric hyperbolic system, and let

u ∈ C∞(X,Rm) solve
∂u

∂t
= F (x, u,

∂u

∂xα
dxα) (A.11)

on all of X. Then for G sufficiently close to F in the C∞(V,Rm)-topology, there is a

unique solution v of
∂v

∂t
= G(x, v,

∂v

∂xα
dxα) (A.12)

such that v(x′, 0) = u(x′, 0) for all x′ ∈M .

Let D1, . . . , Dm be real vector fields on X such that for x = (x′, t) ∈ X, Dα(x)

is not tangent to M × {t} for any 1 ≤ α ≤ m. The matrix differential operator

P = diag(D1, . . . , Dm) + B is said to be diagonal symmetric. As before a non-linear

system ∂u
∂t

= F (x, u, ∂u
∂xα

dxα) is said to be diagonal if it’s linearisation is diagonal. The

symbol of the linear operator P , or the linearisation of a non-linear operator, is the

linear mapping σP (ξ) =
∑n

i=1A
i(x)ξi which, for each ξ ∈ T ∗xX, maps Rm to Rm. The

set for which σP (ξ) is not invertible is the characteristic variety. Consider the PDE

P =
n∑
i=1

Ai
∂

∂xi
+B. (A.13)
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DeTurck and Yang show that (A.13) is diagonal symmetric hyperbolic under the fol-

lowing conditions [109]:

Theorem A.1.5. Sufficient condition conditions that (A.13) is equivalent to a diago-

nal hyperbolic operator is that: (i) for each x, the set of cotangent vectors ξ for which

σP (ξ) is not invertible comprise n hyperplanes, with linearly independent normal vec-

tors, and (ii) that for any ξ ∈ T ∗xX the dimension of the kernel of σP (ξ) is the number

of characteristic hyperplanes passing through ξ.

A.2 Manifolds and Riemannian geometry

In this section we outline some essential definitions from differentiable manifolds and

Riemannian geometry in order to pose a geometric formulation of the inverse conduc-

tivity problem. See [107, 177, 178, 179] for deeper texts on this subject.

A.2.1 Differentiable manifolds

Definition A.2.1. A differentiable manifold of dimension n is a set Mn such that

for each p ∈ Mn, there is an open set U of p and a function ψ : U → Rn that is

homeomorphic with an open subset of Rn.

We denote Mn as simply M , and the pair (U, ψ) is called a coordinate chart. We

write ψ(q) = (x1(q), x2(q), . . . , xn(q)), where xi(q) are local coordinates of M at q.

Given two coordinate charts (U, ψ) and (V,Ψ) on M , with U ∪ V 6= ∅, ψ ◦ Ψ−1 a

transition map. This is a homeomorphism from an open set in Rn to another open

set in Rn. M is smooth (or C∞) if all transition maps are smooth (or C∞), and M is

orientable if all the transition maps are orientation-preserving.

Definition A.2.2. Let f : M → N where M,N are smooth manifolds. f is smooth if

for every pair of charts (U, ψ) of M and (V,Ψ) of N , the function is smooth

ψ ◦Ψ−1 : ψ(U ∪ f−1(V ))→ Ψ(f(U) ∪ V )

We denote C∞(M) as the set of smooth f : M → R. If f : M → N is smooth,

with smooth inverse, then f is a diffeomorphism and M and N are diffeomorphic.
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Tangent and cotangent space

Consider a smooth function (or curve) γ : (−ε, ε) → M on a manifold with γ(0) = p.

Let f be a smooth function defined in a neighbourhood of p ∈ M . The directional

derivative of f w.r.t. the vector γ′(0) at p is d
dt
f(γ(t))|t=0 = (α′i(0) ∂

∂xi
)f . The tangent

vector of the curve α at t = 0 is a function α′(0) : C∞(M) → R through α′(0)f =

d
dt
f(γ(t))|t=0. This can be generalised with derivations.

Definition A.2.3. A tangent vector to a smooth manifold M at p ∈M is a derivation,

that is an R linear function X : C∞(M)→ R satisfying the product rule

X(fg) = X(f)g(p) + f(p)X(g).

The set of all tangent vectors to an n-manifold Mn at p forms an n−dimensional

vector space, Tp(M
n). If (xi) is a local coordinate system about p ∈ M , the set of all

derivations {∂/∂xi, i = 1 : n} forms a basis for TpM , and we write ∂i := ∂/∂xi. The

set of all tangent vectors of all points of M form a (2n)-manifold, namely the tangent

bundle, TM = tx∈MTxM . A vector field on M is a smoothly varying choice of tangent

vector at each p ∈M (smoothly varying means X(f) ∈ C∞(M) for any f ∈ C∞(M).)

The contangent space at p ∈ M , T ∗p (M), consists of all linear functionals acting

on Tp(M) (the 1-forms at p). The set of all contangent spaces at all points p ∈ M

forms a (2n)−dimensional manifold, the cotangent bundle, T ∗M = tx∈MT ∗xM . Given

local coordinates {xi}ni=1 at p on an n-manifold M , the set of covectors dxi : i = 1 : n

(where dxi(X) := X(xi)) forms a basis for T ∗p (M).

Tensor fields

A (k, l)-tensor field is a multilinear map sending l copies of the tangent bundle and k

copies of the cotangent bundle to R, and is a member of

T kl (M) := {t : T ∗(M)× . . .× T ∗(M)︸ ︷︷ ︸
k times

×TM × . . . TM︸ ︷︷ ︸
l times

→ R}.

Given a local coordinate system {xi} at p ∈ M , and dxj, ∂m are basis for T ∗pM and

TpM we can express tensor field F ∈ T kl (M) in a local coordinate system at p as

F = F j1...jl
i1...ik

∂j1 ⊗ . . .⊗ ∂jl ⊗ dxi1 ⊗ . . .⊗ dxik ,
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where repeated indices are summed over (Einstein summation convention). ⊗ is the

tensor product (for (k, 0)-tensors)

T k(M)× T l(M)→ T k+l(M), (u, u′) 7→ u⊗ u′,

where (u⊗ u′)(v, v′) := u(v)u′(v′) for v ∈ Tp(M) and v′ ∈ Tp(M).

Pullback and pushforward

Definition A.2.4. Given a smooth map Ψ : M → N , we define the derivative map

between the tangent spaces Ψ∗ : Tp(M)→ TΨ(p)(N) by

(ψ∗V )(f) = V (f ◦Ψ)

for all V ∈ TpM and f ∈ C∞(N). This is known as the pushforward of V at p. We

can define the derivative map between cotangent spaces Ψ∗ : T ∗Ψ(p)(N)→ T ∗p (M) by

(Ψ∗ω)(V ) = ω(Ψ∗V )

for all V ∈ TpM and ω ∈ T ∗Ψ(p)(N)N . This is known as the pullback of ω by f .

This pullback can be extended to tensor fields A and B through Ψ∗(A ⊗ B) :=

Ψ∗(A)⊗Ψ∗(B), and for differential forms Ψ∗(α ∧ β) := F ∗α ∧ F ∗β.

Differential forms

A k-form on M is a section of ∧kT ∗(M) (the set of (k, 0)-tensor fields that are anti-

symmetric in all its indices.) A k-form can be written α = αIdx
I where I = (i1, . . . , ik)

and dxI = dxi1 ∧ . . . ∧ dxik . A k-vector field on M is a section of ∧kTM . The wedge

product maps a k−form, α, and l−form, β, to a (k + l)−form

α ∧ β =

in,jn∑
i,j=1

aibjdxi1 ∧ . . . ∧ dxin ∧ dxj1 ∧ . . . ∧ dxjn .

This relation means that

α ∧ β =
1

2
(α⊗ β − β ⊗ α).

For such forms we have that α ∧ β = (−1)klβ ∧ α. The exterior derivative d is a

differential operator mapping k-forms to (k + 1)-forms, d : ∧kT ∗M → ∧k−1T ∗M . The



APPENDIX A. MATHEMATICAL NOTATION 237

exterior derivative of a function f is given by

df =
n∑
i=1

∂f

∂xj
dxj, (A.14)

and for a k-form α = αIdx
I ,

dα :=
∑
I

dαI ∧ dxI . (A.15)

Stokes’ Theorem

Let M be an oriented n-manifold with an atlas of charts (Uα, ψα). Let β be a smooth

n-form compactly supported in Uα, and ((ψα)−1)∗β|ψα(Uα) = A(x)dx1 ∧ . . .∧dxn, then∫
M

β :=

∫
ψα(Uα)

b(x)dx1 ∧ . . . ∧ dxn.

Suppose β is an arbitrary smooth n-form on M . Let {fα} be a partition of unity

subordinate to {Uα}, then ∫
M

β :=
∑
α

∫
M

fαβ

Theorem A.2.5 (Stokes’). Let M be an oriented n-manifold. Then∫
∂M

ι∗β =

∫
M

dβ,

where β is a smooth (n− 1)-form and ι : ∂M ↪→M is the inclusion.

A.2.2 Riemannian geometry

A Riemannian metric, g, on a smooth manifold M is a smoothly varying inner product

on the tangent space at each point of M . gij(p) is the representation in coordinates

at p ∈ M and is a positive definite matrix. There is an induced norm on each Tp(M)

which written |X|g :=
√
〈X,X〉, where 〈X, Y 〉 = g(X, Y ). A manifold with a Rieman-

nian metric, (M, g), is called a Riemannian manifold. Given a Riemannian manifold

(M, g) and a manifold N embedded in M (a submanifold of M), there is an induced

Riemannian metric ḡ on N defined by restricting g to Tp(N) at each point p ∈ N .

Given the metric gij we define gij to be the inverse of the metric at each point i.e.

gijgjk = δik. Any inner product on a vector space gives a natural isomorphism V ∼= V ∗

via X → X[, where X[(Y ) = 〈X, Y 〉. In coordinates, (X[)i = gijX
j. Similarly, we
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have X → X], where X](Y ) = 〈X, Y 〉, in coordinates (X])i = gijXj. These operations

are known as lowering and raising indices by the metric. In general we can lower an

index i on a tensor F ijk
pq , for example, we have F jk

ipq := gimF
mjk
pq , which is a map from

T kl (M) to T k+1
l−1 (M). Similarly we can raise an index using gij.

Covariant derivative

The rate of change of a function f in direction of tangent vector X, is given by

X(f) = X i ∂f
∂xi

. To differentiate a vector field, Y , in the direction of a tangent vector,

X, we need the notion of a covariant derivative, because Tp(M) varies between points

on a manifold. Let C∞(E) denote the set of all C∞ vector fields on M . An affine

connection ∇ in E is a map

∇ : C∞(E)× C∞(E)→ C∞(E), (X, Y ) 7→ ∇XY,

such that (i) ∇XY is linear over C∞(M) in X, (ii) ∇XY is linear over R in Y and (iii)

∇ satisfies the Leibniz rule: ∇X(fY ) = X(f)Y + f∇XY . We call ∇XY the covariant

derivative of Y in the direction X. A connection on TM is specified by its Christoffel

symbols, Γkij, in a local coordinate system xi, which are defined through

∇∂i∂j = Γkij∂k.

We consider connections on the bundles T kl (M) as an important special case. Given

a connection ∇ on the tangent bundle TM , we can define all connections on all of

the tensor bundles T kl (M) satisfying (i) ∇ is the given connection on TM , (ii) for a

scalar function, ∇Xf = X(f) and (iii) ∇X(F ⊗G) = (∇XF )⊗G+F ⊗ (∇XG). There

are many possible connections on the tangent bundle TM . If M is equipped with a

Riemannian metric, there is one in particular, the Levi-Civita connection, with the

following properties (see [180] for a proof).

Lemma A.2.6. Given a Riemannian manifold M , there is a unique affine connec-

tion ∇ on M , the Levi-Civita connection, satisfying (i) X(g(Y, Z)) = g(∇XY, Z) +

g(Y,∇XZ) and (ii) the torsion, τ(X, Y ) := ∇XY −∇YX − [X, Y ], is identically 0.

Th Christoffel symbols of the Levi-Civita connection in local coordinates are

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij). (A.16)
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Cartan’s structual equations

Let A be a 1-contravariant, p-covariant, tensor field, skew-symmetric in covariant

indices,

A = ∂i ⊗
∑
J

Aij1,...,jpdx
j1 ∧ . . . ∧ dxjp .

A is of the form ∂i⊗αi, where αi is the p-form coefficient of ∂i, and we associate to A

a vector-valued p-form α

α(X1, . . . , Xp) := ∂iα
i(X1, . . . , Xp).

Let v be a vector field in M with Levi-Civita connection. Then ∇jv
i := ∂vi

∂xj
+ Γijkv

k

forms a mixed tensor field, called the covariant derivative, ∇v = ∂i ⊗∇jv
idxj, which

can be considered as a vector-valued 1-form

∇v(X) = ∂i(X
j∇jv

i).

However ∂k ⊗ Γkrjdx
r is a vector valued 1-form when applied to ∂i of the same value,

and hence ∇ej = ek ⊗ Γkrjdx
r. We define the local matrix ω of connection 1-forms by

ωkj := Γkrjdx
r. (A.17)

Finally we have Cartan’s structual equations, which state that the exterior derivative

of a differential form is given by (see [177, pg.249])

dωi = −ωik ∧ ωk. (A.18)

Lie derivative

Given a vector field X on M , we define a time-dependent family of diffeomorphisms

of M to itself, ψt : M → M , for t ∈ (−ε, ε), such that ψ0 = id and d
dt
ψt = X. The

existence of ψt given X comes from the Picard-Lindelöf theorem of solutions to ODEs,

and ψt is a flow of the manifold in the direction of the vector field X. Denote

(ψt)
∗Fp(X1, . . . Xk, ω

1, . . . , ωl) :=Fψt(p)((ψ
−1
t )∗X1(p), . . . , (ψ

−1
t )∗(Xk(p)),

(ψ−1
t )∗ω1

(p), . . . , (ψ
−1
t )∗ωl(p)).

The Lie derivative of a (k, l)-tensor field F in the direction of X, is the infinitesimal

change in F after flowing along X

LXF = (
d

dt
((ψt)

∗F )|t=0.
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We reference [178] for Lie derivatives of some important objects. The Lie derivative

of a scalar field f is given by X(f), and that of a vector field Y is [X, Y ], and the

covariant metric tensor

(LXg)ij = (Xk ∂gij
∂xk

+ gkj
∂Xk

∂xi
+ gik

∂Xk

∂xj
). (A.19)

If M is oriented, a volume form on M in local coordinates {xi}ni=1 is given by µg :=√
|g|dx1 ∧ . . . ∧ dxn, where |g| is the determinant of the covariant metric tensor. The

divergence div of a vector field X on a manifold can be defined as

div(X)µg := LX(µg). (A.20)

In coordinates, the divergence of a vector field X = Xj∂j is given by

div(X) =
1√
|g|

∂

∂xi
(
√
|g|X i).

The gradient of a function f , gradg(f) is a vector field, Y = Y j∂j with coordinate

expression Y j = gij ∂f
∂xi

.

Riemann curvature tensor

The curvature of a manifold is the deviation of the space from being Euclidean. Non-

zero curvature at p ∈ M is what stops us choosing local coordinates such that the

metric is Euclidean

gij(x) = δij +
1

3
Ripqjx

pxq +O(x3).

The (3, 1)-Riemann curvature tensor can be defined using the Levi-Civita connection

∇, and can be defined for vector fields X, Y, Z by

R : C∞(E)× C∞(E)× C∞(E)→ C∞(E)

R : (X, Y, Z) 7→ R(X, Y )Z = ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z.

The (3, 1)-Riemann curvature tensor has the explicit coordinate form

Rl
ijk = ∂iΓ

l
jk − ∂jΓlik + ΓpjkΓ

l
ip − ΓpikΓ

l
jp. (A.21)

The Riemann tensor has the following symmetries:

Lemma A.2.7 (Riemann - symmetries). The Riemann curvature tensor has the fol-

lowing symmetries (i) Rijkl = Rklij = −Rjikl = −Rijkl, (ii) Rijkl + Rjkil + Rkijl = 0,

and (iii) ∇pRijkl +∇iRjpkl +∇jRpikl = 0.
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The Ricci tensor, Rij, is a (2, 0)-tensor that is a contraction of the Riemann tensor,

Rij := Rp
pij. (A.22)

Rij is symmetric, and the Ricci scalar is the trace of the Ricci tensor, R := gijRij.

Cotton-York tensor

Two Riemannian manifolds (M, g) and (M̄, ḡ) are conformally related if

ḡij = e2σgij

where σ is any function of x. From this relationship we have immediately ḡij =

e−2σgij. The Christoffel symbols {l, ij} := Γlij = glkΓkij are given by (A.16) along

with the lowered version [ij, k] := Γkij = gklΓ
l
ij. By direct substitution we see that the

Christoffel symbols in the two frames are related through the following expressions

¯[ij, k] = e2σ([ij, k] + gikσ,j + gjkσ,i − gijσ,k)

¯{l, ij} = {l, ij}+ δliσ,j + δljσ,i − gijglmσ,m

where σ,i = ∂σ
∂xi

. Denote σ,ij the second derivative of σ, and define σij = σ,ij − σ,iσ,j.

Substituting the Christoffel symbols into the expression for the Riemann tensor

(A.21) we have the following relationship between the curvature tensors

e−2σ ¯Rhijk = Rhijk + ghkσij + gijσhk − ghjσik − gikσhj + (ghkgij − ghjgik)∆1σ, (A.23)

where ∆1f = gij ∂f
∂xi

∂f
∂xj

. Similarily the Ricci tensor is given by

R̄ij = ¯ghk ¯Rhijk = Rij + (n− 2)σij + gij(∆2σ + (n− 2)∆1σ), (A.24)

where ∆2f = gij( ∂2f
∂xi∂xj

− ∂f
∂xk
{k, ij}). Also the the Ricci scalar is given by

R̄ = ḡijR̄ij = e−2σ(R + 2(n− 1)∆2σ + (n− 1)(n− 2)∆1σ), (A.25)

which can be written

ḡijR̄ = gij(R + 2(n− 1)∆2σ + (n− 1)(n− 2)∆1σ). (A.26)

Now ∆2σ can be eliminated from equations (A.26) and (A.24) to obtain

σij =
1

n− 2
(R̄ij −Rij)−

1

2(n− 1)(n− 2)
(ḡijR̄− gijR)− 1

2
gij∆1σ (A.27)
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We can write the transformed Riemann tensor (A.23)

R̄h
ijk = Rh

ijk + δhkσij − δhj σik + ghl(gijσlk − gikσlj) + (δhkgij − δhj gik)∆1σ.

We can now substitute the equations (A.27) in the above identity, and we find that

W̄ h
ijk = W h

ijk

where

W h
ijk = Rh

ijk +
1

n− 2
(δhjRik − δhkRij + gikR

h
j − gijRh

k) +
R

(n− 1)(n− 2)
(δhkgij − δhj gik).

(A.28)

Since this is invariant this forms the components of a tensor known as the conformal

curvature or Weyl tensor. From the properties of the Riemann tensor (A.2.7) we have

W h
ijk,l+W

h
ikl,j+W

h
ilj,k =

1

n− 2
(δhjCikl+δ

h
kCilj+δ

h
l Cijk+gikC

h
jl+gilC

h
kj+gijC

h
lk) (A.29)

where the Cotton-York tensor Cijk is defined as

Cijk := Rij,k −Rik,j +
1

2(n− 1)
(gikR,j − gijR,k), Rh

jk = ghiRijk. (A.30)

In three dimensions, if M̄ is a flat space then R̄ijkl = 0, which implies Cijkl = 0.

Hence if a tensor is conformally flat the Cotton-York tensor must be a zero tensor.

This condition is in fact necessary and sufficient (see [107] for a proof).

Theorem A.2.8 (Conformal flatness - Cotton-York tensor). A necessary and suffi-

cient condition that a Vn for n > 2 can be mapped conformally on an Sn is that the

tensor Cijk be a zero tensor when n = 3 and when n > 3 that Whijk be a zero tensor.

A.2.3 Frobenius’ theorem

We make a brief summary of the essential definitions to state Frobenius’ theorem

from [179]. Integrability conditions are useful as they will help us define a layered

anisotropic conductivity. Let M be a manifold with dim(M) = n + k and suppose

each p ∈ M is assigned a subspace of dimension n, 4p, of Tp(M). Suppose moreover

in each neighbourhood U of each p ∈ M , there are n linearly independent C∞ vector

fields X1, X2, . . . , Xn forming a basis of 4q for each q ∈ U . Then 4 ⊂ TM is a C∞

distribution of dimn on M and X1, . . . , Xn is a local basis of 4. A distribution is in
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involution if there exists a basis X1, . . . , Xn in each neighbourhood of each point p ∈M

such that for i, j = 1, . . . , N , [Xi, Xj] =
∑n

k=1 cijkXk, where cijk are C∞ functions.

So the Lie bracket of two distribution vector fields lies within the distribution. A

foliation of space of dimension k is a collection of disjoint, connected immersed k−dim

submanifolds of M , such that the leaves of the foliation is all of M . For example Rn is

foliated by copies of Rk, and x2 + y2 + z2 = r2, where r varies, is a 1-parameter family

of spherical surfaces that foliate R3. Finally, if 4 is a C∞ distribution on M , N is

connected C∞ manifold and F : N → M is a bijective immersion such that for each

q ∈ N where we have F∗(Tq(N)) ⊂ 4F (q). The immersed submanifold is an integral

manifold of 4.

The following theorem on equivalence is Frobenius’ theorem (see [178, pg. 441]):

Theorem A.2.9 (Frobenius). Let M be a manifold of dimension n+k and 4 ⊂ TM a

distribution. Then the following are equivalent: (i) 4 is integrable, (ii) 4 is involutive

and (iii) For every point of M there exists an open set U and ω1, . . . , ωk ∈ Ω1(U)

generating I(E) such that both

dωi =
k∑
j=1

ωij ∧ ωj for some ωij ∈ Ω1(U) i = 1, . . . , k. and (A.31)

dωi ∧ ω1 ∧ . . . ∧ ωk = 0 i = 1, . . . , k (A.32)

We will require the codimension 1 case, that is if we have a single vector field n,

then when is this normal to a family of surfaces? An application of Frobenius’ theorem

shows that the leaves of a foliation form an integrable family of surfaces if and only if

w ∧ dw = 0 (A.33)

where w is the 1-form associated with n, w = nidx
i.



Appendix B

High order FEM code in EIDORS

B.1 Forward problem

The author has implemented open source high order FEM code to compute the for-

ward problem, and Fréchet derivative (see section B.2), in 2D and 3D into the EI-

DORS software suite written in MATLAB [62]. The source files to compute the for-

ward solver are available in the directory /eidors3d/eidors/solvers/forward/ of

EIDORS. The high order FEM solution can be computed on any feasible geometry,

conductivity or stimulation/measurement protocol in EIDORS through the function

fwd solve higher order.m.

The function system mat higher order.m computes the complete electrode model

matrices (or point electrode model matrices) as described in this section. The standard

forward problem solver in EIDORS uses piecewise linear approximation to the potential

and it is necessary to add additional nodes to the elements and boundaries to compute

the higher order solution. The function fem 1st to higher order.m performs this

task and is automatically called in system mat higher order.m, using the relevant

shape functions (and their derivatives) and quadrature points (see appendices B.3 and

B.4 for more details on this).

The following fields are attached to an EIDORS forward model structure through

the assignment fmdl.system mat=@system mat higher order and

fmdl.solve=@fwd solve higher order. The specific approximation is attached to

the forward model structure by adding a field fmdl.approx type=type, where type

can be ’tri3’, ’tri6’ and ’tri10’, for linear, quadratic and cubic finite elements

244
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in two dimensions, or ’tet4’ and ’tet10’ for linear and quadratic approximation in

three dimensions. A simple test code that computes the solution is given below.

1 %Geometry

2 imdl = mk_common_model(’c2C0’ ,16);

3 fmdl = imdl.fwd_model;

4

5 %Stimulation/Measurement

6 stim=mk_stim_patterns (16,1,[0 1],[0 1]);

7 fmdl.stimulation=stim;

8

9 %High -order EIDORS solver

10 fmdl.solve = @fwd_solve_higher_order;

11 fmdl.system_mat = @system_mat_higher_order;

12 fmdl.approx_type = ’tri10’; %cubic

13

14 %Unit conductivity image and forward solve

15 img = mk_image(fmdl ,1);

16 v = fwd_solve(img);

B.2 Inverse problem

The author has implemented open source high order FEM code to compute the Fréchet

derivative (3.9), in 2D and 3D into the EIDORS for any feasible geometry, conductivity

or stimulation/measurement protocol. The source files to compute the derivative is

available in the directory /eidors3d/eidors/solvers/forward/ of EIDORS.

The function jacobian adjoint higher order.m computes the Jacobian on a

given image structure in EIDORS. The field must be attached to the forward model of

the given image through fmdl.jacobian=@jacobian adjoint higher order.m, along

with the fmdl.system mat, fmdl.solve and fmdl.approx type as described in ap-

pendix B.1. A simple test code that computes a Jacobian is given below.

1 %Geometry

2 imdl = mk_common_model(’c2C0’ ,16);

3 fmdl = imdl.fwd_model;

4

5 %Stimulation/Measurement
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6 stim=mk_stim_patterns (16,1,[0 1],[0 1]);

7 fmdl.stimulation=stim;

8

9 %High -order EIDORS solver

10 fmdl.solve = @fwd_solve_higher_order;

11 fmdl.system_mat = @system_mat_higher_order;

12 fmdl.approx_type = ’tri10’; %cubic

13 fmdl.jacobian=@jacobian_adjoint_higher_order;

14

15 %Unit conductivity image and forward solve

16 img = mk_image(fmdl ,1);

17 J=calc_jacobian(img);

The code is fully compatible with any EIDORS inverse solvers. For example the

following test code computes a Tikhonov regularised linearised inverse problem solution

for a ball of conductivity 2 inside a medium of conductivity 1 using piecewise cubic

approximation to the potential.

1 %Stim patterns

2 stim=mk_stim_patterns (16,1,[0 1],[0 1]);

3

4 %True model

5 imdl_i = mk_common_model(’d2C0’ ,16);

6 fmdl_i = imdl.fwd_model;

7 ctr = interp_mesh(fmdl_i); ctr=(ctr(:,1) -0.2).^2 + (ctr(:,2) -0.2) .^2;

8 fmdl_i.approx_type=’tri10’;

9 fmdl_i.stimulation=stim;

10 fmdl_i.solve = @fwd_solve_higher_order;

11 fmdl_i.system_mat = @system_mat_higher_order;

12 img_i= mk_image(fmdl_i , 1 + 1*(ctr <0.2^2));

13 figure; show_fem(img_i);

14 v_i=fwd_solve(img_i);

15

16 %Reconstruction model

17 imdl_h = mk_common_model(’c2C0’ ,16);

18 fmdl_h = imdl.fwd_model;

19 fmdl_h.approx_type=’tri10’;

20 fmdl_h.solve = @fwd_solve_higher_order;

21 fmdl_h.system_mat = @system_mat_higher_order;
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22 fmdl_h.jacobian=@jacobian_adjoint_higher_order;

23 fmdl_h.stimulation=stim;

24

25 %Create image and solve

26 img_h=mk_image(fmdl_h ,1);

27 figure; show_fem(img_h);

28 v_h=fwd_solve(img_h);

29

30 %Inverse Model

31 inv2d= eidors_obj(’inv_model ’, ’EIT inverse ’);

32 inv2d.reconst_type= ’difference ’;

33 inv2d.jacobian_bkgnd.value= 1;

34 inv2d.fwd_model=img_h.fwd_model;

35 inv2d.solve= @inv_solve_diff_GN_one_step;

36 inv2d.hyperparameter.value = 1e-4;

37 inv2d.RtR_prior= @prior_tikhonov;

38

39 %Inverse solve

40 imgr= inv_solve( inv2d , v_h , v_i);

41 figure; show_fem(imgr)

B.3 Shape functions

The element shape functions, and the derivative of shape functions, are available

in EIDORS in the directory /eidors3d/eidors/solvers/forward/ in the functions

element shape function.m and d element shape function.m respectively. The shape

functions are automatically called when computing the system matrix as described in

section B.1. For clarity we list the element and boundary shape functions for a 3D

quadratic finite element only.
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3D Element shape functions

The element shape functions for quadratic approximation in 3D are listed below and

the location of each node (ε, η, γ) in the reference element can be seen in figure B.1.

ψ1(ε, η, γ) = 0.5(1− ε− η − γ)(1− 2ε− 2η − 2γ) ψ2(ε, η, γ) = ε(2ε− 1)

ψ3(ε, η, γ) = η(2η − 1) ψ4(ε, η, γ) = γ(2γ − 1)

ψ5(ε, η, γ) = 4ε(1− ε− η − γ) ψ6(ε, η, γ) = 4η(1− ε− η − γ)

ψ7(ε, η, γ) = 4γ(1− ε− η − γ) ψ8(ε, η, γ) = 4εη

ψ9(ε, η, γ) = 4ηγ ψ10(ε, η, γ) = 4εγ

1
2

3

4

5

6

(0, 1, 0)

(1
2
, 1

2
, 0)

(1
2
, 0, 0)

(0, 1
2
, 1

2
)

7

8

9

10

(1, 0, 0)

(0, 0, 1)

(0, 1
2
, 0)

(0, 0, 1
2
) (1

2
, 0, 1

2
)

(0, 0, 0)

Figure B.1: The position of nodes locally within 3D reference element for a quadratic approximation.

3D Boundary shape functions

The boundary shape functions for quadratic approximation in 3D, ψQi (ε, η) are listed

below. The location of each node (ε, η) in the reference can be seen in figure B.2.

ψ1(ε, η) = (1− ε− η)(1− 2ε− 2η) ψ2(ε, η) = ε(2ε− 1)

ψ3(ε, η) = η(2η − 1) ψ4(ε, η) = 4ε(1− ε− η)

ψ5(ε, η) = 4εη ψ6(ε, η) = 4η(1− ε− η)
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1 2
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4

56

(0, 0) (1, 0)
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2
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) (1

2
, 1

2
)

Figure B.2: Position of nodes on 3D reference boundary for quadratic approximation.

B.4 Quadrature rules

Standard numerical quadrature rules are listed below to evaluate the various integrals

appearing in the system matrices when solving the forward problem using a FEM from

[60]. The quadrature points are available in /eidors3d/eidors/solvers/forward/

in the function gauss points.m. The quadrature points are automatically called when

computing the system matrices as described in section B.1.

1D rules

We require quadrature rules for a function g : R→ R over the interval [−1, 1],∫ 1

−1

g(x) dx =

lq∑
l=1

ωlg(εl) (B.1)

We list quadrature rules for boundary terms for linear, quadratic and cubic approxi-

mation. Integrals of degree 2, 4 and 6 polynomials are sufficient.

2D rules

We require quadrature rules for a function g : R2 → R defined over the unit triangle,∫ 1

0

∫ 1−y

0

g(x, y) dx dy =

lq∑
l=1

ωlg(εl, ηl) (B.2)
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kq lq εl ωl
3 2 ±

√
3

3
1

5 3 ±
√

3
3

5
9

0 8
9

7 4 ±
√

1
35

(15− 2
√

30) 1
36

(18 +
√

30)

±
√

1
35

(15 + 2
√

30) 1
36

(18−
√

30)

Table B.1: Nodes and weights for quadrature over the interval [−1, 1] in 1D

We list quadrature rules for element terms for linear, quadratic and cubic approxima-

tion. Integrals of degree 2, 4 and 6 polynomials are sufficient to perform this task. The

rules below are also sufficient to evaluate the surface integrals over the boundary in

3D for linear and quadratic approximation, because these require rules that evaluate

integrals of degree 2 and 4 polynomials exactly. The table below differs to the 1D rules

for two reasons. Firstly, the Gauss points are now in barycentric or area coordinates

b = (b1, b2, b3). The vertices of the unit triangle are at the coordinates v1 = (0, 0),

v2 = (1, 0) and v3 = (0, 1), and for a given Gauss point, bG, in barycentric coordi-

nates, the Gauss point in Cartesian coordiantes, xG = (ε, η), can be recovered through

the formula

xG =
3∑
i=1

bGi vi.

Secondly, there is a column ‘p’ which is the number of permutations that must be

performed on the barycentric coordinates to obtain all the quadrature points.

kq lq (b1, b2, b3) p ωl
1 1 (1

3
, 1

3
, 1

3
) 1 1

2

2 3 (1
6
, 1

6
, 2

3
) 3 1

6

4 6 (ai, ai, 1− 2ai) for i = 1 : 2 3 ωi for i = 1 : 2
a1 = 0.4459484909160 0.5× 0.2233815896780
a2 = 0.0915762135098 0.5× 0.1099517436553

Table B.2: Nodes and weights for quadrature over the unit triangle in 2D



APPENDIX B. HIGH ORDER FEM CODE IN EIDORS 251

3D rules

We require quadrature rules for a function g : R3 → R defined over the unit tetrahe-

dron, that is ∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

g dx dy dz =

lq∑
l=1

ωlg(εl, ηl, γl) (B.3)

We list the quadrature rules required for element terms for linear and quadratic ap-

proximation. Integrals of degree 0 and 2 polynomials are sufficient to perform this

task. As with the 2D rules, the Gauss points are in barycentric or volume coordinates

b = (b1, b2, b3, b4). The vertices of the unit triangle are at the coordinates v1 = (0, 0, 0),

v2 = (1, 0, 0), v3 = (0, 1, 0) and v4 = (0, 0, 1), and for a given Gauss point, bG, in

barycentric coordinates, the Gauss point in Cartesian coordiantes, xG = (ε, η, γ), can

be recovered through the formula

xG =
4∑
i=1

bGi vi.

Again, the column ‘p’ is the number of permutations that must be performed on the

barycentric coordinates to obtain all the quadrature points.

kq lq (b1, b2, b3, b4) p ωl
1 1 (1

4
, 1

4
, 1

4
, 1

4
) 1 1

6

2 4 (a, a, a, 1− 3a) 4 1
24

a = 5−
√

5
20

Table B.3: Nodes and weights for quadrature over the unit tetrahedron in 3D
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Shape derivative code

C.1 Driver code

The following code performs simultaneous retrieval of electrode positions and conduc-

tivity for the spherical model as presented in chapter 4.4. This driver code requires

the additional codes in sections C.2, C.3 and C.4 of this appendix in the same working

directory. This also will require svn version 4430M of EIDORS, available to download

at http://eidors3d.sourceforge.net/.

1 %Choose shape , noise and movement and hyperparams

2 noise =50; shape=’sphere ’; move_fac =0.1;

3 hpmt_params_diff =0.01; hp_params =[10^ -5]; hpmt_params =[1250];

4 shape_iteration =8; max_its =5;

5

6 %Parameter for conductivity , electrode shapes

7 cond_inc =3; elec_ref =0.05; dom_ref =0.5; dom_h =1;

8 n_elec_m =14; n_elec_mt =9; h_mt =0.5; elec_t =[0.05 ,0 , elec_ref ];

9 n_elec_t=n_elec_m +2* n_elec_mt +2; n_elec=n_elec_t;

10

11 %Stimulation patterns

12 stim=mk_stim_patterns(n_elec_t ,1,[0 1],[0 1]);

13

14 %% CREATE COARSE , FINE AND ACTUAL MODEL

15 elec_pos=zeros(n_elec_m +2* n_elec_mt +2,6); elec_pos_cart=elec_pos;

16 for i=1

17 elec_pos(i,1) =0.0;

18 elec_pos(i,2) =0.0;

252

http://eidors3d.sourceforge.net/
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19 elec_pos(i,3) =1.0;

20 elec_pos(i,4:6)=elec_pos(i,1:3);

21 end

22 for i=1+1: n_elec_mt +1

23 psi=acos(h_mt);

24 elec_pos(i,1)=cos((i-2)*2*pi/n_elec_mt)*sin(psi);

25 elec_pos(i,2)=sin((i-2)*2*pi/n_elec_mt)*sin(psi);

26 elec_pos(i,3)=h_mt;

27 elec_pos(i,4:6)=elec_pos(i,1:3);

28 end

29 for i=1+ n_elec_mt +1:1+ n_elec_mt+n_elec_m

30 elec_pos(i,1)=cos((i-2-n_elec_mt)*2*pi/n_elec_m);

31 elec_pos(i,2)=sin((i-2-n_elec_mt)*2*pi/n_elec_m);

32 elec_pos(i,3)=0;

33 elec_pos(i,4:6)=elec_pos(i,1:3);

34 end

35 for i=1+ n_elec_mt+n_elec_m +1:1+ n_elec_mt+n_elec_m+n_elec_mt

36 psi=acos(-h_mt);

37 elec_pos(i,1)=cos((i-2-n_elec_mt -n_elec_m)*2*pi/n_elec_mt)...

38 *sin(psi);

39 elec_pos(i,2)=sin((i-2-n_elec_mt -n_elec_m)*2*pi/n_elec_mt)...

40 *sin(psi);

41 elec_pos(i,3)=-h_mt;

42 elec_pos(i,4:6)=elec_pos(i,1:3);

43 end

44 for i=2+ n_elec_m +2* n_elec_mt

45 elec_pos(i,1)=0;

46 elec_pos(i,2)=0;

47 elec_pos(i,3)= -1.0;

48 elec_pos(i,4:6)=elec_pos(i,1:3);

49 end

50

51 %Homogeneous sphere - 1 top/bottom , 8 above/below , 16 middle

52 shape_str = ...

53 [’solid top = ellipsoid (0,0,0; 0,0,1; 1,0,0; 0,1,0); \n’ ...

54 ’solid mainobj = top -maxh =0.8;\n’];

55 elec_shape=elec_t;

56 elec_obj = ’top’;

57 mdl_h = ng_mk_gen_models(shape_str , elec_pos , elec_shape , elec_obj);
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58 figure; show_fem(mdl_h);

59 nodes=mdl_h.nodes;

60

61 %Homogeneous sphere with no electrodes

62 shape_str_c = ...

63 [’solid top = ellipsoid (0,0,0; 0 ,0,1.05; 1.05,0,0; 0 ,1.05,0); \n’

...

64 ’solid mainobj = top -maxh =0.25;\n’];

65 mdl_c = ng_mk_gen_models(shape_str_c , [], [] , {} );

66 figure; show_fem(mdl_c);

67 nodes_c=mdl_c.nodes;

68

69 %Move the electrode positions and renormalize

70 elec_pos_i=elec_pos;

71 for i=1: length(elec_pos_i (:,1))

72 for j=1:3

73 elec_pos_i(i,j)= elec_pos(i,j) + move_fac *( -1+2* rand (1,1));

74 end

75 elec_pos_i(i,1:3)=elec_pos_i(i,1:3)/norm(elec_pos_i(i,1:3));

76 elec_pos_i(i,4:6)=elec_pos_i(i,1:3);

77 end

78 %Inhomogeneous sphere - 1 top/bottom , 8 above/below , 16 middle

79 shape_str_i = ...

80 [’solid top = ellipsoid (0,0,0; 0,0,1; 1,0,0; 0,1,0); \n’ ...

81 ’solid ball = sphere (0.0 ,0.3 ,0.3;0.3); tlo ball; \n’ ...

82 ’solid mainobj = top and not ball -maxh =0.8; \n’];

83 elec_shape_i=elec_t;

84 elec_obj_i = ’top’;

85 mdl_i = ng_mk_gen_models(shape_str_i , elec_pos_i , ...

86 elec_shape_i , elec_obj_i);

nodes=mdl_i.nodes;

87

88 %Make inhomogeneous image

89 img_h=mk_image(mdl_h ,1);

90 img_i=mk_image(mdl_i ,1); img_i.elem_data(mdl_i.mat_idx {1})=cond_inc;

91 figure; show_fem(img_i);

92 mdl_h.stimulation= stim; img_h.fwd_model.stimulation=stim;

93 mdl_i.stimulation= stim; img_i.fwd_model.stimulation=stim;

94
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95 %Inhomgeneous voltages

96 v_i=fwd_solve(img_i.fwd_model ,img_i);

97 v_h=fwd_solve(img_h.fwd_model ,img_h); v_hd = v_h.meas;

98 v_in=add_noise(noise ,v_i); v_i=v_in; %Add noise

99

100 %% STEP 1 : ELECTRODES ONLY

101 for kk=1: shape_iteration

102 %Create the inverse model

103 inv_tik_2d=eidors_obj(’inv_model ’,’EIT inverse ’);

104 mdl_h.jacobian=@jacobian_adjoint;

105 img_h.fwd_model.jacobian=@jacobian_adjoint;

106 inv_tik_2d.fwd_model= mdl_h;

107 inv_tik_2d.reconst_type=’absolute ’;

108 inv_tik_2d.jacobian_bkgnd.value=img_h.elem_data;

109 inv_tik_2d.RtR_prior=@prior_movement_tangential_only;

110 inv_tik_2d.solve=@inv_solve_diff_tangential;

111 inv_tik_2d.hyperparameter.value (1)=hpmt_params_diff;

112 inv_tik_2d.parameters.max_iterations =1;

113

114 %Add the fields for inversion

115 inv_tik_2d.shape=shape;

116 inv_tik_2d.img_fine=img_h;

117 inv_tik_2d.mdl_coarse=mdl_c;

118

119 %Differene solve on the inverse model (this has mdl_fine and c2f)

120 img_recon=inv_solve(inv_tik_2d ,v_i);

121 %Calculate the new electrode positions from tangent data

122 elec_comp_h=calc_electrode_components(img_h.fwd_model);

123 elec_posH =[]; elec_pos_NEW =[];

124 for i=1: length(elec_comp_h)

125 elec_posH(i,:)=elec_comp_h{i}.com;

126

127 %We can then decompose this to update the direction

128 a_i_elec_ii = img_recon.movement_data(i)* ...

129 elec_comp_h{i}. tangent (:,1) + ...

130 img_recon.movement_data(i+n_elec)* ...

131 elec_comp_h{i}. tangent (:,2);

132

133 %Get the old coords of node and update the end point
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134 elec_pos_NEW(i ,1:3) = elec_posH(i ,1:3) + a_i_elec_ii ’;

135 elec_pos_NEW(i ,1:3) = ...

136 elec_pos_NEW(i ,1:3)/norm(elec_pos_NEW(i ,1:3));

137 end

138 %Put the normals back in for sphere or clyinder

139 elec_pos_NEW (: ,4:6)=elec_pos_NEW (: ,1:3);

140 mdl_h = ng_mk_gen_models(shape_str , elec_pos_NEW , ...

141 elec_shape , elec_obj);

142

143 %Create new forward model

144 img_h=mk_image(mdl_h ,1);

145 inv_tik_2d.fwd_model=mdl_h;

146 mdl_h.stimulation= stim; img_h.fwd_model.stimulation=stim;

147 end

148

149 %Make new c2f map and create new images

150 cfmap = mk_coarse_fine_mapping( mdl_h , mdl_c);

151 cfmap2 = cfmap ./( sum(cfmap ,2) * ones(1,size(cfmap ,2)));

152 img_h=mk_image(mdl_h ,1);img_c=mk_image(mdl_c ,1);

153

154 %% STEP 2 : SIMULTANEOUS SOLVER

155

156 %Get the prior for the conductivity and positions

157 prior_c=img_c.elem_data; prior_e=zeros (2* n_elec ,1);

158 prior_ce =[ prior_c;prior_e ];

159

160 %Elements on coarse model

161 n_elemsc=length(mdl_c.elems (:,1));

162 n_elems=length(mdl_h.elems (:,1));

163 n_elec=length(mdl_h.electrode);

164 inv_tik_2d=eidors_obj(’inv_model ’,’EIT inverse ’);

165 mdl_h.jacobian=@jacobian_adjoint;

166 img_h.fwd_model.jacobian=@jacobian_adjoint;

167 mdl_h.n_elemsc=n_elemsc; %Assign coarse elements

168 inv_tik_2d.fwd_model= mdl_h;

169 inv_tik_2d.fwd_model.coarse2fine = cfmap;

170 inv_tik_2d.reconst_type=’absolute ’;

171 inv_tik_2d.jacobian_bkgnd.value=img_h.elem_data;

172 inv_tik_2d.RtR_prior=@prior_movement_tangential;
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173 inv_tik_2d.prior_movement.RegC.func=@prior_laplace;

174 inv_tik_2d.prior_movement.RegM.func=@tikhonov_movement_image_prior;

175 inv_tik_2d.solve=@inv_solve_abs_GN_diff_tangential;

176 inv_tik_2d.prior_movement.parameters=hpmt_params;

177 inv_tik_2d.hyperparameter.value=hp_params;

178 inv_tik_2d.parameters.max_iterations=max_its;

179

180 %Add some new fields to the inversion

181 inv_tik_2d.prior_c = prior_c;

182 inv_tik_2d.prior_e = prior_e;

183 inv_tik_2d.c2f2 = cfmap2; %Another coarse2 fine for the

184 img_h.fwd_model.n_elemsc=n_elemsc;

185 inv_tik_2d.img_fine=img_h;

186 inv_tik_2d.mdl_coarse=mdl_c;

187

188 %Differene solve on the inverse model (this has mdl_fine and c2f)

189 img_recon=inv_solve(inv_tik_2d ,v_i);

190 img_reconc=img_c;

191 img_reconc.elem_data=img_recon.elem_data (1: n_elemsc);

192 figure; show_fem(img_reconc)

C.2 Geometry and Jacobian calculation

Electrode geometry

The following function calc electrode components.m computes the COM, normal

and tangents of electrodes for a given EIDORS forward model structure.

1 function elec_comp = calc_electrode_components(fwd_model)

2 %Calculates the following storing in elec_comp{i}.NAME

3 %1. COM - Centre of mass of electrode

4 %2. NORMAL - The (average by area) normal vector to the electrode

5 %3. TANGENT - The (average by area) tangent space of the electrode

6 %2D - Single vector - Defined so these are clockwise basis

7 %3D - Two vectors - Defined for some basis.

8

9 %Get the boundaries so that they are in a consistent numbering

10 fwd_model=linear_bound_reorder(fwd_model ,-1);
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11

12 %Get all the nodes , elems , elecs and boundary info

13 elecstruc = fwd_model.electrode; n_elec = length(elecstruc);

14 boundstruc = fwd_model.boundary;

15 nodestruc = fwd_model.nodes; nodedim = length(nodestruc (1,:));

16

17 %For each electrode

18 for i=1: n_elec

19 %Calculate the centre of mass of the electrode and store

20 elec_nodes = elecstruc(i).nodes;

21 pos = mean(nodestruc(elec_nodes ,:) ,1);

22 elec_comp{i}.com = pos;

23

24 %Find which boundarys electrode has

25 [bdy_idx ,bdy_area ]= find_electrode_bdy ...

26 (boundstruc (:,1: nodedim), nodestruc ,elecstruc(i).nodes);

27 boundidx_i=bdy_idx;

28 n_bound_i = length(boundidx_i);

29

30 %Calculate the (area averaged) normal to boundary and tangent

31 norm_i=zeros(nodedim ,1);

32

33 %Loop on elec bdys - area weighted normal/tangent

34 for j=1: n_bound_i

35 %The coordinates of this boundarys nodes

36 thisb=nodestruc(boundstruc(boundidx_i(j) ,:) ,:);

37

38 %Find its outer unit normal and its area

39 if(nodedim ==2)

40 %Calculate area and normalised clockwise tangent

41 area_j = norm( thisb (1,:)-thisb (2,:) );

42 tang_j = (thisb (2,:)-thisb (1,:))’/area_j;

43 norm_j = [0,-1;1,0]* tang_j; %90 acw rotation

44 elseif(nodedim ==3)

45 %Calculate the normalised outer normal to surface

46 norm_j = cross(thisb (3,:)-thisb (1,:), ...

47 thisb (2,:)-thisb (3,:)) ’;

48 area_j = norm(norm_j);

49 end
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50 %Add on to normal weighted by its area

51 norm_i = norm_i + norm_j*area_j;

52 end

53 %Normalise the normal

54 norm_i = norm_i/norm(norm_i);

55

56 %Calculate the tangents to normal

57 if(nodedim ==2)

58 %Average tangent vector is 90 rotation clockwise of normal

59 tang_i = [0,1;-1,0]* norm_i;

60 elseif(nodedim ==3)

61 %Case by case ortohognal basis on electrode

62 if(abs(norm_i (1)) >0.2)

63 tang_i1 = [-norm_i (2)/norm_i (1) ,1,0];

64 tang_i1=tang_i1/norm(tang_i1);

65 tang_i2=cross(tang_i1 ,norm_i);

66 tang_i2=tang_i2/norm(tang_i2);

67 elseif(abs(norm_i (2)) >0.2)

68 tang_i1 = [-norm_i (2)/norm_i (1) ,1,0];

69 tang_i1=tang_i1/norm(tang_i1);

70 tang_i2=cross(tang_i1 ,norm_i);

71 tang_i2=tang_i2/norm(tang_i2);

72 elseif(abs(norm_i (3)) >0.2)

73 tang_i1 = [-norm_i (2)/norm_i (1) ,1,0];

74 tang_i1=tang_i1/norm(tang_i1);

75 tang_i2=cross(tang_i1 ,norm_i);

76 tang_i2=tang_i2/norm(tang_i2);

77 else

78 error(’Can not compute normals correctly ’)

79 end

80 %Now put this tangents as two columns of a matrix

81 tang_i =[ tang_i1;tang_i2]’;

82 end

83

84 %Store the tangent(s) and normal in the structure

85 elec_comp{i}. tangent = tang_i; %Tangent vectors by column

86 elec_comp{i}. normal = norm_i; %Normal vector by column

87 end

88 end
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89

90 function [mdl]= linear_bound_reorder(mdl ,ccw)

91 %Find boundary , elems , nodes , elecs

92 boundstruc=mdl.boundary; elemstruc=mdl.elems;

93 nodestruc=mdl.nodes; elecstruc=mdl.electrode;

94 %Find no. elecs and node dimension

95 nelecs=size(elecstruc ,2); nodedim=size(nodestruc ,2);

96

97 %Reorder boundaries belonging to electrodes

98 for ke=1: nelecs

99 %Boundary numbers/areas , output rows

100 bdy_idx=find_electrode_bdy(boundstruc (:,1: nodedim), ...

101 nodestruc ,elecstruc(ke).nodes);

102

103 for ii=1: length(bdy_idx);

104 bb=bdy_idx(ii);

105

106 %Vector of vertes numbers of this boundary

107 bbnodes=boundstruc(bb ,:);

108 if(nodedim ==2) %2D problem

109 %Row(s) of elems which each bdy vertex belongs

110 [rownode1 ,~]= find(elemstruc == bbnodes (1));

111 [rownode2 ,~]= find(elemstruc == bbnodes (2));

112

113 %Intersectionr rownode1/rownode2

114 boundiielem=intersect(rownode1 ,rownode2);

115 elseif(nodedim ==3) %3D problem

116 %Row(s) of elems which each bdy vertex belongs

117 [rownode1 ,~]= find(elemstruc == bbnodes (1));

118 [rownode2 ,~]= find(elemstruc == bbnodes (2));

119 [rownode3 ,~]= find(elemstruc == bbnodes (3));

120

121 %Intersection rownode1/rownode2

122 rownode1node2=intersect(rownode1 ,rownode2);

123 %Intersection rownode3 is unique element

124 boundiielem=intersect(rownode3 ,rownode1node2);

125 end

126 %Store this unique number in a vector

127 beleind=boundiielem (1);
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128

129 %Coordinate of nodes of boundaries element

130 belenodes=elemstruc(beleind ,:);

131

132 %Unique internal nodes

133 intnode=setdiff(belenodes ,bbnodes);

134 elemboundnode =[intnode ,bbnodes ];

135

136 %List by row coordinates of the element

137 nodepos=nodestruc(elemboundnode ,:);

138 nvertices=size(belenodes ,2);

139

140 %Calculate area(2D)/volume (3D) from vertices

141 area= det([ones(nvertices ,1),nodepos ]);

142 areasign=sign(area);

143

144 %If positive area , swap the last two nodes

145 if(areasign == -ccw) %Swap last two entries of enodes

146 temp=elemboundnode(end -1);

147 elemboundnode(end -1)=elemboundnode(end);

148 elemboundnode(end) = temp;

149 end

150

151 %Put the node numbers back into mdl.bound(bb)

152 boundstruc(bb ,:)=elemboundnode (2:end);

153 end

154 end

155 %Reassign the boundary

156 mdl.boundary=boundstruc;

157 end

Electrode position Jacobian

The following code computes the (tangential) movement Jacobian, by computing the

movement Jacobian in EIDORS jacobian movement.m, and then projecting onto nor-

mal and tangential components through the function calc electrode components.m.

1 function [J_new] = jac_move_eidors_elec_tang_only(fwd_model ,img)
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2 %Movement Jacobian projected onto normal and tangential components

3

4 %Calculate movement Jacobian through eidors

5 J=jacobian_movement(img);

6 %Get all the nodes , elems , elecs and boundary info

7 elecstruc = img.fwd_model.electrode; n_elec = length(elecstruc);

8 elemstruc = img.fwd_model.elems;

9 nodestruc = img.fwd_model.nodes; nodedim = length(nodestruc (1,:));

10

11 %Calculate the normal and tangential space of each electrode

12 elec_comp = calc_electrode_components(img.fwd_model);

13

14 %Ok we have split into tangential and normal components

15 J_move = J(:,end -3* n_elec +1: end); %c2f

16

17 for i=1: n_elec

18 if(nodedim ==2)

19 %Two columns for this electrode i.e. in x and y

20 xd = J_move(:,i);

21 yd = J_move(:,i+n_elec);

22 xyd=[xd ,yd];

23 td = xyd*elec_comp{i}. tangent; %Tangent

24 J_move_comp (:,i)=td;

25 elseif(nodedim ==3)

26 %Two columns for this electrode i.e. in x and y

27 xd = J_move(:,i); yd = J_move(:,i+n_elec);

28 zd = J_move(:,i+2* n_elec);

29 xyzd=[xd ,yd ,zd];

30 t1d = xyzd*elec_comp{i}. tangent (:,1); %T1

31 t2d = xyzd*elec_comp{i}. tangent (:,2); %T2

32 J_move_comp (:,i)=t1d;

33 J_move_comp (:,i+n_elec)=t2d;

34 end

35 end

36 J_new=J_move_comp; %Only keep movement

37 end
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C.3 Electrode position inverse solver

Electrode inverse solver

The following function inv solve diff tangential.m computes a single Gauss-Newton

iteration, with a linearised movement linesearch, to estimate the electrode positions

from measured voltages.

1 function img= inv_solve_diff_tangential( inv_model , data0);

2 %INV_SOLVE_DIFF_TANGENTIAL Absolute solver using Gauss Newton

3 % img= inv_solve_abs_GN( inv_model , data0)

4 % img => output image (or vector of images)

5 % inv_model => inverse model struct

6 % data0 => EIT data

7

8 %Get the options

9 opt = parse_options(inv_model);

10 img = initial_estimate( inv_model , data0 ); %bckgrnd c2f

11

12 %Number electrodes , hyperparameter and Tikhonov reg

13 n_elec=length(inv_model.img_fine.fwd_model.electrode);

14 hp = calc_hyperparameter( inv_model );

15 RtR = eye(n_elec *2); hp2RtR= hp^2*RtR;

16

17 %Prior conductivity and tangential change

18 prior_e (1:2* n_elec ,1) =0; cur_e=prior_e; cur_move=cur_e;

19

20 %Get fine image and calc electrode components

21 img_h=inv_model.img_fine;

22 elec_comp_h=calc_electrode_components(img_h.fwd_model);

23 for jj=1: length(elec_comp_h)

24 elec_posHS(jj ,:)=elec_comp_h{jj}.com;

25 end

26 elec_posH = elec_posHS;

27

28 %Compute the dat and regularisaiton residuals

29 vsim=fwd_solve(img_h);

30 data_res=zeros(opt.max_iter +1,1);

31 data_res (1) = 0.5*( vsim.meas -data0) ’*(vsim.meas -data0);
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32 regu_res=zeros(opt.max_iter +1,1); regu_res (1) = 0;

33

34 %Calculate the movement Jacobian outside loop

35 J=jac_move_eidors_elec_tang_only(inv_model.fwd_model ,img_h);

36

37 %Loop over iterations

38 for i = 1:opt.max_iter

39 %Simulate measured data on FINE image and calc diff data

40 vsim = fwd_solve( img_h );

41 vsim.meas=vsim.meas+J*cur_move;

42 dv = calc_difference_data( vsim , data0 , img.fwd_model);

43

44 %Compute the search direction -inv(H)*J’

45 RDx = hp2RtR *( prior_e - cur_e);

46 dx = (J’*J + hp2RtR)\(J’*dv + RDx);

47

48 %Perform a linesearch on this using polynomial search

49 opt.line_optimize.hp2RtR = hp2RtR;

50 cur_move = feval(opt.line_optimize_func , dx, data0 , img_h , ...

51 img , J,prior_e ,cur_move ,opt.line_optimize);

52

53 %Calculate the electrode components

54 for jj=1: length(elec_comp_h)

55 %We can then decompose this to update the direction

56 a_i_elec_ii = cur_move(jj)*elec_comp_h{jj}. tangent (:,1) + ...

57 cur_move(jj+n_elec)*elec_comp_h{jj}. tangent (:,2);

58 %Calculate the new coordinates

59 elec_pos_NEW(jj ,1:3) = elec_posHS(jj ,1:3) + a_i_elec_ii ’;

60 end

61 %Get the normals

62 elec_pos_NEW (: ,4:6)=elec_pos_NEW (: ,1:3);

63

64 %Compute the data residual

65 vsim=fwd_solve(img_h);

66 vsim.meas=vsim.meas+J*cur_move;

67

68 %The new residuals and message screen

69 data_res(i+1) = 0.5*( vsim.meas -data0) ’*(vsim.meas -data0);

70 regu_res(i+1) = 0.5*( cur_e -prior_e) ’*hp2RtR *(cur_e -prior_e);
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71 eidors_msg(’#%02d residual =%.3g’, i, data_res(i+1)+regu_res(i+1),

1);

72 end

73

74 %Attach the movement

75 img.movement_data = cur_move; %this is on tangents

76

77 function val = GN_objective_function(data0 , data , ...

78 cur_move ,prior_e ,img_h ,img ,opt)

79 dv = calc_difference_data(data , data0 , img.fwd_model);

80 de = cur_move - prior_e;

81 val = 0.5*( dv ’*dv + de ’ * opt.hp2RtR * de);

82

83 function img = initial_estimate( imdl , data )

84 img = calc_jacobian_bkgnd( imdl );

85 vs = fwd_solve(img);

86 pf = polyfit(data ,vs.meas ,1);

87 img = physics_data_mapper(img);

88 if isfield(img.fwd_model ,’coarse2fine ’);

89 nc = size(img.fwd_model.coarse2fine ,2);

90 img.elem_data = mean(img.elem_data)*ones(nc ,1)*pf(1);

91 else

92 img.elem_data = img.elem_data*pf(1);

93 end

94 % remove elem_data

95 img = physics_data_mapper(img ,1);

96

97 function opt = parse_options(imdl)

98 try

99 opt = imdl.parameters;

100 end

101 opt.max_iter = 1;

102 try

103 opt.max_iter = imdl.parameters.max_iterations;

104 end

105 if ~isfield(opt ,’line_optimize_func ’)

106 opt.line_optimize_func = @line_optimize_diff_tangential;

107 end

108 if ~isfield(opt ,’line_optimize ’)
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109 opt.line_optimize = [];

110 end

111 if ~isfield(opt , ’line_optimize ’) || ...

112 ~isfield(opt.line_optimize , ’objective_func ’)

113 % not sure this should be allowed to change

114 opt.line_optimize.objective_func = @GN_objective_function;

115 end

116 if ~isfield(opt ,’do_starting_estimate ’)

117 opt.do_starting_estimate = 1;

118 end

Electrode linesearch

The following function line optimize diff tangential.m computes a linesearch, for

a sufficiently small change in electrode positions.

1 function [cur_move] = line_optimize_diff_tangential(dx ,...

2 data0 , img_h ,img , Jm ,prior_e ,cur_move , opt)

3 %% Bracket the local minimum - Get 3 points such that

4 % 0 < s1 < s2 < s3 with f(s2) \leq min{ f(s1),f(s3) }

5

6 %Step 1: Get step_length s.t. f(step_length) < f(0)

7 step_length =1;

8 vsim = fwd_solve(img_h);

9 vsim.meas=vsim.meas + Jm*cur_move; %Linearise movement

10

11 %calculate the misfit at 0

12 mlist (1) = feval(opt.objective_func ,data0 ,vsim , ...

13 cur_move ,prior_e ,img_h ,img ,opt);

14

15 %Iterate through and find minimal point

16 for i=1:10 %while loop here

17 %Perturb image (s,v) |-> (s,v) +p*dx(1: n_elemsc)

18 vsim = fwd_solve(img_h);

19 vsim.meas=vsim.meas + Jm*cur_move*step_length; %Linear

20

21 %calculate the misfit

22 mlist(i+1) = feval(opt.objective_func ,data0 ,vsim , ...

23 cur_move*step_length ,prior_e ,img_h ,img ,opt);
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24 if(mlist(i+1) < mlist (1))

25 break; %Bracket now [i-1,i,i+1]

26 else

27 %Decrease step length and try again

28 step_length=step_length /2;

29 end

30 end

31

32 %% Get the third point

33 lambda (1) =0; lambda (2)=step_length;

34

35 %Data at current iterate

36 cur_movek=cur_move; vsim = fwd_solve(img_h);

37 vsim.meas=vsim.meas + Jm*cur_move; %Linear

38

39 %calculate the misfit at 0

40 mlist (1) = feval(opt.objective_func ,data0 ,vsim ,...

41 cur_movek ,prior_e ,img_h ,img ,opt);

42

43 %Data at perturb image (s,v) |-> (s,v) +p*dx(1: n_elemsc)

44 cur_movei = cur_movek + step_length*dx;

45 vsim = fwd_solve(img_h);

46 vsim.meas=vsim.meas + Jm*cur_movei; %Linear

47

48 %calculate the misfit

49 mlist (2) = feval(opt.objective_func ,data0 ,vsim ,...

50 cur_movei ,prior_e ,img_h ,img ,opt);

51

52 %0 < s1 < s2 < s3 with f(s2) \leq min{ f(s1),f(s3) }

53 for i=1:10 %How many

54 %Increase step length

55 lambda(i+2) = lambda(i+1) + step_length;

56

57 %Data at perturb image (s,v) |-> (s,v) +p*dx(1: n_elemsc)

58 cur_movei = cur_movek + lambda(i+2)*dx;

59 vsim = fwd_solve(img_h);

60 vsim.meas=vsim.meas + Jm*cur_movei;

61

62 %calculate the misfit
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63 mlist(i+2) = feval(opt.objective_func ,data0 ,vsim ,...

64 cur_movei ,prior_e ,img_h ,img ,opt);

65 if(mlist(i+2) > mlist(i+1))

66 break; %We have a bracket now [i-1,i,i+1]

67 else

68 %Continute iterations

69 end

70 end

71

72 %We have bracket - now quad line fit in log space

73 opt.perturb = [lambda(i),lambda(i+1),lambda(i+2)]

74 mlist = [mlist(i),mlist(i+1),mlist(i+2)]

75 pf = polyfit(opt.perturb , mlist , 2);

76 fmin = -pf(2)/pf(1)/2 % poly minimum for a 2nd order poly

77

78 %Return the current iterate

79 cur_move = cur_movek + fmin*dx;

C.4 Electrode and conductivity inverse solver

Electrode and conductivity inverse solver

The following function inv solve abs GN diff tangential.m computes a simultane-

ous absolute conductivity and linearised electrode position estimate from the measured

voltages.

1 function img= inv_solve_abs_GN_diff_tangential( inv_model , data0);

2 %INV_SOLVE_ABS_GN_TANGENTIAL Absolute solver using GN

3 % img= inv_solve_abs_GN( inv_model , data0)

4 % img => output image (or vector of images)

5 % inv_model => inverse model struct

6 % data0 => EIT data

7

8 %Get the options

9 opt = parse_options(inv_model);

10 img = initial_estimate( inv_model , data0 ); %bckgnd c2f

11

12 %Calculate hyperparameter and RtR (movement prior !!!)
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13 hp = calc_hyperparameter( inv_model );

14 RtR = calc_RtR_prior( inv_model ); hp2RtR= hp^2*RtR;

15

16 % Physics and initial estimates

17 img0 = physics_data_mapper(img);

18 img0.elem_data=inv_model.prior_c;

19 img.elem_data=inv_model.prior_c;

20

21 %get the number of electrodes and coarse elements

22 n_elec=length(inv_model.img_fine.fwd_model.electrode);

23 n_elemsc=inv_model.fwd_model.n_elemsc;

24

25 %We want to get the prior conductivity and tangential change

26 prior_ce=img0.elem_data;

27 prior_ce(n_elemsc +1: n_elemsc +2* n_elec)=inv_model.prior_e;

28 cur_ce=prior_ce;

29 cur_move=prior_ce(n_elemsc +1: n_elemsc +2* n_elec);

30

31 %Get the fine image and coarse model

32 img_h=inv_model.img_fine;

33 mdl_c=inv_model.mdl_coarse;

34

35 %Calculate the electrode components on fine model

36 elec_comp_h=calc_electrode_components(img_h.fwd_model);

37 for jj=1: length(elec_comp_h)

38 elec_posHS(jj ,:)=elec_comp_h{jj}.com;

39 end

40 elec_posH = elec_posHS;

41

42 %Compute the dat and regularisaiton residuals

43 vsim=fwd_solve(img_h);

44 data_res=zeros(opt.max_iter +1,1);

45 data_res (1) = 0.5*( vsim.meas -data0) ’*(vsim.meas -data0);

46 regu_res=zeros(opt.max_iter +1,1);

47 regu_res (1) = 0;

48

49 %Movement and conductivity Jacobian

50 Jm=jac_move_eidors_elec_tang_only(inv_model.fwd_model ,img_h);

51 J = calc_jacobian( img ); J=[J,Jm]; resolve_jacobian =0;
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52

53 %Loop over iterations

54 for i = 1:opt.max_iter

55 %Simulate measured data on FINE image and calc diff data

56 vsim = fwd_solve( img_h );

57 vsim.meas=vsim.meas+Jm*cur_move;

58 dv = calc_difference_data( vsim , data0 , img.fwd_model);

59

60 %Jacobian here

61 if(resolve_jacobian ==1)

62 %Jacobian adjoint and coarse2fine field to get movement

63 J = calc_jacobian( img ); J=[J,Jm];

64 end

65

66 %Compute the search direction -inv(H)*J’

67 RDx = hp2RtR *( prior_ce - cur_ce);

68 dx = (J’*J + hp2RtR)\(J’*dv + RDx);

69

70 %Perform a linesearch on this using polynomial search

71 opt.line_optimize.hp2RtR = hp2RtR;

72 img.elem_data=cur_ce; %Elem_data with conductivity AND move

73 img0.elem_data=prior_ce;

74 img = feval(opt.line_optimize_func ,img , dx , data0 , ...

75 img_h , inv_model.c2f2 ,n_elemsc ,Jm ,img0 ,opt.line_optimize);

76

77 %Reassign tangential and conductivity (fine already sorted out)

78 cur_ce = img.elem_data;

79 cur_move=cur_ce(n_elemsc +1: n_elemsc +2* n_elec);

80 img.elem_data = cur_ce (1: n_elemsc);

81

82 %Add coarse data convert to fine differential as a test

83 fine_from_c = inv_model.c2f2*img.elem_data;

84 img_h=mk_image(inv_model.fwd_model ,fine_from_c);

85

86 %Calculate the electrode components

87 for jj=1: length(elec_comp_h)

88 %We can then decompose this to update the direction

89 a_i_elec_ii = cur_move(jj)*elec_comp_h{jj}. tangent (:,1) + ...

90 cur_move(jj+n_elec)*elec_comp_h{jj}. tangent (:,2);
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91 %Calculate the new coordinates

92 elec_pos_NEW(jj ,1:3) = elec_posHS(jj ,1:3) + a_i_elec_ii ’;

93 end

94 %Get the normals

95 elec_pos_NEW (: ,4:6)=elec_pos_NEW (: ,1:3);

96

97 %Compute the data residual

98 vsim=fwd_solve(img_h); %This is conductivity change

99 vsim.meas=vsim.meas+Jm*cur_move;

100

101 %The new residuals and message

102 data_res(i+1) = 0.5*( vsim.meas -data0) ’*(vsim.meas -data0);

103 regu_res(i+1) = 0.5*( cur_ce -prior_ce) ’*hp2RtR *(cur_ce -prior_ce);

104 eidors_msg(’#%02d squared summed residual =%.3g’, i, ...

105 data_res(i+1)+regu_res(i+1), 1);

106 end

107 img.movement_data = cur_move; %attach tangential movement

108

109 function val = GN_objective_function(data0 , data , img_k ,img0 ,opt)

110 dv = calc_difference_data(data , data0 , img0.fwd_model);

111 de = img_k.elem_data - img0.elem_data;

112 val = 0.5*( dv ’*dv + de ’ * opt.hp2RtR * de);

113

114 function img = initial_estimate( imdl , data )

115 img = calc_jacobian_bkgnd( imdl );

116 vs = fwd_solve(img);

117 pf = polyfit(data ,vs.meas ,1);

118 img = physics_data_mapper(img);

119 if isfield(img.fwd_model ,’coarse2fine ’);

120 nc = size(img.fwd_model.coarse2fine ,2);

121 img.elem_data = mean(img.elem_data)*ones(nc ,1)*pf(1);

122 else

123 img.elem_data = img.elem_data*pf(1);

124 end

125 % remove elem_data

126 img = physics_data_mapper(img ,1);

127

128 function opt = parse_options(imdl)

129 try
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130 % for any general options

131 opt = imdl.parameters;

132 end

133 opt.max_iter = 1;

134 try

135 opt.max_iter = imdl.parameters.max_iterations;

136 end

137

138 if isfield(imdl , ’inv_solve_abs_GN ’);

139 fnames = fieldnames(imdl.inv_solve_abs_GN);

140 for i = 1: length(fnames)

141 opt.( fnames{i}) = imdl.inv_solve_abs_GN .( fnames{i});

142 end

143 end

144

145 if ~isfield(opt ,’line_optimize_func ’)

146 opt.line_optimize_func = @line_optimize_tangential;

147 end

148

149 if ~isfield(opt ,’line_optimize ’)

150 opt.line_optimize = [];

151 end

152

153 if ~isfield(opt , ’line_optimize ’) || ...

154 ~isfield(opt.line_optimize , ’objective_func ’)

155 % not sure this should be allowed to change

156 opt.line_optimize.objective_func = @GN_objective_function;

157 end

158

159 if ~isfield(opt ,’do_starting_estimate ’)

160 opt.do_starting_estimate = 1;

161 end

Electrode and conductivity prior

The following function prior movement tangential.m computes an inverse prior co-

variance matrix for simultaneous conductivity and tangential electrode position recon-

struction.
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1 function Reg= prior_movement_tangential( inv_model );

2 % PRIOR_MOVEMENT calculate image prior

3 % Reg= prior_movement( inv_model )

4 % Reg => output regularization term

5 % inv_model => inverse model struct

6 % Parameters:

7 % inv_model.image_prior.parameters (1) movement/image frac

8 % inv_model.prior_movement.RegC.func = Cond Reg fcn

9

10 % relative strengths of conductivity and movement priors

11 hp_move= inv_model.prior_movement.parameters (1);

12 pp= fwd_model_parameters( inv_model.fwd_model );

13

14 % calc conductivity portion

15 inv_model.RtR_prior = inv_model.prior_movement.RegC.func;

16 pp= fwd_model_parameters( inv_model.fwd_model );

17 RegC= calc_RtR_prior( inv_model);

18 szC = size(RegC ,1);

19 RegM = eye((pp.n_dims -1)*pp.n_elec);

20

21 %Create full regularisation

22 RegCM= sparse( szC , (pp.n_dims -1)*pp.n_elec );

23 Reg= [RegC , RegCM;

24 RegCM ’, hp_move ^2* RegM ];

Electrode and conductivity linesearch

The following function line optimize tangential.m computes a linesearch, for a

sufficiently small change in electrode positions, but fully non-linear in the conductivity.

1 function [img] = line_optimize_tangential(imgk , dx, data0 , ...

2 img_h , c2f2 , n_elemsc , Jm ,img0 , opt)

3 %% Bracket the local minimum - Get 3 points such that

4 % 0 < s1 < s2 < s3 with f(s2) \leq min{ f(s1),f(s3) }

5

6 %Step 1: Get step_length s.t. f(step_length) < f(0)

7 step_length =1;

8 %Copy the image across
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9 img = imgk; img_h.elem_data = c2f2*img.elem_data (1: n_elemsc);

10 vsim = fwd_solve(img_h);

11 vsim.meas=vsim.meas + Jm*img.elem_data(n_elemsc +1: end); %Linear

12

13 %Misfit at 0

14 mlist (1) = feval(opt.objective_func ,data0 ,vsim ,img ,img0 ,opt);

15

16 %Iterate through and find minimal point

17 for i=1:10 %while loop here

18 %Data at perturb image (s,v) |-> (s,v) +p*dx(1: n_elemsc)

19 img.elem_data = imgk.elem_data + step_length*dx;

20 img_h.elem_data = c2f2*img.elem_data (1: n_elemsc);

21 vsim = fwd_solve(img_h);

22 vsim.meas=vsim.meas + Jm*img.elem_data(n_elemsc +1: end); %Linear

23

24 %calculate the misfit

25 mlist(i+1) = feval(opt.objective_func ,data0 ,vsim ,img ,img0 ,opt);

26 if(mlist(i+1) < mlist (1))

27 break; %Bracket now [i-1,i,i+1]

28 else

29 step_length=step_length /2; %Else try again

30 end

31 end

32

33 %% Get the third point

34 lambda (1) =0; lambda (2)=step_length;

35

36 %Image at current iterate

37 img.elem_data = imgk.elem_data;

38 img_h.elem_data = c2f2*img.elem_data (1: n_elemsc);

39 vsim = fwd_solve(img_h);

40 vsim.meas=vsim.meas + Jm*img.elem_data(n_elemsc +1: end); %Linear

41

42 %calculate the misfit at 0

43 mlist (1) = feval(opt.objective_func ,data0 ,vsim ,img ,img0 ,opt);

44

45 %Data at steplength

46 %Perturb image (s,v) |-> (s,v) +p*dx(1: n_elemsc)

47 img.elem_data = imgk.elem_data + step_length*dx;
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48 img_h.elem_data = c2f2*img.elem_data (1: n_elemsc);

49 vsim = fwd_solve(img_h);

50 vsim.meas=vsim.meas + Jm*img.elem_data(n_elemsc +1: end); %Linear

51

52 %calculate the misfit

53 mlist (2) = feval(opt.objective_func ,data0 ,vsim ,img ,img0 ,opt);

54

55 %0 < s1 < s2 < s3 with f(s2) \leq min{ f(s1),f(s3) }

56 for i=1:10 %How many

57 %Increase step length

58 lambda(i+2) = lambda(i+1) + step_length;

59

60 %Data at perturb image (s,v) |-> (s,v) +p*dx(1: n_elemsc)

61 img.elem_data = imgk.elem_data + lambda(i+2)*dx;

62 img_h.elem_data = c2f2*img.elem_data (1: n_elemsc);

63 vsim = fwd_solve(img_h);

64 vsim.meas=vsim.meas + Jm*img.elem_data(n_elemsc +1: end); %Linear

65

66 %calculate the misfit

67 mlist(i+2) = feval(opt.objective_func ,data0 ,vsim ,img ,img0 ,opt);

68 if(mlist(i+2) > mlist(i+1))

69 break; %Found bracket exit

70 else %continue

71 end

72 end

73

74 %We have bracket - now quad line fit in log space

75 opt.perturb = [lambda(i),lambda(i+1),lambda(i+2)];

76 mlist = [mlist(i),mlist(i+1),mlist(i+2)];

77 pf = polyfit(opt.perturb , mlist , 2);

78 fmin = -pf(2)/pf(1) /2; % poly minimum for a 2nd order poly

79

80 %Return the image

81 img.elem_data = imgk.elem_data + fmin*dx;



Appendix D

Mechanical ODE modelling code

The following code computes the ODE modelling results in chapter 6. All plots have

been removed for clarity.

1 %% DOUBLE LUNG WITH AIRWAY SERIES RESISTANCE AND MULTI -COMPARTMENTS

2 %

3 % MODEL:

4 % Branching two lungs. Single airway resistance.

5 % Model branches into N parallel (lung lobes) with series CR circuits

6 %

7 % VARIABLES:

8 % (i) Inputs: Voltage V(t) at mouth

9 % (ii) States:

10 % (a) Controls: Voltage/current at mouth V(t), \sum I(t)

11 % (b) Voltages V_S(t) after airway resistance (NOT measure)

12 % (c) Compartment charge and derivative (CAN measure)

13 % (iii) Parameters: E R per compartment + lung V0 pleural pressure

14 % (iv) Measure: I(t), V(t) at mouth and Q(t) I(t) at every point

15 %

16 % EQUATIONS:

17 % V(t) - V_S(t) = R_S dot_Q_L(t) %Top branch

18 % dot_Q(t) = dot_Q_L(t) + dot_Q_R(t)

19 % For each lung (A={L,R}) and each compartment (B={1:N}) we have

20 % V_S(t) - V0 = E_A_B (Q_A_B(t)-Q_A_B_0) + R_A_B dot_Q_A_B(t)

21 % dot_Q_A(t) = \sum_{B} dot_Q_A_B(t)

22

23 %Sinusoidal PEEP setting

24 PEEP_freq =0.2; PEEP_min =10; PEEP_max =20;

276
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25 for run_type =[1,2,3,4,5,6,7]

26 %run_type =1:4 (tikhonov) 5:7 (integrate equations)

27 if(run_type ==1)

28 SNR=inf; type =3; alpha_reg_d =0.00000000001;

29 elseif(run_type ==2)

30 SNR =100; type =3; alpha_reg_d =0.005;

31 elseif(run_type ==3)

32 SNR =50; type =3; alpha_reg_d =0.05;

33 elseif(run_type ==4)

34 SNR =25; type =3; alpha_reg_d =0.5;

35 elseif(run_type ==5)

36 SNR =100; type =1;

37 elseif(run_type ==6)

38 SNR =50; type =1;

39 elseif(run_type ==7)

40 SNR =50; type =1;

41 end

42

43 %Total monitoring time , time step increment , sample (Hz)

44 total_time =30; delta_t =0.01; ode_steps=total_time/delta_t;

45 time_stepper =1; %RK4 = 1. Explicit Euler = 2.

46 sample_freq =20; n_sample=sample_freq*total_time; %Alias?

47

48 %% PARAMETERS

49 %Pleural pressure (non measurable) and exhaled volume

50 P_p=0; V_0=6;

51

52 %Number compartments and E, R per compartment

53 n_compartments =3;

54 for j=1:2

55 for i=1: n_compartments

56 E_parallel(i,j)=50;

57 R_parallel(i,j)=20;

58 end

59 end

60 R_series =1.0; %Series resistance

61

62 %High compliance and low elastance for two compartments

63 E_parallel (1,1) =3.0; R_parallel (3,2) =50.0;
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64

65 %Pick out the reconstructed parameters from this matrix

66 for j=1:2

67 for i=1: n_compartments

68 Xm_act (2* n_compartments *(j-1) +1+2*(i-1))=E_parallel(i,j);

69 Xm_act (2* n_compartments *(j-1) +2+2*(i-1))=R_parallel(i,j);

70 end

71 end

72 Xm_act (2* n_compartments *2+1)=R_series;

73 Xm_act (2* n_compartments *2+1+1)=P_p;

74

75 %% INPUT PRESSURE WAVE

76 %Sinusoial pressure vector simulating PEEP maneuvre

77 Ptp_s=zeros(ode_steps ,1);

78 for i=1: ode_steps

79 t_r = total_time *(i/ode_steps);

80 Ptp_s(i) = PEEP_min + 0.5*( PEEP_max -PEEP_min)* ...

81 ( 1 + sin( 2*pi*PEEP_freq*t_r ) );

82 end

83

84 %% ODE MODEL

85 %Pdot_x = A x + b: x is vol/flow , A is coefficient , b is RHS

86 %Initialise the A,P x, x_dot and b (these will vary over timesteps)

87 x=zeros (2* n_compartments ,ode_steps);

88 x_dot=zeros (2* n_compartments ,ode_steps);

89 b=zeros (2* n_compartments ,ode_steps);

90 A=zeros (2* n_compartments ,2* n_compartments);

91 P=zeros (2* n_compartments ,2* n_compartments);

92 for i=1:2* n_compartments

93 for j=1:2* n_compartments

94 P(i,j)=R_series;

95 end

96 end

97 for i=1: n_compartments

98 P(i,i)=P(i,i)+R_parallel(i,1);

99 P(i+n_compartments ,i+n_compartments)= ...

100 P(i+n_compartments ,i+n_compartments)+R_parallel(i,2);

101 end

102
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103 %Set up ODE coefficient matrix A

104 for i=1: n_compartments

105 A(i,i) = -E_parallel(i,1);

106 A(i+n_compartments ,i+n_compartments) = -E_parallel(i,2);

107 end

108

109 %Initial values x - exhaled initial condition

110 for i=1:2* n_compartments

111 x(i,1)=V_0 /(2* n_compartments); %Distribute evenly

112 x_dot(i,1) =0.0;

113 end

114

115 %Setup RHS vector

116 for i=1: n_compartments

117 for j=1: ode_steps

118 b(i,j) = (Ptp_s(j)-P_p);

119 b(i+n_compartments ,j) = (Ptp_s(j)-P_p);

120 end

121 end

122

123 %% FORWARD PROBLEM SOLVE ODE

124 %Find P_inv and P_inv*A

125 P_inv=inv(P); P_invA=P\A;

126 if(time_stepper ==1) %RK4 explicit

127 %x_dot(t) = P_invA*x(t) + P_inv*b(t) = f(t,x)

128 %x_{n+1} = x_{n} + 1/6*h*(k_{1}+2 k_{2}+2 k_{3}+k_{4})

129 %k1 = f(tn ,xn)

130 %k2 = f(tn + h/2 , xn + h/2 k1)

131 %k3 = f(tn + h/2 , xn + h/2 k2)

132 %k4 = f(tn + h , xn + h k3)

133 for i=1: ode_steps -1

134 k1 = P_invA *( x(:,i) ) + ...

135 P_inv*( b(:,i) );

136 k2 = P_invA *( x(:,i) + delta_t /2*k1 ) + ...

137 P_inv*( b(:,i) + (b(:,i+1)-b(:,i))*delta_t /2 );

138 k3 = P_invA *( x(:,i) + delta_t /2*k2 ) + ...

139 P_inv*( b(:,i) + (b(:,i+1)-b(:,i))*delta_t /2 );

140 k4 = P_invA *( x(:,i) + delta_t*k3 ) + ...

141 P_inv*( b(:,i) + (b(:,i+1)-b(:,i))*delta_t );
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142 x_dot(:,i) = k1;

143 x(:,i+1) = x(:,i) + (delta_t /6)*(k1+2*k2+2*k3+k4);

144 end

145 x_dot(:,ode_steps) = P_invA*x(:,ode_steps) + P_inv*b(:,ode_steps);

146

147 elseif(time_stepper ==2) %Euler explicit

148 %Compute max eigs of P_invA - determines stable timesteps

149 fprintf(1,’Stable Euler step = %2.5f \n’ ,2/abs(max(eig(P_invA))));

150 for i=1: ode_steps -1

151 x_dot(:,i) = P_invA*x(:,i) + P_inv*b(:,i);

152 x(:,i+1) = x(:,i) + delta_t*x_dot(:,i);

153 end

154 x_dot(:,ode_steps) = P_invA*x(:,ode_steps) + P_inv*b(:,ode_steps);

155

156 end

157 %Stiffness ratio

158 fprintf(1,’Stiffness ratio = %1.2f\n’, ...

159 max(abs(eig(P_invA)))/min(abs(eig(P_invA))));

160

161 %% SAMPLE THE DATA AT INTERVALS

162 %Sample ODE solution at regular intervals to simulate measured data

163 t_s=zeros(n_sample ,1); Ptp=zeros(n_sample ,1);

164 V=zeros (2* n_compartments ,n_sample);

165 Vdot=zeros (2* n_compartments ,n_sample);

166 for i=1: n_sample

167 t_s(i)=total_time*i/n_sample; %Real time

168 Ptp(i)=Ptp_s(ceil(ode_steps*i/n_sample)); %Sample pressure

169 V(1:2* n_compartments ,i) = ...

170 x(1:2* n_compartments ,ceil(ode_steps*i/n_sample)); %Volume

171 Vdot (1:2* n_compartments ,i) = ...

172 x_dot (1:2* n_compartments ,ceil(ode_steps*i/n_sample));%Flow

173 end

174

175 %Copy clean signals

176 V_nn=V; Vdot_nn=Vdot; Ptp_nn=Ptp;

177 %Add Gaussian noise

178 V = add_noise(SNR ,V); V=V.meas;

179 Vdot = add_noise(SNR ,Vdot); Vdot=Vdot.meas;

180 Ptp = add_noise(SNR ,Ptp); Ptp=Ptp.meas;



APPENDIX D. MECHANICAL ODE MODELLING CODE 281

181 %Copy volume and charge data

182 Vcopy=V; Vdotcopy=Vdot; Ptpcopy=Ptp;

183

184 %Generate flow from volume using inverse integration

185 %TRAPEZIUM RULE

186 Areg=zeros(n_sample ,n_sample +1);

187 Ireg=eye(n_sample +1);

188 Areg (:,1) =0.5;

189 Areg(n_sample ,n_sample +1) =0.5;

190 for i=1: n_sample -1

191 Areg(i,i+1) =0.5;

192 Areg(i+1: n_sample ,i+1) =1.0;

193 end

194 Areg=Areg*(t_r/(n_sample -1));%dx

195

196 %Create the smoothing operator

197 L_2=zeros(n_sample -1,n_sample +1);

198 for kkk=1: n_sample -1

199 L_2(kkk ,kkk)=-1;L_2(kkk ,kkk+1)= 2; L_2(kkk ,kkk+2)=-1;

200 end

201 L_2=L_2/(t_r/(n_sample -1))^2;

202

203 %Numerical integrate

204 if(type ==1)

205 %Pressure

206 Ptp_int=zeros(n_sample ,1); Ptp_int (1) =0;

207 Ptp_nn_int=zeros(n_sample ,1); Ptp_nn_int (1)=0;

208 %Volume

209 V_int=zeros (1:2* n_compartments ,n_sample);

210 V_int (1:2* n_compartments ,1)=0;

211 V_nn_int=zeros (1:2* n_compartments ,n_sample);

212 V_nn_int (1:2* n_compartments ,1) =0;

213

214 %Time step for numerical integraiton

215 dt=total_time/n_sample;

216 %First step

217 Ptp_nn_int (2) = 0.5*dt*( Ptp(1)+Ptp(2) );

218 Ptp_int (2) = 0.5*dt*( Ptp (1)+Ptp (2) );

219 V_int (1:2* n_compartments ,2) = ...
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220 0.5*dt*( V(1:2* n_compartments ,1)+V(1:2* n_compartments ,2) );

221 V_nn_int (1:2* n_compartments ,2) = ...

222 0.5*dt*( V_nn (1:2* n_compartments ,1)+ ...

223 V_nn (1:2* n_compartments ,2) );

224

225 %Integrate the derivatives

226 for i=1: n_sample -2

227 %Pressure integral

228 Ptp_int(i+2) = Ptp_int(i+1) + ...

229 0.5*dt*( Ptp(i+1) + Ptp(i+2) );

230 Ptp_nn_int(i+2) = Ptp_int(i+1) + ...

231 0.5*dt*( Ptp_nn(i+1) + Ptp_nn(i+2) );

232 %Volume integral

233 V_int (1:2* n_compartments ,i+2) = ...

234 V_int (1:2* n_compartments ,i+1) ...

235 + 0.5*dt*( V(1:2* n_compartments ,i+1) ...

236 + V(1:2* n_compartments ,i+2) );

237 V_nn_int (1:2* n_compartments ,i+2) = ...

238 V_nn_int (1:2* n_compartments ,i+1) ...

239 + 0.5*dt*( V_nn (1:2* n_compartments ,i+1) ...

240 + V_nn (1:2* n_compartments ,i+2) );

241 end

242 elseif(type ==3) %Generalised Tikhonov

243 %Include the constant term

244 Areg=[Areg ,ones(n_sample ,1)];

245 L_2=[L_2 ,zeros(n_sample -1,1)];

246

247 %Regularised inverse of Vdot -> V

248 Reginv_d = (Areg ’*Areg+alpha_reg_d *(L_2 ’*L_2))\Areg ’;

249 for jj =1:2* n_compartments

250 ccc=Reginv_d*Vcopy(jj ,:) ’;

251 Vdotcopy(jj ,:)=ccc(2:end -1) ’; %Ignore first/last flow

252 Vcopyrec(jj ,:)=Areg*ccc;

253 end

254 end

255

256 if(type ==1)

257 %Do nothing

258 else
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259 %Add the charges and currents to show the mouth volume and flow

260 Volu_mouth_nn = sum(V_nn ,1);

261 Volu_mouth = sum(Vcopy ,1);

262 Volu_mouth_rec = sum(Vcopyrec ,1);

263 Flow_mouth_nn = sum(Vdot_nn ,1);

264 Flow_mouth = sum(Vdot ,1);

265 Flow_mouth_rec = sum(Vdotcopy ,1);

266

267 %Sample the volume and flow for each compartment

268 for i=1: n_sample

269 for j=1: n_compartments

270 vol(1,j,i)=V_nn(j,i);

271 vol_n(1,j,i)=V(j,i);

272 vol_n_rec(1,j,i)=Vcopyrec(j,i);

273 vol(2,j,i)=V_nn(j+n_compartments ,i);

274 vol_n(2,j,i)=V(j+n_compartments ,i);

275 vol_n_rec(2,j,i)=Vcopyrec(j+n_compartments ,i);

276 flow(1,j,i)= Vdot_nn(j,i);

277 flow_n(1,j,i)=Vdot(j,i);

278 flow_n_rec (1,j,i)=Vdotcopy(j,i);

279 flow(2,j,i)= Vdot_nn(j+n_compartments ,i);

280 flow_n(2,j,i)=Vdot(j+n_compartments ,i);

281 flow_n_rec (2,j,i)=Vdotcopy(j+n_compartments ,i);

282 end

283 end

284 %Copy across

285 V=Vcopyrec; Vdot=Vdotcopy;

286 end

287

288 %INTEGRATION EQUATIONS

289 if(type ==1)

290 % Least squares estimate of the parameters

291 % A - SPARSE: n_sample*n_compartment x (2* n_compartment)*(2+1) + 1 +

292 %(Q1i ,Q1 , 1, 0 , 0 , 0 , 0 ,0,0 ... sum(QL/Rdi) t )

293 %(0 , 0 , , 0 , Q2i , Q2 , 1 ,0,0 ... sum(QL/Rdi) t )

294 %

295 % X - parameters to estimate (2* n_compartment)*(2+1) + 1 + 1 vector

296 % order CL1 RL1 AL1 CL2 ..... CR1 RR2 RL2 .... RS P0

297 % where A B are integration constants , P0 is pleural pressure
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298 % D - data n_sample*n_compartment vector P P P P ... P

299 % Write ODE in matrix form P = AX. Least squares estimate of A

300 % Xhat = arg min ||D - X*A||_{2}^{2}

301

302 %Remove first few integration samples

303 n_sample_int =1: n_sample;

304 n_sample=length(n_sample_int);

305

306 % Explicit formula: Xhat = ( (A’*A)\A’ )*D

307 Am = zeros(n_sample*n_compartments ,(2* n_compartments)*(2+1) +1+1);

308 Am_nn=Am;

309 Dm = zeros(n_sample*n_compartments ,1); Dm_nn=Dm;

310 Xm = zeros ((2* n_compartments)*(2+1) +1+1 ,1);

311

312 %Indpendent data as matrix of column vectors

313 for i=1:2* n_compartments

314 Am((i-1)*n_sample +1:i*n_sample ,(i-1) *(2+1) +1) = ...

315 V_int(i,n_sample_int) ’;

316 Am((i-1)*n_sample +1:i*n_sample ,(i-1) *(2+1) +2) = ...

317 V(i,n_sample_int) ’;

318 Am((i-1)*n_sample +1:i*n_sample ,(i-1) *(2+1) +3) = ...

319 ones(size(n_sample_int));

320 Dm((i-1)*n_sample +1:i*n_sample ,1)=Ptp_int(n_sample_int);

321

322 Am_nn ((i-1)*n_sample +1:i*n_sample ,(i-1) *(2+1) +1) = ...

323 V_nn_int(i,n_sample_int) ’;

324 Am_nn ((i-1)*n_sample +1:i*n_sample ,(i-1) *(2+1) +2) = ...

325 V_nn(i,n_sample_int)’;

326 Am_nn ((i-1)*n_sample +1:i*n_sample ,(i-1) *(2+1) +3) = ...

327 ones(size(n_sample_int));

328 Dm_nn ((i-1)*n_sample +1:i*n_sample ,1) = ...

329 Ptp_nn_int(n_sample_int);

330 end

331

332 %Add the extra condition for the series resistors

333 V_intS=zeros(size(V(1, n_sample_int)’));

334 V_nn_intS=zeros(size(V(1, n_sample_int) ’));

335 for i=1:2* n_compartments

336 V_intS = V_intS + V(i,n_sample_int)’;
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337

338 V_nn_intS = V_nn_intS + V_nn(i,n_sample_int) ’;

339 end

340

341 %Add the extra for the series resistances

342 for i=1:2* n_compartments

343 Am((i-1)*n_sample +1:i*n_sample ,2* n_compartments *(2+1) +1) = ...

344 V_intS;

345

346 Am_nn((i-1)*n_sample +1:i*n_sample ,2* n_compartments *(2+1) +1) = ...

347 V_nn_intS;

348 end

349 for i=1:2* n_compartments

350 %Add the ones for the pleural pressure

351 Am((i-1)*n_sample +1:i*n_sample ,2* n_compartments *(2+1) +1+1) = ...

352 t_s(n_sample_int);%

353 Am_nn ((i-1)*n_sample +1:i*n_sample ,2* n_compartments *(2+1) +1+1) =...

354 t_s(n_sample_int);%

355 end

356

357 %Least squares inverse

358 Xm_int = (Am ’*Am)\Am ’*Dm;

359 Int_Recon_Xm{run_type }.Xm=Xm_int;

360 Xm_nn_int = (Am_nn ’*Am_nn)\Am_nn ’*Dm_nn;

361

362 %Print out the absolute difference in sensitivity

363 fprintf(1,’ Actual No Noise Noise %3.0f SNR\n’,SNR);

364 cnt=0;

365 for j=1:2* n_compartments *(2+1) +1+1

366 cnt=cnt+1;

367 if(mod(j,3) ==0)

368 cnt=cnt -1;

369 fprintf(1,’ %2.2f %2.2f %2.2f\n’, ...

370 0, Xm_nn_int(j), Xm_int(j));

371 else

372 fprintf(1,’ %2.2f %2.2f %2.2f\n’, ...

373 Xm_act(cnt), Xm_nn_int(j), Xm_int(j));

374 end

375 end
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376

377 else

378

379 %INVERSE INTERGATION

380 % Least squares estimate of the parameters

381 % A - SPARSE n_sample*n_compartment x (2* n_compartment)*3 + 1 + 1

382 %(Q1 ,Q1d ,Q1dd ,0 , 0 ,0 , 0 ... sum(QL/Rdi) 1)

383 %(0 , 0 , 0 ,Q2 ,Q2d ,Q2dd , 0 ... sum(QL/Rdi) 1)

384 % X - parameters to estimate (2* n_compartment)*3 + 1 +1 vector

385 % order EL1 RL1 LL1 EL2 ..... LLN ER1 RR2 RL2 .... RS P0

386 % D - data n_sample*n_compartment vector P P P P ... P

387 % Write the ODE in matrix form P = AX. Least squares estimate of A

388 % Xhat = arg min ||D - X*A||_{2}^{2}

389 % Explicit formula: Xhat = ( (A’*A)\A’ )*D

390

391 %Sampling lengths

392 n_sample_int =1: n_sample;

393 n_sample=length(n_sample_int);

394 Am = zeros(n_sample*n_compartments ,(2* n_compartments)*2+1+1);

395 Am_nn=Am;

396 Dm = zeros(n_sample*n_compartments ,1); Dm_nn=Dm;

397

398 %Indpendent data as matrix of column vectors

399 for i=1:2* n_compartments

400 Am((i-1)*n_sample +1:i*n_sample ,(i-1) *2+1) = ...

401 V(i,n_sample_int) ’;

402 Am((i-1)*n_sample +1:i*n_sample ,(i-1) *2+2) = ...

403 Vdot(i,n_sample_int)’;

404 Dm((i-1)*n_sample +1:i*n_sample ,1) = ...

405 Ptp(n_sample_int);

406

407 Am_nn ((i-1)*n_sample +1:i*n_sample ,(i-1) *2+1) = ...

408 V_nn(i,n_sample_int)’;

409 Am_nn ((i-1)*n_sample +1:i*n_sample ,(i-1) *2+2) = ...

410 Vdot_nn(i,n_sample_int)’;

411 Dm_nn ((i-1)*n_sample +1:i*n_sample ,1) = ...

412 Ptp_nn(n_sample_int);

413 end

414
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415 %Add extra condition for series resistors

416 VdotS=zeros(size(Vdot(1, n_sample_int) ’));

417 VdotS_nn=VdotS;

418 for i=1:2* n_compartments

419 VdotS = VdotS + Vdot(i,n_sample_int) ’;

420 VdotS_nn = VdotS_nn + Vdot_nn(i,n_sample_int) ’;

421 end

422

423 %Add the extra for the series resistances

424 for i=1:2* n_compartments

425 Am((i-1)*n_sample +1:i*n_sample ,2* n_compartments *2+1) = ...

426 VdotS;

427 Am_nn((i-1)*n_sample +1:i*n_sample ,2* n_compartments *2+1) = ...

428 VdotS_nn;

429 end

430

431 %Add the ones for the pleural pressure

432 Am(1:end ,2* n_compartments *2+1+1) =1;

433 Am_nn (1:end ,2* n_compartments *2+1+1) =1;

434

435 %Least square inverse

436 Tik_Recon_Xm{run_type }.Xm = (Am ’*Am)\Am ’*Dm;

437 Xm_nn = (Am_nn ’*Am_nn)\Am_nn ’*Dm_nn;

438

439 end

440 end

441

442 %Print out the absolute difference in sensitivity

443 fprintf(1,’ Actual No Noise and Noisy decreasing SNR’);

444 for j=1:2* n_compartments *2+1+1

445 fprintf(1,’ %2.2f %2.2f %2.2f %2.2f %2.2f %2.2f\n’,

...

446 Xm_act(j), Xm_nn(j), Tik_Recon_Xm {1}.Xm(j), ...

447 Tik_Recon_Xm {2}.Xm(j), Tik_Recon_Xm {3}.Xm(j), ...

448 Tik_Recon_Xm {4}.Xm(j));

449 end


