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1 Introduction

The computation of f(A)b arises in a wide variety of applications in science
and engineering. Here A ∈ Cn×n, b ∈ Cn and f(A) is a matrix function. A
particularly important example is the action of the matrix exponential eAb,
which is central to the solution of differential equations using exponential inte-
grators [23]. Further examples include the application of sign(A)b in problems
in control theory and lattice quantum chromodynamics [14], and the solution
of fractional differential equations using Aαb, α ∈ R [6].

In applications, typically A ∈ Cn×n is large and sparse, but f(A) and
b may be dense. This imposes constraints on how f(A)b can be computed.
Storing O(n2) data is not feasible and operating on A using dense matrix
techniques requiring O(n3) flops (such as Schur decomposition) is impractical.
In particular, it is undesirable to explicitly compute f(A). In practice, this
means that a successful algorithm for computing f(A)b should only require
products of the form Av or A∗v where v is a vector.

Much of the early work on the numerical computation of f(A)b was based
on Krylov subspace projection methods [34], [27], [30], [15]. The Expokit
software package [32] for computing eAb is based on these methods. More
recently, algorithms have been developed using rational Krylov methods (see
[16] and the references therein).

An alternative approach, suggested in [9] and extended with the use of
conformal mappings in [17], is to apply quadrature to a contour integral rep-
resentation of f(A)b.

The final class of methods we mention here are polynomial expansions of
the form f(A) ≈ pk(A)b where pk(A) is a polynomial obtained by truncating
an expansion for f in terms of a complete system of polynomials. For example,
Sheehan, Saad and Sidje [31] use Chebyshev and Laguerre polynomial expan-
sions. The most widely used example of this type of method is that of Al-Mohy
and Higham [2], which uses scaling and a truncated Taylor series to compute
eAb. An error analysis in exact arithmetic is used to obtain optimal scaling
and truncation parameters. Fischer [13] has recently performed a rounding
error analysis for eAb algorithms based on the scaling method. Although a full
backward error analysis is not obtained, some classes of (A, b) for which the
algorithms are backward stable are identified.

Implementations of f(A)b algorithms are available in many programming
languages. A comprehensive list is given in [20].

The three classes of methods described above each have their own weak-
nesses. For example rational Krylov methods require large, sparse linear sys-
tems to be solved at each iteration. Quadrature and Chebyshev expansion
methods are inefficient without some knowledge of the eigensystem of A. The
Taylor series method for eAb can become very expensive when ‖A‖ is large.

Condition number estimation for f(A) is now a well-developed field. Ken-
ney and Laub [25], [26] developed some general algorithms for condition esti-
mation. More recently, specific algorithms have been developed for estimating
condition numbers for the matrix exponential [1], the matrix logarithm [4]
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and matrix powers [21], all in the 1-norm. The approach taken by these al-
gorithms is to estimate the norm of the Fréchet derivative of f(A), which is
equal to the absolute condition number of f(A) [29]. Despite this, the condi-
tion number of f(A)b, in which perturbations in b must also be considered,
has received little attention in the literature. Some bounds are available. For
example Al-Mohy and Higham [2] show that the relative condition number
of f(A)b, cond(f,A, b), is bounded above in the Frobenius norm by a term
involving the relative condition number of f(A), cond(f,A):

cond(f,A, b) ≤ ‖f(A)‖F ‖b‖F
‖f(A)b‖F

(1 + cond(f,A)).

However, the available algorithms for estimating cond(f,A) require the com-
putation of f(A) and its Fréchet derivatives. This approach is not feasible for
the large, sparse A typically of interest in f(A)b problems. We know of no
algorithms designed for estimating the condition number of f(A)b.

The contribution in this work is the development of a general algorithm for
estimating the condition number of f(A)b. The algorithm works in conjunc-
tion with any method for computing f(A)b that relies only on matrix-vector
products or the solution of linear systems. Hence the algorithm itself requires
only matrix-vector products and linear system solves, and is suitable for large,
sparse A. We have developed a specific version of our algorithm for the action
of the matrix exponential, based on Al-Mohy and Higham’s eAb algorithm [2].

In many applications, it is the quantity f(tA)b that is of interest, rather
than f(A)b, where t is a scalar. For example, in applications of exponential
integrators, t typically denotes a time step. In section 2 we define a condition
number that takes into account the effect of perturbations in A, b and t. We
obtain some useful bounds on which to base our estimates, and show that
the effect of perturbing t increases the condition number by at most a factor
2. Thus for the purposes of condition estimation, perturbations in t can be
neglected. In section 3 we develop algorithms for estimating the condition
number, based on computing the bounds in section 2 via the norm of the
Fréchet derivative of f(A). We consider the specific case etAb in section 4.
Numerical experiments are given in section 5, using a combination of dense
matrices of size n ≤ 100 and a selection of large, sparse test matrices taken
from the f(A)b literature.

2 Defining the Condition Number

The standard notation in the matrix function literature uses condrel(f,A) and
condabs(f,A) to denote the relative and absolute condition numbers of f(A).
In this paper we will only consider relative condition numbers, so we drop the
subscript rel and use cond(f,A, b, t) to denote the relative condition number
of f(tA)b:
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cond(f,A, b, t) := lim
ε→0

sup
‖∆A‖≤ε‖A‖
‖∆b‖≤ε‖b‖
|∆t|≤ε|t|

‖f((t+∆t)(A+∆A))(b+∆b)− f(tA)b‖
ε‖f(tA)b‖

(2.1)

= lim
ε→0

sup
‖∆A‖≤ε‖A‖
‖∆b‖≤ε‖b‖
|∆t|≤ε|t|

1

ε‖f(tA)b‖

(
‖Lf (tA, t∆A)b+ f(tA)∆b

+ Lf (tA,∆tA)b+ o(‖∆A‖)

+ o(‖∆b‖) + o(|∆t|)‖
)
,

(2.2)

where Lf (A,∆A) is the Fréchet derivative of f in the direction of the matrix
∆A and ‖ ·‖ denotes any choice of vector norm and the corresponding induced
matrix norm.

Note that if f(A) = A−1 and t is ignored, then (2.1) is precisely equivalent
to the standard normwise condition number for the linear system Ax = b,
which, in the notation of [18], is given by

κA,b(A, x) := lim
ε→0

sup

{
‖∆x‖
ε‖x‖

: (A+∆A)(x+∆x) = b+∆b,

‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖
}
.

It can be shown (see, for example, [18, Sec. 7.1]) that

κA,b(A, x) =
‖A−1‖‖b‖
‖x‖

+ ‖A−1‖‖A‖.

Thus the condition number of A−1b can easily be computed. For general f
however, it is not possible to express cond(f,A, b, t) in such a simple form, so
a different approach is needed.

An upper bound for cond(f,A, b, t) can be obtained by separating out the
terms in the numerator of (2.2), ignoring the o(‖∆A‖), o(‖∆b‖) and o(|∆t|)
terms and using the linearity of the Fréchet derivative in its second argument.
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This gives

cond(f,A, b, t) ≤ lim
ε→0

sup
‖∆A‖≤ε‖A‖

‖Lf (tA, t∆A)b‖
ε‖f(tA)b‖

+ lim
ε→0

sup
‖∆b‖≤ε‖b‖

‖f(tA)∆b‖
ε‖f(tA)b‖

+ lim
ε→0

sup
|∆t|≤ε|t|

‖∆tLf (tA,A)b‖
ε‖f(tA)b‖

= lim
ε→0

sup
‖∆A‖≤ε

‖Lf (tA,∆A/ε)b‖‖tA‖
‖f(tA)b‖

+ lim
ε→0

sup
‖∆b‖≤ε

‖f(tA)∆b/ε‖‖b‖
‖f(tA)b‖

+
‖tLf (tA,A)b‖
‖f(tA)b‖

= sup
‖∆A‖≤1

‖Lf (tA,∆A)b‖‖tA‖
‖f(tA)b‖

+ sup
‖∆b‖≤1

‖f(tA)∆b‖‖b‖
‖f(tA)b‖

+
‖Lf (tA, tA)b‖
‖f(tA)b‖

(2.3)

= sup
‖∆A‖=1

‖Lf (tA,∆A)b‖‖tA‖
‖f(tA)b‖

+
‖f(tA)‖‖b‖
‖f(tA)b‖

+
‖Lf (tA, tA)b‖
‖f(tA)b‖

.

To obtain a lower bound, we take two of the quantities ∆A, ∆b, ∆t to be zero.
Thus

1

‖f(tA)b‖
max

(
‖tA‖ max

‖∆A‖=1
‖Lf (tA,∆A)b‖, ‖f(tA)‖‖b‖, ‖Lf (tA, tA)b‖

)
≤ cond(f,A, b, t)

≤ 1

‖f(tA)b‖

(
‖tA‖ max

‖∆A‖=1
‖Lf (tA,∆A)b‖+ ‖f(tA)‖‖b‖+ ‖Lf (tA, tA)b‖

)
.

(2.4)

The upper and lower bounds differ by a factor of at most 3 so estimating
either will provide a suitable estimate for cond(f,A, b, t). If t = 1 is fixed, the
problem reduces to finding the condition number of f(A)b, which we denote
by cond(f,A, b). In this case (2.4) reduces to

1

‖f(A)b‖
max

(
‖A‖ max

‖∆A‖=1
‖Lf (A,∆A)b‖, ‖f(A)‖‖b‖

)
≤ cond(f,A, b)

≤ 1

‖f(A)b‖

(
‖A‖ max

‖∆A‖=1
‖Lf (A,∆A)b‖+ ‖f(A)‖‖b‖

)
,

with the upper and lower bounds now differing by a factor of at most 2.
Essentially the same result was originally obtained by Al-Mohy and Higham
[2, Lemma 4.2].

By choosing ∆A = A/‖A‖, we find that

‖tA‖ max
‖∆A‖=1

‖Lf (tA,∆A)b‖ ≥ ‖Lf (tA, tA)b‖,
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so, as one might expect, the terms in (2.4) caused by the perturbation of t are
smaller than those caused by perturbing A. It follows that

cond(f, tA, b) ≤ cond(f,A, b, t) ≤ 2 cond(f, tA, b), (2.5)

and that

1

‖f(tA)b‖
max

(
‖tA‖ max

‖∆A‖=1
‖Lf (tA,∆A)b‖, ‖f(tA)‖‖b‖

)
≤ cond(f, tA, b) ≤ cond(f,A, b, t)

≤ 1

‖f(tA)b‖

(
2‖tA‖ max

‖∆A‖=1
‖Lf (tA,∆A)b‖+ ‖f(tA)‖‖b‖

)
. (2.6)

In practice, only order of magnitude estimates of condition numbers are ever
needed. The upper bound in (2.6) is an overestimate by at most a factor of 6
and it is this quantity that we will use as our condition estimate. Furthermore,
(2.5) suggests that for simplicity we can ignore t and consider just f(A)b and
cond(f,A, b). A suitable estimate for cond(f,A, b, t) can be found by simply
replacing A with tA.

3 Estimating the Condition Number of f(A)b

Computing an estimate of the upper bound in (2.6) depends on our ability
to estimate max‖∆A‖=1 ‖Lf (A,∆A)b‖, ‖A‖ and ‖f(A)‖ using only products
of the form Av and A∗v. The main aim of this section is to develop methods
for estimating max‖∆A‖=1 ‖Lf (A,∆A)b‖, but it will be instructive to briefly
discuss ‖A‖ and ‖f(A)‖ first.

The quantity ‖A‖1 can be estimated using the 1-norm estimation algorithm
of Higham and Tisseur [22], hereafter referred to as normest1. The algorithm
returns an estimate using fewer than 10 products of the form Av and A∗v.
Turning to the 2-norm, the power method (see for example [19, Alg. 3.19])
also uses only matrix-vector products. Convergence depends on the singular
values of A, but in practice very few iterations are required to obtain an order
of magnitude estimate of ‖A‖2.

The power method and normest1 can both also be used to estimate ‖f(A)‖.
Products of the form f(A)v or f(A)∗v are now required. These products can
be computed provided that an algorithm for f(A)b is available.

One way of estimating max‖∆A‖=1 ‖Lf (A,∆A)b‖ is to simply try several
random choices of ∆A. Kenney and Laub [26] made this approach rigorous for
real matrices and showed how, in practice, few tries are required in order to
achieve a high probability of being within an order of magnitude of the true
maximum. However, in the context of the f(A)b problem for large, sparse A,
it is undesirable to store dense O(n2) quantities such as a randomly chosen
∆A. This approach may be of interest when only perturbations in the nonzero
elements of A are of relevance to the condition number, but we will not study
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this further here. Instead we will investigate another class of methods for esti-
mating max‖∆A‖=1 ‖Lf (A,∆A)b‖, based on the Kronecker form of the Fréchet
derivative.

By linearity in ∆A, the vector Lf (A,∆A)b can be written in the Kronecker

form Lf (A,∆A)b = Kf (A, b) vec(∆A), where Kf (A, b) ∈ Cn×n2

and the vec
operator stacks the columns of a matrix on top of each other. The Hermitian
conjugate of the Kronecker form, Kf (A, b)∗, can be related to the adjoint of
the Fréchet derivative as follows. For P,Q ∈ Cp×q let 〈P,Q〉 = trace(Q∗P ).
Then for y ∈ Cn and E ∈ Cn×n we have

〈Kf (A, b) vec(E), y〉 = 〈Lf (A,E)b, y〉.

The adjoint of the Fréchet derivative, L?f : Cn×n → Cn×n, is then defined via

〈Lf (A,E), F 〉 = 〈E,L?f (A,F )〉.

The Hermitian conjugate Kf (A, b)∗ can now be expressed in terms of L?f .

〈vec(E),Kf (A, b)∗y〉 = 〈Kf (A, b) vec(E), y〉
= 〈Lf (A,E)b, y〉
= 〈Lf (A,E), yb∗〉
= 〈E,L?f (A, yb∗)〉.

Hence

Kf (A, b)∗y = L?f (A, yb∗). (3.7)

Various candidate algorithms to compute or estimate the quantity
max‖∆A‖=1 ‖Lf (A,∆A)b‖ via the Kronecker form are now available, depend-
ing on our choice of norm. We consider first the Frobenius norm, and note
that

max
‖∆A‖F =1

‖Lf (A,∆A)b‖F = max
‖ vec(∆A)‖2=1

‖Kf (A, b) vec(∆A)‖2 = ‖Kf (A, b)‖2.

By explicitly forming Kf (A, b) and computing its 2-norm, we can obtain
max‖∆A‖F =1 ‖Lf (A,∆A)b‖F . The Frobenius norm is not induced by any vec-
tor norm so it is not an ideal choice for computing the upper bound in (2.6).
However, since

1√
n

max
‖∆A‖1=1

‖Lf (A,∆A)b‖1 ≤ max
‖∆A‖F =1

‖Lf (A,∆A)b‖F

≤
√
n max
‖∆A‖1=1

‖Lf (A,∆A)b‖1, (3.8)

we can use
√
n‖Kf (A, b)‖2 as an upper bound for max‖∆A‖1=1 ‖Lf (A,∆A)b‖1.

Assuming that we are able to compute quantities of the form Lf (A,E)b, the
following algorithm, analogous to [19, Alg. 3.17], estimates cond(f,A, b).
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Algorithm 3.1 For a function f , a matrix A ∈ Cn×n and a vector b ∈ Cn,
this algorithm computes an upper bound κ for cond(f,A, b) in the 1-norm,
with κ ≤ 6

√
n cond(f,A, b).

1 for j = 1:n
2 for i = 1:n
3 Compute y = Lf (A, eie

T
j )b

4 Kf (: , (j − 1)n+ i) = y
5 end
6 end
7 return κ = (2

√
n‖Kf (A, b)‖2‖A‖1 + ‖f(A)‖1‖b‖1)/‖f(A)b‖1

Cost:O(n5) flops assuming evaluation of matrix functions and their deriva-
tives cost O(n3) flops.

Due to its cost, and the need to store the n× n2 quantity Kf , Algorithm
3.1 will be of practical use only for small problems, but it will enable us to
test the more efficient algorithms we develop later.

An alternative approach to estimating cond(f,A, b) is to adapt the stan-
dard 1-norm condition estimation method for matrix functions [19, Alg. 3.22],
which is based on estimating the 1-norm of the Kronecker form of the Fréchet
derivative using normest1. Using [11, Lemma 2.1] we deduce that

1

n
max

‖∆A‖1=1
‖Lf (A,∆A)b‖1 ≤ ‖Kf (A, b)‖1 ≤ max

‖∆A‖1=1
‖Lf (A,∆A)b‖1.

The quantity ‖Kf (A, b)‖1 can then be estimated using [11, Alg. 2.2], which
applies normest1 to the rectangular matrix Kf (A, b). This requires computa-

tion of quantities of the form Kf (A, b)v or Kf (A, b)∗w, where v ∈ Cn2

and
w ∈ Cn. Although these can be computed without explicitly forming Kf (A, b),
the approach still depends on the storage and use of dense vectors of size n2.
This will not be practical if A is large and sparse.

Consider instead [19, Alg. 3.20]. The algorithm is an application of the

power method to Kf (A)∗Kf (A), where Kf (A) ∈ Cn2×n2

is the Kronecker
form of the Fréchet derivative of f(A). The result is an estimate of ‖Kf (A)‖2 =
‖Lf (A)‖F . The power method can instead be applied to Kf (A, b)∗Kf (A, b) to
provide an estimate for ‖Kf (A, b)‖2. This results in the following algorithm.

Algorithm 3.2 For the function f , A ∈ Cn×n and b ∈ Cn this algorithm
computes an estimate γ ≤ ‖Kf (A, b)‖2.

1 Choose a nonzero starting matrix Z0 ∈ Cn×n with ‖Z0‖F = 1
2 for k = 0:∞
3 wk+1 = Lf (A,Zk)b
4 Zk+1 = L?f (A,wk+1b

∗)

5 γk+1 = ‖Zk+1‖F /‖wk+1‖F
6 if converged, γ = γk+1, quit, end
7 Zk+1 = Zk+1/‖Zk+1‖F
8 end
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A typical convergence test for γ is |γk+1 − γk| ≤ tolγk+1 or k > it max,
where tol = 0.1 is sufficient for an order of magnitude estimate. In practice
very few power iterations are required and it is reasonable to take it max = 10.

Algorithm 3.2 suffers from the same issues that were encountered when
applying [11, Alg. 2.2] to Kf (A, b): Zk has size n× n and will in general be
dense. However, a few alterations to Algorithm 3.2 will enable us to estimate
‖Kf (A, b)‖2 whilst only storing vectors of size n.

First we swap the order of Lf and L?f so that we are estimating the 2-

norm of the n× n matrix Kf (A, b)Kf (A, b)∗ instead of the n2 × n2 matrix
Kf (A, b)∗Kf (A, b). In particular we can now use a random vector as our start-
ing point rather than a random n× n matrix.

Second, in Algorithm 3.2 there are two iterated quantities, wk ∈ Cn and
Zk ∈ Cn×n. We can merge lines 3 and 4 into single iterated quantity, yk ∈ Cn.
Then yk+1 = Lf (A,L?f (A, ykb

∗))b.
Using yk as our iterated quantity prevents us from using the ratio γk+1 =

‖Zk+1‖F /‖wk+1‖F in line 5. Instead we must use
√
‖yk+1‖F /‖yk‖F . This is a

weaker lower bound to ‖Kf (A, b)Kf (A, b)‖2 than ‖Zk+1‖F /‖wk+1‖F but this
is a necessary evil, and numerical tests will show that the number of iterations
required for convergence is still very low.

Applying these changes to Algorithm 3.2, we obtain the following algo-
rithm.

Algorithm 3.3 For the function f , A ∈ Cn×n and b ∈ Cn this algorithm
computes an estimate γ ≤ ‖Kf (A, b)‖2.

1 Choose a unit nonzero starting vector y0 ∈ Cn
2 for k = 0:∞
3 yk+1 = Lf (A,L?f (A, ykb

∗))b

4 γk+1 =
√
‖yk+1‖2

5 if |γk+1 − γk| < 0.1γk+1 or k > it max, γ = γk+1, quit, end
6 yk+1 = yk+1/‖yk+1‖2
7 end

The ease with which we can compute Lf (A,L?f (A, ykb
∗))b will determine

how useful Algorithm 3.3 is. To compute Lf (A,L?f (A, ykb
∗))b for general f ,

we first note that the Fréchet derivative of a matrix function can be evaluated
by computing the function of a larger matrix:

f

([
A E
0 A

])
=

[
f(A) Lf (A,E)

0 f(A)

]
.

Under suitable conditions on f [21, Lemma 6.2], which are satisfied for ‘stan-
dard’ functions such as the exponential, the adjoint of the Fréchet derivative
is given by

L?f (A,E) = Lf̄ (A,E∗)∗,

where f̄(z) = f(z̄). This implies

f̄

([
A∗ E
0 A∗

])
=

[
f̄(A∗) L?f (A∗, E)

0 f̄(A∗)

]
.
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We can exploit the above relations to develop a very general method of com-
puting Lf (A,L?f (A, ykb

∗))b that depends only on the manner in which f(A)b

is computed. We note that Lf (A,L?f (A, ykb
∗))b is given by the top n elements

of

f

([
A L?f (A, ykb

∗)

0 A

])[
0
b

]
. (3.9)

Suppose we have an algorithm for computing f(A)b which requires Π matrix-
vector multiplications. Then computing (3.9) will require Π multiplications of
the form [

A L?f (A, ykb
∗)

0 A

] [
p
q

]
for some p, q ∈ Cn. Each such multiplication requires the computation of
L?f (A, ykb

∗)q in addition to the two multiplications Ap and Aq. We can eval-

uate L?f (A, ykb
∗)q by computing

f̄

([
A∗ ykb

∗

0 A∗

])[
0
q

]
,

and storing the top n entries. This itself requires Π multiplications of the form[
A∗ ykb

∗

0 A∗

] [
u
v

]
=

[
A∗u+ ykb

∗v
A∗v

]
.

Thus the total number of matrix-vector multiplications (of size n) required to
compute Lf (A,L?f (A, ykb

∗))b is 2Π(Π + 1). Since only an order of magnitude

condition estimate is required, Lf (A,L?f (A, ykb
∗))b need not be evaluated to

double precision accuracy, so Π need not be as large as when f(A)b itself is
computed in double precision.

Rational Krylov methods also require linear systems of the form Ar = s
or A∗r = s to be solved to evaluate f(A)b. This can easily be accounted for in
our approach. Evaluating (3.9) using a Krylov method may require solutions
of systems of the form [

A L?f (A, ykb
∗)

0 A

] [
x
y

]
=

[
p
q

]
.

The solution can be obtained by solving the smaller systems Ay = q and
Ax = p− L?f (A, ykb

∗)y. The quantity L?f (A, ykb
∗)y is computed by finding

f̄

([
A∗ ykb

∗

0 A∗

])[
0
y

]
,

with any linear systems of size 2n split into 2 systems of size n in a similar
manner.

We collate the ideas above into the following algorithm for computing
Lf (A,L?f (A, ykb

∗))b.
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Algorithm 3.4 Given a method for computing f(A)b that requires only matrix-
vector multiplications and the solution of linear systems, this algorithm com-
putes Lf (A,L?f (A, ykb

∗))b. The user-supplied subroutine y = fAb(x), where
x is a vector, must compute the quantity y = f(X)x for some matrix X by
requesting products of the form Xv or solutions to linear systems of the form
Xv = w.

1 [l1, l2]T = fAb([0, b]T ):
2 for each product required with a vector [p, q]T :
3 compute and Ap and Aq
4 [r1, r2]T = fAb([0, q̄]T ):
5 for each product required with a vector [u, v]T :

6 provide [Ā∗u+ ykb∗v, Ā
∗v]T

7 end
8 for each linear system with right-hand side [u, v]T :

9 solve Ā∗y = v, Ā∗x = u− ykb∗y, provide [x, y]T

10 end
11 provide [Ap+ r̄1, Aq]

T

12 end
13 for each linear system with right-hand side [p, q]T :
14 solve Ay = q
15 [r1, r2]T = fAb([0, ȳ]T ):
16 for each product required with a vector [u, v]T :

17 provide [Ā∗u+ ykb∗v, Ā
∗v]T :

18 end
19 for each linear system with right-hand side [u, v]T :

20 solve Ā∗t = v, Ā∗s = u− ykb∗t, provide [s, t]T

21 end
22 solve Ax = p− r̄1

23 provide [x, y]T

24 end
25 return l1

Cost: If f(A)b can be evaluated using Π matrix-vector products and Γ linear
system solves (of size n), then Lf (A,L?f (A, ykb

∗))b is evaluated using 2Π(Π+
Γ + 1) products and 2Γ (Γ +Π + 1) solves (also of size n).

If f has a Taylor series with real coefficients, so that f ≡ f̄ , then the
complex conjugation can be removed whenever it appears in Algorithm 3.4.

We are now in a position to state our overall algorithm for estimating
cond(f,A, b). Algorithms 3.3 and 3.4 are used to estimate the quantity
max‖∆A‖F =1 ‖Lf (A,∆A)b‖F . This is combined with (3.8) to give an estimate
of the upper bound in (2.6) in the 1-norm.

Algorithm 3.5 Given a method for computing f(A)b that requires only matrix-
vector multiplications or linear system solves, this algorithm computes an esti-
mate of a quantity κ ≥ cond(f,A, b) with κ ≤ 6

√
n cond(f,A, b) in the 1-norm.

The user-supplied subroutine y = fAb(x), where x is a vector, must compute
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the quantity y = f(X)x for some matrix X by requesting products of the form
Xv or solutions to linear systems of the form Xv = w.

1 Compute γ using Algorithm 3.3, with Algorithm 3.4 used to evaluate
Lf (A,L?f (A, ykb

∗))b

2 Estimate ‖A‖1 using normest1

3 Estimate ‖f(A)‖1 using normest1,with y = fAb(x) used to provide
f(A)v or f(A)∗v

4 κ = (2
√
nγ‖A‖1 + ‖f(A)‖1‖b‖1)/‖f(A)b‖1

Some f(A)b algorithms are actually designed to compute f(A)B, where
B ∈ Cn×m (for example [2]). Our analysis and algorithms readily generalize
to this case. In (2.3) the term

sup
‖∆B‖≤1

‖f(A)∆B‖

now arises as a result of perturbing B. In the 1-norm this term is simply
‖f(A)‖1. The iterated quantity in Algorithm 3.3 becomes

Yk+1 = Lf (A,L?f (A, YkB
∗))B ∈ Cn×m,

and vector 2-norms in Algorithm 3.3 are replaced with the Frobenius norm
for n ×m matrices. No other changes are required to the algorithms in this
section.

Algorithm 3.5 is designed to work for general f but it can be made more
efficient by adapting it to specific f(A)b algorithms. In section 4 we consider
the specific case of the action of the matrix exponential eAb.

4 Application to the Action of the Matrix Exponential

Al-Mohy and Higham’s algorithm [2] uses a scaling scheme based on the iden-
tity eA = (eA/s)s, s ∈ N to reduce the norm of A and improve the convergence
properties of a truncated Taylor series. Error analysis is available to obtain
an optimal choice of scaling parameter s and truncation parameter m for a
given precision. Approximately sm matrix-vector multiplications are required
to estimate eAb.

It is natural to ask whether a similar approach might be preferable to
Algorithm 3.4 for computing the quantity Lf (A,L?f (A, ykb

∗))b. Substituting

the truncated Taylor series for eA/s into (eA/s)s and differentiating, we obtain

Lexp(A,L?exp(A, yb∗))b =

m∑
i=1

i∑
j=1

m∑
k=1

k∑
l=1

s∑
p=1

s∑
q=1

{aiak
sk+i

(eA/s)q−1Aj−1(eA
∗/s)p−1(A∗)l−1

(yb∗)(A∗)k−l(eA
∗/s)s−pAi−j(eA/s)s−qb

}
,
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where ai = 1/i!. Computing Lf (A,L?f (A, ykb
∗))b in this manner requires

O(s3m7) matrix-vector multiplications. In comparison, using Algorithm 3.4
requires O(s2m2) multiplications. We therefore focus on adapting Algorithm
3.4.

Al-Mohy and Higham devised a method of choosing s and m to obtain
eAb with a given precision (in exact arithmetic) in the most efficient manner

possible. Quantities of the form ‖Ap‖1/p1 are computed using normest1 for p =
2, . . . , 8. These quantities are compared with a set of pre-computed parameters
θm, m = 2, . . . , 55 whose values depend on the desired precision. For each
m, θm is used to choose s such that the backward error bound (in exact
arithmetic) does not exceed the desired precision. The choice ofm which results
in the smallest value of sm is then used. Since only an order of magnitude
estimate for the condition number is required, the θm for half precision can be
used. Numerical experiments in section 5 show that this results in a significant
computational saving. Table 1 shows selected values of θm.

The evaluation of Lexp(A,L?exp(A, yb∗))b using Algorithm 3.4 effectively

requires the computation of quantities of the form eXy where

X =

[
A L?f (A, ykb

∗)

0 A

]
, or X =

[
A∗ ykb

∗

0 A∗

]
.

In theory, to guarantee the desired precision, for every different X we would
need to recompute s and m to take into account the changing (1, 2) block. In
practice, it is more desirable to compute s and m once at the beginning of
the algorithm. If the 1-norm of the (1, 2) block in X does not exceed ‖A‖1,
then the s and m which are optimal for eAb are also optimal for eXy. If the
(1, 2) block is larger in 1-norm than ‖A‖1, then the s and m which are optimal
for eAb may not be optimal for eXy and a loss of accuracy could result. In
practice, since only an order of magnitude estimate of the condition number
is required, our numerical experiments suggest that computing s and m once
at the beginning of the algorithm is nevertheless acceptable. This provides a
considerable computational saving. To choose s and m we therefore use [2,
Code Fragment 3.1], with the half precision θm from Table 1.

To fully adapt Algorithm 3.5 for eAb, we must consider three further points.
First we recall that Al-Mohy and Higham’s algorithm translates A by µ =

trace(A)/n. Incorporating this into the algorithm is straightforward.
Second, in their algorithm balancing can be used if desired. This is a di-

agonal similarity transformation, Ã = D−1AD, that attempts to equalize the
norms of the ith row and ith column of A for all i. Balancing can lead to a
smaller choice of s and m, but should not be used if ‖Ã‖1 > ‖A‖1. Note that

f(A) = Df(Ã)D−1,

which can be differentiated to give

Lf (A,E) = DLf (Ã,D−1ED)D−1.
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Table 1: Selected constants θm for half, single and double precision

m 5 10 15 20 25 30
Half 7.1e-1 2.2e0 3.7e0 5.2e0 6.6e0 8.1e0

Single 1.3e-1 1.0e0 2.2e0 3.6e0 4.9e0 6.3e0
Double 2.4e-3 1.4e-1 6.4e-1 1.4e0 2.4e0 3.5e0

m 35 40 45 50 55
Half 9.5e0 1.1e1 1.2e1 1.4e1 1.5e1

Single 7.7e0 9.1e0 1.1e1 1.2e1 1.3e1
Double 4.7e0 6.0e0 7.2e0 7.5e0 7.5e0

We deduce that

Lf (A,L?f (A, ykb
∗))b = DLf (Ã,D−1D̄−1Lf̄ (Ã∗, D̄yk(D−1b)∗)D̄D)D−1b.

For dense A, a candidate balancing transformation can be obtained by using
the LAPACK routines DGEBAL (for real A) or ZGEBAL (for complex A).
For sparse A, the algorithms of Chen and Demmel [7] can be used.

Finally, we reintroduce the scalar t, so that we are computing the condition
number of etAb. We recall from (2.5) that the condition numbers obtained
with or without perturbing t agree to within a factor 2. Simply applying the
framework of Algorithm 3.5 to the scaled matrix tA will provide the required
upper bound from (2.6).

We can now state our algorithm for estimating cond(exp, A, b, t) in full.

Algorithm 4.1 This algorithm computes an estimate of a quantity κ ≥
cond(exp, A, b, t). κ is within a factor of 6

√
n of cond(exp, A, b, t) in the 1-

norm. The subroutine parameters(A, tol) refers to [2, Code Fragment 3.1],
which computes the parameters m and s for the precision tol.

1 estimate ‖A‖1, using normest1

2 balance = true, σ = ‖b‖1, tol = 2−11 % unit roundoff for half precision

3 Ã = D−1AD, where D is the diagonal matrix computed by the chosen
balancing routine

4 if ‖Ã‖1 < ‖A‖1, A = Ã, b = D−1b, else balance = false, end
5 if trace(A) is available, µ = trace(A)/n, else µ = 0, end
6 A = A− µI
7 [m, s] = parameters(tA, tol) % compute m and s using

[2, Code Fragment 3.1] with half precision θm
8 η = etµ/s

9 choose unit nonzero starting vector y0 ∈ Cn % Start of the power
method for Kexp(tA, b)

10 for k = 0:∞
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11 if balance, yk = D̄yk, end
12 F1 = 0, F2 = b, b1 = 0, b2 = b
13 for i = 1: s
14 c1 = max{‖b1‖∞, ‖b2‖∞}
15 for j = 1:m
16 G1 = 0, G2 = b2, d1 = 0, d2 = b2
17 if balance, d2 = D̄Dd2, end
18 for q = 1: s
19 c3 = max{‖d1‖∞, ‖d2‖∞}
20 for r = 1:m
21 d1 = (t̄A∗d1 + ykb

∗d2)/(sr), d2 = (t̄A∗d2)/(sr)
22 c4 = max{‖d1‖∞, ‖d2‖∞}
23 G1 = G1 + d1, G2 = G2 + d2

24 if c3 + c4 ≤ tol×max{‖G1‖∞, ‖G2‖∞},
break, end

25 c3 = c4
26 end
27 G1 = η̄G1, G2 = η̄G2, d1 = G1, d2 = G2

28 end
29 if balance, G1 = D−1D̄−1G1, end
30 b1 = (tAb1 +G1)/(sj), b2 = tAb2/(sj)
31 c2 = max{‖b1‖∞, ‖b2‖∞}
32 F1 = F1 + b1, F2 = F2 + b2
33 if c1 + c2 ≤ tol×max{‖F1‖∞, ‖F2‖∞}, break, end
34 c1 = c2
35 end
36 F1 = ηF1, F2 = ηF2, b1 = F1, b2 = F2

37 end
38 yk+1 = F1

39 if balance, yk+1 = Dyk+1, end

40 γk+1 =
√
‖yk+1‖2

41 if |γk+1 − γk|/|γk+1| < 0.1 or k > it max, γ = γk+1, break, end
42 yk+1 = yk+1/‖yk+1‖2
43 end
44 estimate β = ‖etA‖1 using normest1:
45 when required, compute etAv, (etA)∗v via [2, Alg. 3.2, lines 12-23],

and [m, s] from line 7
46 compute F = etAb using [2, Alg. 3.2, lines 12-23] and [m, s] from line 7
47 κ = (2

√
nγ‖tA‖1 + βσ)/‖F‖1

Cost: Each iteration (lines 10-43) requires 2m2s2 + 2ms matrix-vector
multiplications. The estimation of ‖etAb‖1 and ‖etA‖1 (lines 44-46) requires
at most 10ms matrix-vector multiplications. Approximately 10n of allocatable
memory is required.

Algorithm 4.1 can be adapted to return etAb in double precision in addition
to the condition estimate. This provides a saving of ms matrix-vector multi-
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plications over computing the quantities separately. Before line 46, s and m
should be recomputed using the double precision θm, by calling the subroutine
parameters(tA, 2−53). Then F in line 46 contains etAb in double precision.

One of the strengths of Al-Mohy and Higham’s algorithm is its ability
to exploit level 3 BLAS operations for etAB, where B ∈ Cn×m, rather than
requiring m separate calls to the algorithm for etAb. This strength extends nat-
urally to Algorithm 4.1, by simply replacing vectors b, b1, b2, F1, F2, G1, G2, yk
with n×m matrices and replacing ‖yk‖2 with ‖Yk‖F .

5 Numerical Tests

For our approach to condition estimation to be deemed useful, numerical ex-
periments must demonstrate two key points. First they must show that we can
obtain accurate and reliable condition estimates. Second they must show that
our approach is not prohibitively expensive (this could be caused by large num-
bers of iterations in the power method in Algorithm 3.3, or large numbers of
matrix multiplications required to evaluate Lf (A,L?f (A, ykb

∗))b in Algorithm
3.4).

Our implementations and test codes were written in Python, with extensive
use made of NumPy and SciPy [24]. The tests were performed on a 2.8GHz
Intel Core i7 MacBook Pro. Our first two numerical experiments are based on
etAb and Algorithm 4.1 (the etAb algorithm of [2] is available in SciPy 0.13.0
and later versions via scipy.sparse.linalg.expm multiply). Our final ex-
periment was a more general test of Algorithm 3.5 for functions other than
the exponential.

Experiment 1: Accuracy of Algorithm 4.1. To investigate the accuracy of Al-
gorithm 4.1, we computed κ, the upper bound in (2.6), exactly using Al-
gorithm 3.1, which explicitly forms the Kronecker matrix and computes its
2-norm. The iteration in Algorithm 4.1 has a relative convergence tolerance
of 0.1. In theory normest1 can produce arbitrarily inaccurate 1-norm esti-
mates, however in practice it is nearly always correct to within a factor 2. We
therefore expect Algorithm 4.1 to give an estimate of κ with a relative error
approximately less than 1. Test matrices were taken from the special matrix
collection in SciPy’s linalg module. The test matrices were taken to be of
size 100, with the exception of the Hadamard matrix, which was of size 64.
For matrices larger than 100 × 100 the computation of the exact value of κ,
using Algorithm 3.1, becomes too expensive. For each test matrix, a randomly
chosen b with elements uniformly distributed on [−1, 1), and b = [1, 1, . . . , 1]
were tested, with t ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10}. This resulted in a total
of 112 tests. We summarize the results below.

– The largest number of iterations required in the iterative phase of Algo-
rithm 4.1 in any of the tests was 4. No tests failed to converge.

– The relative error in the computation of κ using Algorithm 4.1 was less
than 0.1 in each test.
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Fig. 1: The number of matrix-vector multiplications Πcond required to estimate
cond(exp, A, b, t) for the tests in Experiment 1 versus the number of matrix-
vector multiplications Πexp required to compute etAb in double precision.

– For each test we computed the product ms and also the product mdsd,
where md and sd are the scaling and truncation parameters that are re-
quired to evaluate etAb in double precision. Each iteration within Algo-
rithm 4.1 requires a number of matrix-vector products approximately pro-
portional to m2s2. The mean value of (ms/mdsd)

2 over all the tests was
0.42. We conclude that each iteration required approximately 42% of the
number of matrix-vector multiplications that would have been required to
evaluate Lexp(A,L?exp(A, ykb

∗))b in double precision.
– For each test we counted the total number of matrix-vector multiplica-

tions Πcond taken to estimate the condition number, and the total number
of matrix-vector multiplications Πexp required to compute etAb in double
precision. Figure 1 shows the approximate quadratic relationship between
the two. For these tests Πcond/Π

2
exp took a mean value of 0.65, although

this ranged between 0.1 and 1.4.

The main conclusions from this set of tests are that Algorithm 4.1 provides
accurate condition number estimates, and that choosing m and s for half
precision accuracy provides a significant computational saving. Nevertheless,
the square relationship, in terms of matrix-vector multiplications, between the
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cost of forming etAb and estimating its condition number is evident. This is a
result of the method used to compute Lexp(A,L?exp(A, ykb

∗))b.

Experiment 2: Sparse matrices with Algorithm 4.1. The action of a matrix
function f(A)b is typically of interest for large, sparse A. Our second set of
numerical tests involve a selection of such matrices. Now, computing κ exactly
using Algorithm 3.1 is usually too expensive. Instead, the aim is to demonstrate
that, for ‘realistic’ test matrices, the condition number cond(exp, A, b, t) can
be estimated without requiring a prohibitively large number of matrix-vector
multiplications.

We used the same tests as Al-Mohy and Higham [2]. The matrix poisson

is a multiple of the finite difference discretization of the 2D Laplacian (this is
most easily obtained by using the command -2500*gallery(‘poisson’,99)

in MATLAB). This was originally used as a test matrix by Trefethen, Wei-
deman and Schmelzer [33]. The matrices orani678, bcspwr and gr 30 30 be-
long to the Harwell-Boeing collection and are available from the University
of Florida Sparse Matrix Collection [10]. Finally, the matrices boeing767 and
3Ddiffuse were used as test matrices by Sheehan, Saad and Sidje [31]. The
full problem details are:

– poisson, n = 9801, t = 0.02, 1.0, b obtained as described in [33];
– orani678, n = 2529, t = 100, b = [1, 1, . . . , 1]T ;
– bcspwr10, n = 5300, t = 10, b = [1, 0, . . . , 0, 1]T ;
– gr 30 30, n = 900, t = 2, b = [1, 1, . . . , 1]T ;
– boeing767, n = 55, t = 0.01, 0.10, 1.00, b = [1, 1, . . . , 1]T ;
– 3Ddiffuse, n = 250, 000, as described in [31, Sec. 4.3].

Table 2 shows the results of these tests. Note that the test t = 1.0 for
the poisson matrix was not performed here. Al-Mohy and Higham found
that their algorithm performed poorly for this test, with 47702 matrix-vector
multiplications required. Estimating the condition number would require of
the order 109 matrix-vector multiplications. For the tests shown, the value
of Πcond/Π

2
exp varied between 0.05 and 1.19, with a mean of 0.5. For the

boeing767 test, the matrix was small enough to allow us to check the con-
dition estimates using Algorithm 3.1. For the remaining tests this was not
possible due to the excessive memory requirements of Algorithm 3.1. Note
that increasing t from 0.01 to 0.1 for the boeing767 matrix decreases the con-
dition estimate before it then increases when t = 1.0. This behaviour is related
to the well known ‘hump’ phenomenon for the matrix exponential [28].

Experiment 3: Accuracy of Algorithm 3.5 for general functions. The aim of this
experiment was to demonstrate that the general method described in Algo-
rithm 3.5 can be used for functions other than the exponential without requir-
ing an excessive number of iterations to converge. In general the algorithm used
to compute f(A)b must be adapted to allow the quantity Lf (A,L?f (A, ykb

∗))b
to be computed efficiently. Adapting various f(A)b algorithms in this manner
is the subject of future research, so for the purposes of this experiment, test
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matrices were limited to n = 100 and Lf (A,L?f (A, ykb
∗))b was computed using

standard dense f(A) algorithms.
We used the same set of test matrices as in Experiment 1 and the exact

value of κ was computed using Algorithm 3.1. The following matrix functions
were used:

– the principal matrix logarithm, available in SciPy as scipy.linalg.logm,
computed using inverse scaling and squaring [3];

– the matrix sine, scipy.linalg.sinm, computed using the Schur-Parlett
algorithm [8];

– the matrix cosine, scipy.linalg.cosm, also computed using the Schur-
Parlett algorithm;

– the matrix square root, scipy.linalg.sqrtm, computed using a blocked
version of the Björck-Hammarling algorithm [5], [12];

– the matrix cube root, scipy.linalg.fractional matrix power, computed
using the Schur-Padé algorithm [21].

Discarding tests for which f(A)b could not be computed (for example log(A)b
if A is singular), this resulted in a total of 518 tests with condition numbers
ranging from 1.0 to 3.9e12. Since we were using dense f(A) algorithms, count-
ing matrix-vector multiplications was not relevant to this experiment. Instead
we were interested in the number of iterations required for convergence and
the relative error of the condition estimate. We summarize the results below.

– 97.5% of the tests converged within 4 iterations. The remaining tests con-
verged within 6 iterations. No tests failed to converge.

– The relative error in the computation of κ using Algorithm 3.5 was less
than 0.1 in 93.4% of the tests. The relative error was less than 0.4 in 99.4%
of the tests. The remaining three tests had relative errors less than 0.6.

We conclude that, for general f , Algorithm 3.5 returns accurate condition
estimates and does not require an excessive number of iterations to converge.

6 Conclusions and Outlook

We have developed a general framework for estimating the condition number
of f(A)b. Central to our approach is the use of the power method to estimate
max‖∆A‖=1 ‖Lf (A,∆A)b‖. Our framework can be applied to algorithms that
compute f(A)b using combinations of matrix-vector multiplications and linear
system solves. The number of matrix-vector multiplications or linear system
solves required by our method is proportional to the square of the number
required to compute f(A)b. Since only an order of magnitude condition esti-
mate is usually required, a considerable amount of computation can be saved
by relaxing the tolerances in whichever f(A)b algorithm is used.

We applied our method to Al-Mohy and Higham’s algorithm for etAb [2].
We found that, in practice, very few iterations of the power method were
required to estimate max‖∆A‖=1 ‖Lexp(A,∆A)b‖, and that the total number
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Table 2: Estimating the condition number of etAb for various large, sparse
matrices detailed in Experiment 2. Πcond and Πexp denote the total number of
matrix-vector multiplications required to compute cond(exp, A, b, t) and etAb
respectively; m and s denote the truncation and scaling parameters; it denotes
the number of iterations of the power method, τ denotes the runtime in seconds
and κ is the condition estimate.

Estimating cond(exp, A, b, t) Computing etAb
κ it m s Πcond τ m s Πexp τ

poisson 1232 3 52 14 1.1e6 428 54 21 1200 6.10
orani678 2.5e6 3 55 19 7.5e5 240 55 29 1248 0.41
bcspwr10 2.7e7 3 55 5 1.3e5 37.5 54 8 578 0.37
gr 30 30 668 3 30 4 2.8e4 3.25 48 4 155 0.01

boeing767

t = 0.01 2.2e10 3 50 3 9403 0.83 55 4 418 0.02
t = 0.1 1.4e10 3 55 23 2.6e5 25.3 55 35 971 0.09
t = 1.0 1.2e12 3 55 226 2.1e7 1230 55 349 5510 0.68

3Ddiffuse 31.4 2 17 1 1022 15.6 32 1 38 0.18

of matrix-vector multiplications, Πcond, required to estimate the condition
number is typically approximately 0.6 × Π2

exp, where Πexp is the number of

matrix-vector multiplications required to compute etAb in double precision.
Experiments using dense f(A) algorithms to estimate cond(f,A, b, t) for a
variety of different f confirmed that, in general, very few iterations of the
power method are required to estimate max‖∆A‖=1 ‖Lf (A,∆A)b‖.

The quadratic relationship betweenΠcond andΠexp is due to the estimation
of Lf (A,L?f (A, ykb

∗))b. This behaviour will be present irrespective of which
f(A)b algorithm is used and is a result of avoiding the computation and storage
of dense O(n2) quantities in the power method. It would be desirable to be
able to compute Lf (A,L?f (A, ykb

∗))b more efficiently. In the case of etAb and
Algorithm 4.1 this could be done in a multicore setting by parallelizing some
of the loops in the algorithm.

Further work on this topic will focus on applying our methods to other
f(A)b algorithms, such as Krylov subspace projection methods. This would
involve developing implementations of the f(A)b algorithms which allow the
user to control the matrix-vector multiplications (a ‘reverse communication’
interface) and then modifying the algorithms to allow f(A)b to be returned
in lower precision so that Lf (A,L?f (A, ykb

∗))b can be computed efficiently by
Algorithm 3.4. Alternative approaches to computing the condition number of
f(A)b also warrant investigation. For example, we were unable to adapt the
standard 1-norm condition estimation method [19, Alg. 3.22] to the f(A)b
problem in a manner which avoided the explicit use of O(n2) quantities, but
this may still be possible. The approach of Kenney and Laub [26] suffers from
the same problems, but it may still be of interest when only the nonzero
elements of A should be perturbed.
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